Science.gov

Sample records for adult optical penetrating

  1. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  2. Penetration and Splitting of Optic Nerve by Tuberculum Sellae Meningioma

    PubMed Central

    Park, Seong-Cheol

    2016-01-01

    Preservation of the optic nerves is an important issue in the resection of tuberculum sellae meningiomas. We report the case of a patient whose optic nerve was penetrated by a tuberculum sellae meningioma. During surgery, a bulging tumor was found to penetrate the right optic nerve. The tumor was gross totally removed, including tumors bulging through the optic nerve. Two trunks of the split optic nerve were preserved. The penetrated shape of the optic nerve may lead to misjudgment and its damage. Divided trunks of optic nerves are difficult to recognize and may be confused for the tumor capsule, because they may be thinned and seem to contain tumors. In addition, a single trunk may be confused for the whole nerve; thus, the other trunk may be easily damaged if not dissected cautiously. Treatment strategy according to the remnant visual acuity was suggested. PMID:27651874

  3. Monitoring Weld Penetration Optically From Within Torch

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Gilbert, Jeffrey L.; Linsacum, Deron L.; Gutlow, David A.

    1993-01-01

    Photodetector or optical fiber leading to photodetector mounted inside gas/tungsten arc welding torch to monitor arc light reflected from oscillating surface of weld pool. Proposed optical monitoring components preserve compact profile of welding torch, maintained in fixed aim at weld-pool position at end of welding torch, and protected against bumping external objects.

  4. Ultrasound-enhanced optical coherence tomography: improved penetration and resolution

    PubMed Central

    Huang, Chuanyong; Liu, Bin; Brezinski, Mark E.

    2013-01-01

    Increasing penetration remains one of the most important issues in optical coherence tomography (OCT) research, which we achieved with a parallel ultrasound beam. In addition to qualitative improvements of tissue imaging, quantitative improvements in resolution of up to 28%±2% was noted. At lower frequencies and energies the improvement occurred primarily by altering the detection of multiply scattered light (photon–phonon interaction), which was substantially greater in solids than in liquids (even though the liquid had the higher scattering coefficient). In conclusion, the use of an ultrasound beam with OCT appears the most effective means to date for increasing imaging penetration. PMID:18382493

  5. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    PubMed Central

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings. PMID:26229677

  6. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    SciTech Connect

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  7. Optical penetration-based silkworm pupa gender sensor structure.

    PubMed

    Sumriddetchkajorn, Sarun; Kamtongdee, Chakkrit

    2012-02-01

    This paper proposes and experimentally demonstrates for what is believed to be the first time a highly sought-after optical structure for highly-accurate identification of the silkworm pupa gender. The key idea is to exploit a long wavelength optical beam in the red or near infrared spectrum that can effectively and safely penetrate the body of a silkworm pupa. Later on, simple image processing operations via image thresholding, blob filtering, and image inversion processes are applied in order to eliminate the unwanted image noises and at the same time highlight the gender gland. Experimental proof of concept using three 636 nm wavelength light emitting diodes, a two-dimensional web camera, an 8 bit microcontroller board, and a notebook computer shows a very high 95.6% total accuracy in identifying the gender of 45 silkworm pupae with a measured fast identification time of 96.6 ms. Other key features include low cost, low component counts, and ease of implementation and control.

  8. A Female Patient with Down Syndrome and Low-Penetrance Leber's Hereditary Optic Neuropathy.

    PubMed

    Frousiakis, Starleen E; Pouw, Andrew E; Karanjia, Rustum; Sadun, Alfredo A

    2014-09-01

    We present the case of a 19-year-old female with a history of Down syndrome (DS) who was referred to our neuro-ophthalmology clinic for evaluation of Leber's hereditary optic neuropathy (LHON). The patient's family history was significant for a known G11778A mutation in a maternal relative, consistent with LHON. The patient was also positive for the G11778A mutation; however, the genotype demonstrated low penetrance in the pedigree, with only 1 out of 10 adult male offspring showing signs or symptoms of the disease. Mitochondrial mutations implicated in LHON have been shown to impair complex I of the electron transport chain and thereby reducing the effective generation of adenosine triphosphate and increasing the production of toxic reactive oxygen species. Although the partial or complete triplicate of chromosome 21 constitutes the etiology of DS, some of the pleiotropic phenotypes of the syndrome have been attributed to oxidative stress and mitochondrial dysfunction. Given the low penetrance of the mutation and the patient's sex, this case illustrates the possibility that the mitochondrial mutation demonstrated increased penetrance due to pre-existing mitochondrial dysfunction related to DS.

  9. Dermal penetration of [14C]captan in young and adult rats.

    PubMed

    Fisher, H L; Hall, L L; Sumler, M R; Shah, P V

    1992-07-01

    Age dependence in dermal absorption has been a major concern in risk assessment. Captan, a chloroalkyl thio heterocyclic fungicide, was selected for study of age dependence as representative of this class of pesticides. Dermal penetration of [14C]captan applied at 0.286 mumol/cm2 was determined in young (33-d-old) and adult (82-d-old) female Fischer 344 rats in vivo and by two in vitro methods. Dermal penetration in vivo at 72 h was about 9% of the recovered dose in both young and adult rats. The percentage penetration was found to increase as dosage (0.1, 0.5, 2.7 mumol/cm2) decreased. Two in vitro methods gave variable dermal penetration values compared with in vivo results. A static system yielded twofold higher dermal penetration values compared with in vivo results for both young and adult rats. A flow system yielded higher dermal penetration values in young rats and lower penetration values in adults compared with in vivo results. Concentration in body, kidney, and liver was less in young than in adult rats given the same absorbed dosage. A physiological pharmacokinetic model was developed having a dual compartment for the treated skin and appeared to describe dermal absorption and disposition well. From this model, tissue/blood ratios of captan-derived radioactivity for organs were found to range from 0.35 to 3.4, indicating no large uptake or binding preferences by any organ. This preliminary pharmacokinetic model summarizes the experimental findings and could provide impetus for more complex and realistic models.

  10. Improvement of in vivo rat skin optical clearing with chemical penetration enhancers

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhou, Xue; Duan, Shu; Chen, Zhongwei; Zhu, Dan

    2011-03-01

    Optical method plays an important role in clinical diagnosis and treatment, but suffers from limited penetration depth of light in turbid tissue. The optical clearing technique can improve the light delivery significantly through immersion of tissues into Optical Clearing Agents (OCAs). However, the barrier function of stratum corneum makes it difficult for optical clearing of skin by topical application of OCAs. Addition of penetration enhancers to OCAs can improve the skin clearing efficacy, but most investigations were performed on in vitro skin. Here, to evaluate the efficacy of this method on in vivo skin, direct observation and measurement of diffuse reflectance spectra were performed after topical application of different mixtures. One OCA, PEG-400, and three penetration enhancers (PEs), Thiazone, Azone and Propylene Glycol (PG), were used. The results indicated that the addition of penetration enhancers could improve the optical clearing efficacy of rat skin in vivo significantly, the dermal blood vessels could be observed directly with PEs. Among the three penetration enhancers, Thiazone induced the largest enhancement of clearing efficacy, and the enhancement induced by PG is the least. This study is very helpful for in vivo application of OCAs to enhance skin optical clearing non- invasively.

  11. Perioperative anaesthetic management of penetrating neck injury associated with Rh blood type in a young adult

    PubMed Central

    Wang, Tao; Zhou, Yeting; Shi, Jiaohui; Wang, Zhichun

    2013-01-01

    We describe here a young adult patient with penetrating neck injuries (PNI) with an Rh negative blood type and discuss the perioperative anaesthetic management of single-stage surgical exploration under general anaesthesia and extracorporeal circulation in this patient. The patient had zone II PNI and he was in a haemodynamically progressive unstable state, and the knife penetrated the left internal jugular vein, superior thyroid artery and recurrent laryngeal nerve; the trachea and the oesophagus were swelling at a rapid rate. Eight weeks after operation, the patient was discharged from the hospital without any complications. PMID:23429024

  12. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy.

    PubMed

    Giordano, Carla; Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N; D'Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F; Zeviani, Massimo; Salomao, Solange R; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A; Tancredi, Andrea; Mancini, Massimiliano; d'Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro; Carelli, Valerio

    2014-02-01

    Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.

  13. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus

    PubMed Central

    Kirch, Julian; Schneider, Andreas; Abou, Bérengère; Hopf, Alexander; Schaefer, Ulrich F.; Schneider, Marc; Schall, Christian; Wagner, Christian; Lehr, Claus-Michael

    2012-01-01

    In this study, the mobility of nanoparticles in mucus and similar hydrogels as model systems was assessed to elucidate the link between microscopic diffusion behavior and macroscopic penetration of such gels. Differences in particle adhesion to mucus components were strongly dependent on particle coating. Particles coated with 2 kDa PEG exhibited a decreased adhesion to mucus components, whereas chitosan strongly increased the adhesion. Despite such mucoinert properties of PEG, magnetic nanoparticles of both coatings did not penetrate through native respiratory mucus, resisting high magnetic forces (even for several hours). However, model hydrogels were, indeed, penetrated by both particles in dependency of particle coating, obeying the theory of particle mobility in an external force field. Comparison of penetration data with cryogenic scanning EM images of mucus and the applied model systems suggested particularly high rigidity of the mucin scaffold and a broad pore size distribution in mucus as reasons for the observed particle immobilization. Active probing of the rigidity of mucus and model gels with optical tweezers was used in this context to confirm such properties of mucus on the microscale, thus presenting the missing link between micro- and macroscopical observations. Because of high heterogeneity in the size of the voids and pores in mucus, on small scales, particle mobility will depend on adhesive or inert properties. However, particle translocation over distances larger than a few micrometers is restricted by highly rigid structures within the mucus mesh. PMID:23091027

  14. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  15. Dynamic imaging of penetration and decontamination after chemical eye burn using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Spöler, Felix; Först, Michael; Kurz, Heinrich; Frentz, Markus; Schrage, Norbert F.

    2007-07-01

    For chemical burns a considerable lack of methods exists for defining penetration kinetics and effects of decontamination within biological structures. We demonstrate that time-resolved high-resolution optical coherence tomography can close this gap by monitoring changes in scattering properties and thicknesses of rabbit cornea ex vivo after topical application of different corrosives. Modifications in the corneal microstructure due to direct chemical interaction or changes in the hydration state as a result of osmotic imbalance compromise the corneal transparency. The associated increase in light scattering intensity within the cornea is observed with high spatial and temporal resolution. Parameters affecting the severity of pathophysiological damage like diffusion velocity, depth of penetration, resistance of barriers, and effectiveness of emergency treatment procedures are obtained. This study demonstrates the potential of high-resolution OCT for the visualization and direct non-invasive measurement of specific interaction of chemicals with the eye, exemplified on hydrofluoric acid burn.

  16. A simulation of current focusing and steering with penetrating optic nerve electrodes

    NASA Astrophysics Data System (ADS)

    Li, Menghui; Yan, Yan; Wang, Qixin; Zhao, Honghong; Chai, Xinyu; Sui, Xiaohong; Ren, Qiushi; Li, Liming

    2013-12-01

    Objective. Current focusing and steering are both widely used to shape the electric field and increase the number of distinct perceptual channels in neural stimulation, yet neither technique has been used for an optic nerve (ON)-based visual prosthesis. In order to evaluate the effects of current focusing and steering in penetrative stimulation, we built an integrated computational model to simulate and investigate the influence of stimulating parameters on ON fibre recruitment. Approach. Finite element models with extremely fine meshes were first established to compute the 3D electric potential distribution under different stimulating parameters. Then the external electric potential was fed to randomized multi-compartment cable models to predict the distribution of fibres generating an action potential. Finally a statistical process was conducted to quantify the recruitment region. Main results. The simulation results show that a two-electrode mode is superior to a three-electrode mode in current steering. The three-electrode mode performs poorly in current focusing, albeit the localized recruitment from both configurations implies that current focusing might be unnecessary in penetrative ON stimulation. Significance. This study provides useful information for the optimized design of penetrating ON electrodes and stimulating strategies. The Monte Carlo style computation paradigm is designed to simulate neural responses of an ensemble of ON fibres, which can be immediately transferred to other similar problems.

  17. Outcome of optical penetrating keratoplasties at a tertiary care eye institute in Western India

    PubMed Central

    Joshi, Shilpa A; Jagdale, Seema S; More, Pranav D; Deshpande, Madan

    2012-01-01

    Aim: To study the indications, risk factors, postoperative course, and long-term survival of corneal transplants done for optical purposes. Design: Retrospective case series. Materials and Methods: Data were obtained by reviewing the records of 181 patients operated at our institute (H.V. Desai Eye Hospital) between October 2005 and October 2007 for optical penetrating keratoplasty. Patients with less than one year of follow up, pediatric cases, therapeutic, tectonic, and lamellar keratoplasties were excluded. Kaplan Meier survival analysis was used to calculate median survival time of grafts and to see correlation between nine variables viz. age, gender, corneal vascularization, previous failed grafts, previous Herpes Simplex keratitis, post-perforation corneal scars, donor tissue quality, graft size, type of surgery and follow-up. These variables were also used for univariate and multivariate analysis using Cox Proportional Hazard Regression Modeling. Results: Median survival of the cohort was 27 months (95% confidence interval: 20.47-33.52). One- and two-year survival rates were 65% and 52.5%, respectively. Median survival was significantly lower in poor prognosis cases (14 months) than good prognosis cases (27 months, P = 0.0405). Graft survival was lower in vascularized corneas (18.55 months, P = 0.030) and in post-perforation corneal scars (17.96 months, P = 0.09, borderline significance). Multivariate analysis showed that the same factors were predictive of graft failure. Conclusion: Long-term survival of grafts at our center is different from centers in western world. More high-risk cases, paucity of excellent quality donor corneas, and differences in patient profile could be the contributory factors. PMID:22218240

  18. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity.

    PubMed

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-05-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  19. Optically-Activated GaAs Switches for Ground Penetrating Radar and Firing Set Applications

    SciTech Connect

    Aurand, J.; Brown, D.J.; Carin, L.; Denison, G.J.; Helgeson, W.D.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Rinehart, L.F.; Zutavern, F.J.

    1999-07-14

    Optically activated, high gain GaAs switches are being tested for many different applications. TWO such applications are ground penetrating radar (GPR) and firing set switches. The ability of high gain GaAs Photoconductive Semiconductor Switches (PCSs) to deliver fast risetime pulses makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for the detection of buried items because it can operate at low frequency, high average power, and close to the ground, greatly increasing power on target. We have demonstrated that a PCSs based system can be used to produce a bipolar waveform with a total duration of about 6 ns and with minimal ringing. Such a pulse is radiated and returns from a 55 gallon drum will be presented. For firing sets, the switch requirements include small size, high current, dc charging, radiation hardness and modest longevity. We have switched 1 kA at 1 kV and 2.8 kA at 3 kV dc charge.

  20. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity

    PubMed Central

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-01-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  1. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity.

    PubMed

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-05-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging.

  2. Changing Polygenic Penetrance on Phenotypes in the 20th Century Among Adults in the US Population

    PubMed Central

    Conley, Dalton; Laidley, Thomas M.; Boardman, Jason D.; Domingue, Benjamin W.

    2016-01-01

    This study evaluates changes in genetic penetrance—defined as the association between an additive polygenic score and its associated phenotype—across birth cohorts. Situating our analysis within recent historical trends in the U.S., we show that, while height and BMI show increasing genotypic penetrance over the course of 20th Century, education and heart disease show declining genotypic effects. Meanwhile, we find genotypic penetrance to be historically stable with respect to depression. Our findings help inform our understanding of how the genetic and environmental landscape of American society has changed over the past century, and have implications for research which models gene-environment (GxE) interactions, as well as polygenic score calculations in consortia studies that include multiple birth cohorts. PMID:27456657

  3. Preparing displaced adults for the optics/photonics workforce

    NASA Astrophysics Data System (ADS)

    Hull, Darrell M.

    2000-06-01

    As the optics/photonics industry continues to grow, the demand for workers is assumed to increase proportionally. Empirical data seem to support this assumption. This increase presents a challenge to optics/photonics education, since they control and assume responsibility for a key factor in the ability of industry to further expand. At the same time, the U.S. government through the Department of Labor and the Workforce Investment Act has requested that communities enact programs for displaced adults to transition to the workplace. A program of study is provided that would assist adults in making this transition from unemployment to the optics/photonics industry, with the necessary general work skills, occupational optics/photonics skills, and ability to progress on the job with academic foundations in math and science.

  4. Implementing an Optical Disk System for Adult Education Manuscripts.

    ERIC Educational Resources Information Center

    RSR Reference Services Review, 1988

    1988-01-01

    Briefly describes the objectives and research areas of the Kellogg Project at Syracuse University, focusing on the development of an optical disk system for the indexing and dissemination of the university library's adult education collections. The criteria used to evaluate technologies and vendors are discussed. (CLB)

  5. Quantitative comparison of wavelength dependence on penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography using supercontinuum sources at five wavelength regions

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Nishizawa, N.

    2012-01-01

    Optical coherence tomography (OCT) is a non invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) using fiber based supercontinuum sources. Although ultrahigh longitudinal resolution was achieved in several center wavelength regions, its low penetration depth is a serious limitation for other applications. To realize ultrahigh resolution and deep penetration depth simultaneously, it is necessary to choose the proper wavelength to maximize the light penetration and enhance the image contrast at deeper depths. Recently, we have demonstrated the wavelength dependence of penetration depth and imaging contrast for ultrahigh resolution OCT at 0.8 μm, 1.3 μm, and 1.7 μm wavelength ranges. In this paper, additionally we used SC sources at 1.06 μm and 1.55 μm, and we have investigated the wavelength dependence of UHR-OCT at five wavelength regions. The image contrast and penetration depth have been discussed in terms of the scattering coefficient and water absorption of samples. Almost the same optical characteristics in longitudinal and lateral resolution, sensitivity, and incident optical power at all wavelength regions were demonstrated. We confirmed the enhancement of image contrast and decreased ambiguity of deeper epithelioid structure at longer wavelength region.

  6. Optical remote sensing of penetration into the lower thermosphere of neutral wind and composition perturbations driven by magnetospheric forcing

    NASA Astrophysics Data System (ADS)

    Conde, M. G.; Anderson, C.; Hecht, J. H.

    2011-12-01

    Numerous observations of thermospheric neutral winds at altitudes of 240 km and higher clearly show wind structures occurring at auroral latitudes in response to magnetospheric forcing. It is also known from observations that magnetospheric forcing is not a major driver of winds down at mesopause heights and below. Because it is difficult to measure winds in the intervening "transition region" between these height regimes, very little is known about how deeply the magnetospherically driven neutral wind structures penetrate into the lower thermosphere, what factors affect this penetration, and what consequences it may have for transport of chemical species. Here we will show neutral wind maps obtained at F-region and E-region heights in the auroral zone using Fabry-Perot Doppler spectroscopy of the 630 nm and 558 nm optical emissions. Although thermospheric neutral winds are smoothed by viscosity and inertia, observed responses to magnetospheric forcing still include wind responses on time scales as short as 10 minutes or less, and on length scales shorter than 100 km horizontally and 5 km vertically. The data also show that the degree of penetration of magnetospheric forcing into the lower thermospheric wind field is highly variable from day to day. Signatures of magnetospheric forcing are sometimes seen at altitudes as low as 120 km, whereas at other times the E-region does not seem to respond at all. Possible links will be explored between this variability and the day to day differences seen in the column integrated thermospheric [O]/[N2] ratio over Alaska.

  7. Optical Probe of the Superconducting Normal Mixed State in a Magnetic Penetration Thermometer

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S. -J.; Nagler, P. C.; Smith, S. J.

    2016-01-01

    Using ultraviolet photon pulses, we have probed the internal behavior of a molybdenum-gold Magnetic Penetration Thermometer (MPT) that we designed for x-ray microcalorimetry. In this low-temperature detector, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons. We have previously described an approximate model that explains the high responsivity of the detector to temperature changes as a consequence of a Meissner transition of the molybdenum-gold film in the magnetic field applied by the superconducting circuit used to bias the detector. We compare measurements of MPT heat capacity and thermal conductance, derived from UV photon pulse data, to our model predictions for the thermodynamic properties of the sensor and for the electron cooling obtained by quasiparticle recombination. Our data on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  8. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  9. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    NASA Astrophysics Data System (ADS)

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  10. Optical method of penetration sensing for pulsed Nd:YAG laser welding

    SciTech Connect

    Essien, M.; Keicher, D.M.

    1997-04-01

    The ability to monitor and control the depth of a laser weld in real-time is critical in many laser welding applications. Consequently, the authors have investigated the use of an optical method to sense weld depth. Welds were generated on kovar samples, using a pulsed Nd:YAG laser. The sensing method uses digital high-speed photography to measure the velocity of the plume of vaporized metal atoms ejected from the metal surface. An energy balance equation is then used to relate the plume velocity to the size of the weld. Numerical solution of the energy balance equation yielded values for weld depth that were within 8% of the actual measured values.

  11. PENETRATING THE HOMUNCULUS-NEAR-INFRARED ADAPTIVE OPTICS IMAGES OF ETA CARINAE

    SciTech Connect

    Artigau, Etienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-06-15

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the 'butterfly nebula', outlined by bright Br{gamma} and H{sub 2} emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in {eta} Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10{sup 0}-20{sup 0} above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star.

  12. Penetrating the Homunculus—Near-Infrared Adaptive Optics Images of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Artigau, Étienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-06-01

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the "butterfly nebula," outlined by bright Brγ and H2 emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in η Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10°-20° above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star. Based on observations obtained at the Gemini Observatory (program ID: GS-2008B-DD-6), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  13. Anisotropic magnetism, resistivity, London penetration depth and magneto-optical imaging of superconducting K0.80Fe1.76Se2 single crystals

    NASA Astrophysics Data System (ADS)

    Hu, R.; Cho, K.; Kim, H.; Hodovanets, H.; Straszheim, W. E.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.

    2011-06-01

    Single crystals of K0.80Fe1.76Se2 were successfully grown from a ternary solution. We show that, although crystals form when cooling a near-stoichiometric melt, crystals are actually growing out of a ternary solution that remains liquid to at least 850 °C. We investigated their chemical composition, anisotropic magnetic susceptibility and resistivity, specific heat, thermoelectric power, London penetration depth and flux penetration via magneto-optical imaging. Whereas the samples appear to be homogeneously superconducting at low temperatures, there appears to be a broadened transition range close to Tc ~ 30 K that may be associated with small variations in stoichiometry.

  14. Very high penetrance and occurrence of Leber's hereditary optic neuropathy in a large Han Chinese pedigree carrying the ND4 G11778A mutation.

    PubMed

    Zhou, Xiangtian; Zhang, Hongxing; Zhao, Fuxin; Ji, Yanchun; Tong, Yi; Zhang, Juanjuan; Zhang, Yu; Yang, Li; Qian, Yaping; Lu, Fan; Qu, Jia; Guan, Min-Xin

    2010-08-01

    We report here the clinical, genetics and molecular characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). Strikingly, this family exhibits very high penetrance and occurrence of optic neuropathy. In particular, 25 (10 males/15 females) of 30 matrilineal relatives exhibited the variable severity, ranging from profound to mild of visual impairment. This penetrance of optic neuropathy in this Chinese family is much higher than those in many families with LHON worldwide. The age-at-onset for visual impairment in matrilineal relatives in this Chinese family varied from 7 to 24years old, with the average of 15 years old. Furthermore, the ratio between affected male and female matrilineal relatives is 1:1.5 in the Chinese family. This observation is in contrast with the typical features in LHON pedigrees that there was predominance of affected males in LHON in many families from different ethnic origins. Molecular analysis of mitochondrial genome identified the known ND4 G11778A mutation and 51 variants, belonging to Asian haplogroup C4a1. The absence of other known secondary LHON-associated and functionally significant mtDNA mutations in this Chinese family suggested that mitochondrial variants may not play an important role in the phenotypic manifestation of the G11778A mutation in this Chinese family. Therefore, nuclear modifier gene(s) may be responsible for very high penetrance and occurrence of optic neuropathy in this Chinese pedigree.

  15. Monte Carlo study of skin optical clearing to enhance light penetration in the tissue: implications for photodynamic therapy of acne vulgaris

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.; Altshuler, Gregory B.; Yaroslavsky, Ilya V.

    2008-06-01

    Result of Monte Carlo simulations of skin optical clearing is presented. The model calculations were carried out with the aim of studying of spectral response of skin under immersion liquids action and calculation of enhancement of light penetration depth. In summary, we have shown that: 1) application of glucose, propylene glycol and glycerol produced significant decrease of light scattering in different skin layers; 2) maximal clearing effect will be obtained in case of optical clearing of skin dermis, however, absorbed light fraction in skin dermis changed insignificantly, independently on clearing agent and place it administration; 3) in contrast to it, the light absorbed fraction in skin adipose layer increased significantly in case of optical clearing of skin dermis. It is very important because it can be used for development of optical methods of obesity treatment; 4) optical clearing of superficial skin layers can be used for decreasing of power of light radiation used for treatment of acne vulgaris.

  16. On-line air-tightness and insertion loss simultaneous detection method of high air-tightness fiber optic penetration connector

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchuan; Yang, Xiaoning; Wang, Jing; Jiang, Junfeng

    2015-08-01

    The high air-tightness multicore fiber optic penetration connector is a core component for the optical fiber sensing and communication technologies applied in the space environment simulator under the vacuum thermal environment. High air-tightness and insertion loss are the two key indexes of the fiber optic penetration connector. The air-tightness and insertion loss on-line synchronous detection method was proposed. First, established hardware-in-the-loop testing platform by using the vacuum pumping system, the vacuum vessel, the helium mass spectrometer leak detector and optical time-domain reflectmeter, then, described the air tightness and insertion loss on-line detection principle, finally, designed a detection test scheme and air-tightness and insertion loss were tested. Experimental results indicate that the leakage rate is lower than 1.0×10-7Pa•L/S, the minimum of which is1.0×10-10Pa•L/S and the insertion loss at wave length window 1550 nm is +/-0.07db, which is less than +/-0.1db. It can lay the data basis for the design of opto-mechanical combination and later period fine processing.

  17. Evaluation of ultrasound and glucose synergy effect on the optical clearing and light penetration for human colon tissue using SD-OCT.

    PubMed

    Zhao, Qingliang; Wei, Huajiang; He, Yonghong; Ren, Qiushi; Zhou, Chuanqing

    2014-11-01

    Topical application optical clearing agents (OCAs) can effectively enhance the tissue optical clearing on the human colon tissue, which has been demonstrated in our previous studies. Nevertheless, the strong light scattering still limits the diffusion rate of OCAs and penetration depth of light into the tissue. In this study, in order to further increase the diffusion of the OCA of glucose into tissue, we employ a method to improve the glucose permeability and light penetration with ultrasound (sonophoretic delivery, SP) and glucose (G) synergy on human normal and cancerous colon tissues in vitro, which was measured and quantified with spectral-domain optical coherence tomography (SD-OCT) technology. To evaluate the effect of ultrasound mediation, the percentages of OCT signal enhancement (PSE) and 1/e light-penetration depth were calculated for G alone and ultrasound-G treatments. The PSE was calculated at approximately 313 μm from the sample tissue surface. For normal and cancerous colon tissues the PSE were about 91.1 ± 10.6% and 65.3% ± 12.3% with 30% G/SP, but for the 30% G alone treatment it was about 78.6 ± 11.2% and 54.5% ± 9.3%, respectively. The max value of 1/e light-penetration depth for normal colon tissue was 0.47 ± 0.02 mm with 30% G alone and 0.60 ± 0.05 mm (p < 0.05)with 30% G/SP synergy. However, for the cancerous colon tissue the max value was 0.45 ± 0.01 mm and 0.57 ± 0.03 mm (p < 0.05), respectively. The obtained permeability coefficients showed a significant enhancement with ultrasound mediation. The mean permeability coefficients of 30% G/SP in normal and cancerous colon tissues were (6.3 ± 0.16) × 10(-6) cm/s and (12.1 ± 0.34) × 10(-6) cm/s (p < 0.05), respectively. These preliminary experiments showed that ultrasound can effectively enhance the tissue optical clearing and glucose diffusion rate as well as increase the light-penetration depth into biotissues.

  18. Penetration equations

    SciTech Connect

    Young, C.W.

    1997-10-01

    In 1967, Sandia National Laboratories published empirical equations to predict penetration into natural earth materials and concrete. Since that time there have been several small changes to the basic equations, and several more additions to the overall technique for predicting penetration into soil, rock, concrete, ice, and frozen soil. The most recent update to the equations was published in 1988, and since that time there have been changes in the equations to better match the expanding data base, especially in concrete penetration. This is a standalone report documenting the latest version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. 11 refs., 6 tabs.

  19. Synthesis and Characterization of Silicon Nitride Thin Films and Their Application as Hermetic Coatings on Optical Fibers for Protection against Hydrogen Penetration.

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hsien

    1995-01-01

    Silicon nitride has been proposed to be a hermetic coating on optical fibers against the penetration of hydrogen which can induce optical losses in silica-based fibers in the region 1.08 to 1.24 μm and a broad absorption edge above 1.5 mum. Silicon nitride coatings have been deposited on flat substrates and optical fibers by metal-organic chemical vapor deposition (MOCVD) and rf reactive magnetron sputtering. Properties of the coatings have been studied using several techniques: profilometry, ellipsometry, XRD, XPS, AES, OM, SEM, TEM, EPR, FTIR, and SIMS. Properties were related to the deposition parameters such as reactant gas ratio, gas flow rate, and substrate position (in MOCVD); sputtering gas composition, pressure, and rf power (in rf sputtering). Diffusion of hydrogen in rf sputtered silicon nitride has been studied for the first time by annealing the deuterium-implanted silicon nitride films at elevated temperatures (700-1000^circC) for various periods of time. The broadening of the SIMS deuterium depth profile has been simulated by a modified plane source diffusion equation to calculate diffusion coefficients. The hydrogen concentrations in the as-deposited stoichiometric Si_3rm N_4 and Si-rich Si_3rm N_3 film has been determined to be 1.28 times 10^{20} and 7.22 times10^{19} atoms/cm ^3, which are less than the conventional LPCVD and PECVD prepared silicon nitride films (10 ^{21}-10^{22 } atoms/cm^3) Activation energies of deuterium diffusion in Si_3 rm N_4 and Si_3rm N_3 are 3.33 and 2.33 eV. Si_3 rm N_4 was found to contain more N -H traps which limit the diffusion of hydrogen. The effectiveness of the silicon nitride coating against hydrogen penetration has been studied by testing the uncoated and coated optical fibers in a hydrogen atmosphere. Electron paramagnetic resonance and a fiber optic hydrogen gas sensor composed of a WO_3 or Pd/WO _3 coated borosilicate fiber were used to monitor the diffusion of hydrogen into the fibers. Both results have

  20. Penetration studies of topically applied substances: Optical determination of the amount of stratum corneum removed by tape stripping.

    PubMed

    Lademann, J; Ilgevicius, A; Zurbau, O; Liess, H D; Schanzer, S; Weigmann, H J; Antoniou, C; Pelchrzim, R V; Sterry, W

    2006-01-01

    Tape stripping is a standard measuring method for the investigation of the dermatopharmacokinetics of topically applied substances using adhesive films. These tape strips are successively applied and removed from the skin after application and penetration of topically applied substances. Thus, layers of corneocytes and some amount of topical applied substances are removed. The amount of substances and the amount of stratum corneum removed with a single tape strip has to be determined for the calculation of the penetration profile. The topically applied substances removed from the skin can be determined by classical analytical methods like high-pressure liquid chromatography, mass spectroscopy, and spectroscopic measurements. The amount of corneocytes on the tape strips can be easily detected by their pseudoabsorption. In the present paper, an easy and cheap corneocyte density analyzer is presented that is based on a slide projector. Comparing the results of the measurements obtained by the corneocyte density analyzer and by uv-visible spectrometry, identical results were obtained.

  1. [Effect of inherent optical parameters on average penetration depth of photon flux and the integral average cosine of underwater light field in lake Taihu during summer].

    PubMed

    Zhao, Qiao-Hua; Zhang, Yun-Lin

    2010-10-01

    Based on the inherent optical parameters of the water and water quality data in lake Taihu from 2006-07-29 to 2006-08-01, the effect of scattering on the penetration path along the original direction of the flux and the Integral average cosine of underwater light field were study by the radiative transfer theory, and the possible mechanism was analyzed. There were increasing trend from northwest to southeast of them. There were a nonlinear relation between them and concentration of Chl-a, suspended matter, inorganism matter, organism matter. The relation was described by logarithmic function. The study was helpful for bio-optical model and the environmental effects of photosynthetic active radiation in waters.

  2. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin.

    PubMed

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J

    2015-01-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice. PMID:26641198

  3. Very low penetrance of Leber's hereditary optic neuropathy in five Han Chinese families carrying the ND1 G3460A mutation.

    PubMed

    Tong, Yi; Sun, Yan-Hong; Zhou, Xiangtian; Zhao, Fuxin; Mao, Yijian; Wei, Qi-ping; Yang, Li; Qu, Jia; Guan, Min-Xin

    2010-04-01

    We report here the clinical, genetic, and molecular characterization of five Han Chinese families with Leber's hereditary optic neuropathy (LHON). Strikingly, there were very low penetrances of visual impairment in these Chinese families, ranging from 4.2% to 22.2%, with an average of 10.2%. In particular, only 7 (4 males/3 females) of 106 matrilineal relatives in these families exhibited the variable severity and age-at-onset in visual dysfunction. The age-at-onset for visual impairment in matrilineal relatives in these families, varied from 20 to 25 years, with an average of 21.8 years old. Molecular analysis of mitochondrial genomes identified the homoplasmic ND1 G3460A mutation and distinct sets of variants, belonging to the Asian haplogroups B5b, C4a1, D5, F1, and R9, respectively. This suggests that the G3640A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of known secondary LHON-associated mtDNA mutations in these Chinese families. Very low penetrance of visual loss in these five Chinese pedigrees strongly indicated that the G3640A mutation was itself insufficient to develop the optic neuropathy. The absence of secondary LHON mtDNA mutations suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the G3640A mutation in those Chinese families with low penetrance of vision loss. However, nuclear modifier genes, epigenetic and environmental factors appear to be modifier factors for the phenotypic manifestation of the G3640A mutation in these Chinese families.

  4. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    PubMed Central

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  5. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography

    PubMed Central

    Kawagoe, H.; Ishida, S.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N.

    2014-01-01

    We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue samples measured with the developed SC source, the previous one, and one operating in the 1.3 μm wavelength region. We confirmed that the developed SC source had improved sensitivity and penetration depth for low-water-absorption samples. PMID:24688825

  6. Penetration of solar radiation into the water column of the central subtropical Atlantic Ocean—optical properties and possible biological consequences

    NASA Astrophysics Data System (ADS)

    Piazena, H.; Perez-Rodrigues, E.; Häder, D.-P.; Lopez-Figueroa, F.

    The optical properties of the waters as well as the penetration of both solar ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) were analyzed at different stations of the central subtropical Atlantic Ocean during the AZORES II cruise of the research vessel "Hesperides" in April 1999 to assess the impact of solar UVR on microorganisms populating highly transparent oceanic waters. The investigation was based on direct spectral measurements of the scalar and downward-solar irradiance between 290 and 750 nm at different depths using a temperature-stabilized double monochromator spectroradiometer (Optronic, type 754) with a highly sensitive 4 π sensor connected to the entrance slit by a 20-m quartz fiber cable. In addition, the Secchi depth was measured, and water samples of different depths at each station were analyzed to determine the concentration and optical properties of phytoplankton as well as attenuating substances such as seston and gelbstoff in the column. Using the spectral irradiance data at different depths as well as the vertical irradiance profiles at different wavelengths, the following parameters were calculated: the spectral attenuation coefficients, the spectral depths of penetration to 1% of the sub-surface value ("1% depths"), the 1% depths for the ranges UV-B, UV-A and PAR, as well as the water type in the Jerlov system of optical classification. The optical properties of the waters investigated can be classified into the oceanic types OI-OII in the Jerlov system, which are characterized by very small concentrations of seston and of gelbstoff, which are the main absorbers for UV radiation in natural waters. The Secchi depths varied between about 15 m (type OII) to about 45 m (type OI) showing ratios to the 1% depths of PAR of about 0.21 to about 0.31. Values of the same order were found for the depths of the maximal concentration of chlorophyll a, which varied between 45 and 100 m during midnight and between 70 and 110 m

  7. Effect of masticatory load on crack deflection/penetration investigated with en-face optical coherence tomography in ceramic fixed partial dentures

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Marsavina, Liviu; Negru, Radu; Hluscu, Mihai; Caplescu, Cristiana; Bradu, Adrian; Hughes, Michael; Rominu, Mihai; Podoleanu, Adrian Gh.

    2009-02-01

    Optical Coherence Tomography (OCT) allows a better characterization of dental prostheses. The detection of substance defects within the ceramic layers for metal-ceramic prostheses was demonstrated. The detected defects have a large volume and therefore there is a high likelihood for fracture lines to be generated in the proximal areas of the ceramic fixed partial dentures. If the detection of such defects is feasible before inserting the prosthesis into the oral cavity, then timely corrective measures are possible in order to avoid the fracture of the ceramic component later on. After noninvasive localization of cracks in ceramic fixed partial dentures, the effect of the biaxial loading on crack deflection/penetration at the ceramic interface was investigated. A biaxial loaded geometry was numerically investigated using Finite Element Analysis in order to determine the energy release rate. The obtained results could be used in conjunction with criteria at interface for estimating the path of the crack after the interface was reached.

  8. Diameter optimization for maximum vertical penetration of a beam of collimated optical radiation normally incident on the ocean surface.

    PubMed

    Swennen, J P

    1967-04-01

    The optimum diameter of a circular beam of collimated optical radiation normally incident on the ocean surface, in order to obtain a maximum time-average power density vertically downward, is determined for (1) the case of a given constant beam power density and (2) the case of a given constant total beam power. The resulting optima are functions of the roughness of the ocean surface (wind velocity), the depth of the point of observation, and the index of refraction.

  9. Mechanical Tissue Optical Clearing Devices: Enhancement of Light Penetration in Ex-Vivo Porcine Skin and Adipose Tissue

    PubMed Central

    Milner, Thomas E.; Baranov, Stepan; Nelson, J. Stuart

    2008-01-01

    Background and Objective The complex morphological structure of tissue and associated variations in the indices of refraction of components therein, provides a highly scattering medium for visible and near-infrared wavelengths of light. Tissue optical clearing permits delivery of light deeper into tissue, potentially improving the capabilities of various light-based therapeutic techniques, such as adipose tissue removal or reshaping. Study Design/ Materials and Methods We report results of a study to evaluate effectiveness of novel mechanical tissue optical clearing devices (TOCD) using white light photography and infrared imaging radiometry (IIR). The TOCD consists of a pin array and vacuum pressure source applied directly to the skin surface. IIR images recorded light absorption and temperature increase of ex vivo porcine skin and adipose during laser irradiation (980 and 1210 nm) before and after TOCD application. Results White light photographic images of in vivo human skin demonstrated localized compression and altered visual appearance, indicative of water and blood movement in skin. White light photographic images also showed increased visible light transport through regions of ex vivo porcine skin compressed by TOCD pins. Rate of heating in sub-dermal adipose regions beneath TOCD pins was two-fold higher following TOCD application. Conclusions Results of our study suggest that mechanical optical clearing may provide a means to deliver increased light fluence to dermal and adipose tissues. PMID:19065559

  10. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    USGS Publications Warehouse

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  11. Morphological response of injured adult rabbit optic nerve to implants containing media conditioned by growing optic nerves.

    PubMed

    Lavie, V; Harel, A; Doron, A; Solomon, A; Lobel, D; Belkin, M; Ben-Basat, S; Sharma, S; Schwartz, M

    1987-09-01

    Adult rabbit retina can express regeneration-associated characteristics after optic nerve injury, provided it is supplied with appropriate diffusible substances originating from media conditioned by regenerating fish optic nerves or by optic nerves of a newborn rabbit [Hadani et al., Proc. Natl. Acad. Sci. U.S.A., 81 (1984) 7965; Schwartz et al., Science, 228 (1985) 600]. This was shown by applying the active substances to the injured axons in the form of 'wrap-around' implants, consisting of collagen-coated silicone tubes which had been soaked in the conditioned media (CM). The regeneration-associated response was manifested biochemically and by sprouting of nerve fibers in culture. The present work provides morphological evidence that the implantation prolongs survival of ganglion cells and optic nerve fibers and induces new growth. Light microscopic analysis (using horseradish peroxidase (HRP) for labeling the fibers) revealed, 1 week following optic nerve injury, labeled fibers and ganglion cells in both the implanted and control (injured only or injured and implanted with collagen-coated silicone tubes free of CM) nerves. However, from the second week after the injury, distinct differences in the appearance of viable ganglion cells and labeled fibers, were seen between experimental and control preparations. In sections taken through the optic nerve, at the region distal to the site of injury, HRP-labeled fibers were seen in the experimental nerves 1 week, 2 weeks and to a significantly lesser extent 1 month after injury.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3676722

  12. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    PubMed Central

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  13. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury.

    PubMed

    Pushchina, Evgeniya V; Shukla, Sachin; Varaksin, Anatoly A; Obukhov, Dmitry K

    2016-04-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1-4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  14. Isolation of intact astrocytes from the optic nerve head of adult mice

    PubMed Central

    Choi, Hee Joo; Sun, Daniel; Jakobs, Tatjana C.

    2015-01-01

    The astrocytes of the optic nerve head are a specialized subtype of white matter astrocytes that form the direct cellular environment of the unmyelinated ganglion cell axons. Due to their potential involvement in glaucoma, these astrocytes have become a target of research. Due to the heterogeneity of the optic nerve tissue, which also contains other cell types, in some cases it may be desirable to conduct gene expression studies on small numbers of well-characterized astrocytes or even individual cells. Here, we describe a simple method to isolate individual astrocytes. This method permits obtaining astrocytes with intact morphology from the adult mouse optic nerve and reduces contamination of the isolated astrocytes by other cell types. Individual astrocytes can be recognized by their morphology and collected under microscopic control. The whole procedure can be completed in 2-3 hours. We also discuss downstream applications like multiplex single-cell PCR and quantitative PCR (qPCR). PMID:26093274

  15. Bilateral simultaneous optic neuropathy in adults: clinical, imaging, serological, and genetic studies.

    PubMed Central

    Morrissey, S P; Borruat, F X; Miller, D H; Moseley, I F; Sweeney, M G; Govan, G G; Kelly, M A; Francis, D A; Harding, A E; McDonald, W I

    1995-01-01

    To elucidate the cause(s) of acute or subacute bilateral simultaneous optic neuropathy (BSON) in adult life, a follow up study of 23 patients was performed with clinical assessment, brain MRI, HLA typing, and mitochondrial DNA analysis. The results of CSF electrophoresis were available from previous investigations in 11 patients. At follow up, five (22%) had developed clinically definite multiple sclerosis, four (17%) had mitochondrial DNA point mutations indicating a diagnosis of Leber's hereditary optic neuropathy (LHON). The remaining 14 patients (61%) still had clinically isolated BSON a mean of 50 months after the onset of visual symptoms: three of 14 (21%) had multiple MRI white matter lesions compatible with multiple sclerosis, three of 14 (21%) had the multiple sclerosis associated HLA-DR15/DQw6 haplotype, and one of seven tested had CSF oligoclonal IgG bands; in total only five (36%) had one or more of these risk factors. The low frequency of risk factors for the development of multiple sclerosis in these 14 patients suggests that few will develop multiple sclerosis with more prolonged follow up. It is concluded that: (a) about 20% of cases of BSON without affected relatives are due to LHON; (b) multiple sclerosis develops after BSON in at least 20% of cases, but the long term conversion rate is likely to be considerably less than the rate of over 70% seen after an episode of acute unilateral optic neuritis in adult life. PMID:7823072

  16. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats.

