Science.gov

Sample records for adult peripheral nervous

  1. Calretinin in the peripheral nervous system of the adult zebrafish

    PubMed Central

    Levanti, M B; Montalbano, G; Laurà, R; Ciriaco, E; Cobo, T; García-Suarez, O; Germanà, A; Vega, J A

    2008-01-01

    Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts. PMID:18173770

  2. Peripheral Nervous System Manifestations of Infectious Diseases

    PubMed Central

    Brizzi, Kate T.

    2014-01-01

    Infectious causes of peripheral nervous system (PNS) disease are underrecognized but potentially treatable. Heightened awareness educed by advanced understanding of the presentations and management of these infections can aid diagnosis and facilitate treatment. In this review, we discuss the clinical manifestations, diagnosis, and treatment of common bacterial, viral, and parasitic infections that affect the PNS. We additionally detail PNS side effects of some frequently used antimicrobial agents. PMID:25360209

  3. Gene therapy for peripheral nervous system diseases.

    PubMed

    Federici, Thais; Boulis, Nicholas

    2007-08-01

    Peripheral nerve diseases, also known as peripheral neuropathies, affect 15-20 million of Americans and diabetic neuropathy is the most common condition. Currently, the treatment of peripheral neuropathies is more focused on managing pain rather than providing permissive conditions for regeneration. Despite advances in microsurgical techniques, including nerve grafting and reanastomosis, axonal regeneration after peripheral nerve injury remains suboptimal. Also, no satisfactory treatments are available at this time for peripheral neurodegeneration occurring in motor neuron diseases (MND), including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Peripheral nerves have the inherent capacity of regeneration. Gene therapy strategies focused on neuroprotection may help optimizing axonal regrowth. A better understanding of the cellular and molecular events involved in axonal degeneration and regeneration have helped researchers to identify targets for intervention. This review summarizes the current state on the clinical experience as well as gene therapy strategies for peripheral neuropathies, including MND, peripheral nerve injury, neuropathic pain, and diabetic neuropathy.

  4. Neuroactive steroids and the peripheral nervous system: An update.

    PubMed

    Giatti, Silvia; Romano, Simone; Pesaresi, Marzia; Cermenati, Gaia; Mitro, Nico; Caruso, Donatella; Tetel, Marc J; Garcia-Segura, Luis Miguel; Melcangi, Roberto C

    2015-11-01

    In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy.

  5. Connexin32 expression in central and peripheral nervous systems

    SciTech Connect

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  6. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    PubMed Central

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  7. Histophysiology of the vegetative peripheral nervous system of skin.

    PubMed

    Förster, F J; Heine, H; Schaeg, G

    1975-12-31

    Preterminal nerve fibers of the peripheral vegetative nervous system make inmediate contact (neuro-effector-areas) to interstitial cells (I.C.). This connection is characterized through a common glycocalyx with the nerve fiber. The I.C. are specific innervated cells and differ morphologically from Schwann-cells, fibrocytes, and histiocytes. The I.C. are able to come into morphologically different contacts with neighbouring cells by microvilli-like cell protrusions. These neighbouring cells then are able to contact other cells by themselves. The results are interpreted in the sense of electro-mechanical feed-back system of information processing in the vegetative periphery.

  8. Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination

    PubMed Central

    da Silva, Tiago Ferreira; Eira, Jessica; Lopes, André T.; Malheiro, Ana R.; Sousa, Vera; Luoma, Adrienne; Avila, Robin L.; Wanders, Ronald J.A.; Just, Wilhelm W.; Kirschner, Daniel A.; Sousa, Mónica M.; Brites, Pedro

    2014-01-01

    Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling. PMID:24762439

  9. Gross anatomy and development of the peripheral nervous system.

    PubMed

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS.

  10. Control of Prosthetic Hands via the Peripheral Nervous System

    PubMed Central

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  11. A distributed architecture for activating the peripheral nervous system.

    PubMed

    Andreu, David; Guiraud, David; Souquet, Guillaume

    2009-04-01

    We present a new system for functional electrical stimulation (FES) applications based on networked stimulation units. They embed an advanced analog circuit, which provides multipolar and multiphasic stimulation profiles, and digital circuits, which ensure safety, locally executed programmed profiles, and communication with the master controller. This architecture is thus based on distributed stimulation units (DSU) that need only a two-wire bus to communicate, regardless of the number of poles of each DSU-driven electrode. This structure minimizes the required bandwidth between master and distributed units, increases the safety and stimulation features and decreases the complexity of the surgical approach. We have successfully tested this network-based stimulation architecture on benchtop stimulators. This original approach allows broad exploration of all possible methods to stimulate peripheral nerves, particularly in the goal of restoring the motor function. It provides a powerful research device to determine the optimal, least aggressive and the most efficient way to activate the peripheral nervous system using an implanted FES system that is less invasive than other existing devices.

  12. A distributed architecture for activating the peripheral nervous system.

    PubMed

    Andreu, David; Guiraud, David; Souquet, Guillaume

    2009-04-01

    We present a new system for functional electrical stimulation (FES) applications based on networked stimulation units. They embed an advanced analog circuit, which provides multipolar and multiphasic stimulation profiles, and digital circuits, which ensure safety, locally executed programmed profiles, and communication with the master controller. This architecture is thus based on distributed stimulation units (DSU) that need only a two-wire bus to communicate, regardless of the number of poles of each DSU-driven electrode. This structure minimizes the required bandwidth between master and distributed units, increases the safety and stimulation features and decreases the complexity of the surgical approach. We have successfully tested this network-based stimulation architecture on benchtop stimulators. This original approach allows broad exploration of all possible methods to stimulate peripheral nerves, particularly in the goal of restoring the motor function. It provides a powerful research device to determine the optimal, least aggressive and the most efficient way to activate the peripheral nervous system using an implanted FES system that is less invasive than other existing devices. PMID:19213992

  13. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  14. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  15. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  16. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  17. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  18. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  19. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  20. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  1. Somite polarity and segmental patterning of the peripheral nervous system.

    PubMed

    Kuan, C-Y Kelly; Tannahill, David; Cook, Geoffrey M W; Keynes, Roger J

    2004-09-01

    The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.

  2. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  3. Prevalence of peripheral nervous system complications after major heart surgery.

    PubMed

    Gavazzi, Armando; de Rino, Francesca; Boveri, Maria Claudia; Picozzi, Anna; Franceschi, Massimo

    2016-02-01

    We evaluated 374 consecutive patients from May 2013 to April 2014 who underwent major cardiac surgery. Each patient had an interview and a neurological clinical examination during the rehabilitation period. Patients with possible peripheral nervous system (PNS) complications underwent further electrodiagnostic tests. Among 374 patients undergoing major heart surgery (coronary artery bypass grafting, valvular heart surgery, ascending aortic aneurysm repair) 23 (6.1 %) developed 34 new PNS complications. We found four brachial plexopathies; four carpal tunnel syndromes; five critical illness neuropathies; three worsening of pre-existing neuropathies; two involvement of X, one of IX and one of XII cranial nerves; three peroneal (at knee), one saphenous, two median (at Struthers ligament), six ulnar (at elbow) mononeuropathies; two meralgia parestheticas. Diabetes is a strong risk factor for PNS complications (p = 0.002); we could not find any other relationship of PNS complications with clinical conditions, demographic data (gender, age) or type of surgical intervention. The mononeuropathies of right arms can be related to ipsilateral vein cannulation; position of body and stretching from chest wall retraction may be the cause of mononeuropathies of left arms (more frequent); the use of saphenous vein and position of the limbs may be the cause of mononeuropathies of the legs; surgical and anesthetical procedures can injure cranial nerves; respiratory failure and infection during the first days after surgery can cause critical illness neuropathies. Careful preoperative assessment and intraoperative management may reduce the risk of long-term PNS complications after cardiac surgery.

  4. Assessment of the peripheral, central, and autonomic nervous system function in styrene workers

    SciTech Connect

    Murata, K.; Araki, S.; Yokoyama, K. )

    1991-01-01

    To investigate the effects of styrene exposure on peripheral, central, and autonomic nervous system functions in man, we measured the distribution of nerve conduction velocities (DCV), short-latency somatosensory evoked potentials (SSEP), and variability in electrocardiographic R-R interval (CVRR) as well as conventional sensory and motor median nerve conduction velocities (SCV and MCV) in eleven styrene-exposed workers. The styrene workers' urinary phenylglyoxylic acid levels ranged from 31 to 419 (mean 169) mg/g creatinine at the end of the work shift on the examination day (estimated exposure to styrene of 22 ppm in air). Control subjects, matched to each styrene worker by sex and age, were selected from healthy adults without cardiovascular, neurologic and other potentially confounding disorders. In the styrene workers, we found that the V80 velocity of the DCV, below which 80% of active nerve fibers lie, and the SCV were both significantly slowed; the CVRR was also significantly reduced. There were no significant differences in SSEP latencies, MCV, or heart rate between the exposed workers and controls. These data, despite the small sample size, suggest that styrene affects the faster myelinated fibers of the peripheral sensory nerves, and that it also affects autonomic nervous activity.

  5. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  6. New model to determine the central nervous system reaction to peripheral trauma

    SciTech Connect

    Sjoelund, B.H.W.; Wallstedt, L.

    1988-01-01

    Monitoring the activity of the central nervous system with the /sup 14/C-2-deoxyglucose method of Sokoloff was utilized to explore the possibility to develop a model for the study of central nervous system reaction to peripheral trauma. Preliminary evidence indicates that the activation caused by tactile stimuli to one hindlimb nerve is that expected from earlier physiologic studies. However, an increase of stimulation intensity to recruit nociceptive (pain) fibers seems to abolish the changes, indicating that inhibitory systems have been activated.

  7. Developmental study of tripeptidyl peptidase I activity in the mouse central nervous system and peripheral organs.

    PubMed

    Dimitrova, Mashenka; Deleva, Denislava; Pavlova, Velichka; Ivanov, Ivaylo

    2011-11-01

    Tripeptidyl peptidase I (TPPI) - a lysosomal serine protease - is encoded by the CLN2 gene, mutations that cause late-infantile neuronal ceroid lipofuscinosis (LINCL) connected with profound neuronal loss, severe clinical symptoms and early death at puberty. Developmental studies of TPPI activity levels and distribution have been done in the human and rat central nervous systems (CNS) and visceral organs. Similar studies have not been performed in mouse. In this paper, we follow up on the developmental changes in the enzyme activity and localization pattern in the CNS and visceral organs of mouse over the main periods of life - embryonic, neonate, suckling, infantile, juvenile, adult and aged - using biochemical assays and enzyme histochemistry. In the studied peripheral organs (liver, kidney, spleen, pancreas and lung) TPPI is present at birth but further its pattern is not consistent in different organs over different life periods. TPPI activity starts to be expressed in the brain at the 10th embryonic day but in most neuronal types it appears at the early infantile period, increases during infancy, reaches high activity levels in the juvenile period and is highest in adult and aged animals. Thus, in mice TPPI activity becomes crucial for the neuronal functions later in development (juvenile period) than in humans and does not decrease with aging. These results are essential as a basis for comparison between normal and pathological TPPI patterns in mice. They can be valuable in view of the use of animal models for studying LINCL and other neurodegenerative disorders.

  8. Immunocytochemical Localization of Monoamine Oxidase Type B in Rat's Peripheral Nervous System.

    PubMed

    Chen, Qiang; Xu, Yang; Zhang, Hui; Tan, Xiao; Liu, Shu Hui; Yan, Fen

    2015-11-01

    Immunohistochemistry is used to investigate subcellular localization of monoamine oxidase type B (MAOB) in the axon of the rat's peripheral nervous system. Through light and electron microscopy, the presence of MAOB-immunoreactive structures in the propria lamina of tongue and on the outer membranes of mitochondria in both myelinated and unmyelinated axons can be detected. As a result, MAOB may potentially play a crucial role in the axons of the rat's peripheral nervous system and may be closely associated with both axonal transport and nerve conduction.

  9. Control of Bone Remodeling by the Peripheral Sympathetic Nervous System

    PubMed Central

    Campbell, Preston; Ma, Yun

    2013-01-01

    The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis. PMID:23765388

  10. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms

    NASA Astrophysics Data System (ADS)

    Wright, C. J.; Rothwell, J.; Saffari, N.

    2015-01-01

    Neuro-stimulation has wide ranging clinical and research potential but this is currently limited either by low resolution, penetration or by highly invasive procedures. It has been reported in previous studies that ultrasound is able to elicit a neuro-stimulatory effect at a higher resolution than other non-invasive approaches but both the underlying mechanism that makes this possible and the practical details of how it can be implemented are still poorly understood. The current study has identified the main issues that need to be resolved in the field, proposing several different approaches to tackling these areas. An isolated in vitro peripheral nerve bundle was chosen as a simple model to demonstrate and investigate the neuro-stimulatory effect after preliminary results showed successful stimulation in a skin-nerve preparation. Early results from the nerve bundle show successful neurostimulation, indicating that structures in the peripheral nerve axon are sensitive to ultrasound. Further research using this model should reveal more precisely what structures are being affected and how to optimise the effect, helping to inform the design of future procedures and devices used in in vivo applications.

  11. Epineurium-mimicking chitosan conduits for peripheral nervous tissue engineering.

    PubMed

    Nawrotek, Katarzyna; Tylman, Michał; Rudnicka, Karolina; Gatkowska, Justyna; Wieczorek, Marek

    2016-11-01

    In this investigation, we report on a fabrication method of epineurium-mimicking tubular conduits based on electrodeposition from chitosan solution. The pre-enrichment of electrodeposition solution with hyaluronic acid and/or collagen components results in structures which structural, morphological, and physicochemical properties can be controlled. In order to determine the optimal composition of the initial chitosan solution resulting in conduits meeting the requirements imposed on peripheral nerve implants, we perform chemical, physical, and biological studies. Both the molecular weight of hyaluronic acid and the concentration of additives are found to be crucial for the final mechanical as well as biological performance of conduits. Because, the obtained structures show biocompatibility when contacting with a mouse hippocampal cell line (mHippoE-18), we further plan to test their application potential on an animal model. PMID:27516256

  12. Influence of cadmium on the distribution of Cu, Zn, and Fe in different regions of central and peripheral nervous system of rats

    SciTech Connect

    Saxena, D.K.; Murthy, R.C.; Jain, V.K.; Chandra, S.V.

    1986-03-01

    Growing and adult rats were exposed to cadmium (100 ppm through drinking water) daily for 120 days to investigate the distribution of cadmium, zinc, copper and iron in various parts of central and peripheral nervous regions. The study indicates marked cadmium accumulation in growing rats as compared to the adults. Besides, decrease in Cu and Zn and increase in Fe contents of various nervous regions was observed which was more marked in cerebral cortex and cerebellar regions of the rats exposed since 21 days of age than in adulthood.

  13. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  14. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Joint Meeting of the Peripheral and Central Nervous System... the public. Name of Committees: Peripheral and Central Nervous System Drugs Advisory Committee and...

  15. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  16. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3. PMID:27230413

  17. Distribution of feline lymphoma in the central and peripheral nervous systems.

    PubMed

    Mandara, Maria Teresa; Motta, Luca; Calò, Pietro

    2016-10-01

    In cats, lymphoma (lymphosarcoma) is the most common neoplasm affecting the spinal cord and the second most common intracranial tumour. Although lymphoma commonly develops in the spinal cord as a part of a multicentric process, a primary form may occur. Lymphoma can exhibit a wide range of morphological patterns, including intraparenchymal brain mass, lymphomatosis cerebri, intravascular lymphoma, lymphomatous choroiditis and meningitis, extradural, intradural-extramedullary or intramedullary lymphoma in the spinal cord, or neurolymphomatosis in the peripheral nerves. Lymphoma may occur as a paraneoplastic disorder associated with peripheral neuropathies. Magnetic resonance imaging (MRI) and computed tomography (CT) are the techniques of choice for morphological assessment of nervous system lesions in vivo. However, biopsy should be performed to achieve a definitive diagnosis. Knowledge of the different morphological patterns expressed by lymphoma in the nervous system of cats allows veterinary clinicians to suspect lymphoma and to arrange appropriate diagnostic procedures, including immunophenotype and clonality studies, along with therapeutic protocols and prognostic evaluations. PMID:27687936

  18. Data supporting the role of Fyn in initiating myelination in the peripheral nervous system.

    PubMed

    Miyamoto, Yuki; Tamano, Moe; Torii, Tomohiro; Kawahara, Kazuko; Nakamura, Kazuaki; Tanoue, Akito; Takada, Shuji; Yamauchi, Junji

    2016-06-01

    Transgenic mice, which express active Fyn tyrosine kinase under the control of a glial fibrillary acidic protein promoter, have been produced. This promoter induces protein expression in the initiation stage of myelination in the peripheral nervous system (PNS) "Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2015 [1])". Herein we provide the data regarding myelination-related protein markers and myelin ultrastructure in transgenic mice.

  19. CFTR-deficient pigs display peripheral nervous system defects at birth

    PubMed Central

    Reznikov, Leah R.; Dong, Qian; Chen, Jeng-Haur; Moninger, Thomas O.; Park, Jung Min; Zhang, Yuzhou; Hildebrand, Michael S.; Smith, Richard J. H.; Randak, Christoph O.; Stoltz, David A.; Welsh, Michael J.

    2013-01-01

    Peripheral nervous system abnormalities, including neuropathy, have been reported in people with cystic fibrosis. These abnormalities have largely been attributed to secondary manifestations of the disease. We tested the hypothesis that disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) gene directly influences nervous system function by studying newborn CFTR−/− pigs. We discovered CFTR expression and activity in Schwann cells, and loss of CFTR caused ultrastructural myelin sheath abnormalities similar to those in known neuropathies. Consistent with neuropathic changes, we found increased transcripts for myelin protein zero, a gene that, when mutated, can cause axonal and/or demyelinating neuropathy. In addition, axon density was reduced and conduction velocities of the trigeminal and sciatic nerves were decreased. Moreover, in vivo auditory brainstem evoked potentials revealed delayed conduction of the vestibulocochlear nerve. Our data suggest that loss of CFTR directly alters Schwann cell function and that some nervous system defects in people with cystic fibrosis are likely primary. PMID:23382208

  20. Conduction block in the peripheral nervous system in experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Pender, M. P.; Sears, T. A.

    1982-04-01

    Experimental allergic encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system1-8. However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of these animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with the histological damage of the peripheral nervous system must be taken into account.

  1. Axogenesis in the central and peripheral nervous system of the amphipod crustacean Orchestia cavimana.

    PubMed

    Ungerer, Petra; Geppert, Maria; Wolff, Carsten

    2011-03-01

    We describe the formation of the major axon pathways in the embryonic central and peripheral nervous systems of the amphipod crustacean Orchestia cavimana Heller, 1865 by means of antibody staining against acetylated alpha-tubulin. The data add to a long list of previous studies of various other aspects of development in Orchestia and provide a basis for future studies of neurogenesis on a deeper cellular and molecular level. Orchestia exhibits a tripartite dorsal brain, which is a characteristic feature of euarthropods. Its anlagen are the first detectable structures in the developing nervous system and can be traced back to distinct neuronal cell clusters in the early embryo. The development of the ventral nervous system proceeds with an anteroposterior gradient of development. In each trunk segment, the longitudinal connectives and the anterior commissure form first, followed by the intersegmental nerve, the posterior commissure and segmental nerves, respectively. A single commissure of a vestigial seventh pleonal segment is found. In the peripheral nervous system we observe a spatial and temporal pattern of leg innervation, which is strikingly similar in both limb types, the uniramous pereopods and the biramous pleopods. A proximal leg nerve splitting distally into two separated nerves probably reflects a general feature of crustaceans.

  2. The Neuroimmunology of Degeneration and Regeneration in the Peripheral Nervous System

    PubMed Central

    Zigmond, R. E.

    2014-01-01

    Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration. Wallerian degeneration and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process. PMID:25242643

  3. From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate

    PubMed Central

    Butler, Samantha J.; Bronner, Marianne E.

    2015-01-01

    During vertebrate development, the central (CNS) and peripheral nervous systems (PNS) arise from the neural plate. Cells at the margin of the neural plate give rise to neural crest cells, which migrate extensively throughout the embryo, contributing to the majority of neurons and all of the glia of the PNS. The rest of the neural plate invaginates to form the neural tube, which expands to form the brain and spinal cord. The emergence of molecular cloning techniques and identification of fluorophores like Green Fluorescent Protein (GFP), together with transgenic and electroporation technologies, have made it possible to easily visualize the cellular and molecular events in play during nervous system formation. These lineage-tracing techniques have precisely demonstrated the migratory pathways followed by neural crest cells and increased knowledge about their differentiation into PNS derivatives. Similarly, in the spinal cord, lineage-tracing techniques have led to a greater understanding of the regional organization of multiple classes of neural progenitor and post-mitotic neurons along the different axes of the spinal cord and how these distinct classes of neurons assemble into the specific neural circuits required to realize their various functions. Here, we review how both classical and modern lineage and marker analyses have expanded our knowledge of early peripheral nervous system and spinal cord development. PMID:25446276

  4. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    PubMed

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  5. Central and peripheral nervous structures as seen at the confocal scanning laser microscope.

    PubMed

    Castano, P; Marcucci, A; Miani, A; Morini, M; Veraldi, S; Rumio, C

    1994-09-01

    Central neurons and peripheral nervous structures, e.g. cutaneous free endings, perifollicular nets, Meissners corpuscles and intramuscular fibres, were studied using various impregnation methods. The confocal scanning laser microscopes (CSLMs) used were equipped with different laser sources, in order to evaluate their limitations and advantages with these techniques and to contribute to a better understanding of the general morphology of the nervous system. When staining with silver sections with clouds of tiny silver granules which are beyond the resolution power of the conventional light microscope but which show a high reflectivity with the CSLM are obtained. Golgi-Cox mercuric impregnation, however, provides specimens which are precipitate-free, thus ensuring the reliability of information obtained. It does, however, have the disadvantage of being applicable only to the central nervous system. In all cases it is an advantage for the instrument to be fitted with different lasers (e.g. Ar and He-Ne), so as to optimize the images of samples impregnated with different methods. Notwithstanding the possibility that artefacts may distort the geometry of the sample and reduce the resolution, the images presented in this paper show that with careful selection of optical sectioning distances, the use of a suitable stack of sections and, if necessary, the aid of false electronic colours and of partial or complete rotation, it is possible to achieve a more precise interpretation of the morphology and organization of complex structures, such as those of the nervous system.

  6. [The brothers of Jumiege--the peripheral nervous system in early French mythology].

    PubMed

    Brean, Are

    2002-03-20

    This article reviews the process of discovery of the nervous system from Pythagoras (570-500 BC) to Galen (130-201 AD). After Galen, no anatomical studies were performed before the renaissance. According to a legend, probably produced for political reasons, two brothers, sons of the French king Clovis II, revolted against their father and were sentenced to loose their physical powers by having the nerves of their arms and legs cut. They were then set adrift on the river Seine, stranding at the Jumiège monastery. The earliest written version of this legend stems from the fourteenth century; it was probably a part of the local French mythology. This indicates that the existence of the peripheral nervous system, and therefore also in part the knowledge contained in the early anatomical works, quite early may have been more or less known outside academic circles.

  7. Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases.

    PubMed

    Charng, Wu-Lin; Yamamoto, Shinya; Bellen, Hugo J

    2014-08-01

    Signaling pathways and cellular processes that regulate neural development are used post-developmentally for proper function and maintenance of the nervous system. Genes that have been studied in the context of the development of Drosophila peripheral nervous system (PNS) and neuromuscular junction (NMJ) have been identified as players in the pathogenesis of human neurodegenerative diseases, including spinocerebellar ataxia, amyotrophic lateral sclerosis, and spinal muscular atrophy. Hence, by unraveling the molecular mechanisms that underlie proneural induction, cell fate determination, axonal targeting, dendritic branching, and synapse formation in Drosophila, novel features related to these disorders have been revealed. In this review, we summarize and discuss how studies of Drosophila PNS and NMJ development have provided guidance in experimental approaches for these diseases.

  8. Primary central nervous system peripheral T-cell lymphoma in a child.

    PubMed

    Gualco, Gabriela; Wludarski, Sheila; Hayashi-Silva, Luciana; Medeiros Filho, Plinio; Veras, Geni; Bacchi, Carlos Eduardo

    2010-01-01

    A 10-year-old Caucasian boy was admitted to the hospital with a 3-month history of headache, vomiting, ataxia, and right amaurosis. A magnetic resonance imaging (MRI) showed a solid, expansive, parasagittal mass in the right parietal hemisphere that extended sagitally to include the optical chiasm. The lesion was considered unresectable. Histology and immunophenotyping of biopsy tissue revealed characteristics of peripheral T-cell lymphoma. No other anatomical region, including bone marrow, was compromised. Primary T-cell lymphomas of the central nervous system are rare, especially in childhood. Here, we describe the rapidly deteriorating and fatal clinical course of a boy with a primary T-cell lymphoma in the central nervous system.

  9. Selective response of rat peripheral sympathetic nervous system to various stimuli

    PubMed Central

    Ulus, I. H.; Wurtman, R. J.

    1979-01-01

    1. We utilized the induction of tyrosine hydroxylase, a catecholamine-synthesizing enzyme, in sympathetic ganglia and adrenal medullae to explore the central and peripheral mechanisms through which choline, various environmental stresses, and drugs that alter blood pressure or central neurotransmission affect various portions of the sympathetic nervous system. Animals received each treatment chronically, and enzyme activity was measured in the superior cervical, stellate, and coeliac ganglia and in the adrenal medullae. 2. Choline administration increased tyrosine hydroxylase activity in all four tissues, probably by increasing the release of acetylcholine from preganglionic sympathetic neurones that synapse on catecholamine-producing ganglion and chromaffin cells; carbachol and nicotine had similar effects. 3. Insulin enhanced tyrosine hydroxylase activity primarily in the coeliac ganglion and the adrenal medullae, but not in the superior cervical ganglia. 4. Reserpine and phenoxybenzamine increased the activity of the enzyme in all four tissues. 5. Prolonged exposure to a cold environment increased enzyme activity in all four tissues, but especially in the stellate and coeliac ganglia; forced swimming affected tyrosine hydroxylase only in these two ganglia. 6. Several drugs known to modify central neurotransmission were found to increase tyrosine hydroxylase activity in some portions of the sympathetic nervous system but not in others. 5,7-Dihydroxytryptamine, which destroys terminals of serotoninergic neurones, enhanced enzyme activity in all four tissues, but primarily in the coeliac ganglion and adrenal medullae. ET-495 (a dopaminergic agonist), D-amphetamine, and morphine induced tyrosine hydroxylase activity in the adrenal medullae and the coeliac ganglion, but not in the superior cervical ganglia. Oxotremorine, a centrally acting muscarinic agonist, increased tyrosine hydroxylase activity only in the adrenal medullae; its effect was not blocked by

  10. Data supporting the role of Fyn in initiating myelination in the peripheral nervous system

    PubMed Central

    Miyamoto, Yuki; Tamano, Moe; Torii, Tomohiro; Kawahara, Kazuko; Nakamura, Kazuaki; Tanoue, Akito; Takada, Shuji; Yamauchi, Junji

    2016-01-01

    Transgenic mice, which express active Fyn tyrosine kinase under the control of a glial fibrillary acidic protein promoter, have been produced. This promoter induces protein expression in the initiation stage of myelination in the peripheral nervous system (PNS) “Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development (Yamauchi et al., 2015 [1])”. Herein we provide the data regarding myelination-related protein markers and myelin ultrastructure in transgenic mice. PMID:27115022

  11. Genetic pathways for differentiation of the peripheral nervous system in ascidians.

    PubMed

    Waki, Kana; Imai, Kaoru S; Satou, Yutaka

    2015-01-01

    Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate. PMID:26515371

  12. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain.

    PubMed

    Inceoglu, Bora; Bettaieb, Ahmed; Trindade da Silva, Carlos A; Lee, Kin Sing Stephen; Haj, Fawaz G; Hammock, Bruce D

    2015-07-21

    Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes. PMID:26150506

  13. A case report of gastric cancer with brain metastasis: Rare peripheral nervous system symptoms

    PubMed Central

    YANG, GE-LIANG; LUO, TIAN-HANG; ZHANG, HUI-QING; LING, CHANG-QUAN; LI, BAI

    2016-01-01

    Gastric cancer with brain metastasis is rare. The present study reports a case of gastric cancer with isolated brain metastasis 1 year after gastrectomy. To the best of our knowledge, there have been no prior reports of solitary brain metastasis from gastric cancer with peripheral nervous system symptoms. A distal gastrectomy was performed on a 60-year-old male patient with gastric cancer in November 2012. Postoperative pathological analysis revealed a moderately differentiated adenocarcinoma with tumor invasion into the serosa and metastasis to one dissected lymph node. No abnormalities were found at follow-up examination. However, a tumor representing metastasis to the brain was recognized by a cranial enhanced magnetic resonance imaging examination 1 year after gastrectomy, which was performed when the patient exhibited numbness and thigmesthesia. The patient was administered 30 Gy of stereotactic radiotherapy, delivered in 5 fractions. The patient succumbed to disease 10 months subsequent to undergoing radiotherapy. This case report suggests that gastric cancer may re-present as brain metastasis with peripheral nervous system symptoms. PMID:27073571

  14. Phototherapeutic treatment of patients with peripheral nervous system diseases by means of LED arrays

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Kalinin, Konstantin L.; Menyaev, Yulian A.; Zmievskoy, Gregory N.; Savin, Alexei A.; Stulin, Igor D.; Shihkerimov, Raphiz K.; Shapkina, Alla V.; Velsher, Leonid Z.; Stakhanov, Mikhail L.

    2001-05-01

    The further development of new method of phototherapy based on use of light-emitting diodes (LED) arrays has been presented. LEDs array distribution is side of cylindrical surface, covering pathology region, was used for treatment group of patients with an affected peripheral nervous system. The main group consisted of patients with humeral plexopathy - one of possible neurological manifestation of postmastectomic syndrome as result of breast cancer radical treatment. This disease was accompanied also by some other peripheral nervous system diseases: diabetic polyneuropathy, compression ischemic mononeuropathy, festering wounds and others. The phototherapeutic method is just directed on improvement of patient's conditions in combination with other traditional methods of treatment. The main parameters of photomatrix therapeutic system: wavelength - 660 nm, line width - no more than 20 nm, intensity of radiation on the surface of edema - 0.5-3 mW/cm2 (in dependence of apparatuses type). To control and study efficiency of phototreatment ultrasonic dopplerography, thermography, electromyography and viscosimetry have been used.

  15. Peripheral circulation monitored by surface temperature and autonomic nervous function in hypobaric hypoxic environment: effects of submaximal exercise.

    PubMed

    Fukuda-Matsuda, Eri; Yamada, Makiko; Tanobe, Kyoko; Saito, Shigeru

    2007-02-01

    Hypothermia and frostbite are frequently seen in accidents in remote wilderness environment, especially in hypobaric hypoxic conditions. The aim of this study was to clarify how hypobaric hypoxic conditions affects peripheral circulation. Peripheral skin temperature and autonomic nervous functions were assessed in two 1000-m ascent exercises. Subjects (n = 15) ascended from 1000 m above sea level in Study 1, and ascended from 2400 m in Study 2. Conditions other than environmental oxygen pressure were mostly identical in both studies. The autonomic nervous activities were decreased solely in Study 2. The relative sympathetic activity was significantly increased in the lower barometric pressure in Study 2 (p < 0.01). Peripheral skin temperature was significantly decreased after the exercise in Study 2 (p < 0.01). In conclusion, hypobaric hypoxia itself induced peripheral low temperature during exercise at high altitudes. Relative sympathetic hyperactivity may be responsible for the compromised peripheral circulation.

  16. Homeoprotein signaling in the developing and adult nervous system

    PubMed Central

    2016-01-01

    Summary Signaling classically involves the secretion of diverse molecules that bind specific cellsurface receptors and engage intracellular transduction cascades. Some exceptions, namely lipophilic agents, can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell autonomous mechanisms and explore how this “novel” signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases. PMID:25741720

  17. Larval nervous systems: true larval and precocious adult.

    PubMed

    Nielsen, Claus

    2015-02-15

    The apical organ of ciliated larvae of cnidarians and bilaterians is a true larval organ that disappears before or at metamorphosis. It appears to be sensory, probably involved in metamorphosis, but knowledge is scant. The ciliated protostome larvae show ganglia/nerve cords that are retained as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords and a small perianal loop. The anterior loop becomes part of the brain. This has been well documented through cell-lineage studies in a number of spiralians, and homologies with similar structures in the ecdysozoans are strongly indicated. The deuterostomes are generally difficult to interpret, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence of 'deuterostomian' blastopore fates both in an annelid and in a mollusk, which are both placed in families with the 'normal' spiralian gastrulation type, and in the chaetognaths demonstrates that the chordate type of gastrulation could easily have evolved from the spiralian type. This indicates that the latest common ancestor of the deuterostomes was very similar to the latest common pelago-benthic ancestor of the protostomes as described by the trochaea theory, and that the neural tube of the chordates is morphologically ventral.

  18. Central Nervous System-Peripheral Immune System Dialogue in Neurological Disorders: Possible Application of Neuroimmunology in Urology.

    PubMed

    Park, Hyun-Sun; Park, Min-Jung; Kwon, Min-Soo

    2016-05-01

    Previous concepts of immune-privileged sites obscured the role of peripheral immune cells in neurological disorders and excluded the consideration of the potential benefits of immunotherapy. Recently, however, numerous studies have demonstrated that the blood-brain barrier in the central nervous system is an educational barrier rather than an absolute barrier to peripheral immune cells. Emerging knowledge of immune-privileged sites suggests that peripheral immune cells can infiltrate these sites via educative gates and that crosstalk can occur between infiltrating immune cells and the central nervous system parenchyma. This concept can be expanded to the testis, which has long been considered an immune-privileged site, and to neurogenic bladder dysfunction. Thus, we propose that the relationship between peripheral immune cells, the brain, and the urologic system should be considered as an additional possible mechanism in urologic diseases, and that immunotherapy might be an alternative therapeutic strategy in treating neurogenic bladder dysfunction.

  19. Central Nervous System-Peripheral Immune System Dialogue in Neurological Disorders: Possible Application of Neuroimmunology in Urology

    PubMed Central

    2016-01-01

    Previous concepts of immune-privileged sites obscured the role of peripheral immune cells in neurological disorders and excluded the consideration of the potential benefits of immunotherapy. Recently, however, numerous studies have demonstrated that the blood–brain barrier in the central nervous system is an educational barrier rather than an absolute barrier to peripheral immune cells. Emerging knowledge of immune-privileged sites suggests that peripheral immune cells can infiltrate these sites via educative gates and that crosstalk can occur between infiltrating immune cells and the central nervous system parenchyma. This concept can be expanded to the testis, which has long been considered an immune-privileged site, and to neurogenic bladder dysfunction. Thus, we propose that the relationship between peripheral immune cells, the brain, and the urologic system should be considered as an additional possible mechanism in urologic diseases, and that immunotherapy might be an alternative therapeutic strategy in treating neurogenic bladder dysfunction. PMID:27230462

  20. Proliferative and nonproliferative lesions of the rat and mouse central and peripheral nervous systems.

    PubMed

    Kaufmann, Wolfgang; Bolon, Brad; Bradley, Alys; Butt, Mark; Czasch, Stephanie; Garman, Robert H; George, Catherine; Gröters, Sibylle; Krinke, Georg; Little, Peter; McKay, Jenny; Narama, Isao; Rao, Deepa; Shibutani, Makoto; Sills, Robert

    2012-06-01

    Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).

  1. Peripheral nervous system injuries in sport and recreation: a systematic review.

    PubMed

    Toth, Cory; McNeil, Stephen; Feasby, Thomas

    2005-01-01

    Many sports are associated with a variety of peripheral nervous system (PNS) injuries specific to that sport. A systematic review of sport-specific PNS injuries has not been attempted previously, and will assist in the understanding of morbidities and mortality associated with particular sporting activities, either professional or amateur. A systematic review of the literature using PubMed (1965-2003) was performed examining all known sports and a range of possible PNS injuries attributable to that sport. Numerous sporting activities (53) were found to have associated PNS injuries. The sports most commonly reported with injuries were football, hockey, soccer, baseball and winter activities. There are a number of sporting activities with injuries unique to the individual sport. This review should be of assistance for the neurologist, neurosurgeon, orthopaedic surgeon, physiatrist, sports medicine doctor, athletic trainer and general physician in contact with athletes possessing neurological injuries.

  2. Peripheral nervous control of cold-induced reduction in the respiratory quotient of the rat

    NASA Astrophysics Data System (ADS)

    Refinetti, Roberto

    1990-03-01

    Cold-exposed rats show a reduction in the respiratory quotient which is indicative of a relative shift from carbohydrates to lipids as substrates for oxidative metabolism. In the present study, the effects of food deprivation and cold exposure on the respiratory quotient were observed. In addition, the involvement of the three main branches of the peripheral nervous system (sympathetic, parasympathetic, and somatic) was investigated by means of synaptic blockade with propranolol, atropine, and quinine, respectively. Both propranolol and quinine blocked the cold-induced decrease in respiratory quotient and increase in heat production, whereas atropine had only minor and very brief effects. It is concluded that both the sympathetic and somatic branches are involved in the metabolic changes associated with cold-induced thermogenesis and that the increase in metabolic heat production involves a shift from carbohydrate to lipid utilization irrespective of which of the two branches is activated.

  3. Neurotrophins are key mediators of the myelination program in the peripheral nervous system

    PubMed Central

    Chan, Jonah R.; Cosgaya, José Miguel; Wu, Yong Jian; Shooter, Eric M.

    2001-01-01

    Although knowledge of the functions of neurotrophins has advanced rapidly in recent years, studies concerning the involvement of neurotrophins in glial–neuronal interactions rarely extend further than their roles in supporting the survival and differentiation of neuronal cells. In this study endogenous brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) were identified in Schwann cell/dorsal root ganglia neuronal cocultures and shown to modulate the myelination program of the peripheral nervous system. The differential expression of BDNF and NT3 were examined and compared with the expression profiles of myelin proteins in the cocultures throughout the myelination process. BDNF levels correlated with active myelin formation, whereas NT3 expression was initially high and then down regulated throughout the proliferation and premyelination periods. Addition of exogenous BDNF enhanced myelination, whereas the removal of the endogenous BDNF by using the BDNF receptor TrkB-Fc fusion protein inhibited the formation of mature myelin internodes. Interestingly, exogenous NT3 significantly inhibited myelination, whereas the removal of the endogenous NT3 by using the NT3 receptor TrkC-Fc fusion protein resulted in an enhancement similar to that obtained with the addition of BDNF. In addition, in vivo studies were performed during the development of the mouse sciatic nerve. Subcutaneous injections of BDNF resulted in an enhancement of myelin formation in the sciatic nerve, whereas the removal of the endogenous BDNF dramatically inhibited myelination. Injections of NT3 inhibited myelin formation, and the removal of the endogenous NT3 enhanced myelination. These results demonstrate that BDNF and NT3 possess different modulatory roles in the myelination program of the peripheral nervous system and that their mechanisms of action are specific and highly regulated. PMID:11717413

  4. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  5. Development of the embryonic and larval peripheral nervous system of Drosophila

    PubMed Central

    Singhania, Aditi; Grueber, Wesley B.

    2014-01-01

    The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. The many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development. PMID:24896657

  6. Persistent Peripheral Nervous System Damage in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy.

    PubMed

    Dorsey, Jamie L; Mangus, Lisa M; Hauer, Peter; Ebenezer, Gigi J; Queen, Suzanne E; Laast, Victoria A; Adams, Robert J; Mankowski, Joseph L

    2015-11-01

    Human immunodeficiency virus (HIV)-induced peripheral neuropathy is the most common neurologic complication associated with HIV infection. In addition to virus-mediated injury of the peripheral nervous system (PNS), treatment of HIV infection with combination antiretroviral therapy (cART) may induce toxic neuropathy as a side effect. Antiretroviral toxic neuropathy is clinically indistinguishable from the sensory neuropathy induced by HIV; in some patients, these 2 processes are likely superimposed. To study these intercurrent PNS disease processes, we first established a simian immunodeficiency virus (SIV)/pigtailed macaque model in which more than 90% of animals developed PNS changes closely resembling those seen in HIV-infected individuals with distal sensory neuropathy. To determine whether cART alters the progression of SIV-induced PNS damage, dorsal root ganglia and epidermal nerve fibers were evaluated in SIV-infected macaques after long-term suppressive cART. Although cART effectively suppressed SIV replication and reduced macrophage activation in the dorsal root ganglia, PGP 9.5 immunostaining and measurements of epidermal nerve fibers in the plantar surface of the feet of treated SIV-infected macaques clearly showed that cART did not normalize epidermal nerve fiber density. These findings illustrate that significant PNS damage persists in SIV-infected macaques on suppressive cART.

  7. Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity

    PubMed Central

    Maurer, Michael A.; Rakocevic, Goran; Leung, Carol S.; Quast, Isaak; Lukačišin, Martin; Goebels, Norbert; Münz, Christian; Wardemann, Hedda; Dalakas, Marinos; Lünemann, Jan D.

    2012-01-01

    The B cell–depleting IgG1 monoclonal antibody rituximab can persistently suppress disease progression in some patients with autoimmune diseases. However, the mechanism underlying these long-term beneficial effects has remained unclear. Here, we evaluated Ig gene usage in patients with anti–myelin-associated glycoprotein (anti-MAG) neuropathy, an autoimmune disease of the peripheral nervous system that is mediated by IgM autoantibodies binding to MAG antigen. Patients with anti-MAG neuropathy showed substantial clonal expansions of blood IgM memory B cells that recognized MAG antigen. The group of patients showing no clinical improvement after rituximab therapy were distinguished from clinical responders by a higher load of clonal IgM memory B cell expansions before and after therapy, by persistence of clonal expansions despite efficient peripheral B cell depletion, and by a lack of substantial changes in somatic hypermutation frequencies of IgM memory B cells. We infer from these data that the effectiveness of rituximab therapy depends on efficient depletion of noncirculating B cells and is associated with qualitative immunological changes that indicate reconfiguration of B cell memory through sustained reduction of autoreactive clonal expansions. These findings support the continued development of B cell–depleting therapies for autoimmune diseases. PMID:22426210

  8. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature.

    PubMed

    Schneider, Erich H; Seifert, Roland

    2016-07-01

    Expression and function of histamine H4R in central and peripheral nervous system have been a matter of controversy for more than a decade. The scientific discussion is often limited to a few publications postulating the presence of functional H4R on neurons of the central and peripheral nervous system, but the even larger number of reports showing negative data is often neglected. In this article, we critically review the existing literature on H4R in central and peripheral nervous system and discuss the weak points often overlooked by the community. We identified as most important problems (i) insufficient validation or quality of antibodies, (ii) missing knockout controls, (iii) uncritical interpretation of RT-PCR results instead of qPCR experiments, (iv) insufficient controls to confirm specificity of pharmacological tools, (v) uncritical reliance on results produced by a single method and (vi) uncritical reliance on results not reproduced by independent research groups. Additionally, there may be a publication as well as a citation bias favoring the awareness of positive results, but neglecting negative data. We conclude that H4R expression on neurons of the brain is not convincingly supported by the current literature, at least as long as the positive data are not reproduced by independent research groups. Expression and function of H4R on peripheral neurons or non-neuronal cells of the nervous system, specifically on microglia is an interesting alternative hypothesis that, however, requires further verification. This article is part of a Special Issue entitled 'Histamine Receptors'.

  9. Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system.

    PubMed

    Shields, Shannon D; Ahn, Hye-Sook; Yang, Yang; Han, Chongyang; Seal, Rebecca P; Wood, John N; Waxman, Stephen G; Dib-Hajj, Sulayman D

    2012-10-01

    A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage-gated sodium channel Na(v)1.8 has been reported to be preferentially expressed in small-diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Na(v)1.8-Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre-mediated recombination occurs in these animals has not been resolved, and whether expression of Na(v)1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Na(v)1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Na(v)1.8-Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (∼40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons' central and peripheral projections revealed that Na(v)1.8-Cre is not restricted to nociceptors but is also expressed by at least 2 types of low-threshold mechanoreceptors essential for touch sensation, including those with C and Aβ fibers. Our results indicate that Na(v)1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Na(v)1.8-Cre-driven conditional knockout mice. PMID:22703890

  10. Sustained Accumulation of Microtubule-Binding Chemotherapy Drugs in the Peripheral Nervous System: Correlations with Time Course and Neurotoxic Severity.

    PubMed

    Wozniak, Krystyna M; Vornov, James J; Wu, Ying; Nomoto, Kenichi; Littlefield, Bruce A; DesJardins, Christopher; Yu, Yanke; Lai, George; Reyderman, Larisa; Wong, Nancy; Slusher, Barbara S

    2016-06-01

    Chemotherapy-induced peripheral neuropathy is a dose-limiting side effect of many antineoplastic agents, but the mechanisms underlying the toxicities are unclear. At their MTDs, the microtubule-binding drugs paclitaxel and ixabepilone induce more severe neuropathy in mice relative to eribulin mesylate, paralleling their toxicity profiles in clinic. We hypothesized that the severity of their neurotoxic effects might be explained by the levels at which they accumulate in the peripheral nervous system. To test this hypothesis, we compared their pharmacokinetics and distribution in peripheral nerve tissue. After administration of a single intravenous dose, each drug was rapidly cleared from plasma but all persisted in the dorsal root ganglia (DRG) and sciatic nerve (SN) for up to 72 hours. Focusing on paclitaxel and eribulin, we performed a 2-week MTD-dosing regimen, followed by a determination of drug pharmacokinetics, tissue distribution, and multiple functional measures of peripheral nerve toxicity for 4 weeks. Consistent with the acute dosing study, both drugs persisted in peripheral nervous tissues for weeks, in contrast to their rapid clearance from plasma. Notably, although eribulin exhibited greater DRG and SN penetration than paclitaxel, the neurotoxicity observed functionally was consistently more severe with paclitaxel. Overall, our results argue that sustained exposure of microtubule-binding chemotherapeutic agents in peripheral nerve tissues cannot by itself account for their associated neurotoxicity. Cancer Res; 76(11); 3332-9. ©2016 AACR. PMID:27197173

  11. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster

    SciTech Connect

    Kania, A.; Salzberg, A.; Bhat, M.

    1995-04-01

    The Drosophila embryonic peripheral nervous system (PNS) is an excellent model system to study the molecular mechanisms governing neural development. To identify genes controlling PNS development, we screened 2000 lethal P-element insertion strains. The PNS of mutant embryos was examined using the neural specific marker MAb 22C10, and 92 mutant strains were retained for further analysis. Genetic and cytological analysis of these strains shows that 42 mutations affect previously isolated genes that are known to be required for PNS development: longitudinals lacking (19), mastermind (15), numb (4), big brain (2), and spitz (2). The remaining 50 mutations were classified into 29 complementation groups and the P-element insertions were cytologically mapped. The mutants were classified in five major classes on the basis of their phenotype: gain of neurons, loss of neurons, organizational defects, pathfinding defects and morphological defects. Herein we report the preliminary phenotypic characterization of each of these complementation groups as well as the embryonic lacZ expression pattern of each P-element strain. Our analysis indicates that in most of the P-element insertion strains, the lacZ reporter gene is not expressed in the developing PNS. 52 refs., 5 figs., 5 tabs.

  12. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system

    PubMed Central

    Gökbuget, Deniz; Pereira, Jorge A.; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H.; Suter, Ueli

    2015-01-01

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases. PMID:26466203

  13. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems

    PubMed Central

    Taylor, Merritt K.; Kelly, Yeager; Morrison, Sean J.

    2009-01-01

    Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors. PMID:17537790

  14. The Lin28/let-7 axis is critical for myelination in the peripheral nervous system.

    PubMed

    Gökbuget, Deniz; Pereira, Jorge A; Bachofner, Sven; Marchais, Antonin; Ciaudo, Constance; Stoffel, Markus; Schulte, Johannes H; Suter, Ueli

    2015-10-14

    MicroRNAs (miRNAs) are crucial regulators of myelination in the peripheral nervous system (PNS). However, the miRNAs species involved and the underlying mechanisms are largely unknown. We found that let-7 miRNAs are highly abundant during PNS myelination and that their levels are inversely correlated to the expression of lin28 homolog B (Lin28B), an antagonist of let-7 accumulation. Sustained expression of Lin28B and consequently reduced levels of let-7 miRNAs results in a failure of Schwann cell myelination in transgenic mouse models and in cell culture. Subsequent analyses revealed that let-7 miRNAs promote expression of the myelination-driving master transcription factor Krox20 (also known as Egr2) through suppression of myelination inhibitory Notch signalling. We conclude that the Lin28B/let-7 axis acts as a critical driver of PNS myelination, in particular by regulating myelination onset, identifying this pathway also as a potential therapeutic target in demyelinating diseases.

