Science.gov

Sample records for adult pluripotent stem

  1. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  2. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  3. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    PubMed

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  4. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation.

    PubMed

    Jaber-Hijazi, Farah; Lo, Priscilla J K P; Mihaylova, Yuliana; Foster, Jeremy M; Benner, Jack S; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A

    2013-12-01

    Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5(m)C) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation.

  5. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation☆

    PubMed Central

    Jaber-Hijazi, Farah; Lo, Priscilla J.K.P.; Mihaylova, Yuliana; Foster, Jeremy M.; Benner, Jack S.; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A.

    2013-01-01

    Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. PMID:24063805

  6. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Wolvetang, Ernst J

    2012-08-10

    Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.

  7. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  8. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells

    PubMed Central

    Panula, Sarita; Medrano, Jose V.; Kee, Kehkooi; Bergström, Rosita; Nguyen, Ha Nam; Byers, Blake; Wilson, Kitchener D.; Wu, Joseph C.; Simon, Carlos; Hovatta, Outi; Reijo Pera, Renee A.

    2011-01-01

    Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that ∼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications. PMID:21131292

  9. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  10. Potential for a pluripotent adult stem cell treatment for acute radiation sickness.

    PubMed

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-06-20

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung.

  11. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis.

    PubMed

    Wagner, Daniel E; Ho, Jaclyn J; Reddien, Peter W

    2012-03-01

    Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.

  12. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis

    PubMed Central

    Wagner, Daniel E.; Ho, Jaclyn J.

    2012-01-01

    Summary Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types, and identify novel genetic regulators of the planarian stem cell system. PMID:22385657

  13. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Fong, Ashley H; Romero-López, Mónica; Heylman, Christopher M; Keating, Mark; Tran, David; Sobrino, Agua; Tran, Anh Q; Pham, Hiep H; Fimbres, Cristhian; Gershon, Paul D; Botvinick, Elliot L; George, Steven C; Hughes, Christopher C W

    2016-08-01

    Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease. PMID:27392582

  14. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Sun, Jane; Fortuna, Patrick R J; Wolvetang, Ernst J

    2014-07-01

    In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.

  15. A lack of commitment for over 500 million years: conserved animal stem cell pluripotency.

    PubMed

    Aboobaker, A Aziz; Kao, Damian

    2012-06-13

    Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression profile of pASCs and identify conserved expression profiles and functions for genes required for mammalian pluripotency. Their analyses suggest that molecular pluripotency mechanisms may be conserved, and tantalisingly that pluripotency in germ stem cells (GSCs) and somatic stem cells (SSCs) may have had shared common evolutionary origins.

  16. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells

    PubMed Central

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Sievert, Karl-Dietrich; Skutella, Thomas

    2016-01-01

    The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen−/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers. PMID:26649052

  17. What can pluripotent stem cells teach us about neurodegenerative diseases?

    PubMed

    Wichterle, Hynek; Przedborski, Serge

    2010-07-01

    Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.

  18. Learning Biomarkers of Pluripotent Stem Cells in Mouse

    PubMed Central

    Scheubert, Lena; Schmidt, Rainer; Repsilber, Dirk; Luštrek, Mitja; Fuellen, Georg

    2011-01-01

    Pluripotent stem cells are able to self-renew, and to differentiate into all adult cell types. Many studies report data describing these cells, and characterize them in molecular terms. Machine learning yields classifiers that can accurately identify pluripotent stem cells, but there is a lack of studies yielding minimal sets of best biomarkers (genes/features). We assembled gene expression data of pluripotent stem cells and non-pluripotent cells from the mouse. After normalization and filtering, we applied machine learning, classifying samples into pluripotent and non-pluripotent with high cross-validated accuracy. Furthermore, to identify minimal sets of best biomarkers, we used three methods: information gain, random forests and a wrapper of genetic algorithm and support vector machine (GA/SVM). We demonstrate that the GA/SVM biomarkers work best in combination with each other; pathway and enrichment analyses show that they cover the widest variety of processes implicated in pluripotency. The GA/SVM wrapper yields best biomarkers, no matter which classification method is used. The consensus best biomarker based on the three methods is Tet1, implicated in pluripotency just recently. The best biomarker based on the GA/SVM wrapper approach alone is Fam134b, possibly a missing link between pluripotency and some standard surface markers of unknown function processed by the Golgi apparatus. PMID:21791477

  19. Advances in homology directed genetic engineering of human pluripotent and adult stem cells.

    PubMed

    Ramamoorthi, Kalpith; Curtis, Donald; Asuri, Prashanth

    2013-10-26

    The ability to introduce precise genomic modifications in human cells has profound implications for both basic and applied research in stem cells, ranging from identification of genes regulating stem cell self-renewal and multilineage differentiation to therapeutic gene correction and creation of in vitro models of human diseases. However, the overall efficiency of this process is challenged by several factors including inefficient gene delivery into stem cells and low rates of homology directed site-specific targeting. Recent studies report the development of novel techniques to improve gene targeting efficiencies in human stem cells; these methods include molecular engineering of viral vectors to efficiently deliver episomal genetic sequences that can participate in homology directed targeting, as well as the design of synthetic proteins that can introduce double-stranded breaks in DNA to initiate such recombination events. This review focuses on the potential of these new technologies to precisely alter the human stem cell genome and also highlights the possibilities offered by the combination of these complementary strategies.

  20. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  1. Pluripotent stem cells from germ cells.

    PubMed

    Kerr, Candace L; Shamblott, Michael J; Gearhart, John D

    2006-01-01

    To date, stem cells have been derived from three sources of germ cells. These include embryonic germ cells (EGCs), embryonal carcinoma cells (ECCs), and multipotent germ line stem cells (GSCs). EGCs are derived from primordial germ cells that arise in the late embryonic and early fetal period of development. ECCs are derived from adult testicular tumors whereas GSCs have been derived by culturing spermatogonial stem cells from mouse neonates and adults. For each of these lines, their pluripotency has been demonstrated by their ability to differentiate into cell types derived from the three germ layers in vitro and in vivo and in chimeric animals, including germ line transmission. These germ line-derived stem cells have been generated from many species including human, mice, porcine, and chicken albeit with only slight modifications. This chapter describes general considerations regarding critical aspects of their derivation compared with their counterpart, embryonic stem cells (ESCs). Detailed protocols for EGC derivation and maintenance from human and mouse primordial germ cells (PGCs) will be presented.

  2. Impact of retrotransposons in pluripotent stem cells.

    PubMed

    Tanaka, Yoshiaki; Chung, Leeyup; Park, In-Hyun

    2012-12-01

    Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells. PMID:23135636

  3. Induced Pluripotent Stem Cells for Regenerative Medicine

    PubMed Central

    Hirschi, Karen K.; Li, Song; Roy, Krishnendu

    2014-01-01

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine. PMID:24905879

  4. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  5. Pluripotent Stem Cells from Domesticated Mammals.

    PubMed

    Ezashi, Toshihiko; Yuan, Ye; Roberts, R Michael

    2016-01-01

    This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes. PMID:26566158

  6. Pluripotent states of human embryonic stem cells.

    PubMed

    Chen, Yifei; Lai, Dongmei

    2015-02-01

    Since human embryonic stem cells (hESCs) were first isolated and successfully cultured in vitro, the pluripotent potential of hESCs has been underestimated. The pluripotency of mouse embryonic stem cells (mESCs) can be categorized as naïve and primed, depending on their corresponding in vivo developing phases. mESC morphology differs at distinct pluripotent states, which differ in signaling dependence, gene expression, epigenetic features, and developmental potential. hESCs resemble mouse stem cells at primed pluripotency, and consequently are believed to correspond to a later developmental stage in vivo than mESCs. Nevertheless, recent studies indicate that a naïve state of pluripotency may exist in hESCs, and the pluripotency of hESCs also can be enhanced by genetic modification or optimized culture systems. These findings provide novel insight into the properties and differentiation potential of hESCs. Here, we review the recent advances in characterization of ESC states and investigate the mechanisms regulating hESC pluripotency. PMID:25393391

  7. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  8. In Vitro T-Cell Generation From Adult, Embryonic, and Induced Pluripotent Stem Cells: Many Roads to One Destination.