    PubMed

    Fang, Yuan; Mo, Xiaofen; Guo, Wenyi; Zhang, Meng; Zhang, Peihua; Wang, Yan; Rong, Xianfang; Tian, Jie; Sun, Xinghuai

    2010-12-01

    Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.

  17. Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA

    USGS Publications Warehouse

    Cunningham, K.J.

    2004-01-01

    This paper presents examples of ground-penetrating radar (GPR) data from two study sites in southeastern Florida where karstic Pleistocene platform carbonates that comprise the unconfined Biscayne aquifer were imaged. Important features shown on resultant GPR profiles include: (1) upward and lateral qualitative interpretative distribution of porosity and hydraulic conductivity; (2) paleotopographic relief on karstic subaerial exposure surfaces; and (3) vertical stacking of chronostratigraphic high-frequency cycles (HFCs). These characteristics were verified by comparison to rock properties observed and measured in core samples, and identified in digital optical borehole images. Results demonstrate that an empirical relation exists between measured whole-core porosity and hydraulic conductivity, observed porosity on digital optical borehole images, formation conductivity, and GPR reflection amplitudes-as porosity and hydraulic conductivity determined from core and borehole images increases, formation conductivity increases, and GPR reflection amplitude decreases. This relation allows for qualitative interpretation of the vertical and lateral distribution of porosity and hydraulic conductivity within HFCs. Two subtidal HFCs in the uppermost Biscayne aquifer have significantly unique populations of whole-core porosity values and vertical hydraulic conductivity values. Porosity measurements from one cycle has a median value about two to three times greater than the values from the other HFC, and median values of vertical hydraulic-conductivity about three orders of magnitude higher than the other HFC. The HFC with the higher porosity and hydraulic conductivity values is shown as a discrete package of relatively low-amplitude reflections, whereas the HFC characterized by lower porosity and hydraulic-conductivity measurements is expressed by higher amplitude reflections. Porosity and hydraulic-conductivity values measured from whole-core samples, and vuggy porosity

  18. Applications of hybrid diffuse optics for clinical management of adults after brain injury

    NASA Astrophysics Data System (ADS)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  19. Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study.

    PubMed

    Chou, Ying-Hui; Wagenaar, Robert C; Saltzman, Elliot; Giphart, J Erik; Young, Daniel; Davidsdottir, Rosa; Cronin-Golomb, Alice

    2009-03-01

    The purpose of the study is to investigate whether there are age-related differences in locomotion due to changes in presence of vision, optic flow speed, and lateral flow asymmetry using virtual reality technology. Gait kinematics and heading direction were measured using a three-dimensional motion analysis system. Although older and younger adults were affected differentially by the availability of vision, a greater dependence on optic flow information in older adults during walking was not found. Linear relations were observed between walking performance and flow speed as well as heading direction and flow asymmetry. The findings suggest that the ability to integrate optic flow information into the multimodal system for assessment of walking speed and heading direction is comparable in older and younger adults.

  20. Fructose metabolism in the adult mouse optic nerve, a central white matter tract.

    PubMed

    Meakin, Paul J; Fowler, Maxine J; Rathbone, Alex J; Allen, Lynne M; Ransom, Bruce R; Ray, David E; Brown, Angus M

    2007-01-01

    Our recent report that fructose supported the metabolism of some, but not all axons, in the adult mouse optic nerve prompted us to investigate in detail fructose metabolism in this tissue, a typical central white matter tract, as these data imply efficient fructose metabolism in the central nervous system (CNS). In artificial cerebrospinal fluid containing 10 mmol/L glucose or 20 mmol/L fructose, the stimulus-evoked compound action potential (CAP) recorded from the optic nerve consisted of three stable peaks. Replacing 10 mmol/L glucose with 10 mmol/L fructose, however, caused delayed loss of the 1st CAP peak (the 2nd and 3rd CAP peaks were unaffected). Glycogen-derived metabolic substrate(s) temporarily sustained the 1st CAP peak in 10 mmol/L fructose, as depletion of tissue glycogen by a prior period of aglycaemia or high-frequency CAP discharge rendered fructose incapable of supporting the 1st CAP peak. Enzyme assays showed the presence of both hexokinase and fructokinase (both of which can phosphorylate fructose) in the optic nerve. In contrast, only hexokinase was expressed in cerebral cortex. Hexokinase in optic nerve had low affinity and low capacity with fructose as substrate, whereas fructokinase displayed high affinity and high capacity for fructose. These findings suggest an explanation for the curious fact that the fast conducting axons comprising the 1st peak of the CAP are not supported in 10 mmol/L fructose medium; these axons probably do not express fructokinase, a requirement for efficient fructose metabolism.

  1. Adult rhabdomyoma with oncocytic changes affecting the floor of the mouth: optical, immunohistochemical, and ultrastructural study.

    PubMed

    Vera-Sirera, Beatriz; Vera-Sempere, Francisco

    2012-09-01

    Adult rhabdomyoma (AR) is an extremely uncommon benign neoplasm with mature skeletal muscle differentiation comprising approximately 2% of muscle tumors, usually affecting the soft tissue of the head and neck. Although histology of AR is characteristic, several differential diagnoses (granular cell tumor, hibernoma, oncocytoma) should be considered, and one needs to be familiar with this rare entity to exclude other neoplastic diseases. We present a case of AR, in a 54-year-old man, affecting the floor of the mouth, and call attention to the oncocytic appearance (including antimitochondrial and peroxiredoxin I immunoreactivity) of this case and its differential diagnosis analyzed at the optical, immunohistochemical, and ultrastructural level, showing the morphological and immunohistochemical features that can be confused with a salivary oncocytoma.

  2. Penetrating abdominal trauma.

    PubMed

    Henneman, P L

    1989-08-01

    The management of patients with penetrating abdominal trauma is outlined in Figure 1. Patients with hemodynamic instability, evisceration, significant gastrointestinal bleeding, peritoneal signs, gunshot wounds with peritoneal violation, and type 2 and 3 shotgun wounds should undergo emergency laparotomy. The initial ED management of these patients includes airway management, monitoring of cardiac rhythm and vital signs, history, physical examination, and placement of intravenous lines. Blood should be obtained for initial hematocrit, type and cross-matching, electrolytes, and an alcohol level or drug screen as needed. Initial resuscitation should utilize crystalloid fluid replacement. If more than 2 liters of crystalloid are needed to stabilize an adult (less in a child), blood should be given. Group O Rh-negative packed red blood cells should be immediately available for a patient in impending arrest or massive hemorrhage. Type-specific blood should be available within 15 minutes. A patient with penetrating thoracic and high abdominal trauma should receive a portable chest x-ray, and a hemo- or pneumothorax should be treated with tube thoracostomy. An unstable patient with clinical signs consistent with a pneumothorax, however, should receive a tube thoracostomy prior to obtaining roentgenographic confirmation. If time permits, a nasogastric tube and Foley catheter should be placed, and the urine evaluated for blood (these procedures can be performed in the operating room). If kidney involvement is suspected because of hematuria or penetrating trauma in the area of a kidney or ureter in a patient requiring surgery, a single-shot IVP should be performed either in the ED or the operating room. An ECG is important in patients with possible cardiac involvement and in patients over the age of 40 going to the operating room. Tetanus status should be updated, and appropriate antibiotics covering bowel flora should be given. Operative management should rarely be delayed

  3. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography

    PubMed Central

    Zeff, Benjamin W.; White, Brian R.; Dehghani, Hamid; Schlaggar, Bradley L.; Culver, Joseph P.

    2007-01-01

    Functional neuroimaging is a vital element of neuroscience and cognitive research and, increasingly, is an important clinical tool. Diffuse optical imaging is an emerging, noninvasive technique with unique portability and hemodynamic contrast capabilities for mapping brain function in young subjects and subjects in enriched or clinical environments. We have developed a high-performance, high-density diffuse optical tomography (DOT) system that overcomes previous limitations and enables superior image quality. We show herein the utility of the DOT system by presenting functional hemodynamic maps of the adult human visual cortex. The functional brain images have a high contrast-to-noise ratio, allowing visualization of individual activations and highly repeatable mapping within and across subjects. With the improved spatial resolution and localization, we were able to image functional responses of 1.7 cm in extent and shifts of <1 cm. Cortical maps of angle and eccentricity in the visual field are consistent with retinotopic studies using functional MRI and positron-emission tomography. These results demonstrate that high-density DOT is a practical and powerful tool for mapping function in the human cortex. PMID:17616584

  4. Fluorescent penetrant inspection

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with fluorescent penetrant inspection and to relate it to classification of various defects. The penetrant method of nondestructive testing is a method for finding discontinuities open to the surface in solids and essentially nonporous bodies. The method employs a penetrating liquid which is applied over the surface and enters the discontinuity or crack. After the excess of penetrant has been cleaned from the surface, the penetrant which exudes or is drawn back out of the crack indicates the presence and location of a discontinuity. The experimental procedure is described.

  5. FAA fluorescent penetrant activities

    SciTech Connect

    Moore, D.G.; Larson, B.F.

    1997-11-01

    The Federal Aviation Administration`s Airworthiness Assurance NDI Validation Center (AANC) and the Center for Aviation Systems Reliability (CASR) are currently working to develop a liquid penetrant inspection (LPI) system evaluation capability that will support the needs of the penetrant manufacturers, commercial airline industry and the FAA. The main focus of this facility is to support the evaluation of penetrant inspection materials, penetrant systems and to apply resources to support industry needs. This paper discusses efforts to create such a facility and an initial project to produce fatigue crack specimens for evaluation of Type 1 penetrant sensitivities.

  6. Chemical penetration enhancers.

    PubMed

    Newton, Stephen J

    2013-01-01

    Chemical penetration enhancers are utilized in topical preparations as a method for enhancing permeation of drugs across the skin. In particular, they are utilized for transdermal delivery of medications in an attempt to produce a systemic response, to avoid first-pass metabolism, and to decrease the gastrointestinal transit time observed with oral medications. A review of the selection of chemical penetration enhancers, their mechanism of action, the most common chemical penetration enhancers in each class, and alternatives will be discussed in detail.

  7. GD3+ cells in the adult rat optic nerve are ramified microglia rather than O-2Aadult progenitor cells.

    PubMed

    Wolswijk, G

    1994-04-01

    The adult central nervous system (CNS) contains a population of adult oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells (O-2Aadult progenitor cells). These cells may provide a source of the new oligodendrocytes that are needed to repair demyelinated lesions. In order to examine the role of O-2Aadult progenitor cells in the regeneration of the oligodendrocyte population following demyelinating damage, it is essential to be able to identify such cells unambiguously in sections of adult CNS tissue. The present study examined whether antibodies to the ganglioside GD3 specifically label O-2Aadult progenitor cells in cultures and sections of adult optic nerve, since previous studies on the developing CNS had suggested that O-2Aperinatal progenitor cells were GD3+ in vitro and in vivo. Evidence is presented indicating that, although O-2Aadult progenitor cells in vitro were labelled with the R24 mAb (an anti-GD3 mAb), all GD3+ cells in sections of adult optic nerve bound the OX-42 mAb and the B4 isolectin derived from Griffonia Simplicifolia, and thus were not O-2Aadult progenitor cells, but ramified microglia. The data suggest that O-2Aadult progenitor cells become GD3+ when placed in culture and that ramified microglia lose GD3-expression in vitro.

  8. Follicular penetration and targeting.

    PubMed

    Lademann, Jürgen; Otberg, Nina; Jacobi, Ute; Hoffman, Robert M; Blume-Peytavi, Ulrike

    2005-12-01

    In the past, intercellular penetration was assumed to be the most important penetration pathway of topically applied substances. First hints that follicular penetration needs to be taken into consideration were confirmed by recent investigations, presented during the workshop "Follicular Penetration and Targeting" at the 4th Intercontinental Meeting of Hair Research Societies", in Berlin 2004. Hair follicles represent an efficient reservoir for the penetration of topically applied substances with subsequent targeting of distinct cell populations, e.g., nestin-expressing follicular bulge cells. The volume of this reservoir can be determined by differential stripping technology. The follicular penetration processes are significantly influenced by the state of the follicular infundibulum; recent experimental investigations could demonstrate that it is essential to distinguish between open and closed hair follicles. Topically applied substances can only penetrate into open hair follicle. Knowledge of follicular penetration is of high clinical relevance for functional targeting of distinct follicular regions. Human hair follicles show a hair-cycle-dependent variation of the dense neuronal and vascular network. Moreover, during hair follicle cycling with initiation of anagen, newly formed vessels occur. Thus, the potential of nestin-expressing hair follicle stem cells to form neurons and blood vessels was investigated.

  9. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  10. Maintenance of Glia in the Optic Lamina Is Mediated by EGFR Signaling by Photoreceptors in Adult Drosophila

    PubMed Central

    Lee, Yuan-Ming; Sun, Y. Henry

    2015-01-01

    The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. PMID:25909451

  11. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  12. Penetration of Enceladus Ice Tiger Stripes

    NASA Astrophysics Data System (ADS)

    Jones, Jack A.; Castillo, J. C.

    2006-09-01

    INTRODUCTION: Measurements from Cassini have determined that warm "tiger stripe” regions on Enceladus are made of water ice that is at a temperature of up to 157 +/-32K (Spencer et al, Science, 311, 1401, 2006). If the tiger stripe region is assumed to be pure polycrystalline water ice, and if liquid water exists below the ice lithosphere, then thermal analyses show that the thickness of the ice is less than 40-m. Two possible means to penetrate the ice are described below. HARPOON PENETRATOR: Sandia National Laboratories has published reports, which give ground penetration depth as a function of various projectile parameters. Applying the Sandia equations (Young, SAND97-2426, 1997) to an Enceladus penetrator, one example shows that a sharp, steel penetrator, that is 10 cm diameter and 2-m length (132 kg) could penetrate through 40-m of ice with an impact velocity of about 150 m/sec and maximum deceleration of 350 g's. This allows ruggedized science instruments to be carried on the harpoon and tethered to an antenna dropped off at the surface level, as was done in many of the Sandia tests. Larger diameters or shorter rods require higher velocities and higher g's. SUBLIMATION PENETRATOR: Calculations have also been performed on soft-landed, heated probes. Using power tethered from the surface craft, the penetrator would sublimate down to the liquid layer. Assuming a 3-cm diameter probe with a 50-w heated tip, the probe would descend at the rate of about 1-m per day with descent rates approximately proportional to power/area. An insulated cylindrical area above the heated tip could contain ports for science instruments that could be located on the surface craft with data transmitted by optical fiber. This research was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Penetration of yawed projectiles

    SciTech Connect

    Reaugh, J.E.

    1990-10-08

    We used computer simulations and experiment to study the penetration of tungsten-alloy projectiles into a thick, armored steel target. These projectiles, with length-to-diameter ratios of 4, strike the target with severe yaws, up to 90{degree}(side-on-impact), such as might be induced in an originally longer projectile by a multiple-spaced plate array. In this study, we focus on the terminal ballistics of these projectiles and ignore how the yaw was induced. We found that the minimum penetration depth occurs at 90{degree}yaw. This case is well approximated by the two-dimensional plane-strain penetration of a side-on cylinder. The ratio of penetration depth to diameter, P:D, for this case is larger than that for a sphere because the plane-strain geometry lacks hoop stress, which is activated in axisymmetric geometry. A more surprising result of work is that the penetration at 60{degree} yaw is only slightly deeper than that of the side-on impact. 8 refs., 15 figs., 3 tabs.

  14. Constructing a statistical atlas of the radii of the optic nerve and cerebrospinal fluid sheath in young healthy adults

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Plassard, Andrew J.; Mawn, Louise A.; Galloway, Robert L.; Smith, Seth A.; Landman, Bennett A.

    2015-03-01

    Optic neuritis is a sudden inflammation of the optic nerve (ON) and is marked by pain on eye movement, and visual symptoms such as a decrease in visual acuity, color vision, contrast and visual field defects. The ON is closely linked with multiple sclerosis (MS) and patients have a 50% chance of developing MS within 15 years. Recent advances in multi-atlas segmentation methods have omitted volumetric assessment. In the past, measuring the size of the ON has been done by hand. We utilize a new method of automatically segmenting the ON to measure the radii of both the ON and surrounding cerebrospinal fluid (CSF) sheath to develop a normative distribution of healthy young adults. We examine this distribution for any trends and find that ON and CSF sheath radii do not vary between 20-35 years of age and between sexes. We evaluate how six patients suffering from optic neuropathy compare to this distribution of controls. We find that of these six patients, five of them qualitatively differ from the normative distribution which suggests this technique could be used in the future to distinguish between optic neuritis patients and healthy controls

  15. Chainsaw penetrating neck injury.

    PubMed

    Brown, A F

    1995-06-01

    A case of chainsaw injury to the neck is described. Previous reports in the English language are exceedingly rare. A brief discussion of safety features on chain saws is followed by a review of selective vs. mandatory surgical exploration in penetrating neck trauma, including the role of ancillary diagnostic tests.

  16. Penetration resistant barrier

    DOEpatents

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  17. Jet penetration in glass

    SciTech Connect

    Moran, B.; Glenn, L.A.; Kusubov, A.

    1991-05-01

    We describe a phenomenological model which accounts for the mechanical response of glass to intense impulsive loading. An important aspect of this response is the dilatancy accompanying fracture. We have also conducted a number of experiments with 38.1-mm diameter precision shaped charges to establish the performance against various targets and to allow evaluation of our model. At 3 charge diameters standoff, the data indicate that both virgin and damaged glass offer better (Bernoulli-scaled) resistance to penetration than either of 4340 steel, or 6061-T6 aluminum alloy. Time-resolved measurements indicate two distinct phases of jet penetration in glass: An initial hydrodynamic phase, and a second phase characterized by a slower penetration velocity. Our calculations show that at early time, a crater is formed around the jet and only the tip of the undisturbed jet interacts with the glass. At late time the glass has collapsed on the jet and degraded penetration continues via a disturbed and fragmented jet.

  18. Tumor-Penetrating Peptides

    PubMed Central

    Teesalu, Tambet; Sugahara, Kazuki N.; Ruoslahti, Erkki

    2013-01-01

    Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC), contains the integrin-binding RGD motif. RGD mediates tumor-homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR) motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies, and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is present in the

  19. The Appropriateness of Unbiased Optical Fractionators to Assess Cell Proliferation in the Adult Hippocampus

    PubMed Central

    Noori, Hamid R.; Fornal, Casimir A.

    2011-01-01

    Optical fractionators have dominated the field of neural cell counting for two decades. These unbiased stereological techniques are often used for the quantification of hippocampal cell proliferation in neurogenesis experiments. However, the heterogeneous distribution of labeled cells, especially in the form of clusters, confounds the application of these techniques. A critical evaluation of the applicability of the optical fractionator suggests that absolute counting achieves higher efficiency in the quantification of cell proliferation than unbiased estimations. PMID:22207833

  20. Penetrating keratoplasty in a California Brown Pelican.

    PubMed

    Lynch, Gwendolyn L; Scagliotti, Randall H; Hoffman, Allison; Dubielzig, Richard R

    2007-01-01

    Fresh homologous penetrating keratoplasty (PK) was performed on the left cornea of a young adult female California Brown Pelican (Pelecanus occidentalis) for the treatment of vision-threatening corneal scarring and granulation tissue. The procedure appeared to be highly successful based on short-term clinical follow-up and histopathology results. However, the patient died from unrelated causes before long-term follow-up could be obtained. PMID:17565558

  1. Optical methods for measurements of skin penetration.

    PubMed

    Gotter, B; Faubel, W; Neubert, R H H

    2008-01-01

    Fourier transform infrared photoacoustic (PAS), photothermal deflection (PDS) and Raman spectroscopy belong to the modern innovative noninvasive analytical tools that are beginning to be recognized as highly potential techniques for the noninvasive study of biological tissues and human skin under in vivo conditions. They can be applied to obtain information regarding the molecular composition of the skin down to several hundred micrometers below the skin surface. All three methods allow depth-resolved investigations. While PAS and PDS use a frequency modulation of the excitation beam to reach deeper regions in the sample, the principle of confocal Raman microspectroscopy (CRM) is a movement of the specimen in the focal plane. In consideration of depth measurements PAS and PDS complete the applicable spectrum of CRM, since Raman microscopy requires particular transparent materials.

  2. Penetrating eye injuries.

    PubMed Central

    Patel, B C

    1989-01-01

    A review of all penetrating eye injuries treated at the Manchester Royal Eye Hospital over four years (1 January 1982-31 December 1985) was undertaken. A total of 202 penetrating eye injuries were seen of which 68 (34%) were in children under the age of 15 years. Airgun, dart, and knife injuries accounted for 28 (41%) of the injuries. Thirty seven patients (54%) achieved a good visual result (6/12 or better) and eight (12%) had enucleations. The period of inpatient treatment ranged from two to 18 days. From the analysis of the activities at the time of the injury, many of the injuries can be considered to be preventable. PMID:2705791

  3. Ground-penetrating rada

    NASA Astrophysics Data System (ADS)

    Thuma, W. R.

    The theory and applications of digital Ground-Penetrating Radar were discussed at a 5-day seminar held at the China University of Geosciences in Wuhan, People's Republic of China, in April. Cohosted by the Department of Applied Geophysics and Canada-China Geoscience, more than 60 senior geophysicists, engineers, technical specialists, university professors and researchers attended.Focus of the meeting was the expanded uses of the new deep-penetrating fully digital PulseEKKO, which is gaining wide acceptance around the world. Attendees showed intense interest in this new and unique technology. Applications covered were groundwater and mineral exploration; engineering, construction and toxic waste site surveying; tunnel and underground mine probing for potential geological hazards, blind ore zones, karst cavities and solution pathways; and locating buried objects such as petroleum storage tanks, unexploded bombs and archeological remains.

  4. Antibody tumor penetration

    PubMed Central

    Thurber, Greg M.; Schmidt, Michael M.; Wittrup, K. Dane

    2009-01-01

    Antibodies have proven to be effective agents in cancer imaging and therapy. One of the major challenges still facing the field is the heterogeneous distribution of these agents in tumors when administered systemically. Large regions of untargeted cells can therefore escape therapy and potentially select for more resistant cells. We present here a summary of theoretical and experimental approaches to analyze and improve antibody penetration in tumor tissue. PMID:18541331

  5. Penetrating extremity trauma.

    PubMed

    Ivatury, Rao R; Anand, Rahul; Ordonez, Carlos

    2015-06-01

    Penetrating extremity trauma (PET) usually becomes less important when present along with multiple truncal injuries. The middle eastern wars documented the terrible mortality and morbidity resulting from PET. Even in civilian trauma, PET can lead to significant morbidity and mortality. There are now well-established principles in the evaluation and management of vascular, bony, soft tissue, and neurologic lesions that will lead to a reduction of the poor outcomes. This review will summarize some of these recent concepts.

  6. Systematic evaluation of a time-domain Monte Carlo fitting routine to estimate the adult brain optical properties

    NASA Astrophysics Data System (ADS)

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2013-03-01

    Time-domain near-infrared spectroscopy (TD-NIRS) offers the ability to measure the absolute baseline optical properties of a tissue. Specifically, for brain imaging, the robust assessment of cerebral blood volume and oxygenation based on measurement of cerebral hemoglobin concentrations is essential for reliable cross-sectional and longitudinal studies. In adult heads, these baseline measurements are complicated by the presence of thick extra-cerebral tissue (scalp, skull, CSF). A simple semi-infinite homogeneous model of the head has proven to have limited use because of the large errors it introduces in the recovered brain absorption. Analytical solutions for layered media have shown improved performance on Monte-Carlo simulated data and layered phantom experiments, but their validity on real adult head data has never been demonstrated. With the advance of fast Monte Carlo approaches based on GPU computation, numerical methods to solve the radiative transfer equation become viable alternatives to analytical solutions of the diffusion equation. Monte Carlo approaches provide the additional advantage to be adaptable to any geometry, in particular more realistic head models. The goals of the present study were twofold: (1) to implement a fast and flexible Monte Carlo-based fitting routine to retrieve the brain optical properties; (2) to characterize the performances of this fitting method on realistic adult head data. We generated time-resolved data at various locations over the head, and fitted them with different models of light propagation: the homogeneous analytical model, and Monte Carlo simulations for three head models: a two-layer slab, the true subject's anatomy, and that of a generic atlas head. We found that the homogeneous model introduced a median 20 to 25% error on the recovered brain absorption, with large variations over the range of true optical properties. The two-layer slab model only improved moderately the results over the homogeneous one. On

  7. Long-Term Optical Device Use by Young Adults with Low Vision

    ERIC Educational Resources Information Center

    Bachofer, Cynthia Susan

    2013-01-01

    The purpose of this study was to investigate the long-term use of optical devices by individuals who participated in a school-based comprehensive low vision program focusing on use of devices, both near and distance. Thirty-seven participants (five non-users), ages 18-28, completed phone interviews giving information on their personal…

  8. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  9. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    NASA Astrophysics Data System (ADS)

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min

    2008-12-01

    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  10. Laterality of Stance during Optic Flow Stimulation in Male and Female Young Adults

    PubMed Central

    Persiani, Michela; Piras, Alessandro; Squatrito, Salvatore; Raffi, Milena

    2015-01-01

    During self-motion, the spatial and temporal properties of the optic flow input directly influence the body sway. Men and women have anatomical and biomechanical differences that influence the postural control during visual stimulation. Given that recent findings suggest a peculiar role of each leg in the postural control of the two genders, we investigated whether the body sway during optic flow perturbances is lateralized and whether anteroposterior and mediolateral components of specific center of pressure (COP) parameters of the right and left legs differ, reexamining a previous experiment (Raffi et al. (2014)) performed with two, side-by-side, force plates. Experiments were performed on 24 right-handed and right-footed young subjects. We analyzed five measures related to the COP of each foot and global data: anteroposterior and mediolateral range of oscillation, anteroposterior and mediolateral COP velocity, and sway area. Results showed that men consistently had larger COP parameters than women. The values of the COP parameters were correlated between the two feet only in the mediolateral axis of women. These findings suggest that optic flow stimulation causes asymmetry in postural balance and different lateralization of postural controls in men and women. PMID:26539509

  11. Brain parenchyma penetration by intrathecal nonionic iopamidol.

    PubMed

    Sage, M R; Wilcox, J

    1983-01-01

    Iopamidol, a nonionic, water-soluble contrast medium, has been recently recommended for myelography. As with other such media, the extent of parenchymal penetration is of interest in relation to the genesis of clinical complications. In this study the degree and depth of brain penetration of intrathecal iopamidol, using an iodine concentration of 280 mg l/ml, were compared at 15 and 60 min in adult greyhound dogs using coronal computed tomographic scanning of the brain after removal. A significant but patchy penetration corresponding to the cortical sulci was demonstrated at 15 min, while by 60 min there had been a further increase in the distribution and concentration of the contrast medium. Comparing the present study with a previous series using metrizamide and methylglucamine iothalamate at a similar iodine concentration (280 mg l/ml), no significant difference in the depth or degree of penetration at 60 min was found between the three contrast media, indicating a similar rate of diffusion across the cerebrospinal fluid/brain interface. Therefore, any difference in neurotoxicity is not explained by a reduced concentration of contrast medium due to variation in the rate of diffusion across this interface.

  12. Penetrating Trauma to the Ureter, Bladder, and Urethra

    PubMed Central

    Zaid, Uwais B.; Bayne, David B.; Harris, Catherine R.; Alwaal, Amjad; McAninch, Jack W.; Breyer, Benjamin N.

    2015-01-01

    We describe the epidemiology, diagnosis, and management of adult civilian penetrating trauma to the ureter, bladder, and urethra. Trauma is a significant source of death and morbidity. Genitourinary injuries are present in 10% of penetrating trauma cases. Prompt recognition and appropriate management of genitourinary injuries, which are often masked or overlooked due to concomitant injuries, is essential to minimize morbidity. Penetrating trauma most commonly results from gunshot wounds or stab wounds. Compared to blunt trauma, these typically require surgical exploration. An understanding of anatomy and a high index of suspicion are necessary for prompt recognition of genitourinary injuries. PMID:26623247

  13. The deep penetrating nevus.

    PubMed

    Strazzula, Lauren; Senna, Maryanne Makredes; Yasuda, Mariko; Belazarian, Leah

    2014-12-01

    The deep penetrating nevus (DPN), also known as the plexiform spindle cell nevus, is a pigmented lesion that commonly arises on the head and neck in the first few decades of life. Histopathologically, the DPN is wedge-shaped and contains melanocytes that exhibit deep infiltration into the dermis. Given these features, DPN may clinically and histopathologically mimic malignant melanoma, sparking confusion about the appropriate evaluation and management of these lesions. The goal of this review is to summarize the clinical and histopathological features of DPN and to discuss diagnostic and treatment strategies for dermatologists.

  14. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-01-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  15. Overview: Hard Rock Penetration

    SciTech Connect

    Dunn, J.C.

    1992-08-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  16. Overview - Hard Rock Penetration

    SciTech Connect

    Dunn, James C.

    1992-03-24

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

  17. Monolithic ballasted penetrator

    DOEpatents

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  18. Morphological and electrophysiological characterization of the adult Siberian hamster optic nerve.

    PubMed

    James, Emma L; Peacock, Veronique A H; Ebling, Francis J P; Brown, Angus M

    2010-12-01

    Electrophysiological recordings and transmission electron microscopy were used to characterize the compound action potential (CAP) and morphology, respectively, of the optic nerve in the Siberian hamster. The CAP was polyphasic in nature, comprising four separate but overlapping peaks, thereby implying that four sub-populations of axons defined by conduction velocity are present in the nerve. The histological analysis of nerves from four animals revealed a cross-sectional area of 128,171 μm(2) containing 78,109 axons. All of the axons were myelinated, and measurements of axon surface area revealed values ranging from 0.09 to 9.92 μm(2), although 68.3% were <1 μm(2). In the regions of the nerve sampled, the area occupied by axons varied from 10.2 to 80.1%, but in 72.5% of these regions the axons occupied between 50 and 70% of the total cross-sectional area. All regions of the nerve expressed small axons, but larger axons (>2.5 μm(2)) were selectively distributed throughout the nerve. We conclude that the CAP recorded from hamster optic nerve displays four distinct peaks; however, morphological analysis failed to reveal a similar distribution of axon sizes.

  19. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats

    PubMed Central

    Dorfman, Damián; Aranda, Marcos L.; Rosenstein, Ruth E.

    2015-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway. PMID:26312758

  20. Deep penetration of light into biotissue

    NASA Astrophysics Data System (ADS)

    Bearden, Edward D.; Wilson, James D.; Zharov, Vladimir P.; Lowery, Curtis L.

    2001-07-01

    The results of a study of deep (several centimeters) light penetration into biological tissue are presented in order to estimate its significance to potentially photosensitive structures and processes including the fetal eyes. In order to accomplish this goal, samples of various tissues (fat, muscle, and uterus) from surgical patients and autopsies were examined with a double integrating sphere arrangement to determine their optical properties. The results were implemented in a Monte Carlo modeling program. Next, optical fiber probes were inserted into the uterus and abdominal wall of patients undergoing laparoscopic procedures. The fibers were couples to a photomultiplier tube with intervening filters allowing measurements of light penetration at various wavelengths. To determine the feasibility of stimulation in utero, a xenon lamp and waveguide were used to transilluminate the abdomen of several labor patients. Light in the range of 630 to 670 nm where the eye sensitivity and penetration depth are well matched, will likely provide the best chance of visual stimulation. Fetal heart rate, fetal movement, and fetal magnetoencephalography (SQUID) and electroencephalography (EEG) were observed in different studies to determine if stimulation has occurred. Since internal organs and the fetus are completely dark adapted, the amount of light required to simulate in our opinion could be on the order of 10(superscript -8 Watts.

  1. Optic nerve atrophy

    MedlinePlus

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  2. Projectile penetration into representative targets

    NASA Astrophysics Data System (ADS)

    Stone, George W.

    1994-10-01

    The differential equation representing the penetration of a 'hard' projectile into semi-infinite, homogeneous target materials is solved for several generic combinations of the target material/projectile characteristics. A 'hard' projectile is defined as one that does not change size or shape and does not lose mass during the penetration process. The target materials evaluated range from the structurally 'soft' materials (liquids) to structurally 'hard' materials (armor plate) with viscous and fluid dynamic drag considered. The solutions to the differential equation(s) are expanded in series form to demonstrate the underlying parameters governing projectile penetration and the way they interact to limit penetration in a given target material. It is shown that the fundamental parameter governing projectile penetration into structurally 'firm' materials is the initial kinetic energy of the projectile divided by the frontal area of the projectile and the inherent structural characteristic of the target. Experimental data on the penetration of steel spheres into ballistic gelatin and for armor piercing bullets into armor plate materials are used to verify the characteristics of the solutions to the equation of motion for the projectile and to demonstrate how penetration can vary with projectile size and target characteristics. The penetration equation for a single 'hard' target material is used to develop a solution for the penetration of multilayered 'hard' target materials.

  3. Evaluating a Genetically Encoded Optical Sensor of Neural Activity Using Electrophysiology in Intact Adult Fruit Flies

    PubMed Central

    Jayaraman, Vivek; Laurent, Gilles

    2007-01-01

    Genetically encoded optical indicators hold the promise of enabling non-invasive monitoring of activity in identified neurons in behaving organisms. However, the interpretation of images of brain activity produced using such sensors is not straightforward. Several recent studies of sensory coding used G-CaMP 1.3—a calcium sensor—as an indicator of neural activity; some of these studies characterized the imaged neurons as having narrow tuning curves, a conclusion not always supported by parallel electrophysiological studies. To better understand the possible cause of these conflicting results, we performed simultaneous in vivo 2-photon imaging and electrophysiological recording of G-CaMP 1.3 expressing neurons in the antennal lobe (AL) of intact fruitflies. We find that G-CaMP has a relatively high threshold, that its signal often fails to capture spiking response kinetics, and that it can miss even high instantaneous rates of activity if those are not sustained. While G-CaMP can be misleading, it is clearly useful for the identification of promising neural targets: when electrical activity is well above the sensor's detection threshold, its signal is fairly well correlated with mean firing rate and G-CaMP does not appear to alter significantly the responses of neurons that express it. The methods we present should enable any genetically encoded sensor, activator, or silencer to be evaluated in an intact neural circuit in vivo in Drosophila. PMID:18946545

  4. [Quantitative analysis of the isthmo-optic nucleus and projection neurons to the retina in adult fowl (Gallus gallus domesticus)].

    PubMed

    Sugita, S; Yamada, M

    1992-08-01

    Quantitative analysis of the isthmo-optic nucleus (IO) and centrifugal projection to the retina in the fowl was made using Nissl preparation and retrograde horseradish peroxidase (HRP) methods. Seven adult fowls (Gallus gallus domesticus) were used for Nissl stain. Serial sections were cut on a freezing microtome at 60 microns and stained with cresyl violet. IO was situated just medial to the caudal part of the tectum and laterodorsal surface of the brain stem. Rostrocaudal extension of IO was about 800-1,000 microns. The average total volume and neuronal population of the IO was 280 x 10(-3) mm3 and 5,600 neurons, respectively. Eight animals were used for HRP study. One hundred microliters of 30% HRP solution in physiological saline was injected into the vitreous body of one eye of each hen. Serial transverse sections of 60 microns were treated with tetramethyl benzidine (TMB). Many labeled neurons were found in contralateral brain stem. Average total number of contralateral HRP-labeled cells in IO and peri-IO were 5,268 and 1,492, respectively. Labeled neurons peri-IO were mainly distributed ventrally and rostrally to IO. No labeled neurons in IO, and only a few labeled neurons peri-IO were found ipsilaterally. The number of HRP-labeled neurons in IO corresponded to the neuronal population of IO in Nissl preparation, which suggested that most of isthmo-optic neurons might be projecting to the contralateral retina. In contrast to the round and small IO neurons (long axis 15-20 microns, short axis 10-20 microns), peri-IO neurons were multipolar and longer (long axis 15-30 microns, short axis 10-25 microns).

  5. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  6. Universal penetration test apparatus with fluid penetration sensor

    DOEpatents

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  7. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  8. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  9. Neuropsychiatric changes following penetrating head injury in children

    PubMed Central

    Badhiwala, Jetan H.; Blackham, Janet R.; Bhardwaj, Ratan D.

    2014-01-01

    Background: Penetrating head injuries demand the prompt attention of a neurosurgeon. While most neurosurgical centers are experienced in the acute management of these injuries, less is known about the long-term neuropsychiatric sequelae of penetrating head trauma. In adults, direct injury to the frontal lobe classically has been associated with mental status changes. However, there is less published data in children. Case Description: We report the case of a 12-year-old boy who suffered a penetrating head injury to the frontal lobes secondary to a self-inflicted gunshot wound, and experienced subsequent resolution of pre-existing bipolar disorder and new onset of attention deficit hyperactivity disorder. Conclusion: Children with penetrating head injury require close multidisciplinary follow-up in order to monitor, and accordingly implement management strategies, for associated sequelae, including behavioral and neuropsychiatric changes. PMID:25422782

  10. Penetration seals for TFTR shielding

    SciTech Connect

    Hondorp, H.L.

    1980-12-01

    The penetrations of the shielding provided for TFTR are required to be sealed to avoid radiation streaming. This report provides a discussion of the properties required for these penetration seals. Several alternate designs are discussed and evaluated and designs recommended for specific applications.

  11. An Earth Penetrating Modeling Assessment

    SciTech Connect

    Stokes, E; Yarrington, P; Glenn, L

    2005-06-21

    Documentation of a study to assess the capability of computer codes to predict lateral loads on earth penetrating projectiles under conditions of non-normal impact. Calculations simulated a set of small scale penetration tests into concrete targets with oblique faces at angles of 15 and 30 degrees to the line-of-flight. Predictive codes used by the various calculational teams cover a wide range of modeling approaches from approximate techniques, such as cavity expansion, to numerical methods, such as finite element codes. The modeling assessment was performed under the auspices of the Phenomenology Integrated Product Team (PIPT) for the Robust Nuclear Earth Penetrator Program (RNEP). Funding for the penetration experiments and modeling was provided by multiple earth penetrator programs.

  12. Static penetration resistance of soils

    NASA Technical Reports Server (NTRS)

    Durgunoglu, H. T.; Mitchell, J. K.

    1973-01-01

    Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.

  13. Cooperative Transmembrane Penetration of Nanoparticles

    PubMed Central

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  14. Transdermal penetration of UV filters.

    PubMed

    Klinubol, P; Asawanonda, P; Wanichwecharungruang, S P

    2008-01-01

    A penetration study of 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methyl benzylidenecamphor (MBC), butyl methoxydibenzoylmethane (BMBM), 2-ethylhexyl-2,4,5-trimethoxycinnamate (EHTMC) and di(2-ethylhexyl)-2,4,5-trimethoxybenzalmalonate (TMB) through baby mouse skin (Mus musculus Linn.) was carried out using a vertical Franz diffusion cell. At 4.4 mg/cm(2) coverage of UV filter on the skin, 2.98 +/- 0.38, 1.15 +/- 0.14 and 0.80 +/- 0.28% of the applied EHMC, MBC and BMBM were detected in the receptor fluid at 24 h after application. Penetrations of UV filter in an ethanolic solution and lotion forms were comparable. EHTMC and TMB showed insignificant penetration across the baby mouse skins. Baby mouse skins kept at 4, -20 and -80 degrees C gave similar EHMC penetration results. Penetrations of EHMC, BMBM, EHTMC and TMB across human epidermis were carried out upon 5 volunteers using the suction blister technique. The results also confirmed the significant penetrations of EHMC and BMBM and the insignificant penetrations of EHTMC and TMB.

  15. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed.

  16. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. PMID:24184862

  17. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury

    PubMed Central

    Duprey-Díaz, Mildred V.; Blagburn, Jonathan M.; Blanco, Rosa E.

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  18. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  19. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  20. Inspecting the reactor vessel penetrations

    SciTech Connect

    Bodson, F.; Fleming, K.W.

    1995-08-01

    The susceptibility of Alloy 600 to Primary Water Stress Corrosion Cracking (PWSCC) continues to plague nuclear power plants. Recently, the problem of PWSCC cracking has manifested itself in Control Rod Drive Mechanism (CRDM) head penetrations in nuclear plants in Europe. Framatome has been extensively involved in the performance of both inspections and repairs of CRDM head penetrations at Electricite de France (EdF) plants. B and W Nuclear Technologies (BWNT), building on Framatome technology, has developed a fully integrated service package and robotic manipulator to inspect and repair CRDM head penetrations for US utilities. Reactor vessel bottom penetration are also made of Alloy 600 and to tackle this potential PWSCC problem at EdF plants, Framatome has been performing specific inspections in order to detect the appearance of the phenomenon. This paper describes the overall range of inspection techniques and toolings developed to address these issues.

  1. Investigations into Monochloramine Biofilm Penetration

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct b...

  2. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  3. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  4. Penetrating nontorso trauma: the extremities

    PubMed Central

    Ball, Chad G.

    2015-01-01

    Summary Similar to penetrating torso trauma, nontorso injuries have undergone a fascinating oscillation between invasive and noninvasive approaches. This article discusses an organized approach to the evaluation and initial treatment of penetrating extremity injuries based on regional anatomy and clinical examination. The approach is reliable, efficient and minimizes both delays in diagnosis and missed injuries. Outpatient follow-up is particularly important for patients with extremity injuries who are discharged home from the emergency department. PMID:26022152

  5. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals.

  6. Penetration through the Skin Barrier.

    PubMed

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates. During recent decades, the latter has received increased attention as a route for intentionally delivering drugs to patients. This has stimulated research in methods for sampling, measuring and predicting percutaneous penetration. Previous chapters have described how different endogenous, genetic and exogenous factors may affect barrier characteristics. The present chapter introduces the theory for barrier penetration (Fick's law), and describes and discusses different methods for measuring the kinetics of percutaneous penetration of chemicals, including in vitro methods (static and flow-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous penetration. Finally, a short discussion of the advantages and challenges of each method is provided, which will hopefully allow the reader to improve decision making and treatment planning, as well as the evaluation of experimental studies of percutaneous penetration of chemicals. PMID:26844902

  7. A precocious adult visual center in the larva defines the unique optic lobe of the split-eyed whirligig beetle Dineutus sublineatus

    PubMed Central

    2013-01-01

    Introduction Whirligig beetles (Coleoptera: Gyrinidae) are aquatic insects living on the water surface. They are equipped with four compound eyes, an upper pair viewing above the water surface and a lower submerged pair viewing beneath the water surface, but little is known about how their visual brain centers (optic lobes) are organized to serve such unusual eyes. We show here, for the first time, the peculiar optic lobe organization of the larval and adult whirligig beetle Dineutus sublineatus. Results The divided compound eyes of adult whirligig beetles supply optic lobes that are split into two halves, an upper half and lower half, comprising an upper and lower lamina, an upper and lower medulla and a bilobed partially split lobula. However, the lobula plate, a neuropil that in flies is known to be involved in mediating stabilized flight, exists only in conjunction with the lower lobe of the lobula. We show that, as in another group of predatory beetle larvae, in the whirligig beetle the aquatic larva precociously develops a lobula plate equipped with wide-field neurons. It is supplied by three larval laminas serving the three dorsal larval stemmata, which are adjacent to the developing upper compound eye. Conclusions In adult whirligig beetles, dual optic neuropils serve the upper aerial eyes and the lower subaquatic eyes. The exception is the lobula plate. A lobula plate develops precociously in the larva where it is supplied by inputs from three larval stemmata that have a frontal-upper field of view, in which contrasting objects such as prey items trigger a body lunge and mandibular grasp. This precocious lobula plate is lost during pupal metamorphosis, whereas another lobula plate develops normally during metamorphosis and in the adult is associated with the lower eye. The different roles of the upper and lower lobula plates in supporting, respectively, larval predation and adult optokinetic balance are discussed. Precocious development of the upper lobula

  8. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult

    PubMed Central

    Dehaes, Mathieu; Grant, P. Ellen; Sliva, Danielle D.; Roche-Labarbe, Nadège; Pienaar, Rudolph; Boas, David A.; Franceschini, Maria Angela; Selb, Juliette

    2011-01-01

    The near infrared spectroscopy (NIRS) frequency-domain multi-distance (FD-MD) method allows for the estimation of optical properties in biological tissue using the phase and intensity of radiofrequency modulated light at different source-detector separations. In this study, we evaluated the accuracy of this method to retrieve the absorption coefficient of the brain at different ages. Synthetic measurements were generated with Monte Carlo simulations in magnetic resonance imaging (MRI)-based heterogeneous head models for four ages: newborn, 6 and 12 month old infants, and adult. For each age, we determined the optimal set of source-detector separations and estimated the corresponding errors. Errors arise from different origins: methodological (FD-MD) and anatomical (curvature, head size and contamination by extra-cerebral tissues). We found that the brain optical absorption could be retrieved with an error between 8–24% in neonates and infants, while the error increased to 19–44% in adults over all source-detector distances. The dominant contribution to the error was found to be the head curvature in neonates and infants, and the extra-cerebral tissues in adults. PMID:21412461

  9. Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification.