  15. Peripheral Neuropathy

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Peripheral Neuropathy Information Page Condensed from Peripheral Neuropathy Fact Sheet ... Español Additional resources from MedlinePlus What is Peripheral Neuropathy? Peripheral neuropathy describes damage to the peripheral nervous ...

  16. δ-Aminolevulinic acid dehydratase genotype predicts toxic effects of lead on workers' peripheral nervous system.

    PubMed

    Zheng, Guang; Tian, Liting; Liang, Yihuai; Broberg, Karin; Lei, Lijian; Guo, Weijun; Nilsson, Johan; Bergdahl, Ingvar A; Skerfving, Staffan; Jin, Taiyi

    2011-08-01

    There is a wide variation in sensitivity to lead (Pb) exposure, which may be due to genetic susceptibility towards Pb. We investigated whether a polymorphism (rs1800435) in the δ-aminolevulinic acid dehydratase (ALAD) gene affected the toxicokinetics and toxicodynamics of Pb. Among 461 Chinese Pb-exposed storage battery and 175 unexposed workers, allele frequencies for the ALAD1 and ALAD2 alleles were 0.968 and 0.032, respectively. The Pb-exposed workers had a higher fraction of the ALAD1-2/2-2 genotype than unexposed workers (7.8% vs. 2.3%, p=0.01). The Pb levels in blood (B-Pb) and urine (U-Pb) were higher in Pb-exposed workers carrying the ALAD2 allele compared to homozygotes for ALAD1 (median B-Pb: 606 vs. 499 μg/L; U-Pb: 233 vs. 164 μg/g creatinine), while there was no statistically significant difference in the unexposed controls (median: 24 vs. 37 μg/L, and 3.9 vs. 6.4μg/g creatinine, respectively). High B-Pb and U-Pb were associated with statistically significantly lower sensory and motor conduction velocities in the median, ulnar and peroneal nerves. At the same B-Pb and U-Pb, ALAD1 homozygotes had lower conduction velocities than the ALAD2 carriers. There were similar trends for toxic effects on haem synthesis (zinc protoporphyrin and haemoglobin in blood) and renal function (albumin and N-acetyl-d-β-acetylglucosaminidase in urine), but without statistical significance. There was no difference in Pb toxicokinetics and toxicodynamics associated with VDR BsmI polymorphism. Our results show that the ALAD genotype modifies the relationship between Pb and its toxic effects on the peripheral nervous system. This must be considered in the assessment of risks at Pb exposure.

  17. Glycogen function in adult central and peripheral nerves.

    PubMed

    Evans, Richard D; Brown, Angus M; Ransom, Bruce R

    2013-08-01

    We studied the roles of glycogen in axonal pathways of the central nervous system (CNS) and peripheral nervous system (PNS). By using electrophysiological recordings, in combination with biochemical glycogen assay, it was possible to determine whether glycogen was crucial to axon function under different conditions. Glycogen was present both in mouse optic nerve (MON) and in mouse sciatic nerve (MSN). Aglycemia caused loss of the compound action potential (CAP) in both pathways after a latency of 15 min (MON) and 120 min for myelinated axons (A fibers) in the MSN. With the exception of unmyelinated axons (C fibers) in the MSN, CAP decline began when usable glycogen was exhausted. Glycogen was located in astrocytes in the MON and in myelinating Schwann cells in the MSN; it was absent from the Schwann cells surrounding unmyelinated C fibers. In MON, astrocytic glycogen is metabolized to lactate and "shuttled" to axons to support metabolism. The ability of lactate to support A fiber conduction in the absence of glucose suggests a common pathway in both the CNS and the PNS. Lactate is released from MON and MSN in substantial quantities. That lactate levels fall in MSN in the presence of diaminobenzidine, which inhibits glycogen phosphorylase, strongly suggests that glycogen metabolism contributes to lactate release under resting conditions. Glycogen is a "backup" energy substrate in both the CNS and the PNS and, beyond sustaining excitability during glucose deprivation, has the capacity to subsidize the axonal energy demands during times of intense activity in the presence of glucose.

  18. Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system

    NASA Astrophysics Data System (ADS)

    Huff, Terry Brandon

    A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the

  19. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury.

    PubMed

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; Oliveira, Alexandre Leite Rodrigues de

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  20. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury

    PubMed Central

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; de Oliveira, Alexandre Leite Rodrigues

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  1. Decoding transcriptional repressor complexes in the adult central nervous system.

    PubMed

    Adachi, Megumi; Monteggia, Lisa M

    2014-05-01

    Cells maintain precise gene expression by balancing transcriptional activation and repression. While much work has focused on elucidating transcriptional activation in the central nervous system (CNS), little is known about transcriptional repression. One means to repress gene expression is to initiate binding of transcription factors to DNA, which then recruit co-repressors as well as other accessory proteins, forming a multi-protein repressor complex. These multi-protein repressor complexes include histone modifying enzymes that trigger processes such as histone acetylation, methylation, and ubiquitylation, altering chromatin structures to impact gene expression. Within these complexes transcriptional repressor proteins per se do not exhibit enzymatic reactions to remodel chromatin structure, whereas histone modifying enzymes lack intrinsic DNA binding activity but have an ability to process post-translational modifications on histones. Thus, the mutual association between transcriptional repressors and histone modifying enzymes is essential to sculpt chromatin to favor transcriptional repression and down regulate gene expression. Additionally, co-repressors are integral components in the context of gene repression as they bridge the association of transcriptional repressors and histone modifying enzymes. In this review, we will discuss the roles of some of the major components of these repressor complex in the CNS as well as their cellular functions that may underlie fundamental behavior in animals.

  2. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation

    PubMed Central

    Clarke, Julia R; Lyra e Silva, Natalia M; Figueiredo, Claudia P; Frozza, Rudimar L; Ledo, Jose H; Beckman, Danielle; Katashima, Carlos K; Razolli, Daniela; Carvalho, Bruno M; Frazão, Renata; Silveira, Marina A; Ribeiro, Felipe C; Bomfim, Theresa R; Neves, Fernanda S; Klein, William L; Medeiros, Rodrigo; LaFerla, Frank M; Carvalheira, Jose B; Saad, Mario J; Munoz, Douglas P; Velloso, Licio A; Ferreira, Sergio T; De Felice, Fernanda G

    2015-01-01

    Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD. PMID:25617315

  3. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems.

    PubMed

    Navarro, Xavier; Krueger, Thilo B; Lago, Natalia; Micera, Silvestro; Stieglitz, Thomas; Dario, Paolo

    2005-09-01

    Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for neuromuscular stimulation and signal recording. Herein, we provide a critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses. The first section reviews the different types of non-invasive and invasive electrodes, which include surface and muscular electrodes that can record EMG signals from and stimulate the underlying or implanted muscles. Extraneural electrodes, such as cuff and epineurial electrodes, provide simultaneous interface with many axons in the nerve, whereas intrafascicular, penetrating, and regenerative electrodes may contact small groups of axons within a nerve fascicle. Biological, technological, and material science issues are also reviewed relative to the problems of electrode design and tissue injury. The last section reviews different strategies for the use of information recorded from peripheral interfaces and the current state of control neuroprostheses and hybrid bionic systems.

  4. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    SciTech Connect

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-04-25

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{sup +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  5. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    PubMed

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. PMID:26180190

  6. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Saletin, Jared M.

    2015-01-01

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the “embodied” reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. PMID:26180190

  7. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    PubMed

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive.

  8. Mitofusin 2 expression dominates over mitofusin 1 exclusively in mouse dorsal root ganglia - a possible explanation for peripheral nervous system involvement in Charcot-Marie-Tooth 2A.

    PubMed

    Kawalec, Maria; Zabłocka, Barbara; Kabzińska, Dagmara; Neska, Jacek; Beręsewicz, Małgorzata

    2014-01-01

    Mitofusin 2 (Mfn2), a protein of the mitochondrial outer membrane, is essential for mitochondrial fusion and contributes to the maintenance and operation of the mitochondrial network. Mutations in the mitofusin 2 gene cause axonal Charcot-Marie-Tooth type 2A (CMT2A), an inherited disease affecting peripheral nerve axons. The precise mechanism by which mutations in MFN2 selectively cause the degeneration of long peripheral axons is not known. There is a hypothesis suggesting the involvement of reduced expression of a homologous protein, mitofusin 1 (Mfn1), in the peripheral nervous system, and less effective compensation of defective mitofusin 2 by mitofusin 1. We therefore aimed to perform an analysis of the mitofusin 1 and mitofusin 2 mRNA and protein expression profiles in different mouse tissues, with special attention paid to dorsal root ganglia (DRGs), as parts of the peripheral nervous system. Quantitative measurement relating to mRNA revealed that expression of the Mfn2 gene dominates over Mfn1 mainly in mouse DRG, as opposed to other nervous system samples and other tissues studied. This result was further supported by Western blot evaluation. Both these sets of data confirm the hypothesis that the cellular consequences of mutations in the mitofusin 2 gene can mostly be manifested in the peripheral nervous system. PMID:25574749

  9. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    PubMed Central

    2012-01-01

    Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2) is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS). Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL) region of the lumbar spinal cord (LSC) in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM) resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration. PMID:22793996

  10. Ramsay Hunt Syndrome Associated with Central Nervous System Involvement in an Adult

    PubMed Central

    Chan, Tommy L. H.; Cartagena, Ana M.; Bombassaro, Anne Marie; Hosseini-Moghaddam, Seyed M.

    2016-01-01

    Ramsay Hunt syndrome associated with varicella zoster virus reactivation affecting the central nervous system is rare. We describe a 55-year-old diabetic female who presented with gait ataxia, right peripheral facial palsy, and painful vesicular lesions involving her right ear. Later, she developed dysmetria, fluctuating diplopia, and dysarthria. Varicella zoster virus was detected in the cerebrospinal fluid by polymerase chain reaction. She was diagnosed with Ramsay Hunt syndrome associated with spread to the central nervous system. Her facial palsy completely resolved within 48 hours of treatment with intravenous acyclovir 10 mg/kg every 8 hours. However, cerebellar symptoms did not improve until a tapering course of steroid therapy was initiated. PMID:27366189

  11. Ramsay Hunt Syndrome Associated with Central Nervous System Involvement in an Adult.

    PubMed

    Chan, Tommy L H; Cartagena, Ana M; Bombassaro, Anne Marie; Hosseini-Moghaddam, Seyed M

    2016-01-01

    Ramsay Hunt syndrome associated with varicella zoster virus reactivation affecting the central nervous system is rare. We describe a 55-year-old diabetic female who presented with gait ataxia, right peripheral facial palsy, and painful vesicular lesions involving her right ear. Later, she developed dysmetria, fluctuating diplopia, and dysarthria. Varicella zoster virus was detected in the cerebrospinal fluid by polymerase chain reaction. She was diagnosed with Ramsay Hunt syndrome associated with spread to the central nervous system. Her facial palsy completely resolved within 48 hours of treatment with intravenous acyclovir 10 mg/kg every 8 hours. However, cerebellar symptoms did not improve until a tapering course of steroid therapy was initiated. PMID:27366189

  12. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    PubMed Central

    Zafari Zangeneh, Farideh; Abdollahi, Alireza; Aminee, Fatemeh; Naghizadeh, Mohammad Mahdi

    2012-01-01

    Background: “Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC) plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1) to estimate LC activity in rats with estradiol valerate (EV)-induced PCO; (2) to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1) LC and yohimbine and 2) control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001), while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats. PMID:25242983

  13. Proteolipid protein cannot replace P0 protein as the major structural protein of peripheral nervous system myelin.

    PubMed

    Yin, Xinghua; Kiryu-Seo, Sumiko; Kidd, Grahame J; Feltri, M Laura; Wrabetz, Lawrence; Trapp, Bruce D

    2015-01-01

    The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when proteolipid protein (PLP) replaced P0 protein as the most abundant protein of CNS myelin. However, PLP did not replace P0 in peripheral nervous system (PNS) myelin. To investigate the possible consequences of a PLP to P0 shift in PNS myelin, we engineered mice to express PLP instead of P0 in PNS myelin (PLP-PNS mice). PLP-PNS mice had severe neurological disabilities and died between 3 and 6 months of age. Schwann cells in sciatic nerves from PLP-PNS mice sorted axons into one-to-one relationships but failed to form myelin internodes. Mice with equal amounts of P0 and PLP had normal PNS myelination and lifespans similar to wild-type (WT) mice. When PLP was overexpressed with one copy of the P0 gene, sciatic nerves were hypomyelinated; mice displayed motor deficits, but had normal lifespans. These data support the hypothesis that while PLP can co-exist with P0 in PNS myelin, PLP cannot replace P0 as the major structural protein of PNS myelin. PMID:25066805

  14. Proteolipid protein cannot replace P0 protein as the major structural protein of peripheral nervous system myelin

    PubMed Central

    Yin, Xinghua; Kiryu-Seo, Sumiko; Kidd, Grahame J.; Feltri, M. Laura; Wrabetz, Lawrence; Trapp, Bruce D.

    2014-01-01

    The central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when proteolipid protein (PLP) replaced P0 protein as the most abundant protein of CNS myelin. However, PLP did not replace P0 in peripheral nervous system (PNS) myelin. To investigate the possible consequences of a PLP to P0 shift in PNS myelin, we engineered mice to express PLP instead of P0 in PNS myelin (PLP-PNS mice). PLP-PNS mice had severe neurological disabilities and died between 3 and 6 months of age. Schwann cells in sciatic nerves from PLP-PNS mice sorted axons into one-to-one relationships but failed to form myelin internodes. Mice with equal amounts of P0 and PLP had normal PNS myelination and lifespans similar to wild-type (WT) mice. When PLP was overexpressed with one copy of the P0 gene, sciatic nerves were hypomyelinated; mice displayed motor deficits but had normal lifespans. These data support the hypothesis that while PLP can co-exist with P0 in PNS myelin, PLP cannot replace P0 as the major structural protein of PNS myelin. PMID:25066805

  15. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni

    PubMed Central

    Habib, Mohamed R.; Mohamed, Azza H.; Osman, Gamalat Y.; Sharaf El-Din, Ahmed T.; Mossalem, Hanan S.; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W.; Croll, Roger P.

    2015-01-01

    Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites. PMID:26086611

  16. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni.

    PubMed

    Habib, Mohamed R; Mohamed, Azza H; Osman, Gamalat Y; Sharaf El-Din, Ahmed T; Mossalem, Hanan S; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W; Croll, Roger P

    2015-01-01

    Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites.

  17. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach.

    PubMed

    Dalamagkas, Kyriakos; Tsintou, Magdalini; Seifalian, Alexander

    2016-08-01

    Peripheral nerve injury is a very common medical condition with varying clinical severity but always great impact on the patients' productivity and the quality of life. Even the current 1st-choice surgical therapeutic approach or the "gold standard" as frequently called in clinical practice, is not addressing the problem efficiently and cost-effectively, increasing the mortality through the need of a second surgical intervention, while it does not take into account the several different types of nerves involved in peripheral nerve injuries. Neural tissue engineering approaches could potentially offer a very promising and attractive tool for the efficient peripheral nerve injury management, not only by mechanically building the gap, but also by inducing neuroregenerative mechanisms in a well-regulated microenvironment which would mimic the natural environment of the specific nerve type involved in the injury to obtain an optimum clinical outcome. There is still room for a lot of optimizations in regard to the conduits which have been developed with the help of neural engineering since many parameters affect the clinical outcome and the underlying mechanisms are still not well understood. Especially the intraluminal cues controlling the microenvironment of the conduits are in an infantile stage but there is profound potential in the application of the scaffolds. The aim of our review is to provide a quick reference to the recent advances in the field, focusing on the parameters that can significantly affect the clinical potentials of each approach, with suggestions for future improvements that could take the current work from bench to bedside. Thus, further research could shed light to those questions and it might hold the key to discover new more efficient and cost-effective therapies.

  18. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  19. Differential diagnosis and management of a patient with peripheral vestibular and central nervous system disorders: a case study

    PubMed Central

    Trato, Jill; Johnson, Eric G

    2010-01-01

    Background Clinical examination and management of patients with meningiomas is primarily dependent upon appropriate diagnosis of tumor type and surgical intervention. Physical therapists should be able to identify patients presenting with signs and symptoms suggestive of potential central nervous system (CNS) disorders and refer the patient appropriately. Patient characteristics In this case report, a 52-year-old female was referred to physical therapy after 18 months of unresolved dizziness. Examination Oculomotor examination revealed evidence of peripheral vestibular and potential CNS disorders. The physical therapist referred the patient to a physician who ordered magnetic resonance imaging (MRI). Intervention The patient received five physical therapy sessions while waiting for the MRI which revealed a meningioma. The meningioma was surgically removed and the patient was subsequently relieved of all symptoms. Outcomes Despite the presence of the meningioma, the patient reported improved stability during work-related activities and decreased dizziness as a result of physical therapy intervention pre-operatively. Discussion This case report emphasizes the importance of a physical therapists ability to perform and interpret an oculomotor examination in a patient presenting with signs consistent with peripheral vestibular and CNS disorders. It also demonstrates the role of physical therapy in collaboration with physicians in order to provide appropriate patient care management. PMID:21886427

  20. Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns

    SciTech Connect

    Rochkind, S.; Rousso, M.; Nissan, M.; Villarreal, M.; Barr-Nea, L.; Rees, D.G.

    1989-01-01

    In this paper, we direct attention to the systemic effect of low-power helium-neon (HeNe) laser irradiation on the recovery of the injured peripheral and central nervous system, as well as healing of cutaneous wounds and burns. Laser irradiation on only the right side in bilaterally inflicted cutaneous wounds enhanced recovery in both sides compared to the nonirradiated control group (P less than .01). Similar results were obtained in bilateral burns: irradiating one of the burned sites also caused accelerated healing in the nonirradiated site (P less than .01). However, in the nonirradiated control group, all rats suffered advanced necrosis of the feet and bilateral gangrene. Low-power HeNe laser irradiation applied to a crushed injured sciatic nerve in the right leg in a bilaterally inflicted crush injury, significantly increased the compound action potential in the left nonirradiated leg as well. The statistical analysis shows a highly significant difference between the laser-treated group and the control nonirradiated group (P less than .001). Finally, the systemic effect was found in the spinal cord segments corresponding to the crushed sciatic nerves. The bilateral retrograde degeneration of the motor neurons of the spinal cord expected after the bilateral crush injury of the peripheral nerves was greatly reduced in the laser treated group. The systemic effects reported here are relevant in terms of the clinical application of low-power laser irradiation as well as for basic research into the possible mechanisms involved.

  1. The Role of the Peripheral and Central Nervous Systems in Rotator Cuff Disease

    PubMed Central

    Bachasson, Damien; Singh, Anshuman; Shah, Sameer; Lane, John G.; Ward, Samuel R.

    2015-01-01

    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians. PMID:26189809

  2. Pluralistic roles for glycogen in the central and peripheral nervous systems.

    PubMed

    Fryer, Kirsty L; Brown, Angus M

    2015-02-01

    Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.

  3. Dynamic analysis of mental sweating and the peripheral vessels for the activity of the autonomic nervous system by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Takada, Daisuke; Wada, Yuki; Haruna, Masamitsu

    2012-01-01

    OCT is highly potential for dynamic analysis of physiological functions of mental sweating and peripheral vessels as demonstrated by the authors. Both mental sweating and the peripheral vessels reflect the activity of the sympathetic nerve of the autonomic nervous system (ANS). The sympathetic nerve also exhibits the LF/HF ratio of the heart rate variability (HRV). In this paper, we demonstrate dynamic analysis of mental sweating and the peripheral vessels for the external stimulus by SS-OCT. In the experiment, the Kraepelin test as a continuous stimulus was applied to the volunteer to discuss in detail dynamics of the physiological function of such small organs in response to the HRV.

  4. Human central nervous system response to peripheral action of low-intensity millimeter waves

    SciTech Connect

    Lebedeva, N.N.

    1994-07-01

    We employ a modification of a psychophysical method developed by Kholodov to study electromagnetic field induced skin sensations. The main part of the setup is a program controller, which provides for the timed delivery of EMF signals and also false presentations. The EMF signals are fed in random order with a uniform distribution. The response-strength index and the false-alarm level were used to evaluate MF sensitivity. In addition, the subjects determined the presence or absence of a field according to four criteria. Forty healthy subjects ages 17 to 35 were tested on their right and left hands. Sensory data was analyzed via computer. EEG responses to peripheral action were studied in depth.

  5. Molecular anatomy and genetics of myelin proteins in the peripheral nervous system.

    PubMed Central

    Snipes, G J; Suter, U

    1995-01-01

    Myelin contains a number of proteins, the major examples of which are protein zero (Po), P2 protein, peripheral myelin protein 22 (PMP22), myelin basic proteins (MBPs), myelin-associated glycoprotein (MAG) and the recently described connexin 32 (Cx32). This list is probably still incomplete. The localisation and possible functions of these proteins are reviewed. In the past few years a number of inherited demyelinating neuropathies in mice and the human have been shown to be due to mutations affecting the genes PMP22, Po and Cx32 so that it has become possible to characterise the molecular pathology of the majority of these disorders. This has provided important insights into the relationships between the structure of myelin and the function of its constituent proteins. Images Fig. 1 PMID:7559122

  6. Central nervous system and peripheral immune functions and the sleep-wake system.

    PubMed Central

    Moldofsky, H

    1994-01-01

    This paper reviews the relationship of aspects of the immune system to the sleep-wake system in animals and humans. In addition to the influence of certain cytokines such as interleukin-1 (IL-1) on the sleeping-waking brain, circadian measures of plasma IL-1 and peripheral immune cellular functions, for example, natural killer cell activities and cortisol are related to the sleep-wake system in humans. Changes in the circadian patterns of immune functions over the menstrual cycle are associated with the amount of progesterone and slow wave sleep. The harmonious inter-relationship of the circadian pattern of the immune, endocrine and sleep-wake systems may be important in the cause and functions of sleep. PMID:7803370

  7. THE ROLE OF ANDROGENS AND ESTROGENS IN THE DEVELOPMENT OF BRAIN AND PERIPHERAL NERVOUS SYSTEM: APPROACHES TO DEVELOPING ANIMAL MODELS FOR SEXUALLY DIMORPHIC BEHAVIORS

    EPA Science Inventory

    This presentation provides an overview of research on the effects of hormonally active chemicals on sexual differentiation of the brain including (a) research on the role of androgens and estrogens in the development of the brain and peripheral nervous system, (b) approaches to d...

  8. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system

    PubMed Central

    Jiao, Jian-wei; Feldheim, David A.; Chen, Dong Feng

    2008-01-01

    In the central nervous system (CNS) of adult mammals, neurogenesis occurs in only two restricted areas, the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Isolation of multipotent progenitor cells from other CNS regions suggests that their neurogenic potential is dictated by local environmental cues. Here, we report that astrocytes in areas outside of the SGZ and SVZ of adult mice express high levels of ephrin-A2 and -A3, which present an inhibitory niche, negatively regulating neural progenitor cell growth. Adult mice lacking both ephrin-A2 and -A3 display active ongoing neurogenesis throughout the CNS. These findings suggest that neural cell replacement therapies for neurodegeneration or injury in the adult CNS may be achieved by manipulating ephrin signaling pathways. PMID:18562299

  9. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust.

    PubMed

    Seo, Dongjin; Neely, Ryan M; Shen, Konlin; Singhal, Utkarsh; Alon, Elad; Rabaey, Jan M; Carmena, Jose M; Maharbiz, Michel M

    2016-08-01

    The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle. Here, we demonstrate neural dust, a wireless and scalable ultrasonic backscatter system for powering and communicating with implanted bioelectronics. We show that ultrasound is effective at delivering power to mm-scale devices in tissue; likewise, passive, battery-less communication using backscatter enables high-fidelity transmission of electromyogram (EMG) and electroneurogram (ENG) signals from anesthetized rats. These results highlight the potential for an ultrasound-based neural interface system for advancing future bioelectronics-based therapies. PMID:27497221

  10. Biological Role of Dystroglycan in Schwann Cell Function and Its Implications in Peripheral Nervous System Diseases

    PubMed Central

    Masaki, Toshihiro; Matsumura, Kiichiro

    2010-01-01

    Dystroglycan is a central component of the dystrophin-glycoprotein complex (DGC) that links extracellular matrix with cytoskeleton, expressed in a variety of fetal and adult tissues. Dystroglycan plays diverse roles in development and homeostasis including basement membrane formation, epithelial morphogenesis, membrane stability, cell polarization, and cell migration. In this paper, we will focus on biological role of dystroglycan in Schwann cell function, especially myelination. First, we review the molecular architecture of DGC in Schwann cell abaxonal membrane. Then, we will review the loss-of-function studies using targeted mutagenesis, which have revealed biological functions of each component of DGC in Schwann cells. Based on these findings, roles of dystroglycan in Schwann cell function, in myelination in particular, and its implications in diseases will be discussed in detail. Finally, in view of the fact that understanding the role of dystroglycan in Schwann cells is just beginning, future perspectives will be discussed. PMID:20625412

  11. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain. PMID:25976648

  12. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  13. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

  14. Ventral tegmental area neurons are either excited or inhibited by cocaine’s actions in the peripheral nervous system

    PubMed Central

    Mejías-Aponte, Carlos A.; Kiyatkin, Eugene A.

    2012-01-01

    Cocaine’s multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via peripheral actions, and whether this precedes its central actions. In urethane-anesthetized rats, we recorded VTA neurons responses to intravenous injections of two cocaine analogs: cocaine-hydrochloride (HCl, 0.25 mg/kg) that readily cross the blood-brain barrier (BBB) and cocaine-methiodide (MI, 0.33 mg/kg) that does not cross the BBB. Both cocaine analogs produced sustained changes in discharge rates that began 5s after the initiation of a 10s drug infusion. Within the first 90s post-injection the magnitudes of neuronal responsive of both cocaine analogs were comparable, but later in time the effects of cocaine-HCl were stronger and persisted longer than those of cocaine-MI. The proportion of neurons responsive to cocaine-HCl was twice to that of cocaine-MI (74% and 35% respectively). Both analogs also differed in the response onsets. Cocaine-MI rarely evoked responses after 1 min whereas cocaine-HCl continued to evoke responses within 3 min post-injection. VTA neurons were either excited or inhibited by both cocaine analogs. Most units responsive to cocaine-MI, regardless of excitation or inhibition, had electrophysiological characteristics of putative DA neurons. Units inhibited by cocaine-HCl also had characteristic of DA neurons whereas excited neurons had widely varying action potential durations and discharge rates. Cocaine-MI and cocaine-HCl each produced changes in VTA neuron activity under full DA receptor blockade. However, the duration of inhibition was shortened, the number of excitations increased, and they occurred with an earlier onset during DA receptor blockade. These findings indicate that cocaine acts peripherally with a short latency and

  15. Expression of Hepatoma-derived growth factor family members in the adult central nervous system

    PubMed Central

    El-Tahir, Heba M; Dietz, Frank; Dringen, Ralf; Schwabe, Kerstin; Strenge, Karen; Kelm, Sørge; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2006-01-01

    Background Hepatoma-derived growth factor (HDGF) belongs to a polypeptide family containing five additional members called HDGF related proteins 1–4 (HRP-1 to -4) and Lens epithelial derived growth factor. Whereas some family members such as HDGF and HRP-2 are expressed in a wide range of tissues, the expression of others is very restricted. HRP-1 and -4 are only expressed in testis, HRP-3 only in the nervous system. Here we investigated the expression of HDGF, HRP-2 and HRP-3 in the central nervous system of adult mice on the cellular level by immunohistochemistry. In addition we performed Western blot analysis of various brain regions as well as neuronal and glial cell cultures. Results HDGF was rather evenly expressed throughout all brain regions tested with the lowest expression in the substantia nigra. HRP-2 was strongly expressed in the thalamus, prefrontal and parietal cortex, neurohypophysis, and the cerebellum, HRP-3 in the bulbus olfactorius, piriform cortex and amygdala complex. HDGF and HRP-2 were found to be expressed by neurons, astrocytes and oligodendrocytes. In contrast, strong expression of HRP-3 in the adult nervous system is restricted to neurons, except for very weak expression in oligodendrocytes in the brain stem. Although the majority of neurons are HRP-3 positive, some like cerebellar granule cells are negative. Conclusion The coexpression of HDGF and HRP-2 in glia and neurons as well as the coexpression of all three proteins in many neurons suggests different functions of members of the HDGF protein family in cells of the central nervous system that might include proliferation as well as cell survival. In addition the restricted expression of HRP-3 point to a special function of this family member for neuronal cells. PMID:16430771

  16. Anaplastic Lymphoma Kinase is Dynamically Expressed on Subsets of Motor Neurons and in the Peripheral Nervous System

    PubMed Central

    Hurley, Shawn P.; Clary, Douglas O.; Copié, Valérie; Lefcort, Frances

    2008-01-01

    During embryonic development, complex events such as cellular proliferation, differentiation, survival, and guidance of axons are orchestrated and regulated by a variety of extracellular signals. Receptor tyrosine kinases mediate many of these events with several playing critical roles in neuronal survival and axonal guidance. It is evident that not all the receptor tyrosine kinases that play key roles in regulating neuronal development have been identified. In this study, we have characterized the spatial-temporal expression profile of a recently identified receptor tyrosine kinase, anaplastic lymphoma kinase (ALK), in embryonic chick by means of whole mount in situ hybridization in conjunction with immunohistochemistry. Our findings reveal that Alk is expressed in sympathetic and dorsal root ganglia as early as stage 19. In addition, mRNA is expressed from stage 23/24 (E4) until stage 39 (E13) in discrete motor neuron subsets of chick spinal cord along with a select group of muscles that are innervated by one of these particular motor neuron clusters. Interestingly, expression within the spinal cord is coincident with the onset and duration of motor neuron programmed cell death and during the period of musculature innervation and synapse formation. Hence, the data presented here identify ALK as a novel candidate receptor for regulating critical events in the development of neurons in both the central and peripheral nervous system. PMID:16435287

  17. Peripheral Nervous System Function and Organophosphate Pesticide Use among Licensed Pesticide Applicators in the Agricultural Health Study

    PubMed Central

    Starks, Sarah E.; Hoppin, Jane A.; Kamel, Freya; Lynch, Charles F.; Jones, Michael P.; Alavanja, Michael C.; Sandler, Dale P.

    2012-01-01

    Background: Evidence is limited that long-term human exposure to organophosphate (OP) pesticides, without poisoning, is associated with adverse peripheral nervous system (PNS) function. Objective: We investigated associations between OP pesticide use and PNS function by administering PNS tests to 701 male pesticide applicators in the Agricultural Health Study (AHS). Methods: Participants completed a neurological physical examination (NPx) and electrophysiological tests as well as tests of hand strength, sway speed, and vibrotactile threshold. Self-reported information on lifetime use of 16 OP pesticides was obtained from AHS interviews and a study questionnaire. Associations between pesticide use and measures of PNS function were estimated with linear and logistic regression controlling for age and outcome-specific covariates. Results: Significantly increased odds ratios (ORs) were observed for associations between ever use of 10 of the 16 OP pesticides and one or more of six NPx outcomes. Most notably, abnormal toe proprioception was significantly associated with ever use of 6 OP pesticides, with ORs ranging from 2.03 to 3.06; monotonic increases in strength of association with increasing use was observed for 3 of the 6 pesticides. Mostly null associations were observed between OP pesticide use and electrophysiological tests, hand strength, sway speed, and vibrotactile threshold. Conclusions: This study provides some evidence that long-term exposure to OP pesticides is associated with signs of impaired PNS function among pesticide applicators. PMID:22262687

  18. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea

    SciTech Connect

    Perantoni, A.O.; Rice, J.M.; Reed, C.D.; Watatani, M.; Wenk, M.L.

    1987-09-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). The authors prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and form schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogen was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified in cultured cell lines derived from EtNU-induced neurogenic tumors appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain.

  19. Heterogeneous generation of new cells in the adult echinoderm nervous system

    PubMed Central

    Mashanov, Vladimir S.; Zueva, Olga R.; García-Arrarás, José E.

    2015-01-01

    Adult neurogenesis, generation of new functional cells in the mature central nervous system (CNS), has been documented in a number of diverse organisms, ranging from humans to invertebrates. However, the origin and evolution of this phenomenon is still poorly understood for many of the key phylogenetic groups. Echinoderms are one such phylum, positioned as a sister group to chordates within the monophyletic clade Deuterostomia. They are well known for the ability of their adult organs, including the CNS, to completely regenerate after injury. Nothing is known, however, about production of new cells in the nervous tissue under normal physiological conditions in these animals. In this study, we show that new cells are continuously generated in the mature radial nerve cord (RNC) of the sea cucumber Holothuria glaberrima. Importantly, this neurogenic activity is not evenly distributed, but is significantly more extensive in the lateral regions of the RNC than along the midline. Some of the new cells generated in the apical region of the ectoneural neuroepithelium leave their place of origin and migrate basally to populate the neural parenchyma. Gene expression analysis showed that generation of new cells in the adult sea cucumber CNS is associated with transcriptional activity of genes known to be involved in regulation of various aspects of neurogenesis in other animals. Further analysis of one of those genes, the transcription factor Myc, showed that it is expressed, in some, but not all radial glial cells, suggesting heterogeneity of this CNS progenitor cell population in echinoderms. PMID:26441553

  20. Investigation of medico-biological action of intravasular irradiation of blood on the immune system of an organism at some pathological state of the peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Lapina, Victoria A.; Tanina, Raisa M.

    1994-02-01

    We investigated the influence of intravenous laser irradiation of blood (ILIB) on the immune system of the organism at vertebrogenic disorders of the peripheral nervous system (PNS) with a prominent pain syndrome. It has been found that ILIB produces a positive effect on the immunity T-link increasing the proliferative activity of T-lymphocytes, has positive dynamics in clinics, doesn't cause any side or negative effects.

  1. Antiganglioside GM1 antibodies and their complement activating capacity in central and peripheral nervous system disorders and in controls.

    PubMed

    Uetz-von Allmen, E; Sturzenegger, M; Rieben, R; Rihs, F; Frauenfelder, A; Nydegger, U E

    1998-01-01

    So far, the pathogenic significance and use for diagnosis of antiganglioside GM1 antibodies (anti-GM1) are unclear. We therefore compared serum IgM and IgG antimonosialo ganglioside GM1 levels of 33 patients with presumed immune-mediated neuropathies, 100 patients with various other central or peripheral neurological disorders, and 110 controls by ELISA. We also measured the complement-activating capacity of anti-GM1 by C5b-9-GM1-ELISA to evaluate its value to distinguish between pathogenic and nonpathogenic autoantibodies. Low levels of anti-GM1 were observed in all disease categories and in controls (healthy blood donors). Twenty-four of the controls including the 10 with the highest serum IgM or IgG anti-GM1 were examined for neurological disorders in a double-blind checkup study. In the patients, elevated IgM anti-GM1 levels were predominantly found in those with neuropathies (NP), but barely in patients with central nervous system disease (CNSD). We found elevated IgG anti-GM1 levels predominantly in patients with NP of inflammatory origin (multifocal motor neuropathy, chronic inflammatory demyelinating polyneuropathy or Guillain-Barré syndrome), rarely in patients with NP of noninflammatory origin or CNSD, but not in the control disease group myasthenia gravis (MG). Median levels of IgM-, IgG-, (IgM+IgG)-, and C5b-9-binding anti-GM1 were significantly higher in patients with inflammatory NP as compared to the controls (p < 0.025). In addition, median levels of IgG- and (IgM+IgG)-anti-GM1 were significantly higher in inflammatory NP versus CNSD. Elevated complement-binding activity was associated with low or elevated IgM and/or IgG anti-GM1. Nevertheless, there was a significant correlation between anti-GM1 level (IgM+IgG) and the respective complement-activating capacity (r = 0.758; n = 243). Estimation of anti-GM1 and their respective complement-activating capacity may be helpful in the diagnosis of inflammatory neuropathies. However, neither an elevated

  2. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  3. Development of the spinal cord and peripheral nervous system in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The modern monotremes (platypus and echidnas) are characterized by development of their young in a leathery egg that is laid into a nest or abdominal pouch. At hatching, the young are externally immature, with forelimbs capable of digitopalmar prehension, but hindlimbs little advanced beyond limb buds. The embryological collections at the Museum für Naturkunde in Berlin were used to examine the development of the spinal cord and early peripheral nervous system in developing monotremes and to correlate this with known behavioural development. Ventral root outgrowth to the bases of both the fore- and hindlimbs occurs at 6.0 mm crown-rump length (CRL), but invasion of both limbs does not happen until about 8.0-8.5 mm CRL. Differentiation of the ventral horn precedes the dorsal horn during incubation and separate medial and lateral motor columns can be distinguished before hatching. Rexed's laminae begin to appear in the dorsal horn in the first week after hatching, and gracile and cuneate fasciculi emerge during the first two post-hatching months. Qualitative and quantitative comparisons of the structure of the cervicothoracic junction spinal cord in the two monotremes with that in a diprotodont marsupial (the brush-tailed possum, Trichosurus vulpecula) of similar size at birth, did not reveal any significant structural differences between the monotremes and the marsupial. The precocious development of motor systems in the monotreme spinal cord is consistent with the behavioural requirements of the peri-hatching period, that is, rupture of embryonic membranes and egg, and digitopalmar prehension to grasp maternal hair or nest material. PMID:22401666

  4. Errors, limitations, and pitfalls in the diagnosis of central and peripheral nervous system lesions in intraoperative cytology and frozen sections

    PubMed Central

    Chand, Priyanka; Amit, Sonal; Gupta, Raghvendra; Agarwal, Asha

    2016-01-01

    Context: Intraoperative cytology and frozen section play an important role in the diagnosis of neurosurgical specimens. There are limitations in both these procedures but understanding the errors and pitfalls may help in increasing the diagnostic yield. Aims: To find the diagnostic accuracy of intraoperative cytology and frozen section for central and peripheral nervous system (PNS) lesions and analyze the errors, pitfalls, and limitations in these procedures. Settings and Design: Eighty cases were included in this prospective study in a span of 1.5 years. Materials and Methods: The crush preparations and the frozen sections were stained with hematoxylin and eosin method. The diagnosis of crush smears and the frozen sections were compared with the diagnosis in the paraffin section, which was considered as the gold standard. Statistical Analyses Used: Diagnostic accuracy, sensitivity, and specificity. Results: The diagnostic accuracy of crush smears was 91.25% with a sensitivity of 95.5% and specificity of 100%. In the frozen sections, the overall diagnostic accuracy was 95%, sensitivity was 96.8%, and specificity was 100%. The categories of pitfalls noted in this study were categorization of spindle cell lesions, differentiation of oligodendroglioma from astrocytoma in frozen sections, differentiation of coagulative tumor necrosis of glioblastoma multiforme (GBM) from the caseous necrosis of tuberculosis, grading of gliomas in frozen section, and differentiation of the normal granular cells of the cerebellum from the lymphocytes in cytological smears. Conclusions: Crush smear and frozen section are complimentary procedures. When both are used together, the diagnostic yield is substantially increased. PMID:27279685

  5. Expression and distribution of S100 protein in the nervous system of the adult zebrafish (Danio rerio).

    PubMed

    Germanà, A; Marino, F; Guerrera, M C; Campo, S; de Girolamo, P; Montalbano, G; Germanà, G P; Ochoa-Erena, F J; Ciriaco, E; Vega, J A

    2008-03-01

    S100 proteins are EF-hand calcium-binding protein highly preserved during evolution present in both neuronal and non-neuronal tissues of the higher vertebrates. Data about the expression of S100 protein in fishes are scarce, and no data are available on zebrafish, a common model used in biology to study development but also human diseases. In this study, we have investigated the expression of S100 protein in the central nervous system of adult zebrafish using PCR, Western blot, and immunohistochemistry. The central nervous system of the adult zebrafish express S100 protein mRNA, and contain a protein of approximately 10 kDa identified as S100 protein. S100 protein immunoreactivity was detected widespread distributed in the central nervous system, labeling the cytoplasm of both neuronal and non-neuronal cells. In fact, S100 protein immunoreactivity was primarily found in glial and ependymal cells, whereas the only neurons displaying S100 immunoreactivity were the Purkinje's neurons of the cerebellar cortex and those forming the deep cerebellar nuclei. Outside the central nervous system, S100 protein immunoreactivity was observed in a subpopulation of sensory and sympathetic neurons, and it was absent from the enteric nervous system. The functional role of S100 protein in both neurons and non-neuronal cells of the zebrafish central nervous system remains to be elucidated, but present results might serve as baseline for future experimental studies using this teleost as a model.

  6. Central Nervous System Involvement in Adult Acute Lymphoblastic Leukemia: Diagnostic Tools, Prophylaxis, and Therapy

    PubMed Central

    Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Sconocchia, Giuseppe; Cefalo, Mariagiovanna; De Santis, Giovanna; Di Veroli, Ambra; Ditto, Concetta; Nasso, Daniela; Postorino, Massimiliano; Refrigeri, Marco; Attrotto, Cristina; Del Poeta, Giovanni; Lo-Coco, Francesco; Amadori, Sergio; Venditti, Adriano

    2014-01-01

    In adult patients with acute lymphoblastic leukemia (ALL), Central Nervous System (CNS) involvement is associated with a very poor prognosis. The diagnostic assessment of this condition relies on the use of neuroradiology, conventional cytology (CC) and flow cytometry (FCM). Among these approaches, which is the gold standard it is still a matter of debate. Neuroradiology and CC have a limited sensitivity with a higher rate of false negative results. FCM demonstrated a superior sensitivity over CC, particularly when low levels of CNS infiltrating cells are present. Although prospective studies of a large series of patients are still awaited, a positive finding by FCM appears to anticipate an adverse outcome even if CC shows no infiltration. Current strategies for adult ALL CNS-directed prophylaxis or therapy involve systemic and intrathecal chemotherapy and radiation therapy. An early and frequent intrathecal injection of cytostatic combined with systemic chemotherapy is the most effective strategy to reduce the frequency of CNS involvement. In patients with CNS overt ALL, at diagnosis or upon relapse, allogeneic hematopoietic stem cell transplantation might be considered. This review discusses risk factors, diagnostic techniques for identification of CNS infiltration and modalities of prophylaxis and therapy to manage it. PMID:25408861

  7. Evaluation of the peripheral nervous system among workers employed in the production of chemicals contaminated with 2,3,7. 8-tetra-chlorodibenzo-p-dioxin. Final report

    SciTech Connect

    Sweeney, M.H.; Fingerhut, M.A.; Connally, L.B.; Hornung, R.

    1990-07-01

    The long term effects on the peripheral nervous system in workers with past exposure to production products contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (1746016) (TCDD) were evaluated. The severity of the current neurologic status was compared to the levels of TCDD measured in the serum of study subjects. Workers who were employed at two chemical factories at which chemicals contaminated with TCDD were manufactured, and a group of unexposed referents were assessed in a cross sectional medical study in 1987 through 1988. Questionnaires were used to collect follow-up data. There were 281 workers and 260 referents who were interviewed and medically examined. Peripheral neuropathy was found in about 18% of workers and 19% of referents. Serum TCDD levels ranged from 2 to 3390 parts per trillion (ppt) for 272 workers and from 2 to 20ppt for 86 referents tested. No dose-response relationship was observed between TCDD levels present at the time of the examination and the occurrence of peripheral neuropathy in the previously exposed population. The authors conclude that exposure to TCDD caused no excess chronic peripheral neuropathy in a group of exposed workers compared to unexposed referents.

  8. Extracellular Matrix: Functions in the Nervous System

    PubMed Central

    Barros, Claudia S.; Franco, Santos J.; Müller, Ulrich

    2011-01-01

    An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system. PMID:21123393

  9. Glial changes in the phrenic nucleus following superimposed cervical spinal cord hemisection and peripheral chronic phrenicotomy injuries in adult rats.

    PubMed

    Gould, D J; Goshgarian, H G

    1997-11-01

    The objective of the present study was to characterize the microglial and astroglial reaction in the phrenic nucleus following either an ipsilateral C2 spinal cord hemisection, a peripheral phrenicotomy, or a combination of the two injuries in the same adult rat. The present study used three different fluorescent markers and a confocal laser image analysis system to study glial cells and phrenic motoneurons at the light microscopic level. Young adult female rats were divided into one combined injury group (left phrenicotomy and left C2 spinal hemisection with periods of 1 to 4 weeks between injuries, N = 12) and three other groups consisting of noninjured animals (N = 3), animals that received C2 hemisection only (N = 3), and animals with phrenicotomy only (survival periods of 2 (N = 3) and 4 (N = 3) weeks after phrenicotomy). Fluorogold was injected into the diaphragm to label phrenic motoneurons in all animals. Microglia and astrocytes were labeled with Texas red and fluorescein, respectively, and were visualized simultaneously along with phrenic motoneurons. The results suggest that the microglial and astrocytic response in the superimposed injury model are similar to the glial reactions characteristically seen in a peripheral axotomy alone model. These reactions include proliferation and migration of microglial cells along the perineuronal surface (peaking at 2 weeks) and the hypertrophy of astrocytes (peaking at 4 weeks). In addition, the increase in astrocytic tissue, which is characteristically seen in response to axotomy alone, is significantly enhanced in the superimposed injury model. Also, there is a large and rapid increase in GFAP-positive astrocytes within 24 hours after hemisection alone. The information gained from the present study will aid in determining, predicting, and eventually manipulating central nervous system responses to multiple injuries with the objective of reestablishing function in the damaged CNS.

  10. A Systematic Review of Peripheral and Central Nervous System Involvement of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Primary Sjögren's Syndrome, and Associated Immunological Profiles

    PubMed Central

    Bougea, Anastasia; Anagnostou, Evangelos; Konstantinos, Giatas; George, Paraskevas; Triantafyllou, Nikolaos; Kararizou, Evangelia

    2015-01-01

    Both central (CNS) and peripheral nervous system (PNS) complications are frequent and varied in connective tissue diseases. A systematic review was conducted between 1989 and 2014 in the databases Medline, Scopus, and Cochrane Library using the search terms, peripheral and central nervous complications and immunological profiles, to identify studies in specific connective tissue disorders such as rheumatoid arthritis, systemic lupus erythematosus, and primary Sjögren's syndrome. A total of 675 references were identified, of which 118 were selected for detailed analysis and 22 were included in the final review with a total of 2338 participants. Our search focused only on studies upon connective tissue disorders such as rheumatoid arthritis, systemic lupus erythematosus, and primary Sjögren's syndrome associated with seroimmunological data. The reported prevalence of CNS involvement ranges from 9 to 92% across the reported studies. However, the association between CNS and PNS manifestations and seroimmunological profiles remains controversial. Τo date, no laboratory test has been shown as pathognomonic neither for CNS nor for PNS involvement. PMID:26688829

  11. Evaluation of the Effects of the Aqueous Extract of Vitex doniana Root-Bark on the Peripheral and Central Nervous System of Laboratory Animals

    NASA Astrophysics Data System (ADS)

    Abdulrahman, F. I.; Onyeyili, P. A.; Sandabe, U. K.; Ogugbuaja, V. O.

    Aim of this study to investigate the effects of aqueous extract of Vitrex doniana on the peripheral and central nervous systems and possibility to use it as folk medicine. The aqueous extract of Vitex doniana was soxhlet extracted with distilled water and concentrated in vacuo to give a yield of 8.5% w/w. The LD50 following intraperitoneal administration was estimated to be 980 mg kgG1. The aqueous extract of Vitex doniana from the study produced substantial depressant effects on both the peripheral and central nervous system. The aqueous extract induced sleep on its own at dose of 400 mg kgG1 and potentiated sodium thiopental sleeping time in a dose dependant manner. It also showed significant (p< 0.05) muscle relaxant activities and produced analgesia and weal anesthetic effect. The extract was able to confer 80% protection to rats treated with convulsive dose of PTZ, while it conferred 100% protection to rats treated with convulsion dose of strychnine.