    PubMed

    Smith, Michelle J; Webber, Beau R; Mohtashami, Mahmood; Stefanski, Heather E; Zúñiga-Pflücker, Juan Carlos; Blazar, Bruce R

    2015-11-01

    T lymphocytes are critical mediators of the adaptive immune system and have the capacity to serve as therapeutic agents in the areas of transplant and cancer immunotherapy. While T cells can be isolated and expanded from patients, T cells derived in vitro from both hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (hPSCs) offer great potential advantages in generating a self-renewing source of T cells that can be readily genetically modified. T-cell differentiation in vivo is a complex process requiring tightly regulated signals; providing the correct signals in vitro to induce T-cell lineage commitment followed by their development into mature, functional, single positive T cells, is similarly complex. In this review, we discuss current methods for the in vitro derivation of T cells from murine and human HSPCs and hPSCs that use feeder-cell and feeder-cell-free systems. Furthermore, we explore their potential for adoption for use in T-cell-based therapies.

  9. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    PubMed

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  10. Intrinsic Ability of Adult Stem Cell in Skeletal Muscle: An Effective and Replenishable Resource to the Establishment of Pluripotent Stem Cells

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2013-01-01

    Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications. PMID:23818907

  11. Characterization of human pluripotent stem cells.

    PubMed

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  12. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs).

    PubMed

    Kucia, Magda; Masternak, Michal; Liu, Riu; Shin, Dong-Myung; Ratajczak, Janina; Mierzejewska, Katarzyna; Spong, Adam; Kopchick, John J; Bartke, Andrzej; Ratajczak, Mariusz Z

    2013-04-01

    It is well known that attenuated insulin/insulin-like growth factor signaling (IIS) has a positive effect on longevity in several animal species, including mice. Here, we demonstrate that a population of murine pluripotent very small embryonic-like stem cells (VSELs) that reside in bone marrow (BM) is protected from premature depletion during aging by intrinsic parental gene imprinting mechanisms and the level of circulating insulin-like growth factor-I (IGF-I). Accordingly, an increase in the circulating level of IGF-I, as seen in short-lived bovine growth hormone (bGH)-expressing transgenic mice, which age prematurely, as well as in wild-type animals injected for 2 months with bGH, leads to accelerated depletion of VSELs from bone marrow (BM). In contrast, long-living GHR-null or Ames dwarf mice, which have very low levels of circulating IGF-I, exhibit a significantly higher number of VSELs in BM than their littermates at the same age. However, the number of VSELs in these animals decreases after GH or IGF-I treatment. These changes in the level of plasma-circulating IGF-I corroborate with changes in the genomic imprinting status of crucial genes involved in IIS, such as Igf-2-H19, RasGRF1, and Ig2R. Thus, we propose that a chronic increase in IIS contributes to aging by premature depletion of pluripotent VSELs in adult tissues. PMID:22218782

  13. Induced pluripotent stem cells and neurodegenerative diseases.

    PubMed

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  14. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  15. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach.

    PubMed

    Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao; Cheng, Linzhao

    2015-04-01

    Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications.

  16. A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach.

    PubMed

    Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao; Cheng, Linzhao

    2015-04-01

    Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692

  17. Nephron reconstitution from pluripotent stem cells.

    PubMed

    Taguchi, Atsuhiro; Nishinakamura, Ryuichi

    2015-05-01

    It has been a challenge in developmental biology and regenerative medicine to generate nephron progenitors that reconstitute the three-dimensional (3D) nephron structure in vitro. Many studies have tried to induce nephron progenitors from pluripotent stem cells by mimicking the developmental processes in vivo. However, the current developmental model does not precisely address the spatiotemporal origin of nephron progenitors, hampering our understanding of cell fate decisions in the kidney. Here, we present a revised model of early-stage kidney specification, suggesting distinct origins of the two major kidney components: the ureteric bud and metanephric mesenchyme. This model enables the induction of metanephric nephron progenitors from both mouse and human pluripotent stem cells. The induced cells self-organize in the presence of Wnt signaling and reconstitute 3D nephron structures including both nephric tubules with a clear lumina and glomeruli with podocytes. The engrafted kidney tissue develops vascularized glomeruli and nephric tubules, but it does not produce urine, suggesting the requirement for further maturation. Nevertheless, the generation of nephron components from human-induced pluripotent stem cells will be useful for future application in regenerative therapy and modeling of congenital kidney diseases in vitro. This review discusses the possibility of de novo organogenesis of a functional kidney from pluripotent stem cells and the future direction toward clinical applications.

  18. In vitro regeneration of kidney from pluripotent stem cells

    SciTech Connect

    Osafune, Kenji

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  19. Human induced pluripotent stem cell‐derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block

    PubMed Central

    Paci, M; Hyttinen, J; Rodriguez, B

    2015-01-01

    Background and Purpose Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) and in silico human adult ventricular cardiomyocyte (hAdultV‐CM) models. Their combination was recently proposed as a potential replacement for the present hERG‐based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC‐CM and hAdultV‐CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies. Experimental Approach In silico AP models of ventricular‐like and atrial‐like hiPSC‐CMs and hAdultV‐CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents. Key Results Qualitatively, hiPSC‐CM and hAdultV‐CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC‐CMs were more sensitive to block of (i) L‐type Ca2+ currents due to the overexpression of the Na+/Ca2+ exchanger (leading to shorter APs) and (ii) the inward rectifier K+ current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure). Conclusions and Implications In silico hiPSC‐CMs and hAdultV‐CMs exhibit a similar response to selective current blocks. However, overall hiPSC‐CMs show greater sensitivity to block, which may facilitate in vitro identification of drug‐induced effects. Extrapolation of drug effects from hiPSC‐CM to hAdultV‐CM and pro‐arrhythmic risk assessment can be facilitated by in silico predictions using biophysically‐based computational models. PMID:26276951

  20. Calcium signaling in pluripotent stem cells.

    PubMed

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  1. Pluripotent Stem Cells: Current Understanding and Future Directions

    PubMed Central

    Romito, Antonio

    2016-01-01

    Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells. PMID:26798367

  2. Pluripotent Stem Cells: Current Understanding and Future Directions.

    PubMed

    Romito, Antonio; Cobellis, Gilda

    2016-01-01

    Pluripotent stem cells have the ability to undergo self-renewal and to give rise to all cells of the tissues of the body. However, this definition has been recently complicated by the existence of distinct cellular states that display these features. Here, we provide a detailed overview of the family of pluripotent cell lines derived from early mouse and human embryos and compare them with induced pluripotent stem cells. Shared and distinct features of these cells are reported as additional hallmark of pluripotency, offering a comprehensive scenario of pluripotent stem cells.

  3. Induced pluripotent stem cells in regenerative medicine and disease modeling.

    PubMed

    Walmsley, Graham G; Hyun, Jeong; McArdle, Adrian; Senarath-Yapa, Kshemendra; Hu, Michael S; Chung, Michael T; Wong, Victor W; Longaker, Michael T; Wan, Derrick C

    2014-03-01

    In 2006, Dr. Yamanaka created the induced pluripotent stem cell (iPSC) by reprogramming adult fibroblasts back to an immature, pluripotent state. Effectively bypassing the ethical constraints of human embryonic stem cells, iPSCs have expanded the horizons of regenerative medicine by offering a means to derive autologous patient-matched cells and tissues for clinical transplantation. However, persisting safety concerns must be addressed prior to their widespread clinical application. In this review, we discuss the history of iPSCs, derivation strategies, and current research involving gene therapy and disease modeling. We review the potential of iPSCs for improving a range of cell-based therapies and obstacles to their clinical implementation.

  4. Alternative sources of pluripotency: science, ethics, and stem cells.

    PubMed

    Kastenberg, Zachary J; Odorico, Jon S

    2008-07-01

    Despite many advances in human embryonic stem cell (hESC) technology the ethical dilemma involving the destruction of a human embryo is one factor that has limited the development of hESC based clinical therapies. Two recent reports describing the production of pluripotent stem cells following the in vitro reprogramming of human somatic cells with certain defined factors illustrate one potential method of bypassing the ethical debate surrounding hESCs (Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec;318(5858):1917-1920; Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov;131(5): 861-872.). Other alternative methods include nuclear transfer, altered nuclear transfer, and parthenogenesis; each with its own set of advantages and disadvantages. This review discusses recent advances in these technologies with specific focus on the issues of embryo destruction, oocyte recovery, and the potential of each technology to produce large scale, patient specific cell transplantation therapies that would require little or no immunosuppression.