    PubMed

    Knudsen, E I; Esterly, S D; Olsen, J F

    1994-01-01

    1. This study demonstrates the influence of experience on the establishment and maintenance of the auditory map of space in the optic tectum of the barn owl. Auditory experience was altered either by preventing the structures of the external ears (the facial ruff and preaural flaps) from appearing in baby barn owls (baby ruff-cut owls) or by removing these structures in adults (adult ruff-cut owls). These structures shape the binaural cues used for localizing sounds in both the horizontal and vertical dimensions. 2. The acoustic effects of removing the external ear structures were measured using probe tube microphones placed in the ear canals. In both baby and adult ruff-cut owls, the spatial pattern of binaural localization cues was dramatically different from normal: interaural level difference (ILD) changed with azimuth instead of with elevation, the rate of change of ILD across space was decreased relative to normal, and the rate of change of interaural time difference (ITD) across frontal space was increased relative to normal. 3. The neurophysiological representations of ITD and ILD in the optic tectum were measured before and > or = 3 mo after ruff removal in adults and beginning at 4.5 months of age in baby ruff-cut owls. Multiunit tuning to ITD and to ILD was measured using dichotic stimulation in ketamine-anesthetized owls. The tectal maps of ITD and ILD were reconstructed using visual receptive field location as a marker for recording site location in the optic tectum. 4. Adjustment of the tectal map of ITD to the altered spatial pattern of acoustic ITD was essentially complete in adults as well as in baby ruff-cut owls. This adjustment changed the magnification of ITD across the tectum, with resultant changes in ITD tuning at individual tectal sites of up to approximately 25 microseconds (approximately 5% of the physiological range) relative to normal values. 5. Adaptation of the tectal ILD map to the ruff-cut spatial pattern of acoustic ILD was

  10. Penetration Experiments under Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Krause, C.; Gehlen, M.; Jaquemet, A.; Heller, S.; Sperl, M.; Willnecker, R.

    2013-09-01

    Penetration experiments will find several applications in exploration missions in the near future. Penetrators are common tools for the investigation of physical surface properties. The techniques and theories are widely applied under 1g condition on Earth and the results are used by engineers and scientists. The main contribution to the bearing resistance of a soil is combined of shaft and base resistance [1]. The theories show, that the resistance scales with gravity. Penetration experiments during a parabolic flight campaign have been performed for evaluating this gravity scaling of the bearing resistance in different materials during a parabolic flight campaign in December 2012. The main part of the experiment is composed of a steel rod penetrating into a sample cell. Depth and penetration force are recorded during this process. A sieving mechanism provided the ability of sample preparation during flight. Different compaction regimes of the sample material could be created with a ruttler mounted underneath the sample cell. The parabolic flight campaign consisted of 4 flight days. On each day 13 parabolas with Martian gravity, 12 parabolas with lunar gravity and 6 microgravity parabolas could be performed. Three different sample materials have been examined within the 4 flight days: glass spheres, glass corn and Mojawe sand. The glass spheres and glass corn samples were made of the same material, but with different shape. The Mojawe sand is a natural soil from the Mojawe desert in California (US). The experimental description and the first results will be presented.

  11. Double-Plate Penetration Equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    2000-01-01

    This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.

  12. Penetrating trauma to the facial skeleton by pickaxe - case report.

    PubMed

    Neskoromna-Jędrzejczak, Aneta; Bogusiak, Katarzyna; Przygoński, Aleksander; Timler, Dariusz

    2016-01-01

    Number of deaths related with injuries suffered as a result of experienced traumas is increasing. Penetrating traumas of the facial skeleton occur relatively rarely and much more often concern rather children than adults. Epidemiology relating this kind of trauma differs depending on the region of the world. In Poland, gunshot injuries as well as traumas caused by explosions of firecrackers or fireworks amount only to a slight percentage among all facial skeleton traumas, and the most common reason for penetrating traumas lies in accidents or assault with the use of sharp, narrow and long objects that easily enter bones of the facial skeleton. The present study reported the case of 50-year-old man who suffered from trauma of the facial skeleton, which resulted from foreign body (pickaxe) penetration into the subtemporal area, zygomatic arch and the right orbital cavity. The surgical treatment method and final outcome was presented and discussed. PMID:27096775

  13. Penetrating trauma to the facial skeleton by pickaxe - case report.

    PubMed

    Neskoromna-Jędrzejczak, Aneta; Bogusiak, Katarzyna; Przygoński, Aleksander; Timler, Dariusz

    2016-01-01

    Number of deaths related with injuries suffered as a result of experienced traumas is increasing. Penetrating traumas of the facial skeleton occur relatively rarely and much more often concern rather children than adults. Epidemiology relating this kind of trauma differs depending on the region of the world. In Poland, gunshot injuries as well as traumas caused by explosions of firecrackers or fireworks amount only to a slight percentage among all facial skeleton traumas, and the most common reason for penetrating traumas lies in accidents or assault with the use of sharp, narrow and long objects that easily enter bones of the facial skeleton. The present study reported the case of 50-year-old man who suffered from trauma of the facial skeleton, which resulted from foreign body (pickaxe) penetration into the subtemporal area, zygomatic arch and the right orbital cavity. The surgical treatment method and final outcome was presented and discussed.

  14. Development and testing of a Europa Penetrator for Astrobiology

    NASA Astrophysics Data System (ADS)

    Vijendran, S.; Perkinson, M.-C.; Waugh, L.; Ratcliffe, A.; Kennedy, T.; Church, P.; Fielding, J.; Taylor, N.

    2014-04-01

    Two phases of Penetrator development activities have been funded by ESA. The first phase focussed on the mission and system definition of a penetrator and delivery system for a mission to Europa and the second phase provided an update of the penetrator design for a larger suite of instruments focused on astrobiology and the demonstration of key system technologies through a programme of small scale and full scale testing. The science focus for the Europa penetrator is Astrobiology while the key science goals can be achieved within the first day of operation but a longer lifetime is required for the transmission of the science data to the orbiter. The extreme temperature environment of the Europan surface drove the design to a solution of a Penetrator with two separate bays. The front bay will be a short lifetime bay which will sample the surface and complete all analysis and data transfer within 10 hours. The rear bay is a warm bay which will house EPSC Abstracts Vol. 9, EPSC2014-642, 2014 European Planetary Science Congress 2014 c Author(s) 2014 EPSC European Planetary Science Congress the penetrator support systems required to transmit all collected data to the orbiter. The scientific instruments housed by the penetrator includeds a optical microimager, a habitability package and a mass spectrometer. A drilling and sampling mechanism is used for accessing the icy material outside the Penetrator for analysis. Small scale trails have been undertaken at the University of Cambridge Cavendish Laboratory to validate the impact modelling techniques and the robustness of critical components. A range of trials have been carried out to assess survivability of key elements of the design, including the sampling mechanism, potting compounds, accelerometers, shell, batteries and Torlon suspension springs. Full scale trials have been carried out to test the overall structural integrity of the system and the penetration profile. This programme was carried out in June 2013 at the

  15. Mars surface penetrator: System description

    NASA Technical Reports Server (NTRS)

    Manning, L. A. (Editor)

    1977-01-01

    A point design of a penetrator system for a Mars mission is described. A strawman payload which is to conduct measurements of geophysical and meteorological parameters is included in the design. The subsystems used in the point design are delineated in terms of power, mass, volume, data, and functional modes. The prospects for survival of the rigors of emplacement are described. Data handling and communications plans are presented to allow consideration of the requirements placed by the penetrator on the orbiter and ground operations. The point design is technically feasible and the payload selection scientifically desirable.

  16. On the reaction of adult Rhipicephalus evertsi mimeticus and Hyalomma truncatum to horizontally incidenting optical radiation of various wavelengths ranges and different irradiances and to optical radiation of a sun-simulating wavelength spectrum.

    PubMed

    Leuterer, G; Gothe, R

    1991-01-01

    The valence of horizontally incidenting light/optical radiation for host-seeking-inclined ixodid ticks was investigated by exposing male and female adults of Rhipicephalus evertsi mimeticus and Hyalomma truncatum to narrow-band monochromatic radiation in the wavelength range of 300-801 nm at irradiances corresponding to an overcast to clear sunny day, a cloudy day and a full-moon night as well as to optical radiation of a sun-simulating wavelength spectrum of 190-2600 nm within a test chamber from which other stimuli were excluded. It was demonstrated that independent of sex, adult ticks of R. e. mimeticus and H. truncatum responded to a wide wavelength spectrum in the visible and UV range, even at irradiances corresponding to a full-moon night. Interspecific differences existed in the degree and extent of the response as well as in the spectral sensitivity. Ticks of H. truncatum consistently showed a faster and stronger response and reacted phototactically positively in higher percentages than adults of R. e. mimeticus. Independent of wavelength range and irradiance, predominantly only few R. e. mimeticus ticks were stimulated to positive phototaxis, whereas at least 33.3% (in most cases, 50%) and maximally greater than 80% of H. truncatum adults reacted phototactically positively. Spectral sensitivity maxima were demonstrated at the yellow and red light and at the UV-A waveband width for R. e. mimeticus and at the violet, blue, green and yellow light wavelength for H. truncatum. With decreasing irradiance, the spectral sensitivity shifted to the blue wavelength range.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1866424

  17. Optical detection of intravenous infiltration

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W.; Chou, Nee-Yin

    2006-02-01

    Infiltration of medications during infusion therapy results in complications ranging from erythema and pain to tissue necrosis requiring amputation. Infiltration occurs from improper insertion of the cannula, separation of the cannula from the vein, penetration of the vein by the cannula during movement, and response of the vein to the medication. At present, visual inspection by the clinical staff is the primary means for detecting intravenous (IV) infiltration. An optical sensor was developed to monitor the needle insertion site for signs of IV infiltration. Initial studies on simulated and induced infiltrations on a swine model validated the feasibility of the methodology. The presence of IV infiltration was confirmed by visual inspection of the infusion site and/or absence of blood return in the IV line. Potential sources of error due to illumination changes, motion artifacts, and edema were also investigated. A comparison of the performance of the optical device and blinded expert observers showed that the optical sensor has higher sensitivity and specificity, and shorter detection time than the expert observers. An improved model of the infiltration monitoring device was developed and evaluated in a clinical study on induced infiltrations of healthy adult volunteers. The performance of the device was compared with the observation of a blinded expert observer. The results show that the rates of detection of infiltrations are 98% and 82% for the optical sensor and the observer, respectively. The sensitivity and specificity of the optical sensor are 0.97 and 0.98, respectively.

  18. [Reparative Neurogenesis in the Brain and Changes in the Optic Nerve of Adult Trout Oncorhynchus mykiss after Mechanical Damage of the Eye].

    PubMed

    Puschina, E V; Varaksin, A A; Obukhov, D K

    2016-01-01

    Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method. PMID:27149746

  19. Magnetically-Guided Penetrant Applicator

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Small wheeled vehicle moved inside nonmagnetic enclosure. Miniature magnetically guided truck uses foam-rubber sponge pads to apply penetrant fluid for inspection of welds in hidden surfaces of nonmagnetic tubes. Risk of explosion less than if electric motor used to drive vehicle. Inexpensive to make and made in range of sizes.

  20. Simulation of laser penetration efficiency

    NASA Astrophysics Data System (ADS)

    Semak, V. V.; Miller, T. F.

    2013-09-01

    The results of numerical simulation of laser beam interaction with a hypothetical metallic material with properties similar to a steel alloy are reported. The numerical simulation was performed using a physical model that includes detailed consideration of surface evaporation, evaporative cooling of the surface and evaporation recoil induced melt ejection. The laser beam ‘penetration’ is considered in terms of melting through the sample or drilling through the sample due to both evaporation and recoil ejection of material. As a demonstration of the predictive capabilities of the model, the average velocity of penetration through a material with steel-like properties is numerically predicted for various laser interaction parameters such as, laser beam radius, laser pulse duration (including CW regime), laser pulse energy and pulse repetition. In particular, the average penetration velocities through a sample due to melting are compared for pulsed and CW lasers of the same power. For the sake of another demonstration of penetration simulation, the temporal dynamics of the position of melt front relative to the sample surface irradiated by a laser beam was computed for different laser pulse repetition rates and constant average laser power. An illustration of the penetration efficiency (W parameter) defined as the amount of energy per unit volume delivered into a target in order to achieve either melting of drilling through a target wall is shown in a wide range of laser pulse parameters covering regimes corresponding to domination of melting through and drilling through.

  1. FAA Fluorescent Penetrant Laboratory Inspections

    SciTech Connect

    WINDES,CONNOR L.; MOORE,DAVID G.

    2000-08-02

    The Federal Aviation Administration Airworthiness Assurance NDI Validation Center currently assesses the capability of various non-destructive inspection (NDI) methods used for analyzing aircraft components. The focus of one such exercise is to evaluate the sensitivity of fluorescent liquid penetrant inspection. A baseline procedure using the water-washable fluorescent penetrant method defines a foundation for comparing the brightness of low cycle fatigue cracks in titanium test panels. The analysis of deviations in the baseline procedure will determine an acceptable range of operation for the steps in the inspection process. The data also gives insight into the depth of each crack and which step(s) of the inspection process most affect penetrant sensitivities. A set of six low cycle fatigue cracks produced in 6.35-mm thick Ti-6Al-4V specimens was used to conduct the experiments to produce sensitivity data. The results will document the consistency of the crack readings and compare previous experiments to find the best parameters for water-washable penetrant.

  2. Percutaneous penetration--methodological considerations.

    PubMed

    Holmgaard, Rikke; Benfeldt, Eva; Nielsen, Jesper B

    2014-07-01

    Studies on percutaneous penetration are needed to assess the hazards after unintended occupational skin exposures to industrial products as well as the efficacy after intended consumer exposure to topically applied medicinal or cosmetic products. During recent decades, a number of methods have been developed to replace methods involving experimental animals. The results obtained from these methods are decided not only by the chemical or product tested, but to a significant degree also by the experimental set-up and decisions made by the investigator during the planning phase. The present MiniReview discusses some of the existing and well-known experimental in vitro and in vivo methods for studies of percutaneous penetration together with some more recent and promising methods. After this, some considerations and recommendations about advantages and limitations of the different methods and their relevance for the prediction of percutaneous penetration are given. Which method to prefer will depend on the product to be tested and the question asked. Regulatory guidelines exist for studies on percutaneous penetration, but researchers as well as regulatory bodies need to pay specific attention to the vehicles and solvents used in donor and sampling fluids so that it reflects in-use conditions as closely as possible. Based on available experimental data, mathematical models have been developed to aid predictions of skin penetration. The authors question the general use of the present mathematical models in hazard assessment, as they seem to ignore outliers among chemicals as well as the heterogeneity of skin barrier properties and skin conditions within the exposed populations. PMID:24373389

  3. Near infrared laser penetration and absorption in human skin

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  4. Akon - A Penetrator for Europa

    NASA Astrophysics Data System (ADS)

    Jones, Geraint

    2016-04-01

    Jupiter's moon Europa is one of the most intriguing objects in our Solar System. This 2000km-wide body has a geologically young solid water ice crust that is believed to cover a global ocean of liquid water. The presence of this ocean, together with a source of heating through tidal forces, make Europa a conceivable location for extraterrestrial life. The science case for exploring all aspects of this icy world is compelling. NASA has selected the Europa Mission (formerly Europa Clipper) to study Europa in detail in the 2020s through multiple flybys, and ESA's JUICE mission will perform two flybys of the body in the 2030s. The US agency has extended to the European Space Agency an invitation to provide a contribution to their mission. European scientists interested in Europa science and exploration are currently organizing themselves, in the framework of a coordinated Europa M5 Inititative to study concurrently the main options for this ESA contribution, from a simple addition of individual instruments to the NASA spacecraft, to a lander to investigate Europa's surface in situ. A high speed lander - a penetrator - is by far the most promising technology to achieve this latter option within the anticipated mass constraints, and studies of such a hard lander, many funded by ESA, are now at an advanced level. An international team to formally propose an Europa penetrator to ESA in response to the anticipated ESA M5 call is growing. The working title of this proposal is Akon (Άκων), named after the highly accurate javelin gifted to Europa by Zeus in ancient Greek mythology. We present plans for the Akon penetrator, which would impact Europa's surface at several hundred metres per second, and travel up to several metres into the moon's subsurface. To achieve this, the penetrator would be delivered to the surface by a dedicated descent module, to be destroyed on impact following release of the penetrator above the surface. It is planned that the instruments to be

  5. Cytomegalovirus keratitis after penetrating keratoplasty.

    PubMed

    Wehrly, S R; Manning, F J; Proia, A D; Burchette, J L; Foulks, G N

    1995-11-01

    We report the development of cytomegalovirus (CMV) keratitis in the penetrating keratoplasty of a 59-year-old human immunodeficiency virus-negative woman after uncomplicated corneal transplantation. Immunosuppression with topical cyclosporine A 2% in corn oil and topical prednisolone acetate 1% suspension was used postoperatively. The 15-month postoperative course was complicated by multiple episodes of endothelial rejection, medically controlled elevated intraocular pressure, polymicrobial bacterial (coagulase-negative staphlococcus and alpha-hemolytic streptococcus) keratitis, and endothelial plaque formation with associated hypopyon and epithelial defect. The graft failed and penetrating keratoplasty was repeated. Cytomegalovirus infection of superficial keratocytes in a region of scarring was identified in histological sections stained with hematoxylin and eosin and confirmed using mouse monoclonal anti-cytomegalovirus antibodies. Excision of the diseased corneal button with no additional treatment appears to have been curative. Low-grade keratitis was the only manifestation of the CMV infection, and it has not recurred 6 months postoperatively.

  6. Weld penetration and defect control

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  7. [Penetrating injuries to the pelvis].

    PubMed

    Doll, D; Lenz, S; Exadaktylos, A K; Stettbacher, A; Degiannis, E; Düsel, W; Siewert, J R

    2006-09-01

    As criminality and weapon use increase, general and military surgeons are increasingly confronted with penetrating pelvic injuries both at home and on peacekeeping missions. Penetrating injuries to the iliac vascular axis are associated with considerable mortality, and thus the majority of these emergency patients arrive in a state of deep hypovolemic shock. Concomitant bowel injuries are present in one of five cases, resulting in contamination of the damaged area. Surgical options are simple lateral repair, ligation of the veins, temporary shunt insertion, and prosthetic graft interposition in the injured artery. In extremis ligation of the common or external iliac artery may be the only option to save the patient's life. Surgeons must be aware that damage control surgery and related methods may be needed early on to enable patient survival. PMID:16906417

  8. Jeeps Penetrating a Hostile Desert

    ERIC Educational Resources Information Center

    Bailey, Herb

    2009-01-01

    Several jeeps are poised at base camp on the edge of a desert aiming to escort one of them as far as possible into the desert, while the others return to camp. They all have full tanks of gas and share their fuel to maximize penetration. In a friendly desert it is best to leave caches of fuel along the way to help returning jeeps. We solve the…

  9. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    , to e.g. simple fins for bodies with atmospheres Whilst a 2Kg payload may be considered to be very low mass we propose that it is sufficient to carry out a comprehensive range of scientific investigations of the highest priority, and can include a chemistry package (e.g. mass spectrometer with drill, doped optical fibres), micro-seismometers and accelerometers, together with a package of environment sensors capable of measuring temperature, heat flow, dielectric constant, radiation levels, magnetic fields, and a descent camera. Other very low mass options also include a subsurface mineralogy/astrobiology camera; simple redox and pH instruments; and a beeping transmitter to allow radio interferometery from Earth to detect surface motions whether seismic or tidally induced. At present most of these payload instruments either have good space heritage but no impact qualification; are very simple; or have been fully space qualified with the previous space hardware developments. The UK penetrator consortium is currently actively pursuing a program to provide full space qualification for most of the above instruments, of which sensor elements of the mass spectrometer, prototype drill component, micro-seismometers, magnetometer, radiation sensors have currently survived the recent (May 2008) impact test at 310ms-1with a worst case 8- 10 degrees attack angle (offset between velocity vector and normal incidence angle) where forces in excess of 10Kgee were experienced. Such a payload is capable of significant sub-surface chemical inventory identification including refactory, organic materials; seismic investigations of the interior of active bodies; sub-surface mechanical information including layering from accelerometers and mineralogy/astrobiology camera, and ground truth from orbiting experiments such as dielectric constant which is particularly relevant to orbiting ground penetrating radar measurements. A descent camera can provide both impact site geophysical context as

  10. Network Penetration Testing and Research

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon F.

    2013-01-01

    This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised

  11. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  12. Demography of penetrating cardiac trauma.

    PubMed Central

    Naughton, M J; Brissie, R M; Bessey, P Q; McEachern, M M; Donald, J M; Laws, H L

    1989-01-01

    All cases of penetrating cardiac trauma in 1985 and 1986 in Jefferson County, Alabama, where patients dying of penetrating trauma received autopsies, were retrospectively reviewed. All hospitals in the county plus the single coroner's office provided the records of the 72 patients comprising this study. Incidents occurred most often in the home or residence (70%) by a known assailant (83%) due to domestic/social disputes (73%). Frequency was greatest in the evening hours (73% between 6:00 PM and 3:00 AM), on weekends in spring and summer. Victims tended to be male (86%), black (72%), married (46%), blue collar workers (62%). There were 41 (57%) gunshot wounds, 3 (4%) shotgun wounds, and 28 (39%) stab wounds with an associated mortality rate of 97%, 100%, and 68%, respectively. Prehospital mortality rate (dead at the scene) was 54.2% (39/72), and death on arrival was 26.4% (19/72), for a combined pretreatment mortality rate of 80.6%. All patients who arrived with no vital signs died. Mortality appeared to be related to mechanism of injury, age, race, sex, vital signs on arrival, number and specific cardiac chambers injured, associated major vascular injury, hematocrit, and mode of transportation. Mortality was not related to caliber of weapon, ethanol level, transport time, time from arrival to operation, or transfusion requirements. There were only ten survivors (1 gunshot wound and 9 stab wounds), all of whom had ventricular injuries and no associated major vascular injuries. The ten survivors represented a 71.4% (10/14) salvage rate for those victims arriving with vital signs. Complications occurred in three patients. Hospitalization averaged 7.3 days in the survivors. Penetrating cardiac trauma remains a serious, socially linked disease with a high rate of mortality. Rapid transport, aggressive resuscitation and cardiorrhaphy remain the best treatment. PMID:2730180

  13. FAA Fluorescent Penetrant Activities - An Update

    SciTech Connect

    Moore, D.G.

    1998-10-20

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently characterizing low cycle fatigue specimens that will support the needs of penetrant manufacturers, commercial airline industry and the Federal Aviation Administration. The main focus of this characterization is to maintain and enhance the evaluation of penetrant inspection materials and apply resources to support the aircraft community needs. This paper discusses efforts to-date to document the Wright Laboratory penetrant evaluation process and characterize penetrant brightness readings in the initial set of sample calibration panels using Type 1 penetrant.

  14. How deep can plasma penetrate into a biofilm?

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Du, T.; Lu, X.; Cao, Y.; Pan, Y.

    2011-05-01

    It is well known that plasma can deactivate various types of microorganisms. However, one fundamental key question has never been addressed, namely, how deep can plasma penetrate into multilayer biofilms. In this letter, Porphyromonas gingivalis (PG) biofilms (10 days growth, which has about 30 layers of PG cells with a thickness of about 15 μm) are treated with a cold plasma plume. It is found that the plasma can penetrate the biofilms and effectively deactivate all the bacteria in the 15 μm thick biofilms. Moreover, it was found that most of the dead cells' structures in the biofilms are not damaged. From the optical emission spectra of the plasma, it can be concluded that it is O and OH, rather than O2-, N2+, or UV emission that play the major role in the deactivation processes.

  15. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  16. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  17. [Non-penetrating glaucoma surgery].

    PubMed

    Klink, T; Matlach, J; Grehn, F

    2012-08-01

    Patients at high risk of developing complications (e.g. high myopia, aphakia, advanced visual field defects) benefit from non-penetrating glaucoma surgery (NPGS). Neovascular glaucoma, traumatic glaucoma or patients with a narrow angle (a scleral spur must at least be visible) are not suitable for NPGS. The aim of deep sclerectomy (DS) is mainly external subconjunctival drainage. Modified with mitomycin C and intrascleral implants, intraocular pressure (IOP) and success of DS are comparable to trabeculectomy. Viscocanalostomy and the further development to canaloplasty aim for blebless IOP control. Viscocanalostomy has an extremely low complication profile but only a slight reduction in IOP. Canaloplasty creates much more favourable results. Combined with phacoemulsification canaloplasty appears to lower IOP comparable to phacotrabeculectomy and demonstrates a more sustainable success compared to canaloplasty alone.

  18. Overview-hard rock penetration

    SciTech Connect

    Dunn, J.C. )

    1993-01-01

    The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, borehole instrumentation, acoustic telemetry, slimhole drilling, geothermal heat pumps. A new project to improve synthetic diamond drill bits for hard rock drilling was initiated during the year. Accomplishments during the year include completion of important acoustic telemetry tests in the Long Valley Well. These tests produced the first set of reliable, repeatable data in a drill hole. The results indicate the promise of acoustic transmission through drill pipe for great distances without repeaters. The rolling float meter for measuring drilling fluid outflow was duplicated and sent to six different companies for evaluation in the field. A new slimhole spectral gamma tool for operation at temperatures up to 300 C was fabricated and evaluated in the laboratory. Slimhole drilling for exploration and reservoir characterization was begun with several projects jointly completed with industry.

  19. Bodily action penetrates affective perception

    PubMed Central

    Rigutti, Sara; Gerbino, Walter

    2016-01-01

    Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotion identification task after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception. Here, we present evidence that performing a facial emotion detection (not identification) task after MAMIP exhibits systematic mood-congruent sensitivity changes, rather than response bias changes attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold for happiness was lower after fifty comfortable than uncomfortable reaches; while the detection threshold for anger was lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness after positive comfortable actions, anger after negative uncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on

  20. Penetration Analysis of Aluminum Alloy Foam

    NASA Astrophysics Data System (ADS)

    Zhang, Nianmei; Yang, Guitong

    Aluminum alloy foam offers a unique combination of good characteristics, for example, low density, high strength and energy absorption. During penetration, the foam materials exhibit significant nonlinear deformation. The penetration of aluminum alloy foam struck transversely by cone-nosed projectiles has been theoretically investigated. The dynamic cavity-expansion model is used to study the penetration resistance of the projectiles, which can be taken as two parts. One is due to the elasto-plastic deformation of the aluminum alloy foam materials. The other is dynamic resistance force coming from the energy of the projectiles. The penetration resistance expression is derived and applied to analyze the penetration depth of cone-nosed projectiles into the aluminum alloy foam target. The effect of initial velocity, the geometry of the projectiles on the penetration depth is investigated.

  1. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols.

  2. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols. PMID:25846360

  3. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, kK.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical.

  4. In-place HEPA filter penetration test

    SciTech Connect

    Bergman, W.; Wilson, K.; Elliott, J.

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  5. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17β treated female adult rats.

    PubMed

    Govindaraj, Vijayakumar; Rao, Addicam Jagannadha

    2016-06-01

    It is well established that sexually dimorphic brain regions, which are critical for reproductive physiology and behavior, are organized by steroid hormones during the first 2 weeks after birth in the rodents. In our recent observation, neonatal exposure to estradiol-17β (E2) in the female rat revealed increase in cyclooxygenase 2 (COX-2) level, sexually dimorphic nucleus (SDN)-pre-optic area (POA) size and down-regulation of synaptogenesis related genes in POA in the adult stage. In the present study, using the same animal model, the protein profile of control and neonatally E2-treated POA was compared by 1D-SDS-PAGE, and the protein that shows a change in abundance was identified by LC-MS/MS analysis. Results indicated that there was a single protein band, which was down-regulation in E2-treated POA and it was identified as spectrin alpha chain, non-erythrocytic 1 (SPTAN1). Consistently, the down-regulation of SPTAN1 expression was also confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The SPTAN1 was identified as a cytoskeletal protein that is involved in stabilization of the plasma membrane and organizes intracellular organelles, and it has been implicated in cellular functions including DNA repair and cell cycle regulation. The evidence shows that any mutation in spectrins causes impairment of synaptogenesis and other neurological disorders. Also, protein-protein interaction analysis of SPTAN1 revealed a strong association with proteins such as kirrel, actinin, alpha 4 (ACTN4) and vinculin (VCL) which are implicated in sexual behavior, masculinization and defeminization. Our results indicate that SPTAN1 expression in the developing rat brain is sexually dimorphic, and we suggest that this gene may mediate E2-17β-induced masculinization and defeminization, and disrupted reproductive function in the adult stage. PMID:27166725

  6. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil

  7. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  8. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the [l angle]111[r angle] and [l angle]100[r angle] crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of [l angle]111[r angle] single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of [l angle]100[r angle] and [l angle]111[r angle] single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  9. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  10. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    , to e.g. simple fins for bodies with atmospheres Whilst a 2Kg payload may be considered to be very low mass we propose that it is sufficient to carry out a comprehensive range of scientific investigations of the highest priority, and can include a chemistry package (e.g. mass spectrometer with drill, doped optical fibres), micro-seismometers and accelerometers, together with a package of environment sensors capable of measuring temperature, heat flow, dielectric constant, radiation levels, magnetic fields, and a descent camera. Other very low mass options also include a subsurface mineralogy/astrobiology camera; simple redox and pH instruments; and a beeping transmitter to allow radio interferometery from Earth to detect surface motions whether seismic or tidally induced. At present most of these payload instruments either have good space heritage but no impact qualification; are very simple; or have been fully space qualified with the previous space hardware developments. The UK penetrator consortium is currently actively pursuing a program to provide full space qualification for most of the above instruments, of which sensor elements of the mass spectrometer, prototype drill component, micro-seismometers, magnetometer, radiation sensors have currently survived the recent (May 2008) impact test at 310ms-1with a worst case 8- 10 degrees attack angle (offset between velocity vector and normal incidence angle) where forces in excess of 10Kgee were experienced. Such a payload is capable of significant sub-surface chemical inventory identification including refactory, organic materials; seismic investigations of the interior of active bodies; sub-surface mechanical information including layering from accelerometers and mineralogy/astrobiology camera, and ground truth from orbiting experiments such as dielectric constant which is particularly relevant to orbiting ground penetrating radar measurements. A descent camera can provide both impact site geophysical context as

  11. Aluminum penetration and fracture of titanium diboride

    SciTech Connect

    Dorward, R.C.

    1982-01-01

    Relatively porous titanium diboride (/approximately equals/96% dense) is penetrated with aluminum metal when used as a cathode in aluminum reduction cells operating at 970/sup 0/C. Metal penetration changes the predominant fracture mode from transgranular to intergranular, and has potentially important ramifications on mechanical properties. 3 refs.

  12. Social Penetration: A Description, Research, and Evaluation.

    ERIC Educational Resources Information Center

    Allensworth, Nicole J.

    Social penetration has been described by S.W. Littlejohn (1992) as "the process of increasing disclosure and intimacy in a relationship." The phrase "social penetration" originated with I. Altman and D. Taylor, the foremost researchers in this area. From other theories, Altman and Taylor developed a unified theory which provided a stable base from…

  13. FRACTIONAL PENETRATION OF PAINT OVERSPRAY ARRESTORS

    EPA Science Inventory

    The report describes the development of fractional penetration curves for liquid droplet penetration of overspray arrestors for discrete droplet diameters from 0.3 to 10 micrometers. (NOTE: Fine particulates are particles with diameters of 10 micrometers or less.) These data poin...

  14. Tungsten-uranium penetrator target interaction

    SciTech Connect

    Dunn, P S; Damkroger, B K

    1994-10-01

    Several studies performed in recent years have been directed at determining the penetration mechanism of long rod kinetic energy penetrators into Rolled Homogeneous Armor (RHA). Much of the work has centered on comparing U-0.75Ti and Tungsten Heavy Alloys (WHA), with the goal being to relate the superior ballistic performance of the uranium materials to a fundamental difference in penetration mechanisms. This has been found to be true, with the dominant mechanisms being adiabatic shear in U-0.75Ti and bulk deformation in WHA. Recent work has sought to achieve improvements in the ballistic performance of the tungsten materials via both mechanical property improvements and alloy modifications designed to bring about adiabatic shear. As an alternative, the authors propose the consideration of materials which utilize mechanisms other than bulk deformation and adiabatic shear to optimize ballistic performance. This paper will present the postmortem analysis of a uranium-20 vol% tungsten composite penetrator fired into RHA at 0{degrees} obliquity. The analysis shows that the penetration mechanism in this material is bulk heating and extensive co-melting of the target and penetrator at the penetration interface. The results of the analysis will then be compared to a similar analysis made of targets into which U-0.75Ti penetrators had been fired.

  15. Localisation of calcium ions and calcium-ATPase activity within myelinated nerve fibres of the adult guinea-pig optic nerve.

    PubMed Central

    Maxwell, W L; Watt, C; Pediani, J D; Graham, D I; Adams, J H; Gennarelli, T A

    1991-01-01

    There is no published description of the distribution of free Ca2+, nor of the distribution of Ca(2+)-ATPase activity associated with the maintenance of low axoplasmic Ca2+ concentrations, in normal central myelinated nerve fibres. We have used the oxalate-pyroantimonate technique to localise free Ca2+, together with the lead-citrate technique to localise Ca(2+)-ATPase activity within myelinated fibres from the adult guinea-pig optic nerve. Pyroantimonate precipitate occurred within the axoplasm at nodes of Ranvier and the internode, at areas of myelin disruption, within Schmidt-Lanterman incisures (SLI) and glial paranodal loops. But precipitate was absent from the axoplasm beneath SLI and at the paranode. Ca(2+)-ATPase activity was localised in axonal smooth endoplasmic reticulum (SER), the outer membrane of mitochondria, the nodal axolemma, the glial membranes of the paranodal loops, the SLI and the external aspect of the myelin sheath. We have demonstrated large domains within the axons of CNS fibres where calcium is present or absent. Moreover, we have shown that, where calcium is absent, there is localisation of Ca(2+)-ATPase activity, which would serve to remove calcium from the adjacent axoplasm. Our results are compared with information obtained from PNS fibres and some differences of distribution discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:1833365

  16. A high-density EEG study of differences between three high speeds of simulated forward motion from optic flow in adult participants

    PubMed Central

    Vilhelmsen, Kenneth; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2015-01-01

    A high-density EEG study was conducted to investigate evoked and oscillatory brain activity in response to high speeds of simulated forward motion. Participants were shown an optic flow pattern consisting of a virtual road with moving poles at either side of it, simulating structured forward motion at different driving speeds (25, 50, and 75 km/h) with a static control condition between each motion condition. Significant differences in N2 latencies and peak amplitudes between the three speeds of visual motion were found in parietal channels of interest P3 and P4. As motion speed increased, peak latency increased while peak amplitude decreased which might indicate that higher driving speeds are perceived as more demanding resulting in longer latencies, and as fewer neurons in the motion sensitive areas of the adult brain appear to be attuned to such high visual speeds this could explain the observed inverse relationship between speed and amplitude. In addition, significant differences between alpha de-synchronizations for forward motion and alpha synchronizations in the static condition were found in the parietal midline (PM) source. It was suggested that the alpha de-synchronizations reflect an activated state related to the visual processing of simulated forward motion, whereas the alpha synchronizations in response to the static condition reflect a deactivated resting period. PMID:26578903

  17. Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain.

    PubMed

    Levy, Peter; Larsen, Camilla

    2013-11-01

    Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.

  18. Penetration of aflatoxins through isolated human epidermis

    SciTech Connect

    Riley, R.T.; Kemppainen, B.W.; Norred, W.P.

    1985-01-01

    The purpose of this study was to determine if aflatoxin B1 (AFB1) could penetrate through isolated human epidermis (stratum corneum plus viable epidermis). ( UC)AFB1 (7.5-9.3 micrograms) was applied to the stratum corneum of epidermal disks mounted in Teflon diffusion cells. ( UC)AFB1 penetrated chemically unaltered through the isolated epidermis. Chloroform-extractable radioactivity accounted for 82.5 +/- 3.7% of the total penetrating radioactivity in the receptor fluid of the diffusion cells. The rate of penetration was very slow when experiments were conducted under nonoccluded conditions, but was approximately 40 times greater under conditions of occlusion. Penetration after 46 h was less than 0.05% and 3.41% of the applied dose under nonoccluded and occluded conditions, respectively. Total recovery expressed as a percentage of the applied radioactivity was 98.6 +/- 6.4%.

  19. Quick-Connect Windowed Non-Stick Penetrator Tips for Rapid Sampling

    NASA Technical Reports Server (NTRS)

    Sherritt, Stewart; Jones, Jack A.; Badescu, Mircea

    2009-01-01

    Standard penetrator sampling systems were designed in order to allow for sampling via penetrators to produce a full set of sample acquisitions including volatile liquids, fine powders, and solid fragments. A gravity harpoon sampler has been designed with a removable tip and a quick coupling. The separation allows for sample handling and eliminates sample cross-contamination. Also, this design allows for multiple use of the penetrator body, which is the largest and heaviest part of the penetrator, while allowing for multiple changes of the light-mass, penetrator tip to avoid sample cross-contamination. The penetrator tip design has been improved by adding a spring trap to retain the sample, as well as a means for connecting to a quick coupling. Quick connect tips have been demonstrated in a sample handling carousel. The penetrator was released and rewound and the tips were released into a circular platter for rotation into instrument stations. The pyro-harpoon sampler was fabricated and tested with a NASA Standard Initiator (NSI) pyrotechnic charge. Initial tests collected cryogenic ice, but removal of the small pyro-harpoon from the ice was difficult. A brass metal sheath was then fitted over the harpoon tip, and removal from the ice was greatly alleviated by leaving the sheath in the ice. Quartz windows in the tips allow direct optical and spectral imaging and gas chromatography-mass spectrometer (GCMS) pyrolysis, and were found to survive impact. All systems were successfully tested by dropping into sand and into cryogenic ice.

  20. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  1. Miniature Ground Penetrating Radar, CRUX GPR

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  2. Pressure enhanced penetration with shaped charge perforators

    DOEpatents

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  3. Mechanisms of imiquimod skin penetration.

    PubMed

    Telò, Isabella; Pescina, Silvia; Padula, Cristina; Santi, Patrizia; Nicoli, Sara

    2016-09-10

    Imiquimod (IMQ) ia an immunostimulating drug used for the treatment of neoplastic skin diseases, such as actinic keratosis (AK) and superficial basal cell carcinoma (sBCC), and as adjuvant for vaccination. Imiquimod formulation and skin delivery is highly challenging because of its very low solubility in most pharmaceutical excipients and poor penetration properties. Objectives of the work were: (1) to evaluate IMQ solubility in different solvents and pharmaceutical excipients; (2) to evaluate IMQ skin retention after the application of simple saturated solutions; (3) to evaluate the role of stratum corneum and solvent uptake on IMQ skin retention and (4) to formulate IMQ in microemulsions - prepared using previously investigated components - and compare them with the commercial formulation. The results show that IMQ solubility is not related to the solubility parameter of the solvents considered. The highest solubility was found with oleic acid (74mg/ml); in the case of PEGs, the solubility increased linearly with MW (PEG 200: 1.9mg/ml; PEG 400 7.3mg/ml, PEG 600 12.8mg/ml). Imiquimod skin retention from saturated solutions (Tween 80, oleic acid, propylene glycol, PEG 200, PEG 400, PEG 600, Transcutol, 2-pyrrolidone, DMSO) resulted relatively similar, being 1.6μg/cm(2) in case of oleic acid (solubility 74mg/ml) and 0.18μg/cm(2) in case of propylene glycol (solubility 0.60mg/ml). Permeation experiments on stripped skin (no stratum corneum) and isolated dermis as well as uptake experiments on isolated stratum corneum sheets demonstrated that IMQ accumulation is related to skin solvent uptake. Finally, microemulsions (MEs) prepared with the above-studied components demonstrated a very good performance. In particular, a ME composed of 10% oleic acid, 35% Transcutol, 35% Tween 80 and 20% water is able to accumulate the same amount of drug as the commercial formulation but with far more efficiency, since its concentration was 12 times lower. PMID:27452419

  4. Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasingly common application of near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging ligh...

  5. Results of analyses performed on basalt adjacent to penetrators emplaced into volcanic rock at Amboy, California, April 1976

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    The physical and chemical modifications found in the basalt after impact of four penetrators were studied. Laboratory analyses show that mineralogical and elemental changes are produced in the powdered and crushed basalt immediately surrounding the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer, 0-2 mm thick, of glass and abraded iron alloy mixed with fractured mineral grains of basalt. Elemental analysis of the 0-2 mm layer revealed increased concentrations of Fe, Cr, Ni, No, and Mn, and reduced concentrations of Mg, Al, Si, and Ca. The Fe, Cr, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the basalt sediment next to the penetrator include the introduction of micron-size grains of alpha-iron, magnetite, and hematite. The newly formed silicate minerals include metastable phases of silica (tridymite and cristobalite). An increased concentration of Fe, Cr, Ni, and Mo occurred in the 2-mm to 1-cm layer of penetrator no. 1, which impacted at the highest velocity. No elemental concentration increase was noted for penetrators nos. 2 and 3 in the 2-mm to 1-cm layer. Contaminants introduced by the penetrator occur up to 1 cm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the crushed rock, no changes were observed beyond the 1-cm distance.

  6. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  7. [Penetration of microparticles into human skin].

    PubMed

    Lademann, J; Schaefer, H; Otberg, N; Teichmann, A; Blume-Peytavi, U; Sterry, W

    2004-12-01

    The efficacy of the penetration of microparticles into the human skin depends on the size and the type of the formulation with which they are topically applied. Microparticles with a diameter of >1 microm barely penetrate into the human skin. They are located on the skin surface and form a film which, for instance, can be used for camouflage or protection against UV radiation in sunscreens. While the penetration of the microparticles in the lipid layers of the stratum corneum is limited, they penetrate efficiently into the hair follicles up to a depth >2 mm, providing their diameter is <1.5 microm. Thus, microparticles can be used for drug delivery into the hair follicles.

  8. Non-normal impact of earth penetrators

    SciTech Connect

    Duffey, T.A.; Macek, R.W.

    1996-12-31

    A brief literature review of the general subject of projectile penetration into soil media is presented. Particular emphasis is placed on projectiles impacting soil targets at other than normal incidence and/or at an angle of attack, for which lateral accelerations exist and can dominate the structural response. Comparisons of predicted lateral accelerations with recent earth penetrator experiments are then made using a 3 degree-of-freedom rigid-body approach developed elsewhere to determine the external penetrator loading. Agreement between experimental and calculated accelerations is favorable, but the need to include flexible-body response is indicated. Finally a scheme to incorporate a spherical-cavity-expansion analytical procedure into a detailed finite element model of the penetrator is developed to account for flexible-body response.