  12. Ankyrin-binding activity of nervous system cell adhesion molecules expressed in adult brain.

    PubMed

    Davis, J Q; Bennett, V

    1993-01-01

    A family of ankyrin-binding glycoproteins have been identified in adult rat brain that include alternatively spliced products of the same pre-mRNA. A composite sequence of ankyrin-binding glycoprotein (ABGP) shares 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides and ankyrin associate as pure proteins in a 1:1 molar stoichiometry at a site located in the predicted cytoplasmic domain. ABGP polypeptides are expressed late in postnatal development to approximately the same levels as ankyrin, and comprise a significant fraction of brain membrane proteins. Immunofluorescence studies have shown that ABGP polypeptides are co-localized with ankyrinB. Major differences in developmental expression have been reported for neurofascin in embryos compared with the late postnatal expression of ABGP, suggesting that ABGP and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. Predicted cytoplasmic domains of rat ABGP and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, including L1, Nr-CAM and Ng-CAM of vertebrates, and neuroglian of Drosophila. A hypothesis to be evaluated is that ankyrin-binding activity is shared by all of these proteins.

  13. Peripheral venous distension elicits a blood pressure raising reflex in young and middle-aged adults.

    PubMed

    Matthews, Evan L; Brian, Michael S; Coyle, Dana E; Edwards, David G; Stocker, Sean D; Wenner, Megan M; Farquhar, William B

    2016-06-01

    Distension of peripheral veins in humans elicits a pressor and sympathoexcitatory response that is mediated through group III/IV skeletal muscle afferents. There is some evidence that autonomic reflexes mediated by these sensory fibers are blunted with increasing age, yet to date the venous distension reflex has only been studied in young adults. Therefore, we tested the hypothesis that the venous distension reflex would be attenuated in middle-aged compared with young adults. Nineteen young (14 men/5 women, 25 ± 1 yr) and 13 middle-aged (9 men/4 women, 50 ± 2 yr) healthy normotensive participants underwent venous distension via saline infusion through a retrograde intravenous catheter in an antecubital vein during limb occlusion. Beat-by-beat blood pressure, muscle sympathetic nerve activity (MSNA), and model flow-derived cardiac output (Q), and total peripheral resistance (TPR) were recorded throughout the trial. Mean arterial pressure (MAP) increased during the venous distension in both young (baseline 83 ± 2, peak 94 ± 3 mmHg; P < 0.05) and middle-aged adults (baseline 88 ± 2, peak 103 ± 3 mmHg; P < 0.05). MSNA also increased in both groups [young: baseline 886 ± 143, peak 1,961 ± 242 arbitrary units (AU)/min; middle-aged: baseline 1,164 ± 225, peak 2,515 ± 404 AU/min; both P < 0.05]. TPR (P < 0.001), but not Q (P = 0.76), increased during the trial. However, the observed increases in blood pressure, MSNA, and TPR were similar between young and middle-aged adults. Additionally, no correlation was found between age and the response to venous distension (all P > 0.05). These findings suggest that peripheral venous distension elicits a pressor and sympathetic response in middle-aged adults similar to the response observed in young adults. PMID:27053648

  14. The Spectrum of Central Nervous System Infections in an Adult Referral Hospital in Hanoi, Vietnam

    PubMed Central

    Taylor, Walter R.; Nguyen, Kinh; Nguyen, Duc; Nguyen, Huyen; Horby, Peter; Nguyen, Ha L.; Lien, Trinh; Tran, Giang; Tran, Ninh; Nguyen, Ha M.; Nguyen, Thai; Nguyen, Ha H.; Nguyen, Thanh; Tran, Giap; Farrar, Jeremy; de Jong, Menno; Schultsz, Constance; Tran, Huong; Nguyen, Diep; Vu, Bich; Le, Hoa; Dao, Trinh; Nguyen, Trung; Wertheim, Heiman

    2012-01-01

    Objectives To determine prospectively the causative pathogens of central nervous system (CNS) infections in patients admitted to a tertiary referral hospital in Hanoi, Vietnam. Methods From May 2007 to December 2008, cerebrospinal fluid (CSF) samples from 352 adults with suspected meningitis or encephalitis underwent routine testing, staining (Gram, Ziehl-Nielsen, India ink), bacterial culture and polymerase chain reaction targeting Neisseria meningitidis, Streptococcus pneumoniae, S. suis, Haemophilus influenzae type b, Herpes simplex virus (HSV), Varicella Zoster virus (VZV), enterovirus, and 16S ribosomal RNA. Blood cultures and clinically indicated radiology were also performed. Patients were classified as having confirmed or suspected bacterial (BM), tuberculous (TBM), cryptococcal (CRM), eosinophilic (EOM) meningitis, aseptic encephalitis/meningitis (AEM), neurocysticercosis and others. Results 352 (male: 66%) patients were recruited: median age 34 years (range 13–85). 95/352 (27.3%) diagnoses were laboratory confirmed and one by cranial radiology: BM (n = 62), TBM (n = 9), AEM (n = 19), CRM (n = 5), and neurocysticercosis (n = 1, cranial radiology). S. suis predominated as the cause of BM [48/62 (77.4%)]; Listeria monocytogenese (n = 1), S. pasteurianus (n = 1) and N. meningitidis (n = 2) were infrequent. AEM viruses were: HSV (n = 12), VZV (n = 5) and enterovirus (n = 2). 5 patients had EOM. Of 262/352 (74.4%) patients with full clinical data, 209 (79.8%) were hospital referrals and 186 (71%) had been on antimicrobials. 21 (8%) patients died: TBM (15.2%), AEM (10%), and BM (2.8%). Conclusions Most infections lacked microbiological confirmation. S. suis was the most common cause of BM in this setting. Improved diagnostics are needed for meningoencephalitic syndromes to inform treatment and prevention strategies. PMID:22952590

  15. Primitive neuroectodermal tumor of the central nervous system with glial differentiation: a FISH study of an adult case.

    PubMed

    Alameda, F; Lloreta, J; Ariza, A; Salido, M; Espinet, B; Baro, T; Garcia-Fructoso, G; Galito, E; Munne, A; Cruz Sanchez, F F; Sole, F; Serrano, S

    2007-01-01

    Primitive neuroectodermal tumors (PNETs) of the central nervous system (CNS), a rare occurrence in adults, may show glial differentiation and can be misinterpreted as pure astrocytic neoplasms. Few fluorescence in situ hybridization (FISH) studies have been carried out on these tumors; isochromosome 17q was found to be the major chromosomal abnormality. We present the case of an adult in which we performed a FISH study of both the glial and neuronal components. A complex array of FISH changes, not including an isochromosome 17q were identified.

  16. Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system

    NASA Astrophysics Data System (ADS)

    Sharma, Anup Dutt

    Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.

  17. A Controlled Study of Autonomic Nervous System Function in Adults with Attention-Deficit/Hyperactivity Disorder Treated with Stimulant Medications: Results of a Pilot Study

    ERIC Educational Resources Information Center

    Schubiner, Howard; Hassunizadeh, Bischan; Kaczynski, Richard

    2006-01-01

    Objective: Despite the fact that autonomic nervous system (ANS) abnormalities are commonly found in adults and predict increased cardiovascular mortality, no studies have assessed ANS function in adults with attention-deficit/hyperactivity disorder (ADHD) taking stimulants. Method: This pilot study evaluated ANS function in adults with ADHD in…

  18. Peripheral neuropathies.

    PubMed

    Hanewinckel, R; Ikram, M A; Van Doorn, P A

    2016-01-01

    Peripheral neuropathies are diseases of the peripheral nervous system that can be divided into mononeuropathies, multifocal neuropathies, and polyneuropathies. Symptoms usually include numbness and paresthesia. These symptoms are often accompanied by weakness and can be painful. Polyneuropathies can be divided into axonal and demyelinating forms, which is important for diagnostic reasons. Most peripheral neuropathies develop over months or years, but some are rapidly progressive. Some patients only suffer from mild, unilateral, slowly progressive tingling in the fingers due to median nerve compression in the wrist (carpal tunnel syndrome), while other patients can be tetraplegic, with respiratory insufficiency within 1-2 days due to Guillain-Barré syndrome. Carpal tunnel syndrome, with a prevalence of 5% and incidence of 1-2 per 1000 person-years, is the most common mononeuropathy. Population-based data for chronic polyneuropathy are relatively scarce. Prevalence is estimated at 1% and increases to 7% in persons over 65 years of age. Incidence is approximately 1 per 1000 person-years. Immune-mediated polyneuropathies like Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are rare diseases, with an annual incidence of approximately 1-2 and 0.2-0.5 per 100 000 persons respectively. Most peripheral neuropathies are more prevalent in older adults and in men, except for carpal tunnel syndrome, which is more common in women. Diabetes is a common cause of peripheral neuropathy and is associated with both mono- and polyneuropathies. Among the group of chronic polyneuropathies, in about 20-25% no direct cause can be found. These are slowly progressive axonal polyneuropathies. PMID:27637963

  19. Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome.

    PubMed Central

    Deatly, A M; Spivack, J G; Lavi, E; O'Boyle, D R; Fraser, N W

    1988-01-01

    Herpes simplex virus type 1 (HSV-1) DNA and RNA have been detected in peripheral nervous system (PNS) and central nervous system (CNS) tissues of latently infected mice. However, explant methods are successful in reactivating HSV-1 only from latently infected PNS tissues. In this report, latent herpesvirus infections in mouse PNS and CNS tissues were compared by in situ hybridization to determine whether the difference in reactivation was at the level of the virus or the host tissue. It was demonstrated that the HSV-1 transcripts present during latency in the mouse PNS and CNS originated from the same region of the genome, the repeats which bracket the long unique sequence. Therefore, the difference in reactivation with PNS and CNS tissues cannot be accounted for by differences in the extent of the HSV-1 genome transcribed during herpesvirus latency. Latent HSV-1 RNA was detected in the trigeminal ganglia (PNS) and the trigeminal system in the CNS from the mesencephalon to the spinal cord as well as other regions of the CNS not noted previously. Latent HSV-1 RNA was found predominantly in neurons but also in a small number of cells which could not be identified as neuronal cells. It is suggested that host differences in CNS and PNS tissues, rather than differences in latent virus transcription, may be important determinants in the HSV-1 reactivation process in explanted tissues. Images PMID:2828670

  20. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.

    PubMed

    Bard, F; Cannon, C; Barbour, R; Burke, R L; Games, D; Grajeda, H; Guido, T; Hu, K; Huang, J; Johnson-Wood, K; Khan, K; Kholodenko, D; Lee, M; Lieberburg, I; Motter, R; Nguyen, M; Soriano, F; Vasquez, N; Weiss, K; Welch, B; Seubert, P; Schenk, D; Yednock, T

    2000-08-01

    One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders. PMID:10932230

  1. Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability

    SciTech Connect

    Murata, K.; Araki, S. )

    1991-01-01

    Quantitative assessment of the autonomic neurotoxicity due to lead was undertaken by measuring variability in the electrocardiographic R-R interval (CVRR) in 16 male workers exposed to lead, zinc, copper, and tin and in 16 unexposed control subjects. Two component coefficients of variation in the R-R interval, the C-CVRSA (respiratory sinus arrhythmia) and C-CVMWSA (Mayer wave related sinus arrhythmia), were examined; these indices are considered to reflect parasympathetic and sympathetic activities, respectively. Maximal motor and sensory conduction velocities (MCV and SCV) in the median nerve were also measured. In the 16 exposed workers, blood lead concentrations ranged from 16 to 60 (mean 34) micrograms/dl. The CVRR and C-CVRSA were found to be significantly reduced in the workers with elevated lead, zinc, and copper absorption as compared to unexposed control subjects; also, the MCV and SCV were significantly slowed. The C-CVMWSA was not significantly reduced, and was positively related to plasma zinc concentrations. No significant relationships were found between indicators of lead and copper absorption and these electrophysiological measurements. These data suggest that subclinical toxicity of lead occurs in the parasympathetic component of the autonomic nervous system as well as in the peripheral nerves. Zinc may antagonize the autonomic nervous dysfunction caused by lead.

  2. Underarousal in Adult ADHD: How Are Peripheral and Cortical Arousal Related?

    PubMed

    Mayer, Kerstin; Wyckoff, Sarah Nicole; Strehl, Ute

    2016-07-01

    In children and adults with attention deficit/hyperactivity disorder (ADHD), a general slowing of spontaneous electroencephalographic (EEG) brain activity and a decrease of event-related potential amplitudes such as the contingent negative variation (CNV) are observed. Additionally, some studies have reported decreased skin conductance level (SCL) in this clinical population leading to the hypothesis of a peripheral hypoarousal, which may be a target of biofeedback treatment in addition to or instead of neurofeedback. To our knowledge, the relationship between SCL and CNV has not been simultaneously investigated in one experiment. Using the theoretical background of the hypoarousal model, this article aims to gain more insight into the differences and correlations of cortical (CNV) and peripheral (SCL) arousal in adults with ADHD. A sample of 23 adults with ADHD and 22 healthy controls underwent an auditory Go-NoGo task with simultaneous 22-channel EEG and SCL recordings. Reaction time (RT) and reaction time variability (RTV) were also measured to assess task performance. Significantly decreased CNV amplitude and significantly higher RTV were observed in the ADHD group, reflecting cortical underarousal and problems with sustained attention. No significant correlation between peripheral underarousal and cortical underarousal was observed in the ADHD group or the control group. The observed cortical underarousal reflected in the decreased CNV supports the notion of a reduced CNV amplitude as a possible biomarker for ADHD. However, the connection between cortical and peripheral arousal is not as clear as is suggested in previous research investigating both separately. Implications of these results for new treatment options for ADHD such as biofeedback are discussed.

  3. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons.

    PubMed

    Christie, Kimberly J; Webber, Christine A; Martinez, Jose A; Singh, Bhagat; Zochodne, Douglas W

    2010-07-01

    In vivo regeneration of peripheral neurons is constrained and rarely complete, and unfortunately patients with major nerve trunk transections experience only limited recovery. Intracellular inhibition of neuronal growth signals may be among these constraints. In this work, we investigated the role of PTEN (phosphatase and tensin homolog deleted on chromosome 10) during regeneration of peripheral neurons in adult Sprague Dawley rats. PTEN inhibits phosphoinositide 3-kinase (PI3-K)/Akt signaling, a common and central outgrowth and survival pathway downstream of neuronal growth factors. While PI3-K and Akt outgrowth signals were expressed and activated within adult peripheral neurons during regeneration, PTEN was similarly expressed and poised to inhibit their support. PTEN was expressed in neuron perikaryal cytoplasm, nuclei, regenerating axons, and Schwann cells. Adult sensory neurons in vitro responded to both graded pharmacological inhibition of PTEN and its mRNA knockdown using siRNA. Both approaches were associated with robust rises in the plasticity of neurite outgrowth that were independent of the mTOR (mammalian target of rapamycin) pathway. Importantly, this accelerated outgrowth was in addition to the increased outgrowth generated in neurons that had undergone a preconditioning lesion. Moreover, following severe nerve transection injuries, local pharmacological inhibition of PTEN or siRNA knockdown of PTEN at the injury site accelerated axon outgrowth in vivo. The findings indicated a remarkable impact on peripheral neuron plasticity through PTEN inhibition, even within a complex regenerative milieu. Overall, these findings identify a novel route to propagate intrinsic regeneration pathways within axons to benefit nerve repair.

  4. Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning?

    PubMed

    Yu, Deyue; Cheung, Sing-Hang; Legge, Gordon E; Chung, Susana T L

    2010-04-21

    Enhancing reading ability in peripheral vision is important for the rehabilitation of people with central-visual-field loss from age-related macular degeneration (AMD). Previous research has shown that perceptual learning, based on a trigram letter-recognition task, improved peripheral reading speed among normally-sighted young adults (Chung, Legge, & Cheung, 2004). Here we ask whether the same happens in older adults in an age range more typical of the onset of AMD. Eighteen normally-sighted subjects, aged 55-76years, were randomly assigned to training or control groups. Visual-span profiles (plots of letter-recognition accuracy as a function of horizontal letter position) and RSVP reading speeds were measured at 10 degrees above and below fixation during pre- and post-tests for all subjects. Training consisted of repeated measurements of visual-span profiles at 10 degrees below fixation, in four daily sessions. The control subjects did not receive any training. Perceptual learning enlarged the visual spans in both trained (lower) and untrained (upper) visual fields. Reading speed improved in the trained field by 60% when the trained print size was used. The training benefits for these older subjects were weaker than the training benefits for young adults found by Chung et al. Despite the weaker training benefits, perceptual learning remains a potential option for low-vision reading rehabilitation among older adults.

  5. Falls and Balance Impairments in Older Adults with Type 2 Diabetes: Thinking Beyond Diabetic Peripheral Neuropathy.

    PubMed

    Hewston, Patricia; Deshpande, Nandini

    2016-02-01

    Older adults with type 2 diabetes have significantly higher incidence of falls than those without type 2 diabetes. The devastating consequences of falls include declines in mobility, activity avoidance, institutionalization and mortality. One of the most commonly identified risk factors associated with falls is impaired balance. Balance impairments and subsequent increased fall risk in older adults with type 2 diabetes are most commonly associated with diabetic peripheral neuropathy (DPN). Consequently, DPN has been the central focus of falls prevention research and interventions for older adults with type 2 diabetes. However, isolated studies have identified adults with type 2 diabetes without overt complications of DPN to also be at increased fall risk. It is known that the ability to maintain balance is a complex skill that requires the integration of multiple sensorimotor and cognitive processes. Emerging evidence suggests that diabetes-related subtle declines in sensory functions (somatosensory, visual and vestibular), metabolic muscle function and executive functions may also contribute to increased fall risk in older adults with type 2 diabetes. Knowledge of these type 2 diabetes-related sensorimotor and cognitive deficits may help to broaden approaches to falls prevention in older adults with type 2 diabetes. Therefore, the purpose of this mini review is to describe the impact of type 2 diabetes on sensorimotor and cognitive systems that may contribute to increased fall risk in older adults with type 2 diabetes.

  6. An Update of the Mayo Clinic Cohort of Patients With Adult Primary Central Nervous System Vasculitis

    PubMed Central

    Salvarani, Carlo; Brown, Robert D.; Christianson, Teresa; Miller, Dylan V.; Giannini, Caterina; Huston, John; Hunder, Gene G.

    2015-01-01

    Abstract Primary central nervous system vasculitis (PCNSV) is an uncommon condition in which lesions are limited to vessels of the brain and spinal cord. Because the clinical manifestations are not specific, the diagnosis is often difficult, and permanent disability and death are frequent outcomes. This study is based on a cohort of 163 consecutive patients with PCNSV who were examined at the Mayo Clinic over a 29-year period from 1983 to 2011. The aim of the study was to define the characteristics of these patients, which represents the largest series in adults reported to date. A total of 105 patients were diagnosed by angiographic findings and 58 by biopsy results. The patients diagnosed by biopsy more frequently had at presentation cognitive dysfunction, greater cerebrospinal fluid total protein concentrations, less frequent cerebral infarcts, and more frequent leptomeningeal gadolinium-enhanced lesions on magnetic resonance imaging (MRI), along with less mortality and disability at last follow-up. The patients diagnosed by angiograms more frequently had at presentation hemiparesis or a persistent neurologic deficit or stroke, more frequent infarcts on MRI and an increased mortality. These differences were mainly related to the different size of the vessels involved in the 2 groups. Although most patients responded to therapy with glucocorticoids alone or in conjunction with cyclophosphamide and tended to improve during the follow-up period, an overall increased mortality rate was observed. Relapses occurred in one-quarter of the patients and were less frequent in patients treated with prednisone and cyclophosphamide compared with those treated with prednisone alone. The mortality rate and degree of disability at last follow-up were greater in those with increasing age, cerebral infarctions on MRI, angiographic large vessel involvement, and diagnosis made by angiography alone, but were lower in those with gadolinium-enhanced lesions on MRI and in those with

  7. The border between the central and the peripheral nervous system in the cat cochlear nerve: a light and scanning electron microscopical study.

    PubMed

    Osen, Kirsten K; Furness, David N; Hackney, Carole M

    2011-07-01

    The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS-PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS-PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS-PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration.

  8. [Reference intervals for peripheral blood lymphocyte subsets in healthy adults in Lima, Peru].

    PubMed

    Cóndor, José M; Álvarez, Marco; Cano, Luis; Matos, Edgar; Leiva, Christian; Paredes, José A

    2013-04-01

    In order to establish the reference intervals (RIs) of peripheral blood lymphocyte subsets (PBL) in healthy adults in Lima (Peru), a cross-sectional study was conducted among blood donors taken in between 2011 and 2012. Based on the criteria obtained from the guidelines of the Clinical and Laboratory Standards Institute (CLSI C28-A3), 318 samples were processed, 61.9% (197/318) coming from male donors. For PBL count, a flow cytometer with a simple platform was used. The RIs are established for each PBL in adults based on sex with their respective reference limits and 90% confidence intervals. Differences were found in CD3+ percentage counts (p=0.001) and in CD3-CD56+ absolute (p=0.003) and percentage counts (p?0.001). The RIs found are different to those described in studies conducted in other countries due to the characteristics of the population and the study model.

  9. [Reference intervals for peripheral blood lymphocyte subsets in healthy adults in Lima, Peru].

    PubMed

    Cóndor, José M; Álvarez, Marco; Cano, Luis; Matos, Edgar; Leiva, Christian; Paredes, José A

    2013-04-01

    In order to establish the reference intervals (RIs) of peripheral blood lymphocyte subsets (PBL) in healthy adults in Lima (Peru), a cross-sectional study was conducted among blood donors taken in between 2011 and 2012. Based on the criteria obtained from the guidelines of the Clinical and Laboratory Standards Institute (CLSI C28-A3), 318 samples were processed, 61.9% (197/318) coming from male donors. For PBL count, a flow cytometer with a simple platform was used. The RIs are established for each PBL in adults based on sex with their respective reference limits and 90% confidence intervals. Differences were found in CD3+ percentage counts (p=0.001) and in CD3-CD56+ absolute (p=0.003) and percentage counts (p?0.001). The RIs found are different to those described in studies conducted in other countries due to the characteristics of the population and the study model. PMID:23949508

  10. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease).

    PubMed

    Bradbury, Allison M; Bagel, Jessica H; Jiang, Xuntian; Swain, Gary P; Prociuk, Maria L; Fitzgerald, Caitlin A; O'Donnell, Patricia A; Braund, Kyle G; Ory, Daniel S; Vite, Charles H

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc. PMID:27638585

  11. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease).

    PubMed

    Bradbury, Allison M; Bagel, Jessica H; Jiang, Xuntian; Swain, Gary P; Prociuk, Maria L; Fitzgerald, Caitlin A; O'Donnell, Patricia A; Braund, Kyle G; Ory, Daniel S; Vite, Charles H

    2016-11-01

    Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc.

  12. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  13. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.

    PubMed

    Denham, Mark; Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A; Newgreen, Donald F; Pera, Martin F; Dottori, Mirella

    2015-06-01

    The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.

  14. Tumors of the peripheral nervous system: analysis of prognostic factors in a series with long-term follow-up and review of the literature.

    PubMed

    Montano, Nicola; D'Alessandris, Quintino Giorgio; D'Ercole, Manuela; Lauretti, Liverana; Pallini, Roberto; Di Bonaventura, Rina; La Rocca, Giuseppe; Bianchi, Federico; Fernandez, Eduardo

    2016-08-01

    .0003 and p = 0.0001 for ≤ 3 cm and 3-5 cm tumors, respectively). Sensory function showed a statistically significant improvement also in patients who had undergone resection of tumors involving the lower limb (p = 0.0118). Total resection was associated with statistically significant improvement of motor strength (p = 0.0251) and sensory function (p < 0.0001). In univariate analysis, a history of NF (p = 0.0034), a diagnosis of MPNST or PNNST (p < 0.0001), and subtotal resection (p = 0.0042) were associated with higher risk of tumor recurrence. In multivariate analysis (logistic regression analysis), a history of NF (OR 9.28%, 95% CI 1.62-52.94, p = 0.0121) and a diagnosis of MPNST (OR 0.03%, 95% CI 0.002-0.429, p = 0.0098) or PNNST (OR 0.081%, 95% CI 0.013-0.509, p = 0.0077) emerged as independent prognostic factors for tumor recurrence. CONCLUSIONS A total resection should be attempted in all cases of peripheral nervous system tumors (irrespective of the supposed diagnosis and tumor dimensions) because it is associated with better prognosis in term of functional outcome and overall survival. Moreover, a total resection predicts a lower risk of tumor recurrence. Patients with a history of NF and tumors with malignant histology remain a challenge both for neurosurgeons and oncologists due to higher recurrence rates and the lack of standardized adjuvant therapies.

  15. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  16. Specific patterns of defective HSV-1 gene transfer in the adult central nervous system: implications for gene targeting.

    PubMed

    Wood, M J; Byrnes, A P; Kaplitt, M G; Pfaff, D W; Rabkin, S D; Charlton, H M

    1994-11-01

    Viral vectors are a means by which genes can be delivered to specific sites in the adult central nervous system. Nevertheless, the interaction between the viral vector and cells of the nervous system, which forms the basis for specific gene transfer, is not well understood. In this study a nonreplicating defective herpes simplex virus type 1 vector, expressing the marker gene lacZ, was stereotaxically injected at varying titers into the rat central nervous system. Three sites were targeted: the caudate nucleus, dentate gyrus, and cerebellar cortex, and the resulting patterns of beta-galactosidase activity were examined. Many cells of neuronal and glial morphology, and of differing neuronal subtypes, expressed beta-galactosidase at each of the injection sites. However, beta-galactosidase activity was also detected in distant secondary brain areas, the neurons of which make afferent connections with the primary sites. This strongly suggested that the retrograde transport of defective virus was the basis for the enzyme activity observed at a distance. Moreover, retrograde transport to secondary sites was found to be highly selective and restricted to certain retrograde neuroanatomical pathways in a specific and titer dependent fashion. The pathways observed were predominantly, but not exclusively, monoaminergic in origin. This finding is supported by reports of specific tropism by HSV for monoaminergic circuits in experimental encephalitis and transneuronal tracing studies. Our observations suggest that certain functional neuronal populations, which are permissive for the retrograde transfer of defective HSV-1 vectors, might be specifically targeted for gene transfer using this approach. Conversely, a knowledge of the pathways permissive for viral uptake, retrograde transfer, and subsequent gene expression will be essential in order to predict the consequences of gene transfer using viral vectors. PMID:7821388

  17. Regeneration strategies after the adult mammalian central nervous system injury—biomaterials

    PubMed Central

    Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-01-01

    The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. PMID:27047678

  18. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition.

    PubMed

    Rovira-Lastra, B; Flores-Orozco, E I; Ayuso-Montero, R; Peraire, M; Martinez-Gomis, J

    2016-04-01

    The aim of this cross-sectional study was to determine the preferred chewing side and whether chewing side preference is related to peripheral, functional or postural lateral preferences. One hundred and forty-six adults with natural dentition performed three masticatory assays, each consisting of five trials of chewing three pieces of silicon placed into a latex bag for 20 cycles, either freestyle or unilaterally on the right- or left-hand side. Occlusal contact area in the intercuspal position, maximum bite force, masticatory performance and cycle duration were measured and the lateral asymmetry of these variables was calculated. Laterality tests were performed to determine handedness, footedness, earedness and eyedness as functional preferences, and hand-clasping, arm-folding and leg-crossing as postural lateral preferences. The preferred chewing side was determined using three different methods: assessment of the first chewing cycle for each trial, calculation of the asymmetry index from all cycles and application of a visual analogue scale. Bivariate relationship and multiple linear regression analyses were performed. Among unilateral chewers, 77% of them preferred the right side for chewing. The factors most closely related to the preferred chewing side were asymmetry of bite force, asymmetry of masticatory performance and earedness, which explained up to 16% of the variance. Although several functional or postural lateral preferences seem to be related to the preferred chewing side, peripheral factors such as asymmetry of bite force and of masticatory performance are the most closely related to the preferred chewing side in adults with natural dentition. PMID:26549578

  19. Persistent glucose production and greater peripheral sensitivity to insulin in the neonate vs. the adult.

    PubMed

    Farrag, H M; Nawrath, L M; Healey, J E; Dorcus, E J; Rapoza, R E; Oh, W; Cowett, R M

    1997-01-01

    Insulin resistance has been reported to partially explain the clinical appearance of neonatal hyperglycemia. To determine the relative resistance to insulin of glucose production vs. glucose utilization, the euglycemic hyperinsulinemic clamp technique was employed for the first time in the human neonate and was combined with stable isotopic determination of glucose production and glucose utilization. The basal rates of glucose production and glucose utilization were determined, after which each neonate was clamped at his or her own euglycemic glucose concentration while receiving regular human insulin at one rate of 0.2, 0.5, 1.0, 2.0, or 4.0 mU. kg-1.min-1. Persistent glucose production (> or = 1 mg.kg-1.min-1) during the clamp was recorded for all groups. A significant increase in the glucose infusion rate (P < 0.001) and in percent glucose utilization (P < 0.01) occurred in the 2.0 and 4.0 mU.kg-1.min-1 insulin groups. Metabolic clearance rate of insulin was significantly greater in the neonate compared with the adult at the 2.0 mU.kg-1.min-1 insulin infusion rate (P = 0.036). Our results indicate that, in contrast to the adult, the neonate has persistent glucose production (P = 0.001) and greater peripheral sensitivity to insulin (P = 0.015). PMID:9038856

  20. Employment and disability pension after central nervous system infections in adults.

    PubMed

    Roed, Casper; Sørensen, Henrik Toft; Rothman, Kenneth J; Skinhøj, Peter; Obel, Niels

    2015-05-15

    In this nationwide population-based cohort study using national Danish registries, in the period 1980-2008, our aim was to study employment and receipt of disability pension after central nervous system infections. All patients diagnosed between 20 and 55 years of age with meningococcal (n = 451), pneumococcal (n = 553), or viral (n = 1,433) meningitis or with herpes simplex encephalitis (n = 115), who were alive 1 year after diagnosis, were identified. Comparison cohorts were drawn from the general population, and their members were individually matched on age and sex to patients. Five years after diagnosis, the differences in probability of being employed as a former patient with pneumococcal meningitis or herpes simplex encephalitis versus being a member of the comparison cohorts were -19.9% (95% confidence interval (CI): -24.7, -15.1) and -21.1% (95% CI: -33.0, -9.3), respectively, and the corresponding differences in probability of receiving disability pension were 20.2% (95% CI: 13.7, 26.7) and 16.2% (95% CI: 6.2, 26.3). The differences in probability of being employed or receiving disability pension in former meningococcal or viral meningitis patients versus members of the comparison cohorts were small. In conclusion, pneumococcal meningitis and herpes simplex encephalitis were associated with substantially decreased employment and increased need for disability pension. These associations did not seem to apply to meningococcal meningitis or viral meningitis.

  1. Monoclonal antibodies to a rat nestin fusion protein recognize a 220-kDa polypeptide in subsets of fetal and adult human central nervous system neurons and in primitive neuroectodermal tumor cells.

    PubMed Central

    Tohyama, T.; Lee, V. M.; Rorke, L. B.; Marvin, M.; McKay, R. D.; Trojanowski, J. Q.

    1993-01-01

    Nestin is the major intermediate filament protein of embryonic central nervous system (CNS) progenitor cells. To identify proteins involved in early stages of lineage commitment in the developing human CNS we generated monoclonal antibodies to a TrpE-rat nestin fusion protein. This resulted in a monoclonal antibody (designated NST11) that did not recognize authentic human nestin, but did recognize a novel neuron-specific human polypeptide expressed in a subset of embryonic and adult CNS neurons as well as in medulloblastomas. NST11 immunoreactivity was abundant in developing spinal cord motor neurons, but was extinguished in these neurons by 17 weeks gestation. NST11 also labeled Purkinje cells at 17 weeks gestation, but Purkinje cells continued to express the NST11 antigen throughout gestation as well as in the adult cerebellum, and NST11 immunoreactivity was more abundant in Purkinje cells than in any other human CNS neurons. No NST11 immunoreactivity was detected in cells of the adult human peripheral nervous system or in a variety of adult non-neural human tissues. Further, NST11 almost exclusively stained cerebellar medulloblastomas. In Western blots of immature and mature human cerebral and cerebellar extracts, NST11 did not bind human nestin, but did detect an immunoband with a molecular weight of 220 kd. A similar immunoband was detected in medulloblastoma-derived cell lines with a neuron-like phenotype. These findings suggest that the NST11 monoclonal antibody recognizes a novel protein expressed by a subpopulation of immature and mature human CNS neurons, medulloblastomas, and medulloblastoma-derived cell lines. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7686344

  2. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats

    PubMed Central

    Huang, Jian-Jun; Ma, Wen-Jie; Yokoyama, Shigeru

    2012-01-01

    Glycoprotein nonmetastatic melanoma B (Gpnmb) is a type I transmembrane protein implicated in cell differentiation, inflammation, tissue regeneration, and tumor progression. Gpnmb, which is highly expressed in glioblastoma cells, is a potential therapeutic target. However, little is known about its expression, cellular localization, and roles in non-tumorous neural tissues. In this study, we examined Gpnmb expression in the central nervous system of adult rats under both normal and inflammatory conditions. Reverse transcription-polymerase chain reaction analysis revealed that Gpnmb mRNA was expressed in the cerebrum, cerebellum, brain stem, and spinal cord of normal adult rats. Immunoperoxidase staining revealed that Gpnmb-immunoreactive cells were widely distributed in the parenchyma of all brain regions examined, with the cells being most prevalent in the hippocampal dentate gyrus, cerebellar cortex, spinal dorsal horn, choroid plexus, ependyma, periventricular regions, and in layers II and III of the cerebral cortex. Double immunofluorescence staining showed that these cells were co-stained most frequently with the microglia/macrophage marker OX42, and occasionally with the radial glia marker RC2 or the neuronal marker NeuN. Furthermore, an intraperitoneal injection of bacterial endotoxin lipopolysaccharide increased the number of Gpnmb and OX42 double-positive cells in the area postrema, which is one of the circumventricular organs, indicating infiltration of hematogenous macrophages. These results suggest that Gpnmb, which is expressed in microglia and macrophages in non-tumorous neural tissues, plays an important role in the regulation of immune/inflammatory responses. PMID:22574278

  3. Aetiologies of Central Nervous System infections in adults in Kathmandu, Nepal: A prospective hospital-based study

    PubMed Central

    Giri, Abhishek; Arjyal, Amit; Koirala, Samir; Karkey, Abhilasha; Dongol, Sabina; Thapa, Sudeep Dhoj; Shilpakar, Olita; Shrestha, Rishav; van Tan, Le; Thi Thuy Chinh, Bkrong Nguyen; Krishna K. C., Radheshyam; Pathak, Kamal Raj; Shakya, Mila; Farrar, Jeremy; Van Doorn, H. Rogier; Basnyat, Buddha

    2013-01-01

    We conducted a prospective hospital based study from February 2009-April 2011 to identify the possible pathogens of central nervous system (CNS) infections in adults admitted to a tertiary referral hospital (Patan Hospital) in Kathmandu, Nepal. The pathogens of CNS infections were confirmed in cerebrospinal fluid (CSF) using molecular diagnostics, culture (bacteria) and serology. 87 patients were recruited for the study and the etiological diagnosis was established in 38% (n = 33). The bacterial pathogens identified were Neisseria meningitidis (n = 6); Streptococcus pneumoniae (n = 5) and Staphylococcus aureus (n = 2) in 13/87(14%). Enteroviruses were found in 12/87 (13%); Herpes Simplex virus (HSV) in 2/87(2%). IgM against Japanese encephalitis virus (JEV) was detected in the CSF of 11/73 (15%) tested samples. This is the first prospective molecular and serology based CSF analysis in adults with CNS infections in Kathmandu, Nepal. JEV and enteroviruses were the most commonly detected pathogens in this setting. PMID:23924886

  4. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres

    PubMed Central

    Harris, Robin; Williams, Darren W.; Truman, James W.

    2016-01-01

    During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult‐specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167–5184) identified 24 adult‐specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian‐positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage‐specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677–2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258

  5. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    PubMed

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P < .0003). Comparison of CB T cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  6. Neurotensin. Immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone.

    PubMed

    Reinecke, M

    1985-01-01

    The present study attempts to compile information on the possible physiologic role of the endogenous peptide neurotensin (NT) as a hormone and/or neurotransmitter. The methodological approach is immunohistochemical localization of NT in the entero-endocrine system as well as in the central and peripheral nervous systems. The results found in the three systems are first related to the pharmalogical and physiological findings in the literature. Subsequently their significance is discussed for each organ separately before attempting a final overall interpretation. Briefly, the present study reveals the following essential findings: The occurrence and distribution of NT-IR entero-endocrine cells (N-cells) in different mammals including man, as well as in representative members of all classes of vertebrates and higher invertebrates, are analyzed and evaluated morphometrically. The NT-IR cells in all investigated species are demonstrated to be of the open type. The innervation of paravertebral and prevertebral ganglia by NT-IR fibers is described; at least a portion of these fibers is thought to originate in NT-IR perikarya of the substantia intermedia of the spinal cord. The involvement of these NT-IR fibers in the regulation of systemic blood flow (hypertension) is suggested. The existence of NT-IR innervation of the gastro-intestinal tract is considered to be a general phenomenon. This notion is reaffirmed by phylogenetic investigation of the NT-IR enteric nerves. The pharmacological effects of NT in different portions of the gastro-intestinal tract, reported in the literature are related to the immunohistochemical localization of NT. In light of the present results, some of the effects of NT which were previously considered to be of an endocrine or paracrine nature - such as contraction of the guinea-pig ileum - are interpreted as effects of NT of neuronal origin. The specific NT-IR innervation of target cells in the exocrine pancreas (vascular smooth muscle, acinar

  7. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults

    PubMed Central

    Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J. R.

    2016-01-01

    Purpose Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. Methods One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Results Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Conclusion Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. Trial

  8. The expression pattern of Adam10 in the central nervous system of adult mice: Detection by in situ hybridization combined with immunohistochemistry staining.

    PubMed

    Guo, Zhi-Bao; Su, Ying-Ying; Wang, Yi-Hui; Wang, Wei; Guo, Da-Zhi

    2016-09-01

    ADAM10 (a disintegrin and metalloprotease 10) is a member of the ADAMs family, which is key in the development of the nervous system, by regulating proliferation, migration, differentiation and survival of various cells, including axonal growth and myelination. Previous studies have investigated the embryonic or postnatal expression of ADAM10, however, detailed information regarding its cellular distribution in the adult stage, to the best of our knowledge, is not available. The present study investigated the expression pattern of the ADAM10 gene in the adult mouse central nervous system (CNS) using an ADAM10 complementary RNA probe for in situ hybridization (ISH). Immunohistochemical staining was used to identify the type of the ISH staining‑positive cells with neuron‑ or astrocyte‑specific antibodies. The results of the current study demonstrated that the ADAM10 gene was predominantly expressed in the neurons of the cerebral cortex, hippocampus, thalamus and cerebellar granular cells in adult mouse CNS. PMID:27431484

  9. The expression pattern of Adam10 in the central nervous system of adult mice: Detection by in situ hybridization combined with immunohistochemistry staining

    PubMed Central

    Guo, Zhi-Bao; Su, Ying-Ying; Wang, Yi-Hui; Wang, Wei; Guo, Da-Zhi

    2016-01-01

    ADAM10 (a disintegrin and metalloprotease 10) is a member of the ADAMs family, which is key in the development of the nervous system, by regulating proliferation, migration, differentiation and survival of various cells, including axonal growth and myelination. Previous studies have investigated the embryonic or postnatal expression of ADAM10, however, detailed information regarding its cellular distribution in the adult stage, to the best of our knowledge, is not available. The present study investigated the expression pattern of the ADAM10 gene in the adult mouse central nervous system (CNS) using an ADAM10 complementary RNA probe for in situ hybridization (ISH). Immunohistochemical staining was used to identify the type of the ISH staining-positive cells with neuron- or astrocyte-specific antibodies. The results of the current study demonstrated that the ADAM10 gene was predominantly expressed in the neurons of the cerebral cortex, hippocampus, thalamus and cerebellar granular cells in adult mouse CNS. PMID:27431484

  10. Bone structure and volumetric density in young adults born prematurely: a peripheral quantitative computed tomography study.

    PubMed

    Backström, M C; Kuusela, A-L; Koivisto, A-M; Sievänen, H

    2005-04-01

    Prematurity is known to be associated with reduced bone mineral density (BMD) in childhood, but whether this condition has long-term detrimental consequences on adult bone structure is not known. In this study, we measured with peripheral quantitative computed tomography (pQCT) the total bone cross-sectional area, cortical area and wall thickness, cortical and trabecular density, and a density-weighed polar section modulus as a bone strength index (BSI) at distal and shaft sites of right radius and tibia in a group of 40 prematurely born, otherwise normally developed and healthy young adults (17 women and 23 men, aged 18 to 27 years) and compared their data to corresponding data obtained from a group of 42 control subjects born term (20 women and 22 men, aged 18 to 28 years). Body height and weight were similar in both groups, but the preterm group had significantly lower BSI values at distal sites of tibia (approximately -16%) and radius (approximately -13%) and at tibial shaft (approximately -11%) as compared to control group. In the weight-bearing tibia, BMC was lower and the lower BSI values were mainly due to smaller total bone cross-sectional area. For unknown reason, this prematurity-associated detrimental effect seemed to concern more men than women. In contrast, prematurity was not associated with volumetric trabecular and cortical densities at any measured bone site while the typical sex differences in bone density were observed. We conclude that prematurity is associated with somewhat smaller cross-sectional bone dimensions in terms of body size in young adulthood. Due to the cross-sectional design, this study could not reveal specific reasons but they may pertain to nutrition during the neonatal period and living habits in general.

  11. The influence of peripheral vision induced by moving people on postural control in healthy adults

    PubMed Central

    Kim, Soo-Han; Park, Du-Jin

    2016-01-01

    This study was conducted to examine the influence of the peripheral vision (PV) induced by moving people on postural control in healthy adults. The subjects consisted of 12 healthy adult volunteers (5 males, 7 females) who had been informed of the study purpose and procedure. The visual interventions were composed of three types. PV1 and PV2 were stimulated using a one-way vertical striped pattern and a two-way vertical striped pattern, respectively. To embody the features of moving people reflected in the mirrors, researchers recorded movements of people or objects provided by mirrors on video image. In this study, this was named PV3. The subjects were exposed to each of the visual stimuli for 3 min in a random order, and their postural control was then evaluated. All the subjects were allowed to practice once prior to performing the one leg stand test, functional reaching test and body sway test. All the evaluations were made before and after the visual intervention, and the subjects rested for 30 min between each intervention. PV3 ranked second in before and after differences of trace length and velocity and had no significant difference from PV2, demonstrating that the PV3, as well as PV2, affected the amount and velocity of body sway. In addition, the standard deviation velocity, trace length and velocity values of PV3 were higher than the PV1 values. Therefore, the treatment of those who have difficulty with postural control and balance maintenance should take place in a controlled therapeutic environment. PMID:27807518

  12. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults.

    PubMed

    Ochiai, Ryuji; Sugiura, Yoko; Shioya, Yasushi; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2014-02-01

    Brewed coffee is a widely consumed beverage, and many studies have examined its effects on human health. We investigated the vascular effects of coffee polyphenols (CPPs), hypothesizing that a single ingestion of CPP during glucose loading would improve endothelial function. To test this hypothesis, we conducted a randomized acute clinical intervention study with crossover design and measured reactive hyperemia index (RHI) to assess the acute effects of a 75-g glucose load with CPP in healthy, nondiabetic adult men. Blood glucose and insulin levels were elevated after glucose loading with and without CPP, with no significant differences between treatments. The RHI did not significantly decrease after glucose loading without CPP. With CPP, however, RHI significantly (P < .05) increased over baseline after glucose loading. The difference between treatments was statistically significant (P < .05). No significant changes were observed in an oxidative stress marker after glucose loading with or without CPP. These findings suggest that a single ingestion of CPP improves peripheral endothelial function after glucose loading in healthy subjects.

  13. Nervous System Lyme Disease.

    PubMed

    Halperin, John J

    2015-12-01

    Nervous system involvement occurs in 10% to 15% of patients infected with the tick-borne spirochetes Borrelia burgdorferi, B afzelii, and B garinii. Peripheral nervous system involvement is common. Central nervous system (CNS) involvement, most commonly presenting with lymphocytic meningitis, causes modest cerebrospinal fluid (CSF) pleocytosis. Parenchymal CNS infection is rare. If the CNS is invaded, however, measuring local production of anti-B burgdorferi antibodies in the CSF provides a useful marker of infection. Most cases of neuroborreliosis can be cured with oral doxycycline; parenteral regimens should be reserved for patients with particularly severe disease.

  14. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system

    PubMed Central

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O’Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune–related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS. PMID:26379506

  15. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  16. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination

    PubMed Central

    Goudarzi, Salman; Rivera, Andrea; Butt, Arthur M.

    2016-01-01

    A key aim of therapy for multiple sclerosis (MS) is to promote the regeneration of oligodendrocytes and remyelination in the central nervous system (CNS). The present study provides evidence that the vitamin K-dependent protein growth arrest specific 6 (Gas6) promotes such repair in in vitro cultures of mouse optic nerve and cerebellum. We first determined expression of Gas6 and TAM (Tyro3, Axl, Mer) receptors in the mouse CNS, with all three TAM receptors increasing in expression through postnatal development, reaching maximal levels in the adult. Treatment of cultured mouse optic nerves with Gas6 resulted in significant increases in oligodendrocyte numbers as well as expression of myelin basic protein (MBP). Gas6 stimulation also resulted in activation of STAT3 in optic nerves as well as downregulation of multiple genes involved in MS development, including matrix metalloproteinase-9 (MMP9), which may decrease the integrity of the blood–brain barrier and is found upregulated in MS lesions. The cytoprotective effects of Gas6 were examined in in vitro mouse cerebellar slice cultures, where lysolecithin was used to induce demyelination. Cotreatment of cerebellar slices with Gas6 significantly attenuated demyelination as determined by MBP immunostaining, and Gas6 activated Tyro3 receptor through its phosphorylation. In conclusion, these results demonstrate that Gas6/TAM signaling stimulates the generation of oligodendrocytes and increased myelin production via Tyro3 receptor in the adult CNS, including repair after demyelinating injury. Furthermore, the effects of Gas6 on STAT3 signaling and matrix MMP9 downregulation indicate potential glial cell repair and immunoregulatory roles for Gas6, indicating that Gas6-TAM signaling could be a potential therapeutic target in MS and other neuropathologies. PMID:27630207

  17. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination.

    PubMed

    Goudarzi, Salman; Rivera, Andrea; Butt, Arthur M; Hafizi, Sassan

    2016-10-01

    A key aim of therapy for multiple sclerosis (MS) is to promote the regeneration of oligodendrocytes and remyelination in the central nervous system (CNS). The present study provides evidence that the vitamin K-dependent protein growth arrest specific 6 (Gas6) promotes such repair in in vitro cultures of mouse optic nerve and cerebellum. We first determined expression of Gas6 and TAM (Tyro3, Axl, Mer) receptors in the mouse CNS, with all three TAM receptors increasing in expression through postnatal development, reaching maximal levels in the adult. Treatment of cultured mouse optic nerves with Gas6 resulted in significant increases in oligodendrocyte numbers as well as expression of myelin basic protein (MBP). Gas6 stimulation also resulted in activation of STAT3 in optic nerves as well as downregulation of multiple genes involved in MS development, including matrix metalloproteinase-9 (MMP9), which may decrease the integrity of the blood-brain barrier and is found upregulated in MS lesions. The cytoprotective effects of Gas6 were examined in in vitro mouse cerebellar slice cultures, where lysolecithin was used to induce demyelination. Cotreatment of cerebellar slices with Gas6 significantly attenuated demyelination as determined by MBP immunostaining, and Gas6 activated Tyro3 receptor through its phosphorylation. In conclusion, these results demonstrate that Gas6/TAM signaling stimulates the generation of oligodendrocytes and increased myelin production via Tyro3 receptor in the adult CNS, including repair after demyelinating injury. Furthermore, the effects of Gas6 on STAT3 signaling and matrix MMP9 downregulation indicate potential glial cell repair and immunoregulatory roles for Gas6, indicating that Gas6-TAM signaling could be a potential therapeutic target in MS and other neuropathologies. PMID:27630207

  18. Peripheral Nerve Damage Facilitates Functional Innervation of Brain Grafts in Adult Sensory Cortex

    NASA Astrophysics Data System (ADS)

    Ebner, Ford F.; Erzurumlu, Reha S.; Lee, Stefan M.