  5. Induced pluripotent stem cell therapies for retinal disease

    PubMed Central

    Comyn, Oliver; Lee, Edward; MacLaren, Robert E

    2010-01-01

    Purpose of review: This review will discuss how recent advances with induced pluripotent stem (iPS) cells have brought the science of stem cell biology much closer to clinical application for patients with retinal degeneration. Recent findings: The ability to generate embryonic stem (ES) cells by reprogramming DNA taken from adult cells was demonstrated by the cloning of Dolly the sheep by somatic cell nuclear transfer over ten years ago. Recently it has been shown that adult cells can be reprogrammed directly, without the need for a surrogate oocyte through the generation of induced pluripotent stem (iPS) cells. The method of reprogramming has since been optimised to avoid the use of retroviruses, making the process considerably safer. Last year human iPS cells were isolated from an 80 year old patient with neurodegenerative disease and differentiated into neurons in vitro. Summary: For stem cell therapies, the retina has the optimal combination of ease of surgical access, combined with an ability to observe transplanted cells directly through the clear ocular media. The question now is which retinal diseases are most appropriate targets for clinical trials using iPS cell approaches. PMID:19949329

  6. Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. PMID:27152442

  7. HLA Engineering of Human Pluripotent Stem Cells

    PubMed Central

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  8. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    PubMed

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling.

  9. Generation of Avian Induced Pluripotent Stem Cells.

    PubMed

    Lu, Yangqing; West, Franklin D; Jordan, Brian J; Beckstead, Robert B; Jordan, Erin T; Stice, Steven L

    2015-01-01

    Avian species are among the most diverse vertebrates on our planet and significantly contribute to the balance of the ecology. They are also important food source and serve as a central animal model to decipher developmental biology and disease principles. Derivation of induced pluripotent stem cells (iPSCs) from avian species would enable conservation of genetic diversity as well as offer a valuable cell source that facilitates the use of avian models in many areas of basic and applied research. In this chapter, we describe methods used to successfully reprogram quail fibroblasts into iPSCs by using human transcription factors and the techniques critical to the characterization of their pluripotency. PMID:26621592

  10. Pluripotent stem cells and livestock genetic engineering.

    PubMed

    Soto, Delia A; Ross, Pablo J

    2016-06-01

    The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.

  11. Derivation, characterization and retinal differentiation of induced pluripotent stem cells.

    PubMed

    Mekala, Subba Rao; Vauhini, Vasundhara; Nagarajan, Usha; Maddileti, Savitri; Gaddipati, Subhash; Mariappan, Indumathi

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads. PMID:23385820

  12. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  13. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats.

    PubMed

    Hargus, Gunnar; Cooper, Oliver; Deleidi, Michela; Levy, Adam; Lee, Kristen; Marlow, Elizabeth; Yow, Alyssa; Soldner, Frank; Hockemeyer, Dirk; Hallett, Penelope J; Osborn, Teresia; Jaenisch, Rudolf; Isacson, Ole

    2010-09-01

    Recent advances in deriving induced pluripotent stem (iPS) cells from patients offer new possibilities for biomedical research and clinical applications, as these cells could be used for autologous transplantation. We differentiated iPS cells from patients with Parkinson's disease (PD) into dopaminergic (DA) neurons and show that these DA neurons can be transplanted without signs of neurodegeneration into the adult rodent striatum. The PD patient iPS (PDiPS) cell-derived DA neurons survived at high numbers, showed arborization, and mediated functional effects in an animal model of PD as determined by reduction of amphetamine- and apomorphine-induced rotational asymmetry, but only a few DA neurons projected into the host striatum at 16 wk after transplantation. We next applied FACS for the neural cell adhesion molecule NCAM on differentiated PDiPS cells before transplantation, which resulted in surviving DA neurons with functional effects on amphetamine-induced rotational asymmetry in a 6-OHDA animal model of PD. Morphologically, we found that PDiPS cell-derived non-DA neurons send axons along white matter tracts into specific close and remote gray matter target areas in the adult brain. Such findings establish the transplantation of human PDiPS cell-derived neurons as a long-term in vivo method to analyze potential disease-related changes in a physiological context. Our data also demonstrate proof of principle of survival and functional effects of PDiPS cell-derived DA neurons in an animal model of PD and encourage further development of differentiation protocols to enhance growth and function of implanted PDiPS cell-derived DA neurons in regard to potential therapeutic applications.

  14. Generating kidney tissue from pluripotent stem cells

    PubMed Central

    Little, MH

    2016-01-01

    With the isolation of human pluripotent stem cells came the possibility of generating specific cell types for regenerative medicine. This has required the development of protocols for directed differentiation into many distinct cell types. One of the more complicated tissue types to recreate is the kidney. Here we review recent progress towards the recreation of not only specific kidney cell types but complex kidney organoids, models of the developing human organ, in vitro. We will also discuss potential short and long term applications of these approaches. PMID:27551541

  15. Modelling human disease with pluripotent stem cells

    PubMed Central

    Park, In-Hyun; Sullivan, Gareth J.

    2013-01-01

    Recent progress in the field of cellular reprogramming has opened up the doors to a new era of disease modelling, as pluripotent stem cells representing a myriad of genetic diseases can now be produced from patient tissue. These cells can be expanded and differentiated to produce a potentially limitless supply of the affected cell type, which can then be used as a tool to improve understanding of disease mechanisms and test therapeutic interventions. This process requires high levels of scrutiny and validation at every stage, but international standards for the characterisation of pluripotent cells and their progeny have yet to be established. Here we discuss the current state of the art with regard to modelling diseases affecting the ectodermal, mesodermal and endodermal lineages, focussing on studies which have demonstrated a disease phenotype in the tissue of interest. We also discuss the utility of pluripotent cell technology for the modelling of cancer and infectious disease. Finally, we spell out the technical and scientific challenges which must be addressed if the field is to deliver on its potential and produce improved patient outcomes in the clinic. PMID:23444871

  16. Induced pluripotent stem cells in cartilage repair

    PubMed Central

    Lietman, Steven A

    2016-01-01

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  17. Induced pluripotent stem cells in cartilage repair.

    PubMed

    Lietman, Steven A

    2016-03-18

    Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from iPSCs have usually been formed in condensed cell bodies (resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from iPSCs are problematic but solutions to these problems are on the horizon. These solutions will make iPSCs a viable alternative for articular cartilage repair in the near future. PMID:27004161

  18. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals.

    PubMed

    Labbé, Roselyne M; Irimia, Manuel; Currie, Ko W; Lin, Alexander; Zhu, Shu Jun; Brown, David D R; Ross, Eric J; Voisin, Veronique; Bader, Gary D; Blencowe, Benjamin J; Pearson, Bret J

    2012-08-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency.

  19. Long non-coding RNAs in pluripotent stem cell biology.

    PubMed

    Lammens, Tim; D'hont, Inge; D'Herde, Katharina; Benoit, Yves; Diez-Fraile, Araceli

    2013-12-01

    Pluripotent stem cells are defined by their unlimited self-renewal capacities and potential to differentiate into any cell lineage. Many crucial determinants for the induction and maintenance of this pluripotent state have been identified. Long non-coding RNAs have recently emerged as key regulators of pluripotent stem cells and have enhanced our understanding of their potential functions in tissue regeneration. This review provides an overview of recent important insights into the roles of long non-coding RNAs as regulators and markers of pluripotency.

  20. Generation of induced pluripotent stem cells from human blood.

    PubMed

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage. PMID:19299331

  1. Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    PubMed Central

    Kossack, Nina; Meneses, Juanito; Shefi, Shai; Nguyen, Ha Nam; Chavez, Shawn; Nicholas, Cory; Gromoll, Joerg; Turek, Paul J; Reijo-Pera, Renee A

    2009-01-01

    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming. PMID:18927477

  2. Adult Stem Cells and Diabetes Therapy

    PubMed Central

    Ilgun, Handenur; Kim, Joseph William; Luo, LuGuang

    2016-01-01

    The World Health Organization estimates that diabetes will be the fourth most prevalent disease by 2050. Developing a new therapy for diabetes is a challenge for researchers and clinicians in field. Many medications are being used for treatment of diabetes however with no conclusive and effective results therefore alternative therapies are required. Stem cell therapy is a promising tool for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, and pluripotent stem cells. In this review, we focus on adult stem cells, especial human bone marrow stem cells (BM) for diabetes therapy, its history, and current development. We discuss prospects for future diabetes therapy such as induced pluripotent stem cells which have popularity in stem cell research area. PMID:27123495

  3. Directed Differentiation of Pluripotent Stem Cells to Kidney Cells

    PubMed Central

    Lam, Albert Q.; Freedman, Benjamin S.; Bonventre, Joseph V.