  9. Endoscopic treatment of transnasal intracranial penetrating foreign body.

    PubMed

    Lee, Dong Hoon; Seo, Bo Ra; Lim, Sang Chul

    2011-09-01

    Transnasal intracranial penetrating injury is rare. We report a case of transnasal intracranial penetrating metallic chopstick, which was removed successfully by endoscopic approach, and management of transnasal intracranial penetrating injuries.

  10. Low Force Penetration of Icy Regolith

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Galloway, G. M.; Zacny, K.

    2016-01-01

    A percussive cone penetrometer measures the strength of granular material by using percussion to deliver mechanical energy into the material. A percussive cone penetrometer was used in this study to penetrate a regolith ice mixture by breaking up ice and decompacting the regolith. As compared to a static cone penetrometer, percussion allows low reaction forces to push a penetrometer probe tip more easily into dry regolith in a low gravity environment from a planetary surface rover or a landed spacecraft. A percussive cone penetrates icy regolith at ice concentrations that a static cone cannot penetrate. In this study, the percussive penetrator was able to penetrate material under 65 N of down-force which could not be penetrated using a static cone under full body weight. This paper discusses using a percussive cone penetrometer to discern changes in the concentration of water-ice in a mixture of lunar regolith simulant and ice to a depth of one meter. The rate of penetration was found to be a function of the ice content and was not significantly affected by the down-force. The test results demonstrate that this method may be ideal for a small platform in a reduced gravity environment. However, there are some cases where the system may not be able to penetrate the icy regolith, and there is some risk of the probe tip becoming stuck so that it cannot be retracted. It is also shown that a percussive cone penetrometer could be used to prospect for water ice in regolith at concentrations as high as 8 by weight.

  11. Anomalous toroidal field penetration in Tormac V

    SciTech Connect

    Feinberg, B.; Vaucher, B.G.; Shaw, R.S.; Vella, M.C.

    1981-07-01

    Magnetic field penetration into a cool, collisional, magnetized plasma has been investigated in Tormac V. Magnetic probe and laser interferometer studies reveal anomalous penetration of the applied toroidal field into a plasma with an initial parallel bias toroidal field. The applied poloidal field, however, formed a well-defined magnetic front which was effective at sweeping up particles. Strong shear in the vacuum magnetic field does not inhibit the apparent decoupling of the applied toroidal field from the applied poloidal field.

  12. Anomalous toroidal field penetration in Tormac V

    SciTech Connect

    Feinberg, B.; Vaucher, B. G.; Shaw, R. S.; Vella, M. C.

    1981-07-01

    We investigate magnetic field penetration into a cool, collisional, magnetized plasma in Tormac V. Magnetic probe and laser interferometer studies reveal anomalous penetration of the applied toroidal field into a plasma with an initial parallel bias toroidal field. The applied poloidal field, however, formed a well-defined magnetic front which was effective at sweeping up particles. Lastly, strong shear in the vacuum magnetic field does not inhibit the apparent decoupling of the applied toroidal field from the applied poloidal field.

  13. Cable Technology: A Challenge for Adult Educators.

    ERIC Educational Resources Information Center

    Palchinsky, Jo

    The penetration of cable television throughout American communities makes it a potentially significant tool for improving the quality and accessibility of adult education. As cities begin to include in the cable franchise allotment monies for access by community members, adult educators need to become actively involved during the development of a…

  14. Penetration of Bdellovibrio bacteriovorus into Host Cells

    PubMed Central

    Abram, Dinah; e Melo, J. Castro; Chou, D.

    1974-01-01

    Electron microscopy reveals that, in Bdellovibrio infection, after the formation of a passage pore in the host cell wall, the differentiated parasite penetration pole is associated with the host protoplast. This firm contact persists throughout the parasite penetration and after this process is completed. In penetrated hosts this contact is also apparent by phase microscopy. The association between the walls of the parasite and the host at the passage pore, on the other hand, is transient. Bdellovibrio do not penetrate hosts whose protoplast and cell walls are separated by plasmolysis, or in which the membrane-wall relationship is affected by low turgor pressure. It is concluded, therefore, that for penetration to occur it is essential that the host protoplast be within reach of the parasite, so that a firm contact can be established between them. A penetration mechanism is proposed that is effected by forces generated by fluxes of water and solutes due to structural changes in the infected host envelope. These forces cause a differential expansion of the host protoplast and cell wall and their separation from each other around the entry site, while the parasite remains firmly anchored to the host protoplast. Consequently, the parasite ends up enclosed in the expanded host periplasm. The actual entry, therefore, is a passive act of the parasite. Images PMID:4208138

  15. Giant gastric ulcer penetrating into the pancreas.

    PubMed

    Fujihara, Shintaro; Mori, Hirohito; Nishiyama, Noriko; Kobara, Hideki; Masaki, Tsutomu

    2012-09-01

    A 57-year-old man developed haematemesis and was referred to our institution. His discomfort had begun 3 weeks earlier and localised to the upper abdomen. Abdominal CT showed a defect of gastric mucosa and gastric wall thickening. Oesophagogastroduodenoscopy showed that he had an active gastric ulcer, 40 mm in diameter, on the lesser curvature in the upper third of the corpus and the presence of a pancreatic body at the ulcer base, penetration to the pancreas. Open gastrectomy was performed with a preoperative diagnosis of localised peritonitis caused by penetration of the stomach into the pancreas. Histopathology of resected specimens showed a benign peptic ulcer, 40×40 mm in size, was found on the lesser curvature in the antrum, and this had penetrated through the pancreas. The most serious complications of PUD include haemorrhage, perforation, penetration, and gastric outlet obstruction. Approximately 7% of patients experience perforation, which occurs when an ulcer erodes through the wall and leaks air and digestive contents into the peritoneal cavity. Antral and duodenal ulcers can penetrate into the pancreas. We report a case of gastric ulcer penetrating into the pancreas.

  16. Romanomermis culicivorax: penetration of larval mosquitoes.

    PubMed

    Shamseldean, M M; Platzer, E G

    1989-09-01

    In the presence of second larval instars of three mosquito species the preparasites of Romanomermis culicivorax swam near the water surface in an orthokinetic manner. When the preparasites were ca. 1 mm from the host, they stopped and swam klinotactically toward the host. During this phase, the preparasites secreted a small amount of a putative adhesive material from the anterior region and host contact was completed. The adhesive appeared to aid in attachment of the preparasites to the host and initiation of the search-boring phase. The preparasites glided over the host until a suitable penetration site was found. The penetration phase was initiated by probing with the odontostyle. This was followed by partial paralysis, decreased intestinal peristaltic movement, and temporary cardiac arrest in all host mosquitoes which was probably related to injection of esophageal secretions. SEM observations showed that the abdominal walls were the most frequent site for penetration. As the preparasites entered through the penetration hole, microorganisms adhering to the cuticle of the preparasites were retained by the adhesive which accumulated around the penetration site. Thus, microbial contamination of the host was avoided by a mechanical cleansing mechanism. Penetration was usually completed in less than 10 min.

  17. Use of the star sign to diagnose internal fistulas in pediatric patients with penetrating Crohn disease by MR enterography.

    PubMed

    Braithwaite, Kiery A; Alazraki, Adina L

    2014-08-01

    Development of internal fistula due to extramural spread of inflammatory bowel disease is a characteristic feature of penetrating disease in patients with Crohn disease. The "star sign" is a radiological finding of internal fistula that has previously been described in the gastroenterology literature in adult Crohn disease patients undergoing MR enteroclysis. The goal of this paper is to review the clinical and imaging features of penetrating disease in pediatric Crohn disease patients, highlighting the star sign as a useful diagnostic tool for diagnosing internal fistula in children by MR enterography. The recognition of penetrating complications by MR imaging can have important therapeutic and prognostic implications.

  18. Results of analyses performed on soil adjacent to penetrators emplaced into sediments at McCook, Nebraska, January 1976. [simulated penetration into wind-deposited sediments on Martian plains

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Kyte, F.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    During 1976 several penetrators (full and 0.58 scale) were dropped into a test site McCook, Nebraska. The McCook site was selected because it simulated penetration into wind-deposited sediments (silts and sands) on Martian plains. The physical and chemical modifications found in the sediment after the penetrators' impact are described. Laboratory analyses have shown mineralogical and elemental changes are produced in the sediment next to the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer of glassy material about 75 microns thick. Elemental analysis of a 0-1-mm layer of sediment next to the penetrator revealed increased concentrations for Cr, Fe, Ni, Mo, and reduced concentrations for Mg, Al Si, P, K, and Ca. The Cr, Fe, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the sediment next to the penetrator included the introduction of micron-size grains of alpha iron and several hydrated iron oxide minerals. The newly formed silicate minerals include metastable phases of silica (cristobalite, lechatelierite, and opal). The glassy material was mostly opal which formed when the host minerals (mica, calcite, and clay) decomposed. In summary, contaminants introduced by the penetrator occur up to 2 mm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the sediment, no changes were observed beyond the 2-mm distance. The analyses indicate 0.58-scale penetrators do effectively simulate full-scale testing for soil modification effects.

  19. Aerosol penetration behavior of respirator valves.

    PubMed

    Brosseau, L M

    1998-03-01

    Exhalation and inhalation valves from half-facepiece negative pressure respirators were evaluated for leakage during an 8-hour cyclic breathing test period using two work rates (415 and 622 kg-m/min) and two particle sizes (0.3 and 0.8 micron). Three different models (manufacturers) of exhalation valves were tested, with two lots for each model. Exhalation valve leakage ranged from 0.0 to 0.03%; no failure of exhalation valves occurred. No differences in lot or manufacturer were found. Differences in particle size did not lead to differences in penetration at the lower work rate; at the higher work rate 0.3-micron particles were less penetrating than 0.8-micron particles (0.03 versus 0.06%). When tested for air leakage at a pressure of 2.54 cm H2O, following the National Institute for Occupational Safety and Health certification method, exhalation valves exhibited no leakage either before or after the experiments. Inhalation valves averaged 20% leakage for all experiments; 0.3-micron particles were again less penetrating (13%) than 0.8-micron particles (27%). No inhalation valve failure occurred. No differences in lot (within manufacturer) were found; there were, however, significant differences in particle penetration among the three manufacturers' inhalation valves. Airflow leakage through the inhalation valves did not change during the experimental period, but differed among the three manufacturers. Measurements using airflow leakage and particle penetration produced the same ranking for the three manufacturers' inhalation valves.

  20. Enhanced chlorhexidine skin penetration with eucalyptus oil

    PubMed Central

    2010-01-01

    Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (μg/mg of skin) was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis. PMID:20860796

  1. Penetrating chest wound: a case report.

    PubMed

    Rourke, L L; McKenzie, F N; Heimbecker, R O

    1977-04-23

    An unusual penetrating chest injury was caused by a ball-point pen. Because of apparent penetration of the heart, preparations were made for an emergency open-heart procedure before emergency thoracotomy was undertaken, with the pen still in situ. The pen had bruised the epicardium but had not penetrated the pericardial sac. After removal of the pen, the wound was closed and a chest tube left in place. Recovery, apart from minor degrees of basal atelectasis, pleural effusion and wound infection, was uneventful. The outcome was consistent with that associated with current aggressive management of penetrating chest injuries. Management is based on three approaches. The primary one is intercostal thoracostomy tube drainage and fluid and blood replacement. In cases of massive hemorrhage or air leak, thoracotomy is necessary. The third approach is to prevent post-traumatic pulmonary insufficiency by using fine, high-efficiency filters during blood transfusion, avoiding excessive administration of intravenous fluids, performing tracheostomy after prolonged endotracheal intubation, and using a volume respirator with positive end-expiratory pressure. The average mortality for penetrating wounds of the heart is 25%.

  2. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs. PMID:27699119

  3. Whole-body multispectral photoacoustic imaging of adult zebrafish

    PubMed Central

    Huang, Na; Guo, Heng; Qi, Weizhi; Zhang, Zhiwei; Rong, Jian; Yuan, Zhen; Ge, Wei; Jiang, Huabei; Xi, Lei

    2016-01-01

    The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.

  4. Optic nerve sheath diameter threshold by ocular ultrasonography for detection of increased intracranial pressure in Korean adult patients with brain lesions

    PubMed Central

    Lee, Si Un; Jeon, Jin Pyeong; Lee, Hannah; Han, Jung Ho; Seo, Mingu; Byoun, Hyoung Soo; Cho, Won-Sang; Ryu, Ho Geol; Kang, Hyun-Seung; Kim, Jeong Eun; Kim, Heung Cheol; Jang, Kyung-Sool

    2016-01-01

    Abstract Optic nerve sheath diameter (ONSD) seen on ocular US has been associated with increased intracranial pressure (IICP). However, most studies have analyzed normal range of ONSD and its optimal cut-off point for IICP in Caucasian populations. Considering ONSD differences according to ethnicity, previous results may not accurately reflect the association between IICP and ONSD in Koreans. Therefore, we conducted this study to investigate normal range of ONSD and its optimal threshold for detecting IICP in Korean patients. This prospective multicenter study was performed for patients with suspected IICP. ONSD was measured 3 mm behind the globe using a 13-MHz US probe. IICP was defined as significant brain edema, midline shift, compression of ventricle or basal cistern, effacement of sulci, insufficient gray/white differentiation, and transfalcine herniation by radiologic tests. The results of the ONSD are described as the median (25th–75th percentile). The differences of ONSD according to disease entity were analyzed. A receiver operator characteristic (ROC) curve was generated to determine the optimal cut-off point for identifying IICP. A total of 134 patients were enrolled. The patients were divided into 3 groups as follows: patients with IICP, n = 81 (60.5%); patients without IICP, n = 27 (20.1%); and control group, n = 26 (19.4%). ONSD in patients with IICP (5.9 mm [5.8–6.2]) is significantly higher than those without IICP (5.2 mm [4.8–5.4]) (P < 0.01) and normal control group (4.9 mm [4.6–5.2]) (P < 0.001). Between patients without IICP and normal control group, the difference of ONSD did not reach statistical significance (P = 0.31). ONSD >5.5 mm yielded a sensitivity of 98.77% (95% CI: 93.3%–100%) and a specificity of 85.19% (95% CI: 66.3%–95.8%). In conclusion, the optimal cut-off point of ONSD for identifying IICP was 5.5 mm. ONSD seen on ocular US can be a feasible method for detection and serial monitoring of ICP in

  5. Penetrators (penetrating sondes) and new possibilities for study of the planets

    NASA Technical Reports Server (NTRS)

    Davydov, V. D.; Skuridin, G. A.

    1979-01-01

    The fields of possible use of penetrators in space research are considered. A survey of the condition of development and plans for use of penetrators abroad is presented and an analysis is given of the significance of scientific problems when probing planets.

  6. Penetrating power of resonant electromagnetic induction imaging

    NASA Astrophysics Data System (ADS)

    Guilizzoni, Roberta; Watson, Joseph C.; Bartlett, Paul; Renzoni, Ferruccio

    2016-09-01

    The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick) and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm-1) concealed behind them.

  7. Selective ion penetration of graphene oxide membranes.

    PubMed

    Sun, Pengzhan; Zhu, Miao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei

    2013-01-22

    The selective ion penetration and water purification properties of freestanding graphene oxide (GO) membranes are demonstrated. Sodium salts permeated through GO membranes quickly, whereas heavy-metal salts infiltrated much more slowly. Interestingly, copper salts were entirely blocked by GO membranes, and organic contaminants also did not infiltrate. The mechanism of the selective ion-penetration properties of the GO membranes is discussed. The nanocapillaries formed within the membranes were responsible for the permeation of metal ions, whereas the coordination between heavy-metal ions with the GO membranes restricted the passage of the ions. Finally, the penetration processes of hybrid aqueous solutions were investigated; the results revealed that sodium salts can be separated effectively from copper salts and organic contaminants. The presented results demonstrate the potential applications of GO in areas such as barrier separation and water purification.

  8. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  9. Penetrative Convection and Zonal Flow on Jupiter

    PubMed

    Zhang; Schubert

    1996-08-16

    Measurements by the Galileo probe support the possibility that the zonal winds in Jupiter's atmosphere originate from convection that takes place in the deep hydrogen-helium interior. However, according to models based on recent opacity data and the probe's temperature measurements, there may be radiative and nonconvective layers in the outer part of the jovian interior, raising the question of how deep convection could extend to the surface. A theoretical model is presented to demonstrate that, because of predominant rotational effects and spherical geometry, thermal convection in the deep jovian interior can penetrate into any outer nonconvective layer. These penetrative convection rolls interact nonlinearly and efficiently in the model to generate and sustain a mean zonal wind with a larger amplitude than that of the nonaxisymmetric penetrative convective motions, a characteristic of the wind field observed at the cloud level on Jupiter. PMID:8688074

  10. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  11. Penetrating chest wounds: a 10-year review.

    PubMed

    Sett, S S; Busse, E; Boyd, T; Burgess, J

    1987-09-01

    From January 1975 to December 1984, 93 patients with penetrating chest wounds were admitted to three hospitals in Regina. Sixty-three percent of the wounds were caused by knives and 34% by firearms. Sixty-three patients were treated conservatively, 18 patients had thoracotomy and 12 others underwent laparotomy. Of the 18 patients, 16 had wounds between the nipples; 8 of the 16 had injuries to the heart or great vessels. Whereas the majority of penetrating wounds to the chest may be treated by observation or thoracostomy alone, a surgical approach is recommended when penetrating injuries are thought to have traversed the mediastinum, because of the high incidence of associated cardiac injuries. In doubtful cases the decision should favour early thoracotomy.

  12. Penetration drag in loosely packed granular materials

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration

    2015-03-01

    The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.

  13. Adult Books for Young Adults.

    ERIC Educational Resources Information Center

    Carter, Betty

    1997-01-01

    Considers the differences between young adult and adult books and maintains that teachers must be familiar with young adults' tastes for both. Suggests that traffic between these publishing divisions is a two-way street, with young adults reading adult books and adults reading young adult books. (TB)

  14. Impact of hormonal protection in blunt and penetrating trauma: a retrospective analysis of the National Trauma Data Bank.

    PubMed

    Petersen, Snow; Simms, Eric R; Guidry, Chrissy; Duchesne, Juan C

    2013-09-01

    Over the last decade, gender and age-related hormonal status of trauma patients have been increasingly recognized as outcome factors. In the present study, we examine a large cohort of trauma patients to better appraise the effects of gender and age on patient outcome after blunt and penetrating trauma. We hypothesize that adult females are at lower risk for complications and mortality relative to adult males after both blunt and penetrating trauma. A retrospective analysis was conducted of the National Trauma Data Bank examining hormonally active females for advantages in survival and outcome after blunt and/or penetrating trauma. Over 1.4 million incident trauma cases were identified between 2002 and 2006. Multiple logistic regressions were calculated for associations between gender and outcome, stratified by injury type, age, comorbidity, Injury Severity Score (ISS), and complications. Risk factors associated with mortality in our multiple logistic regression analyses included: penetrating trauma (odds ratio [OR, 2.31; 95% confidence interval [CI], 2.27 to 2.36); adult male (OR, 1.45; 95% CI, 1.41 to 1.49); and ISS 15 or greater (OR, 14.68; 95% CI, 14.38 to 14.98). Adult females demonstrated a survival advantage over adult males (OR, 0.69; 95% CI, 0.67 to 0.71). Adult females with ISS less than 15 demonstrated a distinct survival advantage compared with adult males after both blunt and penetrating trauma. These results warrant further investigation into the role of sex hormones in trauma.

  15. Leber's Hereditary Optic Neuropathy: The Mitochondrial Connection Revisited.

    PubMed

    Abu-Amero, Khaled K

    2011-01-01

    Our current understanding of Leber's hereditary optic neuropathy (LHON)-mitochondrial connection falls short of comprehensive. Twenty years of intensive investigation have yielded a wealth of information about mitochondria, the mitochondrial genome, the metabolism of the optic nerve and other structures, and the phenotypic variability of classic LHON. However, we still cannot completely explain how primary LHON mutations injure the optic nerve or why the optic nerve is particularly at risk. We cannot explain the incomplete penetrance or the male predominance of LHON, the typical onset in young adult life without warning, or the synchronicity of visual loss. Moreover, primary LHON mutations clearly are not present in every family with the LHON phenotype (including multigenerational maternal inheritance), and they are present in only a minority of individuals who have the LHON optic neuropathy phenotype without a family history. All lines of evidence point to abnormalities of the mitochondria as the direct or indirect cause of LHON. Therefore, the mitochondria-LHON connection needs to be revisited and examined closely. This review will attempt to do that and provide an update on various aspects of LHON.

  16. Hybrid treatment of penetrating aortic ulcer.

    PubMed

    Lara, Juan Antonio Herrero; Martins-Romêo, Daniela de Araújo; Escudero, Carlos Caparrós; Vázquez, Rosa María Lepe; Falcón, María Del Carmen Prieto; Batista, Vinicius Bianchi

    2015-01-01

    Penetrating atherosclerotic aortic ulcer is a rare entity with poor prognosis in the setting of acute aortic syndrome. In the literature, cases like the present one, located in the aortic arch, starting with chest pain and evolving with dysphonia, are even rarer. The present report emphasizes the role played by computed tomography in the diagnosis of penetrating atherosclerotic ulcer as well as in the differentiation of this condition from other acute aortic syndromes. Additionally, the authors describe a new therapeutic approach represented by a hybrid endovascular surgical procedure for treatment of the disease.

  17. FREEFALL: A seabed penetrator flight code

    SciTech Connect

    Hickerson, J.

    1988-01-01

    This report presents a one-dimensional model and computer program for predicting the motion of seabed penetrators. The program calculates the acceleration, velocity, and depth of a penetrator as a function of time from the moment of launch until the vehicle comes to rest in the sediment. The code is written in Pascal language for use on a small personal computer. Results are presented as printed tables and graphs. A comparison with experimental data is given which indicates that the accuracy of the code is perhaps as good as current techniques for measuring vehicle performance. 31 refs., 12 figs., 5 tabs.

  18. A novel backpackable ice-penetrating radar system

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenichi; Saito, Ryoji; Naruse, Renji

    We have developed a novel ice-penetrating radar system that can be carried on a backpack. Including batteries for a 3 hour continuous measurement, the total weight is 13 kg. In addition, it operates reliably down to -25°C, has a low power consumption of 24 W, and is semi-waterproof. The system has a built-in-one controller with a high-brightness display for reading data quickly, a receiver with 12-bit digitizing, and a 1 kV pulse transmitter in which the pulse amplitude varies by <0.2%. Optical communications between components provides low-noise data acquisition and allows synchronizing of the pulse transmission with sampling. Measurements with the system revealed the 300 m deep bed topography of a temperate valley glacier in the late ablation season.

  19. Penetration of UV Radiation in the Earth's Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Lubin, Dan

    2005-01-01

    This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.

  20. Single And Multiple Jet Penetration Experiments Into Geologic Materials

    SciTech Connect

    Kuklo, R; Murphy, M J; Rambur, T A; Switzer, L L; Summers, M A

    2003-12-19

    This paper presents the results of experiments that investigate the effect of single and multiple jet penetration into geologic materials. In previous studies of jet penetration into concrete targets, we demonstrated that an enhanced surface crater could be created by the simultaneous penetration of multiple shaped charge jets and that an enhanced target borehole could be created by the subsequent delayed penetration of a single shaped charge jet. This paper describes an extension of the multiple jet penetration research to limestone and granite.

  1. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  2. Failure and penetration response of borosilicate glass during short-rod impact

    SciTech Connect

    Anderson, C. E. Jr.; Orphal, D. L.; Behner, Th.; Hohler, V.; Wickert, M.; Templeton, D. W.

    2007-12-12

    The failure characterization of brittle materials like glass is of fundamental importance in describing the penetration resistance against projectiles. A critical question is whether this failure front remains 'steady' after the driving stress is removed. A test series with short gold rods (D = 1 mm, L/D{approx_equal}5-11) impacting borosilicate glass at {approx}1 to 2 km/s was carried out to investigate this question. The reverse ballistic method was used for the experiments, and the impact and penetration process was observed simultaneously with five flash X-rays and a 16-frame high-speed optical camera. Very high measurement accuracy was established to ensure reliable results. Results show that the failure front induced by rod impact and penetration does arrest (ceases to propagate) after the rod is totally eroded inside the glass. The impact of a second rod after a short time delay reinitiates the failure front at about the same speed.

  3. Subsurface investigation with ground penetrating radar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...

  4. A Quantitative Analysis of Worldwide VCR Penetration.

    ERIC Educational Resources Information Center

    Lin, Carolyn

    By examining relationships between a host of national policy, domestic economic, media system, and media infrastructure factors, a study assesses possible predictors for videotape cassette recorder (VCR) penetration across 63 countries. Overall statistical results generated through hypothesis testing indicated that these factors were relatively…

  5. Intracellular transduction using cell-penetrating peptides.

    PubMed

    Sawant, Rupa; Torchilin, Vladimir

    2010-04-01

    Cell penetrating peptides (CPPs), TATp, in particular, has been used widely for intracellular delivery of various agents ranging from small molecules to proteins, peptides, range of pharmaceutical nanocarriers and imaging agents. This review highlights the mechanisms of CPP-mediated delivery and summarizes numerous examples illustrating the potential of CPPs in the fields of biology and medicine. PMID:20237640

  6. Planetary penetrators: Their origins, history and future

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2011-08-01

    Penetrators, which emplace scientific instrumentation by high-speed impact into a planetary surface, have been advocated as an alternative to soft-landers for some four decades. However, such vehicles have yet to fly successfully. This paper reviews in detail, the origins of penetrators in the military arena, and the various planetary penetrator mission concepts that have been proposed, built and flown. From the very limited data available, penetrator developments alone (without delivery to the planet) have required ˜$30M: extensive analytical instrumentation may easily double this. Because the success of emplacement and operation depends inevitably on uncontrollable aspects of the target environment, unattractive failure probabilities for individual vehicles must be tolerated that are higher than the typical '3-sigma' (99.5%) values typical for spacecraft. The two pathways to programmatic success, neither of which are likely in an austere financial environment, are a lucky flight as a 'piggyback' mission or technology demonstration, or with a substantial and unprecedented investment to launch a scientific (e.g. seismic) network mission with a large number of vehicles such that a number of terrain-induced failures can be tolerated.

  7. Computed tomographic findings in penetrating peptic ulcer

    SciTech Connect

    Madrazo, B.L.; Halpert, R.D.; Sandler, M.A.; Pearlberg, J.L.

    1984-12-01

    Four cases of peptic ulcer penetrating the head of the pancreas were diagnosed by computed tomography (CT). Findings common to 3 cases included (a) an ulcer crater, (b) a sinus tract, and (c) enlargement of the head of the pancreas. Unlike other modalities, the inherent spatial resolution of CT allows a convenient diagnosis of this important complication of peptic ulcer disease.

  8. Penetrating ocular trauma associated with blank cartridge

    PubMed Central

    2014-01-01

    Background Blank cartridge guns are generally regarded as being harmless and relative safe. However recent published articles demonstrated that the gas pressure from the exploding propellant of blank cartridge is powerful enough to penetrate the thoracic wall, abdominal muscle, small intestine and the skull. And there has been a limited number of case reports of ocular trauma associated with blank cartridge injury. In addition, no report on case with split extraocular muscle injury with traumatic cataract and penetrating corneoscleral wound associated with blank cartridge has been previously documented. This report describes the case of patient who sustained penetrating ocular injury with extraocular muscle injury by a close-distance blank cartridge that required surgical intervention. Case presentation A 20-year-old man sustained a penetrating globe injury in the right eye while cleaning a blank cartridge pistol. His uncorrected visual acuity at presentation was hand motion and he had a flame burn of his right upper and lower lid with multiple missile wounds. On slit-lamp examination, there was a 12-mm laceration of conjunctiva along the 9 o'clock position with two pinhole-like penetrating injuries of cornea and sclera. There was also a 3-mm corneal laceration between 9 o'clock and 12 o'clock and the exposed lateral rectus muscle was split. Severe Descemet's membrane folding with stromal edema was observed, and numerous yellow, powder-like foreign bodies were impacted in the cornea. Layered anterior chamber bleeding with traumatic cataract was also noted. Transverse view of ultrasonography showed hyperechoic foreign bodies with mild reduplication echoes and shadowing. However, a computed tomographic scan using thin section did not reveal a radiopaque foreign body within the right globe. Conclusion To our best knowledge, this is the first case report of split extraocular muscle injury with traumatic cataract and penetrating ocular injury caused by blank cartridge

  9. Light penetration in the human prostate: a whole prostate clinical study at 763 nm

    NASA Astrophysics Data System (ADS)

    Moore, Caroline M.; Mosse, C. Alexander; Allen, Clare; Payne, Heather; Emberton, Mark; Bown, Stephen G.

    2011-01-01

    Photodynamic therapy (PDT) is being investigated as a treatment for localized prostate cancer. Photodynamic therapy uses a photosensitizing drug which is activated by a specific wavelength of light, in the presence of oxygen. The activated drug reacts with tissue oxygen to produce reactive oxygen species which are responsible for localized tissue necrosis. One of the determinants of the PDT effect is the penetration of light in the prostate. This study assesses the penetration depth of 763 nm light throughout the prostate. Eight men undergoing multiple hollow needle insertion for high dose rate brachytherapy were recruited. 763 nm light, produced by a diode laser, was delivered to the prostate using cylindrically diffusing optical fibers within the plastic needles. Light was detected at different distances from the source, using an isotropic detector within nearby needles. Penetration depth was calculated using the Boltzmann approximation to the diffusion equation. Delivery detector fiber separation was measured on computed tomography. The mean penetration depth was 0.57 cm, but there was within patient variation of a mean factor of 4.3. Further work is ongoing to assess the effect of such variability in light penetration, on the PDT effect.

  10. Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke

    PubMed Central

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2015-01-01

    Abstract. Changes in blood perfusion in highly interconnected pial arterioles provide important insights about the vascular response to ischemia within brain. The functional role of arteriolo-arteriolar anastomosis (AAA) in regulating blood perfusion through penetrating arterioles is yet to be discovered. We apply a label-free optical microangiography (OMAG) technique to evaluate the changes in vessel lumen diameter and red blood cell velocity among a large number of pial and penetrating arterioles within AAA abundant region overlaying the penumbra in the parietal cortex after a middle cerebral artery occlusion (MCAO). In comparison with two-photon microscopy, the OMAG technique makes it possible to image a large number of vessels in a short period of time without administering exogenous contrast agents during a time-constrained MCAO experiment. We compare vasodynamics in penetrating arterioles at various locations. The results show that the MCA connected penetrating arterioles close to a strong AAA dilate, while those belonging to a region away from AAAs constrict in various degrees. These results suggest AAAs play a major role in supporting the active dilation of the penetrating arterioles, thus compensating a significant amount of blood to the ischemic region, whereas the poor blood perfusion occurs at the regions away from AAA connections, leading to ischemia. PMID:26158010

  11. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  12. Fiber-optic endoscopic evaluation of swallowing to assess swallowing outcomes as a function of head position in a normal population

    PubMed Central

    2014-01-01

    Background Head position practice has been shown to influence pill-swallowing ability, but the impact of head position on measures of swallowing outcomes has not yet been studied with fiber-optic endoscopic evaluation of swallowing (FEES). The primary purpose of this study was to determine whether head position impacts penetration-aspiration scale scores and/or post-swallow pharyngeal residue as assessed by FEES. Documenting the incidence of pharyngeal residue and laryngeal penetration and aspiration in a normal population was a secondary goal. Methods Adults without swallowing difficulties (N = 84) were taught a pill swallowing technique based on learning five head positions and were asked to practice with small, hard candies (e.g., TicTacs) for two weeks. Then they demonstrated swallowing in each of the head positions for two conditions, liquid and purée, while undergoing FEES. Results Out of 840 examined swallows, one event of aspiration and 5 events of penetration occurred. During practice >50% participants found positions they preferred over the center position for swallowing but head position was not associated with penetration-aspiration scores assessed by FEES. Significant associations and non-significant trends were found between pharyngeal residue and three variables: age, most preferred head position, and least preferred head position. Conclusion Head position during swallowing (head up) and age greater than 40 years may result in increased pharyngeal residue but not laryngeal penetration or aspiration. PMID:24755159

  13. Use of Pre-Injection Diffusion of Local Anaesthetic as a Means of Reducing Needle Penetration Discomfort

    PubMed Central

    Sandalli, Nuket; Caglar, Esber; Meechan, John G

    2014-01-01

    Aim To determine if pre-injection diffusion of local anaesthetic solution influences the discomfort of needle penetration in the palate. Methods A placebo-controlled, randomised, double-blind split-mouth investigation was conducted. 25 healthy adult volunteers were recruited and each received two needle penetrations in a random order during one visit. The penetration sites were 1 cm from the gingival margin of the first maxillary premolars on each side of the mouth. 30 gauge-13 mm needles which were attached to syringes that contained either 2% lidocaine with 0.125mg/ml epinephrine or physiological saline were used. For each penetration an operator encouraged a drop of solution to appear at the end of the needle and placed this drop with the bevel of the needle flat on the palate for 20 seconds. The discomfort was noted on a 100 mm visual analogue scale with end points marked “No pain” and “Unbearable pain”. Results There was no significant difference in penetration discomfort between solutions, (mean VAS = 26.80±19.36mm for lidocaine and 26.20±18.39mm for saline) however the 2nd penetration was significantly more uncomfortable than the first (mean VAS = 31.00±19.84 mm and 22.00±16.65 mm respectively). Conclusion Pre-injection diffusion of local anaesthetic solution did not influence the discomfort of needle penetration in the palate.

  14. Assessment of Quantum Dot Penetration into Skin in Different Species Under Different Mechanical Actions

    NASA Astrophysics Data System (ADS)

    Monteiro-Riviere, N. A.; Zhang, L. W.

    Skin penetration is one of the major routes of exposure for nanoparticles to gain access to a biological system. QD nanoparticles have received a great deal of attention due to their fluorescent characteristics and potential use in medical applications. However, little is known about their permeability in skin. This study focuses on three types of quantum dots (QD) with different surface coatings and concentrations on their ability to penetrate skin. QD621 (polyethylene glycol coated, PEG) was studied for 24 h in porcine skin flow-through diffusion cells. QD565 and QD655 coated with carboxylic acid were studied for 8 and 24 h in flow-through diffusion cells with flexed, tape stripped and abraded rat skin to determine if these mechanical actions could perturb the barrier and affect penetration. Confocal microscopy depicted QD621 penetration through the uppermost layers of the stratum corneum (SC) and fluorescence was found in the SC and near hair follicles. QD621 were found in the intercellular lipid layers of the SC by transmission electron microscopy (TEM). QD565 and 655 with flexed and tape-stripped skin did not show penetration; only abraded skin showed penetration in the viable dermal layers. In all QD studies, inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD did not detect Cd or fluorescence signal in the perfusate at any time point, concentration or type of QD. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, while QD565 and 655 penetrated into the dermis of abraded skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. These findings are of importance to risk assessment for nanoscale materials because it indicates that if skin barrier is altered such as in wounds, scrapes, or dermatitis conditions could

  15. Penetration Enhancer-Containing Vesicles: Does the Penetration Enhancer Structure Affect Topical Drug Delivery?

    PubMed

    Caddeo, Carla; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Celia, Christian; Monduzzi, Maura; Fadda, Anna Maria

    2015-01-01

    The aim of this study was to elucidate the influence of the edge activator structure on the properties of novel deformable liposomes, Penetration Enhancer-containing Vesicles (PEVs), capable of delivering drugs to the skin. The PEVs were prepared by testing five different amphiphilic penetration enhancers as edge activators in the bilayer composition, together with soy phosphatidylcholine and oleic acid. The penetration enhancers contained the same lipophilic tail (one or more C8-C10 carbon chains) and different hydrophilic heads. Conventional phospholipid liposomes were prepared and used as a control. Lidocaine was chosen as a model drug. Liquid and gelified PEVs were obtained, depending on the penetration enhancer used. The vesicular systems were characterized by measuring size distribution, zeta potential, incorporation efficiency, and monitoring these parameters over 90 days. Accelerated ageing tests were also performed to check the stability of the dispersions. The effects of the different nature of the edge activator on the features of the obtained PEVs were assessed by TEM, SAXS and WAXS, rheological and deformability studies. Higher interactions of the most lipophilic penetration enhancers with the lipid bilayers and a consequent higher stability and elasticity of the obtained PEVs were observed. In vitro experiments through pig skin confirmed the superior potential as carriers for lidocaine of the PEVs prepared with the most lipophilic penetration enhancers, even in comparison with commercial EMLA cream.

  16. In vivo evaluation of the penetration of topically applied drugs into human skin by spectroscopic methods.

    PubMed

    Sennhenn, B; Giese, K; Plamann, K; Harendt, N; Kölmel, K

    1993-01-01

    Spectroscopic techniques are reported on which allow to study in vivo the penetration behaviour of topically applied light-absorbing drugs into human skin. Remittance spectroscopy, a purely optical method, provides a good tool in both, skin adaptation by use of a remote viewing head coupled to the spectrometer via optical fibres, and adequate sensitivity for the detection of small amounts of the applied drugs. The measuring depth in the skin is determined by the wavelength-dependent optical penetration depth, which itself depends on light absorption and light scattering. In the UV-spectral region the optical penetration depth is of the order of the thickness of the stratum corneum (UV-A) or of only a superficial part of it (UV-B, UV-C). Fluorescence spectroscopy, another optical method, offers two kinds of drug detection, a direct one in case of self-fluorescent drugs or an indirect one being based on the light absorption of the drug, which may give rise to a screening of the self-fluorescence of the skin itself or of an applied marker. The measuring depth is comparable to that achieved with remittance spectroscopy. A third method is photothermal spectroscopy which is determined by thermal properties of the skin in addition to optical properties. Photothermal spectroscopy is unique in that it allows depth profiles of drug concentration to be measured non-invasively, as the photothermal measuring depth can be changed by varying the modulation frequency of the intensity-modulated incident light. Results of measurements demonstrating the potentials of these spectroscopic methods are presented.

  17. Weld penetration and defect control. Final report

    SciTech Connect

    Chin, B.A.

    1992-05-15

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  18. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  19. Penetrating Heart Injury due to Screwdriver Assault

    PubMed Central

    Dieng, P. A.; Diop, M. S.; Ciss, A. G.; Ba, P. S.; Diatta, S.; Gaye, M.; Fall, M. L.; Ndiaye, A.; Ndiaye, M.

    2015-01-01

    Penetrating heart injuries cause wounds in the cardiac chambers. Most of them are due to gunshot or stabbing by knives. Screwdriver is an uncommon weapon. Authors report a case of stab wound by screwdriver, treated at cardiovascular center in Dakar. This is a 16-year-old boy who experienced physical aggression. He was assaulted with a screwdriver and had stab wound on the anterior wall of the chest. Physical examination showed a screwdriver penetrating the sternum bone over a right angle. He had a mild pericardial blood effusion and a right ventricle wound 5 mm in diameter with transection of the right coronary vein. The screwdriver was removed without cardiopulmonary bypass (CPB) and the ventricle wound repaired by direct suture of stitches reinforced with Teflon pledgets. The right coronary artery was ligated. Postoperative period was free of events. Screwdriver is uncommonly used as a weapon. It is a dangerous device because of its rigid structure and narrow tip. PMID:25945263

  20. Penetrating ocular injury from contaminated eating utensils.

    PubMed

    Feist, R M; Lim, J I; Joondeph, B C; Pflugfelder, S C; Mieler, W F; Ticho, B H; Resnick, K

    1991-01-01

    Although the rate of infectious endophthalmitis following penetrating ocular injury is generally less than 10%, certain settings may carry a greater risk of infection. One such setting is penetrating injury resulting from eating utensils contaminated with oral flora. We reviewed six of these injuries. Culture-positive bacterial endophthalmitis developed in four of the six eyes; only one of the eyes retained reading visual acuity (greater than 20/50) and two eyes lost light perception. The potential for infection and limited visual outcome in this series warrants aggressive prophylaxis and treatment. The unexpected isolation of Haemophilus influenzae in two of the four infections suggests that broad-spectrum antibiotic treatment should be considered in all such injuries since less common organisms may be encountered.

  1. Simulation of penetration into porous geologic media

    SciTech Connect

    Vorobiev, O Y; Liu, B T; Lomov, I N; Antoun, T

    2005-05-31

    We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is non-linear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media.

  2. Market penetration of new energy technologies

    SciTech Connect

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  3. Essential Fatty Acids as Transdermal Penetration Enhancers.

    PubMed

    van Zyl, Lindi; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta; Viljoen, Joe

    2016-01-01

    The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F, and Pheroid technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release studies were performed, and the results indicated the following rank order for flurbiprofen release from the different formulations: vitamin F > control > EPO > Pheroid. Topical skin delivery results indicated that flurbiprofen was present in the stratum corneum-epidermis and the epidermis-dermis. The average percentage flurbiprofen diffused to the receptor phase (representing human blood) indicated that the EPO formulation showed the highest average percentage diffused. The Pheroid formulation delivered the lowest concentration with a statistical significant difference (p < 0.05) compared with the control formulation (containing 1% flurbiprofen and no penetration enhancers). The control formulation presented the highest average flux, with the EPO formulation following the closest. It could, thus, be concluded that EPO is the most favorable chemical penetration enhancer when used in this formulation. PMID:26852854

  4. Temperature matching of multilayer insulation to penetrations

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Plachta, D. W.; Rhys, N. O.; Kelly, A. O.

    2014-01-01

    To accurately predict the heat load into a cryogenic tank or cold mass which includes multilayer insulation (MLI), heat loads other than just through the pristine MLI must be accounted for. One such type of heat load is the integration of the MLI system around penetrations. While a number of different methods that have been developed, the ideal solution would be one in which there are zero thermal losses due to the integration. Theoretically, the be st method to achieving zero integration losses is to match the individual MLI temperature layers with the corresponding penetration location having the same temperature; this method is known as temperature matching. Recently, NASA has employed temperature matching integration of multilayer insulation systems onto several different cryogenic tanks with different structural elements and attachments. T esting included the Methane Lunar Surface Thermal Control testing at Glenn Research Center, the CRYOTE Ground Test Article testing at Marshall Space Flight Center, and the Penetration Calorimetery work done at Kennedy Space Center. Each test was instrumented to determine the effects of temperature matching within MLI and each system was designed in a different manner. The testing showed that temperature matching can indeed produce nearly zero thermal losses. However, our findings show that there are many practical limitations to this approach. Temperature matching integration schemes were found to be very sensitive to thermal environmental changes and even tank liquid level changes. The approach is therefore considered useful only for a select few cases and not useful for most engineering applications.

  5. Systemic air embolization from penetrating lung injury.

    PubMed

    Meier, G H; Wood, W J; Symbas, P N

    1979-02-01

    This study evaluates the role of increased intratracheal pressure in developing systemic air embolization. Twenty healthy mongrel dogs were monitored for air embolization, both by means of an extracorporeal arteriovenous shunt constructed from transparent plastic tubing for visualization of air emboli and by means of a Doppler flow probe implanted at the root of the aorta. Systemic arterial, left atrial, intratracheal, and intrapleural pressures were recorded. In 10 of the dogs, a penetrating wound of the lung 1 cm wide by 4 cm deep was produced; in 5 the chest was left open and in 5 the chest was closed. The remaining 10 dogs served as controls (with no wound of the lung); in 5 the chest was left open and in the other 5 the chest was closed. No air embolization occurred in any animals at intratracheal pressures less than 65 mm Hg. However, systemic air embolization occurred in every dog in all groups upon hyperinflation of the lung above 65 mm Hg. The control groups differed from the groups with penetrating wound only in the quantity of embolized air. This study suggests that hyperinflation of the lung to an intratracheal pressure above 65 mm Hg results in systemic air embolization and that the presence of a penetrating wound of the lung at such intratracheal pressure predisposes to a greater quantity of air embolization.