    1989-01-01

    The neuralb pathways that relay information from cutaneous receptors to the cortex provide the somatic sensory information needed for cortical function. The last sensory relay neurons in this pathway have cell bodies in the thalamus and axons that synapse on neurons in the somatosensory cortex. After cortical lesions that damage mature thalamocortical fibers in the somatosensory cortex, we have attempted to reestablish somatosensory cortical function by grafting embryonic neocortical cells into the lesioned area. Such grafts survive in adult host animals but are not innervated by thalamic neurons, and consequently the grafted neurons show little if any spontaneous activity and no responses to cutaneous stimuli. We have reported that transection of peripheral sensory nerves prior to grafting ``conditions'' or ``primes'' the thalamic neurons in the ventrobasal complex so that they extend axons into grafts subsequently placed in the cortical domain of the cut nerve. In this report we present evidence that the ingrowth of ventrobasal fibers leads to graft neurons that become functionally integrated into the sensory circuitry of the host brain. Specifically, the conditioning lesions made prior to grafting produce graft neurons that are spontaneously active and can be driven by natural activation of cutaneous receptors or electrical stimulation of the transected nerve after it regenerates. Furthermore, oxidative metabolism in these grafts reaches levels that are comparable to normal cortex, whereas without prior nerve cut, oxidative metabolism is abnormally low in neocortical grafts. We conclude that damage to the sensory periphery transsynaptically stimulates reorganization of sensory pathways through mechanisms that include axonal elongation and functional synaptogenesis.

  19. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars.

    PubMed

    Byrne, Maria; Cisternas, Paula; Elia, Laura; Relf, Bronwyn

    2005-12-01

    We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.

  20. Differences in the peripheral immune response between lambs and adult ewes experimentally infected with Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Delgado, Laetitia; Juste, Ramón A; Muñoz, María; Morales, Silvia; Benavides, Julio; Ferreras, M Carmen; Marín, J Francisco García; Pérez, Valentín

    2012-01-15

    The peripheral immune response, and its relationship with the outcome of the infection according to the age of the animal, has been investigated in young lambs and adult ewes experimentally infected with two different doses of Mycobacterium avium subspecies paratuberculosis (Map). Sixteen 1.5-month-old lambs out of 24 and 23 adult ewes out of 30 were orally challenged with an ovine Map field isolate. Animals were divided into two groups: HD, infected with a higher dose of Map and LD, with a lower dose. The remaining animals were used as uninfected control groups. Animals were euthanized at 110-120 and 210-220 days post-infection (dpi). Along the experiment, the humoral response and the specific and non-specific IFN-γ production were assessed. An intradermal skin test (IDT), using avian PPD, was also performed at 90 and 195 dpi. Samples of intestine and related lymphoid tissue were taken for histological, bacteriological and PCR studies. The Ab and IFN-γ production as well as the IDT response appeared earlier and with more intensity in the adult ewes compared to the lambs. The basal non-specific IFN-γ levels increased only in the adult ewes from the HD group. Animals from the LD and HD groups were positive to PCR; however, lesions consistent with paratuberculosis were exclusively observed in the HD group, both in lambs and in adult sheep, but they only progressed to more advanced stages in the former. These results suggest that the peripheral immune response induced by Map infection in the adult ewes is more efficient to control the progression of the infection than in lambs. This could likely be due to the existence of previous contacts with Map or other mycobacteria in the adult sheep compared to the young lambs.

  1. The immunohistochemical expression profile of osteopontin in normal human tissues using two site-specific antibodies reveals a wide distribution of positive cells and extensive expression in the central and peripheral nervous systems.

    PubMed

    Kunii, Yasuto; Niwa, Shin-ichi; Hagiwara, Yoshiaki; Maeda, Masahiro; Seitoh, Tsutomu; Suzuki, Toshimitsu

    2009-09-01

    To elucidate the cellular distribution of osteopontin (OPN) in normal human tissues, we undertook immunohistochemistry using two site-specific OPN antibodies. The 10A16 monoclonal antibody was raised against the amino acid sequence just downstream of the thrombin cleavage site, while the O-17 polyclonal antibody was raised against the N-terminal peptide. Each antibody has been confirmed previously to react with both whole OPN and its relevant fragments. The expression pattern for these two antibodies was similar in distribution. In addition, we also identified expression in Ebner's gland, type II pneumocytes, Kupffer cells, cells of the endocrine organs, anterior lens capsule and ciliary body, synovial type A cells, mesothelia, adipocytes, and mast cells. Neurons and glia in the central nervous system and spinal cord, cranial and peripheral nerve sheaths, ganglion cells in the sympathetic ganglion, intestinal plexuses, retina, and choroid plexus also regularly exhibited OPN positivity. Testicular germ cells, pancreatic exocrine cells, and follicular dendritic cells reacted with 10A16 only, whereas lutein cells and taste bud cells exhibited O-17 reactivity alone. These minor differences were hypothesized to reflect the state of OPN in the cells; that is, whether OPN was in its whole molecule or fragmented form. In conclusion, we demonstrate that OPN is widely distributed in normal human cells, particularly those comprising the central and peripheral nervous systems.

  2. ADULT TERTIAN MALARIAL PARASITES ATTACHED TO PERIPHERAL CORPUSCULAR MOUNDS. THE EXTRACELLULAR RELATION OF THE PARASITES TO THE RED CORPUSCLES.

    PubMed

    Lawson, M R

    1915-06-01

    1. The malarial parasite is extracellular throughout its entire life cycle; that is, when it is not free in the blood serum, it is attached to the external surface of the red corpuscle. 2. Adult parasites follow the same procedure in attaching themselves to the outer surface of the red corpuscles as do the young parasites. 3. Adult parasites are most frequently seen attached to surface corpuscular mounds. 4. Corpuscular mounds projecting at the periphery of the red corpuscles and encircled by the pseudopodia of adult parasites, are proof positive of the extracellular relation of the adult parasite to the red corpuscle. 5. Adult parasites attached to peripheral corpuscular mounds are only found in appreciable numbers when the red corpuscles are not badly damaged, so that the mounds show more or less hemoglobin content. 6. The nuclei or protoplasm of adult parasites extending beyond the periphery of the red corpuscles is additional evidence of the extracellular relation of the parasites to the red corpuscle.

  3. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice.

    PubMed

    Cheng, Wen-Hsing; Holmstrom, Alexandra; Li, Xiangdong; Wu, Ryan T Y; Zeng, Huawei; Xiao, Zhengguo

    2012-05-01

    Selenium (Se) is known to regulate tumorigenesis and immunity at the nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8(+) and CD4(+) T cells, we investigated whether B and T cell maturation could be modulated by dietary Se and by tumorigenesis in nude mice. Fifteen homozygous nude mice were fed a Se-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se+) or 1.0 (Se++) mg Se/kg (as Na(2)SeO(4)) for 6 months, followed by a 7-week time course of PC-3 prostate cancer cell xenograft (2 × 10(6) cells/site, 2 sites/mouse). Here, we show that peripheral B cell levels decreased in nude mice fed the Se -  or Se++ diet and the CD4(+) T cell levels increased in mice fed the Se++ diet. During the PC-3 cell tumorigenesis, dietary Se status did not affect peripheral CD4(+) or CD8(+) T cells in nude mice whereas mice fed with the Se++ diet appeared to exhibit greater peripheral CD25(+)CD4(+) T cells on day 9. Dietary Se status did not affect spleen weight in nude mice 7 weeks after the xenograft. Spleen weight was associated with frequency of peripheral CD4(+), but not CD8(+) T cells. Taken together, dietary Se at the nutritional and supranutritional levels regulates peripheral B and T cells in adult nude mice before and after xenograft with PC-3 prostate cancer cells.

  4. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

    PubMed

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984

  5. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia

    PubMed Central

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920’s, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield’s famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984

  6. The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

    PubMed

    de Castro, Fernando

    2016-01-01

    The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

  7. Trajectories of peripheral interleukin-6, structure of the hippocampus, and cognitive impairment over 14 years in older adults.

    PubMed

    Metti, Andrea L; Aizenstein, Howard; Yaffe, Kristine; Boudreau, Robert M; Newman, Anne; Launer, Lenore; Gianaros, Peter J; Lopez, Oscar L; Saxton, Judith; Ives, Diane G; Kritchevsky, Stephen; Vallejo, Abbe N; Rosano, Caterina

    2015-11-01

    We aimed to investigate if trajectory components (baseline level, slope, and variability) of peripheral interleukin-6 (IL-6) over time were related to cognitive impairment and smaller hippocampal volume and if hippocampal volume explained the associations between IL-6 and cognitive impairment. Multivariable regression models were used to test the association between IL-6 trajectory components with change in neuroimaging measures of the hippocampus and with cognitive impairment among 135 older adults (70-79 years at baseline) from the Healthy Brain Project over 14 years. IL-6 variability was positively associated with cognitive impairment (odds ratio [OR] = 5.86, 95% confidence interval [CI]: 1.24, 27.61) and with greater decrease per year of gray matter volume of the hippocampus (β = -0.008, standard error = 0.004, p = 0.03). After adjustment for hippocampal volume, the OR of cognitive impairment decreased for each unit of IL-6 variability and CIs widened (OR = 4.36, 95% CI: 0.67, 28.29). Neither baseline levels nor slopes of IL-6 were related to cognitive impairment or hippocampal volume. We believe this has potential clinical and public health implications by suggesting adults with stable levels of peripheral IL-6 may be better targets for intervention studies for slowing or preventing cognitive decline.

  8. A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults.

    PubMed

    Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H

    2015-08-01

    The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.

  9. Assessing Basal and Acute Autophagic Responses in the Adult Drosophila Nervous System: The Impact of Gender, Genetics and Diet on Endogenous Pathway Profiles

    PubMed Central

    Molina, Brandon; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; El-Mecharrafie, Nadja; Garza, Shannon; Gurney, Michael A.; Achal, Madhulika; Linton, Phyllis-Jean; Harris, Greg L.; Finley, Kim D.

    2016-01-01

    The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system. PMID:27711219

  10. Nitric Oxide Synthase in the Central Nervous System and Peripheral Organs of Stramonita haemastoma: Protein Distribution and Gene Expression in Response to Thermal Stress

    PubMed Central

    Toni, Mattia; De Angelis, Federica; Bonaccorsi di Patti, Maria Carmela; Cioni, Carla

    2015-01-01

    Nitric oxide (NO) is generated via the oxidation of l-arginine by the enzyme NO synthase (NOS) both in vertebrates and invertebrates. Three NOS isoforms, nNOS, iNOS and eNOS, are known in vertebrates, whereas a single NOS isoform is usually expressed in invertebrates, sharing structural and functional characteristics with nNOS or iNOS depending on the species. The present paper is focused on the constitutive Ca2+/calmodulin-dependent nNOS recently sequenced by our group in the neogastropod Stramonita haemastoma (ShNOS). In this paper we provide new data on cellular distribution of ShNOS in the CNS (pedal ganglion) and peripheral organs (osphradium, tentacle, eye and foot) obtained by WB, IF, CM and NADPHd. Results demonstrated that NOS-like proteins are widely expressed in sensory receptor elements, neurons and epithelial cells. The detailed study of NOS distribution in peripheral and central neurons suggested that NOS is both intracellular and presynaptically located. Present findings confirm that NO may have a key role in the central neuronal circuits of gastropods and in sensory perception. The physiological relevance of NOS enzymes in the same organs was suggested by thermal stress experiments demonstrating that the constitutive expression of ShNOS is modulated in a time- and organ-dependent manner in response to environmental stressors. PMID:26528988

  11. A Monoclonal Antibody to O-Acetyl-GD2 Ganglioside and Not to GD2 Shows Potent Anti-Tumor Activity without Peripheral Nervous System Cross-Reactivity

    PubMed Central

    Cochonneau, Denis; Chaumette, Tanguy; Clemenceau, Béatrice; Leprieur, Stéphanie; Bougras, Gwenola; Supiot, Stéphane; Mussini, Jean-Marie; Barbet, Jacques; Saba, Julie; Paris, François; Aubry, Jacques; Birklé, Stéphane

    2011-01-01

    Background Monoclonal antibodies (mAb) against GD2 ganglioside have been shown to be effective for the treatment of neuroblastoma. Beneficial actions are, however, associated with generalized pain due to the binding of anti- GD2 mAbs to peripheral nerve fibers followed by complement activation. Neuroblastoma cells that express GD2 also express its O-acetyl derivative, O-acetyl- GD2 ganglioside (OAcGD2). Hence, we investigated the distribution of OAcGD2 in human tissues using mAb 8B6 to study the cross-reactivity of mAb 8B6 with human tissues. Methodology/Principal Findings The distribution of OAcGD2 was performed in normal and malignant tissues using an immunoperoxydase technique. Anti-tumor properties of mAb 8B6 were studied in vitro and in vivo in a transplanted tumor model in mice. We found that OAcGD2 is not expressed by peripheral nerve fibers. Furthermore, we demonstrated that mAb 8B6 was very effective in the in vitro and in vivo suppression of the growth of tumor cells. Importantly, mAb 8B6 anti-tumor efficacy was comparable to that of mAb 14G2a specific to GD2. Conclusion/Significance Development of therapeutic antibodies specific to OAcGD2 may offer treatment options with reduced adverse side effects, thereby allowing dose escalation of antibodies. PMID:21966461

  12. Immunohistochemical detection of disease-associated prion protein in the peripheral nervous system in experimental H-type bovine spongiform encephalopathy.

    PubMed

    Okada, H; Iwamaru, Y; Yokoyama, T; Mohri, S

    2013-07-01

    H-type bovine spongiform encephalopathy (BSE) has been identified in aged cattle in Europe and North America. To determine the localization of disease-associated prion protein (PrP(Sc)) in the peripheral nerve tissues of cattle affected with H-type BSE, we employed highly sensitive immunohistochemical and immunofluorescence techniques with the tyramide signal amplification (TSA) system. PrP(Sc) deposition was detected in the inferior ganglia, sympathetic nerve trunk, vagus nerve, spinal nerves, cauda equina, and adrenal medulla, using this system. Notably, granular PrP(Sc) deposits were present mainly in the Schwann cells and fibroblast-like cells and occasionally along certain nerve fibers at the surface of the axons. In the adrenal gland, PrP(Sc) immunolabeling was observed within the sympathetic nerve fibers and nerve endings in the adrenal medulla. Although our results were limited to only 3 experimental cases, these results suggest that the TSA system, a highly sensitive immunohistochemical procedure, may help in elucidating the peripheral pathogenesis of H-type BSE.

  13. Nitric Oxide Synthase in the Central Nervous System and Peripheral Organs of Stramonita haemastoma: Protein Distribution and Gene Expression in Response to Thermal Stress.

    PubMed

    Toni, Mattia; De Angelis, Federica; di Patti, Maria Carmela Bonaccorsi; Cioni, Carla

    2015-11-01

    Nitric oxide (NO) is generated via the oxidation of l-arginine by the enzyme NO synthase (NOS) both in vertebrates and invertebrates. Three NOS isoforms, nNOS, iNOS and eNOS, are known in vertebrates, whereas a single NOS isoform is usually expressed in invertebrates, sharing structural and functional characteristics with nNOS or iNOS depending on the species. The present paper is focused on the constitutive Ca(2+)/calmodulin-dependent nNOS recently sequenced by our group in the neogastropod Stramonita haemastoma (ShNOS). In this paper we provide new data on cellular distribution of ShNOS in the CNS (pedal ganglion) and peripheral organs (osphradium, tentacle, eye and foot) obtained by WB, IF, CM and NADPHd. Results demonstrated that NOS-like proteins are widely expressed in sensory receptor elements, neurons and epithelial cells. The detailed study of NOS distribution in peripheral and central neurons suggested that NOS is both intracellular and presynaptically located. Present findings confirm that NO may have a key role in the central neuronal circuits of gastropods and in sensory perception. The physiological relevance of NOS enzymes in the same organs was suggested by thermal stress experiments demonstrating that the constitutive expression of ShNOS is modulated in a time- and organ-dependent manner in response to environmental stressors.

  14. Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: facts and artifacts.

    PubMed

    Reubi, J C; Laissue, J A; Waser, B; Steffen, D L; Hipkin, R W; Schonbrunn, A

    1999-08-01

    The cellular distribution of the somatostatin sst2A receptor protein was investigated in the lymphatic, smooth muscular, and nervous components of the human gastrointestinal tract using subtype-specific antibody R2-88 for immunohistochemical staining of cryostat and formalin-fixed, paraffin-embedded tissue sections. Germinal centers of intestinal lymphatic follicles were immunostained, exhibiting a predominantly plasma membrane localization of the receptor. Similarly, nerve fibers and cells in the submucosal and myenteric plexus were stained for sst2A. Antibody preabsorption with 100 nmol/L antigen peptide abolished staining in all of these tissues, and immunohistochemical staining correlated with the labeling observed after receptor autoradiography using the sst2-preferring radioligand 125I-[Tyr3]octreotide. Cytoplasmic immunostaining was detected in gastrointestinal smooth muscle cells and was inhibited by antibody pre-absorption with antigen peptide. However, 125I-[Tyr3]octreotide autoradiography was negative, and Western blots showed no band at the usual 70-90 kDa location for sst2A. Instead, a band was observed at 205 kDa. This band comigrated with the rabbit myosin standard, which was also stained with R2-88, although antibody sensitivity for myosin was less than 0.002% of that for the sst2A receptor. Rigorous computer-based sequence analysis demonstrated the peptide sequence chosen for antibody production was unique. Moreover, standard sequence alignment protocols were unable to identify the sequences in myosin responsible for the observed reactivity with the R2-88 antiserum. The observed cross-reactivity emphasizes the need for extensive controls to prove the specificity of immunostaining for such low abundance proteins as receptors even when the peptide sequence chosen for antibody production is unique. This study demonstrates for the first time the presence of specific sst2A receptor protein by immunohistochemistry in the human gastrointestinal lymphatic

  15. Pharmacological management of neuropathic pain in older adults: an update on peripherally and centrally acting agents.

    PubMed

    McGeeney, Brian E

    2009-08-01

    The burden of neuropathic pain in older adults is great and the practitioner is challenged to reduce symptoms and improve quality of life. Many common neuropathic pain syndromes are more prevalent in the older population, and older adults also carry greater sensitivity to certain side effects. The health care professional should have a thorough familiarity with all medications available to treat this difficult group of disorders.

  16. Activation and maintenance of peripheral semantic features of unambiguous words after right hemisphere brain damage in adults

    PubMed Central

    Tompkins, Connie A.; Fassbinder, Wiltrud; Scharp, Victoria L.; Meigh, Kimberly M.

    2009-01-01

    Background The right cerebral hemisphere (RH) sustains activation of subordinate, secondary, less common, and/or distantly related meanings of words. Much of the pertinent data come from studies of homonyms, but some evidence also suggests that the RH has a unique maintenance function in relation to unambiguous nouns. In a divided visual field priming study, Atchley, Burgess, and Keeney (1999) reported that only left visual field/RH presentation yielded evidence of continuing activation of peripheral semantic features that were incompatible with the most common image or representation of their corresponding nouns (e.g., rotten for “apple”). Activation for weakly related features that were compatible with the dominant representation (e.g., crunchy) was sustained over time regardless of the visual field/hemisphere of initial stimulus input. Several studies report that unilateral right hemisphere brain damage (RHD) in adults affects the RH’s meaning maintenance function, but this work also has centred on homonyms, and/or more recently metonymic and metaphoric polysemous words. Aims The current investigation examined whether RHD deficits in processing secondary and/or distantly related meanings of words, typically observed in studies of homonyms, would extend to peripheral, weakly related semantic features of unambiguous nouns. Methods & Procedures Participants were 28 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken sentences that ended with an unambiguous noun. Each sentence was followed by a spoken target phoneme string. Targets included peripheral semantic features of the sentence-final noun that were either compatible or incompatible with the dominant mental images of the noun, and were presented at two intervals after that noun. A lexical decision task was used to gauge both the early activation and maintenance of activation for these weakly related semantic features. Outcomes

  17. Diagnostic and prognostic significance of peripheral blood cultural characteristics in adult acute leukaemia.

    PubMed Central

    Balkwill, F. R.; Oliver, R. T.

    1976-01-01

    A simple liquid culture technique has been used to study peripheral blood from patients with acute myelogenous leukaemia. Evidence is presented that cells from morphologically identical types of leukaemia have differing capacity for "differentiation" from free floating blast cells into plastic-adherent phagocytic, trypsin-resistant macrophage-like cells with Fc and C3 receptors. Preliminary analysis suggests that patients whose cells have the greatest capacity for "differentiation" have a better chance of achieving complete remission. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1063591

  18. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    PubMed

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration.

  19. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    PubMed

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration. PMID:19087175

  20. Perceptions of Young Adult Central Nervous System Cancer Survivors and Their Parents Regarding Career Development and Employment

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Chan, Fong; Wong, Alex W. K.

    2014-01-01

    Purpose: Identify barriers to career development and employment from both the survivor and parent perspective. Method: Young adult survivors (N = 43) and their parents participated in focus groups to elicit information regarding perceptions regarding career development and employment. Results: Perceptions of both the young adults and parents…

  1. Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons.

    PubMed

    Ducret, E; Alexopoulos, H; Le Feuvre, Y; Davies, J A; Meyrand, P; Bacon, J P; Fénelon, V S

    2006-12-01

    Gap junctions play a key role in the operation of neuronal networks by enabling direct electrical and metabolic communication between neurons. Suitable models to investigate their role in network operation and plasticity are invertebrate motor networks, which are built of comparatively few identified neurons, and can be examined throughout development; an excellent example is the lobster stomatogastric nervous system. In invertebrates, gap junctions are formed by proteins that belong to the innexin family. Here, we report the first molecular characterization of two crustacean innexins: the lobster Homarus gammarus innexin 1 (Hg-inx1) and 2 (Hg-inx2). Phylogenetic analysis reveals that innexin gene duplication occurred within the arthropod clade before the separation of insect and crustacean lineages. Using in situ hybridization, we find that each innexin is expressed within the adult and developing lobster stomatogastric nervous system and undergoes a marked down-regulation throughout development within the stomatogastric ganglion (STG). The number of innexin expressing neurons is significantly higher in the embryo than in the adult. By combining in situ hybridization, dye and electrical coupling experiments on identified neurons, we demonstrate that adult neurons that express at least one innexin are dye and electrically coupled with at least one other STG neuron. Finally, two STG neurons display no detectable amount of either innexin mRNAs but may express weak electrical coupling with other STG neurons, suggesting the existence of other forms of innexins. Altogether, we provide evidence that innexins are expressed within small neuronal networks built of dye and electrically coupled neurons and may be developmentally regulated. PMID:17156373

  2. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  3. Involvement of the hypothalamic--pituitary--adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role.

    PubMed

    Straub, R H; Cutolo, M

    2001-03-01

    From the compendium presented above, the following statements become evident: 1) Inappropriately low secretion of cortisol in relation to inflammation is a typical feature of the inflammatory disease in patients with RA. 2) The secretion of adrenal androgens is significantly reduced, which is a problem in postmenopausal women and elderly men due to a lack of downstream sex hormones. 3) Serum levels of testosterone are markedly reduced in RA. 4) Sympathetic nerve fibers are markedly reduced in the synovial tissue of patients with RA, whereas proinflammatory sensory fibers (substance P) are present. 5) Substance P serves to continuously sense painful stimuli in the periphery, and the nociceptive input from the inflamed joint shows a large amplification in the spinal cord. This leads to continuous pain with stabilization of the afferent sensory input and continuous release of proinflammatory substance P into the lumen of the joint. From these facts it is obvious that alterations of the systemic antiinflammatory feedback systems contribute significantly to the pathogenesis of RA. Disease therapy directed at these alterations must provide a mechanism to replace the adrenal glands (glucocorticoids), the gonadal glands (androgens), and the sympathetic nervous system (adenosine increase by low-dose MTX, sulfasalazine, and salicylates) in order to integrate their immunosuppressive effects at the local site of synovial inflammation. Although local processes of the adaptive immune system are important in pathogenesis in the acute phase of RA, these mechanisms may be less important during the chronic phase of the disease in the absence of a specific trigger. We believe that a defect of systemic antiinflammatory feedback systems is an important factor in the perpetuation of RA. This review reinforces the belief that combined therapeutic approaches on a neuroendocrine immune basis are of crucial importance in a pathogenetically oriented therapy of RA.

  4. Differentiation analyses of adult suspension mononucleated peripheral blood cells of Mus musculus

    PubMed Central

    2010-01-01

    Background The purpose of this study is to determine whether isolated suspension mouse peripheral mononucleated blood cells have the potential to differentiate into two distinct types of cells, i.e., osteoblasts and osteoclasts. Results Differentiation into osteoblast cells was concomitant with the activation of the Opn gene, increment of alkaline phosphatase (ALP) activity and the existence of bone nodules, whereas osteoclast cells activated the Catk gene, increment of tartrate resistant acid phosphatase (TRAP) activity and showed resorption activities via resorption pits. Morphology analyses showed the morphology of osteoblast and osteoclast cells after von Kossa and May-Grunwald-Giemsa staining respectively. Conclusions In conclusion, suspension mononucleated cells have the potentiality to differentiate into mature osteoblasts and osteoclasts, and hence can be categorized as multipotent stem cells. PMID:20969794

  5. Alterations in Activation, Cytotoxic Capacity and Trafficking Profile of Peripheral CD8 T Cells in Young Adult Binge Drinkers

    PubMed Central

    Zaldivar Fujigaki, José Luis; Arroyo Valerio, América Guadalupe; López Alvarenga, Juan Carlos; Gutiérrez Reyes, Esperanza Gabriela; Kershenobich, David; Hernández Ruiz, Joselin

    2015-01-01

    Background Excess of alcohol consumption is a public health problem and has documented effects on the immune system of humans and animals. Animal and in vitro studies suggest that alcohol abuse changes CD8 T cell (CD8) characteristics, however it remains unknown if the CD8 profile of binge drinkers is different in terms of activation, trafficking and cytotoxic capacity. Aim To analyze the peripheral CD8 cytotoxic capacity, activation and trafficking phenotypic profile of Mexican young adults with regard to alcohol consumption pattern. Methods 55 Mexican young adults were stratified as Light (20), Intermediate (18) or Binge drinkers (17) according to their reported alcohol consumption pattern. Blood samples were obtained and hematic biometry and liver enzyme analysis were performed. Peripheral CD8 profile was established by expression of Granzyme B (GB), CD137, CD127, CD69, TLR4, PD1, CCR2, CCR4, CCR5 and CXCR4 by FACS. Data was analyzed by ANOVA, posthoc DMS and Tamhane, and principal component analysis (PCA) with varimax rotation, p<0.05. Results The Binge drinking group showed increased γGT together with increased expression of CD69 and reduced expression of TLR4, PD1, CCR2 and CXCR4 in peripheral CD8 cells. Other parameters were also specific to Binge drinkers. PCA established 3 factors associated with alcohol consumption: “Early Activation” represented by CD69 and TLR4 expression in the CD8 population; “Effector Activation” by CD69 expression in CD8 CD127+CD137+ and CD8 CD25+ CD137+; and Trafficking by CXCR4 expression on total CD8 and CD8 GB+CXCR4+, and CCR2 expression on total CD8. Binge drinking pattern showed low expression of Early Activation and Trafficking factors while Light drinking pattern exhibited high expression of Effector Activation factor. Conclusions Alcohol consumption affects the immune phenotype of CD8 cells since binge drinking pattern was found to be associated with high CD69 and low TLR4, CXCR4 and CCR2 expression, which suggest

  6. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    MedlinePlus

    ... Emergency Department (ED) Visits Involving Nonmedical Use of Pharmaceuticals* among Adults Aged 18 to 34, by Alcohol ... 2007 2008 2009 2010 2011 * Nonmedical use of pharmaceuticals includes taking more than the prescribed dose of ...

  7. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  8. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  9. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs.

  10. Reduced intensity conditioning followed by peripheral blood stem cell transplantation for adult patients with high-risk acute lymphoblastic leukemia

    PubMed Central

    Stein, Anthony S.; Palmer, Joycelynne M.; O'Donnell, Margaret R.; Kogut, Neil M.; Spielberger, Ricardo T.; Slovak, Marilyn L.; Tsai, Ni-Chun; Senitzer, David; Snyder, David S.; Thomas, Sandra H.; J.Forman, Stephen

    2009-01-01

    Acute lymphoblastic leukemia (ALL) with high-risk features has a poor prognosis in adults despite aggressive chemotherapy. Reduced-intensity conditioning (RIC) is a lower toxicity alternative for high-risk patients requiring hematopoietic cell transplantation (HCT), however it has not been widely used for ALL. We conducted a retrospective study of 24 high-risk adult ALL patients who received an RIC regimen of fludarabine/melphalan prior to allogeneic peripheral blood stem cell transplant between 6/14/02 and 6/15/07 at City of Hope. Indications for the RIC regimen were: 1) age 50 or older (42%), 2) compromised organ function (54%), or 3) recipient of a previous HCT (37.5%). Patients had a median age of 47.5 years and the median follow-up was 28.5 months for living patients. Both overall survival and disease-free survival at two years was 61.5%. Relapse incidence was 21.1% and non-relapse mortality was 21.5% at two years. cGVHD developed in 86% of evaluable patients. In this series, no significant correlations were made between outcomes and patient age, presence of Philadelphia chromosome, relatedness of donor source or prior HCT. These high survival rates for high-risk ALL patients following RIC HCT may offer a promising option for patients not eligible for a standard myeloablative transplant. PMID:19822300

  11. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors

    PubMed Central

    Keng, Vincent W.; Rahrmann, Eric P.; Watson, Adrienne L.; Tschida, Barbara R.; Moertel, Christopher L.; Jessen, Walter J.; Rizvi, Tilat A.; Collins, Margaret H.; Ratner, Nancy; Largaespada, David A.

    2012-01-01

    The genetic evolution from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis type 1 (NF1) syndrome remains unclear. Schwann cells and/or their precursor cells are believed to be the primary pathogenic cell in neurofibromas because they harbor biallelic neurofibromin 1 (NF1) gene mutations. However, the phosphatase and tensin homolog (Pten) and neurofibromatosis 1 (Nf1) genes recently were found to be co-mutated in high-grade peripheral nerve sheath tumors (PNSTs) in mice. In this study, we created transgenic mice that lack both Pten and Nf1 in Schwann cells and Schwann cell precursor cells in order to validate the role of these two genes in PNST formation in vivo. Haploinsufficiency or complete loss of Pten dramatically accelerated neurofibroma development and led to the development of higher-grade PNSTs in the context of Nf1 loss. Pten dosage, together with Nf1 loss, was sufficient for the progression from low-grade to high-grade PNSTs. Genetic analysis of human sporadic malignant pheripheral nerve sheath tumors (MPNSTs) also revealed down-regulation of PTEN expression, suggesting that Pten-regulated pathways are major tumor suppressive barriers to neurofibroma progression. Together, our findings establish a novel mouse model that can rapidly recapitulate the onset of human neurofibroma tumorigenesis and the progression to MPNSTs. PMID:22700876

  12. The Effects of Tai Chi on Peripheral Somatosensation, Balance, and Fitness in Hispanic Older Adults with Type 2 Diabetes: A Pilot and Feasibility Study

    PubMed Central

    Cavegn, Elisabeth I.; Riskowski, Jody L.

    2015-01-01

    Peripheral neuropathy and loss of somatosensation in older adults with type 2 diabetes can increase risk of falls and disability. In nondiabetic older adult population Tai Chi has been shown to enhance balance and fitness through improvements in somatosensation and neuromuscular control, and it is unclear if Tai Chi would elicit similar benefits in older adults with diabetes. Therefore, the purpose of this study was to investigate the effects of an 8-week, three-hour-per-week Tai Chi intervention on peripheral somatosensation in older adults with type 2 diabetes. Participants were eight Hispanic older adults with type 2 diabetes who participated in the Tai Chi intervention and a convenience sample of Hispanic older adults as a referent group. Baseline and postintervention assessments included ankle proprioception, foot tactile sense, plantar pressure distribution, balance, and fitness. After intervention, older adults with type 2 diabetes showed significant improvements in ankle proprioception and fitness and decreased plantar pressure in the forefoot, with no statistical effect noted in balance or tactile sensation. Study results suggest that Tai Chi may be beneficial for older adults with diabetes as it improves ankle proprioception; however, study findings need to be confirmed in a larger sample size randomized controlled trial. PMID:26600865

  13. Selective IgM deficiency in adults: phenotypically and functionally altered profiles of peripheral blood lymphocytes.

    PubMed Central

    Ohno, T; Inaba, M; Kuribayashi, K; Masuda, T; Kanoh, T; Uchino, H

    1987-01-01

    Peripheral blood lymphocytes from four patients with selective IgM deficiency were examined phenotypically and functionally. Although B cell subpopulations determined by surface immunoglobulins were within normal or nearly normal range, T8+ cells were significantly increased and T4/T8 ratios were inverted in three patients. IgM specific hyporesponsiveness in the PWM-driven immunoglobulin production system was observed in all four patients. Ia-like antigen positive T cells were increased in two patients; both had increased Leu2a+ Leu15+ suppressor-effector cells. In addition, Leu3a+ Leu8+ suppressor-inducer cells were increased in one of these two patients. Excessive (either IgM-specific or isotype non-specific) suppressor activity of T cells and IgM specific hyporesponsiveness of non-T cells were observed in these two patients in the recombination plaque assay. Although these results showed the complexity of the pathogenesis of this syndrome, they suggested that suppressor-associated T cells may play a role in some patients with selective IgM deficiency. PMID:2958191

  14. The light chains of microtubule-associated proteins MAP1A and MAP1B interact with α1-syntrophin in the central and peripheral nervous system.

    PubMed

    Fuhrmann-Stroissnigg, Heike; Noiges, Rainer; Descovich, Luise; Fischer, Irmgard; Albrecht, Douglas E; Nothias, Fatiha; Froehner, Stanley C; Propst, Friedrich

    2012-01-01

    Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which is located in the light chains of MAP1A, MAP1B, and MAP1S) and α1-syntrophin is direct and occurs through the pleckstrin homology domain 2 (PH2) and the postsynaptic density protein 95/disk large/zonula occludens-1 protein homology domain (PDZ) of α1-syntrophin. We confirmed the interaction of MAP1B and α1-syntrophin by co-localization of the two proteins in transfected cells and by co-immunoprecipitation experiments from mouse brain. In addition, we show that MAP1B and α1-syntrophin partially co-localize in Schwann cells of the murine sciatic nerve during postnatal development and in the adult. However, intracellular localization of α1-syntrophin and other Schwann cell proteins such as ezrin and dystrophin-related protein 2 (DRP2) and the localization of the axonal node of Ranvier-associated protein Caspr1/paranodin were not affected in MAP1B null mice. Our findings add to a growing body of evidence that classical MAPs are likely to be involved in signal transduction not only by directly modulating microtubule function, but also through their interaction with signal transduction proteins. PMID:23152929

  15. The Light Chains of Microtubule-Associated Proteins MAP1A and MAP1B Interact with α1-Syntrophin in the Central and Peripheral Nervous System

    PubMed Central

    Descovich, Luise; Fischer, Irmgard; Albrecht, Douglas E.; Nothias, Fatiha; Froehner, Stanley C.; Propst, Friedrich

    2012-01-01

    Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which is located in the light chains of MAP1A, MAP1B, and MAP1S) and α1-syntrophin is direct and occurs through the pleckstrin homology domain 2 (PH2) and the postsynaptic density protein 95/disk large/zonula occludens-1 protein homology domain (PDZ) of α1-syntrophin. We confirmed the interaction of MAP1B and α1-syntrophin by co-localization of the two proteins in transfected cells and by co-immunoprecipitation experiments from mouse brain. In addition, we show that MAP1B and α1-syntrophin partially co-localize in Schwann cells of the murine sciatic nerve during postnatal development and in the adult. However, intracellular localization of α1-syntrophin and other Schwann cell proteins such as ezrin and dystrophin-related protein 2 (DRP2) and the localization of the axonal node of Ranvier-associated protein Caspr1/paranodin were not affected in MAP1B null mice. Our findings add to a growing body of evidence that classical MAPs are likely to be involved in signal transduction not only by directly modulating microtubule function, but also through their interaction with signal transduction proteins. PMID:23152929

  16. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  17. Peripheral bone mass is not affected by winter vitamin D deficiency in children and young adults from Ushuaia.

    PubMed

    Oliveri, M B; Wittich, A; Mautalen, C; Chaperon, A; Kizlansky, A

    2000-09-01

    Low vitamin D levels in elderly people are associated with reduced bone mass, secondary hyperparathyroidism, and increased fracture risk. Its effect on the growing skeleton is not well known. The aim of this study was to evaluate the possible influence of chronic winter vitamin D deficiency and higher winter parathyroid hormone (PTH) levels on bone mass in prepubertal children and young adults. The study was carried out in male and female Caucasian subjects. A total of 163 prepubertal children (X age +/- 1 SD: 8.9 +/- 0.7 years) and 234 young adults (22.9 +/- 3.6 years) who had never received vitamin D supplementation were recruited from two areas in Argentina: (1)Ushuaia (55 degrees South latitude), where the population is known to have low winter 25OHD levels and higher levels of PTH in winter than in summer, and (2)Buenos Aires (34 degrees S), where ultraviolet (UV) radiation and vitamin D nutritional status in the population are adequate all year round. Bone mineral content (BMC) and bone mineral density (BMD) of the ultradistal and distal radius were measured in the young adults. Only distal radius measurements were taken in the children. Similar results were obtained in age-sex matched groups from both areas. The only results showing significant difference corresponded to comparison among the Ushuaian women: those whose calcium (Ca) intake was below 800 mg/day presented lower BMD and BMC values than those whose Ca intake was above that level (0.469 +/- 0.046 versus 0.498 +/- 0.041 g/cm(2), P < 0.02; 3.131 +/- 0.367 versus 3.339 +/- 0.386 g, P < 0.05, respectively). In conclusion, peripheral BMD and BMC were similar in children and young adults from Ushuaia and Buenos Aires in spite of the previously documented difference between both areas regarding UV radiation and winter vitamin D status. BMD of axial skeletal areas as well the concomitant effect of a low Ca diet and vitamin D deficiency on the growing skeleton should be studied further.

  18. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  19. Peripheral sphingolipids are associated with variation in white matter microstructure in older adults.

    PubMed

    Gonzalez, Christopher E; Venkatraman, Vijay K; An, Yang; Landman, Bennett A; Davatzikos, Christos; Ratnam Bandaru, Veera Venkata; Haughey, Norman J; Ferrucci, Luigi; Mielke, Michelle M; Resnick, Susan M

    2016-07-01

    Sphingolipids serve important structural and functional roles in cellular membranes and myelin sheaths. Plasma sphingolipids have been shown to predict cognitive decline and Alzheimer's disease. However, the association between plasma sphingolipid levels and brain white matter (WM) microstructure has not been examined. We investigated whether plasma sphingolipids (ceramides and sphingomyelins) were associated with magnetic resonance imaging-based diffusion measures, fractional anisotropy (FA), and mean diffusivity, 10.5 years later in 17 WM regions of 150 cognitively normal adults (mean age 67.2). Elevated ceramide species (C20:0, C22:0, C22:1, and C24:1) were associated with lower FA in multiple WM regions, including total cerebral WM, anterior corona radiata, and the cingulum of the cingulate gyrus. Higher sphingomyelins (C18:1 and C20:1) were associated with lower FA in regions such as the anterior corona radiata and body of the corpus callosum. Furthermore, lower sphingomyelin to ceramide ratios (C22:0, C24:0, and C24:1) were associated with lower FA or higher mean diffusivity in regions including the superior and posterior corona radiata. However, although these associations were significant at the a priori p < 0.05, only associations with some regional diffusion measures for ceramide C22:0 and sphingomyelin C18:1 survived correction for multiple comparisons. These findings suggest plasma sphingolipids are associated with variation in WM microstructure in cognitively normal aging.

  20. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  1. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans.

  2. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  3. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993

    PubMed Central

    Lazarus, Hillard M.; Richards, Susan M.; Chopra, Raj; Litzow, Mark R.; Burnett, Alan K.; Wiernik, Peter H.; Franklin, Ian M.; Tallman, Martin S.; Cook, Lucy; Buck, Georgina; Durrant, I. Jill; Rowe, Jacob M.; Goldstone, Anthony H.

    2006-01-01

    Outcome of acute lymphoblastic leukemia (ALL) in adults with central nervous system (CNS) disease at diagnosis is unclear. We treated 1508 de novo ALL patients with 2-phase induction and then high-dose methotrexate with l-asparaginase. Patients up to 50 years old in first remission (CR1) with a matched related donor (MRD) underwent an allogeneic stem cell transplantation (SCT); the remainder in CR1 were randomized to an autologous SCT or intensive consolidation followed by maintenance chemotherapy. Philadelphia chromosome (Ph)–positive patients were offered a matched unrelated donor (MUD) allogeneic SCT. Seventy-seven of 1508 (5%) patients a median age of 29 years had CNS leukemia at presentation; 13 of the 77 (17%) had Ph-positive ALL. Sixty-nine of 77 (90%) patients attained CR1. Thirty-six patients underwent transplantation in CR1 (25 MRD, 5 MUD, and 6 autografts). Eleven of 25 patients with MRD transplantation remain alive at 21 to 102 months, 2 of 5 with MUD at 42 and 71 months, and 1 of 6 with autologous SCT at 35 months. Seven of 27 treated with consolidation/maintenance remain in CR1 56 to 137 months after diagnosis. Overall survival at 5 years was 29% in those with CNS involvement at diagnosis versus 38% (P = .03) for those without. CNS leukemia in adult ALL is uncommon at diagnosis. Adult Ph-negative ALL patients, however, can attain long-term disease-free survival using SCT as well as conventional chemotherapy. PMID:16556888

  4. Measurement of autophagy flux in the nervous system in vivo

    PubMed Central

    Castillo, K; Valenzuela, V; Matus, S; Nassif, M; Oñate, M; Fuentealba, Y; Encina, G; Irrazabal, T; Parsons, G; Court, F A; Schneider, B L; Armentano, D; Hetz, C

    2013-01-01

    Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings. PMID:24232093

  5. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  6. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  7. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  8. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein.

    PubMed

    Torkkeli, Päivi H; Liu, Hongxia; French, Andrew S

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  9. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein

    PubMed Central

    Torkkeli, Päivi H.; Liu, Hongxia; French, Andrew S.

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  10. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain.

    PubMed

    Davis, J Q; McLaughlin, T; Bennett, V

    1993-04-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co-expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng-CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and

  11. [Peripheral nervous system and speech disorders].

    PubMed

    Ferri, Lluís

    2014-02-24

    Introduccion. Las afectaciones de la neurona motora inferior en la infancia, de etiologia congenita o adquirida, provocan dificultades en la respuesta motriz del habla en un periodo especialmente critico para el desarrollo del lenguaje. El interes por esta patologia radica en su baja incidencia, en su comorbilidad con otras afectaciones cerebrales y en su pronostico incierto. Objetivo. Hacer una revision de las alteraciones motoras del habla, de la valoracion funcional y de la intervencion logopedica en la disartria flacida. Desarrollo. Se plantea la caracterizacion clinica de las alteraciones en la produccion verbal de origen periferico, concretamente de la disartria flacida y sus manifestaciones respiratorias, fonatorias, de resonancia, de articulacion y de prosodia. Seguidamente, se esboza la valoracion funcional y se plantean las lineas de intervencion para su tratamiento. Conclusiones. Las manifestaciones clinicas de la disartria flacida son muy heterogeneas y van desde leves dificultades articulatorias a graves trastornos que limitan gravemente la capacidad para la expresion verbal. En la mayoria de los casos, la exploracion funcional proporciona hallazgos valiosos para su identificacion y tipificacion, para determinar la necesidad de valoraciones complementarias y para establecer el programa idoneo de intervencion logopedica. La participacion guiada de la familia y el abordaje interdisciplinar son factores que contribuyen decisivamente a mejorar estos procesos.

  12. Nervous system Lyme disease.

    PubMed

    Halperin, John J

    2014-01-01

    Lyme disease, the multisystem infectious disease caused by the tick-borne spirochete Borrelia burgdorferi involves the nervous system in 10-15% of affected individuals. Manifestations include lymphocytic meningitis, cranial neuritis, radiculoneuritis, and mononeuropathy multiplex. Encephalopathy, identical to that seen in many systemic inflammatory diseases, can occur during active systemic infection. It is not specific to Lyme disease and only rarely is evidence of nervous system infection. Diagnosis of systemic disease is based on demonstration of specific antibodies in peripheral blood by means of two-tier testing with an ELISA and Western blot. Central nervous system infection often results in specific antibody production in the CSF, demonstrable by comparing spinal fluid to blood serologies. Treatment is straightforward and curative in most instances. Many patients can be treated effectively with oral antibiotics such as doxycycline; in severe CNS infection parenteral treatment with ceftriaxone or other similar agents is highly effective. Treatment should usually be for 2 to at most 4 weeks. Longer treatment adds no therapeutic benefit but does add substantial risk.

  13. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood.

    PubMed

    Lin, Syh-Jae; Huang, Ying-Cheng; Cheng, Po-Jen; Lee, Pei-Tzu; Hsiao, Hsiu-Shan; Kuo, Ming-Ling

    2015-12-01

    Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.

  14. Moderate increases in peripheral blood estradiol concentration in the adult ram do not directly inhibit testosterone secretion.

    PubMed

    Melnyk, P M; Sanford, L M; Robaire, B

    1992-10-01

    Two experiments were conducted in July with adult Dorset x Leicester x Suffolk rams to determine whether increases of 150 or 300% in estradiol (E2) concentration in peripheral blood (from 6.3 +/- 0.8 pg/mL in control rams) would affect testosterone secretion directly as well as indirectly via the hypothalamic-pituitary axis. After 4 days of estradiol treatment (experiment 1) provided with subcutaneous polydimethylsiloxane implants filled with crystalline estradiol, luteinizing hormone (LH) and testosterone secretions were reduced by 50% (p < 0.05) in both groups of rams because of subtle decreases in pulse frequencies and amplitudes. Estradiol treatments were also associated with decreases in mean follicle-stimulating hormone (FSH) concentration (30-50% in both groups, p < 0.05) and increases in mean prolactin concentration (35% in low-E2 group; 105% in high-E2 group, p < 0.05), but testicular responsiveness to an LH challenge (single intravenous dose, 10 micrograms NIH-LH-S25) remained normal. When along with estradiol treatment, 10-micrograms doses LH were given every 80 min (experiment 2), testosterone secretion increased by 265% (p < 0.05) in both treated and control rams. Relative to day -1, secretion on day 4 was characterized by higher (p < 0.05) pulse frequencies and baseline concentrations and lower (p < 0.05) pulse amplitudes; values for all characteristics were similar to those for Dorset x Leicester x Suffolk rams in the breeding season. Interestingly, the decreases in mean FSH concentration brought about by estradiol and (or) LH treatments were not any greater than in experiment 1, and estradiol's ability to elevate mean prolactin concentration was blocked completely.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Peripheral neuropathy

    MedlinePlus

    Peripheral neuritis; Neuropathy - peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy ... Neuropathy is very common. There are many types and causes. Often, no cause can be found. Some ...

  16. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  17. Health-Related Quality of Life of Adolescent and Young Adult Survivors of Central Nervous System Tumors: Identifying Domains From a Survivor Perspective.

    PubMed

    Kuhlthau, Karen; Luff, Donna; Delahaye, Jennifer; Wong, Alicia; Yock, Torunn; Huang, Mary; Park, Elyse R

    2015-01-01

    This article uses qualitative methods to describe the domains of health-related quality of life (HRQoL) that adolescent and young adult (AYA) survivors of central nervous system (CNS) tumors identify as important. Survivors clearly attributed aspects of their current HRQoL to their disease or its treatment. We identified 7 key domains of AYA CNS tumor survivorship: physical health, social well-being, mental health, cognitive functioning, health behaviors, sexual and reproductive health, and support systems. Although most aspects of HRQoL that survivors discussed represented new challenges, there were several areas where survivors pointed out positive outcomes. There is a need for a HRQoL tool designed for this population of survivors, given their unique treatment and survivorship experience. Aspects of HRQoL related to cognition, sexual and reproductive health, health behaviors, and support systems are not typically included in generic HRQoL tools but should be assessed for this population. Developing HRQoL measurement instruments that capture the most significant aspects of HRQoL will improve the ability to track HRQoL in AYA CNS tumor survivors and in the long-term management of common sequelae from CNS tumors and their treatments.

  18. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages. PMID:19559615

  19. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  20. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury.