    2016-01-01

    Summary Regenerative medicine affords a promising therapeutic strategy for the treatment of patients with chronic kidney disease. Nephron progenitor cell populations exist only during embryonic kidney development. Understanding the mechanisms by which these populations arise and differentiate is integral to the challenge of generating new nephrons for therapeutic purposes. Pluripotent stem cells (PSCs), comprising embryonic stem cells, and induced pluripotent stem cells (iPSCs) derived from adults, have the potential to generate functional kidney cells and tissue. Studies in mouse and human PSCs have identified specific approaches to the addition of growth factors, including Wnt and fibroblast growth factor, that can induce PSC differentiation into cells with phenotypic characteristics of nephron progenitor populations with the capacity to form kidney-like structures. Although significant progress has been made, further studies are necessary to confirm the production of functional kidney cells and to promote their three-dimensional organization into bona fide kidney tissue. Human PSCs have been generated from patients with kidney diseases, including polycystic kidney disease, Alport syndrome, and Wilms tumor, and may be used to better understand phenotypic consequences of naturally occurring genetic mutations and to conduct “clinical trials in a dish”. The capability to generate human kidney cells from PSCs has significant translational applications, including the bioengineering of functional kidney tissue, use in drug development to test compounds for efficacy and toxicity, and in vitro disease modeling. PMID:25217273

  4. Directed differentiation of pluripotent stem cells to kidney cells.

    PubMed

    Lam, Albert Q; Freedman, Benjamin S; Bonventre, Joseph V

    2014-07-01

    Regenerative medicine affords a promising therapeutic strategy for the treatment of patients with chronic kidney disease. Nephron progenitor cell populations exist only during embryonic kidney development. Understanding the mechanisms by which these populations arise and differentiate is integral to the challenge of generating new nephrons for therapeutic purposes. Pluripotent stem cells (PSCs), comprising embryonic stem cells, and induced pluripotent stem cells (iPSCs) derived from adults, have the potential to generate functional kidney cells and tissue. Studies in mouse and human PSCs have identified specific approaches to the addition of growth factors, including Wnt and fibroblast growth factor, that can induce PSC differentiation into cells with phenotypic characteristics of nephron progenitor populations with the capacity to form kidney-like structures. Although significant progress has been made, further studies are necessary to confirm the production of functional kidney cells and to promote their three-dimensional organization into bona fide kidney tissue. Human PSCs have been generated from patients with kidney diseases, including polycystic kidney disease, Alport syndrome, and Wilms tumor, and may be used to better understand phenotypic consequences of naturally occurring genetic mutations and to conduct "clinical trials in a dish". The capability to generate human kidney cells from PSCs has significant translational applications, including the bioengineering of functional kidney tissue, use in drug development to test compounds for efficacy and toxicity, and in vitro disease modeling.

  5. The decision on the "optimal" human pluripotent stem cell.

    PubMed

    Rosner, Margit; Schipany, Katharina; Hengstschläger, Markus

    2014-05-01

    Because of recent advances, the array of human pluripotent stem cells now contains embryonic stem cells, derived from "surplus" in vitro fertilization embryos or from cloned embryos; induced pluripotent stem cells; and amniotic fluid stem cells. Here, we compare these stem cell types regarding ethical and legal concerns, cultivation conditions, genomic stability, tumor developing potentials, and applicability for disease modeling and human therapy. This overview highlights that in the future appropriate methodological management must include a decision on the "optimal" stem cell to use before the specific application.

  6. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients.

  7. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  8. Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations

    PubMed Central

    Bilousova, Ganna; Roop, Dennis R.

    2015-01-01

    The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and they are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs, and using iPSCs to model human diseases for drug discovery in the field of dermatology. PMID:25368014

  9. Induced pluripotent stem cells in dermatology: potentials, advances, and limitations.

    PubMed

    Bilousova, Ganna; Roop, Dennis R

    2014-11-01

    The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology.

  10. Generation of induced pluripotent stem cells.

    PubMed

    Deyle, David R

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated from somatic cells that have been reprogrammed by the ectopic expression of defined embryonic transcription factors. This technology has provided investigators with a powerful tool for modelling disease and developing treatments for human disorders. This chapter provides the researcher with some background on iPSCs and details on how to produce MEF-conditioned medium, prepare mitotically arrested mouse embryonic fibroblasts (MEFs), create iPSCs using viral vectors, passage iPSCs, and cryopreserve iPSCs. The methods offered here have been used in many laboratories around the world and the reader can initially follow these methods. However, not all cell types are easily transduced using viral vectors and other methods of delivering the reprogramming transcription factors may need to be tested. PMID:25331042

  11. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  12. [Dementia study using induced pluripotent stem cells].

    PubMed

    Matsuzono, Kosuke; Abe, Koji; Inoue, Haruhisa

    2016-03-01

    Recent developments in induced pluripotent stem cell (iPSC) technology have facilitated, and have contributed to overcome the difficulty of modeling dementia caused by Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD), etc. The following models using iPSCs were reported: the pathophysiology caused by gene mutations such as presenilin or amyloid β precursor protein in AD, α-synuclein in DLB, and microtubule-associated protein tau, fused in sarcoma, progranulin, or chromosome 9 open reading frame 72 in FTLD, anti-AD drug screening, sortilin-related receptor L 1 haplotype influence in sporadic AD, and amyloid β secretion in Down syndrome. Patient-specific iPSC could be expected to reveal the disease pathology and lead to drug discoveries for dementia patients.

  13. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  14. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo.

  15. Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation.

    PubMed

    Lewandowski, Jarosław; Kurpisz, Maciej

    2016-10-01

    Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.

  16. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Klabusay, Martin; Stojkovic, Miodrag; Bhattacharya, Shomi S; Erceg, Slaven

    2014-01-01

    Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC.

  17. Hydrodynamic modulation of pluripotent stem cells

    PubMed Central

    2012-01-01

    Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications. PMID:23168068

  18. Regulatory insight into the European human pluripotent stem cell registry.

    PubMed

    Kurtz, Andreas; Stacey, Glyn; Kidane, Luam; Seriola, Anna; Stachelscheid, Harald; Veiga, Anna

    2014-12-01

    The European pluripotent stem cell registry aims at listing qualified pluripotent stem cell (PSC) lines that are available globally together with relevant information for each cell line. Specific emphasis is being put on documenting ethical procurement of the cells and providing evidence of pluripotency. The report discusses the tasks and challenges for a global PSC registry as an instrument to develop collaboration, to access cells from diverse resources and banks, and to implement standards, and as a means to follow up usage of cells and support adherence to regulatory and scientific standards and transparency for stakeholders. PMID:25457963

  19. Regulatory insight into the European human pluripotent stem cell registry.

    PubMed

    Kurtz, Andreas; Stacey, Glyn; Kidane, Luam; Seriola, Anna; Stachelscheid, Harald; Veiga, Anna

    2014-12-01

    The European pluripotent stem cell registry aims at listing qualified pluripotent stem cell (PSC) lines that are available globally together with relevant information for each cell line. Specific emphasis is being put on documenting ethical procurement of the cells and providing evidence of pluripotency. The report discusses the tasks and challenges for a global PSC registry as an instrument to develop collaboration, to access cells from diverse resources and banks, and to implement standards, and as a means to follow up usage of cells and support adherence to regulatory and scientific standards and transparency for stakeholders.