  6. Ballistic penetration response of intermetallic matrix composites

    SciTech Connect

    Kumar, K.S.; DiPietro, M.S. )

    1995-03-01

    Titanium aluminides and their composites exhibit about the same density as alumina, are tougher and can be produced by conventional casting and powder metallurgy techniques; further, they can be ground and machined more easily than alumina and lend themselves to better microstructural manipulation via heat treatments. Graded composite tiles with a high refractory reinforcement content on the outside and a lower amount on the inside may provide the desired abrasion resistance and toughness to effectively stop an incoming projectile. Likewise, alternating layers of hard and soft materials (e.g. Ti foils and TiAl) suitably graded in their spacings can serve as an effective armor tile. Testing of these materials gave the following conclusions: (1) Titanium aluminide composites are comparable to alumina in ballistic penetration resistance (for BS-41 and M-61 AP threats, and from the work of Chin and Woolsey, to long-rod penetrators) with perhaps improved resistance to shattering. (2) Incorporation of a residual compressive stress in the titanium aluminide composite tile significantly improved its penetration resistance. This concept could be utilized to decrease the required minimum tile thickness and hence, overall system weight.

  7. Penetrating spinal injuries and their management

    PubMed Central

    Kumar, A.; Pandey, P. N.; Ghani, A.; Jaiswal, G.

    2011-01-01

    Penetrating spinal trauma due to missile/gunshot injuries has been well reported in the literature and has remained the domain of military warfare more often. Civic society's recent upsurge in gunshot injuries has created a dilemma for the treating neurosurgeon in many ways as their management has always involved certain debatable and controversial issues. Both conservative and surgical management of penetrating spinal injuries (PSI) have been practiced widely. The chief neurosurgical concern in these types of firearm injuries is the degree of damage sustained during the bullet traversing through the neural tissue and the after-effects of the same in long term. We had an interesting case of a penetrating bullet injury to cervical spine at C2 vertebral level. He was operated and the bullets were removed from posterior midline approach. Usually, the management of such cases differs from region to region depending on the preference of the surgeon but still certain common principles are followed world over. Thus, we realized the need to review the literature regarding spinal injuries with special emphasis on PSI and to study the recent guidelines for their treatment in light of our case. PMID:23125489

  8. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.

    PubMed

    Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael

    2014-05-01

    The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits.

  9. Deploying High Penetration Photovoltaic Systems: A Case Study

    SciTech Connect

    Coddington, M. H.; Baca, D.; Kroposki, B. D.; Basso, T.

    2011-01-01

    Photovoltaic (PV) system capacity penetration, or simply 'penetration,' is often defined as the rated power output of the aggregate PV systems on a distribution circuit segment divided by the peak load of that circuit segment. Industry experts agree that a single value defining high penetration is not universally applicable. However, it is generally agreed that a conservative value to designate high penetration is the condition when the ratio of aggregate PV systems ratings to peak load exceeds 15%. This case study illustrates the case of a distribution feeder which is able to accommodate a traditional capacity penetration level of 47%, and perhaps more. New maximum penetration levels need to be defined and verified and enhanced definitions for penetration on a distribution circuit need to be developed. The new penetration definitions and studies will help utility engineers, system developers, and regulatory agencies better agree what levels of PV deployment can be attained without jeopardizing the reliability and power quality of a circuit.

  10. Capillary Penetration into Inclined Circular Glass Tubes.

    PubMed

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-01

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)(scaling) is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γ(LV)/ρg sin φ)(1/2). PMID:26738739

  11. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  12. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  13. Penetration of a copper rod into a sandy target

    NASA Astrophysics Data System (ADS)

    Kaminskii, M. V.; Kopytov, G. F.; Mogilev, V. A.; Travov, Yu. F.; Faikov, Yu. I.

    2010-05-01

    This paper presents the results of experimental and theoretical studies of high-velocity penetration of cylindrical copper rods into sand. The hydrodynamic Alekseevskii-Tate theory is modified to determine the penetration depth and wear velocity of the material of the rod penetrating into soil target in the plastic and hydrodynamic stages of penetration. The case where the target material is significantly less strong than the rod (impactor) material is considered.

  14. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  15. Assessing the credibility of diverting through containment penetrations

    SciTech Connect

    Cooley, J.N.; Swindle, D.W. Jr.

    1980-01-01

    A viable approach has been developed for identifying those containment penetrations in a nuclear fuel reprocessing plant which are credible diversion routes. The approach is based upon systematic engineering and design analyses and is applied to each type of penetration to determine which penetrations could be utilized to divert nuclear material from a reprocessing facility. The approach is described and the results of an application are discussed. In addition, the concept of credibility is developed and discussed. For a typical reprocessing plant design, the number of penetrations determined to be credible without process or piping modifications was approx. 16% of the penetrations originally identified.

  16. Surface penetrators for planetary exploration: Science rationale and development program

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.

    1981-01-01

    Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.

  17. Effect of Liquid Penetrant Sensitivity on Probability of Detection

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2008-01-01

    The objective of the task is to investigate the effect of liquid penetrant sensitivity level on probability of crack detection (POD). NASA-STD-5009 currently requires the use of only sensitivity level 4 liquid penetrants. This requirement is based on the fact that the data generated in the NTIAC Nondestructive Evaluation (NDE) Capabilities Data Book was produced using only sensitivity level 4 penetrants. Many NDE contractors supporting NASA Centers routinely use sensitivity level 3 penetrants. Because of the new NASA-STD-5009 requirement, these contractors will have to either shift to sensitivity level 4 penetrants or perform formal POD demonstration tests to qualify their existing process.

  18. Phenomenological Investigation of Rapid Projectile Penetration in Granular Media

    NASA Astrophysics Data System (ADS)

    Omidvar, Mehdi

    There has been a recent flurry of research in rapid penetration into granular media, motivated by military and civilian applications including underground target penetration, design of fortifications, drilling for resource extraction, offshore foundations and anchors, probing of in situ mechanical properties, and study of high strain rate response of granular media, among others. The present study contributes to the state of the art in rapid penetration into granular media, by producing data at the macro and meso scales. In-house projectile accelerators are used to launch projectiles into laboratory scale physical models. The experimental program is divided into two sections. In the first section, penetration tests are performed at impact velocities in the range of 60-300 m/s. High-speed imaging and photonic Doppler velocimetry are used to record time history of penetration. In the second section, low velocity penetration tests are performed in refractive index matched transparent soils. Images are acquired form a mid plane within the sample. Digital image correlation is employed to describe granular kinematics. Macro scale test results point to the existence of at least two transition regimes in penetration resistance. The first, occurring at penetration velocities of approximately 60- 80 m/s, may be due the role of particle crushing, while the second is linked to frictional resistance dominating over inertial resistance at penetration velocities below approximately 15 m/s. It is also found that the role of nose shape is related to particle crushing. An attached false cone forms ahead of the projectile due to significant particle crushing, rendering nose shape effects less significant. Packing density and saturation are also found to affect penetration characteristics. Penetration tests in transparent soils reveal significant differences between quasi-static and dynamic penetration. Greater vertical displacements occur ahead of the projectile in dynamic

  19. Electron penetration of spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    Powers, W. L.; Adams, B. F.; Inouye, G. T.

    1981-01-01

    The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.

  20. Penetrating wounds of the head and neck.

    PubMed

    Jahrsdoerfer, R A; Johns, M E; Cantrell, R W

    1979-12-01

    Wounding capability of bullets is primarily releated to velocity. Bullet mass and shape, and specific gravity of body tissues being struck by the missile, are lesser factors. Seventy cases of penetrating wounds of the head and neck were treated during a six-year period. Vascular injuries were more common with neck wounds, while face and head injuries (extracranial) were similar to maxillofacial trauma. It is recognized that hemorrhage at the base of the skull is difficult to treat, and contemporary training in temporal bone and base of skull surgery is mandatory for the critical management of these wounds.

  1. Radar penetration in the Amazonian rain forest

    NASA Technical Reports Server (NTRS)

    Pereiradacunha, Roberto; Ford, John

    1986-01-01

    Radar return from vegetation covered terrains is due to three components: the scattering resulting from the top surface of the vegetation canopy (surface scattering); the scattering which occurs within the vegetation layer (volume scattering); and the scattering which takes place at the surface below the vegetation canopy (ground scattering). Through the studies of selected areas in the Amazon Region a case is presented where most of the radar returns observed in radar imagery results from the scattering at the surface below vegetation layer (ground scattering). Thus, radar penetration occurred.

  2. Magnetically mediated thermoacoustic imaging toward deeper penetration

    NASA Astrophysics Data System (ADS)

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin

    2013-08-01

    Magnetically mediated thermo-acoustic effect is predicted in theory and demonstrated in phantom studies in this letter. By applying transient current to a compact magnetically resonant coil at radio frequency below 20 MHz, large electric field is inducted by magnetic field inside conductive objects which then undergoes joule heating and emanates acoustic signal thermo-elastically. The magnetic mediation approach with low radio frequency can provide deeper penetration into conductive objects which may extend thermoacoustic imaging to deep laid human organs. Both incoherent time domain and coherent frequency domain approaches are discussed with the latter demonstrated potential for portable imaging system.

  3. Cephradine (Velosef) penetration of mandibular bone.

    PubMed

    Middlehurst, R J; Rood, J P

    1990-04-01

    The concentration of cephradine in serum and mandibular bone was assayed in 28 patients undergoing 3rd molar surgery following a single 1 g intravenous injection. Serum and cortical bone samples taken simultaneously, contained mean cephradine concentrations of 42.11 micrograms/ml and 2.61 micrograms/g respectively. These results, when compared with those reported for other bony sites including the femoral head and knee, show a reduced bone penetration with a bone-to-serum ratio of approximately 0.06:1. PMID:2111359

  4. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  5. [Penetrating abdominal wounds. Apropos of 330 cases].

    PubMed

    Nejjar, M; Bennani, S; Zerouali, O N

    1991-01-01

    Penetrating abdominal wounds are frequent and serious. 330 cases have been treated in the Department of Emergencies and visceral Surgery at Averroes Hospital of Casablanca from 1980 to 1990. The predominance of male sex is noted, and these wounds are always the result of aggression by white arm. All patients have been operated, the white laparotomy rate is of 36%. The classic interventionist attitude is still recommended in spite of this high rate, because our present conditions can't permit us a rigorous watching. According to abdominal lesions, the different interventions are reviewed, and their indications are detailed. PMID:1960187

  6. A novel approach to penetrator calculations

    SciTech Connect

    Budge, K.G.

    1998-08-01

    The author presents a novel method for calculating the penetration of soft targets by hard projectiles by using a combination of ALE and contact surface techniques. This method allows the bifurcation in the softer material (at the point of the projectile) to be represented without sacrificing the Lagrangian representation of either the harder material or the contact interface. A series of calculations using this method show good agreement with the experimental data of Forrestal et al. This method may prove useful for a range of semi-fluid/structure interactions with friction, including simulations of manufacturing processes.

  7. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  8. Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load-penetration curve

    NASA Astrophysics Data System (ADS)

    Escobar, E.; Benz, M.; Gourvès, R.; Breul, P.

    2013-06-01

    In this article a two-dimensional discrete numerical model, realized in PFC2D, is presented. This model is used in the dynamic penetration tests in a granular medium. Its objective being the validation of the measurement technique offered by Panda 3® (Benz et al. 2011) which is designed to calculate the tip's load-penetration curve for each impact in the soil where different parameters are used. To do so, we have compared the results obtained by calculation during the impacts to those measured directly in the model of a penetrometer through the installation of the gauges at the cone.

  9. Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics

    NASA Technical Reports Server (NTRS)

    Bjorkman, M. D.; Geiger, J. D.; Wilhelm, E. E.

    1987-01-01

    The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given.

  10. Ballistic penetration phenomenology of high symmetry single crystals

    NASA Astrophysics Data System (ADS)

    Kingman, Pat W.; Herring, Rodney A.

    1995-02-01

    The ballistic performance of tungsten single crystal penetrators is known to be a function of crystallographic symmetry. The macroscopic deformation geometry of both single crystal and polycrystal tungsten penetrators is a continuous eversion of the rod into a hollow tube. The differences in energy partitioning leading to these variations in ballistic performance must therefore be accounted for by detailed material deformation processes governed by crystallographic orientation. Inferences about these processes have been drawn from microstructural characterization of recovered penetrators. Residual penetrators of both 011 and 111 orientations were found to have repeatedly deformed and recrystalized, but the actual operative processes led to quite different macrostructures, microstructures, and penetration depths. The 001 orientation deformed by a unique process which allowed very efficient deformation, resulting in maximum penetration depth. These single crystal experiments demonstrate the critical role of detailed deformation processes in determining the final penetration depths even when similar macroscopic material flow geometry occurs.

  11. Microbial Penetration through Nutrient-Saturated Berea Sandstone.

    PubMed

    Jenneman, G E; McInerney, M J; Knapp, R M

    1985-08-01

    Penetration times and penetration rates for a motile Bacillus strain growing in nutrient-saturated Berea sandstone cores were determined. The rate of penetration was essentially independent of permeabilities above 100 mdarcys and rapidly declined for permeabilities below 100 mdarcys. It was found that these penetration rates could be grouped into two statistically distinct classes consisting of rates for permeabilities above 100 mdarcys and rates for those below 100 mdarcys. Instantaneous penetration rates were found to be zero order with respect to core length for cores with permeabilities above 100 mdarcys and first order with respect to core length for cores with permeabilities below 100 mdarcys. The maximum observed penetration rate was 0.47 cm . h, and the slowest was 0.06 cm . h; however, these rates may be underestimates of the true penetration rate, since the observed rates included the time required for growth in the flask as well as the core. The relationship of penetration time to the square of the length of the core suggested that cells penetrated high-permeability cores as a band and low-permeability cores in a diffuse fashion. The motile Enterobacter aerogenes strain penetrated Berea sandstone cores three to eight times faster than did the nonmotile Klebsiella pneumoniae strain when cores of comparable length and permeability were used. A penetration mechanism based entirely on motility predicted penetration times that were in agreement with the observed penetration times for motile strains. The fact that nonmotile strains penetrated the cores suggested that filamentous or unrestricted growth, or both, may also be important.

  12. Microbial Penetration through Nutrient-Saturated Berea Sandstone

    PubMed Central

    Jenneman, Gary E.; McInerney, Michael J.; Knapp, Roy M.

    1985-01-01

    Penetration times and penetration rates for a motile Bacillus strain growing in nutrient-saturated Berea sandstone cores were determined. The rate of penetration was essentially independent of permeabilities above 100 mdarcys and rapidly declined for permeabilities below 100 mdarcys. It was found that these penetration rates could be grouped into two statistically distinct classes consisting of rates for permeabilities above 100 mdarcys and rates for those below 100 mdarcys. Instantaneous penetration rates were found to be zero order with respect to core length for cores with permeabilities above 100 mdarcys and first order with respect to core length for cores with permeabilities below 100 mdarcys. The maximum observed penetration rate was 0.47 cm · h−1, and the slowest was 0.06 cm · h−1; however, these rates may be underestimates of the true penetration rate, since the observed rates included the time required for growth in the flask as well as the core. The relationship of penetration time to the square of the length of the core suggested that cells penetrated high-permeability cores as a band and low-permeability cores in a diffuse fashion. The motile Enterobacter aerogenes strain penetrated Berea sandstone cores three to eight times faster than did the nonmotile Klebsiella pneumoniae strain when cores of comparable length and permeability were used. A penetration mechanism based entirely on motility predicted penetration times that were in agreement with the observed penetration times for motile strains. The fact that nonmotile strains penetrated the cores suggested that filamentous or unrestricted growth, or both, may also be important. PMID:16346858

  13. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness.

  14. High Penetration Photovoltaic Case Study Report

    SciTech Connect

    Bank, J.; Mather, B.; Keller, J.; Coddington, M.

    2013-01-01

    Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

  15. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  16. Mass transfer from penetrations in waste containers

    SciTech Connect

    Pescatore, C.; Sastre, C.

    1987-01-01

    Recent studies have indicated that localized corrosion of a relatively small area of a waste container may impair the containment function to such an extent that larger releases may be possible than from the bare waste form. This would take place when a large number of holes coexist on the container while their concentration fields do not interact significantly with each other. After performing a steady state analysis of the release from a hole, it is shown that much fewer independent holes can coexist on a container surface than previously estimated. The calculated radionuclide release from multiple independent holes must be changed accordingly. Previous analyses did not proceed to a correct application of the linear superposition principle. This resulted in unacceptable physical conclusions and undue strain on the performance assessment necessary for a container licensing procedure. The paper also analyzes the steady state release from penetrations of finite length and whose concentration fields interact with one another. The predicted release from these penetrations is lower than the previously calculated release from holes of zero thickness. It is concluded here that the steady-state release from multiple holes on a waste container can not exceed the release from the bare waste form and that multiple perforations need not be a serious liability to container performance. 8 refs., 3 figs., 1 tab.

  17. EFFECTS OF PENETRATIVE CONVECTION ON SOLAR DYNAMO

    SciTech Connect

    Masada, Youhei; Yamada, Kohei; Kageyama, Akira

    2013-11-20

    Spherical solar dynamo simulations are performed. A self-consistent, fully compressible magnetohydrodynamic system with a stably stratified layer below the convective envelope is numerically solved with a newly developed simulation code based on the Yin-Yang grid. The effects of penetrative convection are studied by comparing two models with and without the stable layer. The differential rotation profile in both models is reasonably solar-like with equatorial acceleration. When considering the penetrative convection, a tachocline-like shear layer is developed and maintained beneath the convection zone without assuming any forcing. While the turbulent magnetic field becomes predominant in the region where the convective motion is vigorous, mean-field components are preferentially organized in the region where the convective motion is less vigorous. Particularly in the stable layer, the strong, large-scale field with a dipole symmetry is spontaneously built up. The polarity reversal of the mean-field component takes place globally and synchronously throughout the system regardless of the presence of the stable layer. Our results suggest that the stably stratified layer is a key component for organizing the large-scale strong magnetic field, but is not essential for the polarity reversal.

  18. Factors affecting penetrating captive bolt gun performance.

    PubMed

    Gibson, Troy J; Mason, Charles W; Spence, Jade Y; Barker, Heather; Gregory, Neville G

    2015-01-01

    Captive bolt stunning is used for rendering livestock insensible at slaughter. The mechanical factors relating to performance of 6 penetrating captive bolt gun (CBG) models were examined. The Matador Super Sécurit 3000 and the .25 Cash Euro Stunner had the highest kinetic energy values (443 J and 412 J, respectively) of the CBGs tested. Ninety percent (27/30) of CBGs held at a government gun repository (United Kingdom) were found to have performed at a normal standard for the model, while 53% (10/19) of commercial contractor CBGs tested were found to underperform for the gun model. When the .22 Cash Special was fired 500 times at 4 shots per min, the gun reached a peak temperature of 88.8°C after 2.05 hr. Repeat firing during extended periods significantly reduced the performance of the CBG. When deciding on the appropriate CBG/cartridge combination, the kinetic energy delivered to the head of the nonhuman animal, bolt penetration depth, and species/animal type must be considered. It is recommended that CBGs are routinely checked for wear to the bolt and barrel if they are repeatedly fired in a session.

  19. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. PMID:27281240

  20. Feature Profile Simulations and Finite Penetration Depth

    NASA Astrophysics Data System (ADS)

    Moroz, Paul; Moroz, Daniel

    2012-10-01

    In plasma materials processing, energetic ions, neutrals and UV photons typically penetrate deep inside solid materials breaking atomic bonds and displacing atoms on their paths. These important phenomena are rarely taken into consideration in processing simulation software, primarily because the proper penetration depths and the corresponding energy depositions, breaking bonds, and atom displacements are difficult and computationally expensive to compute. The FPS-3D feature profile simulator [1-2] is doing that computationally efficiently by utilizing tabulated results obtained with other methods. We discuss, compare, and present results of such simulations made with different methods, one of which is the molecular dynamics analysis. In general, molecular dynamics could be used for simulating materials processing, etching and deposition, but it is extremely computationally expensive to be used for large groups of atoms. In practice, molecular dynamics methods are too slow to be used for feature profile simulations. However, they could help in defining proper chemical reactions and corresponding rates to be used in an advanced feature profile simulator such as FPS-3D. We present results of FPS-3D simulations for Si and SiO2 etching in Ar/Cl2 and Ar/C4F6/O2 plasmas. [4pt] [1] P. Moroz, ``General Feature Profile Simulator FPS-3D,'' ECS Transactions, 35, 25 (2011). [0pt] [2] P. Moroz, ``Numerical Simulation of Feature Profile Evolution using FPS-3D,'' IEEE Transactions of Plasma Science, 39, 2804 (2011).

  1. Simulation of Hypervelocity Penetration in Limestone

    SciTech Connect

    Antoun, T; Glenn, L; Walton, O; Goldstein, P; Lomov, I; Liu, B

    2005-05-31

    A parameter study was performed to examine the (shock) damage obtained with long-rod and spherical mono-material penetrators impacting two varieties of limestone. In all cases, the impacts were assumed to be normal to the plane of the rock and at zero angle of attack (in the case of the rods). Impact velocities ranged to 15 km/s but most calculations were performed at 4 and 6 km/s and the penetrator mass was fixed at 1000 kg. For unlined underground structures, incipient damage was defined to occur when the peak stress, {sigma}{sub pk}, exceeds 1 kb (100 MPa) and the applied impulse per unit area, I{sub pk}, exceeds 1 ktap (1 kb-{micro}s). Severe damage was assumed to occur when {sigma}{sub pk} exceeds 1 kb and I{sub pk} exceeds 1000 ktaps. Using the latter definition it was found that severe damage in hard, non-porous limestone with spherical impactors extended to a depth of 9 m on-axis for an impact velocity of 4 km/s and 12 m at 6 km/s. Cylinders with length-to-diameter (L/D) ratio of 8.75 achieved depth to severe damage of 23 m and 40 m, respectively under the same conditions. For a limestone medium with 2% initial gas porosity, the latter numbers were reduced to 12 m and 18 m.

  2. Penetration of projectiles into granular targets.

    PubMed

    Ruiz-Suárez, J C

    2013-06-01

    Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point. PMID:23660625

  3. Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture.

    PubMed

    Zhang, Guangye; Hawks, Steven A; Ngo, Chilan; Schelhas, Laura T; Scholes, D Tyler; Kang, Hyeyeon; Aguirre, Jordan C; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-11-18

    Although it is known that evaporated metals can penetrate into films of various organic molecules that are a few nanometers thick, there has been little work aimed at exploring the interaction of the common electrode metals used in devices with fullerene derivatives, such as organic photovoltaics (OPVs) or perovskite solar cells that use fullerenes as electron transport layers. In this paper, we show that when commonly used electrode metals (e.g., Au, Ag, Al, Ca, etc.) are evaporated onto films of fullerene derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), the metal penetrates many tens of nanometers into the fullerene layer. This penetration decreases the effective electrical thickness of fullerene-based sandwich structure devices, as measured by the device's geometric capacitance, and thus significantly alters the device physics. For the case of Au/PCBM, the metal penetrates a remarkable 70 nm into the fullerene, and we see penetration of similar magnitude in a wide variety of fullerene derivative/evaporated metal combinations. Moreover, using transmission electron microscopy to observed cross-sections of the films, we show that when gold is evaporated onto poly(3-hexylthiophene) (P3HT)/PCBM sequentially processed OPV quasi-bilayers, Au nanoparticles with diameters of ∼3-20 nm are formed and are dispersed entirely throughout the fullerene-rich overlayer. The plasmonic absorption and scattering from these nanoparticles are readily evident in the optical transmission spectrum, demonstrating that the interpenetrated metal significantly alters the optical properties of fullerene-rich active layers. This opens a number of possibilities in terms of contact engineering and light management so that metal penetration in devices that use fullerene derivatives could be used to advantage, making it critical that researchers are aware of the electronic and optical consequences of exposing fullerene-derivative films to evaporated electrode metals.

  4. Derivation of effective penetration depth of femtosecond laser pulses in metal from ablation rate dependence on laser fluence, incidence angle, and polarization

    SciTech Connect

    Miyasaka, Yasuhiro; Hashida, Masaki; Nishii, Takaya; Inoue, Shunsuke; Sakabe, Shuji

    2015-01-05

    Ablation rate dependence on laser fluence for copper subjected to oblique femtosecond laser irradiation has been determined experimentally in order to investigate processing induced by oblique irradiation. A difference of ablation rate between p-polarized and s-polarized oblique irradiation is clearly observed. Effective penetration depth is defined to explain the ablation rate dependence instead of using optical penetration depth, which is treated as a key value for determining the ablation rate in conventional theory. The effective penetration depth for copper is presented in simple formulas as a function of laser incidence angle for each polarization.

  5. Simulation and measurement of transcranial near infrared light penetration

    NASA Astrophysics Data System (ADS)

    Yue, Lan; Monge, Manuel; Ozgur, Mehmet H.; Murphy, Kevin; Louie, Stan; Miller, Carol A.; Emami, Azita; Humayun, Mark S.

    2015-03-01

    We are studying the transmission of LED array-emitted near-infrared (NIR) light through human tissues. Herein, we simulated and measured transcranial NIR penetration in highly scattering human head tissues. Using finite element analysis, we simulated photon diffusion in a multilayered 3D human head model that consists of scalp, skull, cerebral spinal fluid, gray matter and white matter. The optical properties of each layer, namely scattering and absorption coefficient, correspond to the 850 nm NIR light. The geometry of the model is minimally modified from the IEEE standard and the multiple LED emitters in an array were evenly distributed on the scalp. Our results show that photon distribution produced by the array exhibits little variation at similar brain depth, suggesting that due to strong scattering effects of the tissues, discrete spatial arrangements of LED emitters in an array has the potential to create a quasi-radially symmetrical illumination field. Measurements on cadaveric human head tissues excised from occipital, parietal, frontal and temporal regions show that illumination with an 850 nm LED emitter rendered a photon flux that closely follows simulation results. In addition, prolonged illumination of LED emitted NIR showed minimal thermal effects on the brain.

  6. Parallel field penetration in a layered superconductor

    NASA Astrophysics Data System (ADS)

    Buzdin, A.; Feinberg, D.

    1992-05-01

    The Bean-Livingston entrance field Hs for vortex penetration at the surface is calculated for layered superconductors with Josephson interlayer coupling and field parallel to the layers. Two regimes must be distinguished: close to Tc, one can use the anisotropic London theory, so Hs is of the order of Hc, the thermodynamic critical field, and is the same as for a field normal to the layers. On the opposite, when the transverse coherence length ξ c is smaller than the interlayer distance d, Hs becomes smaller than Hc and is of the order of ( {ξ c}/{d})H c. Contrary to the entrance field for pure Josephson vortices (fluxons) in junctions, this field is still much larger than the first critical field Hc1∥. This behaviour is a consequence of the specific structure of the vortex core in a layered superconductor and results in a crossover from a linear to a square root temperature dependence as the temperature is lowered.

  7. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  8. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  9. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  10. First principles cable braid electromagnetic penetration model

    SciTech Connect

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  11. First principles cable braid electromagnetic penetration model

    DOE PAGES

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  12. Penetration of surfactant solutions into hydrophobic capillaries.

    PubMed

    Bain, Colin D

    2005-08-21

    The initial rise velocity of surfactant solutions in hydrophobic capillaries is independent of time (F. Tiberg, B. Zhmud, K. Hallstensson and M. von Bahr, Phys. Chem. Chem. Phys., 2000, 2, 5189). By analogy with the hydrodynamics of an overflowing cylinder, we present a steady-state solution for capillary penetration in which the velocity is determined by the adsorption kinetics at the air-water interface. Good agreement between the model predictions and experimental data of Tiberg and coworkers is obtained for the non-ionic surfactant C10E6 under the assumption of diffusion-controlled adsorption. The longer chain homologue, C14E6, shows evidence of kinetic barriers to adsorption.

  13. Aeromonas hydrophilia infections after penetrating foot trauma.

    PubMed

    Larka, Ulla-Britt; Ulett, Dane; Garrison, Thomas; Rockett, Matthew S

    2003-01-01

    The bacterium Aeromonas hydrophila is an anaerobic gram-negative bacillus commonly found in natural bodies of water and can cause infection in patients who suffer water-associated trauma or in immunocompromised hosts. The authors present 5 cases of penetrating wound trauma that did not involve any aquatic environment and developed rapidly forming infections. All patients presented with severe pain, cellulitis, ascending lymphangitis, fever, and pain on range of motion of the joint near the traumatic site. Presentation of clinical symptoms mimicked that of a septic joint or of severe streptococcal infection. All patients required surgical incision and drainage, intravenous and oral antibiotics using levofloxacin or bactrim, and local wound care. Results from cultures taken intraoperatively showed only A hydrophilia in every case. Resolution of symptoms occurred rapidly after surgery, and clinical resolution was seen within 72 hours. Each patient healed uneventfully and returned to preinjury status.

  14. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E.; Hu, L.Z.; Ramaswamy, M.; Sexton, B.G.

    1992-10-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  15. Delineate subsurface structures with ground penetrating radar

    SciTech Connect

    Wyatt, D.E. ); Hu, L.Z. ); Ramaswamy, M. ); Sexton, B.G. )

    1992-01-01

    High resolution ground penetrating radar (GPR) surveys were conducted at the Savannah River Site in South Carolina in late 1991 to demonstrate the radar techniques in imaging shallow utility and soil structures. Targets of interest at two selected sites, designated as H- and D-areas, were a buried backfilled trench, buried drums, geologic stratas, and water table. Multiple offset 2-D and single offset 3-D survey methods were used to acquire high resolution radar data. This digital data was processed using standard seismic processing software to enhance signal quality and improve resolution. Finally, using a graphics workstation, the 3D data was interpreted. In addition, a small 3D survey was acquired in The Woodlands, Texas, with very dense spatial sampling. This data set adequately demonstrated the potential of this technology in imaging subsurface features.

  16. Market penetration of energy supply technologies

    NASA Astrophysics Data System (ADS)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  17. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  18. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  19. Concentration profiles of tritium penetrated into concrete

    SciTech Connect

    Takata, H.; Furuichi, K.; Nishikawa, M.; Fukada, S.; Katayama, K.; Takeishi, T.; Kobayashi, K.; Hayashi, T.; Namba, H.

    2008-07-15

    Concentration profiles of tritium in cement paste, mortar and concrete were measured after exposure to tritiated water vapor for a given time. Tritium penetrated a distance of about 5 cm from the exposed surface during an exposure of 6 months. The model of tritium behavior in concrete materials reported by the present authors was developed in this study with the consideration of the effects of sand and aggregate on both the diffusion coefficient of tritiated water vapor and the isotope exchange capacity. Predictive calculations based on the tritium transport model were also carried out in some situations of tritium leakage. The results of the calculations show that a large amount of tritium will be trapped in the concrete walls, and the trapped tritium will be gradually released back to the tritium handling room over the time of months to years even after the decontamination of the room is completed. (authors)

  20. Pathway Controlled Penetration (PcP)

    SciTech Connect

    Knight, Earl E.; Rougier, Esteban; Zubelewicz, Aleksander

    2012-08-29

    The technical approach employs advanced computational simulation tools to demonstrate how current assets can destroy RWK-RFI-12-0001's HDBT, a tunnel complex with two portals built into the base of a granite mountain. The granite over layer is assumed to be 60 meters thick over both portals and 80 meters over the facility's mission space. Key S&T is the completed development of a highly innovative viscoplastic fracture material model, 3D parallel gas-fracture capabilities into FDEM, and a stochastic handling of the material properties. Phase I - Develop and validate code simulation tools: (1) develop, incorporate and validate AZ-Frac material model for granite; and (2) Develop and incorporate gas-driven-fracture modeling into LANL's FDEM MUNROU code; (3) Develop and incorporate stochastic features into FDEM modeling. Phase II - Conduct PcP analysis on above HDBT: (1) Acquire HDBT design data, develop simulation model; and (2) Evaluate and select most promising defeat alternative. Phase III - Deliver code, train Service target analysts, and conduct simulations against real world HDBTs. PcP uses advanced computer simulations to enhance HDBT functional defeat efforts. Newly developed material models that account for fractural energy coupled with the finite discrete element methodology (FDEM) will provide targeting packages that will create penetration avenues for current or future lethality options. This novel computational approach requires full 3D geologic and structure characterization as well as significant high performance computing capabilities. The goal is to distinctively alter the targeting paradigm by leveraging critical DoD assets along with insitu geologic strata. In other words, assets will utilize underground rock structure to their benefit by creating rubbilization zones that will allow pathway controlled penetration.

  1. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    SciTech Connect

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  2. The full penetration hole as a stochastic process: controlling penetration depth in keyhole laser-welding processes

    NASA Astrophysics Data System (ADS)

    Blug, A.; Abt, F.; Nicolosi, L.; Heider, A.; Weber, R.; Carl, D.; Höfler, H.; Tetzlaff, R.

    2012-07-01

    Although laser-welding processes are frequently used in industrial production the quality control of these processes is not satisfactory yet. Until recently, the "full penetration hole" was presumed as an image feature which appears when the keyhole opens at the bottom of the work piece. Therefore it was used as an indicator for full penetration only. We used a novel camera based on "cellular neural networks" which enables measurements at frame rates up to 14 kHz. The results show that the occurrence of the full penetration hole can be described as a stochastic process. The probability to observe it increases near the full penetration state. In overlap joints, a very similar image feature appears when the penetration depth reaches the gap between the sheets. This stochastic process is exploited by a closed-loop system which controls penetration depth near the bottom of the work piece ("full penetration") or near the gap in overlap joints ("partial penetration"). It guides the welding process at the minimum laser power necessary for the required penetration depth. As a result, defects like spatters are reduced considerably and the penetration depth becomes independent of process drifts such as feeding rate or pollution on protection glasses.

  3. Penetration of the pulp chamber by bleaching agents in teeth restored with various restorative materials.

    PubMed

    Gökay, O; Yilmaz, F; Akin, S; Tunçbìlek, M; Ertan, R

    2000-02-01

    It is thought that externally applied bleaching agents may penetrate into the pulp chamber. This study was conducted to evaluate the diffusion of peroxide bleaching agents into the pulp chamber of teeth restored with various restorative materials. Sixty-five human extracted anterior maxillary teeth were separated into the 13 groups containing 5 teeth. Five teeth (control group) were not subjected to any cavity preparation and restoration. Standardized class V cavities were prepared in the other 60 teeth and restored using composite resin (Charisma), polyacid modified composite resin (Dyract), or resin-modified glass ionomer cement (Vitremer). All teeth were sectioned 3 mm apical to the cementoenamel junction to remove the intracoronal pulp tissue, and the pulp chamber was filled with acetate buffer to absorb and stabilize any peroxide that might penetrate. Vestibular crown surfaces of teeth in the experimental groups were subjected to four different bleaching agents for 30 min at 37 degrees C, whereas the teeth in the control groups were exposed only to distilled water. Then the acetate buffer solution in the pulp chamber of each tooth was removed, and the pulp chamber of each tooth was rinsed with 100 ml of distilled water twice. Leukocrystal violet and enzyme horseradish peroxidase were added to the mixture of the acetate buffer and rinse water. The optical density of the resulting blue solution was determined spectrophotometrically and converted into microgram equivalents of hydrogen peroxide. Higher hydrogen peroxide concentrations resulted in a higher pulpal peroxide penetration. The highest pulpal peroxide penetration was found in resin-modified glass ionomer cement groups, whereas composite resin groups showed the lowest pulpal peroxide penetration. PMID:11194380

  4. Penetration of solar radiation into the waters of Messina Strait (Italy).

    PubMed

    Dattilo, Arduino Massimo; Decembrini, Franco; Bracchini, Luca; Focardi, Silvia; Mazzuoli, Stefania; Rossi, Claudio

    2005-01-01

    The optical properties of the waters of five different stations, three located in the Messina Strait and two near the Strait (open sea), were analysed. Direct spectral measurements of the downward solar irradiance (290 - 800 nm) at different depths (0.5 m, 7 m, 10 m, 13 m, 20 m) were made using a cosine sensor connected to a spectroradiometer. Water samples were collected in the surface layer and their absorption spectra were analysed. The natural fluorescence profiles, along the water column, were determined using a fluorometer (SBE 911plus - Sea Teach). The spectral attenuation coefficient (K(lambda)), the variation of K(lambda) in different wavelength ranges (deltaK(deltalambda)), the wavelength corresponding to minimum value of K(lambda), the spectral depths of penetration of both 1% and 10% of the sub-surface irradiance values (P(lambda)), the depths of 1% of penetration of UVB, UVA and PAR, the depth ranges of the maxim concentration of Chl a and superficial CDOM were measured at each station. The maximum solar UVB penetration was about 65% of the photic zone and the maximum UVA penetration was nearly 100% (data of the Ionic sea station). Thus, a large part of the photic zone was exposed to UV radiation sufficient to cause a possible reduction in the photosynthetic activity of phytoplankton. The spectral penetration of solar radiation, especially UVB radiation, was significantly different in the three stations of the Strait with respect to the two stations studied in the open sea. This shows that variations in the spectral attenuation along the water column can be used as an indicator of properties of the water body.

  5. Kinematics of hamster sperm during penetration of the cumulus cell matrix.

    PubMed

    Drobnis, E Z; Yudin, A I; Cherr, G N; Katz, D F

    1988-12-01

    During capacitation, mammalian spermatozoa gain the ability to penetrate the cumulus cell matrix (CCM). The role of hyperactivated motility for this capacity is uncertain. In the present study, hamster sperm were observed during penetration and progression through the CCM, and flagellar beat patterns were quantitated by characterization of the underlying flagellar bends. Small numbers of sperm were added to cumulus masses slightly compressed on a slide (150 micron depth), and penetration was videorecorded using interference contrast optics. During penetration of the cumulus surface, sperm did not generate the large flagellar bends and asymmetric beats that are hallmarks of hyperactivation in low viscosity media. Instead, they entered slowly using high-frequency, low-amplitude sinusoidal flagellar motions. Within the CCM, sperm continued to move slowly, and they exhibited three distinct patterns of motility. The first was sinusoidal, produced by alternating, propagated bends: principal bends (PB) moved the head away from the beat midline, with the convex edge of the head leading, and reverse bends (RB) had the opposite curvature. The second pattern was asymmetric and sinusoidal: an extreme RB developed in the distal flagellum, was propagated distally, and was followed by a PB of less curvature. The third motility pattern was a hatchet-like stroke of the sperm head which resulted when an extreme, nonpropagated PB developed slowly in the proximal midpiece, and was released rapidly. In this mode there were no reverse bends, and sperm did not progress. There were subpopulations of capacitating sperm in free-swimming medium which had these same bend types and motility patterns, suggesting that qualitative flagellar movement may not change during CCM penetration. Sperm velocity in the CCM was not strongly correlated with flagellar beat kinematics, suggesting local heterogeneity in cumulus mechanical resistance and/or differences in interaction of the matrix with the

  6. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  7. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  8. Features of mtDNA mutation patterns in European pedigrees and sporadic cases with leber hereditary optic neuropathy

    SciTech Connect

    Obermaier-Kusser, B.; Schubring, S.; Paprotta, A.; Meitinger, T.; Jaksch, M.; Gerbitz, K.D.; Lorenz, B.; Zerres, K.; Meire, F.; Cochaux, P.

    1994-11-01

    Leber hereditary optic neuropathy (LHON) is maternally transmitted and is characterized by bilateral loss of central vision in young adults as a result of optic nerve degeneration. Fifteen transition mutations located in different genes for the mitochondrially encoded subunits of respiratory chain complexes have been associated thus far with the disease. Genetic studies have led to the classification of the pathogenic significance of these different mutations. However, more research is required to determine the causality of the mutations and the penetrance of the disease. The present study compares studies of populations of different ethnic origins, namely European LHON pedigrees and sporadic cases, in order to elucidate the pathogenic mechanisms involved. 21 refs., 2 figs., 1 tab.

  9. Penetration depth at green wavelengths in turbid waters

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Witte, W. G.; Usry, J. W.; Gurganus, E. A.

    1978-01-01

    A laboratory and field measurement program was conducted to determine apparent remote sensing penetration depths at a wavelength of 520 nm. Tests were made for various types of sediments under controlled conditions in a laboratory. Field tests were conducted in several different water bodies over a wide range of solar elevation angles. Laboratory results indicate that apparent penetration depth is significantly influenced by mineral content and/or size of suspended sediments. Field measurements show wide variation in apparent penetration depth, even when suspended solids concentration is nearly constant. Apparent penetration depth does not appear to be a strong function of solar elevation angle so long as the water mixture remains constant.

  10. Genetic variability and molecular responses of root penetration in cotton.

    PubMed

    Klueva; Joshi; Joshi; Wester; Zartman; Cantrell; Nguyen

    2000-06-12

    Compacted soils restrict root penetration hindering productivity. In this paper, genetic variability of cotton (Gossipium spp.) root capacity to penetrate hard soil layers and the patterns of gene expression during penetration event were investigated. To mimic hard soil layers, wax-petrolatum mixtures were used. Genetic variability among 27 cotton genotypes for the root capacity to penetrate wax-petrolatum disks of 500-700 g wax/kg of mixture was high indicating that breeding efforts targeted to improve this trait can be successful. In the root tips of a cotton strain with high root penetrating ability (G. hirsutum HS 200) which penetrated through wax-petrolatum disks (P), quantity of four polypeptides with molecular weights 35-66 kDa increased compared to those root tips which grew in the absence of mechanical impedance (NP). Differential display showed significant differences in the sets of mRNA expressed in P and NP roots. Out of a total of 917 cDNAs scored in the differential display experiment, 118 cDNAs, or 13%, were specific to P roots and hence could be associated with the root penetration event. Further detailed study of gene expression in penetrated roots will pinpoint molecular factors involved in root penetration ability in cotton. PMID:10773338

  11. Genetic variability and molecular responses of root penetration in cotton.

    PubMed

    Klueva; Joshi; Joshi; Wester; Zartman; Cantrell; Nguyen

    2000-06-12

    Compacted soils restrict root penetration hindering productivity. In this paper, genetic variability of cotton (Gossipium spp.) root capacity to penetrate hard soil layers and the patterns of gene expression during penetration event were investigated. To mimic hard soil layers, wax-petrolatum mixtures were used. Genetic variability among 27 cotton genotypes for the root capacity to penetrate wax-petrolatum disks of 500-700 g wax/kg of mixture was high indicating that breeding efforts targeted to improve this trait can be successful. In the root tips of a cotton strain with high root penetrating ability (G. hirsutum HS 200) which penetrated through wax-petrolatum disks (P), quantity of four polypeptides with molecular weights 35-66 kDa increased compared to those root tips which grew in the absence of mechanical impedance (NP). Differential display showed significant differences in the sets of mRNA expressed in P and NP roots. Out of a total of 917 cDNAs scored in the differential display experiment, 118 cDNAs, or 13%, were specific to P roots and hence could be associated with the root penetration event. Further detailed study of gene expression in penetrated roots will pinpoint molecular factors involved in root penetration ability in cotton.

  12. Characterization of nuclear reactor containment penetrations. Preliminary report

    SciTech Connect

    Bump, T.R.; Seidensticker, R.W.; Shackelford, M.A.; Gambhir, V.K.; McLennan, G.L.

    1984-06-01

    This report summarizes the survey work conducted by Argonne National Laboratory on the design and details of major penetrations in 22 nuclear power plants. The survey includes all containment types and materials in current use. It also includes details of all types of penetrations (except for electrical penetration assemblies and valves) and the seals and gaskets used in them. The report provides a test matrix for testing major penetrations and for testing seals and gaskets in order to evaluate their leakage potential under severe accident conditions.

  13. Evaluation of offshore penetration tests at El Palito refinery, Venezuela

    SciTech Connect

    Rodriguez, J.I.; Simone, A.; Tichatscheck, C.; Boggess, R.