    PubMed

    Ahmed, Zubair; Douglas, Michael R; John, Gabrielle; Berry, Martin; Logan, Ann

    2013-01-01

    Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration. PMID:23613963

  1. BMI, HOMA-IR, and Fasting Blood Glucose Are Significant Predictors of Peripheral Nerve Dysfunction in Adult Overweight and Obese Nondiabetic Nepalese Individuals: A Study from Central Nepal.

    PubMed

    Thapa, Lekhjung; Rana, P V S

    2016-01-01

    Objective. Nondiabetic obese individuals have subclinical involvement of peripheral nerves. We report the factors predicting peripheral nerve function in overweight and obese nondiabetic Nepalese individuals. Methodology. In this cross-sectional study, we included 50 adult overweight and obese nondiabetic volunteers without features of peripheral neuropathy and 50 healthy volunteers to determine the normative nerve conduction data. In cases of abnormal function, the study population was classified on the basis of the number of nerves involved, namely, "<2" or "≥2." Multivariable logistic regression analysis was carried out to predict outcomes. Results. Fasting blood glucose (FBG) was the significant predictor of motor nerve dysfunction (P = 0.039, 95% confidence interval (CI) = 1.003-1.127). Homeostatic model assessment of insulin resistance (HOMA-IR) was the significant predictor (P = 0.019, 96% CI = 1.420-49.322) of sensory nerve dysfunction. Body mass index (BMI) was the significant predictor (P = 0.034, 95% CI = 1.018-1.577) in case of ≥2 mixed nerves' involvement. Conclusion. FBG, HOMA-IR, and BMI were significant predictors of peripheral nerve dysfunction in overweight and obese Nepalese individuals. PMID:27200189

  2. Thiotepa cyclophosphamide followed by granulocyte colony-stimulating factor mobilized allogeneic peripheral blood cells in adults with advanced leukemia.

    PubMed

    Bacigalupo, A; Van Lint, M T; Valbonesi, M; Lercari, G; Carlier, P; Lamparelli, T; Gualandi, F; Occhini, D; Bregante, S; Valeriani, A; Piaggio, G; Pitto, A; Benvenuto, F; Figari, O; De Stefano, G; Caimo, A; Sessarego, M

    1996-07-01

    Thirty-one patients (median age, 44 years) with advanced hematologic malignancies were given thiotepa 15 mg/kg, and cyclophosphamide 120 (n = 14) or 150 (n = 17) mg/kg followed by unfractionated peripheral blood stem cell transplants (PBSCT) from genotypically identical siblings (n = 28) or one antigen mismatched family donor (n = 3). Donors were mobilized with granulocyte colony-stimulating factor 5 to 10 microgram/kg/d for 6 days and underwent two to three leukapheresis on days +5, +6, +7. The median cell yield per donor expressed/kg of recipients body weight was as follows: nucleated cells 13 x 10(8)/kg; CD34+ cells 6 x 10(6)/kg; colony-forming unit-granulocyte macrophage 38 x 10(4)/kg, and CD3+ cells 449 x 10(6)/kg. The diagnoses were chronic myeloid leukemia (n = 4), acute myeloid (n = 9) or lymphoid leukemia (n = 2), acute myelofibrosis (n = 2), multiple myeloma (n = 1), lymphoma (n = 6), chronic lymphocytic leukemia (n = 1) myelodysplasia (n = 6). Twenty-eight patients had advanced disease, 29 patients were first grafts, and 2 were second transplants 3 and 9 years after the first. Neutrophil counts of 0.5 x 10(9)/L and platelet counts of 30 x 10(9)/L platelets were both achieved on day +14 (median). Engraftment could be proven by sex markers or DNA polymorphism in 29 of 31 patients: one had early leukemia relapse and one patient was unevaluable because of early death. Acute graft-versus-host disease (GVHD) was scored as minimal or absent (grade 0 to 1) in 14 patients, moderate (grade II) in 13, and severe (grade III to IV) in four. Causes of death were leukemia (n = 4), acute GVHD (n = 4, with associated cytomegalovirus infections in three), sepsis (n = 1), liver failure (n = 1), multiorgan failure (n = 1), and hemorrhage (n = 1). The actuarial transplant mortality is 29%, the actuarial relapse rate 22%. Nineteen patients survive with a median follow up of 288 days (100-690). The actuarial 2-year survival is 57%. Three patients received PBSCT from family

  3. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  4. Current progress in use of adipose derived stem cells in peripheral nerve regeneration

    PubMed Central

    Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M

    2015-01-01

    Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105

  5. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  6. Radiation Sensitivity of Human CD34(+) Cells Versus Peripheral Blood T Lymphocytes of Newborns and Adults: DNA Repair and Mutagenic Effects.

    PubMed

    Vandevoorde, C; Vral, A; Vandekerckhove, B; Philippé, J; Thierens, H

    2016-06-01

    As hematopoietic stem and progenitor cells (HSPCs) self-renew throughout life, accumulation of genomic alterations can potentially give rise to radiation carcinogenesis. In this study we examined DNA double-strand break (DSB) induction and repair as well as mutagenic effects of ionizing radiation in CD34(+) cells and T lymphocytes from the umbilical cord of newborns. The age dependence of DNA damage repair end points was investigated by comparing newborn T lymphocytes with adult peripheral blood T lymphocytes. As umbilical cord blood (UCB) contains T lymphocytes that are practically all phenotypically immature, we examined the radiation response of separated naive (CD45RA(+)) and memory (CD45RO(+)) T lymphocytes. The number of DNA DSBs was assessed by microscopic scoring of γ-H2AX/53BP1 foci 0.5 h after low-dose radiation exposure, while DNA repair was studied by scoring the number of residual γ-H2AX/53BP1 foci 24 h after exposure. Mutagenic effects were studied by the cytokinesis block micronucleus (CBMN) assay. No significant differences in the number of DNA DSBs induced by low-dose (100-200 mGy) radiation were observed among the three different cell types. However, residual γ-H2AX/53BP1 foci levels 24 h postirradiation were significantly lower in CD34(+) cells compared to newborn T lymphocytes, while newborn T lymphocytes showed significantly higher foci yields than adult T lymphocytes. No significant differences in the level of radiation-induced micronuclei at 2 Gy were observed between CD34(+) cells and newborn T lymphocytes. However, newborn T lymphocytes showed a significantly higher number of micronuclei compared to adult T lymphocytes. These results confirm that CD34(+) cell quiescence promotes mutagenesis after exposure. Furthermore, we can conclude that newborn peripheral T lymphocytes are significantly more radiosensitive than adult peripheral T lymphocytes. Using the results from the comparative study of radiation-induced DNA damage repair end

  7. Blood culture collection through peripheral intravenous catheters increases the risk of specimen contamination among adult emergency department patients.

    PubMed

    Self, Wesley H; Speroff, Theodore; McNaughton, Candace D; Wright, Patty W; Miller, Geraldine; Johnson, James G; Daniels, Titus L; Talbot, Thomas R

    2012-05-01

    Five hundred five blood cultures collected through a peripheral intravenous catheter (PIV) in an emergency department were matched to cultures obtained by dedicated venipuncture from the same patient within 10 minutes. The relative risk of contamination for cultures collected through PIVs compared with dedicated venipuncture was 1.83 (95% confidence interval, 1.08-3.11).

  8. Baseline peripheral refractive error and changes in axial refraction during one year in a young adult population

    PubMed Central

    Hartwig, Andreas; Charman, William Neil; Radhakrishnan, Hema

    2015-01-01

    Purpose To determine whether the initial characteristics of individual patterns of peripheral refraction relate to subsequent changes in refraction over a one-year period. Methods 54 myopic and emmetropic subjects (mean age: 24.9 ± 5.1 years; median 24 years) with normal vision were recruited and underwent conventional non-cycloplegic subjective refraction. Peripheral refraction was also measured at 5° intervals over the central 60° of horizontal visual field, together with axial length. After one year, measurements of subjective refraction and axial length were repeated on the 43 subjects who were still available for examination. Results In agreement with earlier studies, higher myopes tended to show greater relative peripheral hyperopia. There was, however, considerable inter-subject variation in the pattern of relative peripheral refractive error (RPRE) at any level of axial refraction. Across the group, mean one-year changes in axial refraction and axial length did not differ significantly from zero. There was no correlation between changes in these parameters for individual subjects and any characteristic of their RPRE. Conclusion No evidence was found to support the hypothesis that the pattern of RPRE is predictive of subsequent refractive change in this age group. PMID:26188389

  9. Efficient generation of integration-free ips cells from human adult peripheral blood using BCL-XL together with Yamanaka factors.

    PubMed

    Su, Rui-Jun; Baylink, David J; Neises, Amanda; Kiroyan, Jason B; Meng, Xianmei; Payne, Kimberly J; Tschudy-Seney, Benjamin; Duan, Yuyou; Appleby, Nancy; Kearns-Jonker, Mary; Gridley, Daila S; Wang, Jun; Lau, K-H William; Zhang, Xiao-Bing

    2013-01-01

    The ability to efficiently generate integration-free induced pluripotent stem cells (iPSCs) from the most readily available source-peripheral blood-has the potential to expedite the advances of iPSC-based therapies. We have successfully generated integration-free iPSCs from cord blood (CB) CD34(+) cells with improved oriP/EBNA1-based episomal vectors (EV) using a strong spleen focus forming virus (SFFV) long terminal repeat (LTR) promoter. Here we show that Yamanaka factors (OCT4, SOX2, MYC, and KLF4)-expressing EV can also reprogram adult peripheral blood mononuclear cells (PBMNCs) into pluripotency, yet at a very low efficiency. We found that inclusion of BCL-XL increases the reprogramming efficiency by approximately 10-fold. Furthermore, culture of CD3(-)/CD19(-) cells or T/B cell-depleted MNCs for 4-6 days led to the generation of 20-30 iPSC colonies from 1 ml PB, an efficiency that is substantially higher than previously reported. PB iPSCs express pluripotency markers, form teratomas, and can be induced to differentiate in vitro into mesenchymal stem cells, cardiomyocytes, and hepatocytes. Used together, our optimized factor combination and reprogramming strategy lead to efficient generation of integration-free iPSCs from adult PB. This discovery has potential applications in iPSC banking, disease modeling and regenerative medicine.

  10. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  11. Gait pattern alterations in older adults associated with type 2 diabetes in the absence of peripheral neuropathy--results from the Baltimore Longitudinal Study of Aging.

    PubMed

    Ko, Seung-uk; Stenholm, Sari; Chia, Chee W; Simonsick, Eleanor M; Ferrucci, Luigi

    2011-10-01

    Diabetes may impact gait mechanics before onset of frank neuropathies and other associated threats to mobility. This study aims to characterize gait pattern alterations of type 2 diabetic adults without peripheral neuropathy during walking at maximum speed (fast-walking) as well as at self-selected speed (usual-walking). One-hundred and eighty-six participants aged 60-87 from the Baltimore Longitudinal Study of Aging (BLSA) able to walk unassisted and without peripheral neuropathy were classified as non-diabetic (N=160) or having type 2 diabetes (N=26). Gait parameters from the fast-walking and usual-walking tests were compared between participants with and without type 2 diabetes. Participants with diabetes had a shorter stride length for fast-walking (p=0.033) and a longer percentage of the gait cycle with the knee in 1st flexion for both fast- and usual-walking (p=0.033, and 0.040, respectively) than non-diabetic participants. Participants with diabetes exhibited a smaller hip range of motion in the sagittal plane during usual-walking compared to non-diabetics (p=0.049). During fast-walking, participants with diabetes used lower ankle generative mechanical work expenditure (MWE) and higher knee absorptive MWE compared to non-diabetic persons (p=0.021, and 0.018, respectively). These findings suggest that individuals with type 2 diabetes without overt peripheral neuropathy exhibit altered and less efficient gait patterns than non-diabetic persons. These alterations are more apparent during walking at a maximum speed indicating that maximum gait testing may be useful for identifying early threats to mobility limitations in older adults with type 2 diabetes.

  12. Effects of strawberry supplementation on mobility and cognition in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During aging, functional changes in the central and peripheral nervous system can alter mobility and cognition - in some cases leading to early cognitive decline, disability, or injurious falls among older adults. Previously, we have shown that two months of dietary supplementation with berry fruit...

  13. Developing nervous systems in molluscs: navigating the twists and turns of a complex life cycle.

    PubMed

    Croll, Roger P

    2009-01-01

    Molluscs constitute a richly diversified phylum, containing abundant species that have successfully invaded a variety of habitats. Despite the long-standing importance of its various members as model species for neurobiology, research on the development of the molluscan nervous system has lagged behind that on several other phyla. Recent studies, however, have begun to sketch an overview of neural development during the complex life cycles of these animals, involving multiple larval and postlarval stages and often including processes of torsion and occasionally detorsion affecting the entire body plan. The first neurons appear early in life and innervate a variety of larval organs. The central and peripheral neurons that comprise the adult nervous system generally appear later in larval life. Metamorphosis involves the loss of many neurons and the gain of others, and yet more neurons change to accommodate transitions in modes of locomotion, feeding and habitat. But such large-scale transitions do not stop at metamorphosis as massive changes in body size and behavior occur during juvenile and adult stages, and the nervous system must change accordingly to meet the demands of expanding target tissues and the need to generate new behaviors. Work over the years has gradually revealed some of the genes important in molluscan neural development, but recent whole-genome, EST and microarray projects are now allowing much more rapid progress and providing a valuable molluscan perspective for understanding broader issues concerning the evolution of the nervous system across the animal kingdom.

  14. Human nervous system function emulator.

    PubMed

    Frenger, P

    2000-01-01

    This paper describes a modular, extensible, open-systems design for a multiprocessor network which emulates the major functions of the human nervous system. Interchangeable hardware/software components, a socketed software bus with plug-and-play capability and self diagnostics are included. The computer hardware is based on IEEE P996.1 bus cards. Its operating system utilizes IEEE 1275 standard software. Object oriented design techniques and programming are featured. A machine-independent high level script-based command language was created for this project. Neural anatomical structures which were emulated include the cortex, brainstem, cerebellum, spinal cord, autonomic and peripheral nervous systems. Motor, sensory, autoregulatory, and higher cognitive artificial intelligence, behavioral and emotional functions are provided. The author discusses how he has interfaced this emulator to machine vision, speech recognition/speech synthesis, an artificial neural network and a dexterous hand to form an android robotic platform. PMID:10834247

  15. Glucocorticoids and nervous system plasticity.

    PubMed

    Madalena, Kathryn M; Lerch, Jessica K

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing. PMID:26981074

  16. Glucocorticoids and nervous system plasticity

    PubMed Central

    Madalena, Kathryn M.; Lerch, Jessica K.

    2016-01-01

    Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing. PMID:26981074

  17. Enhanced expression of the peripheral benzodiazepine receptor (PBR) and its endogenous ligand octadecaneuropeptide (ODN) in the regenerating adult rat sciatic nerve.

    PubMed

    Lacor, P; Benavides, J; Ferzaz, B

    1996-12-01

    In this study we have investigated the expression of the peripheral benzodiazepine receptor (PBR) and its endogenous ligand octadecaneuropeptide (ODN) in the sciatic nerve of the adult rat by immunohistochemistry. We have also determined the effect of nerve freezing lesion or chronic denervation on PBR and ODN expression. In the sciatic nerve of control rats PBR- and ODN-immunoreactivities (IR) were associated to Schwann cells. Ten days after nerve injury, PBR- and ODN-IR increased significantly in the distal stump. PBR-IR was associated to Schwann cells and macrophages, whereas ODN-IR was only detected in Schwann cells. Immunoreactivities returned to normal levels when axons were allowed to regenerate for 2 months after nerve freezing-injury. Under chronic denervation conditions, PBR- and ODN-IR remained elevated in the distal stump, at least for this period of time. These results suggest that PBR and ODN are regulated by signals from regenerating axons and that PBR and its endogenous ligand may play a role in peripheral nerve regeneration.

  18. [Molecular pathogenesis of peripheral T cell lymphoma (2): extranodal NK/T cell lymphoma, nasal type, adult T cell leukemia/lymphoma and enteropathy associated T cell lymphoma].

    PubMed

    Couronné, Lucile; Bastard, Christian; Gaulard, Philippe; Hermine, Olivier; Bernard, Olivier

    2015-11-01

    Peripheral T-cell lymphomas (PTCL) belong to the group of non-Hodgkin lymphoma and particularly that of mature T /NK cells lymphoproliferative neoplasms. The 2008 WHO classification describes different PTCL entities with varying prevalence. With the exception of histologic subtype "ALK positive anaplastic large cell lymphoma", PTCL are characterized by a poor prognosis. The mechanisms underlying the pathogenesis of these lymphomas are not yet fully understood, but development of genomic high-throughput analysis techniques now allows to extensively identify the molecular abnormalities present in tumor cells. This review aims to summarize the current knowledge and recent advances about the molecular events occurring at the origin or during the natural history of main entities of PTCL. The first part published in the October issue was focused on the three more frequent entities, i.e. angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified, and anaplastic large cell lymphoma. The second part presented herein will describe other subtypes less frequent and of poor prognosis : extranodal NK/T-cell lymphoma, nasal type, adult T-cell leukemia/lymphoma, and enteropathy-associated T-cell lymphoma. PMID:26576610

  19. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults.

    PubMed

    Melo, Xavier; Fernhall, Bo; Santos, Diana A; Pinto, Rita; Pimenta, Nuno M; Sardinha, Luís B; Santa-Clara, Helena

    2016-03-01

    This study compared the effects of a bout of maximal running exercise on arterial stiffness in children and adults. Right carotid blood pressure and artery stiffness indices measured by pulse wave velocity (PWV), compliance and distensibility coefficients, stiffness index α and β (echo-tracking), contralateral carotid blood pressure, and upper and lower limb and central/aortic PWV (applanation tonometry) were taken at rest and 10 min after a bout of maximal treadmill running in 34 children (7.38 ± 0.38 years) and 45 young adults (25.22 ± 0.91 years) having similar aerobic potential. Two-by-two repeated measures analysis of variance and analysis of covariance were used to detect differences with exercise between groups. Carotid pulse pressure (PP; η(2) = 0.394) increased more in adults after exercise (p < 0.05). Compliance (η(2) = 0.385) decreased in particular in adults and in those with high changes in distending pressure, similarly to stiffness index α and β. Carotid PWV increased more in adults and was related to local changes in PP but not mean arterial pressure (MAP). Stiffness in the lower limbs decreased (η(2) = 0.115) but apparently only in those with small MAP changes (η(2) = 0.111). No significant exercise or group interaction effects were found when variables were adjusted to height. An acute bout of maximal exercise can alter arterial stiffness and hemodynamics in the carotid artery and within the active muscle beds. Arterial stiffness and hemodynamic response to metabolic demands during exercise in children simply reflect their smaller body size and may not indicate a particular physiological difference compared with adults. PMID:26842667

  20. Virus Infections in the Nervous System

    PubMed Central

    Koyuncu, Orkide O.; Hogue, Ian B.; Enquist, Lynn W.

    2013-01-01

    Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central nervous systems (CNS). The CNS is protected from most virus infections by effective immune responses and multi-layer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections. PMID:23601101

  1. Pleiotrophin and peripheral nerve injury.

    PubMed

    Jin, Li; Jianghai, Chen; Juan, Liu; Hao, Kang

    2009-10-01

    The proto-oncogene pleiotrophin, discovered in 1989, was considered as a multifunctional growth factor, which played an important role in tumor occurrence, development, and central nervous system. The latest research showed that pleiotrophin signal pathway probably participated in neural repair after peripheral nerve injury, especially in the following critical points, such as the protection of spinal cord neuron, the promotion of the speed of neuron axon regeneration, the guidance of neuron axon regeneration, skeleton muscle reinnervation, and so on. It potentially plays a key role in the guidance of neural axon regeneration in peripheral nervous system and muscle reinnervation. With the deepening of related researches, pleiotrophin gene would become a controllable target for improving the repairing effect of peripheral nerve injury and reconstruction of the neuromuscular junction.

  2. Peripheral nerve hyperexcitability syndromes.

    PubMed

    Küçükali, Cem Ismail; Kürtüncü, Murat; Akçay, Halil İbrahim; Tüzün, Erdem; Öge, Ali Emre

    2015-01-01

    Peripheral nerve hyperexcitability (PNH) syndromes can be subclassified as primary and secondary. The main primary PNH syndromes are neuromyotonia, cramp-fasciculation syndrome (CFS), and Morvan's syndrome, which cause widespread symptoms and signs without the association of an evident peripheral nerve disease. Their major symptoms are muscle twitching and stiffness, which differ only in severity between neuromyotonia and CFS. Cramps, pseudomyotonia, hyperhidrosis, and some other autonomic abnormalities, as well as mild positive sensory phenomena, can be seen in several patients. Symptoms reflecting the involvement of the central nervous system occur in Morvan's syndrome. Secondary PNH syndromes are generally seen in patients with focal or diffuse diseases affecting the peripheral nervous system. The PNH-related symptoms and signs are generally found incidentally during clinical or electrodiagnostic examinations. The electrophysiological findings that are very useful in the diagnosis of PNH are myokymic and neuromyotonic discharges in needle electromyography along with some additional indicators of increased nerve fiber excitability. Based on clinicopathological and etiological associations, PNH syndromes can also be classified as immune mediated, genetic, and those caused by other miscellaneous factors. There has been an increasing awareness on the role of voltage-gated potassium channel complex autoimmunity in primary PNH pathogenesis. Then again, a long list of toxic compounds and genetic factors has also been implicated in development of PNH. The management of primary PNH syndromes comprises symptomatic treatment with anticonvulsant drugs, immune modulation if necessary, and treatment of possible associated dysimmune and/or malignant conditions. PMID:25719304

  3. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  4. Communication Barriers and the Clinical Recognition of Diabetic Peripheral Neuropathy in a Diverse Cohort of Adults: The DISTANCE Study.

    PubMed

    Adams, Alyce S; Parker, Melissa M; Moffet, Howard H; Jaffe, Marc; Schillinger, Dean; Callaghan, Brian; Piette, John; Adler, Nancy E; Bauer, Amy; Karter, Andrew J

    2016-05-01

    The purpose of this study was to explore communication barriers as independent predictors and potential mediators of variation in clinical recognition of diabetic peripheral neuropathy (DPN). In this cross-sectional analysis, we estimated the likelihood of having a DPN diagnosis among 4,436 patients with DPN symptoms. We controlled for symptom frequency, demographic and clinical characteristics, and visit frequency using a modified Poisson regression model. We then evaluated 4 communication barriers as independent predictors of clinical documentation and as possible mediators of racial/ethnic differences: difficulty speaking English, not talking to one's doctor about pain, limited health literacy, and reports of suboptimal patient-provider communication. Difficulty speaking English and not talking with one's doctor about pain were independently associated with not having a diagnosis, though limited health literacy and suboptimal patient-provider communication were not. Limited English proficiency partially attenuated, but did not fully explain, racial/ethnic differences in clinical documentation among Chinese, Latino, and Filipino patients. Providers should be encouraged to talk with their patients about DPN symptoms, and health systems should consider enhancing strategies to improve timely clinical recognition of DPN among patients who have difficult speaking English. More work is needed to understand persistent racial/ethnic differences in diagnosis. PMID:27116591

  5. Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig.

    PubMed

    Liard, Olivier; Segura, Stéphanie; Sagui, Emmanuel; Nau, André; Pascual, Aurélie; Cambon, Melissa; Darlix, Jean-Luc; Fusai, Thierry; Moyse, Emmanuel

    2012-01-01

    We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45-90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy. PMID:22448170

  6. Adult-Brain-Derived Neural Stem Cells Grafting into a Vein Bridge Increases Postlesional Recovery and Regeneration in a Peripheral Nerve of Adult Pig

    PubMed Central

    Liard, Olivier; Segura, Stéphanie; Sagui, Emmanuel; Nau, André; Pascual, Aurélie; Cambon, Melissa; Darlix, Jean-Luc; Fusai, Thierry; Moyse, Emmanuel

    2012-01-01

    We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy. PMID:22448170

  7. Peripheral doses from pediatric IMRT

    SciTech Connect

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-07-15

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged

  8. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation.

  9. Neuroactive steroids and peripheral myelin proteins.

    PubMed

    Magnaghi, V; Cavarretta, I; Galbiati, M; Martini, L; Melcangi, R C

    2001-11-01

    The present review summarizes observations obtained in our laboratories which underline the importance of neuroactive steroids (i.e., progesterone (PROG), dihydroprogesterone (5alpha-DH PROG), tetrahydroprogesterone (3alpha, 5alpha-TH PROG), testosterone (T), dihydrotestosterone (DHT) and 5alpha-androstan-3alpha,17beta-diol (3alpha-diol)) in the control of the gene expression of myelin proteins (i.e. glycoprotein Po (Po) and the peripheral myelin protein 22 (PMP22)) in the peripheral nervous system. Utilizing different in vivo (aged and adult male rats) and in vitro (Schwann cell cultures) experimental models, we have observed that neuroactive steroids are able to stimulate the mRNA levels of Po and PMP22. The effects of these neuroactive steroids, which are able to interact with classical (progesterone receptor, PR, and androgen receptor, AR) and non-classical (GABA(A) receptor) steroid receptors is further supported by our demonstration in sciatic nerve and/or Schwann cells of the presence of these receptors. On the basis of the observations obtained in the Schwann cells cultures, we suggest that the stimulatory effect of neuroactive steroids on Po is acting through PR, while that on PMP22 needs the GABA(A) receptor. The present findings might be of importance for the utilization of specific receptor ligands as new therapeutical approaches for the rebuilding of the peripheral myelin, particularly in those situations in which the synthesis of Po and PMP22 is altered (i.e. demyelinating diseases like Charcot-Marie-Tooth type 1A and type 1B, hereditary neuropathy with liability to pressure palsies and the Déjérine-Sottas syndrome, aging, and after peripheral injury). PMID:11744100

  10. Autonomic nervous system and immune system interactions.

    PubMed

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  11. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  12. Mitochondrial DNA Subhaplogroups L0a2 and L2a Modify Susceptibility to Peripheral Neuropathy in Malawian Adults on Stavudine Containing Highly Active Antiretroviral Therapy

    PubMed Central

    Kampira, Elizabeth; Kumwenda, Johnstone; van Oosterhout, Joep J.

    2013-01-01

    Background: Peripheral neuropathy (PN) is one of the main toxicities associated with stavudine. Genetic variants in mitochondrial DNA (mtDNA) haplogroups have been associated with increased risk of developing PN in European non-Hispanic and black patients on stavudine containing antiretroviral therapy (ART). We investigated mtDNA haplogroups and their role in susceptibility to stavudine-induced peripheral in Malawian patients on ART. Method: Two hundred and fifteen adults on stavudine containing regimens were recruited from the ART clinic at Queen Elizabeth Central Hospital, Blantyre, into a cross-sectional study to investigate the effects of genetic variants in mtDNA of individuals in relation to response to treatment. Patients were categorized according to whether or not they had developed PN after a minimum of 6 months on stavudine containing ART. Whole mtDNA coding regions of each patient were sequenced, and CD4 count, viral load, and creatinine were determined. The mtDNA variation was correlated with clinical characteristics. Results: Fifty-three (25%) of the participants developed PN after starting stavudine containing ART. Mitochondrial DNA subhaplogroup L0a2 was independently associated with increased risk of PN in a multivariate model (odds ratio, 2.23; 95% confidence interval, 1.14 to 4.39; P = 0.019), and subhaplogroup L2a was independently associated with reduced risk of PN (odds ratio, 0.39; 95% confidence interval, 0.16 to 0.94; P = 0.036). Conclusions: Genetic variation in mtDNA confers differential risk of developing PN in patients on stavudine containing ART among Malawians. PMID:23614993

  13. Prevalence of Peripheral Arterial Disease among Adult Patients Attending Outpatient Clinic at a General Hospital in South Angola.

    PubMed

    Paquissi, Feliciano Chanana; Cuvinje, Arminda Bimbi Paquissi; Cuvinje, Almeida Bailundo

    2016-01-01

    Background. Peripheral arterial disease (PAD) is a common manifestation of atherosclerosis, whose prevalence is increasing worldwide, and is associated with all-cause mortality. However, no study has assessed this disease in Huambo. The aim of this study was to evaluate the prevalence of PAD in patients attending an outpatient clinic at a general hospital in Huambo, South Angola. Methods. A cross-sectional study, including 115 patients aged 40 years and older attending an outpatient service. The evaluation included a basic questionnaire for lifestyle and medical history and ankle-brachial index (ABI) measurement using hand-held Doppler. PAD was defined as an ABI ≤0.9 in either lower limb. Results. Of 115 patients, 62.60% were women with a median age of 52.5 (range of 40 to 91) years. The prevalence of PAD was 42.6% (95% confidence intervals [CI]: 95%: 33.91-52.17%). Among patients with PAD, 95.92% had mild disease and 4.08% moderate to severe disease. The main risk factor for PAD was age (≥60 years) (χ (2) = 3.917, P ≤ 0.05). The prevalence was slightly higher in men and hypertensive subjects, but without statistical significance with ORs of 1.5 (95% CI: 0.69-3.21) and 1.42 (95% CI: 0.64-3.17), respectively. Hypertension was also high in the group (66.95%). Conclusion. The prevalence of PAD was 42.6%, higher in those aged 60 years and older. More studies, with representative samples, are necessary to clarify PAD prevalence and associated risk factors. PMID:27293966

  14. Prevalence of Peripheral Arterial Disease among Adult Patients Attending Outpatient Clinic at a General Hospital in South Angola

    PubMed Central

    Paquissi, Feliciano Chanana; Cuvinje, Arminda Bimbi Paquissi; Cuvinje, Almeida Bailundo

    2016-01-01

    Background. Peripheral arterial disease (PAD) is a common manifestation of atherosclerosis, whose prevalence is increasing worldwide, and is associated with all-cause mortality. However, no study has assessed this disease in Huambo. The aim of this study was to evaluate the prevalence of PAD in patients attending an outpatient clinic at a general hospital in Huambo, South Angola. Methods. A cross-sectional study, including 115 patients aged 40 years and older attending an outpatient service. The evaluation included a basic questionnaire for lifestyle and medical history and ankle-brachial index (ABI) measurement using hand-held Doppler. PAD was defined as an ABI ≤0.9 in either lower limb. Results. Of 115 patients, 62.60% were women with a median age of 52.5 (range of 40 to 91) years. The prevalence of PAD was 42.6% (95% confidence intervals [CI]: 95%: 33.91–52.17%). Among patients with PAD, 95.92% had mild disease and 4.08% moderate to severe disease. The main risk factor for PAD was age (≥60 years) (χ2 = 3.917, P ≤ 0.05). The prevalence was slightly higher in men and hypertensive subjects, but without statistical significance with ORs of 1.5 (95% CI: 0.69–3.21) and 1.42 (95% CI: 0.64–3.17), respectively. Hypertension was also high in the group (66.95%). Conclusion. The prevalence of PAD was 42.6%, higher in those aged 60 years and older. More studies, with representative samples, are necessary to clarify PAD prevalence and associated risk factors. PMID:27293966

  15. The midkine family of growth factors: diverse roles in nervous system formation and maintenance

    PubMed Central

    Winkler, C; Yao, S

    2014-01-01

    Midkines are heparin-binding growth factors involved in a wide range of biological processes. Originally identified as retinoic acid inducible genes, midkines are widely expressed during embryogenesis with particularly high levels in the developing nervous system. During postnatal stages, midkine expression generally ceases but is often up-regulated under disease conditions, most notably those affecting the nervous system. Midkines are known as neurotrophic factors, as they promote neurite outgrowth and neuron survival in cell culture. Surprisingly, however, mouse embryos deficient for midkine (knockout mice) are phenotypically normal, which suggests functional redundancy by related growth factors. During adult stages, on the other hand, midkine knockout mice develop striking deficits in neuroprotection and regeneration after drug-induced neurotoxicity and injury. The detailed mechanisms by which midkine controls neuron formation, differentiation and maintenance remain unclear. Recent studies in zebrafish and chick have provided important insight into the role of midkine and its putative receptor, anaplastic lymphoma kinase, in cell cycle control in the central and peripheral nervous systems. A recent structural analysis of zebrafish midkine furthermore revealed essential protein domains required for biological activity that serve as promising novel targets for future drug designs. This review will summarize latest findings in the field that help to better understand the diverse roles of midkine in nervous system formation and maintenance. Linked Articles This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4 PMID:24125182

  16. Neurophysiological markers of plastic brain reorganization following central and peripheral lesions.

    PubMed

    Ferreri, Florinda; Guerra, Andrea; Rossini, Paolo Maria

    2014-12-01

    There is increasing evidence supporting the concept that adult brain has the remarkable ability to plastically reorganize itself. Brain plasticity involves distinct functional and structural components and plays a crucial role in reorganizing central nervous system's networks after central and peripheral lesions in order to partly or totally restore lost and/or compromised functions. This plastic rearrangement occurs in fact not only after a central nervous system injury but also following a peripheral lesion. Interestingly, the existence of a certain type of maladaptive plasticity was clearly recognized in the last decade, which gives reason for example to poor out- come performances or aberrant phenomena. In this review we analyze stroke and amputees studies, as illustrative conditions of central and peripheral nervous system damage, and discuss the adaptive as well maladaptive plastic brain changes following these lesions. The emerging possibility, through neuro-imaging and neurophysiological advanced techniques, to clarify some crucial issues underlying brain plasticity will give the chance to modulate these mechanisms in a highly personalized therapy. This approach may have a tremendous impact in a variety of neuropsychiatric disorders opening a new era of restorative medicine. PMID:25987182

  17. Developmentally regulated expression of pleiotrophin, a novel heparin binding growth factor, in the nervous system of the rat.

    PubMed

    Wanaka, A; Carroll, S L; Milbrandt, J

    1993-03-19

    Pleiotrophin (PTN) is a newly identified heparin-binding growth factor which is closely related to the retinoic acid-inducible MK protein. PTN is expressed at high levels in perinatal brain and promotes neurite outgrowth from embryonic brain neurons and mitogenesis in fibroblasts, suggesting that it may play an important role in the development of the nervous system. We have used in situ hybridization to examine PTN expression in the developing and adult rat nervous systems. During embryogenesis, PTN mRNA is primarily expressed by neuroglial progenitor cells in the subependymal layer of the central nervous system (CNS), whereas during the perinatal period high levels of PTN transcripts are found in neurons as well as glial elements (astrocytes and oligodendrocytes). In the adult brain, PTN expression is markedly decreased relative to early postnatal brain and, in contrast to the neuronal and glial expression observed in young animals, is confined to specific neuronal subpopulations (especially hippocampal CA1-3 regions, cerebral cortex laminae II-IV). PTN is also expressed in the developing spinal cord and eye. In the peripheral nervous system (PNS), PTN mRNA is present in ganglionic neurons during embryogenesis. In adult ganglia, however, PTN expression becomes localized to the satellite cells of the ganglia. The developmental pattern of PTN expression in the CNS and the 'switch' in expression from neurons to satellite cells in the PNS suggests that it has important functions not only in the developing nervous system, but also in the adult CNS and PNS and that the functions performed by this growth factor change during ontogeny. We have also found that levels of PTN mRNA are dramatically but transiently elevated in neurons of the hippocampus, piriform cortex and parietal cortex following a chemically induced seizure, indicating that neuronal PTN mRNA expression is increased by intense physiological stimuli and may play a role in the response to these stimuli.

  18. [Sports injuries of the nervous system].

    PubMed

    Lang, C; Stefan, H

    1999-08-01

    Almost 1% of all Germans suffer sports injuries each year, almost 5% of all peripheral nerve lesions are due to sports. A review is given on various activities detailing the specific risks for traumata of the central and peripheral nervous system. Specifically these are volleyball, handball, basketball, American football, soccer, bowling, hockey, baseball, tennis, golf, javelin, fencing, wrestling, judo, boxing, running, jumping, dancing, mountain climbing, weight lifting, gymnastics, horse-back riding, swimming, rowing, skiing, skating, shooting, (motor) biking, car racing, flying, and sports for the disabled. The knowledge of typical traumata should enable the neurologist to rapidly and reliably recognize related lesions and to contribute to their prevention or improvement.

  19. Case report: a balance training program using the Nintendo Wii Fit to reduce fall risk in an older adult with bilateral peripheral neuropathy.

    PubMed

    Hakim, Renée Marie; Salvo, Charles J; Balent, Anthony; Keyasko, Michael; McGlynn, Deidre

    2015-02-01

    A recent systematic review supported the use of strength and balance training for older adults at risk for falls, and provided preliminary evidence for those with peripheral neuropathy (PN). However, the role of gaming systems in fall risk reduction was not explored. The purpose of this case report was to describe the use of the Nintendo® Wii™ Fit gaming system to train standing balance in a community-dwelling older adult with PN and a history of recurrent near falls. A 76-year-old patient with bilateral PN participated in 1 h of Nintendo® Wii™ Fit balance training, two times a week for 6 weeks. Examination was conducted using a Computerized Dynamic Posturography system (i.e. Sensory Organization Test (SOT), Limits of Stability (LOS), Adaptation Test (ADT) and Motor Control Test (MCT) and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale and 30-s Chair Stand. Following training, sensory integration scores on the SOT were unchanged. Maximum excursion abilities improved by a range of 37-86% on the LOS test. MCT scores improved for amplitude with forward translations and ADT scores improved for downward platform rotations. Clinical scores improved on the BBS (28/56-34/56), ABC (57.5-70.6%) and TUG (14.9-10.9 s) which indicated reduced fall risk. Balance training with a gaming system showed promise as a feasible, objective and enjoyable method to improve physical performance and reduce fall risk in an individual with PN. PMID:25515202

  20. Case report: a balance training program using the Nintendo Wii Fit to reduce fall risk in an older adult with bilateral peripheral neuropathy.

    PubMed

    Hakim, Renée Marie; Salvo, Charles J; Balent, Anthony; Keyasko, Michael; McGlynn, Deidre

    2015-02-01

    A recent systematic review supported the use of strength and balance training for older adults at risk for falls, and provided preliminary evidence for those with peripheral neuropathy (PN). However, the role of gaming systems in fall risk reduction was not explored. The purpose of this case report was to describe the use of the Nintendo® Wii™ Fit gaming system to train standing balance in a community-dwelling older adult with PN and a history of recurrent near falls. A 76-year-old patient with bilateral PN participated in 1 h of Nintendo® Wii™ Fit balance training, two times a week for 6 weeks. Examination was conducted using a Computerized Dynamic Posturography system (i.e. Sensory Organization Test (SOT), Limits of Stability (LOS), Adaptation Test (ADT) and Motor Control Test (MCT) and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale and 30-s Chair Stand. Following training, sensory integration scores on the SOT were unchanged. Maximum excursion abilities improved by a range of 37-86% on the LOS test. MCT scores improved for amplitude with forward translations and ADT scores improved for downward platform rotations. Clinical scores improved on the BBS (28/56-34/56), ABC (57.5-70.6%) and TUG (14.9-10.9 s) which indicated reduced fall risk. Balance training with a gaming system showed promise as a feasible, objective and enjoyable method to improve physical performance and reduce fall risk in an individual with PN.

  1. Peripheral Blood Monocytes as Adult Stem Cells: Molecular Characterization and Improvements in Culture Conditions to Enhance Stem Cell Features and Proliferative Potential

    PubMed Central

    Ungefroren, Hendrik; Hyder, Ayman; Schulze, Maren; Fawzy El-Sayed, Karim M.; Grage-Griebenow, Evelin; Nussler, Andreas K.; Fändrich, Fred

    2016-01-01

    Adult stem or programmable cells hold great promise in diseases in which damaged or nonfunctional cells need to be replaced. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into cells resembling specialized cell types like hepatocytes and pancreatic beta cells. During phenotypic conversion, the monocytes downregulate monocyte/macrophage differentiation markers, being indicative of partial dedifferentiation, and are partially reprogrammed to acquire a state of plasticity along with expression of various markers of pluripotency and resumption of mitosis. Upregulation of stem cell markers and mitotic activity in the cultures was shown to be controlled by autocrine production/secretion of activin A and transforming growth factor-beta (TGF-β). These reprogrammed monocyte derivatives were termed “programmable cells of monocytic origin” (PCMO). Current efforts focus on establishing culture conditions that increase both the plasticity and proliferation potential of PCMO in order to be able to generate large amounts of blood-derived cells suitable for both autologous and allogeneic therapies. PMID:26798361

  2. Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors.

    PubMed

    Wen, Wei; Zhang, Jian-Ping; Xu, Jing; Su, Ruijun Jeanna; Neises, Amanda; Ji, Guang-Zhen; Yuan, Weiping; Cheng, Tao; Zhang, Xiao-Bing

    2016-06-14

    We previously reported the generation of integration-free induced pluripotent stem cells from adult peripheral blood (PB) with an improved episomal vector (EV) system, which uses the spleen focus-forming virus U3 promoter and an extra factor BCL-XL (B). Here we show an ∼100-fold increase in efficiency by optimizing the vector combination. The two most critical factors are: (1) equimolar expression of OCT4 (O) and SOX2 (S), by using a 2A linker; (2) a higher and gradual increase in the MYC (M) to KLF4 (K) ratio during the course of reprogramming, by using two individual vectors to express M and K instead of one. The combination of EV plasmids (OS + M + K + B) is comparable with Sendai virus in reprogramming efficiency but at a fraction of the cost. The generated iPSCs are indistinguishable from those from our previous approach in pluripotency and phenotype. This improvement lays the foundation for broad applications of episomal vectors in PB reprogramming.

  3. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  4. Super-oxide anion production and antioxidant enzymatic activities associated with the executive functions in peripheral blood mononuclear cells of healthy adult samples.

    PubMed

    Pesce, M; Rizzuto, A; La Fratta, I; Tatangelo, R; Campagna, G; Iannasso, M; Ferrone, A; Franceschelli, S; Speranza, L; Patruno, A; De Lutiis, M A; Felaco, M; Grilli, A

    2016-05-01

    Executive Functions (EFs) involve a set of high cognitive abilities impairment which have been successfully related to a redox omeostasis imbalance in several psychiatric disorders. Firstly, we aimed to investigate the relationship between executive functioning and some oxidative metabolism parameters in Peripheral Blood Mononuclear Cells (PBMCs) from healthy adult samples. The Brown Attention-Deficit Disorder Scales were administered to assess five specific facets of executive functioning. Total superoxide anion production, Super Oxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) activities were evaluated on proteins extracted from the PBMCs. We found significant positive correlations between superoxide anion production and the total score of the 'Brown' Scale and some of its clusters. The GPx and CAT activities were negatively associated with the total score and some clusters. In a linear regression analysis, these biological variables were indicated as the most salient predictors of the total score, explaining the 24% variance (adjusted R(2)=0.24, ANOVA, p<.001). This study provides novel evidence that Executive Functions have underpinnings in the oxidative metabolism, as ascertained in healthy subjects. PMID:26646400

  5. Prolonged remission state of refractory adult onset Still's disease following CD34-selected autologous peripheral blood stem cell transplantation.

    PubMed

    Lanza, F; Dominici, M; Govoni, M; Moretti, S; Campioni, D; Corte, R L; Latorraca, A; Tieghi, A; Castagnari, B; Trotta, F; Castoldi, G

    2000-06-01

    We report a 38-year-old patient affected by refractory adult onset Still's disease who achieved a prolonged remission following CD34-selected ABMT. The conditioning regimen was based on the use of CY and anti-thymocyte globulin. A 3.0 and 2.0 log reduction of T (CD3+) and B (CD19+) lymphocytes, respectively, was obtained using a Ceprate device to select CD34+ cells from PBSC. In the pre-transplant period (1994-1998) the patient had a chronic persistent disease course with frequent and recurrent systemic articular flares and loss of some functional abilities, despite daily prednisone, pulses of CY and immunosuppressive therapy (CYA or MTX). At the time of ABMT the patient had become non-ambulatory. Within 3 weeks of ABMT the patient showed a marked decrease in joint swelling, and morning stiffness. Joint pain and systemic symptoms disappeared, the patient was able to walk and run and gained general well being. ESR, C-reactive protein and WBC count were significantly decreased, while Hb level increased. This partial remission persisted for at least 1 year after ABMT, although at 15 months of follow-up a reappearance of moderate synovitis in the knees and wrists was noted. Our data further showed that both patient BM microenvironment and stem-progenitor cell function (as assessed by LTC-IC assay) were damaged even 1 year after CD34-selected ABMT, suggesting that the persistence of these alterations could have facilitated the favorable outcome of the disease following ABMT. Bone Marrow Transplantation (2000) 25, 1307-1310. PMID:10871738

  6. Biomarkers of adult and developmental neurotoxicity

    SciTech Connect

    Slikker, William

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.

  7. Comparison of immunoreactivity to serotonin, FMRFamide and SCPb in the gut and visceral nervous system of larvae, pupae and adults of the yellow fever mosquito Aedes aegypti

    PubMed Central

    Moffett, Stacia B.; Moffett, David F.

    2005-01-01

    In all life stages, the gut of the mosquito is innervated by a small number (typically 4) of central neurons immunoreactive to serotonin (SI). The serotonergic system appears to pass through metamorphosis largely intact, despite extensive remodeling of the gut. Axons immunoreactive to antibodies raised against molluscan FMRFamide (RF-I) constitute peptidergic innervation that anatomically parallels the serotonergic system. In the larva, two clusters of 3 neurons project to the anterior regions of the gut, whereas in the pupa and adult, typically two large RF-I neurons located next to the esophagus send several processes posteriorly. In adults, these neurons branch throughout the diverticula and anterior stomach. In pupae, but not in larvae or adults, the gut RF-l system coexpresses reactivity to antibodies raised against a member of another peptide family, molluscan small cardioactive peptide b (SCP-I). SCP-I immunoreactivity is localized independently of RF-l immunoreactivity in the ganglia of all stages and in neurons that project along the gut of the adult. We did not find any colocalization of S-I and the peptide markers. Distinct populations of enteroendocrine cells populate different regions of the gut at different life stages. Changes in staining pattern suggest that these cells are replaced at metamorphosis along with the other gut cells during the extensive remodeling of the tract. Distributed in the gut epithelium are subpopulations that express either RF-I or SCP-I; a small fraction of these cells bind antibodies to both peptides. The stomachs of adult females are larger than those of males, and the numbers of SCP-I and RF-I enteroendocrine cells are proportionately greater in females. In all the life stages, the junctions between different regions of the gut are the focus of regulatory input. The larval cardiac valve possesses a ring of cells, the necklace cells, which appear to receive extensive synaptic inputs from both the serotonergic system and the

  8. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  9. The effect of mild traumatic brain injury on peripheral nervous system pathology in wild-type mice and the G93A mutant mouse model of motor neuron disease.

    PubMed

    Evans, T M; Jaramillo, C A; Sataranatarajan, K; Watts, L; Sabia, M; Qi, W; Van Remmen, H

    2015-07-01

    Traumatic brain injury (TBI) is associated with a risk of neurodegenerative disease. Some suggest a link between TBI and motor neuron disease (MND), including amyotrophic lateral sclerosis (ALS). To investigate the potential mechanisms linking TBI to MND, we measured motor function and neuropathology following mild-TBI in wild-type and a transgenic model of ALS, G93A mutant mice. Mild-TBI did not alter the lifespan of G93A mice or age of onset; however, rotarod performance was impaired in G93A verses wild-type mice. Grip strength was reduced only in G93A mice after mild-TBI. Increased electromyography (EMG) abnormalities and markers of denervation (AchR, Runx1) indicate that mild-TBI may result in peripheral effects that are exaggerated in G93A mice. Markers of inflammation (cell edema, astrogliosis and microgliosis) were detected at 24 and 72h in the brain and spinal cord in wild-type and G93A mice. Levels of F2-isoprostanes, a marker of oxidative stress, were increased in the spinal cord 24h post mild-TBI in wild-type mice but were not affected by TBI in G93A mice. In summary, our data demonstrate that mild-TBI induces inflammation and oxidative stress and negatively impacts muscle denervation and motor performance, suggesting mild-TBI can potentiate motor neuron pathology and influence the development of MND in mice.