  20. Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Patel, Minal; Yang, Shuying

    2010-01-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells. PMID:20336395

  1. Developing defined culture systems for human pluripotent stem cells

    PubMed Central

    Valamehr, Bahram; Tsutsui, Hideaki; Ho, Chih-Ming; Wu, Hong

    2013-01-01

    Human pluripotent stem cells hold promising potential in many therapeutics applications including regenerative medicine and drug discovery. Over the past three decades, embryonic stem cell research has illustrated that embryonic stem cells possess two important and distinct properties: the ability to continuously self-renew and the ability to differentiate into all specialized cell types. In this article, we will discuss the continuing evolution of human pluripotent stem cell culture by examining requirements needed for the maintenance of self-renewal in vitro. We will also elaborate on the future direction of the field toward generating a robust and completely defined culture system, which has brought forth collaborations amongst biologists and engineers. As human pluripotent stem cell research progresses towards identifying solutions for debilitating diseases, it will be critical to establish a defined, reproducible and scalable culture system to meet the requirements of these clinical applications. PMID:21916597

  2. A Bibliometric Analysis of Publications on Pluripotent Stem Cell Research

    PubMed Central

    Lin, Changshuan L.; Ho, Yuh-Shan

    2015-01-01

    Objective Human pluripotent stem cells are self-renewing cells with the ability to differentiate into a variety of cells and are viewed to have great potential in the field of regenerative medicine. Research in pluripotent stem cells holds great promise for patient specific therapy in various diseases. In this study, pluripotent stem cell articles published from 1991 to 2012 were screened and retrieved from Science Citation Index Expanded (SCI-EXPANDED). Materials and Methods In this retrospective study, the publication trend, citation trends for top articles, distributions of journals and Web of Science categories were analyzed. Five bibliometric indicators including total articles, independent articles, collaborative articles, first author articles, and corresponding author articles were applied to compare publications between countries and institutions. Results The impact of top articles changed from year to year. Top cited articles in previous publication years were not the same as recent years. "Induced pluripotent stem cell (s)" and "embryonic stem cell (s)" were the most used author keywords in pluripotent stem cell research. In addition, the winner of the Nobel Prize in physiology or medicine in 2012, Prof. Shinya Yamanaka, published four of the top ten most frequently cited articles. Conclusion The comprehensive analysis of highly cited articles in the stem cell field could identify milestones and important contributors, giving a historic perspective on scientific progress. PMID:25870835

  3. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells

    PubMed Central

    Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.

    2015-01-01

    Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831

  4. Generation of human melanocytes from induced pluripotent stem cells.

    PubMed

    Ohta, Shigeki; Imaizumi, Yoichi; Akamatsu, Wado; Okano, Hideyuki; Kawakami, Yutaka

    2013-01-01

    The discovery of human induced pluripotent stem cells (iPSCs) has provided a model system for studying early events during human development. Developmentally melanocytes originate from migratory neural crest cells that emerge from the neural plate during embryogenesis after a complex process of differentiation, proliferation, and migration out of the neural tube along defined pathways. In the adult, human melanocytes are located in the basal layer of the epidermis, hair follicles, uvea, inner ear, and meninges. In the epidermis, melanocytes produce melanin pigment that gives color to the skin as well as providing protection from ultraviolet light damage. In addition, melanocytes transfer melanin pigment to hair matrix keratinocytes during each hair cycle to maintain hair pigmentation. Characterization of mouse melanocyte stem cells (MELSCs) is more complete than for humans. MELSCs are located in the bulge region of hair follicles, where hair follicle stem cells (HFSCs) also reside. Recently, it has been demonstrated that HFSCs provide a functional nice for MELSCs. According to current cancer stem cell theory, melanomas are considered to evolve from MELSCs, although the exact mechanism remains to be elucidated fully. In humans, importantly, the lack of more specific markers of MELSCs, current understanding of the molecular regulations of melanocyte development remains incomplete. Recently, the generation of melanocytes from iPSCs has lead to some clarification of human melanocyte development in vitro. Utilization of iPSC-derived melanocytes may prove invaluable in further study of human melanocytic development and novel therapies for patients suffering with pigmentation disorders and melanoma.

  5. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  6. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives

    PubMed Central

    Zomer, Helena D; Vidane, Atanásio S; Gonçalves, Natalia N; Ambrósio, Carlos E

    2015-01-01

    Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells. PMID:26451119

  7. Human-Mouse Chimerism Validates Human Stem Cell Pluripotency.

    PubMed

    Mascetti, Victoria L; Pedersen, Roger A

    2016-01-01

    Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.

  8. Epigenetic regulation of open chromatin in pluripotent stem cells.

    PubMed

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2015-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, alter, eventually, the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is open globally to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells, including microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genomewide nucleosome accessibility and nucleosome positioning. Greater understanding of epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem cells.

  9. Induced pluripotent stem cells generated without viral integration.

    PubMed

    Stadtfeld, Matthias; Nagaya, Masaki; Utikal, Jochen; Weir, Gordon; Hochedlinger, Konrad

    2008-11-01

    Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells. PMID:18818365

  10. Long non-coding RNAs in stem cell pluripotency.

    PubMed

    Ng, Shi-Yan; Stanton, Lawrence W

    2013-01-01

    Pluripotency refers to the self-renewal of undifferentiated embryonic stem cells (ESCs), and is maintained by a tightly regulated gene regulatory network involving an intricate interplay between transcription factors and their genomic targets, as well as epigenetic processes that influence gene expression. Long non-coding RNAs (lncRNAs) are newly discovered members of gene regulatory networks that govern a variety of cell functions. Defined as RNA transcripts larger than 200 nucleotides, lncRNAs have little or no protein-coding capacity and have been shown to act via various mechanisms, and are important in a variety of biological functions. Recent reports have described the discovery of pluripotent lncRNAs involved in the maintenance and induction of stem cell pluripotency. Here, we discuss how lncRNAs may integrate into the pluripotency network, as well as prominent questions in this emerging field.

  11. Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells

    PubMed Central

    Boraas, Liana C.; Guidry, Julia B.; Pineda, Emma T.; Ahsan, Tabassum

    2016-01-01

    Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this

  12. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes.

    PubMed

    Hasegawa, Yuki; Tang, Dave; Takahashi, Naoko; Hayashizaki, Yoshihide; Forrest, Alistair R R; Suzuki, Harukazu

    2014-01-01

    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs. PMID:24957798

  13. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  14. Generating Cartilage Repair from Pluripotent Stem Cells

    PubMed Central

    Cheng, Aixin; Hardingham, Timothy E.

    2014-01-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application. PMID:23957872

  15. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration.

    PubMed

    Csöbönyeiová, Mária; Polák, Štefan; Danišovič, L'uboš

    2015-05-01

    Induced pluripotent stem cells (iPSCs) hold great promise for basic research and regenerative medicine. They offer the same advantages as embryonic stem cells (ESCs) and moreover new perspectives for personalized medicine. iPSCs can be generated from adult somatic tissues by over-expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-myc. For regenerative medicine in particular, the technology provides great hope for patients with incurable diseases or potentially fatal disorders such as heart failure. The endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for myocardial loss occurring after myocardial infarction. Recent discoveries have demonstrated that iPSCs have the potential to significantly advance future cardiovascular regenerative therapies. Moreover, iPSCs can be generated from somatic cells of patients with genetic basis for their disease. This human iPSC derivates offer tremendous potential for new disease models. This paper reviews current applications of iPSCs in cardiovascular regenerative medicine and discusses progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells.

  16. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration

    PubMed Central

    Csöbönyeiová, Mária; Polák, Štefan

    2015-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for basic research and regenerative medicine. They offer the same advantages as embryonic stem cells (ESCs) and moreover new perspectives for personalized medicine. iPSCs can be generated from adult somatic tissues by over-expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-myc. For regenerative medicine in particular, the technology provides great hope for patients with incurable diseases or potentially fatal disorders such as heart failure. The endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for myocardial loss occurring after myocardial infarction. Recent discoveries have demonstrated that iPSCs have the potential to significantly advance future cardiovascular regenerative therapies. Moreover, iPSCs can be generated from somatic cells of patients with genetic basis for their disease. This human iPSC derivates offer tremendous potential for new disease models. This paper reviews current applications of iPSCs in cardiovascular regenerative medicine and discusses progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells. PMID:25595188

  17. Automated selection and harvesting of pluripotent stem cell colonies.

    PubMed

    Haupt, Simone; Grützner, Jan; Thier, Marc-Christian; Kallweit, Tobias; Rath, Barbara Helen; Laufenberg, Iris; Forgber, Michael; Eberhardt, Jens; Edenhofer, Frank; Brüstle, Oliver

    2012-01-01

    The ability of pluripotent stem cells to differentiate into specialized cells of all three germ layers, their capability to self-renew, and their amenability to genetic modification provide fascinating prospects for the generation of cell lines for biomedical applications. Therefore, stem cells must increasingly suffice in terms of industrial standards, and automation of critical or time-consuming steps becomes a fundamental prerequisite for their routine application. Cumbersome manual picking of individual stem cell colonies still represents the most frequently used method for passaging or derivation of clonal stem cell lines. Here, we explore an automated harvesting system (CellCelector™) for detection, isolation, and propagation of human embryonic stem cells (hESCs) and murine induced pluripotent stem cells (iPSCs). Automatically transferred hESC colonies maintained their specific biological characteristics even after repeated passaging. We also selected and harvested primary iPSCs derived from mouse embryonic fibroblasts expressing the green fluorescent protein (GFP) under the control of the Oct4 promotor using either morphological criteria or GFP fluorescence. About 80% of the selected and harvested primary iPSC colonies gave rise to homogenously GFP-expressing iPSC lines. To validate the iPSC lines, we analyzed the expression of pluripotency-associated markers and multi-germ layer differentiation potential in vitro. Our data indicate that the CellCelector™ technology enables efficient identification and isolation of pluripotent stem cell colonies at the phase contrast or fluorescence level.