    1995-12-01

    Data from an offshore study in the western part of Venezuela are presented in terms of the penetration test data and liquefaction evaluation. Two types of penetration test were performed (SPT and DCPT) and the results of each are compared. This was made possible by the comparison testing performed at two different locations where the separation between boreholes with different penetration tests was small enough to allow direct comparison of the results. To the authors` knowledge, this is the first time that dynamic cone measurements have been made in an offshore environment. Comments in relation to the evaluation of liquefaction resistance based on the results of the offshore penetration testing are made.

  14. Adult immunization

    PubMed Central

    Mehta, Bharti; Chawla, Sumit; Kumar Dharma, Vijay; Jindal, Harashish; Bhatt, Bhumika

    2014-01-01

    Vaccination is recommended throughout life to prevent vaccine-preventable diseases and their sequel. The primary focus of vaccination programs has historically been directed to childhood immunizations. For adults, chronic diseases have been the primary focus of preventive and medical health care, though there has been increased emphasis on preventing infectious diseases. Adult vaccination coverage, however, remains low for most of the routinely recommended vaccines. Though adults are less susceptible to fall prey to traditional infectious agents, the probability of exposure to infectious agents has increased manifold owing to globalization and increasing travel opportunities both within and across the countries. Thus, there is an urgent need to address the problem of adult immunization. The adult immunization enterprise is more complex, encompassing a wide variety of vaccines and a very diverse target population. There is no coordinated public health infrastructure to support an adult immunization program as there is for children. Moreover, there is little coordination among adult healthcare providers in terms of vaccine provision. Substantial improvement in adult vaccination is needed to reduce the health consequences of vaccine-preventable diseases among adults. Routine assessment of adult patient vaccination needs, recommendation, and offer of needed vaccines for adults should be incorporated into routine clinical care of adults. PMID:24128707

  15. Photochemical tissue penetration via photosensitizer for effective drug penetration in a non-vascular tumor.

    PubMed

    Min, Daehong; Jeong, Dooyong; Choi, Myung Gyu; Na, Kun

    2015-06-01

    To improve the tissue penetration efficiency (PE%) of hydrophilic-drugs in non-vascular drug eluting stents (DES), we designed photochemical tissue penetration (PTP) invested DES (PTP-DES). The PTP technology was applied to the stent as a covering membrane to generate singlet oxygen. Singlet oxygen damages the epithelial layer, so the PE% of released drugs could be improved. To prepare the PTP-DES membrane, chlorin e6 (Ce6, photosensitizer) was incorporated in a gemcitabine (GEM) eluting polyurethane (PU) membrane (Ce6-GEM-PU). Ce6-GEM-PU has smooth surface that is ∼40 μm thick. The photoactivity of Ce6 was maintained for 2 weeks (in vitro GEM releasing period). In a separate cell culture system, both 1.5 folds higher PE% and an improved tumor cell growth inhibition effect were shown after light exposure. Additionally, in tissue penetration experimental system, 2 folds increased in the PE% of GEM was induced by laser exposure at 80 J/cm2. Additionally, improved PE% of hydrophilic molecules (Fluorescein and GEM) was confirmed in colon tumor bearing mice. Consequentially, tumor growth, when implanted with Ce6-GEM-PU, was effectively inhibited without significant side effects. Based on these results, we believe that the PTP-DES system has great potential for improving the therapeutic effect of conventional DES.

  16. Ground Penetrating Radar Technologies in Ukraine

    NASA Astrophysics Data System (ADS)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  17. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    SciTech Connect

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  18. Ice-Penetrating Robot for Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Carsey, Frank; French, Lloyd

    2007-01-01

    The cryo-hydro integrated robotic penetrator system (CHIRPS) is a partially developed instrumentation system that includes a probe designed to deeply penetrate the European ice sheet in a search for signs of life. The CHIRPS could also be used on Earth for similar exploration of the polar ice caps especially at Lake Vostok in Antarctica. The CHIRPS probe advances downward by a combination of simple melting of ice (typically for upper, non-compacted layers of an ice sheet) or by a combination of melting of ice and pumping of meltwater (typically, for deeper, compacted layers). The heat and electric power for melting, pumping, and operating all of the onboard instrumentation and electronic circuitry are supplied by radioisotope power sources (RPSs) and thermoelectric converters energized by the RPSs. The instrumentation and electronic circuitry includes miniature guidance and control sensors and an advanced autonomous control system that has fault-management capabilities. The CHIRPS probe is about 1 m long and 15 cm in diameter. The RPSs generate a total thermal power of 1.8 kW. Initially, as this power melts the surrounding ice, a meltwater jacket about 1 mm thick forms around the probe. The center of gravity of the probe is well forward (down), so that the probe is vertically stabilized like a pendulum. Heat is circulated to the nose by means of miniature pumps and heat pipes. The probe melts ice to advance in a step-wise manner: Heat is applied to the nose to open up a melt void, then heat is applied to the side to allow the probe to slip down into the melt void. The melt void behind the probe is allowed to re-freeze. Four quadrant heaters on the nose and another four quadrant heaters on the rear (upper) surface of the probe are individually controllable for steering: Turning on two adjacent nose heaters on the nose and two adjacent heaters on the opposite side at the rear causes melt voids to form on opposing sides, such that the probe descends at an angle from

  19. GSTAMIDS ground-penetrating radar: hardware description

    NASA Astrophysics Data System (ADS)

    Sower, Gary D.; Eberly, John; Christy, Ed

    2001-10-01

    The Ground Standoff Mine Detection System (GSTAMIDS) is now in the Engineering, Manufacturing and Development (EMD) Block 0 phase for USA CECOM. The Mine Detection Subsystem (MDS) presently utilizes three different sensor technologies to detect buried anti-tank (AT) land mines; Ground Penetrating Radar (GPR), Pulsed Magnetic Induction (PMI), and passive infrared (IR). The GSTAMIDS hardware and software architectures are designed so that other technologies can readily be incorporated when and if they prove viable. Each sensor suite is designed to detect the buried mines and to discriminate against various clutter and background objects. Sensor data fusion of the outputs of the individual sensor suites then enhances the detection probability while reducing the false alarm rate from clutter objects. The metal detector is an essential tool for buried mine detection, as metal land mines still account for a large percentage of land mines. Technologies such as nuclear quadrupole resonance (NQR or QR) are presently being developed to detect or confirm the presence of explosive material in buried land mines, particularly the so-called plastic mines; unfortunately, the radio frequency signals required cannot penetrate into a metal land mine. The limitation of the metal detector is not in detection of the metal mines, but in the additional detection of metal clutter. A metal detector has been developed using singular value decomposition (SVD) extraction techniques to discriminate the mines from the clutter, thereby greatly reducing false alarm rates. This mine detector is designed to characterize the impulse response function of the metal objects, based on a parametric three-pole model of the response, and to use pattern recognition to determine the match of the responses to known mines. In addition to discrimination against clutter, the system can also generally tell one mine type from another. This paper describes the PMI sensor suite hardware and its physical incorporation

  20. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  1. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  2. Shifting bubble-guided sutureless technique for performing descemetorhexis for retained Descemet's membrane after penetrating keratoplasty.

    PubMed

    Khokhar, Sudarshan; Agarwal, Tushar; Gupta, Shikha; Sehra, Srivats; Panda, Anita

    2014-02-01

    We describe the use of anterior segment optical coherence tomography in the diagnosis of inadvertent retention of Descemet's membrane (DM) after penetrating keratoplasty, and a novel technique for its removal in a case of congenital hereditary endothelial dystrophy. In this technique, we use a modification of the shifting bubble technique, commonly used in deep anterior lamellar keratoplasty where a viscocohesive ophthalmic viscosurgical device is injected into the false anterior chamber which causes migration of the central air bubble placed in the anterior chamber peripherally and helps in confirming the correct space. The DM is then peeled in a circular fashion with the help of 23-G vitreoretinal micro forceps.

  3. Detecting Aspiration and Penetration Using FEES With and Without Food Dye.

    PubMed

    Marvin, Stevie; Gustafson, Sara; Thibeault, Susan

    2016-08-01

    The objective of this investigation was to determine if there were differences in identifying airway invasion (penetration or aspiration) during fiberoptic endoscopic evaluations of swallowing (FEES) for green-dyed versus non-dyed liquids. Forty adult inpatients in an acute care hospital underwent FEES, with both green-dyed liquids and naturally white liquids. Three speech-language pathologists rated aspiration and penetration for trials of nectar-thick milk and thin milk, both with and without green food dye. A subset of participants having excess pharyngeal/laryngeal secretions, as measured by the Secretions Severity Scale, were also analyzed for a difference in the detection of airway invasion and pharyngeal residue. No significant differences were found between dyes in airway invasion across all bolus types within participants. Significant differences were found in penetration ratings for large volumes of thin liquids (90 ml), between participants. When examining only discrepant airway invasion judgments for green-white swallow pairs, statistically significantly deeper airway invasion was measured for green-dyed boluses versus white for three of the five bolus types. Repeat rater reliability was better for dyed versus undyed liquids. Findings suggest that the use of green dye may allow for improved judgment of airway invasion. PMID:26993648

  4. Low Force Icy Regolith Penetration Technology

    NASA Technical Reports Server (NTRS)

    Metzger, P. T.; Galloway, G. M.; Mantovani, J. G.; Zacny, K.; Zacny, Kris; Craft, Jack

    2011-01-01

    Recent data from the Moon, including LCROSS data, indicate large quantities of water ice and other volatiles frozen into the soil in the permanently shadowed craters near the poles. If verified and exploited, these volatiles will revolutionize spaceflight as an inexpensive source of propellants and other consumables outside Earth's gravity well. This report discusses a preliminary investigation of a method to insert a sensor through such a soiVice mixture to verify the presence, nature, and concentration of the ice. It uses percussion to deliver mechanical energy into the frozen mixture, breaking up the ice and decompacting the soil so that only low reaction forces are required from a rover or spacecraft to push the sensor downward. The tests demonstrate that this method may be ideal for a small platform in lunar gravity. However, there are some cases where the system may not be able to penetrate the icy soil, and there is some risk ofthe sensor becoming stuck so that it cannot be retracted, so further work is needed. A companion project (ISDS for Water Detection on the Lunar Surface) has performed preliminary investigation of a dielectric/thermal sensor for use with this system.

  5. Universal framework for unmanned system penetration testing

    NASA Astrophysics Data System (ADS)

    Kobezak, Philip; Abbot-McCune, Sam; Tront, Joseph; Marchany, Randy; Wicks, Alfred

    2013-05-01

    Multiple industries, from defense to medical, are increasing their use of unmanned systems. Today, many of these systems are rapidly designed, tested, and deployed without adequate security testing. To aid the quick turnaround, commercially available subsystems and embedded components are often used. These components may introduce security vulnerabilities particularly if the designers do not fully understand their functionality and limitations. There is a need for thorough testing of unmanned systems for security vulnerabilities, which includes all subsystems. Using a penetration testing framework would help find these vulnerabilities across different unmanned systems applications. The framework should encompass all of the commonly implemented subsystems including, but not limited to, wireless networks, CAN buses, passive and active sensors, positioning receivers, and data storage devices. Potential attacks and vulnerabilities can be identified by looking at the unique characteristics of these subsystems. The framework will clearly outline the attack vectors as they relate to each subsystem. If any vulnerabilities exist, a mitigation plan can be developed prior to the completion of the design phase. Additionally, if the vulnerabilities are known in advance of deployment, monitoring can be added to the design to alert operators of any attempted or successful attacks. This proposed framework will help evaluate security risks quickly and consistently to ensure new unmanned systems are ready for deployment. Verifying that a new unmanned system has passed a comprehensive security evaluation will ensure greater confidence in its operational effectiveness.

  6. Road evaluation with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Saarenketo, Timo; Scullion, Tom

    2000-03-01

    This paper provides a status report of the Ground Penetrating Radar (GPR) highway applications based on studies conducted in both Scandinavia and the USA. After several years of research local transportation agencies are now beginning to implement GPR technology for both network and project level surveys. This paper summarizes the principles of operation of both ground-coupled and air-launched GPR systems together with a discussion of both signal processing and data interpretation techniques. In the area of subgrade soil evaluation GPR techniques have been used to nondestructively identify soil type, to estimate the thickness of overburden and to evaluate the compressibility and frost susceptibility of subgrade soil. In road structure surveys, GPR has been used to measure layer thickness, to detect subsurface defects and to evaluate base course quality. In quality control surveys, GPR techniques have been used for thickness measurements, to estimate air void content of asphalt surfaces and to detect mix segregation. Future developments are described where the technique has great potential in assisting pavement engineers with their new pavement designs and in determining the optimal repair strategies for deteriorated roadways.

  7. Membranotropic Cell Penetrating Peptides: The Outstanding Journey

    PubMed Central

    Falanga, Annarita; Galdiero, Massimiliano; Galdiero, Stefania

    2015-01-01

    The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery. PMID:26512649

  8. Ground-penetrating radar: use and misuse

    NASA Astrophysics Data System (ADS)

    Olhoeft, Gary R.

    1999-10-01

    Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.

  9. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  10. Penetration of asbestos fibers in respirator filters

    SciTech Connect

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi

    1994-11-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 {mu}m and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here.

  11. Earth Penetration Radar Imaging System (EPRIS)

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Earth Penetration Radar Imaging System (EPRIS) has been developed and has the capability to detect and locate buried mines, buried ordnance delivered by precision munitions, buried drums, buried waste/contaminants, and geological structures/features. The detected objects or features are mapped in three dimensions with high resolution. This information is then available for integration into a site characterization study. The EPRIS is a significant improvement in non-intrusive sensing and imaging capability. This phase of the EPRIS development has been extremely successful. Coleman Research Corporation (CRC) has implemented significant advances in technology into the EPRIS equipment. The frequency stepped radar sensor design has a very wide dynamic signal range and improved sensitivity over currently available equipment. The two- and three-dimensional image processing algorithms allow high-resolution placement and sizing of buried objects and/or features. The discussions related to the analog-to-digital converter and the spiral antenna, define the source of the dynamic range capability realized by EPRIS. The processing for this new radar makes use of unique synthetic aperature imaging (SAI) algorithms developed by CRC for frequency stepped radar systems. The SAI algorithms are necessary to obtain excellent spatial resolution on objects buried up to seven meters. The sensor signal processing represents a significant improvement in imaging systems. The CRC test facility permitted tests on objects buried up to 2.44 meters.

  12. Surgical management of penetrating pulmonary injuries.

    PubMed

    Petrone, Patrizio; Asensio, Juan A

    2009-01-01

    Chest injuries were reported as early as 3000 BC in the Edwin Smith Surgical Papyrus. Ancient Greek chronicles reveal that they had anatomic knowledge of the thoracic structures. Even in the ancient world, most of the therapeutic modalities for chest wounds and traumatic pulmonary injuries were developed during wartime. The majority of lung injuries can be managed non-operatively, but pulmonary injuries that require operative surgical intervention can be quite challenging. Recent progress in treating severe pulmonary injuries has relied on finding shorter and simpler lung-sparing techniques. The applicability of stapled pulmonary tractotomy was confirmed as a safe and valuable procedure. Advancement in technology have revolutionized thoracic surgery and ushered in the era of video-assisted thoracoscopic surgery (VATS), providing an alternative method for accurate and direct evaluation of the lung parenchyma, mediastinum, and diaphragmatic injuries. The aim of this article is to describe the incidence of the penetrating pulmonary injuries, the ultimate techniques used in its operative management, as well as the diagnosis, complications, and morbidity and mortality. PMID:19236703

  13. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-03-15

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  14. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  15. Investigating hydrocarbon contamination using ground penetrating radar

    SciTech Connect

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-12-31

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection.

  16. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier.

    PubMed

    Lademann, J; Meinke, M C; Schanzer, S; Richter, H; Darvin, M E; Haag, S F; Fluhr, J W; Weigmann, H-J; Sterry, W; Patzelt, A

    2012-12-01

    The efficacy of a drug is characterized by its action mechanism and its ability to pass the skin barrier. In this article, different methods are discussed, which permit this penetration process to be analysed non-invasively. Providing qualitative and quantitative information, tape stripping is one of the oldest procedures for penetration studies. Although single cell layers of corneocytes are removed from the skin surface, this procedure is considered as non-invasive and is applicable exclusively to the stratum corneum. Recently, optical and spectroscopic methods have been used to investigate the penetration process. Fluorescence-labelled drugs can be easily detected in the skin by laser scanning microscopy. This method has the disadvantage that the dye labelling changes the molecular structures of the drug and consequently might influence the penetration properties. The penetration process of non-fluorescent substances can be analysed by Raman spectroscopy, electron paramagnetic resonance, CARS and multiphoton microscopic measurements. Using these methods, the concentration of the topically applied formulations in different depths of the stratum corneum can be detected by moving the laser focus from the skin surface deeper into the stratum corneum. The advantages and disadvantages of these methods will be discussed in this article. PMID:22957937

  17. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier.

    PubMed

    Lademann, J; Meinke, M C; Schanzer, S; Richter, H; Darvin, M E; Haag, S F; Fluhr, J W; Weigmann, H-J; Sterry, W; Patzelt, A

    2012-12-01

    The efficacy of a drug is characterized by its action mechanism and its ability to pass the skin barrier. In this article, different methods are discussed, which permit this penetration process to be analysed non-invasively. Providing qualitative and quantitative information, tape stripping is one of the oldest procedures for penetration studies. Although single cell layers of corneocytes are removed from the skin surface, this procedure is considered as non-invasive and is applicable exclusively to the stratum corneum. Recently, optical and spectroscopic methods have been used to investigate the penetration process. Fluorescence-labelled drugs can be easily detected in the skin by laser scanning microscopy. This method has the disadvantage that the dye labelling changes the molecular structures of the drug and consequently might influence the penetration properties. The penetration process of non-fluorescent substances can be analysed by Raman spectroscopy, electron paramagnetic resonance, CARS and multiphoton microscopic measurements. Using these methods, the concentration of the topically applied formulations in different depths of the stratum corneum can be detected by moving the laser focus from the skin surface deeper into the stratum corneum. The advantages and disadvantages of these methods will be discussed in this article.

  18. Low penetrance of the 14484 LHON mutation when it arises in a non-haplogroup J mtDNA background.

    PubMed

    Howell, Neil; Herrnstadt, Corinna; Shults, Cliff; Mackey, David A

    2003-06-01

    The penetrance in Leber's hereditary optic neuropathy (LHON) pedigrees is determined primarily by a mutation in the mitochondrial genome (mtDNA), but secondary factors are also necessary for manifestation of the disorder. It has been proposed that mtDNA polymorphisms affect penetrance in LHON pedigrees. In particular, it has been postulated that one or more polymorphisms associated with European haplogroup J mtDNAs substantially increase the penetrance of the primary LHON mutation at nucleotide 14484. We report here a haplogroup H matrilineal pedigree (VIC14) in which the single affected member carries the 14484 LHON mutation, but who manifested a milder and atypical optic nerve disorder. In addition, during a population screen, we identified an individual who carried the 14484 mutation but who had normal vision. Finally, the 14484 mutation is under-represented among haplogroup H mtDNAs that carry a LHON mutation. These results, in conjunction with other studies that are reviewed, indicate that 14484 LHON mutations have a low penetrance when they arise in a haplogroup H mtDNA background.

  19. Mars penetrator umbilical. [to study geophysical properties of Mars

    NASA Technical Reports Server (NTRS)

    Barns, C. E.

    1979-01-01

    The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.

  20. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  1. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  2. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  3. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  4. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  5. 40 CFR 1065.365 - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Nonmethane cutter penetration...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Hydrocarbon Measurements § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a...

  6. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  7. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Chiller NO2 penetration. 1065.376... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o Measurements § 1065.376 Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a...

  8. 46 CFR 174.225 - Hull penetrations and shell connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hull penetrations and shell connections. 174.225 Section 174.225 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY... § 174.225 Hull penetrations and shell connections. Each overboard discharge and shell connection...

  9. Rock penetration : finite element sensitivity and probabilistic modeling analyses.

    SciTech Connect

    Fossum, Arlo Frederick

    2004-08-01

    This report summarizes numerical analyses conducted to assess the relative importance on penetration depth calculations of rock constitutive model physics features representing the presence of microscale flaws such as porosity and networks of microcracks and rock mass structural features. Three-dimensional, nonlinear, transient dynamic finite element penetration simulations are made with a realistic geomaterial constitutive model to determine which features have the most influence on penetration depth calculations. A baseline penetration calculation is made with a representative set of material parameters evaluated from measurements made from laboratory experiments conducted on a familiar sedimentary rock. Then, a sequence of perturbations of various material parameters allows an assessment to be made of the main penetration effects. A cumulative probability distribution function is calculated with the use of an advanced reliability method that makes use of this sensitivity database, probability density functions, and coefficients of variation of the key controlling parameters for penetration depth predictions. Thus the variability of the calculated penetration depth is known as a function of the variability of the input parameters. This simulation modeling capability should impact significantly the tools that are needed to design enhanced penetrator systems, support weapons effects studies, and directly address proposed HDBT defeat scenarios.

  10. An explosive acoustic telemetry system for seabed penetrators

    SciTech Connect

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  11. Unsteady penetration of a target by a liquid jet

    PubMed Central

    Uth, Tobias; Deshpande, Vikram S.

    2013-01-01

    It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818

  12. Penetration mechanics research in the former Soviet Union

    NASA Astrophysics Data System (ADS)

    Isbell, W. M.; Anderson, C. E.; Asay, J. R.; Bless, S. J.; Grady, D. E.

    1992-09-01

    Recently published papers by scientists from the former Soviet Union reveal to Western researchers a mature body of highly inventive and dedicated research. To analyze and assess this work, a group of six internationally recognized U.S. experts in the field of penetration mechanics and hypervelocity impact reviewed hundreds of unclassified documents. Five broad, sometimes overlapping, research areas were chosen for assessment: hypervelocity impact capabilities; penetration mechanics experiments at ordnance velocities; analytical penetration mechanics; material response to high-velocity impact and penetration; and numerical simulations of penetration physics. Both similarities and differences between Soviet and Western research were noted and characterized, with particular attention paid to potential breakthrough technologies. Leading Soviet scientists and their organizations were identified, as were areas of potentially fruitful collaboration between researchers from the former Soviet Union and the United States. Soviet breakthroughs in penetration mechanics technology that far out-distanced Western efforts were not found, though potential breakthroughs were noted in several areas, including penetration models of brittle materials (principally ceramics), superdeep penetration of particles, and very-high-velocity electromagnetic launchers.

  13. Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Iskenderian, Theodore; Sherrit, Stewart; Bao, Xiaoqi; Linderman, Randel

    2010-01-01

    field, magnetic permeability, temperature, and any other properties that can be measured by fiber-optic sensors. The problem of instrumenting a probe of this type is simplified, relative to the problem of attaching electrodes in a rotating drill bit, in two ways: (1) Unlike a rotating drill bit, a bit of this type does not have flutes, which would compound the problem of ensuring contact between sensors and the side wall of a hole; and (2) there is no need for slip rings for electrical contact between sensor electronic circuitry and external circuitry because, unlike a rotating drill, a tool bit of this type is not rotated continuously during operation. One design for a tool bit of the present type is a segmented bit with a segmented, hinged support structure (see figure). The bit and its ultrasonic/sonic actuator are supported by a slider/guiding fixture, and its displacement and preload are controlled by a motor. For deployment from the folded configuration, a spring-loaded mechanism rotates the lower segment about the hinges, causing the lower segment to become axially aligned with the upper segment. A latching mechanism then locks the segments of the bit and the corresponding segments of the slider/guiding fixture. Then the entire resulting assembly is maneuvered into position for drilling into the ground. Another design provides for a bit comprising multiple tubular segments with an inner alignment string, similar to a foldable tent pole comprising multiple tubular segments with an inner elastic cable connecting the two ends. At the beginning of deployment, all segments except the first (lowermost) one remain folded, and the ultrasonic/sonic actuator is clamped to the top of the lowermost segment and used to drive this segment into the ground. When the first segment has penetrated to a specified depth, the second segment is connected to the upper end of the first segment to form a longer rigid tubular bit and the actuator is moved to the upper end of the second

  14. Increased nanoparticle penetration in collagenase-treated multicellular spheroids

    PubMed Central

    Goodman, Thomas T; Olive, Peggy L; Pun, Suzie H

    2007-01-01

    The extracellular matrix of solid tumors presents a transport barrier that restricts nanoparticle penetration, thereby limiting the efficacy of nanosized delivery vehicles for cancer imaging and therapy. In this study, the effect of nanoparticle size and collagenase treatment on penetration of carboxylated polystyrene nanoparticles was systematically assessed in a multicellular spheroid model. Penetration of the nanoparticles into the spheroid core was limited to particles smaller than 100 nm. Collagenase treatment of spheroids resulted in significantly increased penetration of nanoparticles up to 100 nm with only a minor increase in particle penetration observed for particles larger than 100 nm. Collagenase was immobilized onto the surface of nanoparticles for site-specific degradation of ECM proteins. Collagenase-coated, 100 nm nanoparticles demonstrated a 4-fold increase in the number of particles delivered to the spheroid core compared with control nanoparticles. Thus, nanoparticle delivery to solid tumors may be substantially improved by the incorporation of ECM-modulating enzymes in the delivery formulation. PMID:17722554

  15. Multidisciplinary Team Treatment of Penetrating Head and Neck Trauma.

    PubMed

    Li, Lili; Li, Hongxing; Yang, Kongbin

    2016-09-01

    Penetrating head and neck trauma could cause significant mortality because of many important structures located in the brain and neck. Although high-velocity penetrating brain injury is often reported, reports of low-velocity, combined head and neck penetrating injury are rare. Hereby, the authors present a case of an old man who had encountered a serious accident, a 29-cm iron fork penetrated into his neck, through the skull base and into brain. After treatment by multidisciplinary team, the patient was in rehabilitation. The multidisciplinary team assists rapid diagnosis and treatment of penetrating neck and head injury is the key to ensure a good outcome. Therefore, as the authors face such patients again, a multidisciplinary team is needed. PMID:27428914

  16. Multidisciplinary Team Treatment of Penetrating Head and Neck Trauma

    PubMed Central

    Li, Lili; Li, Hongxing; Yang, Kongbin

    2016-01-01

    Abstract Penetrating head and neck trauma could cause significant mortality because of many important structures located in the brain and neck. Although high-velocity penetrating brain injury is often reported, reports of low-velocity, combined head and neck penetrating injury are rare. Hereby, the authors present a case of an old man who had encountered a serious accident, a 29-cm iron fork penetrated into his neck, through the skull base and into brain. After treatment by multidisciplinary team, the patient was in rehabilitation. The multidisciplinary team assists rapid diagnosis and treatment of penetrating neck and head injury is the key to ensure a good outcome. Therefore, as the authors face such patients again, a multidisciplinary team is needed. PMID:27428914

  17. Evaporation and skin penetration characteristics of mosquito repellent formulations

    SciTech Connect

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  18. Penetration of varnishes into demineralized root dentine in vitro.

    PubMed

    Arends, J; Duschner, H; Ruben, J L

    1997-01-01

    In this paper the penetration of three different varnishes employed in caries prevention (Duraphat, Fluor Protector and Cervitec) into demineralized dentine is quantified using confocal laser scanning microscopy. The results show that the varnish penetration into lesions about 85 microns in depth if for Cervitec about 35 microns and considerably less for Duraphat and Fluor Protector. The penetration is into the dentinal tubules and is influenced by dentinal tubule direction. The drying procedure--pretreatment of the dentine--influences the penetration, though sizeably only for Cervitec applications. This paper shows that varnish penetration into the tissue and presumably 'sealing' tubules completely or partly is valuable with respect to root caries prevention and hypersensitivity. PMID:9165191

  19. The influence of penetrating radiation on collimator performance.

    PubMed

    Jahns, M J

    1981-01-01

    Geometric and penetration responses of a multihole focusing collimator to a point source have been determined using a digital computer and a ray tracing technique. Results are presented as point and line spread functions for collimated rays and penetrating rays, and as plane sensitivities and modulation transfer functions derived from the line spread functions. Responses to a 141Ce line source have been measured for a lead collimator and for a cadium collimator of practically identical dimensions. A comparison of measured and computed responses shows that while computed penetration approximates measured penetration reasonably well, there is a measurable contribution from scattered rays. Plane sensitivities and the modulation transfer function derived from the computed responses are shown. The effects of penetration are compared with predictions made by other investigators. This analysis of collimator performance provides information not previously available and should be useful for evaluating collimators of existing or proposed design.

  20. Penetrator mission concepts for exploration of the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Niehoff, J. C.; Davis, D. R.

    1976-01-01

    Penetrators are elongated missile-shaped objects designed to implant scientific instrumentation to depths of 1 to 15 meters in a wide variety of soil. A typical penetrator weighs 35 kg and impacts the surface at 150 m/sec oriented as close as possible to vertical. A spacecraft bus carries the penetrators to the target body, controls their deployment, and serves as a data communications relay. The analysis addresses the question of basic feasibility and covers such topics as trajectory requirements and delivered mass capability, deployment modes and penetrator retro sizing, impact site accessibility, guidance and control, and penetrator/bus communications. We conclude that such missions, while difficult in many respects, appear to be technically feasible in the context of Jovian system exploration in the post-1985 time period.

  1. Mechanism of anomalous penetration of shaped charge jet into ceramics

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Boris V.; Klimenko, Vladimir Yu.

    2012-03-01

    The mechanism of penetration of the jet in silicon carbide had been investigated experimentally and numerically. In contrast to of metals, the penetration of shaped-charge jet into ceramics has an anomalous character and a smaller depth of penetration. The penetration into ceramics is accompanied by a radial interaction of a crater wall fragments with the jet elements and this leads to a partial melting and evaporation of the elements. Appearance of a "gas" phase enables dispersion of the elements, mixing with the wall fragments, formation of an internal absorption volume, and destabilization of further part of the jet. As a result a considerable part of the jet loses the ability by the penetration.

  2. Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes

    PubMed Central

    Angle, Matthew R.; Wang, Andrew; Thomas, Aman; Schaefer, Andreas T.; Melosh, Nicholas A.

    2014-01-01

    Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. PMID:25418094

  3. Pipe Penetrating Radar: a New Tool for the Assessment of Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Ekes, C.; Neducz, B.

    2012-04-01

    This paper describes the development of Pipe Penetrating Radar (PPR), the underground in-pipe application of GPR, a non-destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-metallic (concrete, PVC, HDPE, etc.) underground pipes. The method uses two or more high frequency GPR antennae carried by a robot into underground pipes. The radar data is transmitted to the surface via fibre optic cable and is recorded together with the output from CCTV (and optionally sonar and laser). Proprietary software analyzes the data and pinpoints defects or cavities within and outside the pipe. Thus the testing can identify existing pipe and pipe bedding symptoms that can be addressed to prevent catastrophic failure due to sinkhole development and can provide useful information about the remaining service life of the pipe. The key innovative aspect is the unique ability to map pipe wall thickness and deterioration including cracks and voids outside the pipe, enabling accurate predictability of needed intervention or the timing of replacement. This reliable non-destructive testing method significantly impacts subsurface infrastructure condition based asset management by supplying previously unattainable measurable conditions. Keywords: pipe penetrating radar (PPR), ground penetrating radar (GPR), pipe inspection, concrete deterioration, municipal engineering

  4. Hydrolytic weakening and penetrative deformation within a natural shear zone

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas K.; Segall, Paul; Wolf, George H.

    Processes of fluid infiltration, hydrolytic weakening, and penetrative deformation within a small ductile shear zone within granitic rocks of the central Sierra Nevada have been investigated using integrated field observations, strain analysis, infrared spectroscopy, and transmission electron microscopy. Several lines of evidence suggest that tensile fracturing accompanied by fluid infiltration preceded the ductile shearing event and that shear strains have localized on a pre-existing sealed fracture. Finite shear strains within an aplite dike and granodiorite host increase sharply from nominally O outside the shear zone to values of 10±2 near its center. Water contents of quartz grains exhibit similar spatial trends to that of strain, rising from 60 and 2000 ppm within the undeformed aplite and granodiorite, respectively, to 4000 and 11,000 ppm within their highly sheared equivalents. Infrared signatures of absorptions measured at room temperature and at 77 K show that most of the intragranular water within quartz and feldspar resides in fluid inclusions. Two distinct populations of fluid inclusions have been observed by optical and electron microscopy; one decorating healed microcracks and the second decorating dislocations. We interpret these relations to record interactions between fluids and processes of brittle failure and ductile flow. Fluid inclusions, forming planar arrays along the traces of healed microcracks, are relatively large (˜0.4-3 μm in diameter) and irregular in shape. A second set of fluid inclusions consists of extremely fine (20-140 nm in diameter), more nearly spherical inclusions which consistently lie along free dislocations and dislocation nodes, and exhibit relationships with dislocations similar to those observed in hydrolytically-weakened synthetic quartz. These observations suggest that water-related defects gained access to grain interiors and dislocation cores by fluid infiltration along open microcracks followed by pipe

  5. A quantitative study of nanoparticle skin penetration with interactive segmentation.

    PubMed

    Lee, Onseok; Lee, See Hyun; Jeong, Sang Hoon; Kim, Jaeyoung; Ryu, Hwa Jung; Oh, Chilhwan; Son, Sang Wook

    2016-10-01

    In the last decade, the application of nanotechnology techniques has expanded within diverse areas such as pharmacology, medicine, and optical science. Despite such wide-ranging possibilities for implementation into practice, the mechanisms behind nanoparticle skin absorption remain unknown. Moreover, the main mode of investigation has been qualitative analysis. Using interactive segmentation, this study suggests a method of objectively and quantitatively analyzing the mechanisms underlying the skin absorption of nanoparticles. Silica nanoparticles (SNPs) were assessed using transmission electron microscopy and applied to the human skin equivalent model. Captured fluorescence images of this model were used to evaluate degrees of skin penetration. These images underwent interactive segmentation and image processing in addition to statistical quantitative analyses of calculated image parameters including the mean, integrated density, skewness, kurtosis, and area fraction. In images from both groups, the distribution area and intensity of fluorescent silica gradually increased in proportion to time. Since statistical significance was achieved after 2 days in the negative charge group and after 4 days in the positive charge group, there is a periodic difference. Furthermore, the quantity of silica per unit area showed a dramatic change after 6 days in the negative charge group. Although this quantitative result is identical to results obtained by qualitative assessment, it is meaningful in that it was proven by statistical analysis with quantitation by using image processing. The present study suggests that the surface charge of SNPs could play an important role in the percutaneous absorption of NPs. These findings can help achieve a better understanding of the percutaneous transport of NPs. In addition, these results provide important guidance for the design of NPs for biomedical applications. PMID:26589318

  6. Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Leung, Terence S.; Tachtsidis, Ilias; Smith, Martin; Delpy, David T.; Elwell, Clare E.

    2006-02-01

    A hybrid differential and spatially resolved spectroscopy (SRS) technique has been developed to measure absolute absorption coefficient (μa), reduced scattering coefficient (μ's) and cerebral blood volume (CBV) in the adult human head. A spectrometer with both differential and SRS capabilities has been used to carry out measurements in 12 subjects. Two versions of the calculation have been considered using the hybrid technique, with one considering water as a chromophore as well as oxy- and deoxy-haemoglobin, and one ignoring water. The CBV has also been measured using a previously described technique based on changing the arterial saturation (SaO2) measured separately by a pulse oximeter, resulting in mean ± SD CBVa (intra-individual coefficient of variation) = 2.22 ± 1.06 ml/100 g (29.9%). (The superscript on CBV indicates the different calculation basis.) Using the hybrid technique with water ignored, CBV0 = 3.18 ± 0.73 ml/100 g (10.0%), μ0a(813 nm) = 0.010 ± 0.003 mm-1 and μ'0s(813 nm) = 1.19 ± 0.55 mm-1 (data quoted at 813 nm). With water considered, CBVw = 3.05 ± 0.77 ml/100 g (10.5%), μwa(813 nm) = 0.010 ± 0.003 mm-1 and μ'ws(813 nm) = 1.28 ± 0.56 mm-1. The mean biases between CBV0/CBVw, CBV0/CBVa and CBVw/CBVa are 0.14 ± 0.09, 0.79 ± 1.22 and 0.65 ± 1.24 ml/100 g. The mean biases between μ0a(813 nm)/μwa(813 nm) and μ'0s(813 nm)/μ'ws(813 nm) are (5.9 ± 10.0) × 10-4 mm-1 and -0.084 ± 0.266 mm-1, respectively. The method we describe extends the functionality of the current SRS instrumentation.

  7. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating.

    PubMed

    Mei, Ling; Zhang, Qianyu; Yang, Yuting; He, Qin; Gao, Huile

    2014-10-20

    Delivering chemotherapeutics by nanoparticles into tumor was influenced by at least two factors: specific targeting and highly efficient penetrating of the nanoparticles. In this study, two targeting ligands, angiopep-2 and activatable cell penetrating peptide (ACP), were functionalized onto nanoparticles for tumor targeting delivery. In this system, angiopep-2 is a ligand of low-density lipoprotein receptor-related protein-1 (LRP1) which was highly expressed on tumor cells, and the ACP was constructed by the conjugation of RRRRRRRR (R8) with EEEEEEEE through a matrix metalloproteinase-2 (MMP-2) sensitive linker, enabling the ACP with tumor microenvironment-responsive cell penetrating property. 4h incubation of ACP with MMP-2 leads to over 80% cleavage of ACP, demonstrating ACP indeed possessed MMP-2 responsive property. The constructed dual targeting nanoparticles (AnACNPs) were approximately 110 nm with a polydispersity index of 0.231. In vitro, ACP modification and angiopep-2 modification could both enhance the U-87 MG cell uptake because of the high expression of MMP-2 and LRP-1 on C6 cells. AnACNPs showed higher uptake level than the single ligand modified nanoparticles. The uptake of all particles was time- and concentration-dependent and endosomes were involved. In vivo, AnACNPs showed best tumor targeting efficiency. The distribution of AnACNPs in tumor was higher than all the other particles. After microvessel staining with anti-CD31 antibody, the fluorescent distribution demonstrated AnACNPs could distribute in the whole tumor with the highest intensity. In conclusion, a novel drug delivery system was developed for enhanced tumor dual targeting and elevated cell internalization.

  8. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  9. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). PMID:26838401

  10. Prediction of Drug Penetration in Tuberculosis Lesions.

    PubMed

    Sarathy, Jansy P; Zuccotto, Fabio; Hsinpin, Ho; Sandberg, Lars; Via, Laura E; Marriner, Gwendolyn A; Masquelin, Thierry; Wyatt, Paul; Ray, Peter; Dartois, Véronique

    2016-08-12

    The penetration of antibiotics in necrotic tuberculosis lesions is heterogeneous and drug-specific, but the factors underlying such differential partitioning are unknown. We hypothesized that drug binding to macromolecules in necrotic foci (or caseum) prevents passive drug diffusion through avascular caseum, a critical site of infection. Using a caseum binding assay and MALDI mass spectrometry imaging of tuberculosis drugs, we showed that binding to caseum inversely correlates with passive diffusion into the necrotic core. We developed a high-throughput assay relying on rapid equilibrium dialysis and a caseum surrogate designed to mimic the composition of native caseum. A set of 279 compounds was profiled in this assay to generate a large data set and explore the physicochemical drivers of free diffusion into caseum. Principle component analysis and modeling of the data set delivered an in silico signature predictive of caseum binding, combining 69 molecular descriptors. Among the major positive drivers of binding were high lipophilicity and poor solubility. Determinants of molecular shape such as the number of rings, particularly aromatic rings, number of sp(2) carbon counts, and volume-to-surface ratio negatively correlated with the free fraction, indicating that low-molecular-weight nonflat compounds are more likely to exhibit low caseum binding properties and diffuse effectively through caseum. To provide simple guidance in the property-based design of new compounds, a rule of thumb was derived whereby the sum of the hydrophobicity (clogP) and aromatic ring count is proportional to caseum binding. These tools can be used to ensure desirable lesion partitioning and guide the selection of optimal regimens against tuberculosis. PMID:27626295

  11. Market penetration of biodiesel and ethanol

    NASA Astrophysics Data System (ADS)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  12. MECHANISM OF CELL WALL PENETRATION BY VIRUSES

    PubMed Central

    Puck, Theodore T.; Lee, Howard H.

    1954-01-01

    Treatment of radioactively labelled host cells with T1 or T2 bacteriophages induces a leakage of cellular P and S into the medium. Evidence is presented showing that this increased cell permeability is not the result of complete lysis of a small fraction of the cells, but rather is made up of contributions from all or most of the infected population. This leakage of cellular constituents exhibits the following characteristics: (a) Infection of a cell with a single virus suffices to evoke the reaction; (b) Increasing the multiplicity up to 7 to 8 virus particles per cell does not affect the extent of leakage produced; (c) Some leakage does occur at 0°C., but much less than at 37°C.; (d) Infection by T1 virus results in a smaller amount of leakage than in the case of T2, but the pattern of response to varying virus multiplicity is the same; (e) The P resulting from such leakage contains no DNA and chemically resembles that which elutes in smaller amounts from uninfected cells; (f) At 37°C. the virus-induced leakage reaction appears within a matter of seconds, and usually decreases after 2 to 3 minutes; (g) The reaction is inhibited by 0.025 M Mg++. Theoretical considerations are presented suggesting the place of this reaction in the sequence of events constituting the virus penetration reaction; its relationship to the phenomenon of lysis-from-without; and its resemblance to the leakage reaction produced by electrostatic binding of ionized compounds to cell surfaces. The existence of similar effects in avian-mammalian virus systems is noted. PMID:13163323

  13. Controlling barrier penetration via exothermic iron oxidation.

    PubMed

    Wood, Daniel G; Brown, Marc B; Jones, Stuart A

    2011-02-14

    Exothermic iron oxidation is an elegant means to generate heat, with the potential to modulate barrier penetration if reaction kinetics can be controlled. This aim of this study was to gain a fundamental understanding of how these temperature change kinetics influenced barrier diffusion rate. Lidocaine transport through a hydrophilic carboxymethyl cellulose (CMC) gel was compared using two rapid iron oxidation reactions initiated by water (ExoRap(50), T(max)-47.7 ± 0.6 °C, t(max)-3.3 ± 0.6 min, ExoRap(60), T(max)-60.4 ± 0.3 °C, t(max)-9.3 ± 0.6 min) and a slower reaction initiated by oxygen (ExoSl(45)T(max)-ca. 44 °C, t(max) ca. 240 min). Temperature change induced by the oxygen initiated reaction (ExoSl(45)) was almost double those initiated by water (over 4h), but lidocaine diffusion was approximately 4 times higher for the latter (ExoRap(50), 555.61 ± 22.04 μg/cm(2)/h; ExoRap(60), 663.1 ± 50.95 μg/cm(2)/h; compared to ExoSl(45), 159.36 ± 29.44 μg/cm(2)/h). The large influence of temperature change kinetics on lidocaine diffusion suggested that transport was heavily dependent on temperature induced structural changes of the barrier. CMC, like many polymers adsorbs more water when exposed to moderate increases in temperature and this appeared to be a critical determinant of lidocaine barrier diffusion rate.

  14. Ground penetrating radar field evaluation in Angola

    NASA Astrophysics Data System (ADS)

    Walls, Richard; Brown, Todd; Clodfelter, Fred; Coors, Jeff; Laudato, Stephen; Lauziere, Steve; Patrikar, Ajay; Poole, Michael; Price, Mike

    2006-05-01

    Deminers around the globe are still using handheld metal detectors that lack the capability to distinguish mines from clutter, detect mines containing very little metal, or find mines buried at deeper depths. In the southern African country of Angola, many areas and roads are impassable due to the threat of anti-tank landmines. Some of these mines are undetectable using current metal detector technology. The US Army has funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This radar detects metal and plastic mines as well as mines that are buried too deep for handheld metal detectors to find. The US Department of Defense Humanitarian Demining (HD) Research & Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. The HD team provided funding and guidance to NIITEK Incorporated for development of a prototype system called Mine Stalker - a relatively light-weight, remote-controlled vehicle outfitted with the NIITEK GPR, detection algorithms, and a marking system. Individuals from the HD team, NIITEK Inc, and the non-governmental organization Meschen Gegen Minen (MgM) participated in a field evaluation of the Mine Stalker in Angola. The primary aim was to evaluate the effectiveness and reliability of the NIITEK GPR under field conditions. The Mine Stalker was extremely reliable during the evaluation with no significant maintenance issues. All AT mines used to verify GPR performance were detected, even when buried to depths as deep as 25-33cm.