  10. A prospective study of magnetic resonance imaging patterns of central nervous system infections in pediatric age group and young adults and their clinico-biochemical correlation

    PubMed Central

    Gupta, Kamini; Banerjee, Avik; Saggar, Kavita; Ahluwalia, Archana; Saggar, Karan

    2016-01-01

    Background: Infections of the central nervous system (CNS) are common and routinely encountered. Our aim was to evaluate the neuroimaging features of the various infections of the CNS so as to differentiate them from tumoral, vascular, and other entities that warrant a different line of therapy. Aims: Our aim was to analyze the biochemical and magnetic resonance imaging (MRI) features in CNS infections. Settings and Design: This was a longitudinal, prospective study over a period of 1½ years. Subjects and Methods: We studied cerebrospinal fluid (CSF) findings and MRI patterns in 27 patients of 0–20 years age group with clinical features of CNS infections. MRI was performed on MAGNETOM Avanto 18 Channel 1.5 Tesla MR machine by Siemens India Ltd. The MRI protocol consisted of diffusion-weighted and apparent diffusion coefficient imaging, turbo spin echo T2-weighted, spin echo T1-weighted, fluid-attenuated inversion recovery (FLAIR), and gradient-echo in axial, FLAIR in coronal, and T2-weighted in sagittal plane. Contrast-enhanced T1-weighted sequence and MR spectroscopy were done whenever indicated. Results and Conclusions: We found that most of the children belong to 1–10 years age group. Fungal infections were uncommon, mean CSF adenosine deaminase values specific for tuberculosis and mean CSF glucose-lowered in pyogenic. Hemorrhagic involvement of thalamus with/without basal ganglia and brainstem involvement may indicate Japanese encephalitis or dengue encephalitis. Diffusion restriction or hemorrhage in not expected in the brainstem afflicted lesions of rabies. Congenital cytomegalovirus can cause cortical malformations. T1 hyperintensities with diffusion restriction may represent viral encephalitis. Lesions of acute disseminated encephalomyelitis (ADEM) may mimic viral encephalitis. Leptomeningeal enhancement is predominant in pyogenic meningitis. Basilar meningitis in the presence of tuberculomas is highly sensitive and specific for tuberculosis. PMID

  11. Aquaporin Biology and Nervous System

    PubMed Central

    Barbara, Buffoli

    2010-01-01

    Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing. Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research. PMID:21119880

  12. Peripheral Neuropathy

    MedlinePlus

    ... can be associated with peripheral neuropathy. Metabolic and endocrine disorders impair the body’s ability to transform nutrients into ... to neuropathies as a result of chemical imbalances. Endocrine disorders that lead to hormonal imbalances can disturb normal ...

  13. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    SciTech Connect

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  14. Neonatal peripheral hypotonia: clinical and electromyographic characteristics.

    PubMed

    Parano, E; Lovelace, R E

    1993-06-01

    Hypotonia is a common occurrence in pediatrics, especially in the neonatal period. The hypotonic neonate represents a diagnostic challenge for the general pediatrician because hypotonia may be caused by a lesion at any level in the neuraxis: (1) central nervous system (CNS), (2) peripheral nerves (PN), (3) neuromuscular junction, or (4) muscles. Distinguishing among these pathologies is a particularly arduous task. This review will discuss the clinical approach to neonatal hypotonia with emphasis on disorders of the peripheral nervous system and muscle, and the importance of the electrophysiological study as a diagnostic test.

  15. STP Position Paper: Recommended Practices for Sampling and Processing the Nervous System (Brain, Spinal Cord, Nerve, and Eye) during Nonclinical General Toxicity Studies

    EPA Science Inventory

    The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...

  16. Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae)

    PubMed Central

    2010-01-01

    Background Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the

  17. In Vivo Transplantation of Neurosphere-Like Bodies Derived from the Human Postnatal and Adult Enteric Nervous System: A Pilot Study

    PubMed Central

    Hetz, Susan; Acikgoez, Ali; Voss, Ulrike; Nieber, Karen; Holland, Heidrun; Hegewald, Cindy; Till, Holger; Metzger, Roman; Metzger, Marco

    2014-01-01

    Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs) in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH). For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu) and immunohistochemistry (PGP9.5, GFAP, SMA). In addition, we determined nitric oxide synthase (NOS)-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via ‘bystander’ mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be considered as

  18. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  19. How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System

    PubMed Central

    Koutsakis, Christos; Kazanis, Ilias

    2016-01-01

    Augmenting evidence suggests that such is the functional dependance of neural stem cells (NSCs) on the vasculature that they normally reside in “perivascular niches”. Two examples are the “neurovascular” and the “oligovascular” niches of the adult brain, which comprise specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels (BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as “coupled”. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on BVs. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; that is, on how much the vasculature is dependent on NSCs and their progeny. PMID:26909025

  20. An altered form of pp60/sup c-src/ is expressed primarily in the central nervous system

    SciTech Connect

    Le Beau, J.M.; Wiestler, O.D.; Walter, G.

    1987-11-01

    The expression of two forms of pp60/sup c-scr/, pp60 and pp60/sup +/, was measured in the central nervous system (CNS) and the peripheral nervous system. Both forms were expressed in the CNS, whereas only pp60 was primarily detected in the peripheral nervous system. Our findings suggest that pp60/sup +/ may play a role in events important to the CNS.

  1. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  2. Autonomic nervous system functions in obese children.

    PubMed

    Yakinci, C; Mungen, B; Karabiber, H; Tayfun, M; Evereklioglu, C

    2000-05-01

    Childhood obesity is a complex syndrome, probably due to the multiplicity of contributing factors, contradictory literature information about etiology, prognosis, prevention and treatment. In the recent reports, autonomic nervous system (ANS) dysfunction has been documented in adult obesity. Autonomic nervous system functions in obese children are not clear. This study was planned to investigate autonomic nervous system function in childhood (7-13 years of age) obesity. Study and control groups consisted of 33 simple obese (23 boys and ten girls, mean age 9.5+/-1.4 years) and 30 healthy children (18 boys and 12 girls, mean age 10.1+/-1.8 years), respectively. Four non-invasive autonomic nervous system function tests (Orthostatic test, Valsalva ratio, 30/15 ratio, Heart rate responses to deep breathing) and general ophthalmic examination were performed on both groups. The difference between the obese and control groups was found statistically significant in Valsalva ratio, 30/15 ratio and Heart rate responses to deep breathing (P<0.025), and insignificant in Orthostatic test (P>0.05). Ophthalmic examinations were normal. The result of these tests suggested normal activity of sympathetic, and hypoactivity of parasympathetic nervous system, implying parasympathetic nervous system dysfunction as a risk factor or associated finding in childhood obesity. PMID:10814895

  3. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair

    PubMed Central

    Saini, Vedangana; Lutz, David; Kataria, Hardeep; Kaur, Gurcharan; Schachner, Melitta; Loers, Gabriele

    2016-01-01

    Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system. PMID:27324620

  4. [Emotion, amygdala, and autonomic nervous system].

    PubMed

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  5. GFRalpha-3, a protein related to GFRalpha-1, is expressed in developing peripheral neurons and ensheathing cells.

    PubMed

    Widenfalk, J; Tomac, A; Lindqvist, E; Hoffer, B; Olson, L

    1998-04-01

    We report here the identification of a gene, termed GFRalpha-3 (glial cell line-derived neurotrophic factor family receptor alpha-3), related to GFRalpha-1 and GFRalpha-2 (also known as GDNFR-alpha and GDNFR-beta), and describe distribution of GDNFalpha-3 in the nervous system and other parts of the mouse body during development and in the adult. GFRalpha-3 in situ hybridization signals were found mainly in the peripheral nervous system, with prominent signals in developing dorsal root and trigeminal ganglia. Sympathetic ganglia were also positive. Developing nerves manifested strong GFRalpha-3 mRNA signals, presumably generated by the Schwann cells. Olfactory ensheathing cells were also positive. Other non-neuronal cells appearing positive during development included chromaffin cells in the adrenal gland and small clusters of cells in the intestinal epithelium. In the central nervous system no robust signals could be detected at any stage investigated with the present probes. Compared with the previously described GFRalpha-1 and GFRalpha-2 mRNAs, which are widely distributed in the central nervous system and peripheral organs, the expression of GFRalpha-3 mRNA is much more restricted. The prominent expression in Schwann cells during development suggests a key role for GFRalpha-3 in the development of the peripheral nervous system. As Schwann cells are known to lack expression of the transducing RET receptor, we propose that a possible function of GFRalpha-3 during development could be to bind Schwann cell-derived GDNF-like ligands, thus presenting such molecules to growing axons. PMID:9749804

  6. Co-expression of Cholinergic and Noradrenergic Phenotypes in Human and Non-Human Autonomic Nervous System

    PubMed Central

    Weihe, Eberhard; Schütz, Burkhard; Hartschuh, Wolfgang; Anlauf, Martin; Schäfer, Martin K.; Eiden, Lee E.

    2008-01-01

    It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species, and that during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents, but that lack of expression of the vesicular monoamine transporter renders these cells functionally non-noradrenergic. Adult human sweat gland innervation, however, is not only cholinergic, but co-expresses all of the proteins required for full noradrenergic function as well, including tyrosine hydroxylase, aromatic amino acid decarboxylase, dopamine ß-hydroxylase, and the vesicular monoamine transporter VMAT2. Thus, cholinergic/noradrenergic co-transmission is apparently a unique feature of the primate autonomic sympathetic nervous system. Furthermore, sympathetic neurons innervating specifically the cutaneous arteriovenous anastomoses (Hoyer Grosser organs) in humans also possess a full cholinergic/noradrenergic co-phenotype. Cholinergic/noradrenergic co-expression is absent from other portions of the human sympathetic nervous system, but is extended in the parasympathetic nervous system to the intrinsic neurons innervating the heart. These observations suggest a mode of autonomic regulation, based on co-release of norepinephrine and acetylcholine at parasympathocardiac, sudomotor, and selected vasomotor neuroeffector junctions, that is unique to the primate peripheral nervous system. PMID:16217790

  7. Expression of prohormone convertase 2 and the generation of neuropeptides in the developing nervous system of the gastropod Haliotis.

    PubMed

    Cummins, Scott F; York, Patrick S; Hanna, Peter H; Degnan, Bernard M; Croll, Roger P

    2009-01-01

    Prohormone convertase 2 (PC2) belongs to a family of enzymes involved in the proteolytic maturation of neuropeptide precursors into mature peptides that act as neurotransmitters, neuromodulators or neurohormones. Here we show that a gene encoding a PC2-like enzyme (HasPC2) is expressed during larval development and in the adult ganglia of the vetigastropod Haliotis asinina. HasPC2 exhibits high sequence identity to other gastropod PC2s and thus is likely to function in peptide processing. Analysis of HasPC2 expression indicates that it is activated early in nervous system development. During trochophore and early veliger larval stages, HasPC2 is expressed in the vicinity of the forming ganglia of the central nervous system and parts of the putative peripheral nervous system. Later in larval development, at the time the veliger becomes competent to interact with the external environment and initiate metamorphosis, HasPC2 expression largely restricts to cells of the major ganglia and their commissures. Profiling of veliger larvae by bioinformatic approaches suggests the expression of a variety of peptides. Direct MALDI-MS-based peptide profiling of juvenile Haliotis cerebral ganglia (brain) reveals an abundance of neuropeptides, including FMRFamide-related peptides and APGWamide, compatible with PC2 functioning in neuropeptide processing in these regions. These results are consistent with PC2 regulating neuropeptide generation in the earliest functioning of the gastropod nervous system.

  8. Herpesvirus Transport to the Nervous System and Back Again

    PubMed Central

    Smith, Gregory

    2013-01-01

    Herpes simplex virus, varicella zoster virus, and pseudorabies virus are neurotropic pathogens of the Alphaherpesvirinae subfamily of the Herpesviridae. These viruses efficiently invade the peripheral nervous system and establish lifelong latency in neurons resident in peripheral ganglia. Primary and recurrent infections cycle virus particles between neurons and the peripheral tissues they innervate. This remarkable cycle of infection is the topic of this review. In addition, some of the distinguishing hallmarks of the infections caused by these viruses are evaluated in terms of their underlying similarities. PMID:22726218

  9. Relationships among metabolic homeostasis, diet, and peripheral afferent neuron biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well-established that food intake behavior and energy balance are regulated by cross-talk between peripheral organ systems and the central nervous system (CNS), for instance through the actions of peripherally-derived leptin on hindbrain and hypothalamic loci. Diet- or obesity-associated dist...

  10. Evolution of basal deuterostome nervous systems.

    PubMed

    Holland, Linda Z

    2015-02-15

    Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.

  11. Protective autoimmunity in the nervous system.

    PubMed

    Graber, Jerome J; Dhib-Jalbut, Suhayl

    2009-02-01

    The immune system can play both detrimental and beneficial roles in the nervous system. Multiple arms of the immune system, including T cells, B cells, NK cells, mast cells, macrophages, dendritic cells, microglia, antibodies, complement and cytokines participate in limiting damage to the nervous system during toxic, ischemic, hemorrhagic, infective, degenerative, metabolic and immune-mediated insults and also assist in the process of repair after injury has occurred. Immune cells have been shown to produce neurotrophic growth factors and interact with neurons and glial cells to preserve them from injury and stimulate growth and repair. The immune system also appears to participate in proliferation of neural progenitor stem cells and their migration to sites of injury. Neural stem cells can also modify the immune response in the central and peripheral nervous system to enhance neuroprotective effects. Evidence for protective and reparative functions of the immune system has been found in diverse neurologic diseases including traumatic injury, ischemic and hemorrhagic stroke, multiple sclerosis, infection, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis). Existing therapies including glatiramer acetate, interferon-beta and immunoglobulin have been shown to augment the protective and regenerative aspects of the immune system in humans, and other experimental interventions such as vaccination, minocycline, antibodies and neural stem cells, have shown promise in animal models of disease. The beneficent aspects of the immune response in the nervous system are beginning to be appreciated and their potential as pharmacologic targets in neurologic disease is being explored. PMID:19000712

  12. Lysophosphatidic Acid signaling in the nervous system.

    PubMed

    Yung, Yun C; Stoddard, Nicole C; Mirendil, Hope; Chun, Jerold

    2015-02-18

    The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. PMID:25695267

  13. [Plasmapheresis in central nervous system disorders].

    PubMed

    Antozzi, Carlo

    2012-01-01

    Therapeutic plasmapheresis (TPE) has an established role in disorders of the peripheral nervous system, but its use in disorders of the central nervous system (CNS) does not rely upon evidence-based data. Nevertheless, TPE is currently used in severe acute forms of demyelinating disease (multiple sclerosis/acute encephalomyelitis) unresponsive to corticosteroids. Recently, antibodies against the water channel aquaporin-4 have been detected in patients affected by neuromyelitis optica (Devic syndrome) and their pathogenetic role has been demonstrated, supporting the use of TPE in this disease. TPE has been reported to be effective in some patients affected by stiff-person syndrome or limbic encephalitis associated with antibodies against voltagegated potassium channels. TPE has also been used in selected patients with treatment-resistant epilepsy or status epilepticus within complex syndromes of various etiologies. The available data still do not support the use of TPE in most paraneoplastic disorders of the CNS. PMID:22388844

  14. 2016 Expert consensus document on prevention, diagnosis and treatment of short-term peripheral venous catheter-related infections in adult.

    PubMed

    Capdevila, J A; Guembe, M; Barberán, J; de Alarcón, A; Bouza, E; Fariñas, M C; Gálvez, J; Goenaga, M A; Gutiérrez, F; Kestler, M; Llinares, P; Miró, J M; Montejo, M; Muñoz, P; Rodríguez-Creixems, M; Sousa, D; Cuenca, J; Mestres, C A

    2016-08-01

    The use of endovascular catheters is a routine practice in secondary and tertiary care level hospitals. Short peripheral catheters have been found to be associated with the risk of nosocomial bacteremia resulting in morbidity and mortality. Staphyloccus aureus is mostly associated with peripheral catheter insertion. This Consensus Document has been elaborated by a panel of experts of the Spanish Society of Cardiovascular Infections in cooperation with experts from the Spanish Society of Internal Medicine, Spanish Society of Chemotherapy and Spanish Society of Thoracic-Cardiovascular Surgery and aims at define and establish the norm for management of short duration peripheral vascular catheters. The document addresses the indications for insertion, catheter maintenance and registry, diagnosis and treatment of infection, indications for removal and stresses on continuous education as a driver for quality. Implementation of this norm will allow uniformity in usage thus minimizing the risk of infection and its complications. PMID:27580009

  15. Peripheral intravenous line - infants

    MedlinePlus

    PIV - infants; Peripheral IV - infants; Peripheral line - infants; Peripheral line - neonatal ... A peripheral intravenous line (PIV) is a small, short, plastic tube, called a catheter. A health care provider puts ...

  16. Possible microwave mechanisms of the mammalian nervous system.

    PubMed

    Stocklin, P L; Stocklin, B F

    1979-01-01

    The hypothesis is examined that the living mammal generates and uses electromagnetic waves in the lower microwave frequency region as an integral part of the functioning of central and peripheral nervous systems. Analysis of the potential energy of a protein integral to the neural membrane compared to that of an extracellular positive ion yields major known features of action potential generation, and identification of the integral protein as a microwave emitter and absorber by changes in rotational energy state. Prolate spheroidal analysis of the adult human brain/skull cavity shows capability to support modes in the range 200 MHz to 3 GHz; spatial mode properties correspond to gross anatomy and neuromorphology of the brain. Phase-lock loop interaction between lower microwave modes and action potential conduction results in pulse microwave/action potential generation observable by EEG instrumentation as brain waves; alpha waves occur if the corpus callosum is the major neural tract involved. Spatially consistent Lorentz forces of standing microwaves provide physical basis for correspondence of spatial properties of microwave modes with brain anatomy, and for the formation of myelin sheath and the nodes of Ranvier on larger neurons.

  17. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  18. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    MedlinePlus

    ... disturbances, such as double vision, blurred vision, or blindness seizures, convulsions stroke or transient ischemic attack (TIA, ... years and is rarely fatal. Abrupt but reversible blindness is the most dramatic complication of temporal arteritis. ...

  19. Sympathetic nervous system and spaceflight

    NASA Astrophysics Data System (ADS)

    Cooke, William H.; Convertino, Victor A.

    2007-02-01

    Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity. Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability. Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance. Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.

  20. The Nervous System Game

    ERIC Educational Resources Information Center

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  1. [Peripheral precocious puberty].

    PubMed

    Krysiak, Robert; Marek, Bogdan; Okopień, Bogusław

    2009-01-01

    The term precocious puberty is defined as the appearance of secondary sex characteristics before the age of 8 in girls and 9 in boys. There are two major forms of premature sexual maturation: gonadotrophin-dependent (central, or 'true' precocious puberty) and gonadotrophin- independent precocious puberty. The latter, also called peripheral precocious puberty, is characterized by increased production of sex steroids, causing the typical physical changes of puberty, in the absence of reactivation of the hypothalamic-pituitary axis. It may result from several different disorders including testotoxicosis, McCune-Albright syndrome, congenital adrenal hyperplasia, adrenal and gonadal tumours. The accumulation of knowledge regarding the pathogenesis of symptoms and the development of safe, effective treatment modalities have led to earlier intervention in patients with peripheral precocious puberty to prevent the decline in their psychosocial wellbeing, adult height and quality of life. We review the ethiopathogenesis, clinical picture, diagnosis and treatment of various disorders causing peripheral precocious puberty and provide the reader with current recommendations concerning approach to the patient with this health problem.

  2. Peripheral circulation.

    PubMed

    Laughlin, M Harold; Davis, Michael J; Secher, Niels H; van Lieshout, Johannes J; Arce-Esquivel, Arturo A; Simmons, Grant H; Bender, Shawn B; Padilla, Jaume; Bache, Robert J; Merkus, Daphne; Duncker, Dirk J

    2012-01-01

    Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.

  3. Peripheral androgen action helps modulate vocal production in a suboscine passerine

    PubMed Central

    Fuxjager, Matthew J.; Heston, Jonathan B.; Schlinger, Barney A.

    2015-01-01

    Androgenic activation of intracellular androgen receptors (AR) influences avian vocal production, though this has largely been investigated at the level of the brain. We investigated the influence of predominantly peripheral AR on vocal output in wild Golden-collared Manakins (Manacus vitellinus). In this suboscine species, males court females by performing acrobatic displays and by producing relatively simple chee-poo vocalizations. To assess whether peripheral AR influences the acoustic structure of these vocal signals, we treated reproductively active adult males with the peripherally selective antiandrogen bicalutamide and then measured phonation performance. Inhibiting AR outside of the central nervous system increased the duration of the chee note and decreased the fundamental frequency of the poo note. This treatment caused no discernable change to chee-poo frequency modulation or entropy. Our results show that activation of peripheral AR mediates note-specific changes to temporal and pitch characteristics of the Golden-collared Manakin’s main sexual call. Thus, our study provides one of the first demonstrations that androgenic action originating outside of the brain and likely on musculoskeletal targets can modulate avian vocal production. PMID:25780269

  4. Effects of vegetable containing gamma-aminobutyric acid on the cardiac autonomic nervous system in healthy young people.

    PubMed

    Okita, Yoshimitsu; Nakamura, Harunobu; Kouda, Katsuyasu; Takahashi, Isao; Takaoka, Terumi; Kimura, Motohiko; Sugiura, Toshifumi

    2009-01-01

    The aim of this study was to investigate the effects of vegetable tablets containing Gamma-Aminobutyric Acid (GABA) intake on cardiovascular response and the autonomic nervous system in young adults. In a double-blind, randomized controlled trial, 7 healthy subjects were assigned to take vegetable tablets (10 g/trial) or control tablets (10 g/trial). We measured heart rate (HR), systolic and diastolic blood pressure, stroke volume, cardiac output, total peripheral resistance index, and the low- and high-frequency oscillatory components of heart rate variability (HRV). Two major spectral components were examined at low-frequency (LF: 0.04-0.15 Hz) and high-frequency (HF: 0.15-0.4 Hz) bands to indicate HRV. There were significant interactions in HR (p<0.01) and in LF/HF of HRV (p<0.05). HR increased after intake of control tablets, but not after that of vegetable tablets. LF/HF increased rapidly after intake of control tablets and rose slightly after vegetable tablet intake. There was no significant difference between the vegetable and control tablet trials in stroke volume, cardiac output, total peripheral resistance, systolic or diastolic blood pressure, HF, or LF. In conclusion, these results suggest the possibility that single administration of vegetable tablets containing GABA suppresses the sympathetic nervous activity leading to an elevation of blood pressure.

  5. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  6. LGI proteins in the nervous system

    PubMed Central

    Kegel, Linde; Aunin, Eerik; Meijer, Dies; Bermingham, John R.

    2013-01-01

    The development and function of the vertebrate nervous system depend on specific interactions between different cell types. Two examples of such interactions are synaptic transmission and myelination. LGI1-4 (leucine-rich glioma inactivated proteins) play important roles in these processes. They are secreted proteins consisting of an LRR (leucine-rich repeat) domain and a so-called epilepsy-associated or EPTP (epitempin) domain. Both domains are thought to function in protein–protein interactions. The first LGI gene to be identified, LGI1, was found at a chromosomal translocation breakpoint in a glioma cell line. It was subsequently found mutated in ADLTE (autosomal dominant lateral temporal (lobe) epilepsy) also referred to as ADPEAF (autosomal dominant partial epilepsy with auditory features). LGI1 protein appears to act at synapses and antibodies against LGI1 may cause the autoimmune disorder limbic encephalitis. A similar function in synaptic remodelling has been suggested for LGI2, which is mutated in canine Benign Familial Juvenile Epilepsy. LGI4 is required for proliferation of glia in the peripheral nervous system and binds to a neuronal receptor, ADAM22, to foster ensheathment and myelination of axons by Schwann cells. Thus, LGI proteins play crucial roles in nervous system development and function and their study is highly important, both to understand their biological functions and for their therapeutic potential. Here, we review our current knowledge about this important family of proteins, and the progress made towards understanding their functions. PMID:23713523

  7. Directional Spread of Alphaherpesviruses in the Nervous System

    PubMed Central

    Kramer, Tal; Enquist, Lynn W.

    2013-01-01

    Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress. PMID:23435239

  8. Sympathetic nervous system regulation of the tumour microenvironment

    PubMed Central

    Cole, Steven W.; Nagaraja, Archana S.; Lutgendorf, Susan K.; Green, Paige A.; Sood, Anil K.

    2016-01-01

    The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programs that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial-mesenchymal transition, and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and hematopoietic differentiation programs. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacologic strategies to inhibit cancer progression in vivo. PMID:26299593

  9. [CENTRAL NERVOUS SYSTEM INVOLVEMENT IN GRANULOMATOSIS WITH POLYANGIITIS (GPA)].

    PubMed

    Horovitz, Yuval; Lidar, Merav

    2015-05-01

    We present the case of a 75 year-old female with Wegener's Granulomatosis. The patient arrived intubated to the emergency room, following loss of consciousness and a generalized seizure. A magnetic resonance imaging brain scan revealed a space occupying lesion (SOL) in the right temporal region. Subsequent investigation indicated the SOL to be a primary lymphoma of the central nervous system. The clinical manifestations of granulomatosis with polyangiitis on both the central and peripheral nervous systems are reviewed herein, as well as the appropriated treatment modalities and the link between this disease and various malignancies. PMID:26168637

  10. The challenges and beauty of peripheral nerve regrowth.

    PubMed

    Zochodne, Douglas W

    2012-03-01

    This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery.

  11. Fast Neurotransmission Related Genes Are Expressed in Non Nervous Endoderm in the Sea Anemone Nematostella vectensis

    PubMed Central

    Oren, Matan; Brikner, Itzchak; Appelbaum, Lior; Levy, Oren

    2014-01-01

    Cnidarian nervous systems utilize chemical transmission to transfer signals through synapses and neurons. To date, ample evidence has been accumulated for the participation of neuropeptides, primarily RFamides, in neurotransmission. Yet, it is still not clear if this is the case for the classical fast neurotransmitters such as GABA, Glutamate, Acetylcholine and Monoamines. A large repertoire of cnidarian Fast Neurotransmitter related Genes (FNGs) has been recently identified in the genome of the sea anemone, Nematostella vectensis. In order to test whether FNGs are localized in cnidarian neurons, we characterized the expression patterns of eight Nematostella genes that are closely or distantly related to human central and peripheral nervous systems genes, in adult Nematostella and compared them to the RFamide localization. Our results show common expression patterns for all tested genes, in a single endodermal cell layer. These expressions did not correspond with the RFamide expressing nerve cell network. Following these results we suggest that the tested Nematostella genes may not be directly involved in vertebrate-like fast neurotransmission. PMID:24705400

  12. Neuroanatomical Characteristics and Speech Perception in Noise in Older Adults

    PubMed Central

    Wong, Patrick C. M.; Ettlinger, Marc; Sheppard, John P.; Gunasekera, Geshri M.; Dhar, Sumitrajit

    2010-01-01

    Objectives Previous research has attributed older adult’s difficulty with perceiving speech in noise to peripheral hearing loss. Recent studies have suggested a more complex picture, however, and implicate the central nervous system in sensation and sensory deficits. This study examines the relationship between the neuroanatomical structure of cognitive regions and the ability to perceive speech in noise in older adults. In particular, the neuroanatomical characteristics of the left ventral and dorsal prefrontal cortex are considered relative to standard measures of hearing in noise. Design The participants were fifteen older and fourteen younger right-handed native speakers of American English who had no neurological deficits and scored better than normal on standardized cognitive tests. We measured the participants’ peripheral hearing ability as well as their ability to perceive speech in noise using standardized tests. Anatomical magnetic resonance images were taken and analyzed to extract regional volumes and thicknesses of several key neuroanatomical structures. Results The results showed that younger adults had better hearing sensitivity and better speech perception in noise ability than older adults. For the older adults only, the volume of the left pars triangularis and the cortical thickness of the left superior frontal gyrus were significant predictors of performance on the speech-in-noise test. Discussion These findings suggest that, in addition to peripheral structures, the central nervous system also contributes to the ability to perceive speech in noise. In older adults, a decline in the volume and cortical thickness of the prefrontal cortex (PFC) during aging can therefore be a factor in a declining ability to perceive speech in a naturalistic environment. Our study shows a link between anatomy of PFC and speech perception in older adults. These findings are consistent with the decline-compensation hypothesis, which states that a decline in

  13. Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay.

    PubMed Central

    Sandrock, A W; Matthew, W D

    1987-01-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay. Images PMID:3477817

  14. Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen.

    PubMed

    Llorens-Martín, M; Jurado-Arjona, J; Fuster-Matanzo, A; Hernández, F; Rábano, A; Ávila, J

    2014-01-01

    Both familial and sporadic forms of Alzheimer disease (AD) present memory impairments. It has been proposed that these impairments are related to inflammation in relevant brain areas such as the hippocampus. Whether peripherally triggered and neuron-driven brain inflammation produce similar and equally reversible alterations is a matter of discussion. Here we studied the effects of ibuprofen administration on a familial AD mouse model overexpressing GSK-3β that presents severe brain inflammation. We compared these effects with those observed in a peripherally triggered brain inflammation model based on chronic lipopolysaccharide (LPS) administration. Both proinflammatory stimuli produced equivalent reversible morphological alterations in granule neurons; however, GSK-3β had a much more prominent role in newborn neuron connectivity, causing alterations that were not reversed by ibuprofen. Although both insults triggered similar behavioral impairments, ibuprofen rescued this defect in LPS-treated mice but did not produce any improvement in GSK-3β-overexpressing animals. This observation could be attributable to the different microglial phenotype induced by ibuprofen treatment. These data may be clinically relevant for AD therapies, as GSK-3β appears to determine the efficacy of ibuprofen treatment.

  15. Abdominal migraine reviewed from both central and peripheral aspects

    PubMed Central

    Kakisaka, Yosuke; Uematsu, Mitsugu; Wang, Zhong I; Haginoya, Kazuhiro

    2012-01-01

    Despite the 2%-5% prevalence of abdominal migraine (AM) during childhood, the precise mechanism remains unknown. In this review, we present recent studies on AM and speculate its mechanism from both peripheral and central nervous system aspects. Although the main symptoms of AM exist at the peripheral level, previous studies have reported possible dysfunction of central nervous system, including photophobia, phonophobia and abnormal visual evoked responses. Recently, a case has been reported with AM combined with “Alice in Wonderland” syndrome with visual and/or bodily distortions, which serves as another piece of evidence of central dysfunction. Another case reported an AM patient having peculiar stereotypical ecchymosis in the legs and buttocks associated with pain attack, which implied possible involvement of peripheral nervous system. Although further investigations and accumulation of AM cases are still needed, we believe that the schema hypothesized here is helpful to plan further experimental approach to clarify the mechanism of this peculiar disease. PMID:24520537

  16. Abdominal migraine reviewed from both central and peripheral aspects.

    PubMed

    Kakisaka, Yosuke; Uematsu, Mitsugu; Wang, Zhong I; Haginoya, Kazuhiro

    2012-08-20

    Despite the 2%-5% prevalence of abdominal migraine (AM) during childhood, the precise mechanism remains unknown. In this review, we present recent studies on AM and speculate its mechanism from both peripheral and central nervous system aspects. Although the main symptoms of AM exist at the peripheral level, previous studies have reported possible dysfunction of central nervous system, including photophobia, phonophobia and abnormal visual evoked responses. Recently, a case has been reported with AM combined with "Alice in Wonderland" syndrome with visual and/or bodily distortions, which serves as another piece of evidence of central dysfunction. Another case reported an AM patient having peculiar stereotypical ecchymosis in the legs and buttocks associated with pain attack, which implied possible involvement of peripheral nervous system. Although further investigations and accumulation of AM cases are still needed, we believe that the schema hypothesized here is helpful to plan further experimental approach to clarify the mechanism of this peculiar disease. PMID:24520537

  17. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis.

    PubMed

    Díaz-Balzac, Carlos A; Lázaro-Peña, María I; Vázquez-Figueroa, Lionel D; Díaz-Balzac, Roberto J; García-Arrarás, José E

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components.

  18. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis.

    PubMed

    Díaz-Balzac, Carlos A; Lázaro-Peña, María I; Vázquez-Figueroa, Lionel D; Díaz-Balzac, Roberto J; García-Arrarás, José E

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  19. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  20. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection.

    PubMed

    Huckans, Marilyn; Fuller, Bret E; Olavarria, Hannah; Sasaki, Anna W; Chang, Michael; Flora, Kenneth D; Kolessar, Michael; Kriz, Daniel; Anderson, Jeanne R; Vandenbark, Arthur A; Loftis, Jennifer M

    2014-03-01

    BackgroundThe purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms-depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. MethodsBlood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV-, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. ResultsCompared with HCV- controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV- group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4-10 plasma immune factors; protein signatures significantly accounted for 19-40% of the variance in depression, anxiety, fatigue, and pain. ConclusionsOverall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric symptoms in

  1. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection.

    PubMed

    Huckans, Marilyn; Fuller, Bret E; Olavarria, Hannah; Sasaki, Anna W; Chang, Michael; Flora, Kenneth D; Kolessar, Michael; Kriz, Daniel; Anderson, Jeanne R; Vandenbark, Arthur A; Loftis, Jennifer M

    2014-03-01

    BackgroundThe purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms-depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. MethodsBlood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV-, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. ResultsCompared with HCV- controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV- group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4-10 plasma immune factors; protein signatures significantly accounted for 19-40% of the variance in depression, anxiety, fatigue, and pain. ConclusionsOverall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric symptoms in

  2. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection

    PubMed Central

    Huckans, Marilyn; Fuller, Bret E; Olavarria, Hannah; Sasaki, Anna W; Chang, Michael; Flora, Kenneth D; Kolessar, Michael; Kriz, Daniel; Anderson, Jeanne R; Vandenbark, Arthur A; Loftis, Jennifer M

    2014-01-01

    Background The purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms—depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. Methods Blood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV−, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. Results Compared with HCV− controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV− group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4–10 plasma immune factors; protein signatures significantly accounted for 19–40% of the variance in depression, anxiety, fatigue, and pain. Conclusions Overall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric

  3. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.

  4. Nervous system lyme disease.

    PubMed

    Halperin, John J

    2015-01-01

    Lyme disease, a multisystem spirochetal infection, continues to be the subject of considerable debate, but not controversy. Recent years have seen improvements in diagnostic tools, better understanding of pathophysiology, and increasing evidence of efficacy of standard treatment regimens. Nervous system involvement is particularly confusing to patients and many physicians. A rational approach based on objective findings can clarify the cause and dictate the best treatment of patients' difficulties. Diagnosis for all but the earliest cases rests on the combination of likely contact with infected Ixodes ticks and laboratory confirmation of exposure to the causative organism, Borrelia burgdorferi (two-tier serology, combining ELISA with a confirmatory Western blot). Treatment is generally with oral antimicrobials such as doxycycline. Parenteral regimens are usually necessary only for the most severe cases.

  5. Therapeutic Application of Electric Fields in the Injured Nervous System.

    PubMed

    Haan, Niels; Song, Bing

    2014-02-01

    Significance: Nervous system injuries, both in the peripheral nervous system (PNS) and central nervous system are a major cause for pain, loss-of-function, and impairment of daily life. As nervous system injuries commonly heal slowly or incompletely, new therapeutic approaches may be required. Recent Advances: The observation that cultured neurons are able to respond to exogenous electric fields (EFs) by sprouting more neurites and directing growth along the field, along with the presence of endogenous EFs in the developing vertebrate nervous system have led to the suggestion of the use of EFs in a regenerative therapeutic setting. This review discusses the effects of EFs on nervous cells, and their use in the treatment of nervous injuries in the eye, limb nerves, and the spinal cord. Exogenous EFs have been shown to be neuroprotective in various injury models of the eye, including traumatic injury, congenital degenerative retinopathy, and glaucoma. In the PNS, EFs are able to stimulate regrowth and functional recovery in damaged limb nerves. In the spinal cord, axonal regeneration and improved quality of life may be achieved using EF stimulation. Critical Issues: The optimal paradigm for electrical stimulation has not been determined, and the mechanisms behind the effect of EF are still largely unknown. Future Directions: Although the therapeutic use of EFs in the nervous system is still in its infancy, it is a promising therapeutic avenue for otherwise hard to treat injuries. The cellular/molecular mechanisms of such regulation need to be fully investigated, and the efficiency of applied EFs during wound healing needs to be optimized in a systematic approach in both animal models and future clinical trials. PMID:24761356

  6. Opioid overdose with gluteal compartment syndrome and acute peripheral neuropathy

    PubMed Central

    Adrish, Muhammad; Duncalf, Richard; Diaz-Fuentes, Gilda; Venkatram, Sindhaghatta

    2014-01-01

    Patient: Male, 42 Final Diagnosis: Gluteal compartment syndrome • acute peripheral nauropathy Symptoms: — Medication: — Clinical Procedure: — Specialty: Critical Care Medicine Objective: Management of emergency care Background: Heroin addiction is common, with an estimated 3.7 million Americans reporting to have used it at some point in their lives. Complications of opiate overdose include infection, rhabdomyolysis, respiratory depression and central or peripheral nervous system neurological complications. Conclusions: We present a 42-year-old male admitted after heroin use with heroin-related peripheral nervous system complication preceded by an acute gluteal compartment syndrome and severe rhabdomyolysis. Case Report: Early diagnosis and surgical intervention of the compartment syndrome can lead to full recovery while any delay in management can be devastating and can lead to permanent disability. The presence of peripheral nervous system injuries may portend a poor prognosis and can also lead to long term disability. Careful neurological evaluation for signs and symptoms of peripheral nervous system injuries is of paramount importance, as these may be absent at presentation in patients with opioid overdose. There is a potential risk of delaying a necessary treatment like fasciotomy in these patients by falsely attributing clinical symptoms to a preexisting neuropathy. Early EMG and nerve conduction studies should be considered when the etiology of underlying neurological weakness is unclear. PMID:24459539

  7. Roles of kinins in the nervous system.

    PubMed

    Negraes, Priscilla D; Trujillo, Cleber A; Pillat, Micheli M; Teng, Yang D; Ulrich, Henning

    2015-01-01

    The kallikrein-kinin system (KKS) is an endogenous pathway involved in many biological processes. Although primarily related to blood pressure control and inflammation, its activation goes beyond these effects. Neurogenesis and neuroprotection might be stimulated by bradykinin being of great interest for clinical applications following brain injury. This peptide is also an important player in spinal cord injury pathophysiology and recovery, in which bradykinin receptor blockers represent substantial therapeutic potential. Here, we highlight the participation of kinin receptors and especially bradykinin in mediating ischemia pathophysiology in the central and peripheral nervous systems. Moreover, we explore the recent advances on mechanistic and therapeutic targets for biological, pathological, and neural repair processes involving kinins. PMID:25839228

  8. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    PubMed

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  9. Initial fluconazole prophylaxis may not be required in adults with acute leukemia or myelodysplastic/myeloproliferative disorders after reduced intensity conditioning peripheral blood stem cell allogeneic transplantation.

    PubMed

    Brissot, Eolia; Cahu, Xavier; Guillaume, Thierry; Delaunay, Jacques; Ayari, Sameh; Peterlin, Pierre; Le Bourgeois, Amandine; Harousseau, Jean-Luc; Milpied, Noel; Bene, Marie-Christine; Moreau, Philippe; Mohty, Mohamad; Chevallier, Patrice

    2015-04-01

    In the myeloablative transplant setting, the early use of fluconazole prophylaxis provides a benefit in overall survival. Recent changes in transplantation practices, including the use of peripheral blood stem cells (PBSC) and/or reduced intensity conditioning (RIC) regimen may have favorably impacted the epidemiology of invasive fungal infections (IFI) after allogeneic stem cell transplantation (allo-SCT). Yet, the impact of removing fluconazole prophylaxis after RIC PBSC allotransplant is ill known. Here, a retrospective analysis was performed comparing patients who received fluconazole as antifungal prophylaxis (n = 53) or not (n = 56) after allo-SCT for acute leukemia or myelodysplastic/myeloproliferative syndrome. Sixteen IFI were documented (14 %) at a median time of 103 days after transplantation, including eight before day +100, at a similar rate, whether the patients received fluconazole prophylaxis (13 %) or not (16 %). IFI were due mainly to Aspergillus species (87 %), and only two Candida-related IFI (13 %) were documented in the non-fluconazole group before day +100. The incidences of IFI (overall, before or after day +100) as well as 3-year overall and disease-free survival, non-relapse mortality, or acute and chronic graft-versus-host disease (GVHD) were similar between both groups. In conclusion, this study suggests that fluconazole may not be required at the initial phase of RIC allo-SCT using PBSC. This result has to be confirmed prospectively while Aspergillus prophylaxis should be discussed in this particular setting.

  10. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  11. [Microglial cells and development of the embryonic central nervous system].

    PubMed

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  12. Metal toxicity in the central nervous system

    SciTech Connect

    Clarkson, T.W.

    1987-11-01

    The nervous system is the principal target for a number of metals. The alkyl derivatives of certain metals-lead, mercury and tin-are specially neurotoxic. Concern over human exposure and in some cases, outbreaks of poisoning, have stimulated research into the toxic action of these metals. A number of interesting hypotheses have been proposed for the mechanism of lead toxicity on the nervous system. Lead is know to be a potent inhibitor of heme synthesis. A reduction in heme-containing enzymes could compromise energy metabolism. Lead may affect brain function by interference with neurotransmitters such as ..gamma..-amino-isobutyric acid. There is mounting evidence that lead interferes with membrane transport and binding of calcium ions. Methylmercury produces focal damage to specific areas in the adult brain. One hypothesis proposes that certain cells are susceptible because they cannot repair the initial damage to the protein synthesis machinery. The developing nervous system is especially susceptible to damage by methylmercury. It has been discovered that microtubules are destroyed by this form of mercury and this effect may explain the inhibition of cell division and cell migration, processes that occur only in the developmental stages.

  13. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  14. Reliability and concurrent validity of a peripheral pulse oximeter and health-app system for the quantification of heart rate in healthy adults.

    PubMed

    Losa-Iglesias, Marta Elena; Becerro-de-Bengoa-Vallejo, Ricardo; Becerro-de-Bengoa-Losa, Klark Ricardo

    2016-06-01

    There are downloadable applications (Apps) for cell phones that can measure heart rate in a simple and painless manner. The aim of this study was to assess the reliability of this type of App for a Smartphone using an Android system, compared to the radial pulse and a portable pulse oximeter. We performed a pilot observational study of diagnostic accuracy, randomized in 46 healthy volunteers. The patients' demographic data and cardiac pulse were collected. Radial pulse was measured by palpation of the radial artery with three fingers at the wrist over the radius; a low-cost portable, liquid crystal display finger pulse oximeter; and a Heart Rate Plus for Samsung Galaxy Note®. This study demonstrated high reliability and consistency between systems with respect to the heart rate parameter of healthy adults using three systems. For all parameters, ICC was > 0.93, indicating excellent reliability. Moreover, CVME values for all parameters were between 1.66-4.06 %. We found significant correlation coefficients and no systematic differences between radial pulse palpation and pulse oximeter and a high precision. Low-cost pulse oximeter and App systems can serve as valid instruments for the assessment of heart rate in healthy adults.

  15. Reliability and concurrent validity of a peripheral pulse oximeter and health-app system for the quantification of heart rate in healthy adults.

    PubMed

    Losa-Iglesias, Marta Elena; Becerro-de-Bengoa-Vallejo, Ricardo; Becerro-de-Bengoa-Losa, Klark Ricardo

    2016-06-01

    There are downloadable applications (Apps) for cell phones that can measure heart rate in a simple and painless manner. The aim of this study was to assess the reliability of this type of App for a Smartphone using an Android system, compared to the radial pulse and a portable pulse oximeter. We performed a pilot observational study of diagnostic accuracy, randomized in 46 healthy volunteers. The patients' demographic data and cardiac pulse were collected. Radial pulse was measured by palpation of the radial artery with three fingers at the wrist over the radius; a low-cost portable, liquid crystal display finger pulse oximeter; and a Heart Rate Plus for Samsung Galaxy Note®. This study demonstrated high reliability and consistency between systems with respect to the heart rate parameter of healthy adults using three systems. For all parameters, ICC was > 0.93, indicating excellent reliability. Moreover, CVME values for all parameters were between 1.66-4.06 %. We found significant correlation coefficients and no systematic differences between radial pulse palpation and pulse oximeter and a high precision. Low-cost pulse oximeter and App systems can serve as valid instruments for the assessment of heart rate in healthy adults. PMID:25038201

  16. A neuronal subpopulation in the mammalian enteric nervous system expresses TrkA and TrkC neurotrophin receptor-like proteins.

    PubMed

    Esteban, I; Levanti, B; Garcia-Suarez, O; Germanà, G; Ciriaco, E; Naves, F J; Vega, J A

    1998-07-01

    Increasing evidence suggests that, in addition to peripheral sensory and sympathetic neurons, the enteric neurons are also under the control of neurotrophins. Recently, neurotrophin receptors have been detected in the developing and adult mammalian enteric nervous system (ENS). Nevertheless, it remains to be established whether neurotrophin receptors are expressed in all enteric neurons and/or in glial cells and whether expression is a common feature in the enteric nervous system of all mammals or if interspecific differences exist. Rabbit polyclonal antibodies against Trk proteins (regarded as essential constituents of the high-affinity signal-transducing neurotrophin receptors) and p75 protein (considered as a low-affinity pan-neurotrophin receptor) were used to investigate the cell localization of these proteins in the ENS of adult man, horse, cow, sheep, pig, rabbit, and rat. Moreover, the percentage of neurons displaying immunoreactivity (IR) for each neurotrophin receptor protein was determined. TrkA-like IR and TrkC-like IR were observed in a neuronal subpopulation in both the myenteric and submucous plexuses, from esophagus to rectum in humans, and in the jejunum-ileum of the other species. Many neurons, and apparently all glial cells, in the human and rat enteric nervous system also displayed p75 IR. TrkB-like IR was found restricted to the glial cells of all species studied, with the exception of humans, in whom IR was mainly in glial cells and a small percentage of enteric neurons (about 5%). These findings indicate that the ENS of adult mammals express neuronal TrkA and TrkC, glial TrkB, and neuronal-glial p75, this pattern of distribution being similar in all examined species. Thus, influence of specific neurotrophins on their cognate receptors may be considered in the physiology and/or pathology of the adult ENS.

  17. Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus.

    PubMed

    Kilman, V; Fénelon, V S; Richards, K S; Thirumalai, V; Meyrand, P; Marder, E

    1999-06-01

    We studied the developmental acquisition of three of the cotransmitters found in the gastropyloric receptor (GPR) neurons of the stomatogastric nervous systems of the lobsters Homarus americanus and Homarus gammarus. By using wholemount immunocytochemistry and confocal microscopy, we examined the distribution of serotonin-like, allatostatin-like, and FLRF(NH2)-like immunoreactivities within the stomatogastric nervous system of embryonic, larval, juvenile, and adult animals. The GPR neurons are peripheral sensory neurons that send proprioceptive information to the stomatogastric and commissural ganglia. In H. americanus, GPR neurons of the adult contain serotonin-like, allatostatin-like, and Phe-Leu-Arg-Phe-amide (FLRF(NH2))-like immunoreactivities. In the stomatogastric ganglion (STG) of the adult H. americanus and H. gammarus, all of the serotonin-like and allatostatin-like immunoreactivity colocalizes in neuropil processes that are derived exclusively from ramifications of the GPR neurons. In both species, FLRF(NH2)-like immunoreactivity was detected in the STG neuropil by 50% of embryonic development (E50). Allatostatin-like immunoreactivity was visible first in the STG at approximately E70-E80. In contrast, serotonin staining was not clearly visible until larval stage I (LI) in H. gammarus and until LII or LIII in H. americanus. These data indicate that there is a sequential acquisition of the cotransmitters of the GPR neurons. PMID:10340509

  18. Central Nervous System Lipoproteins

    PubMed Central

    Mahley, Robert W.

    2016-01-01

    ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease. PMID:27174096

  19. Muscle fibers in the central nervous system of nemerteans: spatial organization and functional role.

    PubMed

    Petrov, A A; Zaitseva, O V

    2012-08-01

    The system of muscle fibers associated with the brain and lateral nerve cords is present in all major groups of enoplan nemerteans. Unfortunately, very little is known about the functional role and spatial arrangement of these muscles of the central nervous system. This article examines the architecture of the musculature of the central nervous system in two species of monostiliferous nemerteans (Emplectonema gracile and Tetrastemma cf. candidum) using phalloidin staining and confocal microscopy. The article also briefly discusses the body-wall musculature and the muscles of the cephalic region. In both species, the lateral nerve cords possess two pairs of cardinal muscles that run the length of the nerve cords and pass through the ventral cerebral ganglia. A system of peripheral muscles forms a meshwork around the lateral nerve cords in E. gracile. The actin-rich processes that ramify within the nerve cords in E. gracile (transverse fibers) might represent a separate population of glia-like cells or sarcoplasmic projections of the peripheral muscles of the central nervous system. The lateral nerve cords in T. cf. candidum lack peripheral muscles but have muscles similar in their position and orientation to the transverse fibers. The musculature of the central nervous system is hypothesized to function as a support system for the lateral nerve cords and brain, preventing rupturing and herniation of the nervous tissue during locomotion. The occurrence of muscles of the central nervous system in nemerteans and other groups and their possible relevance in taxonomy are discussed.