  18. Derivation of porcine pluripotent stem cells for biomedical research.

    PubMed

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. PMID:27158128

  19. Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration.

    PubMed

    Park, Siyeon; Im, Gun-Il

    2014-10-01

    Tissue engineering for skeletal tissues including bone and cartilage have been focused on the use of adult stem cells. Although there are several pioneering researches on skeletal tissue regeneration from embryonic stem cells (ESCs), ethical issues and the possibility of immune rejection clouded further attention to the application of ESCs for nonlethal orthopedic conditions. However, the recent discovery of induced pluripotent stem cells (iPSCs) led to reconsider the use of these pluripotential cells for skeletal regeneration. The purpose of this review was to summarize the current knowledge of osteogenic and chondrogenic induction from ESCs and iPSCs and to provide a perspective on the application of iPSCs for skeletal regeneration.

  20. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products.

    PubMed

    Jung, Yunjoon; Bauer, Gerhard; Nolta, Jan A

    2012-01-01

    Adult stem cell therapies have provided success for more than 50 years, through reconstitution of the hematopoietic system using bone marrow, umbilical cord blood, and mobilized peripheral blood transplantation. Mesenchymal stem cell (MSC)-mediated therapy is a fast-growing field that has proven safe and effective in the treatment of various degenerative diseases and tissue injuries. Since the first derivation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), there has been impressive progress toward developing safe clinical applications from PSCs. Recent successes in transgene-free iPSC reprogramming have brought attention to the potential of clinical applications of these pluripotent cells, but key hurdles must be overcome, which are discussed in this review. Looking to the future, it could be advantageous to derive MSC from iPSC or human ESC in cases where genetic engineering is needed, since in the PSCs, clones with "safe harbor" vector integration could be selected, expanded, and differentiated. Here, we describe the status of the progress of the use of MSC and PSCs in clinical trials and analyze the challenges that should be overcome before iPSC-derived MSC therapy can be used widely in the clinic.

  1. Sphere formation permits Oct4 reprogramming of ciliary body epithelial cells into induced pluripotent stem cells.

    PubMed

    Ni, Aiguo; Wu, Ming Jing; Chavala, Sai H

    2014-12-15

    Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by defined sets of transcription factors. We previously described reprogramming of monolayer-cultured adult mouse ciliary body epithelial (CE) cells by Oct4 and Klf4, but not with Oct4 alone. In this study, we report that Oct4 alone is sufficient to reprogram CE cells to iPS cells through sphere formation. Furthermore, we demonstrate that sphere formation induces a partial reprogramming state characterized by expression of retinal progenitor markers, upregulation of reprogramming transcription factors, such as Sall4 and Nanog, demethylation in the promoter regions of pluripotency associated genes, and mesenchymal to epithelial transition. The Oct4-iPS cells maintained normal karyotypes, expressed markers for pluripotent stem cells, and were capable of differentiating into derivatives of all three embryonic germ layers in vivo and in vitro. These findings suggest that sphere formation may render somatic cells more susceptible to reprogramming.

  2. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    PubMed

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  3. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage.

    PubMed

    Jackson, Steven A; Olufs, Zachariah P G; Tran, Khoa A; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-03-01

    During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. PMID:26905202

  4. A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells

    PubMed Central

    Tateno, Hiroaki; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Aiki, Yasuhiko; Shimizu, Madoka; Higuchi, Kumiko; Fukuda, Masakazu; Warashina, Masaki; Honda, Susumu; Asashima, Makoto; Hirabayashi, Jun

    2014-01-01

    While human pluripotent stem cells are attractive sources for cell-replacement therapies, a major concern remains regarding their tumorigenic potential. Thus, safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system, named the GlycoStem test, targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies. PMID:24518842

  5. Canine Pluripotent Stem Cells: Are They Ready for Clinical Applications?

    PubMed

    Betts, Dean H; Tobias, Ian C

    2015-01-01

    The derivation of canine embryonic stem cells and generation of canine-induced pluripotent stem cells are significant achievements that have unlocked the potential for developing novel cell-based disease models, drug discovery platforms, and transplantation therapies in the dog. A progression from concept to cure in this clinically relevant companion animal will not only help our canine patients but also help advance human regenerative medicine. Nevertheless, many issues remain to be resolved before pluripotent cells can be used clinically in a safe and reproducible manner. PMID:26664969

  6. Back to the future: how human induced pluripotent stem cells will transform regenerative medicine

    PubMed Central

    Svendsen, Clive N.

    2013-01-01

    Based on cloning studies in mammals, all adult human cells theoretically contain DNA that is capable of creating a whole new person. Cells are maintained in their differentiated state by selectively activating some genes and silencing. The dogma until recently was that cell differentiation was largely fixed unless exposed to the environment of an activated oocyte. However, it is now possible to activate primitive pluripotent genes within adult human cells that take them back in time to a pluripotent state (termed induced pluripotent stem cells). This technology has grown at an exponential rate over the past few years, culminating in the Nobel Prize in medicine. Discussed here are recent developments in the field as they relate to regenerative medicine, with an emphasis on creating functional cells, editing their genome, autologous transplantation and how this ground-breaking field may eventually impact human aging. PMID:23945396

  7. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Hayashi, Katsuhiko; Saitou, Mitinori

    2013-08-01

    Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.

  8. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    PubMed

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS). PMID:27236679

  9. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States.

    PubMed

    Chen, Richard J; Zhang, Guofeng; Garfield, Susan H; Shi, Yi-Jun; Chen, Kevin G; Robey, Pamela G; Leapman, Richard D

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions.

  10. Human induced pluripotent stem cells: A disruptive innovation.

    PubMed

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.

  11. Dynamic and social behaviors of human pluripotent stem cells

    PubMed Central

    Phadnis, Smruti M.; Loewke, Nathan O.; Dimov, Ivan K.; Pai, Sunil; Amwake, Christine E.; Solgaard, Olav; Baer, Thomas M.; Chen, Bertha; Pera, Renee A. Reijo

    2015-01-01

    Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored. PMID:26381699

  12. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells.

    PubMed

    Onal, Pinar; Grün, Dominic; Adamidi, Catherine; Rybak, Agnieszka; Solana, Jordi; Mastrobuoni, Guido; Wang, Yongbo; Rahn, Hans-Peter; Chen, Wei; Kempa, Stefan; Ziebold, Ulrike; Rajewsky, Nikolaus

    2012-06-13

    Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology.

  13. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells

    PubMed Central

    Önal, Pinar; Grün, Dominic; Adamidi, Catherine; Rybak, Agnieszka; Solana, Jordi; Mastrobuoni, Guido; Wang, Yongbo; Rahn, Hans-Peter; Chen, Wei; Kempa, Stefan; Ziebold, Ulrike; Rajewsky, Nikolaus

    2012-01-01

    Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology. PMID:22543868

  14. Identifiability and privacy in pluripotent stem cell research.

    PubMed

    Isasi, Rosario; Andrews, Peter W; Baltz, Jay M; Bredenoord, Annelien L; Burton, Paul; Chiu, Ing-Ming; Hull, Sara Chandros; Jung, Ji-Won; Kurtz, Andreas; Lomax, Geoffrey; Ludwig, Tenneille; McDonald, Michael; Morris, Clive; Ng, Huck Hui; Rooke, Heather; Sharma, Alka; Stacey, Glyn N; Williams, Clare; Zeng, Fanyi; Knoppers, Bartha Maria

    2014-04-01

    Data sharing is an essential element of research; however, recent scientific and social developments have challenged conventional methods for protecting privacy. Here we provide guidance for determining data sharing thresholds for human pluripotent stem cell research aimed at a wide range of stakeholders, including research consortia, biorepositories, policy-makers, and funders.