  15. Time - lapse imaging using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Karaoulis, M.; Revil, A.

    2012-12-01

    Time-lapse inversion of ground penetrating radar data is useful to image the evolution of oil reservoirs during production and enhanced oil recovery. There are many approaches on how to process GPR data. In this work, we utilize techniques similarly applied to seismic refraction. In a crosswell configuration, we record the arrival times, and we image the propagation velocity. Velocity of the electromagnetic waves is affected by the electrical permittivity, which among others, depends on the saturation and properties of the two fluids. Our simulation is based on a two phase solution, where we consider a clayey sand or sandstone with oil being the non-wetting pore fluid phase and water being the pore fluid phase. Porosity and permeability are stochastically generated. Based on the oil-water saturation, we are able to image the electrical permittivity, and therefore the wave velocities. Imagining the velocity through an inversion scheme, allows us to trace the water front at different time-steps. A fast an efficient way to image the velocity field is based on the solution of a second order eikonal equation, where we assume propagation terms for the EM waves, and we utilized a ray tracing technique to find the travel path. For the inversion we apply an active time constrain approach, previously applied to other type of geophysical data. This algorithm incorporates time as a parameter to the model, inverts simultaneously for all time-step data and adds time related constrains to stabilize the inversion. Time related constrains are able to remove random noise that might contaminate the velocity image with inversion artifacts, allowing to distinguish the waterfront clearly.

  16. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2002-01-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  17. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume.

    PubMed

    Rubin, Hillel; Buddemeier, Robert W

    2002-11-01

    Part I of this study (Rubin, H.; Buddemeier, R.W. Groundwater Contamination Downstream of a Contaminant Penetration Site Part 1: Extension-Expansion of the Contaminant Plume. J. of Environmental Science and Health Part A (in press).) addressed cases, in which a comparatively thin contaminated region represented by boundary layers (BLs) developed within the freshwater aquifer close to contaminant penetration site. However, at some distance downstream from the penetration site, the top of the contaminant plume reaches the top or bottom of the aquifer. This is the location of the "attachment point," which comprises the entrance cross section of the domain evaluated by the present part of the study. It is shown that downstream from the entrance cross section, a set of two BLs develop in the aquifer, termed inner and outer BLs. It is assumed that the evaluated domain, in which the contaminant distribution gradually becomes uniform, can be divided into two sections, designated: (a) the restructuring section, and (b) the establishment section. In the restructuring section, the vertical concentration gradient leads to expansion of the inner BL at the expense of the outer BL, and there is almost no transfer of contaminant mass between the two layers. In the establishment section, each of the BLs occupies half of the aquifer thickness, and the vertical concentration gradient leads to transfer of contaminant mass from the inner to the outer BL. By use of BL approximations, changes of salinity distribution in the aquifer are calculated and evaluated. The establishment section ends at the uniformity point, downstream from which the contaminant concentration profile is practically uniform. The length of the restructuring section, as well as that of the establishment section, is approximately proportional to the aquifer thickness squared, and is inversely proportional to the transverse dispersivity. The study provides a convenient set of definitions and terminology that are

  18. Root penetration through sealing layers at mine deposit sites.

    PubMed

    Stoltz, Eva; Greger, Maria

    2006-12-01

    To prevent acid mine drainage arising from oxygen and water penetration of sulphide-rich mine tailings, the tailings are covered with layers of dry sealing material. Plant roots have a great ability to penetrate dense materials, and if the roots are able to penetrate the sealing layer of a tailings deposit, its oxygen-shielding properties could be reduced. The objective of this study was to evaluate whether plant roots are able to penetrate sealing layers covering mine tailings deposits. Root penetration into layers of various sealing materials, such as clayey moraine (clay, 8-10%; silt, 22-37%; sand, 37-55%; gravel, 15-18%), moraine (unspecified), 6-mm bentonite (kaolin clay) fabric, lime and clay, Cefyll (mixture of pulverized coal fly ash, cement and water) and a mixture containing biosludge (30-35%) and bioashes (65-70%), was investigated. In the field, roots were studied by digging trenches alongside vegetation growing in 3- and 10-year-old mine sites. In the greenhouse root growth of Betula pendula, Pinus sylvestris, Poa pratensis and Salix viminalis were studied in compartments where the plants had been growing for 22 months. The results from the field experiment indicated that roots are able to penetrate both deep down in the cover layer (1.7 m) and also into the sealing layers of various materials, and even to penetrate hard Cefyll. The addition of nutrients in the top cover reduced deep root growth and thereby also penetration through the sealing layer. Low hydraulic conductivity of the sealing layer or a thick cover layer had less effect on root penetration. In the greenhouse experiment roots did not penetrate the thin bentonite fabric, due to low pH (2.1-2.7) that was created from the underlying weathered mine tailings. The clayey moraine was penetrated by all species used in the greenhouse experiment; Pinus sylvestris had the greatest ability to penetrate. To prevent root penetration of the other sealing layer, a suitable condition for the plants

  19. Failure mechanisms of ventricular tissue due to deep penetration.

    PubMed

    Gasser, T Christian; Gudmundson, Peter; Dohr, Gottfried

    2009-03-26

    Lead perforation is a rare but serious complication of pacemaker implantations, and in the present study the associated tissue failure was investigated by means of in-vitro penetration of porcine and bovine ventricular tissue. Rectangular patches from the right ventricular free wall and the interventricular septum were separated, bi-axially stretched and immersed in physiological salt solution at 37( composite function)C before load displacement curves of in total 891 penetrations were recorded. To this end flat-bottomed cylindrical punches of different diameters were used, and following mechanical testing the penetration sites were histological analyzed using light and electron microscopes. Penetration pressure, i.e. penetration force divided by punch cross-sectional area decreased slightly from 2.27(SD 0.66) to 1.76(SD0.46)N/mm(2) for punches of 1.32 to 2.30 mm in diameter, respectively. Deep penetration formed cleavages aligned with the local fiber orientation of the tissue, and hence, a mode-I crack developed, where the crack faces were wedged open by the advancing punch. The performed study derived novel failure data from ventricular tissue due to deep penetration and uncovered associated failure mechanisms. This provides information to derive mechanical failure models, which are essential to enrich our current understanding of failure of soft biological tissues and to guide medical device development.

  20. Evaporation Limited Radial Capillary Penetration in Porous Media.

    PubMed

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  1. USDC-based rapid penetrator of packed soil

    NASA Astrophysics Data System (ADS)

    Bao, X.; Bar-Cohen, Y.; Chang, Z.; Sherrit, S.; Badescu, M.; Du, S.; Song, T.; Peterson, T.

    2006-03-01

    Environment protection requires more testing and analysis tools. To detect buried chemical containers or other objects embedded in soil and avoid possible damage to them, a penetrator was developed for packed soil that requires low penetration force (the force needed to push rod probe into the soil). The design was based on the novel mechanism used by the ultrasonic/sonic driller/corer (USDC) that was developed jointly by scientists at the NDEAA lab at JPL and engineers at Cybersonics, Inc. [Bar-Cohen et al 2001, Bao et al 2003]. In the penetrator, a small free-flying mass is energized by a piezoelectric transducer and impacts a rod probe on its shoulder at frequencies of several hundred Hetz. The impacts help the probe to penetrate the packed soil with low pushing force. A large reduction of the penetration force was achieved. Preliminary tests show that the effects of the penetrator on plastic containers and other objectors are minimal. The details of the design of the prototype penetrator and the results of performance tests are presented.

  2. Effects of Rock High Pressure Strength on Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2011-06-01

    Perforating of oil/gas well creates communication tunnel between reservoir and wellbore. Shaped charges are widely used as perforators in oilfield industry. The liners of the charges are mostly made of powder metal to prevent solid slug clogging the entrance hole of well casing or locking the hole in perforating gun. High speed jet from the shaped charge pierces through perforating gun, well fluid, well casing, and then penetrates into reservoir formation. Prediction of jet penetration in reservoir rock is critical in modeling of well production. An analytical penetration model developed for solid rod by Tate and Alekseevskii is applied. However, strength of formation rock at high pressure needs to be measured. Lateral stress gauge measurements in plate impact tests are conducted. Piezoelectric pressure gauges are imbedded in samples to measure the longitudinal and transverse stress. The two stresses provide Hugoniot and material compressive strength. Indiana limestone, a typical rock in perforation testing, is selected as target sample material in the plate impact tests. Since target strength effect on penetration is more significant in late stage of penetration when the strength of material becomes significant compared to the impact pressure, all the impact tests are focused on lower impact pressure up to 9 GPa. The measurements show that the strength increases with impact pressure. The results are applied in the penetration calculations. The final penetration matches testing data very well.

  3. Investigation on penetration model of shaped charge jet in water

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Luo, Xingbai; Li, Jinming; Jiang, Jianwei

    2016-01-01

    To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine-Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.

  4. Evaporation Limited Radial Capillary Penetration in Porous Media.

    PubMed

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures. PMID:27583455

  5. Outcome of repeat penetrating keratoplasty in eyes with failed penetrating keratoplasty

    PubMed Central

    Khairallah, Abdulrahman S.

    2016-01-01

    Objectives: To report the outcomes of penetrating keratoplasty (PKP) surgeries in eyes with failed PKP. Methods: This was a retrospective, non-comparative, descriptive case series. Thirty eyes of 30 patients with failed PKP comprised our study group, they were reviewed from January 2007 to December 2012 at the King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. Data were collected on best corrected visual acuity before and after one week, one month, 3 months, 6 months, one year, and 2 years following PKP. Intraoperative and postoperative complications, changes in intraocular pressure (IOP), additional surgical procedure and other ocular comorbidities were also documented. The visual outcomes at 6 months and one year were associated with risk factors. Results: Before intervention, 18 (60%) eyes had vision <20/400. Vision was 20/20 to 20/60 in 10 (30%) eyes at 6 months, 17 (57%) eyes at 12 months, and 22 (73%) eyes at 24 months. The variation in IOP at different follow up periods was not significant (p=0.2). The presence of other ocular comorbidity was not significantly associated with functional visual outcome (p=0.4). Additional surgical procedure after repeat PKP enabled a regain of excellent vision in 9 (47%) eyes at one year. The numbers for past corneal surgeries were significantly associated with the visual outcome at 6 months. Conclusion: Penetrating keratoplasty to manage failed PKP resulted in reducing visual disabilities. PMID:27570862

  6. Penetration of the LCLS Injector Shield Wall at Sector 20

    SciTech Connect

    Dowell, D

    2010-12-10

    Penetrations through the LCLS injector shield wall are needed for the alignment of the accelerator, a diagnostic laser beam and utilities, and are shown in figure 1. The 1-inch diameter LCLS injector beam tube is blocked by the PPS stopper when the injector side of the wall is occupied. The two 3-inch diameter penetrations above and to the left of the beam tube are used by Precision Alignment and will be open only during installation of the injector beamline. Additional 3-inch diameter penetrations are for laser beams which will be used for electron beam diagnostics. These will not be plugged when the injector occupied. Other penetrations for the RF waveguide and other utilities are approximately 13-inch from the floor and as such are far from the line-of-sight of any radiation sources. The waveguide and utility penetrations pass only through the thicker wall as shown in the figure. The principal issue is with the two laser penetrations, since these will be open when the linac is operating and people are in the LCLS injector area. A principal concern is radiation streaming through the penetrations due to direct line-of sight of the PEP-2 lines. To answer this, fans of rays were traced through the 3-inch diameter laser penetrations as shown in Figures 2 and 3. Figure 2 gives the top view of the shield walls, the main linac and PEP-2 lines, and the ray-fans. The fans appear to originate between the walls since their angular envelope is defined by the greatest angle possible when rays are just on the 3-inch diameter at the inner most and outermost wall surfaces. The crossovers of all possible rays lie half way between these two surfaces. As the end-on view of Figure 3 clearly shows, there is no direct line-of-sight through the laser penetrations of the PEP-2 or linac beamlines.

  7. Urinary tract infection - adults

    MedlinePlus

    Bladder infection - adults; UTI - adults; Cystitis - bacterial - adults; Pyelonephritis - adults; Kidney infection - adults ... to the hospital if you: Are an older adult Have kidney stones or changes in the anatomy ...

  8. Toroidal modeling of penetration of the resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Kirk, A.

    2013-04-15

    A toroidal, quasi-linear model is proposed to study the penetration dynamics of the resonant magnetic perturbation (RMP) field into the plasma. The model couples the linear, fluid plasma response to a toroidal momentum balance equation, which includes torques induced by both fluid electromagnetic force and by (kinetic) neoclassical toroidal viscous (NTV) force. The numerical results for a test toroidal equilibrium quantify the effects of various physical parameters on the field penetration and on the plasma rotation braking. The neoclassical toroidal viscous torque plays a dominant role in certain region of the plasma, for the RMP penetration problem considered in this work.

  9. Investigations of impact biomechanics for penetrating ballistic cases.

    PubMed

    Awoukeng-Goumtcha, A; Taddei, L; Tostain, F; Roth, S

    2014-01-01

    This study aims to investigate the penetration of a projectile into a surrogate human tissue numerically, using Finite Element (FE) simulation. 20% Balistic Gelatin material (BG) is simulated with an elasto-plastic hydrodynamic constitutive law, and then impacted by steel spheres at different velocities. The results from the FE simulations are compared with existing experimental data and other analytical equations from the literature. To our knowledge, this is the first study to investigate a projectile penetration by numerical simulation, and then compare the results with analytical and experimental data from previous studies. This developed model gives encouraging results for further investigations of penetrating impact of projectile in the human body. PMID:25226933

  10. Analysis of brain abscess after penetrating craniocerebral injuries in Vietnam.

    PubMed

    Rish, B L; Caveness, W F; Dillon, J D; Kistler, J P; Mohr, J P; Weiss, G H

    1981-11-01

    A population of 1221 patients from the Vietnam War with penetrating craniocerebral trauma was analyzed. Thirty-seven cases of brain abscess were documented (incidence 3%). This sequela occurred more frequently in association with extensive, deep penetrating injuries; deep, prolonged coma; cerebrospinal fluid fistulas; wound infections; facio-orbital cranial/air sinus injuries; and retained bone fragments. The mortality rate was 54%, and, of the patients who survived, 82% had significant morbidity. This is the last large population study of brain abscess after penetrating craniocerebral trauma before the availability of computed tomographic scanning and more comprehensive coma care. It should serve as base line data against which we can measure improvement.

  11. The influence of vapor pressure of chemicals on dermal penetration.

    PubMed

    Gilpin, Sarah

    2014-01-01

    Dermal exposure is an important route of entry for chemicals in occupational and consumer settings. Key to this exposure is the penetration of the skin's barrier, and key to this penetration is a chemical's vapor pressure. Until now, vapor pressure and its effects on the skin have yet to be widely studied. This review aims to provide some historical background on early work on dermal penetration for volatile materials, which has helped form later research into the effects of vapor pressure on chemical risk assessment for dermal exposures. This review should be the start of an investigation into more in-depth coverage of vapor pressure and current prediction models.

  12. Penetration into limestone targets with ogive-nose steel projectiles

    SciTech Connect

    Frew, D.J.; Green, M.L.; Forrestal, M.J.; Hanchak, S.J.

    1996-12-01

    We conducted depth of penetration experiments into limestone targets with 3.0 caliber-radius-head, 4340 Rc 45 steel projectiles. Powder guns launched two projectiles with length-to-diameter ratios of ten to striking velocities between 0.4 and 1.5 km/s. Projectiles had diameters and masses of 12.7 mm, 0. 117 kg and 25.4 mm, 0.610 kg. Based on data sets with these two projectile scales, we proposed an empirical penetration equation that described the target by its density and an empirical strength constant determined from penetration depth versus striking velocity data.

  13. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers.

    PubMed

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2014-01-01

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.

  14. Simulation of armor penetration by tungsten rods: ALEGRA validation report

    SciTech Connect

    Carroll, D.E.; Hertel, E.S. Jr.; Trucano, T.G.

    1997-11-01

    Results from simulations of the impact and penetration of tungsten alloy rods into thick rolled armor plates are presented. The calculations were performed with the CTH and ALEGRA computer codes using the DOE massively parallel TFLOPS computer co-developed by Sandia National Laboratory and Intel Corporation. Comparisons with experimental results are presented. Agreement of the two codes with each other and with the empirical results for penetration channel depth and radius is very close. Other shock physics and penetration features are also compared to simulation results.

  15. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  16. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  17. Optical microangiography reveals collateral blood perfusion dynamics in mouse cerebral cortex after focal stroke

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2015-03-01

    Arteriolo-arteriolar anastomosis's role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.

  18. Modulation of quantum dot photoluminescence in porous silicon photonic crystals as a function of the depth of their penetration

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Dmitriy S.; Martynov, Igor L.; Samokhvalov, Pavel S.; Mochalov, Konstantin E.; Chistyakov, Alexander A.; Nabiev, Igor

    2016-04-01

    Photonic crystals doped with fluorescent nanoparticles offer a plenty of interesting applications in photonics, laser physics, and biosensing. Understanding of the mechanisms and effects of modulation of the photoluminescent properties of photonic crystals by varying the depth of nanoparticle penetration should promote targeted development of nanocrystal-doped photonic crystals with desired optical and morphological properties. Here, we have investigated the penetration of semiconductor quantum dots (QDs) into porous silicon photonic crystals and performed experimental analysis and theoretical modeling of the effects of the depth of nanoparticle penetration on the photoluminescent properties of this photonic system. For this purpose, we fabricated porous silicon microcavities with an eigenmode width not exceeding 10 nm at a wavelength of 620 nm. CdSe/CdS/ZnS QDs fluorescing at 617 nm with a quantum yield of about 70% and a width at half-height of about 40 nm were used in the study. Confocal microscopy and scanning electron microscopy were used to estimate the depth of penetration of QDs into the porous silicon structure; the photoluminescence spectra, kinetics, and angular fluorescence distribution were also analyzed. Enhancement of QD photoluminescence at the microcavity eigenmode wavelength was observed. Theoretical modeling of porous silicon photonic crystals doped with QDs was performed using the finite-difference time-domain (FDTD) approach. Theoretical modeling has predicted, and the experiments have confirmed, that even a very limited depth of nanoparticle penetration into photonic crystals, not exceeding the first Bragg mirror of the microcavity, leads to significant changes in the QD luminescence spectrum determined by the modulation of the local density of photonic states in the microcavity. At the same time, complete and uniform filling of a photonic crystal with nanoparticles does not enhance this effect, which is as strong as in the case of a very

  19. Photoacoustic tomography: Ultrasonically beating optical diffusion and diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Lihong

    2014-03-01

    A decade of research has pushed photoacoustic computed tomography to the forefront of molecular-level imaging, notes SPIE Fellow Lihong Wang (Washington University, St. Louis) in his plenary talk, "Photoacoustic Tomography: Ultrasonically Beating Optical Diffusion and Diffraction." Modern optical microscopy has resolution and diffraction limitations. But noninvasive functional photoacoustic computed tomography has overcome this limit, offering deep penetration with optical contrast and ultrasonic resolution of 1 cm depth or more -- up to 7 cm of penetration in some cases, such as evaluating sentinel lymph nodes for breast cancer staging. This opens up applications in whole body imaging, brain function, oxygen saturation, label-free cell analysis, and noninvasive cancer biopsies.

  20. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  1. Zn Penetration in Liquid Metal Embrittled TWIP Steel

    NASA Astrophysics Data System (ADS)

    Kang, Heeseung; Cho, Lawrence; Lee, Changwook; De Cooman, Bruno C.

    2016-06-01

    Hot-dip Zn-coated high manganese twinning-induced plasticity (TWIP) steel is sensitive to liquid metal embrittlement (LME). The microstructure of Zn-coated TWIP steel after brittle fracture at 1123 K (850 °C) was investigated. The grain boundaries at the tip of the Zn penetration were analyzed by electron microscopy and atom probe tomography. Γ-(Fe,Mn)3Zn10 was found at the tip of the Zn penetration in the TWIP steel, implying that liquid Fe- and Mn-saturated Zn-rich alloy had percolated along the grain boundaries to the tip of the Zn penetration. Evidence for extensive Zn grain boundary diffusion ahead of the Zn-rich alloy percolation path was also observed. Both the Stoloff-Johnson-Westwood-Kamdar model and the Krishtal-Gordon-An model for LME crack formation are compatible with the present in-depth microanalysis of the Zn penetration.

  2. Modelling skin penetration using the Laplace transform technique.

    PubMed

    Anissimov, Y G; Watkinson, A

    2013-01-01

    The Laplace transform is a convenient mathematical tool for solving ordinary and partial differential equations. The application of this technique to problems arising in drug penetration through the skin is reviewed in this paper.

  3. Transmission System Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect

    Achilles, S.; Schramm, S.; Bebic, J.

    2008-02-01

    This study is an assessment of the potential impact of high levels of penetration of photovoltaic (PV) generation on transmission systems. The effort used stability simulations of a transmission system with different levels of PV generation and load.

  4. Ten self-inflicted intracranial penetrating nail gun injuries

    PubMed Central

    Yuh, Sung-Joo; Alaqeel, Ahmed

    2015-01-01

    Penetrating craniocerebral injuries from nail gun use are rare. We describe a case of 10 self-inflicted nail gun injuries with intracranial penetrations. We also review the literature and discuss management strategies of such craniocerebral trauma. A 33-year-old male with a long-standing history of severe depression took a nail gun and sustained 10 penetrating intracranial injuries. Initial neuroimaging revealed 10 penetrating nails, all sparing the major cerebral vasculature. Immediate surgical removal was undertaken in the surgical suite using a combination of craniotomies, craniectomies, and blind removal. Intracranial injuries from self-inflicted nail gun misuse is becoming increasingly more frequent. Initial appropriate clinical decision-making are critical in preventing further cortical or vascular damage. PMID:26166596

  5. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    PubMed Central

    Babalola, Chinedum Peace; Morse, Gene D.; Taiwo, Babafemi

    2016-01-01

    Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity. PMID:27777797

  6. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  7. Subungual penetration of dibutyl phthalate in human fingernails.

    PubMed

    Jackson, E M

    2008-01-01

    Dibutyl phthalate (DBP) has a wide variety of manufacturing applications and is used in both commercial and consumer products. Results of animal reproductive toxicity and teratogenicity animal studies have not been consistent in identifying DBP as a reproductive toxicant. Expert reviews for its use in consumer products have consistently concluded that it is not a reproductive risk to consumers. Results from a subungual penetration study of 100% fluid DBP applied to human fingernails showed levels of penetration at the limits of chemical detection. Even if DBP penetrated the human fingernail, its rapid metabolism by the human body would prevent its having any toxic reproductive effects. Furthermore, DBP functions as a plasticizer in consumer products such as cosmetic nail products (nail polish, basecoats, topcoats, nail hardeners), resulting in its becoming unavailable for subungual penetration seconds after application of the cosmetic nail product since it is then trapped in the rapidly forming coating. PMID:17912019

  8. Subungual penetration of dibutyl phthalate in human fingernails.

    PubMed

    Jackson, E M

    2008-01-01

    Dibutyl phthalate (DBP) has a wide variety of manufacturing applications and is used in both commercial and consumer products. Results of animal reproductive toxicity and teratogenicity animal studies have not been consistent in identifying DBP as a reproductive toxicant. Expert reviews for its use in consumer products have consistently concluded that it is not a reproductive risk to consumers. Results from a subungual penetration study of 100% fluid DBP applied to human fingernails showed levels of penetration at the limits of chemical detection. Even if DBP penetrated the human fingernail, its rapid metabolism by the human body would prevent its having any toxic reproductive effects. Furthermore, DBP functions as a plasticizer in consumer products such as cosmetic nail products (nail polish, basecoats, topcoats, nail hardeners), resulting in its becoming unavailable for subungual penetration seconds after application of the cosmetic nail product since it is then trapped in the rapidly forming coating.

  9. Development of a Rover Deployed Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schutz, A. E.; Campbell, B. A.

    2000-01-01

    Development of a rover deployable Ground Penetrating Radar (GPR) involves: the nearly finished design and testing of a transducer array with high frequency (bistatic) and low frequency (monostatic) components; and design and development of a complete impulse GPR system.

  10. Space station integrated wall design and penetration damage control

    NASA Technical Reports Server (NTRS)

    Coronado, A. R.; Gibbins, M. N.; Wright, M. A.; Stern, P. H.

    1987-01-01

    A methodology was developed to allow a designer to optimize the pressure wall, insulation, and meteoroid/debris shield system of a manned spacecraft for a given spacecraft configuration and threat environment. The threat environment consists of meteoroids and orbital debris, as specified for an arbitrary orbit and expected lifetime. An overall probability of no penetration is calculated, as well as contours of equal threat that take into account spacecraft geometry and orientation. Techniques, tools, and procedures for repairing an impacted and penetrated pressure wall were developed and tested. These techniques are applied from the spacecraft interior and account for the possibility of performing the repair in a vacuum. Hypervelocity impact testing was conducted to: (1) develop and refine appropriate penetration functions, and (2) determine the internal effects of a penetration on personnel and equipment.

  11. Measurements of current penetration during PDX discharge start-up

    SciTech Connect

    Meyerhofer, D.D.; Goldston, R.J.; Kaita, R.; Cavallo, A.; Grek, B.; Johnson, D.; McCune, D.C.; McGuire, K.; White, R.B.

    1984-11-01

    The current penetration phase of PDX discharges is examined. The Fast Ion Diagnostic Experiment has been used to measure the temporal evolution of the central q (r/a < 0.4), and to show the effect of magnetic perturbations on fast ions. During plasma current penetration, a series of magnetic perturbations was observed in the plasma. If the current was rising rapidly, the perturbations were accompanied by increases in ..beta../sub theta/ + l/sub i//2 and decreases in the loop voltage, suggesting a rapid penetration of the plasma current. When the plasma current was rising slowly, a series of minor disruptions occurred. These were accompanied by decreases in ..beta../sub theta/ + l/sub i//2 and the loop voltage, and increases in the plasma current. During this phase, current penetration may be enhanced by the change in the resistivity profile which accompanies the disruption.

  12. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  13. Evaluations of fiber optic sensors for interior applications

    SciTech Connect

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  14. Solar energy market penetration models - Science or number mysticism

    NASA Technical Reports Server (NTRS)

    Warren, E. H., Jr.

    1980-01-01

    The forecast market potential of a solar technology is an important factor determining its R&D funding. Since solar energy market penetration models are the method used to forecast market potential, they have a pivotal role in a solar technology's development. This paper critiques the applicability of the most common solar energy market penetration models. It is argued that the assumptions underlying the foundations of rigorously developed models, or the absence of a reasonable foundation for the remaining models, restrict their applicability.

  15. Effect of DOP heterodispersion on HEPA-filter-penetration measurements

    SciTech Connect

    Bergman, W.; Biermann, A.

    1984-08-09

    The accuracy of the standard US test method for certifying High-Efficiency Particulate Air (HEPA) filters has been in question since the finding by Hinds, et al. that the dioctyl phthalate (DOP) aerosol used in the test is not monodisperse as had been assumed and that particle-size analyzers, or owls, could not distinguish between different particle-size distributions with the same owl reading. We have studied theoretically and experimentally the filter efficiency for different DOP size distributions with the same owl reading. Our studies show that the effect of varying DOP size distributions on the measured HEPA-filter penetration depends on the light-scattering-photometer response and on the HEPA-filter penetration curve, both measured as a function of particle size. HEPA-filter penetration for a heterodisperse DOP aerosol may be increased, decreased, or remain the same when compared to the filter penetration for monodisperse aerosols. Using experimental HEPA-filter penetration and photometer response curves, we show that heterodisperse DOP aerosols (D/sub cmd/ 0.19 and sigma g = 1.4) yield 24% lower penetrations than that for monodisperse DOP aerosols (D/sub cmd/ = 0.3 and sigma g = 1.0). This surprisingly small effect of the DOP heterodispersion on HEPA-filter penetration is due to the response function of the owl that is similar to the response of the photometer. Changes in the particle-size distribution are therefore seen in a similar fashion by both the photometer and the owl. We also show that replacing the owl with modern particle-size spectrometers may lead to large errors in filter penetration because the particle-size spectrometers do not provide measurements that correspond to the photometer measurements. 15 references, 16 figures.

  16. Penetrating nontorso trauma: the head and the neck

    PubMed Central

    Ball, Chad G.

    2015-01-01

    Summary Acute penetrating injuries to the head and neck cause considerable anxiety for most clinicians owing to concern for airway control and neurologic injury and to limited clinician experience in most centres. This article discusses an organized approach to the evaluation and initial treatment of penetrating injuries to the head and neck based on regional anatomy and clinical examination. The approach is particularly helpful in the context of ongoing hemorrhage and/or airway compromise. PMID:26022154

  17. Gastric ulcer penetrating to liver diagnosed by endoscopic biopsy

    PubMed Central

    Kayacetin, Ertugrul; Kayacetin, Serra

    2004-01-01

    Liver penetration is a rare but serious complication of peptic ulcer disease. Usually the diagnosis is made by operation or autopsy. Clinical and laboratory data were no specific. A 64-year-old man was admitted with upper gastrointestinal bleeding. Hepatic penetration was diagnosed as the cause of bleeding. Endoscopy showed a large gastric ulcer with a pseudotumoral mass protruding from the ulcer bed. Definitive diagnosis was established by endoscopic biopsies of the ulcer base. PMID:15188520

  18. Penetrating nontorso trauma: the head and the neck.

    PubMed

    Ball, Chad G

    2015-08-01

    Acute penetrating injuries to the head and neck cause considerable anxiety for most clinicians owing to concern for airway control and neurologic injury and to limited clinician experience in most centres. This article discusses an organized approach to the evaluation and initial treatment of penetrating injuries to the head and neck based on regional anatomy and clinical examination. The approach is particularly helpful in the context of ongoing hemorrhage and/or airway compromise.

  19. Evaluation of percutaneous penetration of natural rubber latex proteins.

    PubMed

    Hayes, B B; Afshari, A; Millecchia, L; Willard, P A; Povoski, S P; Meade, B J

    2000-08-01

    Latex allergy is recognized worldwide as a serious health risk. To date, exposure assessment and intervention strategies have focused primarily on respiratory protection; this work evaluates the potential role of dermal protein penetration in the development of latex allergy. In vitro penetration models using flow-through diffusion cells and both human surgical specimens and hairless guinea pig skin (CrL: IAF/HA) demonstrated iodinated latex proteins (ammoniated and non-ammoniated) penetrating into and through both intact and abraded skin. Although less than 1% penetration was observed with intact skin, up to 23% of latex proteins applied to abraded skin were recovered from receptor fluid within 24 h of exposure. Phosphoimaging of the concentrated effluent revealed proteins ranging in size from 3 to 26 kDa. Using a (3)H(2)O penetration assay to evaluate barrier integrity, the amount of latex protein penetration was found to positively correlate with the degree of dermabrasion. Immunohistochemistry of the skin localized latex proteins in the Langerhans cell-rich epidermis and in the dermis. Both in vitro penetration studies and immunohistochemistry supported the use of hairless guinea pig skin as a surrogate for human skin in evaluating latex protein penetration. In studies performed in vivo, 35% of hairless guinea pigs topically exposed to latex proteins (100 microg) 5 days per week for 3 months demonstrated elevations in latex-specific IgG1. The implication for these data is that the skin is not only a plausible route for latex sensitization but can be a major exposure route when the integument has been compromised. PMID:10910983

  20. Conservative management of aortic arch injury following penetrating trauma.

    PubMed

    Mohammed, R K; Cheung, S; Parikh, S P; Asgaria, K

    2015-04-01

    Aortic arch injuries following penetrating trauma are typically lethal events with high mortality rates. Traditionally, the standard of care for patients presenting with penetrating injury and aortic involvement has included surgical intervention. We report the case of a 31-year-old man who was managed non-operatively after sustaining multiple stab wounds to the left chest and presenting with mid aortic arch injury.

  1. Probabilistic predictions of penetrating injury to anatomic structures.

    PubMed Central

    Ogunyemi, O.; Webber, B.; Clarke, J. R.

    1997-01-01

    This paper presents an interactive 3D graphical system which allows the user to visualize different bullet path hypotheses and stab wound paths and computes the probability that an anatomical structure associated with a given penetration path is injured. Probabilities can help to identify those anatomical structures which have potentially critical damage from penetrating trauma and differentiate these from structures that are not seriously injured. Images Figure 3 Figure 4 PMID:9357718

  2. Bacterial penetration after obturation with four different root canal sealers.

    PubMed

    Yücel, Ali Cağin; Güler, Eda; Güler, Ahmet Umut; Ertaş, Ertan

    2006-09-01

    The aim of this study was to compare bacterial penetration after obturation with lateral compaction technique using four different root canal sealers. This study was performed on 100 teeth including negative control (n = 10), positive control (n = 10), and experimental groups (n = 80). 80 teeth were randomly divided into five groups of 20 teeth each and obturated with AH 26 (A), AH Plus (AP), Sealapex (S), Ketac-Endo (K) root canal sealers. Evaluation was carried out for 60 days. After 30 days of comparing the bacterial penetration values, total penetration was observed in 85% of the Group AP, and group K, 80% of the group S, and 75% of the group A. According to the results of chi(2) test, there was no statistically significant difference observed between any groups (p > 0.05). After 60 days of comparing the bacterial penetration values, total penetration was observed in 100% of the group AP, group K, and group S and 95% of the group A. It may be concluded that under the conditions of this study, there was no difference in the bacterial penetration of the four root canal sealers tested at 30 and 60 days.

  3. LeciPlex, invasomes, and liposomes: A skin penetration study.

    PubMed

    Shah, Sanket M; Ashtikar, Mukul; Jain, Ankitkumar S; Makhija, Dinesh T; Nikam, Yuvraj; Gude, Rajiv P; Steiniger, Frank; Jagtap, Aarti A; Nagarsenker, Mangal S; Fahr, Alfred

    2015-07-25

    The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex. PMID:26002568

  4. LeciPlex, invasomes, and liposomes: A skin penetration study.

    PubMed

    Shah, Sanket M; Ashtikar, Mukul; Jain, Ankitkumar S; Makhija, Dinesh T; Nikam, Yuvraj; Gude, Rajiv P; Steiniger, Frank; Jagtap, Aarti A; Nagarsenker, Mangal S; Fahr, Alfred

    2015-07-25

    The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex.

  5. Depth of penetration in periodontal pockets with oral irrigation.

    PubMed

    Eakle, W S; Ford, C; Boyd, R L

    1986-01-01

    The purpose of this study was to determine the effectiveness of the Water Pik oral irrigator as a vehicle for delivering an aqueous solution into periodontal pockets. Plaque-disclosing dye diluted with sterile saline solution was applied with the irrigator toward the gingival margins of teeth at 90 degrees and at 45 degrees prior to their extraction. The mean % penetration measured between a reference notch at the gingival crest and the periodontal ligament at the bottom of the pocket showed no statistical difference between the two angles of application. Penetration ranged from 44% to 71%, the lowest being into pockets 4-7 mm; higher mean penetration was noted in both subgroups 0-3 and greater than 7 mm. No statistical difference was found between proximal and facial or lingual surfaces, maxilla and mandible, existence of tooth contact, and proximal tissue contour or consistency. The mean % penetration was independent of pocket depth (chi 2 analysis). Correlation between pocket depth and mean penetration was low for all but one subgroup (90 degrees application and pockets greater than 7 mm). The results suggest that the oral irrigator will deliver an aqueous solution into periodontal pockets and will penetrate on average to approximately half the depth of the pockets. PMID:3003166

  6. Velocity Regimes for Sphere Penetration of Granular Materials

    NASA Astrophysics Data System (ADS)

    Omidvar, Mehdi; Bless, Stephan; Guzman, Ivan; Iskander, Magued

    2014-03-01

    Penetration of granular materials as a function of velocity is made complex by transitions where one or another physical process is dominant. At the lowest velocity, bearing resistance (which depends on friction and depth) is dominant, then dynamic Coulomb friction, then inertial resistance, then particle crushing. There is also a special regime where resistance is very high during the first radius of penetration, probably due to shock wave effects. These transitions are very evident in penetration of dry sand, between 0 and 300 m/s, as revealed by measurements of deceleration and the final depth of penetration. With crushed quartz particles, the particle crushing regime is not observed. Additionally, in saturated sand, the crushing regime appears to be suppressed. The regime where particles are crushed corresponds to an increase in penetration resistance, and this plays a large role in the relative difficulty in penetration of dry as opposed to wet materials. Measurements of deceleration give rise to estimates of average stress in the granular materials. For the case of sand, the threshold for comminution is at about 100 MPa, and this is also where significant crushing of sand is seen in triaxial compression experiments. Funded by Defense Threat Reduction Agency grant HDTRA1-10-1-0049.

  7. Development of fibre optic broadband sources at 1 μm region for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Trifanov, Irina; Berendt, Martin O.; Salcedo, José R.; Podoleanu, Adrian G.; Lobo Ribeiro, António B.

    2008-09-01

    Recent developments on broadband optical sources emitting at 1050 nm wavelength for medical applications, in particular optical coherence tomography (OCT), have revealed enhanced depth penetration into the choroid, reduced scattering losses and improved image performances in eyes with turbid media, when compared to the most commercial used semiconductor optical source technology at 820 nm. In this paper, we present our study of fibre optic broadband sources (BBS) at 1 micron region, based on the amplified spontaneous emission (ASE) from rare-earth doped silica fibres for the integration into OCT systems. The target specifications for this type of sources are: 1050 nm central emission wavelength, with spectral width of ~70 nm, tens of miliwatts of output power and smoothly shaped output spectra. Several combinations of rare-earth doped optical fibres integrated into different fibre optic configurations have been tested. Optical bandwidth optimization and spectral shaping using different fibre optic techniques are presented and their autocorrelation function compared.

  8. The optics of human skin

    SciTech Connect

    Anderson, R.R.; Parrish, J.A.

    1981-07-01

    An integrated review of the transfer of optical radiation into human skin is presented, aimed at developing useful models for photomedicine. The component chromophores of epidermis and stratum corneum in general determine the attenuation of radiation in these layers, moreso than does optical scattering. Epidermal thickness and melanization are important factors for UV wavelengths less than 300 nm, whereas the attenuation of UVA (320-400 nm) and visible radiation is primarily via melanin. The selective penetration of all optical wavelengths into psoriatic skin can be maximized by application of clear lipophilic liquids, which decrease regular reflectance by a refractive-index matching mechanism. Sensitivity to wavelengths less than 320 nm can be enhanced by prolonged aqueous bathing, which extracts urocanic acid and other diffusible epidermal chromophores. Optical properties of the dermis are modelled using the Kubelka-Munk approach, and calculations of scattering and absorption coefficients are presented. This simple approach allows estimates of the penetration of radiation in vivo using noninvasive measurements of cutaneous spectral remittance (diffuse reflectance). Although the blood chromophores Hb, HbO/sup 2/, and bilirubin determine dermal absorption of wavelengths longer than 320 nm, scattering by collagen fibers largely determines the depths to which these wavelengths penetrate the dermis, and profoundly modifies skin colors. An optical ''window'' exists between 600 and 1300 nm, which offers the possibility of treating large tissue volumes with certain long-wavelength photosensitizers. Moreover, whenever photosensitized action spectra extend across the near UV and/or visible spectrum, judicious choice of wavelengths allows some selection of the tissue layers directly affected.

  9. Air pollutant penetration through airflow leaks into buildings

    SciTech Connect

    Liu, De-Ling

    2002-09-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 {micro}m are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 {micro}m) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending

  10. Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+δ platelets

    SciTech Connect

    By: Curran, P. J.; Clem, J. R.; Bending, S. J.; Tsuchiya, Y.; Tamegai, T.

    2010-10-01

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation does not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.

  11. Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+δ platelets

    SciTech Connect

    Curran, P. J.; Clem, J. R.; Bending, S. J.; Tsuchiya, Y.; Tamegai, T.

    2010-10-01

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation does not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.

  12. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization.

    PubMed

    Ho, Yi-Ju; Chang, Yuan-Chih; Yeh, Chih-Kuang

    2016-01-01

    Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm(2) (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm(2) and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm(2) and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance. PMID:26909113

  13. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization

    PubMed Central

    Ho, Yi-Ju; Chang, Yuan-Chih; Yeh, Chih-Kuang

    2016-01-01

    Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm2 (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm2 and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm2 and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance. PMID:26909113

  14. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    and dentin than those of the air-cooled turbine drill with carbine bur. Although temperatures created with the laser were higher, the diameter of the hot spot on the surface and the thermal penetration distance in the pulpal direction were significantly less than those of the dental drill. Therefore, the pulsed infrared Nd:YAG laser, with 320 micrometers fiber optic delivery, can be applied to enamel and dentin without detrimental thermal pulpal effects.

  15. Evaluation of drug penetration with cationic micelles and their penetration mechanism using an in vitro tumor model.

    PubMed

    Suzuki, Hidenori; Bae, You Han

    2016-08-01

    Elevated interstitial fluid pressure (IFP) and abnormal extracellular matrix (ECM) are major factors causing significant barriers to penetration of nanomedicines in solid tumors. To better understand the barriers, various in vitro tumor models including multicellular spheroids and multilayered cell cultures (MCCs) have been developing. Recently, we have established a unique in vitro tumor model composed of a MCC and an Ussing chamber system which is modified to add a hydraulic pressure gradient through the MCC. In this study, we evaluated the drug penetration ability of cationic micelles using the unique in vitro tumor model. The doxorubicin (DOX)-loaded cationic micelles, which are formed from a triblock copolymer of poly(d,l-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(d,l-lactide-co-glycolide), deeply penetrated and released the DOX throughout the MCC against convectional flow caused by a hydraulic pressure gradient. The studies using endocytosis markers and inhibitors showed that the micelles utilized mainly macropinocytosis as an internalization pathway. Furthermore, the penetration was apparently inhibited by treatment with exocytosis inhibitor Exo1. These results suggest that the active penetration of the cationic micelles is induced by iterative transcytosis via macropinocytosis and exocytosis. Our findings could be beneficial information to improve intratumoral penetration in new nanomedicines for solid tumors. PMID:27182814

  16. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    SciTech Connect

    Shu-wen Tan; Ying Jin; Hui Yu; Guo-yong Wu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the human normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)

  17. Penetrators for in situ subsurface investigations of Europa

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.; Smith, A.; Fortes, A. D.; Barber, S.; Brown, P.; Church, P.; Collinson, G.; Coates, A. J.; Collins, G.; Crawford, I. A.; Dehant, V.; Chela-Flores, J.; Griffiths, A. D.; Grindrod, P. M.; Gurvits, L. I.; Hagermann, A.; Hussmann, H.; Jaumann, R.; Jones, A. P.; Joy, K. H.; Karatekin, O.; Miljkovic, K.; Palomba, E.; Pike, W. T.; Prieto-Ballesteros, O.; Raulin, F.; Sephton, M. A.; Sheridan, S.; Sims, M.; Storrie-Lombardi, M. C.; Ambrosi, R.; Fielding, J.; Fraser, G.; Gao, Y.; Jones, G. H.; Kargl, G.; Karl, W. J.; Macagnano, A.; Mukherjee, A.; Muller, J. P.; Phipps, A.; Pullan, D.; Richter, L.; Sohl, F.; Snape, J.; Sykes, J.; Wells, N.