  20. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome.

    PubMed

    Patel, Ami; Yamashita, Naoya; Ascaño, Maria; Bodmer, Daniel; Boehm, Erica; Bodkin-Clarke, Chantal; Ryu, Yun Kyoung; Kuruvilla, Rejji

    2015-12-14

    Down syndrome is the most common chromosomal disorder affecting the nervous system in humans. To date, investigations of neural anomalies in Down syndrome have focused on the central nervous system, although dysfunction of the peripheral nervous system is a common manifestation. The molecular and cellular bases underlying peripheral abnormalities have remained undefined. Here, we report the developmental loss of sympathetic innervation in human Down syndrome organs and in a mouse model. We show that excess regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of the calcineurin phosphatase that is triplicated in Down syndrome, impairs neurotrophic support of sympathetic neurons by inhibiting endocytosis of the nerve growth factor (NGF) receptor, TrkA. Genetically correcting RCAN1 levels in Down syndrome mice markedly improves NGF-dependent receptor trafficking, neuronal survival and innervation. These results uncover a critical link between calcineurin signalling, impaired neurotrophin trafficking and neurodevelopmental deficits in the peripheral nervous system in Down syndrome.

  1. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome

    PubMed Central

    Patel, Ami; Yamashita, Naoya; Ascaño, Maria; Bodmer, Daniel; Boehm, Erica; Bodkin-Clarke, Chantal; Ryu, Yun Kyoung; Kuruvilla, Rejji

    2015-01-01

    Down syndrome is the most common chromosomal disorder affecting the nervous system in humans. To date, investigations of neural anomalies in Down syndrome have focused on the central nervous system, although dysfunction of the peripheral nervous system is a common manifestation. The molecular and cellular bases underlying peripheral abnormalities have remained undefined. Here, we report the developmental loss of sympathetic innervation in human Down syndrome organs and in a mouse model. We show that excess regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of the calcineurin phosphatase that is triplicated in Down syndrome, impairs neurotrophic support of sympathetic neurons by inhibiting endocytosis of the nerve growth factor (NGF) receptor, TrkA. Genetically correcting RCAN1 levels in Down syndrome mice markedly improves NGF-dependent receptor trafficking, neuronal survival and innervation. These results uncover a critical link between calcineurin signalling, impaired neurotrophin trafficking and neurodevelopmental deficits in the peripheral nervous system in Down syndrome. PMID:26658127

  2. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  3. Peripheral intravenous line (image)

    MedlinePlus

    A peripheral intravenous line is a small, short plastic catheter that is placed through the skin into a vein, ... or foot, but occasionally in the head. A peripheral intravenous line is used to give fluids and ...

  4. Peripheral arterial line (image)

    MedlinePlus

    A peripheral arterial line is a small, short plastic catheter placed through the skin into an artery of the arm or leg. The purpose of a peripheral arterial line is to allow continuous monitoring of ...

  5. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  6. Global research priorities for infections that affect the nervous system

    PubMed Central

    John, Chandy C.; Carabin, Hélène; Montano, Silvia M.; Bangirana, Paul; Zunt, Joseph R.; Peterson, Phillip K.

    2015-01-01

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  7. Global research priorities for infections that affect the nervous system.

    PubMed

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries.

  8. Global research priorities for infections that affect the nervous system.

    PubMed

    John, Chandy C; Carabin, Hélène; Montano, Silvia M; Bangirana, Paul; Zunt, Joseph R; Peterson, Phillip K

    2015-11-19

    Infections that cause significant nervous system morbidity globally include viral (for example, HIV, rabies, Japanese encephalitis virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, dengue virus and chikungunya virus), bacterial (for example, tuberculosis, syphilis, bacterial meningitis and sepsis), fungal (for example, cryptococcal meningitis) and parasitic (for example, malaria, neurocysticercosis, neuroschistosomiasis and soil-transmitted helminths) infections. The neurological, cognitive, behavioural or mental health problems caused by the infections probably affect millions of children and adults in low- and middle-income countries. However, precise estimates of morbidity are lacking for most infections, and there is limited information on the pathogenesis of nervous system injury in these infections. Key research priorities for infection-related nervous system morbidity include accurate estimates of disease burden; point-of-care assays for infection diagnosis; improved tools for the assessment of neurological, cognitive and mental health impairment; vaccines and other interventions for preventing infections; improved understanding of the pathogenesis of nervous system disease in these infections; more effective methods to treat and prevent nervous system sequelae; operations research to implement known effective interventions; and improved methods of rehabilitation. Research in these areas, accompanied by efforts to implement promising technologies and therapies, could substantially decrease the morbidity and mortality of infections affecting the nervous system in low- and middle-income countries. PMID:26580325

  9. Diagnostic approach to peripheral neuropathy

    PubMed Central

    Misra, Usha Kant; Kalita, Jayantee; Nair, Pradeep P.

    2008-01-01

    Peripheral neuropathy refers to disorders of the peripheral nervous system. They have numerous causes and diverse presentations; hence, a systematic and logical approach is needed for cost-effective diagnosis, especially of treatable neuropathies. A detailed history of symptoms, family and occupational history should be obtained. General and systemic examinations provide valuable clues. Neurological examinations investigating sensory, motor and autonomic signs help to define the topography and nature of neuropathy. Large fiber neuropathy manifests with the loss of joint position and vibration sense and sensory ataxia, whereas small fiber neuropathy manifests with the impairment of pain, temperature and autonomic functions. Electrodiagnostic (EDx) tests include sensory, motor nerve conduction, F response, H reflex and needle electromyography (EMG). EDx helps in documenting the extent of sensory motor deficits, categorizing demyelinating (prolonged terminal latency, slowing of nerve conduction velocity, dispersion and conduction block) and axonal (marginal slowing of nerve conduction and small compound muscle or sensory action potential and dennervation on EMG). Uniform demyelinating features are suggestive of hereditary demyelination, whereas difference between nerves and segments of the same nerve favor acquired demyelination. Finally, neuropathy is classified into mononeuropathy commonly due to entrapment or trauma; mononeuropathy multiplex commonly due to leprosy and vasculitis; and polyneuropathy due to systemic, metabolic or toxic etiology. Laboratory investigations are carried out as indicated and specialized tests such as biochemical, immunological, genetic studies, cerebrospinal fluid (CSF) examination and nerve biopsy are carried out in selected patients. Approximately 20% patients with neuropathy remain undiagnosed but the prognosis is not bad in them. PMID:19893645

  10. Neuritin, a neurotrophic factor in nervous system physiology.

    PubMed

    Zhou, S; Zhou, J

    2014-04-01

    Neuritin (also known as candidate plasticity gene 15, cpg15) is an activity-induced glycosylphosphatidylinositol- anchored axonal protein and is mainly expressed in the brain. Neuritin mRNA expression is modulated by neurotrophic factors, synaptic activity, hormones, sensory experience, and electroconvulsive seizure therapy. Neuritin has several effects in the nervous system, such as promoting neurite outgrowth, modulating neurite outgrowth during neuronal differentiation, protecting motor neuron axons, promoting dendritic growth, shaping dendritic arbors of target neurons, regulating synaptic plasticity, stabilizing active synapses, promoting synaptic maturation and neuronal migration, promoting the development and maturation of visual cortical neurons, regulating apoptosis of proliferative neurons, and regenerating peripheral nerve and spinal axons. Neuritin is also implicated in cerebral ischemia, depression, and cognitive function in schizophrenia, and it upregulates transient outward K(+) currents in neurons, suggesting that neuritin may be a potential therapeutic target in peripheral and central nervous system diseases. This review focuses on the expression, distribution, and physiological functions of neuritin in the nervous system. PMID:24350851

  11. Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair

    PubMed Central

    Bhangra, Kulraj Singh; Busuttil, Francesca

    2016-01-01

    Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application. PMID:27212954

  12. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves.

  13. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves. PMID:26718608

  14. Detection of peripheral nerve pathology

    PubMed Central

    Seelig, Michael J.; Baker, Jonathan C.; Mackinnon, Susan E.; Pestronk, Alan

    2013-01-01

    Objective: To compare accuracy of ultrasound and MRI for detecting focal peripheral nerve pathology, excluding idiopathic carpal or cubital tunnel syndromes. Methods: We performed a retrospective review of patients referred for neuromuscular ultrasound to identify patients who had ultrasound and MRI of the same limb for suspected brachial plexopathy or mononeuropathies, excluding carpal/cubital tunnel syndromes. Ultrasound and MRI results were compared to diagnoses determined by surgical or, if not performed, clinical/electrodiagnostic evaluation. Results: We identified 53 patients who had both ultrasound and MRI of whom 46 (87%) had nerve pathology diagnosed by surgical (n = 39) or clinical/electrodiagnostic (n = 14) evaluation. Ultrasound detected the diagnosed nerve pathology (true positive) more often than MRI (43/46 vs 31/46, p < 0.001). Nerve pathology was correctly excluded (true negative) with equal frequency by MRI and ultrasound (both 6/7). In 25% (13/53), ultrasound was accurate (true positive or true negative) when MRI was not. These pathologies were typically (10/13) long (>2 cm) and only occasionally (2/13) outside the MRI field of view. MRI missed multifocal pathology identified with ultrasound in 6 of 7 patients, often (5/7) because pathology was outside the MRI field of view. Conclusions: Imaging frequently detects peripheral nerve pathology and contributes to the differential diagnosis in patients with mononeuropathies and brachial plexopathies. Ultrasound is more sensitive than MRI (93% vs 67%), has equivalent specificity (86%), and better identifies multifocal lesions than MRI. In sonographically accessible regions ultrasound is the preferred initial imaging modality for anatomic evaluation of suspected peripheral nervous system lesions. PMID:23553474

  15. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  16. Peripheral haemodynamics in newborns: best practice guidelines.

    PubMed

    Weindling, Michael; Paize, Fauzia

    2010-03-01

    Peripheral haemodynamics refers to blood flow, which determines oxygen and nutrient delivery to the tissues. Peripheral blood flow is affected by vascular resistance and blood pressure, which in turn varies with cardiac function. Arterial oxygen content depends on the blood haemoglobin concentration (Hb) and arterial pO2; tissue oxygen delivery depends on the position of the oxygen-dissociation curve, which is determined by temperature and the amount of adult or fetal haemoglobin. Methods available to study tissue perfusion include near-infrared spectroscopy, Doppler flowmetry, orthogonal polarisation spectral imaging and the peripheral perfusion index. Cardiac function, blood gases, Hb, and peripheral temperature all affect blood flow and oxygen extraction. Blood pressure appears to be less important. Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing the intrathoracic pressure.

  17. An expanded cortical representation for hand movement after peripheral motor denervation

    PubMed Central

    Reddy, H; Bendahan, D; Lee, M; Johansen-Berg, H; Donaghy, M; Hilton-Jones, D; Matthews, P

    2002-01-01

    Objectives: Functional reorganisation of the motor or sensory cortex has been demonstrated in animals after section of mixed peripheral nerves. Here functional changes in the motor cortex specifically after peripheral motor denervation in humans are investigated. Methods: Functional MRI (fMRI) was used to study brain activation during a finger flexion-extension task in patients with a late onset, acquired pure motor neuropathy (n=6), contrasting results with those from patients with pure sensory neuropathies (n=4) or healthy controls (n=7). Results: Increases in the extent of activation in the motor cortex both ipsilateral and contralateral to the hand moved were found in the patients with motor neuropathy. The neuroanatomical localisation of the mixed contralateral sensorimotor cortex activation volume was more posterior for the patients with motor neuropathy than for the healthy controls (mean difference, 12 mm, p<0.05). The pure sensory neuropathy group by contrast showed no change in the extent of activation relative to healthy controls and a trend for more anterior primary sensorimotor cortex activation (p<0.06). To test whether the increased activation volumes found in patients with motor neuropathy were a result simply of factors such as increased effort with movement rather than the motor denervation, patients with hand weakness from inclusion body myositis (n=4) were studied while making similar hand movements. No differences in either the numbers of significantly activated voxels or in their localisation were found relative to healthy controls (n=10). Conclusions: These results provide a novel demonstration that peripheral denervation (as distinguished from factors related to weakness) leads to functional reorganisation of the sensorimotor cortex in the adult brain. This suggests that adaptive responses to motor denervation involve the central as well as the peripheral nervous system. PMID:11796770

  18. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  19. Impact of diabetes on vasculature: focus on nervous system.

    PubMed

    Skljarevski, Vladimir; Veves, Aristidis

    2005-08-01

    Chronic complications of diabetes mellitus represent a major cause of morbidity and mortality among those affected and have an enormous impact on society as a whole. Although these complications manifest as a number of clinically distinct syndromes, the pathology underlying them may be very similar, if not identical. Endothelial dysfunction leading to microcirculatory insufficiency and functional ischemia of tissues are proposed to play a pivotal role in the process of their development and progression. Diabetic complications affecting the nervous system occur not infrequently and may have disastrous consequences. This article reviews diabetic complications affecting central and peripheral nervous systems, focusing on similarities in their underlying microvascular pathology and discussing aspects of potentially successful therapeutic interventions. In addition, the article draws a parallel between microvascular dysfunction observed in persons with overt diabetes and those at risk for it.

  20. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  1. Enrico Sereni: research on the nervous system of cephalopods.

    PubMed

    De Leo, A

    2008-01-01

    This essay focuses on a paradigmatic moment in neurobiological studies of invertebrates: the research on the nervous system of cephalopods carried out by Enrico Sereni at the Naples Zoological Station between 1925 and 1931. Although he remained unknown on the historiographic scenario, probably due to his early death, he contributed to Italian science of the first half of the twentieth century. In my paper particular attention will be given to Sereni's study on the pigmentary-effector, neurohumoral, and peripheral nervous systems, since they also accounted for the historical foundation of the experimental vein that, through the years, would lead John Zachary Young, Sereni's follower, to the most well-known discovery of the giant nerve fibers.

  2. Subcortical cytoskeleton periodicity throughout the nervous system.

    PubMed

    D'Este, Elisa; Kamin, Dirk; Velte, Caroline; Göttfert, Fabian; Simons, Mikael; Hell, Stefan W

    2016-01-01

    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought. PMID:26947559

  3. Subcortical cytoskeleton periodicity throughout the nervous system.

    PubMed

    D'Este, Elisa; Kamin, Dirk; Velte, Caroline; Göttfert, Fabian; Simons, Mikael; Hell, Stefan W

    2016-03-07

    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought.

  4. Peripheral and central mechanisms of stress resilience

    PubMed Central

    Pfau, Madeline L.; Russo, Scott J.

    2014-01-01

    Viable new treatments for depression and anxiety have been slow to emerge, likely owing to the complex and incompletely understood etiology of these disorders. A budding area of research with great therapeutic promise involves the study of resilience, the adaptive maintenance of normal physiology and behavior despite exposure to marked psychological stress. This phenomenon, documented in both humans and animal models, involves coordinated biological mechanisms in numerous bodily systems, both peripheral and central. In this review, we provide an overview of resilience mechanisms throughout the body, discussing current research in animal models investigating the roles of the neuroendocrine, immune, and central nervous systems in behavioral resilience to stress. PMID:25506605

  5. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish.

    PubMed

    Levesque, Mitchell P; Krauss, Jana; Koehler, Carla; Boden, Cindy; Harris, Matthew P

    2013-03-01

    We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.

  6. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury.

    PubMed

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T; Sinske, Daniela; Knöll, Bernd

    2016-08-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  7. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  8. Expression of growth/differentiation factor 1 in the nervous system: Conservation of a bicistronic structure

    SciTech Connect

    Lee, Sejin )

    1991-05-15

    Growth/differentiation factor 1 (GDF-1) is a recently described member of the transforming growth factor {beta} superfamily isolated from a day-8.5 mouse embryo cDNA library. Northern (RNA) analysis of embryonic mRNA detected two GDF-1 transcripts (1.4 kilobases (kb) and 3.0 kb in length) displaying distinct temporal patterns of expression. Only the 3.0-kb transcript was detected in adult tissues, where its expression was restricted almost exclusively to the central nervous system. Comparison of murine and human brain cDNA sequences corresponding to the 3.0-kb transcript revealed high conservation of two nonoverlapping open reading frames with poor conservation of the intervening spacer region and the putative 5{prime} and 3{prime} untranslated sequences. By immunohistochemical analysis, the protein encoded by the downstream open reading frame (GDF-1) was detected exclusively in the brain, spinal cord, and peripheral nerves in day-14.5 mouse embryos. The upstream open reading frame encodes a protein of unknown function containing multiple putative membrane-spanning domains. These findings raise the possibility that this mRNA may give rise to two different proteins.

  9. Environmental effects on the central nervous system.

    PubMed Central

    Paulson, G W

    1977-01-01

    The central nervous system (CNS) is designed to respond to the environment and is peculiarly vulnerable to many of the influences found in the environment. Utilizing an anatomical classification (cortex, cerebellum, peripheral nerves) major toxins and stresses are reviewed with selections from recent references. Selective vulnerability of certain areas to particular toxins is apparent at all levels of the CNS, although the amount of damage produced by any noxious agent depends on the age and genetic substrate of the subject. It is apparent that the effects of certain well known and long respected environmental toxins such as lead, mercury, etc., deserve continued surveillance. In addition, the overwhelming impact on the CNS of social damages such as trauma, alcohol, and tobacco cannot be ignored by environmentalists. The effect of the hospital and therapeutic environment has become apparent in view of increased awareness of iatrogenic disorders. The need for particular laboratory tests, for example, examination of CSF and nerve conduction toxicity studies, is suggested. Epidemics such as the recent solvent neuropathies suggest a need for continued animal studies that are chronic, as well as acute evaluations when predicting the potential toxic effects of industrial compounds. PMID:202447

  10. VEGF is necessary for exercise-induced adult hippocampal neurogenesis.

    PubMed

    Fabel, Klaus; Fabel, Konstanze; Tam, Betty; Kaufer, Daniela; Baiker, Armin; Simmons, Natalie; Kuo, Calvin J; Palmer, Theo D

    2003-11-01

    Declining learning and memory function is associated with the attenuation of adult hippocampal neurogenesis. As in humans, chronic stress or depression in animals is accompanied by hippocampal dysfunction, and neurogenesis is correspondingly down regulated, in part, by the activity of the hypothalamic-pituitary-adrenal axis as well as glutamatergic and serotonergic networks. Antidepressants can reverse this effect over time but one of the most clinically effective moderators of stress or depression and robust stimulators of neurogenesis is simple voluntary physical exercise such as running. Curiously, running also elevates circulating stress hormone levels yet neurogenesis is doubled in running animals. In evaluating the signalling that running provides to the central nervous system in mice, we have found that peripheral vascular endothelial growth factor (VEGF) is necessary for the effects of running on adult hippocampal neurogenesis. Peripheral blockade of VEGF abolished running-induced neurogenesis but had no detectable effect on baseline neurogenesis in non-running animals. These data suggest that VEGF is an important element of a 'somatic regulator' of adult neurogenesis and that these somatic signalling networks can function independently of the central regulatory networks that are typically considered in the context of hippocampal neurogenesis.

  11. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  12. The nervous systems of basally branching nemertea (palaeonemertea).

    PubMed

    Beckers, Patrick; Loesel, Rudi; Bartolomaeus, Thomas

    2013-01-01

    In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks.

  13. Sympathetic nervous system and inflammation: a conceptual view.

    PubMed

    Jänig, Wilfrid

    2014-05-01

    The peripheral sympathetic nervous system is organized into function-specific pathways that transmit the activity from the central nervous system to its target tissues. The transmission of the impulse activity in the sympathetic ganglia and to the effector tissues is target cell specific and guarantees that the centrally generated command is faithfully transmitted. This is the neurobiological basis of autonomic regulations in which the sympathetic nervous system is involved. Each sympathetic pathway is connected to distinct central circuits in the spinal cord, lower and upper brain stem and hypothalamus. In addition to its conventional functions, the sympathetic nervous system is involved in protection of body tissues against challenges arising from the environment as well as from within the body. This function includes the modulation of inflammation, nociceptors and above all the immune system. Primary and secondary lymphoid organs are innervated by sympathetic postganglionic neurons and processes in the immune tissue are modulated by activity in these sympathetic neurons via adrenoceptors in the membranes of the immune cells (see Bellinger and Lorton, 2014). Are the primary and secondary lymphoid organs innervated by a functionally specific sympathetic pathway that is responsible for the modulation of the functioning of the immune tissue by the brain? Or is this modulation of immune functions a general function of the sympathetic nervous system independent of its specific functions? Which central circuits are involved in the neural regulation of the immune system in the context of neural regulation of body protection? What is the function of the sympatho-adrenal system, involving epinephrine, in the modulation of immune functions? PMID:24525016

  14. The Nervous Systems of Basally Branching Nemertea (Palaeonemertea)

    PubMed Central

    Beckers, Patrick; Loesel, Rudi; Bartolomaeus, Thomas

    2013-01-01

    In recent years, a lot of studies have been published dealing with the anatomy of the nervous system in different spiralian species. The only nemertean species investigated in this context probably shows derived characters and thus the conditions found there are not useful in inferring the relationship between nemerteans and other spiralian taxa. Ingroup relationships within Nemertea are still unclear, but there is some agreement that the palaeonemerteans form a basal, paraphyletic grade. Thus, palaeonemertean species are likely the most informative when comparing with other invertebrate groups. We therefore analyzed the nervous system of several palaeonemertean species by combining histology and immunostaining. 3D reconstructions based on the aligned slices were performed to get an overall impression of the central nervous system, and immunohistochemistry was chosen to reveal fine structures and to be able to compare the data with recently published results. The insights presented here permit a first attempt to reconstruct the primary organization of the nemertean nervous system. This comparative analysis allows substantiating homology hypotheses for nerves of the peripheral nervous system. This study also provides evidence that the nemertean brain primarily consists of two lobes connected by a strong ventral commissure and one to several dorsal commissures. During nemertean evolution, the brain underwent continuous compartmentalization into a pair of dorsal and ventral lobes interconnected by commissures and lateral tracts. Given that this conclusion can be corroborated by cladistic analyses, nemerteans should share a common ancestor with spiralians that primarily have a simple brain consisting of paired medullary, frontally commissurized and reinforced cords. Such an organization resembles the situation found in presumably basally branching annelids or mollusks. PMID:23785478

  15. Peripheral nerve injuries attributable to sport and recreation.

    PubMed

    Toth, Cory

    2009-02-01

    Many different sports and recreational activities are associated with injuries to the peripheral nervous system (PNS). Although some of those injuries are specific to an individual sport, other peripheral nerve injuries occur ubiquitously within many sporting activities. This review of sport-specific PNS injuries should assist in the understanding of morbidity associated with particular sporting activities, professional or amateur. Proper recognition of these syndromes can prevent unnecessary diagnostic testing and delays in proper diagnosis. The sports most commonly associated with peripheral nerve injuries are likely football, hockey, and baseball, but many other sports have unique associations with peripheral nerve injury. This article should be of assistance for the neurologist, neurosurgeon, orthopedic surgeon, physiatrist, sports medicine doctor, and general physician in contact with athletes at risk for neurologic injuries.

  16. Peripheral nerve injuries attributable to sport and recreation.

    PubMed

    Toth, Cory

    2008-02-01

    Many different sports and recreational activities are associated with injuries to the peripheral nervous system (PNS). Although some of those injuries are specific to an individual sport, other peripheral nerve injuries occur ubiquitously within many sporting activities. This review of sport-specific PNS injuries should assist in the understanding of morbidity associated with particular sporting activities, professional or amateur. Proper recognition of these syndromes can prevent unnecessary diagnostic testing and delays in proper diagnosis. The sports most commonly associated with peripheral nerve injuries are likely football, hockey, and baseball, but many other sports have unique associations with peripheral nerve injury. This article should be of assistance for the neurologist, neurosurgeon, orthopedic surgeon, physiatrist, sports medicine doctor, and general physician in contact with athletes at risk for neurologic injuries.

  17. Adult-Onset Fatal Neurohepatopathy in a Woman Caused by MPV17 Mutation.

    PubMed

    Mendelsohn, Bryce A; Mehta, Neil; Hameed, Bilal; Pekmezci, Melike; Packman, Seymour; Ralph, Jeffrey

    2014-01-01

    Hepatocerebral mitochondrial DNA depletion syndromes are classically considered diseases of early childhood, typically affecting the liver, peripheral, and central nervous systems with a rapidly progressive course. Evidence is emerging that initial symptom onset can extend into adulthood, though few such cases have been reported. We describe a 25-year-old woman who presented initially with secondary amenorrhea, followed by a megaloblastic anemia, lactic acidosis, leukoencephalopathy, progressive peripheral neuropathy, and liver cirrhosis. An apparently homozygous P98L mutation was identified in MPV17, a gene associated with a lethal infantile neurohepatopathy. Homozygosity for the same allele was recently reported in a man with a similar hepatic and neurologic phenotype. This is the first clinical report of an adult female with this disorder, and the first to describe amenorrhea and megaloblastic anemia as likely associated symptoms. PMID:24190800

  18. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases.

    PubMed

    Kipanyula, Maulilio John; Kimaro, Wahabu Hamisi; Seke Etet, Paul F

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca(2+)/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca(2+)-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  19. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    PubMed Central

    Kimaro, Wahabu Hamisi; Etet, Paul F. Seke

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.

  20. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases

    PubMed Central

    Kimaro, Wahabu Hamisi; Etet, Paul F. Seke

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  1. Solitary fibrous tumor of the central nervous system: report of an additional 5 cases with comprehensive literature review.

    PubMed

    Bisceglia, Michele; Dimitri, Lucia; Giannatempo, Giuseppe; Carotenuto, Vincenzo; Bianco, Mario; Monte, Vincenzo; D'Angelo, Vincenzo; Magro, Gaetano

    2011-08-01

    Solitary fibrous tumor (SFT) of the central nervous system was first described in 1996. A number of cases have been reported since. The authors present 5 new cases: 4 intracranial and 1 intraspinal. All patients were adults (age range, 47 to 75 years); 4 were male and 1 female; 4 cases were primary tumors; and 1 was a second tumor recurrence. All patients were surgically treated with gross total removal. All cases were histologically examined with immunohistochemical confirmation; 2 tumors exhibited diffuse classic histology, 1 tumor was a cellular variant, 1 tumor was myxoid, and 1 was predominantly classic with focal myxoid features and focally pleomorphic. The postoperative course was uneventful in all. The patient with the cellular variant experienced 2 local recurrences and eventually died of disease 10 years after the initial diagnosis. The patient with the myxoid variant--the tumor studied--which was the second recurrence of a previously misdiagnosed fibrous meningioma surgically treated 15 years earlier, had a recurrence after 2 years for the third time and eventually died of disease. Three patients are alive and well 11.6, 6, and 4 years after surgery. SFT is a rare tumor that needs to be differentiated from some mimickers, mainly fibrous meningioma, hemangiopericytoma, and with regard to the myxoid variant, also adult-onset myxochordoid meningioma and myxoid peripheral nerve sheath tumor. Immunohistochemistry is crucial for the correct diagnosis of SFT. The authors also performed a review of the literature and found a little more than 200 cases on record.

  2. Serotonergic Innervation of the Salivary Glands and Central Nervous System of Adult Glossina pallidipes Austen (Diptera: Glossinidae), and the Impact of the Salivary Gland Hypertrophy Virus (GpSGHV) on the Host.

    PubMed

    Guerra, Laura; Stoffolano, John G; Belardinelli, Maria Cristina; Fausto, Anna Maria

    2016-01-01

    Using a serotonin antibody and confocal microscopy, this study reports for the first time direct serotonergic innervation of the muscle sheath covering the secretory region of the salivary glands of adult tsetse fly, Glossina pallidipes Austen. Reports to date, however, note that up until this finding, dipteran species previously studied lack a muscle sheath covering of the secretory region of the salivary glands. Direct innervation of the salivary gland muscle sheath of tsetse would facilitate rapid deployment of saliva into the host, thus delaying a host response. Our results also suggest that the neuronal and abnormal pattern seen in viral infected glands by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is due to a compensatory increased branching of the neurons of the salivary glands, which is associated with the increased size of the salivary glands in viral infected flies. This study shows for the first time serotonin in the cell bodies of the brain and thoracico-abdominal ganglion in adult tsetse, G. pallidipes Austen (Diptera: Glossinidae). A hypothesis is proposed as to whether innervation of the muscle sheath covering of the secretory region of the salivary glands is present in brachyceran compared with nematoceran dipterans; and, a plea is made that more research is needed to develop a blood feeding model, similar to that in the blow flies, for elucidating the various mechanisms involved in production and deployment of saliva. PMID:26798144

  3. Peripherally acting opioids and clinical implications for pain control.

    PubMed

    Sehgal, Nalini; Smith, Howard S; Manchikanti, Laxmaiah

    2011-01-01

    Opioid receptors are widely expressed in the central and peripheral nervous system and in the non-neuronal tissues. Data from animal and human clinical studies support the involvement of peripheral opioid receptors in analgesia, especially in the presence of inflammation. Inflammation has been shown to increase the synthesis of opioid receptors in the dorsal root ganglion neurons and enhance transport and accumulation of opioid receptors in the peripheral terminals of sensory neurons. Under the influence of chemokines and adhesion molecules, opioid peptide-containing immune cells extravasate and accumulate in the injured tissues. Stress, chemokines, cytokines, and other releasing factors in inflamed tissues stimulate these granulocytes to release opioid peptides. Once secreted, opioid peptides bind to and activate peripheral opioid receptors on sensory nerve fibers and produce analgesia by decreasing the excitability of sensory nerves and/or inhibiting release of pro-inflammatory neuropeptides. Research has revealed that local application of exogenous opioid agonists produces a potent analgesic effect by activating peripheral opioid receptors in inflamed tissues. The analgesic activity occurs without activation of opioid receptors in the central nervous system (CNS), and therefore centrally mediated side effects, such as respiratory depression, mental clouding, altered consciousness, or addiction, are not associated with peripheral opioid activity. This discovery has stimulated research on developing peripherally restricted opioid agonists that lack CNS effects. In addition, it has been recognized that opioid receptors modulate inflammation, and that opioids have anti-inflammatory effects. The anti-inflammatory actions of opioids are not well known or understood. Conflicting reports on mu-opioids suggest both anti-inflammatory and pro-inflammatory effects. This article will present the basis for peripheral opioid analgesia and describe current research directed at

  4. The Effect of GVHD on Long-term Outcomes after Peripheral Blood Allogeneic Stem Cell Transplantation from an HLA-identical Sibling in Adult Acute Lymphocytic Leukemia: A Landmark Analysis Approach in Competing Risks.

    PubMed

    Jalali, Arash; Alimoghaddam, Kamran; Mahmoudi, Mahmood; Mohammad, Kazem; Mousavi, Seied Asadollah; Bahar, Babak; Vaezi, Mohammad; Zeraati, Hojjat; Jahani, Mohammad; Ghavamzadeh, Ardeshir

    2014-01-01

    Allogeneic Hematopoietic stem cell transplantation (HSCT) is the most effective therapy to prevent relapse in acute lymphocytic leukemia (ALL). This benefit is affected by non-relapse mortality (NRM) due to complications such as graft versus host disease (GVHD). A new approach in analyzing time-dependent covariates in competing risks is landmark analysis. So, the aim of this study is to evaluate the effect of acute and chronic GVHD on long-term outcomes, relapse and NRM, after allogeneic HSCT in adult ALL using landmark analysis. This study was conducted on 252 ALL patients who were allogeneic transplanted from an HLA-identical sibling with peripheral blood (PB) as the source of stem cell from 2004 to 2012 and were followed-up until 2013. In the first 100 days after transplant, a landmark analysis on days +10, +11, +12, +17, +24, and +31 was applied to assess the effect of acute GVHD on early relapse and NRM. Similarly, for patients alive and event-free at day +100 after transplant, a landmark analysis at time points day +101, months +4, +5, +6, +9, and +12 was applied to evaluate the effect of chronic GVHD on late relapse and NRM. Five-year LFS and OS were 35.0% (95% CI: 29.1, 42.2%) and 37.5% (95% CI: 31.3, 45.0%), respectively. Five-year cumulative incidence of relapse was 44.5% (95% CI: 37.9, 51.0%) while this was 20.4% (95% CI: 15.4, 26.0%) for NRM. The landmark analysis in the first 100 days after transplant showed that the grade III/IV of aGVHD has a lower risk of relapse but higher risk of NRM after adjustment for the EBMT risk score. For patients alive at day +100, cGVHD had no significant effect on relapse. Limited cGVHD had lower risk of NRM and after 6 month post-transplant the risk of NRM decreased and there were not important difference between the groups of cGVHD. Using advanced models enables us to estimate the effects more precisely and ultimately make inference more accurately.

  5. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women.

    PubMed

    Unternaehrer, Eva; Meyer, Andrea Hans; Burkhardt, Susan C A; Dempster, Emma; Staehli, Simon; Theill, Nathan; Lieb, Roselind; Meinlschmidt, Gunther

    2015-01-01

    In adults, reporting low and high maternal care in childhood, we compared DNA methylation in two stress-associated genes (two target sequences in the oxytocin receptor gene, OXTR; one in the brain-derived neurotrophic factor gene, BDNF) in peripheral whole blood, in a cross-sectional study (University of Basel, Switzerland) during 2007-2008. We recruited 89 participants scoring < 27 (n = 47, 36 women) or > 33 (n = 42, 35 women) on the maternal care subscale of the Parental Bonding Instrument (PBI) at a previous assessment of a larger group (N = 709, range PBI maternal care = 0-36, age range = 19-66 years; median 24 years). 85 participants gave blood for DNA methylation analyses (Sequenom(R) EpiTYPER, San Diego, CA) and cell count (Sysmex PocH-100i™, Kobe, Japan). Mixed model statistical analysis showed greater DNA methylation in the low versus high maternal care group, in the BDNF target sequence [Likelihood-Ratio (1) = 4.47; p = 0.035] and in one OXTR target sequence Likelihood-Ratio (1) = 4.33; p = 0.037], but not the second OXTR target sequence [Likelihood-Ratio (1) < 0.001; p = 0.995). Mediation analyses indicated that differential blood cell count did not explain associations between low maternal care and BDNF (estimate = -0.005, 95% CI = -0.025 to 0.015; p = 0.626) or OXTR DNA methylation (estimate = -0.015, 95% CI = -0.038 to 0.008; p = 0.192). Hence, low maternal care in childhood was associated with greater DNA methylation in an OXTR and a BDNF target sequence in blood cells in adulthood. Although the study has limitations (cross-sectional, a wide age range, only three target sequences in two genes studied, small effects, uncertain relevance of changes in blood cells to gene methylation in brain), the findings may indicate components of the epiphenotype from early life stress.

  6. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women.

    PubMed

    Unternaehrer, Eva; Meyer, Andrea Hans; Burkhardt, Susan C A; Dempster, Emma; Staehli, Simon; Theill, Nathan; Lieb, Roselind; Meinlschmidt, Gunther

    2015-01-01

    In adults, reporting low and high maternal care in childhood, we compared DNA methylation in two stress-associated genes (two target sequences in the oxytocin receptor gene, OXTR; one in the brain-derived neurotrophic factor gene, BDNF) in peripheral whole blood, in a cross-sectional study (University of Basel, Switzerland) during 2007-2008. We recruited 89 participants scoring < 27 (n = 47, 36 women) or > 33 (n = 42, 35 women) on the maternal care subscale of the Parental Bonding Instrument (PBI) at a previous assessment of a larger group (N = 709, range PBI maternal care = 0-36, age range = 19-66 years; median 24 years). 85 participants gave blood for DNA methylation analyses (Sequenom(R) EpiTYPER, San Diego, CA) and cell count (Sysmex PocH-100i™, Kobe, Japan). Mixed model statistical analysis showed greater DNA methylation in the low versus high maternal care group, in the BDNF target sequence [Likelihood-Ratio (1) = 4.47; p = 0.035] and in one OXTR target sequence Likelihood-Ratio (1) = 4.33; p = 0.037], but not the second OXTR target sequence [Likelihood-Ratio (1) < 0.001; p = 0.995). Mediation analyses indicated that differential blood cell count did not explain associations between low maternal care and BDNF (estimate = -0.005, 95% CI = -0.025 to 0.015; p = 0.626) or OXTR DNA methylation (estimate = -0.015, 95% CI = -0.038 to 0.008; p = 0.192). Hence, low maternal care in childhood was associated with greater DNA methylation in an OXTR and a BDNF target sequence in blood cells in adulthood. Although the study has limitations (cross-sectional, a wide age range, only three target sequences in two genes studied, small effects, uncertain relevance of changes in blood cells to gene methylation in brain), the findings may indicate components of the epiphenotype from early life stress. PMID:26061800

  7. [Cytokines and the nervous system: the relationship between seizures and epilepsy].

    PubMed

    Velasco-Ramirez, S F; Rosales-Rivera, L Y; Ramirez-Anguiano, A C; Bitzer-Quintero, O K

    2013-08-16

    INTRODUCTION. The immune system and the peripheral and central nervous system are in constant communication by means of messengers and signalling molecules released, such as cytokines, neuropeptides, neurohormones and neurotransmitters, among others. Seizures are defined as the transitory appearance of signs and symptoms that trigger an abnormally excessive neuronal activity in the brain. Following seizures the generation of a neuroinflammatory process has been observed to occur, with the consequent release of proinflammatory cytokines and inflammation-mediating molecules, which make the patient more prone to epilepsy. AIM. To offer evidence suggesting and supporting the role of cytokines in the appearance of seizures and in epilepsy, since these molecules have proven to have dual properties. DEVELOPMENT. The central nervous system, by means of the blood-brain barrier, restricts the flow of activated cells and inflammation mediators released from the peripheral system towards the brain parenchyma. Moreover, there is also another series of mechanisms that contributes to the 'selective and modified' immunity of the central nervous system. The purpose of all this series of events is to limit the responses of the immune system at central level, although it has been shown that in the central nervous system they are permanently under the control and regulation of the immune system. CONCLUSIONS. Cytokines in epilepsy play a dual role with pro- and anti-convulsive properties. Seizures do not induce the expression of cytokines only inside the brain, but also peripherally.

  8. Angioplasty and stent placement - peripheral arteries - discharge

    MedlinePlus

    Percutaneous transluminal angioplasty - peripheral artery - discharge; PTA - peripheral artery - discharge; Angioplasty - peripheral artery - discharge; Balloon angioplasty - peripheral artery- discharge; PAD - PTA discharge; PVD - ...

  9. Anatomic evidence for peripheral neural processing in mammalian graviceptors

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Ultrastructural study of utricular and saccular maculas demonstrates that their innervation patterns are complex. There is a clustering of type I and type II hair cells based upon a sharing of afferents, a system of efferent-type beaded fibers that is of intramacular (mostly calyceal) origin, and a plexus-like arrangement of afferents and efferents at many sites in the neuroepithelium. Results suggest that information concerning linear acceleration is processed peripherally, beginning at the hair cell level, before being sent to the central nervous system. The findings may supply a structural basis for peripheral adaptation to a constant stimulus, and for lateral inhibition to improve signal relative to noise.

  10. A neuromusculoskeletal model exploring peripheral mechanism of tremor.

    PubMed

    Zhang, Dingguo; Ang, Wei Tech; Poignet, Philippe

    2008-01-01

    This paper studies the peripheral mechanism contributing to the tremor of human body. It is known that the reflex loops in peripheral nervous system have significant influences on the tremor. A neuromusculoskeletal model with several reflex loops is developed to explore the origin of tremor. The muscle model is developed based on a Hill-type muscle model. The feedback loops include the spindle organ, Golgi tendon organ and Renshaw cell. Their effects are investigated quantitatively in detail. Some results are in accordance with the previous research. Meanwhile, some new findings are proposed according to the simulation study.

  11. Peripheral Neuropathy: Symptoms and Signs

    MedlinePlus

    ... Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  12. Decreased interleukin-15 from activated cord versus adult peripheral blood mononuclear cells and the effect of interleukin-15 in upregulating antitumor immune activity and cytokine production in cord blood.

    PubMed

    Qian, J X; Lee, S M; Suen, Y; Knoppel, E; van de Ven, C; Cairo, M S

    1997-10-15

    Interleukin-15 (IL-15) is an important lymphokine regulating natural killer (NK) activity, T-cell proliferation, and T-cell cytotoxic activities. We hypothesized that the reduced expression and production of IL-15 from cord blood (CB) may contribute to the immaturity of CB immunity and potentially delay immune reconstitution after CB transplantation. We compared the expression and production of IL-15 from activated cord versus adult mononuclear cells (MNCs) and the regulatory mechanisms associated with IL-15 expression in CB MNCs. We have also studied the effect of exogenous IL-15 stimulation on CB and adult peripheral blood (APB) MNCs in terms of NK and lymphokine-activated killer (LAK) activities and cytokine induction. Lipopolysaccharide (LPS)-stimulated CB and APB MNCs were used to determine IL-15 expression and protein production by Northern analysis and Western immunoblot analysis. IL-15 mRNA expression and protein accumulation in CB MNC were 25% +/- 2.0% (12 hours, n = 4, P < .05) and 30% +/- 2.5% (12 hours, n = 3, P < .05), respectively, when compared with APB MNCs. Nuclear run-on assays showed no differences between CB and APB MNCs during basal levels of transcription and after transcriptional activation. However, the half-life of IL-15 mRNA was approximately twofold lower in activated CB MNCs than in activated APB MNCs (CB: 101 +/- 5.8 minutes v APB: 210 +/- 8.2 minutes, n = 3, P < .05). Exogenous IL-15 significantly enhanced CB NK and LAK activities up to comparable levels of APB (P < .05). IL-15 also significantly induced interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) protein production (days 1, 3, and 6, P < .05, n = 3) in CB MNCs. IL-15-stimulated LAK cells induced a significant lytic response against two acute lymphoblastic cell lines and two pediatric neuroblastoma cell lines. Both NK and LAK activities were augmented by the combination of IL-12 and IL-15, and the low-dose combination of IL-12 and IL-15 achieved similar

  13. Lenalidomide Therapy for Patients With Relapsed and/or Refractory, Peripheral T-Cell Lymphomas

    ClinicalTrials.gov

    2012-04-18

    Peripheral T-cell Lymphomas; Adult T-cell Leukemia; Adult T-cell Lymphoma; Peripheral T-cell Lymphoma Unspecified; Angioimmunoblastic T-cell Lymphoma; Anaplastic Large Cell Lymphoma; T/Null Cell Systemic Type; Cutaneous t-Cell Lymphoma With Nodal/Visceral Disease

  14. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  15. Vulnerable processes of nervous system development: a review of markers and methods.

    PubMed

    Barone, S; Das, K P; Lassiter, T L; White, L D

    2000-01-01

    The susceptibility of the developing nervous system to damage following exposure to environmental contaminants has been well recognized. More recently, from a regulatory perspective, an increased emphasis has been placed on the vulnerability of the developing nervous system to damage following pesticide exposure. The publication of the National Academy of Sciences (NAS) report on Pesticides in the Diets of Infants and Children (1995) and the passage of the Food Quality Protection Act (FQPA) and Safe Drinking Water Act (SDWA) amendments have significantly escalated the scientific debate regarding age-related susceptibility. Key concerns raised in the NAS report include the qualitative and quantitative differences that distinguish the developing nervous system from that of the adult. It was suggested that neurotoxicity testing on adult animals alone may not be predictive of these differences in susceptibility. The age-related susceptibility of the nervous system is compounded by the protracted period of time over which this complex organ system develops. This temporal vulnerability spans the embryonic, fetal, infant, and adolescent periods. Normal development of the nervous system requires the concomitant and coordinated ontogeny of proliferation, migration, differentiation, synaptogenesis, gliogenesis, myelination and apoptosis to occur in a temporally- and regionally-dependent manner. Perturbations of these processes during development can result in long-term irreversible consequences that affect the structure and function of the nervous system and could account for qualitative differences in age-related susceptibility of the developing nervous system as compared to the adult nervous system. A discussion of developmental milestones and the relevance of transient effects on developmental endpoints are presented. Transient effects following developmental perturbations can be missed or dismissed depending on the experimental design or screening strategy employed. This

  16. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    NASA Astrophysics Data System (ADS)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  17. Towards a 'systems'-level understanding of the nervous system and its disorders.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2013-11-01

    It is becoming clear that nervous system development and adult functioning are highly coupled with other physiological systems. Accordingly, neurological and psychiatric disorders are increasingly being associated with a range of systemic comorbidities including, most prominently, impairments in immunological and bioenergetic parameters as well as in the gut microbiome. Here, we discuss various aspects of the dynamic crosstalk between these systems that underlies nervous system development, homeostasis, and plasticity. We believe a better definition of this underappreciated systems physiology will yield important insights into how nervous system diseases with systemic comorbidities arise and potentially identify novel diagnostic and therapeutic strategies.

  18. Peripheral Artery Disease (PAD)

    MedlinePlus

    ... changes and medication . View an animation of atherosclerosis Atherosclerosis and PAD Atherosclerosis is a disease in which plaque builds up ... of an artery. PAD is usually caused by atherosclerosis in the peripheral arteries (or outer regions away ...

  19. Peripheral Vascular Disease

    MedlinePlus

    ... Information Center Back to previous page En español Aneurysms and Dissections Angina Arrhythmia Bundle Branch Block Cardiomyopathy ... blockage including peripheral artery disease or PAD Aortic aneurysms Buerger's Disease Raynaud's Phenomenon Disease of the veins ...

  20. Peripheral Arterial Disease

    MedlinePlus

    Peripheral arterial disease (PAD) happens when there is a narrowing of the blood vessels outside of your heart. The cause of ... smoking. Other risk factors include older age and diseases like diabetes, high blood cholesterol, high blood pressure, ...

  1. Occlusive Peripheral Arterial Disease

    MedlinePlus

    ... artery. Such people should seek medical care immediately. Did You Know... When people suddenly develop a painful, ... In This Article Animation 1 Peripheral Arterial Disease Did You Know 1 Did You Know... Figure 1 ...

  2. [Peripheral ulcerative keratitis].

    PubMed

    Stamate, Alina-cristina; Avram, Corina Ioana; Malciolu, R; Oprea, S; Zemba, M

    2014-01-01

    Ulcerative keratitis is frequently associated with collagen vascular diseases and presents a predilection for peripheral corneal localization, due to the distinct morphologic and immunologic features of the limbal conjunctiva, which provides access for the circulating immune complexes to the peripheral cornea via the capillary network. Deposition of immune complexes in the terminal ends of limbal vessels initiates an immune-mediated vasculitis process, with inflammatory cells and mediators involvement by alteration of the vascular permeability. Peripheral ulcerative keratitis generally correlates with exacerbations of the background autoimmune systemic disease. Associated sceritis, specially the necrotizing form, is usually observed in severe cases, which may evolve in corneal perforation and loss of vision. Although the first-line of treatment in acute phases is represented by systemic administration of corticosteroids, immunosuppressive and cytotoxic agents are necessary for the treatment of peripheral ulcerative keratitis associated with systemic diseases.

  3. Shockwave-induced compound action potentials in the peripheral nerve.

    PubMed

    Wehner, H D; Sellier, K

    1981-01-01

    To verify a presumed interaction between shockwaves arisen by impacts of high velocity projectiles and nervous tissue an electrophysiological experiment is performed with the following results: In peripheral nerves regular compound action potentials (CAPs) are provoked by shockwaves the amplitudes of which are increased corresponding to the pressure intensity of the shockwaves. The nerve shows no electrical activity below a certain pressure threshold (0.75 bar). Saturation of the CAP amplitude occurs beyond a pressure limit of 8 bar.

  4. Electrodiagnosis of peripheral neuropathy.

    PubMed

    Ross, Mark A

    2012-05-01

    Electrodiagnostic studies are an important component of the evaluation of patients with suspected peripheral nerve disorders. The pattern of findings and the features that are seen on the motor and sensory nerve conduction studies and needle electromyography can help to identify the type of neuropathy, define the underlying pathophysiology (axonal or demyelinating), and ultimately help to narrow the list of possible causes. This article reviews the electrodiagnostic approach to and interpretation of findings in patients with peripheral neuropathies.