  15. Regulatory non-coding RNAs in pluripotent stem cells.

    PubMed

    Rosa, Alessandro; Brivanlou, Ali H

    2013-01-01

    The most part of our genome encodes for RNA transcripts are never translated into proteins. These include families of RNA molecules with a regulatory function, which can be arbitrarily subdivided in short (less than 200 nucleotides) and long non-coding RNAs (ncRNAs). MicroRNAs, which act post-transcriptionally to repress the function of target mRNAs, belong to the first group. Included in the second group are multi-exonic and polyadenylated long ncRNAs (lncRNAs), localized either in the nucleus, where they can associate with chromatin remodeling complexes to regulate transcription, or in the cytoplasm, acting as post-transcriptional regulators. Pluripotent stem cells, such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), represent useful systems for modeling normal development and human diseases, as well as promising tools for regenerative medicine. To fully explore their potential, however, a deep understanding of the molecular basis of stemness is crucial. In recent years, increasing evidence of the importance of regulation by ncRNAs in pluripotent cells is accumulating. In this review, we will discuss recent findings pointing to multiple roles played by regulatory ncRNAs in ESC and iPSCs, where they act in concert with signaling pathways, transcriptional regulatory circuitries and epigenetic factors to modulate the balance between pluripotency and differentiation.

  16. Identifiability and Privacy in Pluripotent Stem Cell Research

    PubMed Central

    Isasi, Rosario; Andrews, Peter W.; Baltz, Jay M.; Bredenoord, Annelien L.; Burton, Paul; Chiu, Ing-Ming; Hull, Sara Chandros; Jung, Ji-Won; Kurtz, Andreas; Lomax, Geoffrey; Ludwig, Tenneille; McDonald, Michael; Morris, Clive; Ng, Huck Hui; Rooke, Heather; Sharma, Alka; Stacey, Glyn N.; Williams, Clare; Zeng, Fanyi; Knoppers, Bartha Maria

    2016-01-01

    Data sharing is an essential element of research; however, recent scientific and social developments have challenged conventional methods for protecting privacy. Here we provide guidance for determining data sharing thresholds for human pluripotent stem cell research aimed at a wide range of stakeholders, including research consortia, biorepositories, policy-makers, and funders. PMID:24702994

  17. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells.

    PubMed

    Pfeiffer, Martin J; Esteves, Telma C; Balbach, Sebastian T; Araúzo-Bravo, Marcos J; Stehling, Martin; Jauch, Anna; Houghton, Franchesca D; Schwarzer, Caroline; Boiani, Michele

    2013-11-01

    The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.

  18. Cryopreservation of human pluripotent stem cells: a general protocol.

    PubMed

    Miyazaki, Takamichi; Suemori, Hirofumi

    2015-01-01

    Cryopreservation is an essential technique to preserve stem cells, semipermanently sustaining their potentials. There are two main approaches of cryopreservation for human pluripotent stem cells (hPSCs). The first is the vitrification, which involves instantaneous freeze and thaw of hPSCs. The second is the conventional slow-cooling method and a rapid thaw. Both cryopreservation protocols have been standardized and optimized to yield high survivability of hPSCs.

  19. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges.

    PubMed

    Peyrard, Thierry; Bardiaux, Laurent; Krause, Claire; Kobari, Ladan; Lapillonne, Hélène; Andreu, Georges; Douay, Luc

    2011-07-01

    The transfusion of red blood cells (RBCs) is now considered a well-settled and essential therapy. However, some difficulties and constraints still occur, such as long-term blood product shortage, blood donor population aging, known and yet unknown transfusion-transmitted infectious agents, growing cost of the transfusion supply chain management, and the inescapable blood group polymorphism barrier. Red blood cells can be now cultured in vitro from human hematopoietic, human embryonic, or human-induced pluripotent stem cells (hiPSCs). The highly promising hiPSC technology represents a potentially unlimited source of RBCs and opens the door to the revolutionary development of a new generation of allogeneic transfusion products. Assuming that in vitro large-scale cultured RBC production efficiently operates in the near future, we draw here some futuristic but realistic scenarios regarding potential applications for alloimmunized patients and those with a rare blood group. We retrospectively studied a cohort of 16,486 consecutive alloimmunized patients (10-year period), showing 1 to 7 alloantibodies with 361 different antibody combinations. We showed that only 3 hiPSC clones would be sufficient to match more than 99% of the 16,486 patients in need of RBC transfusions. The study of the French National Registry of People with a Rare Blood Phenotype/Genotype (10-year period) shows that 15 hiPSC clones would cover 100% of the needs in patients of white ancestry. In addition, one single hiPSC clone would meet 73% of the needs in alloimmunized patients with sickle cell disease for whom rare cryopreserved RBC units were required. As a result, we consider that a very limited number of RBC clones would be able to not only provide for the need for most alloimmunized patients and those with a rare blood group but also efficiently allow for a policy for alloimmunization prevention in multiply transfused patients. PMID:21377319

  20. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  1. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    PubMed Central

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks. PMID:26989423

  2. Lost in translation: pluripotent stem cell-derived hematopoiesis

    PubMed Central

    Ackermann, Mania; Liebhaber, Steffi; Klusmann, Jan-Henning; Lachmann, Nico

    2015-01-01

    Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage. PMID:26174486

  3. Advances in culture and manipulation of human pluripotent stem cells.

    PubMed

    Qian, X; Villa-Diaz, L G; Krebsbach, P H

    2013-11-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell-like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells.

  4. Pluripotent Stem Cell-Derived Hepatocyte-Like Cells

    PubMed Central

    Schwartz, R. E.; Fleming, H.E.; Bhatia, S. N.

    2014-01-01

    Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and function. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for pharmacology and toxicology drug screening. iPS cells can be differentiated in a stepwise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iPS-derived hepatocyte-like cells resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iPS-derived hepatocyte-like cells express fetal markers such as alpha fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (0.1%) of many detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iPS-derived hepatocyte-like cells and adult hepatocytes have limited the use of stem cells as a renewable source of functional adult human hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte

  5. Present and future challenges of induced pluripotent stem cells

    PubMed Central

    Ohnuki, Mari; Takahashi, Kazutoshi

    2015-01-01

    Growing old is our destiny. However, the mature differentiated cells making up our body can be rejuvenated to an embryo-like fate called pluripotency which is an ability to differentiate into all cell types by enforced expression of defined transcription factors. The discovery of this induced pluripotent stem cell (iPSC) technology has opened up unprecedented opportunities in regenerative medicine, disease modelling and drug discovery. In this review, we introduce the applications and future perspectives of human iPSCs and we also show how iPSC technology has evolved along the way. PMID:26416678

  6. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  7. Porcine induced pluripotent stem cells produce chimeric offspring.

    PubMed

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  8. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue.

  9. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field.