    2011-08-01

    We present the scientific case for inclusion of penetrators into the Europan surface, and the candidate instruments which could significantly enhance the scientific return of the joint ESA/NASA Europa-Jupiter System Mission (EJSM). Moreover, a surface element would provide an exciting and inspirational mission highlight which would encourage public and political support for the mission.Whilst many of the EJSM science goals can be achieved from the proposed orbital platform, only surface elements can provide key exploration capabilities including direct chemical sampling and associated astrobiological material detection, and sensitive habitability determination. A targeted landing site of upwelled material could provide access to potential biological material originating from deep beneath the ice.Penetrators can also enable more capable geophysical investigations of Europa (and Ganymede) interior body structures, mineralogy, mechanical, magnetic, electrical and thermal properties. They would provide ground truth, not just for the orbital observations of Europa, but could also improve confidence of interpretation of observations of the other Jovian moons. Additionally, penetrators on both Europa and Ganymede, would allow valuable comparison of these worlds, and gather significant information relevant to future landed missions. The advocated low mass penetrators also offer a comparatively low cost method of achieving these important science goals.A payload of two penetrators is proposed to provide redundancy, and improve scientific return, including enhanced networked seismometer performance and diversity of sampled regions.We also describe the associated candidate instruments, penetrator system architecture, and technical challenges for such penetrators, and include their current status and future development plans.

  18. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation.

    PubMed

    Zhong, Yan Kai; Lai, Yi-Chun; Tu, Ming-Hsiang; Chen, Bo-Ruei; Fu, Sze Ming; Yu, Peichen; Lin, Albert

    2016-05-16

    In this work, we present the result of nickel (Ni)-based metamaterial perfect absorbers (MPA) with ultra-broadband close-to-one absorbance. The experimental broadband characteristic is significantly improved over the past effort on metamaterial perfect absorbers. An in-depth physical picture and quantitative analysis is presented to reveal the physical origin of its ultrabroadband nature. The key constituent is the cancellation of the reflected wave using ultra-thin, moderate-extinction metallic films. The ultra-thin metal thickness can reduce the reflection as the optical field penetrates through the metallic films. This leads to minimal reflection at each ultra-thin metal layer, and light is penetrating into the Ni/SiO2 stacking. More intuitively, when the layer thickness is much smaller than the photon wavelength, the layer is essentially invisible to the photons. This results in absorption in the metal thin-film through penetration while there is minimal reflection by the metal film. More importantly, the experimental evidence for omni-directionality and polarization-insensitivity are established for the proposed design. Detailed measurement is conducted. Due to the ultrathin metal layers and the satisfactory tolerance in dielectric thickness, the broadband absorption has minimal degradation at oblique incidence. Such a wide angle, polarization-insensitive, ultra-broadband MPA can be very promising in the future, and the optical physics using sub-skin-depth metal film can also facilitate miniaturized high-performance nano-photonic devices. PMID:27409956

  19. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation.

    PubMed

    Zhong, Yan Kai; Lai, Yi-Chun; Tu, Ming-Hsiang; Chen, Bo-Ruei; Fu, Sze Ming; Yu, Peichen; Lin, Albert

    2016-05-16

    In this work, we present the result of nickel (Ni)-based metamaterial perfect absorbers (MPA) with ultra-broadband close-to-one absorbance. The experimental broadband characteristic is significantly improved over the past effort on metamaterial perfect absorbers. An in-depth physical picture and quantitative analysis is presented to reveal the physical origin of its ultrabroadband nature. The key constituent is the cancellation of the reflected wave using ultra-thin, moderate-extinction metallic films. The ultra-thin metal thickness can reduce the reflection as the optical field penetrates through the metallic films. This leads to minimal reflection at each ultra-thin metal layer, and light is penetrating into the Ni/SiO2 stacking. More intuitively, when the layer thickness is much smaller than the photon wavelength, the layer is essentially invisible to the photons. This results in absorption in the metal thin-film through penetration while there is minimal reflection by the metal film. More importantly, the experimental evidence for omni-directionality and polarization-insensitivity are established for the proposed design. Detailed measurement is conducted. Due to the ultrathin metal layers and the satisfactory tolerance in dielectric thickness, the broadband absorption has minimal degradation at oblique incidence. Such a wide angle, polarization-insensitive, ultra-broadband MPA can be very promising in the future, and the optical physics using sub-skin-depth metal film can also facilitate miniaturized high-performance nano-photonic devices.

  20. Electroporation-assisted penetration of zinc oxide nanoparticles in ex vivo normal and cancerous human colon tissue

    NASA Astrophysics Data System (ADS)

    Zhou, L. P.; Wu, G. Y.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.

    2015-11-01

    In this study, we presented the research of the penetration of zinc oxide nanoparticles (ZnO NPs) (30 and 90 nm), and electroporation (EP) assisted penetration of the ZnO NPs in the human normal colon (NC) and adenomatous colon (AC) tissues studied with optical coherence tomography (OCT) and diffuse reflectance (DR) measurement. The results have shown that the attenuation coefficient of colon tissue after the application of 30 or 90 nm ZnO NPs alone decreased approximately by 28% and 14% for NC tissue, 35% and 22% for AC tissue, respectively; while the attenuation coefficient of colon tissue after combined application of 30 or 90 nm ZnO NPs/EP decreased approximately by 46% and 30% for NC tissue, and 53% and 42% for AC tissue, respectively. The results illustrate EP can significantly increase the penetration of ZnO NPs in the colon tissue, especially in AC tissue. Through the analysis of attenuation coefficient and reflectance intensity of the colon tissue, we find that the accumulation of the ZnO NPs in the colon tissue greatly influenced the tissue optical properties.

  1. Adult intussusception.

    PubMed Central

    Azar, T; Berger, D L

    1997-01-01

    OBJECTIVE: The objectives were to review adult intussusception, its diagnosis, and its treatment. SUMMARY BACKGROUND DATA: Adult intussusception represents 1% of all bowel obstructions, 5% of all intussusceptions, and 0.003%-0.02% of all hospital admissions. Intussusception is a different entity in adults than it is in children. METHODS: The records of all patients 18 years and older with the postoperative diagnosis of intussusception at the Massachusetts General Hospital during the years 1964 through 1993 were reviewed retrospectively. The 58 patients were divided into those with benign enteric, malignant enteric, benign colonic, and malignant colonic lesions associated with their intussusception. The diagnosis and treatment of each were reviewed. RESULTS: In 30 years at the Massachusetts General Hospital, there are 58 cases of surgically proven adult intussusception. The patients' mean age was 54.4 years. Most patients presented with symptoms consistent with bowel obstruction. There were 44 enteric and 14 colonic intussusceptions. Ninety-three percent of the intussusceptions were associated with a pathologic lesion. Forty-eight percent of the enteric lesions were malignant and 52% were benign. Forty-three percent of the colonic lesions were malignant and 57% were benign. CONCLUSIONS: Intussusception occurs rarely in adults. It presents with a variety of acute, intermittent, and chronic symptoms, thus making its preoperative diagnosis difficult. Computed tomography scanning proved to be the most useful diagnostic radiologic method. The diagnosis and treatment of adult intussusception are surgical. Surgical resection of the intussusception without reduction is the preferred treatment in adults, as almost half of both colonic and enteric intussusceptions are associated with malignancy. PMID:9296505

  2. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  3. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  4. Investigation of molecular penetration depth variation with SMBI fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo

    2016-09-01

    We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).

  5. Metal Penetration in Sand Molds for Steel Castings: Annual Report

    SciTech Connect

    Barlow, J.O.; Stefanescu, D.M.; Lane, A.M.; Schreiber, W.C.; Owens, M.; Piwonka, T.S.

    1996-04-01

    Case studies of samples of penetration provided by consortium members showed examples of mechanical-type penetration defects and of what appeared to be chemical penetration. Sessile drop experiments of various mold substrate materials using carbon, stainless, and Mn steels showed that Mn steel wets silica strongly, indicating that silica is not a suitable mod material for this family of alloys. Contact angles were lower for steels than for cast irons. Magnesite appeared to be the best overall mold material, although zircon flour also performed well. A simplified 1-D model was developed which predicts the diffusion rates which could cause chemical penetration. It shows that, contrary to the case in cast iron, chemical penetration is a possibility in medium and low carbon steels, as diffusion of C to the casting surface may not always occur quickly enough to protect the surface from an oxidizing reaction. The mass spectrometer gas chromatograph train was modified for accurately determining the water content of gas at the mold/metal interface. Initial gas measurements indicated that the gas generated at the interface in steel castings is 80% H2-20% CO, instead of the 50% H2- 50% CO mixture found in cast iron.

  6. Evaluation of nicotinamide microemulsion on the skin penetration enhancement.

    PubMed

    Boonme, Prapaporn; Boonthongchuay, Chalida; Wongpoowarak, Wibul; Amnuaikit, Thanaporn

    2016-01-01

    This study purposed to evaluate a microemulsion containing nicotinamide for its characteristics, stability, and skin penetration and retention comparing with a solution of nicotinamide in 2:1 mixture of water and isopropyl alcohol (IPA). The microemulsion system was composed of 1:1 mixture of Span80 and Tween80 as a surfactant mixture, isopropyl palmitate (IPP) as an oil phase, and 2:1 mixture of water and IPA as an aqueous phase. Nicotinamide microemulsion was prepared by dissolving the active in the aqueous phase before simply mixing with the other components. It was determined for its characteristics and stability under various conditions. The skin penetration and retention studies of nicotinamide microemulsion and solution were performed by modified Franz diffusion cells, using newborn pig skin as the membrane. The results showed that nicotinamide microemulsion could be obtained as clear yellowish liquid, was water-in-oil (w/o) type, possessed Newtonian flow, and exhibited physicochemical stability when kept at 4 °C and room temperature (≈30 ± 2 °C) during 3 months. From the skin penetration data, the microemulsion could enhance the skin penetration of nicotinamide comparing with the solution. Additionally, nicotinamide microemulsion could provide much higher amount of skin retention than that of skin penetration, resulting in suitability for a cosmeceutical product.

  7. Penetration and fusion of phospholipid vesicles by lysozyme

    SciTech Connect

    Kim, J.; Kim, H.

    1989-10-01

    The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-(({sup 125}I)iodophenyl)diazirine (({sup 125}I)TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent ({sup 125}I)TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.

  8. Investigation of molecular penetration depth variation with SMBI fluxes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Lin; Wang, Zhan-Hui; Xu, Min; Wang, Qi; Nie, Lin; Feng, Hao; Sun, Wei-Guo

    2016-09-01

    We study the molecular penetration depth variation with the SMBI fluxes. The molecular transport process and the penetration depth during SMBI with various injection velocities and densities are simulated and compared. It is found that the penetration depth of molecules strongly depends on the radial convective transport of SMBI and it increases with the increase of the injection velocity. The penetration depth does not vary much once the SMBI injection density is larger than a critical value due to the dramatic increase of the dissociation rate on the fueling path. An effective way to improve the SMBI penetration depth has been predicted, which is SMBI with a large radial injection velocity and a lower molecule injection density than the critical density. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375053, 11575055, 11405022, and 11405112), the Chinese National Fusion Project for ITER (Grant Nos. 2013GB107001 and 2013GB112005), the International S&T Cooperation Program of China (Grant No. 2015DFA61760), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).

  9. Validated models for predicting skin penetration from different vehicles.

    PubMed

    Ghafourian, Taravat; Samaras, Eleftherios G; Brooks, James D; Riviere, Jim E

    2010-12-23

    The permeability of a penetrant though skin is controlled by the properties of the penetrants and the mixture components, which in turn relates to the molecular structures. Despite the well-investigated models for compound permeation through skin, the effect of vehicles and mixture components has not received much attention. The aim of this Quantitative Structure Activity Relationship (QSAR) study was to develop a statistically validated model for the prediction of skin permeability coefficients of compounds dissolved in different vehicles. Furthermore, the model can help with the elucidation of the mechanisms involved in the permeation process. With this goal in mind, the skin permeability of four different penetrants each blended in 24 different solvent mixtures were determined from diffusion cell studies using porcine skin. The resulting 96 kp values were combined with a previous dataset of 288 kp data for QSAR analysis. Stepwise regression analysis was used for the selection of the most significant molecular descriptors and development of several regression models. The selected QSAR employed two penetrant descriptors of Wiener topological index and total lipole moment, boiling point of the solvent and the difference between the melting point of the penetrant and the melting point of the solvent. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.454 for the logkp value of the test set.

  10. The Diffusion of Simple Penetrants in Tangent Site Polymer Melts

    SciTech Connect

    Rottach, Dana R.; Tillman, Patrick A.; McCoy, John D.; Plimpton, Steven J.; Curro, John G.

    1999-06-30

    The diffusive behavior of penetrants in simple polymer melts was investigated by molecular dynamics simulation. For the case where the polymer melt consisted of pearl-necklace chains, the diffusive behavior of the loose pearl penetrants was seen to be qualitatively different than would be expected in realistic models of polymer melts. In particular, there was little or no ''non-Fickiano'' region; the variation of the diffusion coefficient with the penetrant diameter was what one would expect for diffusion through small molecular liquids; and, finally, the long time tail of the velocity auto correlation displayed a ''-3/2'' power law form, also as in the small molecular liquid case. When the chains' backbone motion was further constrained by the introduction of a bond angle potential, the qualitative nature of the penetrant diffusion became more ''polymer-like''. A non-Fickian region developed; the diffusion coefficient varied more rapidly with penetrant diameter; and the velocity autocorrelation function developed a ''-5/2'' power law tail as would be expected for the diffusion of particles with a wide distribution of trapping times.

  11. Evaluation of nicotinamide microemulsion on the skin penetration enhancement.

    PubMed

    Boonme, Prapaporn; Boonthongchuay, Chalida; Wongpoowarak, Wibul; Amnuaikit, Thanaporn

    2016-01-01

    This study purposed to evaluate a microemulsion containing nicotinamide for its characteristics, stability, and skin penetration and retention comparing with a solution of nicotinamide in 2:1 mixture of water and isopropyl alcohol (IPA). The microemulsion system was composed of 1:1 mixture of Span80 and Tween80 as a surfactant mixture, isopropyl palmitate (IPP) as an oil phase, and 2:1 mixture of water and IPA as an aqueous phase. Nicotinamide microemulsion was prepared by dissolving the active in the aqueous phase before simply mixing with the other components. It was determined for its characteristics and stability under various conditions. The skin penetration and retention studies of nicotinamide microemulsion and solution were performed by modified Franz diffusion cells, using newborn pig skin as the membrane. The results showed that nicotinamide microemulsion could be obtained as clear yellowish liquid, was water-in-oil (w/o) type, possessed Newtonian flow, and exhibited physicochemical stability when kept at 4 °C and room temperature (≈30 ± 2 °C) during 3 months. From the skin penetration data, the microemulsion could enhance the skin penetration of nicotinamide comparing with the solution. Additionally, nicotinamide microemulsion could provide much higher amount of skin retention than that of skin penetration, resulting in suitability for a cosmeceutical product. PMID:25318786

  12. Penetration of ASM 981 in canine skin: a comparative study.

    PubMed

    Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J

    2006-01-01

    ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.

  13. Penetration of resonant magnetic perturbations in turbulent edge plasmas

    NASA Astrophysics Data System (ADS)

    Monnier, A.; Fuhr, G.; Beyer, P.; Marcus, F. A.; Benkadda, S.; Garbet, X.

    2014-06-01

    Comprehension of the interactions between tokamak edge plasmas and externally induced resonant magnetic perturbations (RMPs) is an important step in the understanding of the control of edge-localized modes by these RMPs. Such control has been demonstrated experimentally, but previous theoretical investigations have revealed a possible screening of RMPs by a sheared rotation of the plasma. In this work, the penetration of RMPs is investigated via numerical simulations in a reduced magnetohydrodynamic model using the three-dimensional electromagnetic turbulence code EMEDGE3D. In this model, the plasma response to RMPs can be studied in the presence of flux-driven micro-turbulence and a transport barrier induced by sheared plasma rotation. The interplay is, in a first part, studied in a non-turbulent case to deduce a criterion for the penetration in a rotating plasma that is governed by the generation of counter currents. When the plasma is studied in a statistically stationary turbulent state, the self-consistent plasma rotation, governed by Reynolds and Maxwell stresses, leads to a self-organization where RMP penetrates. In a turbulent plasma in the presence of a transport barrier, the RMP harmonic that is resonant at the barrier centre is found to penetrate partially. This partial penetration is sufficient to trigger a local flattening of the pressure gradient that is known to be at the origin of the control of transport barrier relaxations in the present model.

  14. Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization.

    PubMed

    Eeman, M; Berquand, A; Dufrêne, Y F; Paquot, M; Dufour, S; Deleu, M

    2006-12-19

    Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.

  15. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  16. Optic neuritis

    PubMed Central

    Pau, D; Al Zubidi, N; Yalamanchili, S; Plant, G T; Lee, A G

    2011-01-01

    Aims The aim of this study is to provide a clinical update on optic neuritis (ON), its association with multiple sclerosis (MS), and neuromyelitis optica (NMO). Methods This study included a PubMed review of the literature written in the English language. Results ON in adults is typically idiopathic or demyelinating, and is characterised by unilateral, subacute, painful loss of vision that is not associated with any systemic or other neurological symptoms. Demyelinating ON is associated with MS, and we review the key studies of ON including the ON treatment trial and several other MS treatment trials and NMO. Conclusion Acute demyelinating ON can occur in isolation or be associated with MS. Typical ON does not require additional evaluation other than cranial magnetic resonance imaging. NMO is likely a separate disorder from MS and the ON in NMO has a different treatment and prognosis. Methodology The authors conducted an English language search using Pubmed from the years 1964 to 2010 using the search terms ‘ON', ‘MS' and ‘NMO'. The authors included original articles, review articles, and case reports, which revealed new aspects as far as epidemiology, histopathology, clinical manifestations, imaging, genetics, and treatment of ON. Titles were reviewed for topicality and full references were obtained. Letters to the editor, unpublished work, and abstracts were not included in this review. PMID:21527960

  17. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides.

    PubMed

    Cascales, Laura; Henriques, Sónia T; Kerr, Markus C; Huang, Yen-Hua; Sweet, Matthew J; Daly, Norelle L; Craik, David J

    2011-10-21

    Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides. PMID:21873420

  18. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides.

    PubMed

    Cascales, Laura; Henriques, Sónia T; Kerr, Markus C; Huang, Yen-Hua; Sweet, Matthew J; Daly, Norelle L; Craik, David J

    2011-10-21

    Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides.

  19. Effects of Various Penetration Enhancers on Penetration of Aminophylline Through Shed Snake Skin

    PubMed Central

    Kouchak, Maryam; Handali, Somayeh

    2014-01-01

    Background: Cellulite is the accumulation of subcutaneous fat and connective tissue in tights and buttocks. Xanthines, such as aminophylline, are used as phosphodiesterase inhibitors, and are also adenosine receptor antagonists. Objectives: The aim of the present study was to characterize in vitro aminophylline transdermal absorption through shed snake skin, and to investigate the absorption enhancing effect of various enhancers. Materials and Methods: Aminophylline gels were prepared using theophylline and ethylenediamine as raw materials of aminophylline, hydroxypropyl methyl cellulose (HPMC) F4M as gelling agent, and propylene glycol as a co-solvent. Sodium tauroglycocholate (STGC) (100, 200, and 500 μg/mL), lauric acid (1.7 and 15%), and ethanol (60%) were added as enhancers. In vitro percutaneous absorption experiments were performed on snake skin using Franz diffusion cells. Flux (J), permeability coefficient (P), and enhancement factor (EF) for each formulation were calculated. Results: The results indicated that all of enhancers significantly enhanced drug permeability. This effect was decreased by increasing the concentration of STGC; in contrast, by increasing the concentration of lauric acid from 1.7 to 15%, EF was enhanced Although ethanol (60%) and STGC (100 μg/mL) showed the highest EFs, the effect of ethanol on drug permeability appeared with a lag time. Conclusions: According to the findings, type and concentration of penetration enhancers can effect on transdermal permeation of drug. PMID:24644435

  20. Incompletely Penetrant PKD1 Alleles Mimic the Renal Manifestations of ARPKD

    PubMed Central

    Vujic, Mihailo; Heyer, Christina M.; Ars, Elisabet; Hopp, Katharina; Markoff, Arseni; Örndal, Charlotte; Rudenhed, Bengt; Nasr, Samih H.; Torres, Vicente E.; Torra, Roser

    2010-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), caused by mutation in PKD1 or PKD2, is usually an adult-onset disorder but can rarely manifest as a neonatal disease within a family characterized by otherwise typical ADPKD. Coinheritance of a hypomorphic PKD1 allele in trans with an inactivating PKD1 allele is one mechanism that can cause early onset ADPKD. Here, we describe two pedigrees without a history of cystic kidney disease that each contain two patients with onset of massive PKD in utero. The presentations were typical of autosomal recessive PKD (ARPKD) but they were not linked to the known ARPKD gene, PKHD1. Mutation analysis of the ADPKD genes provided strong evidence that both families inherited, in trans, two incompletely penetrant PKD1 alleles. These patients illustrate that PKD1 mutations can manifest as a phenocopy of ARPKD with respect to renal involvement and highlight the perils of linkage-based diagnostics in ARPKD without positive PKHD1 mutation data. Furthermore, the phenotypic overlap between ARPKD and these patients resulting from incomplete penetrant PKD1 alleles support a common pathogenesis for these diseases. PMID:20558538

  1. Penetrating keratoplasty for treatment of corneal protrusion in a great horned owl (Bubo virginianus).

    PubMed

    Andrew, Stacy E; Clippinger, Tracy L; Brooks, Dennis E; Helmick, Kelly E

    2002-09-01

    A young adult great horned owl (Bubo virginianus) was examined following presumed trauma. The owl had soft tissue injury to its left wing as well as corneal protrusion, lens subluxation, and iridodialysis of the right eye. The bird's eye was treated surgically with a large, rectangular penetrating keratoplasty. Following escape from housing, the bird was found with partial wound dehiscence and iris prolapse 12 days post operation. Surgical repair was performed and healing progressed for 14 days, at which time the transplant dehisced and the globe was exenterated. The patient rehabilitated well until escaping from its cage again 4 weeks later, at which time it sustained an open comminuted humeral fracture and was euthanized. PMID:12236872

  2. The novel G10680A mutation is associated with complete penetrance of the LHON/T14484C family.

    PubMed

    Yang, Juhua; Zhu, Yihua; Tong, Yi; Zhang, Zhiqiang; Chen, Lu; Chen, Sanjie; Cao, Zongfu; Liu, Chunmei; Xu, Jianhua; Ma, Xu

    2009-07-01

    We report the clinical and genetic characterization of a Chinese Leber's hereditary optic neuropathy (LHON) family with complete penetrance and high percentage of recovery. Sequence analysis of the complete mitochondrial DNA revealed the presence of heteroplasmic ND6/T14484C mutation and 27 other variants, belonging to the East-Asian haplogroup B4b'd. Of those variants, a novel homoplasmic G10680A mutation substituted a threonine for a highly conserved alanine at ND4L amino acid 71, which was not found in unaffected family members and 100 normal controls. It indicated that G10680A may play a synergistic role with the primary mutation T14484C, leading to the complete penetrance of LHON in the presenting family. In addition, the other modifier factors including nuclear background, mitochondrial haplotypes and other environmental factors should account for the phenotypic variability of visual impairment in this family.

  3. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    PubMed Central

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  4. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    PubMed

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  5. Light Penetration in Seawater Polluted by Dispersed Oil: Results of Radiative Transfer Modelling

    NASA Astrophysics Data System (ADS)

    Haule, K.; Darecki, M.; Toczek, H.

    2015-11-01

    The downwelling light in seawater is shaped by natural seawater constituents as well as by some external substances which can occur locally and temporally. In this study we focused on dispersed oil droplets which can be found in seawater after an oil spill or in the consequence of intensive shipping, oil extraction and transportation. We applied our modified radiative transfer model based on Monte Carlo code to evaluate the magnitude of potential influence of dispersed oil droplets on the downwelling irradiance and the depth of the euphotic zone. Our model was validated on the basis of in situ measurements for natural (unpolluted) seawater in the Southern Baltic Sea, resulting in less than 5% uncertainty. The optical properties of dispersed Petrobaltic crude oil were calculated on the basis of Mie theory and involved into radiative transfer model. We found that the changes in downwelling light caused by dispersed oil depend on several factors such as oil droplet concentration, size distribution, and the penetration depth (i.e. vertical range of oil droplets occurrence below sea surface). Petrobaltic oil droplets of submicron sizes and penetration depth of 5 m showed a potentially detectable reduction in the depth of the euphotic zone of 5.5% at the concentration of only 10 ppb. Micrometer-sized droplets needed 10 times higher concentration to give a similar effect. Our radiative transfer model provided data to analyse and discuss the influence of each factor separately. This study contributes to the understanding of the change in visible light penetration in seawater affected by dispersed oil.

  6. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    PubMed

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  7. Variance reduction methods applied to deep-penetration problems

    SciTech Connect

    Cramer, S.N.

    1984-01-01

    All deep-penetration Monte Carlo calculations require variance reduction methods. Before beginning with a detailed approach to these methods, several general comments concerning deep-penetration calculations by Monte Carlo, the associated variance reduction, and the similarities and differences of these with regard to non-deep-penetration problems will be addressed. The experienced practitioner of Monte Carlo methods will easily find exceptions to any of these generalities, but it is felt that these comments will aid the novice in understanding some of the basic ideas and nomenclature. Also, from a practical point of view, the discussions and developments presented are oriented toward use of the computer codes which are presented in segments of this Monte Carlo course.

  8. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  9. PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES

    SciTech Connect

    Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

    2009-10-05

    Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

  10. Hign-speed penetration of projectile with cavitator into sand

    NASA Astrophysics Data System (ADS)

    Daurskikh, Anna; Veldanov, Vladislav

    2011-06-01

    Cavitators are used in underwater projectiles design to form a cavern in which projectile could move with no or significantly reduced drag. An investigation of possible application of this structural element for penetration into porous media was conducted. High-speed impact of a conical-shaped head projectile with cavitator was studied in terms of its influence on penetration capacity and projectile stability in sand for impact velocity about 1500 m/s. Cavitators were manufactured of steel with different strength moduli, and thus two penetration regimes (with eroding/non-eroding cavitator) were compared. Numerical simulations showing wave propagation in target and projectile were performed in AUTODYN with Johnson-Cook model for projectile and granular model for sand.

  11. Penetrating middle ear trauma: a report of 2 cases.

    PubMed

    Neuenschwander, Michael C; Deutsch, Ellen S; Cornetta, Anthony; Willcox, Thomas O

    2005-01-01

    Penetrating middle ear injury can result in hearing loss, vertigo, and facial nerve injury. We describe the cases of 2 children with penetrating trauma to the right ear that resulted in ossicular chain disruption; one injury was caused by cotton-tipped swabs and the other by a wooden matchstick. Symptoms in both children included hearing loss and otalgia; in addition, one child experienced ataxia and the other vertigo. Physical examination in both cases revealed a perforation in the posterosuperior quadrant of the tympanic membrane and visible ossicles. Audiometry identified a moderate conductive hearing loss in one child and a mild sensorineural hearing loss in the other. Both children underwent middle ear exploration and reduction of a subluxed stapes. We discuss the diagnosis, causes, and management of penetrating middle ear trauma. To reduce the morbidity associated with these traumas, otologic surgeons should act promptly and be versatile in choosing methods of repairing ossicular chain injuries.

  12. Review and status of sonic boom penetration into the ocean.

    PubMed

    Sparrow, Victor W

    2002-01-01

    Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments. PMID:11837959

  13. Penetration dynamics of a magnetic field pulse into high-? superconductors

    NASA Astrophysics Data System (ADS)

    Meerovich, V.; Sinder, M.; Sokolovsky, V.; Goren, S.; Jung, G.; Shter, G. E.; Grader, G. S.

    1996-12-01

    The penetration of a magnetic field pulse into a high-0953-2048/9/12/004/img9 superconducting plate is investigated experimentally and theoretically. It follows from our experiments that the threshold of penetration increases with increasing amplitude and/or decreasing duration of the applied pulse. The penetrating field continues to grow as the applied magnetic field decreases. The peculiarities observed are explained in the framework of the extended critical state model. It appears that the deviations from Bean's classical critical state model are characterized by a parameter equal to the square of the ratio of plate thickness to skin depth. The applicability of the classical critical state model is restricted by the condition that this parameter is much less than 1. This condition is also the criterion for the applicability of pulse methods of critical current measurements.

  14. Enzymatically active biomimetic micropropellers for the penetration of mucin gels

    PubMed Central

    Walker, Debora; Käsdorf, Benjamin T.; Jeong, Hyeon-Ho; Lieleg, Oliver; Fischer, Peer

    2015-01-01

    In the body, mucus provides an important defense mechanism by limiting the penetration of pathogens. It is therefore also a major obstacle for the efficient delivery of particle-based drug carriers. The acidic stomach lining in particular is difficult to overcome because mucin glycoproteins form viscoelastic gels under acidic conditions. The bacterium Helicobacter pylori has developed a strategy to overcome the mucus barrier by producing the enzyme urease, which locally raises the pH and consequently liquefies the mucus. This allows the bacteria to swim through mucus and to reach the epithelial surface. We present an artificial system of reactive magnetic micropropellers that mimic this strategy to move through gastric mucin gels by making use of surface-immobilized urease. The results demonstrate the validity of this biomimetic approach to penetrate biological gels, and show that externally propelled microstructures can actively and reversibly manipulate the physical state of their surroundings, suggesting that such particles could potentially penetrate native mucus. PMID:26824056

  15. Standard line broadening impact theory for hydrogen including penetrating collisions.

    PubMed

    Alexiou, S; Poquérusse, A

    2005-10-01

    In recent years there has been significant interest in the emission spectra from high-density plasmas, as manifested by a number of experiments. At these high densities short range (small impact parameter) interactions become important and these cannot be adequately handled by the standard theory, whose predictions depend on some cutoffs, necessary to preserve unitarity, the long range approximation, and to ensure the validity of a semiclassical picture. Very recently, as a result of a debate concerning the broadening of isolated ion lines, the importance of penetration of bound electron wave functions by plasma electrons has been realized. By softening the interaction, penetration makes perturbative treatments more valid. The penetration effect has now been included analytically into the standard theory. It turns out that the integrations may be done in closed form in terms of the modified Bessel functions K0 and K1. This work develops the new theory and applies it to experimental measurements. PMID:16383542

  16. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  17. A study to examine the feasibility of using surface penetrators for mineral exploration

    NASA Technical Reports Server (NTRS)

    Davis, A. S.; Anderson, D. W.

    1978-01-01

    The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication.

  18. Experimental studies of subsonic penetration in silica glasses and ceramics

    NASA Astrophysics Data System (ADS)

    Doyoyo, Mulalo

    Control and manufacture of light-weight, impact and penetration resistant material systems depend on the response of the component materials to impact loading and on the propagation of stress waves due to different structural configurations. Ceramics are favored as the main component materials in such applications, and thus it is of significance to understand how ceramics resist impact failure and projectile penetration under different conditions of stress wave propagation. In this work, we have undertaken subsonic projectile penetration experimental studies in silica glasses and ceramics to understand how ceramic failure is influenced by reflected tensile and compressive stress waves, pre-shear loading and ceramic target boundaries. A high-pressure gas gun is designed and constructed to launch projectiles up to 1,500 m/s. In borosilicate glasses, experiments show that failure is enhanced by reflected tensile waves, while reflected compressive waves are found to also enhance failure rather than inhibit failure as expected. Experiments in alumina ceramics show that pre-shear loading causes anisotropic failure which induces projectile deflection during penetration. In soda-lime glasses, experiments show that the specific natures of target boundaries control the extent of fragmentation and structural cracking. The behavior of measured quantities are explained with granular flow models of penetration. Granular hydrodynamic models are found to be adequate in explaining fragment ejecta behavior, while the depth of penetration is better explained with granular friction models. Enhancement of failure under dynamic compression in silica glasses is explained with a densification-induced fragmentation model, and this model is found to have potential application on the nature of failure waves in silica glasses.

  19. Transition from fractal cracking to fragmentation due to projectile penetration

    NASA Astrophysics Data System (ADS)

    Kun, F.; Halász, Z.

    2014-12-01

    We present a theoretical study of the fracture of two-dimensional disc-shaped samples due to the penetration of a projectile focusing on the dynamics of fracturing and on the geometrical structure of the generated crack pattern. The penetration of a cone is simulated into a plate of circular shape using a discrete element model of heterogeneous brittle materials varying the speed of penetration in a broad range. As the cone penetrates a destroyed zone is created from which cracks run to the external boundary of the plate. Computer simulations revealed that in the low speed limit of loading two cracks are generated with nearly straight shape. Increasing the penetration speed the crack pattern remains regular, however, both the number of cracks and their fractal dimension increases. High speed penetration gives rise to a crack network such that the sample gets fragmented into a large number of pieces. We give a quantitative analysis of the evolution of the system from simple cracking through fractal cracks to fragmentation with a connected crack network. Simulations showed that in the low speed limit of loading the growing cracks proceed in discrete jumps separated by periods when the crack tips are pinned. The statistics of the size of jumps and of the waitng times shows scale free behaviour, i.e. power law distributions are obtained with universal exponents. Dependence on the loading speed was pointed out only for the cutoffs of the distributions. In the high speed limit of loading the sample falls apart forming a large number of fragments. The size of fragments proved to be power law distributed where dependence on the loading speed is observed only for the cutoffs. The value of the exponent has good agreement with experiments.

  20. Right thoracoabdominal stab injury penetrating the liver and gallbladder: case report and lessons in penetrating knife wounds to the chest and abdomen

    PubMed Central

    Griffiths, Ewen A; Mohamed, Ahmed; Ball, Chris S

    2010-01-01

    The authors report a patient who suffered a penetrating knife injury to the right thoracoabdominal region which penetrated through the liver and both sides of the gallbladder. This injury was treated successfully by laparotomy and cholecystectomy. PMID:22778183

  1. Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique.

    PubMed

    Camargo, Samira Esteves Afonso; Valera, Marcia Carneiro; Camargo, Carlos Henrique Ribeiro; Gasparoto Mancini, Maria Nadir; Menezes, Marcia Maciel

    2007-09-01

    This study evaluated the pulp chamber penetration of peroxide bleaching agent in human and bovine teeth after office bleach technique. All the teeth were sectioned 3 mm apical of the cement-enamel junction and were divided into 2 groups, A (70 third human molars) and B (70 bovine lateral incisors), that were subdivided into A1 and B1 restored by using composite resin, A2 and B2 by using glass ionomer cement, and A3 and B3 by using resin-modified glass ionomer cement; A4, A5, B4, and B5 were not restored. Acetate buffer was placed in the pulp chamber, and the bleaching agent was applied for 40 minutes as follows: A1-A4 and B1-B4, 38% hydrogen peroxide exposure and A5 and B5, immersion into distilled water. The buffer solution was transferred to a glass tube in which leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to analysis of variance and Dunnett, Kruskal-Wallis, and Tukey tests (5%). A higher level of hydrogen peroxide penetrated into the pulp chamber in resin-modified glass ionomer cements in bovine (0.79 +/- 0.61 microg) and human (2.27 +/- 0.41 microg) groups. The bleaching agent penetration into the pulp chamber was higher in human teeth for any experimental situation. The penetration of the hydrogen peroxide depends on restorative materials, and under the conditions of this study human teeth are more susceptible to penetration of bleaching agent into the pulp chamber than bovine teeth.

  2. Penetration of fiber versus spherical particles through filter media and faceseal leakage of N95 filtering facepiece respirators with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina

    2013-01-01

    This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to

  3. Penetration of fiber versus spherical particles through filter media and faceseal leakage of N95 filtering facepiece respirators with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina

    2013-01-01

    This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to

  4. Meissner response of superconductors with inhomogeneous penetration depths

    SciTech Connect

    Kogan, V. G.; Kirtley, J. R.

    2011-03-24

    We discuss the Meissner response to a known field source of superconductors having inhomogeneities in their penetration depth. We simplify the general problem by assuming that the perturbations of the fields by the penetration depth inhomogeneities are small. We present expressions for inhomogeneities in several geometries, but concentrate for comparison with experiment on planar defects, perpendicular to the sample surfaces, with superfluid densities different from the rest of the samples. These calculations are relevant for magnetic microscopies, such as Scanning Superconducting Quantum Interference Device (SQUID) and Magnetic Force Microscope, which image the local diamagnetic susceptibility of a sample.

  5. A single cell penetration system by ultrasonic driving

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoying; Xiao, Mingfei; Yang, Xing; Wu, Ting

    2008-12-01

    The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies, the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration probe. A set of the single cell penetration system was established to perform this function. This system includes four subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg experiments indicate that this system is workable and effective.

  6. Multi-well sample plate cover penetration system

    DOEpatents

    Beer, Neil Reginald

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  7. Use of ground-penetrating radar techniques in archaeological investigations

    NASA Technical Reports Server (NTRS)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  8. Serious Penetrating Craniocerebral Injury Caused by a Nail Gun

    PubMed Central

    Jeon, Yong Hyun; Kim, Dong Min; Kim, Sung Hoon

    2014-01-01

    Penetrating cerebral injuries caused by foreign bodies occur rarely due to the substantial mechanical protection offered by the skull. Throughout most of history, the brain, residing in a "closed box" of bone, has not been vulnerable to external aggression. Recently, we encountered a serious penetrating craniocerebral injury caused by a nail gun. Total excision of the offending nail via emergency craniotomy was performed, but the patient's neurologic status was not improved in spite of aggressive rehabilitative treatment. Here, we report on this troublesome case in light of a review of the relevant literature. PMID:25628820

  9. An interesting case of penetrating injury neck and face.

    PubMed

    Venkatachalapath, Thalagavara Sadasivappa

    2013-01-01

    Penetrating neck trauma is an important area of trauma care that has undergone evolution in the recent past. A remarkable number of changes have occurred in the treatment paradigm as new technologies have developed and as surgeons have explored the outcomes from different treatment protocols. Therapy has evolved from no treatment (before effective anesthesia and instrumentation), to non operative management, to routine exploration, to selective exploration and adjunctive invasive or noninvasive assessment. Penetrating neck injuries remain challenging, as there are a number of important structures in a small area and injury to any of these structures may not be readily apparent.

  10. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  11. Cell-penetrating and neurotargeting dendritic siRNA nanostructures.

    PubMed

    Brunner, Korbinian; Harder, Johannes; Halbach, Tobias; Willibald, Julian; Spada, Fabio; Gnerlich, Felix; Sparrer, Konstantin; Beil, Andreas; Möckl, Leonhard; Bräuchle, Christoph; Conzelmann, Karl-Klaus; Carell, Thomas

    2015-02-01

    We report the development of dendritic siRNA nanostructures that are able to penetrate even difficult to transfect cells such as neurons with the help of a special receptor ligand. The nanoparticles elicit strong siRNA responses, despite the dendritic structure. An siRNA dendrimer directed against the crucial rabies virus (RABV) nucleoprotein (N protein) and phosphoprotein (P protein) allowed the suppression of the virus titer in neurons below the detection limit. The cell-penetrating siRNA dendrimers, which were assembled using click chemistry, open up new avenues toward finding novel molecules able to cure this deadly disease.

  12. [Penetrating head and brain injuries with nonmetal foreign bodies].

    PubMed

    Potapov, A A; Okhlopkov, V A; Latyshev, Ya A; Serova, N K; Eolchiyan, S A

    2014-01-01

    Penetrating brain injuries (PBI) are common in neurosurgical practice. Most of them are civil or war-time missile and blast injuries. This type of trauma is widely presented in neurosurgical publication, textbooks and clinical evidence-based guidelines. At the same time, PBI by non-metallic foreign bodies are very rare. All the data are limited to case reports and small series of cases. Moreover, there are no clinical consideration on diagnosis, treatment, complication, outcome and prognosis of PBI by non-metallic penetrating brain injuries. In this review all the data are summarized to provide recommendations on the diagnosis and treatment of PBI by non-metallic foreign bodies.

  13. UHF ground penetration measurements of buried and partially buried trihedrals

    SciTech Connect

    Blejer, D.; Frost, C.; Scarborough, S.

    1994-12-31

    The Lincoln Laboratory ground-based rail SAR was used to collect UHF band data on buried and partially buried trihedral corner reflectors in Yuma soil. The frequency range was 0.25 to 1 GHz in descrete steps. Both HH and VV polarization data were collected in the vicinity of the pseudo-Brewster angle. The partially buried trihedrals revealed two principal components for the returned signals: (1) a surface reflected component, and (2) a ground penetrated component. A model is described for partially buried trihedrals that accounts for these two components and the model is used in estimating ground penetration parameters.

  14. Photovoltaic (PV) Impact Assessment for Very High Penetration Levels

    SciTech Connect

    Cheng, Danling; Mather, Barry A.; Seguin, Richard; Hambrick, Joshua; Broadwater, Robert P.

    2016-01-01

    This paper describes a granular approach for investigating the impacts of very high photovoltaic (PV) generation penetration. Studies on two real-world distribution feeders connected to PV plants are presented. The studies include both steady-state and time-series power flow analyses, which include the effects of solar variability. The goal of the study is to predict the effects of increasing levels of PV generation as it reaches very high penetration levels. The loss and return of generation with and without regulation is simulated to capture short-term problems such as voltage fluctuations. Impact results from the analyses are described along with potential mitigations.

  15. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  16. Penetration of solar radiation into pure and Mars-dust contaminated snow

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2015-05-01

    Rock and soil surface layers absorb and reflect incoming solar radiation immediately at the surface. Ices on the other hand, whilst opaque in the infrared, are partially transparent in the visible spectral range. These properties are responsible for the "solid-state greenhouse effect" (SSGE), which may play an important role in the energy balance of icy surfaces in the Solar System. To model the SSGE, we need to know not only thermal properties but also optical properties such as the albedo and the absorption scale length of the ice. We have investigated the absorption scale length, also known as e-folding scale, of snow/dust mixtures within the scope of a project directed at investigating the behaviour of the martian polar caps. After measuring the e-folding scale of recrystallized snow we can now also relate the dust content of contaminated snow to the penetration depth of sunlight into the mixture. Equally important, however, is our observation that light penetration through the mixture is dramatically affected by small-scale inhomogeneities.

  17. Deep penetrating orbitocerebral steel spring injury with minimal sequelae: a case report.

    PubMed

    Nobe, Matthew Y; Yoon, Steven J; Wachter, Betina; Tao, Jeremiah P

    2010-01-01

    The authors report a penetrating orbitocerebral steel mattress spring injury without permanent ophthalmic or neurologic sequelae. A 44-year-old female mattress factory worker sustained an injury to her right orbit by a high-velocity projectile foreign body. Imaging revealed a metallic spring in the right orbit traversing the optic nerve and superior orbital fissure and lodging in the temporal lobe of the brain. Cerebral angiography demonstrated the steel coil around, but not damaging, the middle cerebral artery and other vessels. With a combined craniotomy and frontal orbitotomy, the spring was removed by meticulous counterclockwise rotation. Postoperatively, the patient had mild left-sided weakness that resolved after several weeks. Ocular examination was normal, including full extraocular movements and a visual acuity of 20/20 in each eye. The authors theorize that the spiral shape and on-axis rotational movement allowed the projectile to follow a path of least resistance penetrating deeply and coiling around, but not injuring, vital structures. Careful counterclockwise rotation under direct intracranial and intraorbital visualization was effective in removing the spring. PMID:20683374

  18. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  19. Adult Children.

    ERIC Educational Resources Information Center

    Frazier, Billie H.

    This document contains a brief bibliography of peer-reviewed literature, with abstracts, on adult children. It is one of 12 bibliographies on aging prepared by the National Agricultural Library for its "Pathfinders" series of publications. Topics covered by the other 11 bibliographies include aging parents, dementia and Alzheimer's disease in the…

  20. Adult Psychology.

    ERIC Educational Resources Information Center

    Bischof, Ledford J.

    This volume comprehensively reviews the research on the psychology of the middle aged (ages 40-65). Topics include the concept of maturity and maturation models, the measurement and influences of adult self image; marriage and sexual patterns; intergenerational relationships between and children; vocations and avocations (work, retirement, play,…