  5. Permanent Peripheral Neuropathy

    PubMed Central

    Higgins, Elizabeth

    2014-01-01

    The health risks and side effects of fluoroquinolone use include the risk of tendon rupture and myasthenia gravis exacerbation, and on August 15, 2013, the Food and Drug Administration updated its warning to include the risk of permanent peripheral neuropathy. We present a case of fluoroquinolone-induced peripheral neuropathy in a patient treated for clinically diagnosed urinary tract infection with ciprofloxacin antibiotic. PMID:26425618

  6. Peripheral chemoreceptors in congenital central hypoventilation syndrome.

    PubMed

    Perez, Iris A; Keens, Thomas G

    2013-01-01

    Congenital central hypoventilation syndrome is a rare disorder caused by a mutation in the PHOX2B gene resulting in hypoventilation that is worse during sleep. Human physiologic studies show that patients with CCHS have absent or decreased rebreathing ventilatory responses to hypercapnia and hypoxemia during sleep as well as during wakefulness. Some ventilatory responses to hypoxia and hyperoxia can be demonstrated using a step change in inspired oxygen. However, these suggest that both central and peripheral chemoreceptor functions are generally defective in all states in children with CCHS. The defect in CCHS may lie in central nervous system pathways regulating ventilation, whose development and function are controlled by PHOX2B. Moreover, the retrotrapezoid nucleus (RTN) may be the major defect in CCHS, where central and peripheral inputs converge. Human physiological studies predicted that the defect in CCHS lies in central integration of the central and peripheral chemoreceptor signals. New evidence suggests the RTN may be the respiratory controller where chemoreceptor inputs are integrated. In this review we present the clinical presentation of CCHS, revisit results of human physiologic studies, and discuss the findings in light of new knowledge about the role of PHOX2B and RTN in CCHS.

  7. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors. PMID:24212967

  8. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders.

    PubMed

    Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel

    2015-11-01

    Present interventions utilized in musculoskeletal rehabilitation are guided, in large part, by a biomedical model where peripheral structural injury is believed to be the sole driver of the disorder. There are, however, neurophysiological changes across different areas of the peripheral and central nervous systems, including peripheral receptors, dorsal horn of the spinal cord, brain stem, sensorimotor cortical areas, and the mesolimbic and prefrontal areas associated with chronic musculoskeletal disorders, including chronic low back pain, osteoarthritis, and tendon injuries. These neurophysiological changes appear not only to be a consequence of peripheral structural injury but also to play a part in the pathophysiology of chronic musculoskeletal disorders. Neurophysiological changes are consistent with a biopsychosocial formulation reflecting the underlying mechanisms associated with sensory and motor findings, psychological traits, and perceptual changes associated with chronic musculoskeletal conditions. These changes, therefore, have important implications in the clinical manifestation, pathophysiology, and treatment of chronic musculoskeletal disorders. Musculoskeletal rehabilitation professionals have at their disposal tools to address these neuroplastic changes, including top-down cognitive-based interventions (eg, education, cognitive-behavioral therapy, mindfulness meditation, motor imagery) and bottom-up physical interventions (eg, motor learning, peripheral sensory stimulation, manual therapy) that induce neuroplastic changes across distributed areas of the nervous system and affect outcomes in patients with chronic musculoskeletal disorders. Furthermore, novel approaches such as the use of transcranial direct current stimulation and repetitive transcranial magnetic stimulation may be utilized to help renormalize neurological function. Comprehensive treatment addressing peripheral structural injury as well as neurophysiological changes occurring across

  9. Pathological impact of SMN2 mis-splicing in adult SMA mice

    PubMed Central

    Sahashi, Kentaro; Ling, Karen K Y; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya-Ping; Lin, Richard Z; Ko, Chien-Ping; Bennett, C Frank; Krainer, Adrian R

    2013-01-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose–response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA. PMID:24014320

  10. Central Nervous System Device Infections.

    PubMed

    Hasbun, Rodrigo

    2016-11-01

    Nosocomial meningitis can occur in association with central nervous system (CNS) devices such as cerebrospinal shunts or drains, intrathecal pumps, and deep brain stimulators and carry substantial morbidity and mortality. Diagnosing and treating these infections may be challenging to physicians as cerebrospinal fluid cultures may be negative due to previous antibiotic therapy and cerebrospinal abnormalities may be secondary to the primary neurosurgical issue that prompted the placement of the CNS device (e.g., "chemical meningitis" due to intracranial hemorrhage). Besides antibiotic therapy given intravenously and sometimes intrathecally, removal of the device with repeat cultures prior to re-implantation is key in achieving successful outcomes. PMID:27686676

  11. Lavender and the Nervous System

    PubMed Central

    Koulivand, Peir Hossein; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2013-01-01

    Lavender is traditionally alleged to have a variety of therapeutic and curative properties, ranging from inducing relaxation to treating parasitic infections, burns, insect bites, and spasm. There is growing evidence suggesting that lavender oil may be an effective medicament in treatment of several neurological disorders. Several animal and human investigations suggest anxiolytic, mood stabilizer, sedative, analgesic, and anticonvulsive and neuroprotective properties for lavender. These studies raised the possibility of revival of lavender therapeutic efficacy in neurological disorders. In this paper, a survey on current experimental and clinical state of knowledge about the effect of lavender on the nervous system is given. PMID:23573142

  12. Testing the autonomic nervous system.

    PubMed

    Freeman, Roy; Chapleau, Mark W

    2013-01-01

    Autonomic testing is used to define the role of the autonomic nervous system in diverse clinical and research settings. Because most of the autonomic nervous system is inaccessible to direct physiological testing, in the clinical setting the most widely used techniques entail the assessment of an end-organ response to a physiological provocation. The noninvasive measures of cardiovascular parasympathetic function involve the assessment of heart rate variability while the measures of cardiovascular sympathetic function assess the blood pressure response to physiological stimuli. Tilt-table testing, with or without pharmacological provocation, has become an important tool in the assessment of a predisposition to neurally mediated (vasovagal) syncope, the postural tachycardia syndrome, and orthostatic hypotension. Distal, postganglionic, sympathetic cholinergic (sudomotor) function may be evaluated by provoking axon reflex mediated sweating, e.g., the quantitative sudomotor axon reflex (QSART) or the quantitative direct and indirect axon reflex (QDIRT). The thermoregulatory sweat test provides a nonlocalizing measure of global pre- and postganglionic sudomotor function. Frequency domain analyses of heart rate and blood pressure variability, microneurography, and baroreflex assessment are currently research tools but may find a place in the clinical assessment of autonomic function in the future. PMID:23931777

  13. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  14. Low-Energy Laser Irradiation And The Nervous System: Method And Results

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, R.; Nissan, M.; Barr-Nea, L.

    1988-06-01

    The present study introduces a novel method for assessing the efficacy of so-called soft tissue lasers on the peripheral and central nervous systems. In any readily available method relying on low energy laser irradiation, one of the most critical factors is obviously the wavelength of the laser, for this will determine how much of the energy applied to the skin or muscle actually reaches the target nerve. The present findings reaffirm our conclusion that low energy laser irradiation is bene-ficial in the treatment of injured peripheral or central nervous system, the beneficial effect diminishing with decreasing wavelength from 632nm down to 465nm. Our results pave the way for a new approach to the treatment of traumatic paraplegia and argue in favor of a combination of laser irradiation and PNS or CNS transplantation for the treatment of spinal cord injury.

  15. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system

    EPA Science Inventory

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. T...

  16. Subcortical cytoskeleton periodicity throughout the nervous system

    PubMed Central

    D’Este, Elisa; Kamin, Dirk; Velte, Caroline; Göttfert, Fabian; Simons, Mikael; Hell, Stefan W.

    2016-01-01

    Superresolution fluorescence microscopy recently revealed a ~190 nm periodic cytoskeleton lattice consisting of actin, spectrin, and other proteins underneath the membrane of cultured hippocampal neurons. Whether the periodic cytoskeleton lattice is a structural feature of all neurons and how it is modified when axons are ensheathed by myelin forming glial cells is not known. Here, STED nanoscopy is used to demonstrate that this structure is a commonplace of virtually all neuron types in vitro. To check how the subcortical meshwork is modified during myelination, we studied sciatic nerve fibers from adult mice. Periodicity of both actin and spectrin was uncovered at the internodes, indicating no substantial differences between unmyelinated and myelinated axons. Remarkably, the actin/spectrin pattern was also detected in glial cells such as cultured oligodendrocyte precursor cells. Altogether our work shows that the periodic subcortical cytoskeletal meshwork is a fundamental characteristic of cells in the nervous system and is not a distinctive feature of neurons, as previously thought. PMID:26947559

  17. Functional Mapping of Protein Kinase A Reveals Its Importance in Adult Schistosoma mansoni Motor Activity

    PubMed Central

    de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology

  18. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  19. Peripheral nerve stimulation: definition.

    PubMed

    Abejón, David; Pérez-Cajaraville, Juan

    2011-01-01

    Recently, there has been a tremendous evolution in the field of neurostimulation, both from the technological point of view and from development of the new and different indications. In some areas, such as peripheral nerve stimulation, there has been a boom in recent years due to the variations in the surgical technique and the improved results documented by in multiple published papers. All this makes imperative the need to classify and define the different types of stimulation that are used today. The confusion arises when attempting to describe peripheral nerve stimulation and subcutaneous stimulation. Peripheral nerve stimulation, in its pure definition, involves implanting a lead on a nerve, with the aim to produce paresthesia along the entire trajectory of the stimulated nerve.

  20. Electrical stimulation of the nervous system for pain control.

    PubMed

    Long, D M

    1978-01-01

    Transcutaneous electrical stimulation appears to be a valid technique for the treatment of many pain states. Its use in chronic pain is limited and it appears to be much more likely to be effective in the relief of acute painful states. Nevertheless, since it provides a simple way to treat a significant number of patients whose pain would otherwise by intractable, it has been a valuable addition to the armamentarium of the physician dealing with chronic pain. Peripheral nerve stimulation is an excellent way to relieve pain of peripheral nerve injury origin and certain painful, poorly understood, vasopastic or reflex sympathetic states. Spinal cord stimulation has been revived by the advent of percutaneous stimulators. The technique is currently the best available for the treatment of the patient suffering from the chronic low back syndrome with severe arachnoiditis, for whom no definitive therapy is available. Brain stimulation has been relegated to therapy for pain of central nervous system origin. It is a most promising technique though its application appears to be limited at this point to a few specific problems. The seriousness of potential complications has kept it from being widely applicable to date. There is little information concerning the mechanism whereby these various techniques are effective. Transcutaneous and peripheral nerve stimulation might have their effect through peripheral mechanisms or through a gating mechanism in the posterior horn (Melzack and Wall 1965; Campbell and Taub 1973). Spinal cord stimulation could act through a retrograde effect upon a dorsal horn gate or have more central actions. Brain stimulation in the opiate receptor system may be effective through activation of this system. The mechanisms of action of stimulation in the sensory system centrally are certainly not well understood (Bloedel 1974).

  1. Inherited Peripheral Neuropathies

    PubMed Central

    Saporta, Mario A.; Shy, Michael E.

    2013-01-01

    SYNOPSIS Charcot Marie Tooth disease (CMT) is a heterogeneous group of inherited peripheral neuropathies in which the neuropathy is the sole or primary component of the disorder, as opposed to diseases in which the neuropathy is part of a more generalized neurological or multisystem syndrome. Due to the great genetic heterogeneity of this condition, it can be challenging for the general neurologist to diagnose patients with specific types of CMT. Here, we review the biology of the inherited peripheral neuropathies, delineate major phenotypic features of the CMT subtypes and suggest strategies for focusing genetic testing. PMID:23642725

  2. Peripheral nerve morphogenesis induced by scaffold micropatterning

    PubMed Central

    Memon, Danish; Boneschi, Filippo Martinelli; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D.; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-01-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous microstructure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold’s microstructure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  3. Morphologic characterization of spontaneous nervous system tumors in mice and rats.

    PubMed

    Krinke, G J; Kaufmann, W; Mahrous, A T; Schaetti, P

    2000-01-01

    Spontaneous rodent nervous system tumors, in comparison to those of man, are less well differentiated. Among the central nervous system (CNS) tumors, the "embryonic" forms (medulloblastoma, pineoblastoma) occur both in rodents and humans, whereas the human "adult" forms (gliomas, ependymomas, meningiomas) have fewer counterparts in rodents. In general, the incidence of spontaneous CNS tumors is higher in rats (>1%) than in mice (>0.001%). A characteristic rat CNS tumor is the granular cell tumor. Usually it is associated with the meninges, and most meningeal tumors in rats seem to be totally or at least partly composed of granular cells, which have eosinophilic granular cytoplasm, are periodic acid-Schiff reaction (PAS)-positive, and contain lysosomes. Such tumors are frequently found on the cerebellar surface or at the brain basis. Rat astrocytomas are diffuse, frequently multifocal, and they invade perivascular spaces and meninges. The neoplastic cells with round to oval nuclei and indistinct cytoplasm grow around preexisting neurons, producing satellitosis. In large tumors, there are necrotic areas surrounded by palisading cells. Extensive damage of brain tissue is associated with the presence of scavenger cells that react positively with histiocytic/macrophage markers. The neoplastic astrocytes do not stain positively for glial fibrillary acidic protein; they probably represent an immature phenotype. In contrast to neoplastic oligodendroglia, they bind the lectin RCA-1. Astrocytomas are frequently located in the brain stem, especially the basal ganglia. Rat oligodendroglial tumors are well circumscribed and frequently grow in the walls of brain ventricles. Their cells have water-clear cytoplasm and round, dark-staining nuclei. Atypical vascular endothelial proliferation occurs, especially at the tumor periphery. Occasionally in the oligodendrogliomas, primitive glial elements with large nuclei occur in the form of cell groups that form rows and circles

  4. Targeting protein kinases in central nervous system disorders

    PubMed Central

    Chico, Laura K.; Van Eldik, Linda J.; Watterson, D. Martin

    2010-01-01

    Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges. PMID:19876042

  5. Pathogen-inspired drug delivery to the central nervous system.

    PubMed

    McCall, Rebecca L; Cacaccio, Joseph; Wrabel, Eileen; Schwartz, Mary E; Coleman, Timothy P; Sirianni, Rachael W

    2014-01-01

    For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents.

  6. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    PubMed Central

    Johnson, Theodore S.; Munn, David H.; Maria, Bernard L.

    2012-01-01

    Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance. PMID:22312408

  7. Pathogen-inspired drug delivery to the central nervous system

    PubMed Central

    McCall, Rebecca L; Cacaccio, Joseph; Wrabel, Eileen; Schwartz, Mary E; Coleman, Timothy P; Sirianni, Rachael W

    2014-01-01

    For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents. PMID:25610755

  8. Treatment of peripheral neuropathies.

    PubMed Central

    Hallett, M; Tandon, D; Berardelli, A

    1985-01-01

    There are three general approaches to treatment of peripheral neuropathy. First, an attempt should be made to reverse the pathophysiological process if its nature can be elucidated. Second, nerve metabolism can be stimulated and regeneration encouraged. Third, even if the neuropathy itself cannot be improved, symptomatic therapy can be employed. This review outlines the options available for each approach. PMID:3003254

  9. Chondroitin Sulfate Proteoglycans in the Nervous System: Inhibitors to Repair

    PubMed Central

    Siebert, Justin R.; Conta Steencken, Amanda; Osterhout, Donna J.

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are widely expressed in the normal central nervous system, serving as guidance cues during development and modulating synaptic connections in the adult. With injury or disease, an increase in CSPG expression is commonly observed close to lesioned areas. However, these CSPG deposits form a substantial barrier to regeneration and are largely responsible for the inability to repair damage in the brain and spinal cord. This review discusses the role of CSPGs as inhibitors, the role of inflammation in stimulating CSPG expression near site of injury, and therapeutic strategies for overcoming the inhibitory effects of CSPGs and creating an environment conducive to nerve regeneration. PMID:25309928

  10. The Homology Model of PMP22 Suggests Mutations Resulting in Peripheral Neuropathy Disrupt Transmembrane Helix Packing

    PubMed Central

    2015-01-01

    Peripheral myelin protein 22 (PMP22) is a tetraspan membrane protein strongly expressed in myelinating Schwann cells of the peripheral nervous system. Myriad missense mutations in PMP22 result in varying degrees of peripheral neuropathy. We used Rosetta 3.5 to generate a homology model of PMP22 based on the recently published crystal structure of claudin-15. The model suggests that several mutations known to result in neuropathy act by disrupting transmembrane helix packing interactions. Our model also supports suggestions from previous studies that the first transmembrane helix is not tightly associated with the rest of the helical bundle. PMID:25243937

  11. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    SciTech Connect

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  12. Imaging of a glioma using peripheral benzodiazepine receptor ligands.

    PubMed Central

    Starosta-Rubinstein, S; Ciliax, B J; Penney, J B; McKeever, P; Young, A B

    1987-01-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of 3H-labeled PK 11195 [1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] or [3H]flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes. Images PMID:3027710

  13. TrkB/BDNF signalling patterns the sympathetic nervous system.

    PubMed

    Kasemeier-Kulesa, Jennifer C; Morrison, Jason A; Lefcort, Frances; Kulesa, Paul M

    2015-01-01

    The sympathetic nervous system is essential for maintaining mammalian homeostasis. How this intricately connected network, composed of preganglionic neurons that reside in the spinal cord and post-ganglionic neurons that comprise a chain of vertebral sympathetic ganglia, arises developmentally is incompletely understood. This problem is especially complex given the vertebral chain of sympathetic ganglia derive secondarily from the dorsal migration of 'primary' sympathetic ganglia that are initially located several hundred microns ventrally from their future pre-synaptic partners. Here we report that the dorsal migration of discrete ganglia is not a simple migration of individual cells but a much more carefully choreographed process that is mediated by extensive interactions of pre-and post-ganglionic neurons. Dorsal migration does not occur in the absence of contact with preganglionic axons, and this is mediated by BDNF/TrkB signalling. Thus BDNF released by preganglionic axons acts chemotactically on TrkB-positive sympathetic neurons, to pattern the developing peripheral nervous system. PMID:26404565

  14. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  15. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  16. Fine structure of synaptogenesis in the vertebrate central nervous system.

    PubMed

    Vaughn, J E

    1989-01-01

    This article reviews studies of the formation of synaptic junctions in the vertebrate central nervous system. It is focused on electron microscopic investigations of synaptogenesis, although insights from other disciplines are interwoven where appropriate, as are findings from developing peripheral and invertebrate nervous systems. The first part of the review is concerned with the morphological maturation of synapses as described from both qualitative and quantitative perspectives. Next, epigenetic influences on synaptogenesis are examined, and later in the article the concept of epigenesis is integrated with that of hierarchy. It is suggested that the formation of synaptic junctions may take place as an ordered progression of epigenetically modulated events wherein each level of cellular affinity becomes subordinate to the one that follows. The ultimate determination of whether a synapse is maintained, modified or dissolved would be made by the changing molecular fabric of its junctional membranes. In closing, a hypothetical model of synaptogenesis is proposed, and an hierarchial order of events is associated with a speculative synaptogenic sequence. Key elements of this hypothesis are 1) epigenetic factors that facilitate generally appropriate interactions between neurites; 2) independent expression of surface specializations that contain sufficient information for establishing threshold recognition between interacting neurites; 3) exchange of molecular information that biases the course of subsequent junctional differentiation and ultimately results in 4) the stabilization of synaptic junctions into functional connectivity patterns. PMID:2655146

  17. Development of the Nervous System of Carinina ochracea (Palaeonemer-tea, Nemertea)

    PubMed Central

    von Döhren, Jörn

    2016-01-01

    The various clades of Lophotrochozoa possess highly disparate adult morphologies. Most of them, including Nemertea (ribbon worms), are postulated to develop via a pelagic larva of the trochophora type, which is regarded as plesiomorphic in Lophotrochozoa. With respect to the nervous system, the trochophora larva displays a set of stereotypic features, including an apical organ and trochal neurites, both of which are lost at the onset of metamorphosis. In the investigated larvae of Nemertea, the nervous system is somewhat divergent from the postulated hypothetical trochophore-like pattern. Moreover, no detailed data is available for the “hidden” trochophore larva, the hypothetical ancestral larval type of palaeonemertean species. Therefore, the development of the nervous system in the larva of Carinina ochracea, a basally branching palaeonemertean species, was studied by means of immunofluorescence and confocal laserscanning microscopy. Like in the other investigated nemertean larvae, the prospective adult central nervous system in C. ochracea develops in an anterior to posterior direction, as an anterior brain with paired longitudinal nerve cords. Thus, development of the adult nervous system in Nemertea is largely congruent with currently accepted hypotheses of nervous system development in Spiralia. In early development, transitory apical, serotonin-like immunoreactive flask-shaped cells are initially present, but the trochal neurites that have been considered as pivotal to lophotrochozoan development, are absent. In the light of the above stated hypothesis, trochal neurites have to be interpreted as reduced in Nemertea. On the other hand, due to the unsettled systematic status of Palaeonemertea, more comparative data are desirable to answer the remaining questions regarding the evolution of nervous system development in Nemertea. PMID:27792762

  18. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  19. Angioplasty and stent placement -- peripheral arteries

    MedlinePlus

    Percutaneous transluminal angioplasty - peripheral artery; PTA - peripheral artery; Angioplasty - peripheral arteries; Iliac artery -angioplasty; Femoral artery - angioplasty; Popliteal artery - angioplasty; Tibial artery - angioplasty; ...

  20. Chemotherapy-induced peripheral neuropathy: an update on the current understanding.

    PubMed

    Addington, James; Freimer, Miriam

    2016-01-01

    Chemotherapy-induced peripheral neuropathy is a common side effect of selected chemotherapeutic agents. Previous work has suggested that patients often under report the symptoms of chemotherapy-induced peripheral neuropathy and physicians fail to recognize the presence of such symptoms in a timely fashion. The precise pathophysiology that underlies chemotherapy-induced peripheral neuropathy, in both the acute and the chronic phase, remains complex and appears to be medication specific. Recent work has begun to demonstrate and further clarify potential pathophysiological processes that predispose and, ultimately, lead to the development of chemotherapy-induced peripheral neuropathy. There is increasing evidence that the pathway to neuropathy varies with each agent. With a clearer understanding of how these agents affect the peripheral nervous system, more targeted treatments can be developed in order to optimize treatment and prevent long-term side effects.

  1. Chemotherapy-induced peripheral neuropathy: an update on the current understanding

    PubMed Central

    Addington, James; Freimer, Miriam

    2016-01-01

    Chemotherapy-induced peripheral neuropathy is a common side effect of selected chemotherapeutic agents. Previous work has suggested that patients often under report the symptoms of chemotherapy-induced peripheral neuropathy and physicians fail to recognize the presence of such symptoms in a timely fashion. The precise pathophysiology that underlies chemotherapy-induced peripheral neuropathy, in both the acute and the chronic phase, remains complex and appears to be medication specific. Recent work has begun to demonstrate and further clarify potential pathophysiological processes that predispose and, ultimately, lead to the development of chemotherapy-induced peripheral neuropathy. There is increasing evidence that the pathway to neuropathy varies with each agent. With a clearer understanding of how these agents affect the peripheral nervous system, more targeted treatments can be developed in order to optimize treatment and prevent long-term side effects. PMID:27408692

  2. Peripheral neural activity recording and stimulation system.

    PubMed

    Loi, D; Carboni, C; Angius, G; Angotzi, G N; Barbaro, M; Raffo, L; Raspopovic, S; Navarro, X

    2011-08-01

    This paper presents a portable, embedded, microcontroller-based system for bidirectional communication (recording and stimulation) between an electrode, implanted in the peripheral nervous system, and a host computer. The device is able to record and digitize spontaneous and/or evoked neural activities and store them in data files on a PC. In addition, the system has the capability of providing electrical stimulation of peripheral nerves, injecting biphasic current pulses with programmable duration, intensity, and frequency. The recording system provides a highly selective band-pass filter from 800 Hz to 3 kHz, with a gain of 56 dB. The amplification range can be further extended to 96 dB with a variable gain amplifier. The proposed acquisition/stimulation circuitry has been successfully tested through in vivo measurements, implanting a tf-LIFE electrode in the sciatic nerve of a rat. Once implanted, the device showed an input referred noise of 0.83 μVrms, was capable of recording signals below 10 μ V, and generated muscle responses to injected stimuli. The results demonstrate the capability of processing and transmitting neural signals with very low distortion and with a power consumption lower than 1 W. A graphic, user-friendly interface has been developed to facilitate the configuration of the entire system, providing the possibility to activate stimulation and monitor recordings in real time.

  3. Bruxism is mainly regulated centrally, not peripherally.

    PubMed

    Lobbezoo, F; Naeije, M

    2001-12-01

    Bruxism is a controversial phenomenon. Both its definition and the diagnostic procedure contribute to the fact that the literature about the aetiology of this disorder is difficult to interpret. There is, however, consensus about the multifactorial nature of the aetiology. Besides peripheral (morphological) factors, central (pathophysiological and psychological) factors can be distinguished. In the past, morphological factors, like occlusal discrepancies and the anatomy of the bony structures of the orofacial region, have been considered the main causative factors for bruxism. Nowadays, these factors play only a small role, if any. Recent focus is more on the pathophysiological factors. For example, bruxism has been suggested to be part of a sleep arousal response. In addition, bruxism appears to be modulated by various neurotransmitters in the central nervous system. More specifically, disturbances in the central dopaminergic system have been linked to bruxism. Further, factors like smoking, alcohol, drugs, diseases and trauma may be involved in the bruxism aetiology. Psychological factors like stress and personality are frequently mentioned in relation to bruxism as well. However, research to these factors comes to equivocal results and needs further attention. Taken all evidence together, bruxism appears to be mainly regulated centrally, not peripherally.

  4. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adults with irritable bowel syndrome (IBS) have been reported to have alterations in autonomic nervous system function as measured by vagal activity via heart rate variability. Whether the same is true for children is unknown. We compared young children 7 to 10 years of age with functional abdominal...

  5. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  6. Chemotherapy-induced peripheral neurotoxicity in cancer survivors: an underdiagnosed clinical entity?

    PubMed

    Cavaletti, Guido; Alberti, Paola; Marmiroli, Paola

    2015-01-01

    Systemic chemotherapy is a cornerstone of the modern medical management of cancer, although its use is limited by toxicity on normal tissues and organs, including the nervous system. Long-surviving or cured people strongly require a high level of wellness in addition to prolongation of life (the concept of the quality of survival), but neurologic dysfunction can severely affect daily life activities. Chemotherapy-related peripheral neurotoxicity is becoming one of the most worrisome long-term side effects in patients affected by a neoplasm. The central nervous system has a limited capacity to recover from injuries, and it is not surprising that severe damage can determine long-term or permanent neurologic dysfunction. However, the peripheral nervous system also can be permanently damaged by anticancer treatments despite its better regeneration capacities, and the effect on patients' daily life activities might be extremely severe. However, only recently, the paradigms of peripheral neurotoxicity reversibility have been scientifically challenged, and studies have been performed to capture the patients' perspectives on this issue and to measure the effect of peripheral neurotoxicity on their daily life activities. Despite these efforts, knowledge about this problem is still largely incomplete, and further studies are necessary to clarify the several still-unsettled aspects of long-term peripheral neurotoxicity of conventional and targeted anticancer chemotherapy.

  7. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  8. Radiation response of the central nervous system

    SciTech Connect

    Schultheiss, T.E.; Kun, L.E.; Stephens, L.C.

    1995-03-30

    This report reviews the anatomical, pathophysiological, and clinical aspects of radiation injury to the central nervous system (CNS). Despite the lack of pathoGyomonic characteristics for CNS radiation lesions, demyelination and malacia are consistently the dominant morphological features of radiation myelopathy. In addition, cerebral atrophy is commonly observed in patients with neurological deficits related to chemotherapy and radiation, and neurocognitive deficits are associated with diffuse white matter changes. Clinical and experimental dose-response information have been evaluated and summarized into specific recommendations for the spinal cord and brain. The common spinal cord dose limit of 45 Gn in 22 to 25 fractions is conservative and can be relaxed if respecting this limit materially reduces the probability of tumor control. It is suggested that the 5% incidence of radiation myelopathy probably lies between 57 and 61 Gy to the spinal cord in the absence of dose modifying chemotherapy. A clinically detectable length effect for the spinal cord has not been observed. The effects of chemotherapy and altered fractionation are also discussed. Brain necrosis in adults is rarely noted below 60 Gy in conventional fractionation, with imaging and clinical changes being observed generally only above 50 Gy. However, neurocognitive effects are observed at lower doses, especially in children. A more pronounced volume effect is believed to exist in the brain than in the spinal cord. Tumor progression may be hard to distinguish from radiation and chemotherapy effects. Diffuse white matter injury can be attributed to radiation and associated with neurological deficits, but leukoencephalopathy is rarely observed in the absence of chemotherapy. Subjective, objective, management, and analytic (SOMA) parameters related to radiation spinal cord and brain injury have been developed and presented on ordinal scales. 140 refs., 3 figs., 6 tabs.

  9. Restoring nervous system structure and function using tissue engineered living scaffolds

    PubMed Central

    Struzyna, Laura A.; Harris, James P.; Katiyar, Kritika S.; Chen, H. Isaac; Cullen, D. Kacy

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery. PMID:26109930

  10. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model

    PubMed Central

    Slavuljica, Irena; Kveštak, Daria; Csaba Huszthy, Peter; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-01-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8+ T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed. PMID:25042632

  11. Restoring nervous system structure and function using tissue engineered living scaffolds.

    PubMed

    Struzyna, Laura A; Harris, James P; Katiyar, Kritika S; Chen, H Isaac; Cullen, D Kacy

    2015-05-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  12. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model.

    PubMed

    Slavuljica, Irena; Kveštak, Daria; Huszthy, Peter Csaba; Kosmac, Kate; Britt, William J; Jonjić, Stipan

    2015-03-01

    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed.

  13. Restoring nervous system structure and function using tissue engineered living scaffolds.

    PubMed

    Struzyna, Laura A; Harris, James P; Katiyar, Kritika S; Chen, H Isaac; Cullen, D Kacy

    2015-05-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery. PMID:26109930

  14. Alternative Quantitative Tools in the Assessment of Diabetic Peripheral and Autonomic Neuropathy.

    PubMed

    Vinik, A I; Casellini, C; Névoret, M-L

    2016-01-01

    Here we review some seldom-discussed presentations of diabetic neuropathy, including large fiber dysfunction and peripheral autonomic dysfunction, emphasizing the impact of sympathetic/parasympathetic imbalance. Diabetic neuropathy is the most common complication of diabetes and contributes additional risks in the aging adult. Loss of sensory perception, loss of muscle strength, and ataxia or incoordination lead to a risk of falling that is 17-fold greater in the older diabetic compared to their young nondiabetic counterparts. A fall is accompanied by lacerations, tears, fractures, and worst of all, traumatic brain injury, from which more than 60% do not recover. Autonomic neuropathy has been hailed as the "Prophet of Doom" for good reason. It is conducive to increased risk of myocardial infarction and sudden death. An imbalance in the autonomic nervous system occurs early in the evolution of diabetes, at a stage when active intervention can abrogate the otherwise relentless progression. In addition to hypotension, many newly recognized syndromes can be attributed to cardiac autonomic neuropathy such as orthostatic tachycardia and bradycardia. Ultimately, this constellation of features of neuropathy conspire to impede activities of daily living, especially in the patient with pain, anxiety, depression, and sleep disorders. The resulting reduction in quality of life may worsen prognosis and should be routinely evaluated and addressed. Early neuropathy detection can only be achieved by assessment of both large and small- nerve fibers. New noninvasive sudomotor function technologies may play an increasing role in identifying early peripheral and autonomic neuropathy, allowing rapid intervention and potentially reversal of small-fiber loss.

  15. Identification of PN1, a Predominant Voltage-Dependent Sodium Channel Expressed Principally in Peripheral Neurons

    NASA Astrophysics Data System (ADS)

    Toledo-Aral, Juan J.; Moss, Brenda L.; He, Zhi-Jun; Koszowski, Adam G.; Whisenand, Teri; Levinson, Simon R.; Wolf, John J.; Silos-Santiago, Inmaculada; Halegoua, Simon; Mandel, Gail

    1997-02-01

    Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.

  16. Cadmium Exposure and Incident Peripheral Arterial Disease

    PubMed Central

    Tellez-Plaza, Maria; Guallar, Eliseo; Fabsitz, Richard R.; Howard, Barbara V.; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Devereux, Richard B.; Navas-Acien, Ana

    2014-01-01

    Background Cadmium has been associated with peripheral arterial disease in cross-sectional studies but prospective evidence is lacking. Our goal was to evaluate the association of urine cadmium concentrations with incident peripheral arterial disease in a large population-based cohort. Methods and Results A prospective cohort study was performed with 2,864 adult American Indians 45-74 years old from Arizona, Oklahoma and North and South Dakota who participated in the Strong Heart Study in 1989-91 and were followed through two follow-up examination visits in 1993-1995 and 1997-1999. Participants were free of peripheral arterial disease, defined as an ankle brachial index <0.9 or >1.4, at baseline and had complete baseline information on urine cadmium, potential confounders and ankle brachial index determinations in the follow-up examinations. Urine cadmium was measured using inductively coupled plasma mass spectrometry (ICPMS) and corrected for urinary dilution by normalization to urine creatinine.. Multivariable-adjusted hazard ratios (HR) were computed using Cox-proportional hazards models for interval-censored data. A total of 470 cases of incident peripheral arterial disease, defined as an ankle brachial index <0.9 or >1.4, were identified. After adjustment for cardiovascular disease risk factors including smoking status and pack-years, the hazard ratio comparing the 80th to the 20th percentile of urine cadmium concentrations was 1.41 (1.05, 1.81). The hazard ratio comparing the highest to the lowest tertile was 1.96 (1.32, 2.81). The associations persisted after excluding participants with ankle brachial index > 1.4 only as well as in subgroups defined by sex and smoking status. Conclusions Urine cadmium, a biomarker of long-term cadmium exposure, was independently associated with incident peripheral arterial disease, providing further support for cadmium as a cardiovascular disease risk factor. PMID:24255048

  17. Peripheral neuropathy and parkinsonism: a large clinical and pathogenic spectrum.

    PubMed

    Vital, Anne; Lepreux, Sebastien; Vital, Claude

    2014-12-01

    Peripheral neuropathy (PN) has been reported in idiopathic and hereditary forms of parkinsonism, but the pathogenic mechanisms are unclear and likely heterogeneous. Levodopa-induced vitamin B12 deficiency has been discussed as a causal factor of PN in idiopathic Parkinson's disease, but peripheral nervous system involvement might also be a consequence of the underlying neurodegenerative process. Occurrence of PN with parkinsonism has been associated with a panel of mitochondrial cytopathies, more frequently related to a nuclear gene defect and mainly polymerase gamma (POLG1) gene. Parkin (PARK2) gene mutations are responsible for juvenile parkinsonism, and possible peripheral nervous system involvement has been reported. Rarely, an association of parkinsonism with PN may be encountered in other neurodegenerative diseases such as fragile X-associated tremor and ataxia syndrome related to premutation CGG repeat expansion in the fragile X mental retardation (FMR1) gene, Machado-Joseph disease related to an abnormal CAG repeat expansion in ataxin-3 (ATXN3) gene, Kufor-Rakeb syndrome caused by mutations in ATP13A2 gene, or in hereditary systemic disorders such as Gaucher disease due to mutations in the β-glucocerebrosidase (GBA) gene and Chediak-Higashi syndrome due to LYST gene mutations. This article reviews conditions in which PN may coexist with parkinsonism. PMID:25582874

  18. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1.

    PubMed

    Kastrukoff, L F; Lau, A S; Kim, S U

    1987-07-01

    The peripheral inoculation of herpes simplex virus type 1 (HSV 1) in experimental animals induces central nervous system (CNS) demyelinating lesions, but the potential relevance of this model to multiple sclerosis is lessened by the unifocal nature of the lesion. In this study, inbred strains of mice were selected on the basis of varying resistance to mortality following lip inoculation with virus. A spectrum of CNS pathology was observed, ranging from focal collections of inflammatory cells at the trigeminal root entry zone in resistant strains (C57BL/6J), to unifocal demyelinating lesions in moderately resistant strains (BALB/cByJ), to multifocal demyelinating lesions throughout the brain in susceptible strains (A/J). Findings from viral titration studies of the CNS support a direct cytolytic effect of virus in the development of demyelinating lesions at the trigeminal root entry zone but cannot exclude an immune-mediated component. Furthermore, 50% tissue-culture-infective doses, immunofluorescence, and electron microscopic studies of primary cultures of oligodendrocytes, derived from the three strains of adult mice, identify differences in resistance to HSV 1 infection in vitro, suggesting that differences at this level may also contribute to the pathological appearance. Multifocal lesions in A/J mice were first observed when the infectious virus could no longer be isolated from the CNS and may be the result of an immune-mediated process "triggered" by the acute CNS infection in susceptible strains of mice.

  19. Pomalidomide and Dexamethasone in Treating Patients With Relapsed or Refractory Primary Central Nervous System Lymphoma or Newly Diagnosed or Relapsed or Refractory Intraocular Lymphoma

    ClinicalTrials.gov

    2016-09-12

    B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Central Nervous System Lymphoma; Intraocular Lymphoma; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Recurrent Adult Diffuse Large Cell Lymphoma; Retinal Lymphoma

  20. Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial

    PubMed Central

    2012-01-01

    Background Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. Methods/Design In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. Discussion Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. Trial registration Clinical trials.gov identifier: NCT01442623 PMID:22449224

  1. Choice of Unmanipulated T Cell Replete Graft for Haploidentical Stem Cell Transplant and Posttransplant Cyclophosphamide in Hematologic Malignancies in Adults: Peripheral Blood or Bone Marrow—Review of Published Literature

    PubMed Central

    Farhan, Shatha; Peres, Edward; Janakiraman, Nalini

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (SCT) is often the only curative option for many patients with malignant and benign hematological stem cell disorders. However, some issues are still of concern regarding finding a donor like shrinking family sizes in many societies, underrepresentation of the ethnic minorities in the registries, genetic variability for some races, and significant delays in obtaining stem cells after starting the search. So there is a considerable need to develop alternate donor stem cell sources. The rapid and near universal availability of the haploidentical donor is an advantage of the haploidentical SCT and an opportunity that is being explored currently in many centers especially using T cell replete graft and posttransplant cyclophosphamide. This is probably because it does not require expertise in graft manipulation and because of the lower costs. However, there are still lots of unanswered questions, like the effect of use of bone marrow versus peripheral blood as the source of stem cells on graft-versus-host disease, graft versus tumor, overall survival, immune reconstitution, and quality of life. Here we review the available publications on bone marrow and peripheral blood experience in the haploidentical SCT setting. PMID:27118973

  2. [Functional anatomy of the central nervous system].

    PubMed

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  3. Parasitic diseases of the central nervous system.

    PubMed

    Abdel Razek, Ahmed Abdel Khalek; Watcharakorn, Arvemas; Castillo, Mauricio

    2011-11-01

    This article reviews the characteristic imaging appearances of parasitic diseases of the central nervous system, including cysticercosis, toxoplasmosis, cystic echinococcosis, schistosomiasis, amebiasis, malariasis, sparganosis, paragonimiasis, and American and African trypanosomiases. Routine precontrast and postcontrast MR imaging helps in localization, characterization, delineation of extension, and follow-up of the parasitic lesions. Moreover, recently developed tools, such as diffusion, perfusion, and MR spectroscopy, help to differentiate parasitic diseases of the central nervous system from simulating lesions. Combining imaging findings with geographic prevalence, clinical history, and serologic tests is required for diagnosis of parasitic diseases of the central nervous system.

  4. The sympathetic nervous system and heart failure.

    PubMed

    Zhang, David Y; Anderson, Allen S

    2014-02-01

    Heart failure (HF) is a syndrome characterized by upregulation of the sympathetic nervous system and abnormal responsiveness of the parasympathetic nervous system. Studies in the 1980s and 1990s demonstrated that inhibition of the renin-angiotensin-aldosterone system with angiotensin-converting enzyme inhibitors improved symptoms and mortality in HF resulting from systolic dysfunction, thus providing a framework to consider the use of β-blockers for HF therapy, contrary to the prevailing wisdom of the time. Against this backdrop, this article reviews the contemporary understanding of the sympathetic nervous system and the failing heart.

  5. Fluctuations in central and peripheral temperatures induced by intravenous nicotine: central and peripheral contributions.

    PubMed

    Tang, Jeremy S; Kiyatkin, Eugene A

    2011-04-01

    Nicotine (NIC) is a highly addictive substance that interacts with different subtypes of nicotinic acetylcholine receptors widely distributed in the central and peripheral nervous systems. While the direct action of NIC on central neurons appears to be essential for its reinforcing properties, the role of peripheral actions of this drug remains a matter of controversy. In this study, we examined changes in locomotor activity and temperature fluctuations in the brain (nucleus accumbens and ventral tegmental area), temporal muscle, and skin induced by intravenous (iv) NIC at low human-relevant doses (10 and 30μg/kg) in freely moving rats. These effects were compared to those induced by social interaction, an arousing procedure that induces behavioral activation and temperature responses via pure neural mechanisms, and iv injections of a peripherally acting NIC analog, NIC pyrrolidine methiodide (NIC-PM) used at equimolar doses. We found that NIC at 30μg/kg induces a modest locomotor activation, rapid and strong decrease in skin temperature, and weak increases in brain and muscle temperature. While these effects were qualitatively similar to those induced by social interaction, they were much weaker and showed a tendency to increase with repeated drug administrations. In contrast, NIC-PM did not affect locomotion and induced much weaker than NIC increases in brain and muscle temperatures and decreases in skin temperature; these effects showed a tendency to be weaker with repeated drug administrations. Our data indicate that NIC's actions in the brain are essential to induce locomotor activation and brain and body hyperthermic responses. However, rapid peripheral action of NIC on sensory afferents could be an important factor in triggering its central effects, contributing to neural and physiological activation following repeated drug use. PMID:21295014

  6. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.

  7. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development.

    PubMed

    Schachtner, Logan T; Sola, Ismail E; Forand, Daniel; Antonacci, Simona; Postovit, Adam J; Mortimer, Nathan T; Killian, Darrell J; Olesnicky, Eugenia C

    2015-11-01

    The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system. PMID:26271810

  8. Recurrent peripheral cemento-ossifying fibroma.

    PubMed

    Pereira, Treville; Shetty, Subraj; Shetty, Arvind; Pereira, Svylvy

    2015-01-01

    Peripheral cement-ossifying fibroma (PCOF) is a rare osteogenic neoplasm that ordinarily presents as an epulis-like growth. It frequently occurs in maxillary anterior region in teenagers and young adults. We report a case of PCOF in a 42-year-old male, which was previously surgically excised and recurred after a period of 2 years. PCOF should be considered in the differential diagnosis of reactive hyperplastic lesions originating from gingiva. Hence, early diagnosis with proper surgical excision and aggressive curettage of the adjacent tissues is essential for prevention of recurrence. PMID:26229278

  9. Recurrent peripheral cemento-ossifying fibroma.

    PubMed

    Pereira, Treville; Shetty, Subraj; Shetty, Arvind; Pereira, Svylvy

    2015-01-01

    Peripheral cement-ossifying fibroma (PCOF) is a rare osteogenic neoplasm that ordinarily presents as an epulis-like growth. It frequently occurs in maxillary anterior region in teenagers and young adults. We report a case of PCOF in a 42-year-old male, which was previously surgically excised and recurred after a period of 2 years. PCOF should be considered in the differential diagnosis of reactive hyperplastic lesions originating from gingiva. Hence, early diagnosis with proper surgical excision and aggressive curettage of the adjacent tissues is essential for prevention of recurrence.

  10. [Management of peripheral facial nerve palsy in children].

    PubMed

    Tabarki, B

    2014-10-01

    Peripheral facial nerve palsy may (secondary) or may not have a detectable cause (idiopathic facial palsy or Bell's palsy). Idiopathic facial palsy is the common form of facial palsy. It remains diagnosis by exclusion. The prognosis is more favourable in children than in adults. We present current diagnostic procedures and recommendations regarding treatment in children.

  11. Deaf and Hearing Children: A Comparison of Peripheral Vision Development

    ERIC Educational Resources Information Center

    Codina, Charlotte; Buckley, David; Port, Michael; Pascalis, Olivier

    2011-01-01

    This study investigated peripheral vision (at least 30[degrees] eccentric to fixation) development in profoundly deaf children without cochlear implantation, and compared this to age-matched hearing controls as well as to deaf and hearing adult data. Deaf and hearing children between the ages of 5 and 15 years were assessed using a new,…

  12. Peripherally induced oromandibular dystonia

    PubMed Central

    Sankhla, C.; Lai, E.; Jankovic, J.

    1998-01-01

    OBJECTIVES—Oromandibular dystonia (OMD) is a focal dystonia manifested by involuntary muscle contractions producing repetitive, patterned mouth, jaw, and tongue movements. Dystonia is usually idiopathic (primary), but in some cases it follows peripheral injury. Peripherally induced cervical and limb dystonia is well recognised, and the aim of this study was to characterise peripherally induced OMD.
METHODS—The following inclusion criteria were used for peripherally induced OMD: (1) the onset of the dystonia was within a few days or months (up to 1 year) after the injury; (2) the trauma was well documented by the patient's history or a review of their medical and dental records; and (3) the onset of dystonia was anatomically related to the site of injury (facial and oral).
RESULTS—Twenty seven patients were identified in the database with OMD, temporally and anatomically related to prior injury or surgery. No additional precipitant other than trauma could be detected. None of the patients had any litigation pending. The mean age at onset was 50.11 (SD 14.15) (range 23-74) years and there was a 2:1 female preponderance. Mean latency between the initial trauma and the onset of OMD was 65 days (range 1 day-1 year). Ten (37%) patients had some evidence of predisposing factors such as family history of movement disorders, prior exposure to neuroleptic drugs, and associated dystonia affecting other regions or essential tremor. When compared with 21 patients with primary OMD, there was no difference for age at onset, female preponderance, and phenomenology. The frequency of dystonic writer's cramp, spasmodic dysphonia, bruxism, essential tremor, and family history of movement disorder, however, was lower in the post-traumatic group (p<0.05). In both groups the response to botulinum toxin treatment was superior to medical therapy (p<0.005). Surgical intervention for temporomandibular disorders was more frequent in the post-traumatic group and was associated with

  13. Unraveling the Pathogenesis of HIV Peripheral Neuropathy: Insights from a Simian Immunodeficiency Virus Macaque Model

    PubMed Central

    Mangus, Lisa M.; Dorsey, Jamie L.; Laast, Victoria A.; Ringkamp, Matthias; Ebenezer, Gigi J.; Hauer, Peter; Mankowski, Joseph L.

    2014-01-01

    Peripheral neuropathy (PN) is the most frequent neurologic complication in individuals infected with human immunodeficiency virus (HIV). It affects over one third of infected patients, including those receiving effective combination antiretroviral therapy. The pathogenesis of HIV-associated peripheral neuropathy (HIV-PN) remains poorly understood. Clinical studies are complicated because both HIV and antiretroviral treatment cause damage to the peripheral nervous system. To study HIV-induced peripheral nervous system (PNS) damage, a unique simian immunodeficiency virus (SIV)/pigtailed macaque model of HIV-PN that enabled detailed morphologic and functional evaluation of the somatosensory pathway throughout disease progression was developed. Studies in this model have demonstrated that SIV induces key pathologic features that closely resemble HIV-induced alterations, including inflammation and damage to the neuronal cell bodies in somatosensory ganglia and decreased epidermal nerve fiber density. Insights generated in the model include: finding that SIV alters the conduction properties of small, unmyelinated peripheral nerves; and that SIV impairs peripheral nerve regeneration. This review will highlight the major findings in the SIV-infected pigtailed macaque model of HIV-PN, and will illustrate the great value of a reliable large animal model to show the pathogenesis of this complex, HIV-induced disorder of the PNS. PMID:24615443

  14. Distribution of /sup 109/Cd in the nervous system of rats after intravenous injection

    SciTech Connect

    Arvidson, B.; Tjaelve, H.

    1985-11-01

    The distribution of intravenously injected /sup 109/Cd in the nervous system was studied in rats twenty-four hr and one week after the injection. Measurements by gamma scintillation showed a high uptake of cadmium in peripheral sensory and autonomic ganglia whereas the uptake was low in the brain, cerebellum and spinal cord. The accumulation of cadmium in the sciatic nerve was significantly higher than in the brain and spinal nerve roots but lower than in ganglia. Autoradiography confirmed that there was no uptake of cadmium in the major part of the brain parenchyma, but showed an accumulation of the metal in areas outside the blood-brain barrier suc