    PubMed

    Wu, Nan; Doorenbos, Marianne; Chen, Dong Feng

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  10. Directed Differentiation of Pluripotent Stem Cells into Kidney

    PubMed Central

    Morizane, Ryuji; Lam, Albert Q

    2015-01-01

    Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent an ideal substrate for regenerating kidney cells and tissue lost through injury and disease. Recent studies have demonstrated the ability to differentiate PSCs into populations of nephron progenitor cells that can organize into kidney epithelial structures in three-dimensional contexts. While these findings are highly encouraging, further studies need to be performed to improve the efficiency and specificity of kidney differentiation. The identification of specific markers of the differentiation process is critical to the development of protocols that effectively recapitulate nephrogenesis in vitro. In this review, we summarize the current studies describing the differentiation of ESCs and iPSCs into cells of the kidney lineage. We also present an analysis of the markers relevant to the stages of kidney development and differentiation and propose a new roadmap for the directed differentiation of PSCs into nephron progenitor cells of the metanephric mesenchyme. PMID:26417199

  11. Induced pluripotent stem cells--alchemist's tale or clinical reality?

    PubMed

    Rashid, S Tamir; Vallier, Ludovic

    2010-01-01

    Following Shinya Yamanaka's first report describing the reprogramming of fibroblasts into stem cells over three years ago, some sceptics initially drew analogies between this new field of research and the quasi-mystical practice of 'alchemy'. Unlike the alchemist, however, stem cell researchers have rigorously tested and repeated experiments, proving their very own brand of cellular 'alchemy' to be a reality, with potentially massive implications for the study of human biology and clinical medicine. These investigations have resulted in an explosion of related publications and initiated the field of stem cell research known as 'induced pluripotency'. In this review, we give an account of the historical development, current technologies and potential clinical applications of induced pluripotency and conclude with a perspective on the possible future directions for this dynamic field. PMID:20707936

  12. Induced Pluripotent Stem Cells: Development in the Ophthalmologic Field

    PubMed Central

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) are a type of stem cells that can be derived from human somatic cells by introducing certain transcription factors. Induced pluripotent stem cells can divide indefinitely and are able to differentiate into every cell type, which make them viable for transplantation and individual disease modeling. Recently, various ocular cells, including corneal epithelial-like cells, retinal pigment epithelium (RPE) cells displaying functions similar to native RPE, photoreceptors, and retinal ganglion cells, have all been successfully derived from iPSCs. Transplantation of these cells in animal models showed great promise for reversing blindness, and the first clinical trial on humans started in 2013. Despite these promising results, more research is in demand for preventing inadvertent tumor growth, developing precise functionality of the cells, and promoting integration into the host tissue. PMID:27594887

  13. Induced Pluripotent Stem Cell Labeling Using Quantum Dots

    PubMed Central

    Yukawa, Hiroshi; Suzuki, Kaoru; Kano, Yuki; Yamada, Tatsuya; Kaji, Noritada; Ishikawa, Tetsuya; Baba, Yoshinobu

    2013-01-01

    Induced pluripotent stem (iPS) cells have received remarkable attention as the cell sources for clinical applications of regenerative medicine including stem cell therapy. Additionally, labeling technology is in high demand for tracing transplanted cells used in stem cell therapy. In this study, we used quantum dots (QDs), which have distinct fluorescence abilities in comparison with traditional probes, as the labeling materials and investigated whether iPS cells could be labeled with QDs with no cytotoxicity. iPS cells could not be labeled with QDs alone but required the use of cell-penetrating peptides such as octaarginine (R8). No significant cytotoxicity to iPS cells was confirmed by up to 8 nM QDs, and the iPS cells labeled with QDs maintained their undifferentiated state and pluripotency. These data suggest that QDs can be used for fluorescence labeling of iPS cells. PMID:26858884

  14. Immunogenicity of Pluripotent Stem Cells and Their Derivatives

    PubMed Central

    de Almeida, Patricia E.; Ransohoff, Julia D.; Nahid, Md Abu; Wu, Joseph C.

    2013-01-01

    The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, prior to clinical applications, much translational research is required to ensure that their therapeutic progenies are functional and non-tumorigenic, that they are stable and do not de-differentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic and epigenetic makeup, and their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. More recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem (iPS) cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in iPS cell derivatives is critical to allow clinicians to predict graft fate following transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunological barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunological barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation. PMID:23371903

  15. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    PubMed Central

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  16. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    PubMed Central

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  17. "Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.

    PubMed

    Zhang, Gang; Zhang, Yi

    2015-01-01

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy. PMID:26687081

  18. "Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.

    PubMed

    Zhang, Gang; Zhang, Yi

    2015-12-18

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model-designated the "Mouse Clone Model"-which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.

  19. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells

    PubMed Central

    PETERS, ANN; BURRIDGE, PAUL W.; PRYZHKOVA, MARINA V.; LEVINE, MICHAL A.; PARK, TEA-SOON; ROXBURY, CHRISTOPHER; YUAN, XUAN; PÉAULT, BRUNO; ZAMBIDIS, ELIAS T.

    2012-01-01

    Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC. PMID:20563986

  20. Fate by RNA methylation: m6A steers stem cell pluripotency.

    PubMed

    Zhao, Boxuan Simen; He, Chuan

    2015-01-01

    The N 6-methyladenosine (m6A) modification of mRNA has a crucial function in regulating pluripotency in murine stem cells: it facilitates resolution of naïve pluripotency towards differentiation. PMID:25723450

  1. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  2. Generation of mouse induced pluripotent stem cells without viral vectors.

    PubMed

    Okita, Keisuke; Nakagawa, Masato; Hyenjong, Hong; Ichisaka, Tomoko; Yamanaka, Shinya

    2008-11-01

    Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by introducing Oct3/4 and Sox2 with either Klf4 and c-Myc or Nanog and Lin28 using retroviruses or lentiviruses. Patient-specific iPS cells could be useful in drug discovery and regenerative medicine. However, viral integration into the host genome increases the risk of tumorigenicity. Here, we report the generation of mouse iPS cells without viral vectors. Repeated transfection of two expression plasmids, one containing the complementary DNAs (cDNAs) of Oct3/4, Sox2, and Klf4 and the other containing the c-Myc cDNA, into mouse embryonic fibroblasts resulted in iPS cells without evidence of plasmid integration, which produced teratomas when transplanted into mice and contributed to adult chimeras. The production of virus-free iPS cells, albeit from embryonic fibroblasts, addresses a critical safety concern for potential use of iPS cells in regenerative medicine.

  3. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    PubMed

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  4. Hurdles to clinical translation of human induced pluripotent stem cells.

    PubMed

    Neofytou, Evgenios; O'Brien, Connor Galen; Couture, Larry A; Wu, Joseph C

    2015-07-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development.

  5. Pluripotent Stem Cells and Other Innovative Strategies for the Treatment of Ocular Surface Diseases.

    PubMed

    Erbani, Johanna; Aberdam, Daniel; Larghero, Jerome; Vanneaux, Valérie

    2016-04-01

    The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases. PMID:26779895

  6. Making gametes from pluripotent stem cells--a promising role for very small embryonic-like stem cells.

    PubMed

    Bhartiya, Deepa; Hinduja, Indira; Patel, Hiren; Bhilawadikar, Rashmi

    2014-11-24

    The urge to have one's own biological child supersedes any desire in life. Several options have been used to obtain gametes including pluripotent stem cells (embryonic ES and induced pluripotent iPS stem cells); gonadal stem cells (spermatogonial SSCs, ovarian OSCs stem cells), bone marrow, mesenchymal cells and fetal skin. However, the field poses a huge challenge including inefficient existing protocols for differentiation, epigenetic and genetic changes associated with extensive in vitro manipulation and also ethical/regulatory constraints. A tremendous leap in the field occurred using mouse ES and iPS cells wherein they were first differentiated into epiblast-like cells and then primordial germ cell-like cells. These on further development produced sperm, oocytes and live offspring (had associated genetic problems). Evidently differentiating pluripotent stem cells into primordial germ cells (PGCs) remains a major bottleneck. Against this backdrop, we propose that a novel population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) may serve as an alternative, potential source of autologus gametes, keeping in mind that they are indeed PGCs surviving in adult mammalian ovaries and testes. Both VSELs and PGCs are pluripotent, relatively quiescent because of epigenetic modifications of parentally imprinted genes loci like Igf2-H19 and KCNQ1p57, share several markers like Stella, Fragilis, Mvh, Dppa2, Dppa4, Sall4, Blimp1 and functional receptors. VSELs are localized in the basement membrane of seminiferous tubules in testis and in the ovary surface epithelium. Ovarian stem cells from mouse, rabbit, sheep, marmoset and humans (menopausal women and those with premature ovarian failure) spontaneously differentiate into oocyte-like structures in vitro with no additional requirement of growth factors. Thus a more pragmatic option to obtain autologus gametes may be the pluripotent VSELs and if we could manipulate them in vivo - existing

  7. Derivation of Neural Stem Cells from Mouse Induced Pluripotent Stem Cells.

    PubMed

    Karanfil, Işıl; Bagci-Onder, Tugba

    2016-01-01

    Neural stem cells (NSCs) derived from induced pluripotent stem cells offer therapeutic tools for neurodegenerative diseases. This review focuses on embryoid body (EB)-mediated stem cell culture techniques used to derive NSCs from mouse induced pluripotent stem cells (iPSCs). Generation of healthy and stable NSCs from iPSCs heavily depends on standardized in vitro cell culture systems that mimic the embryonic environments utilized during neural development. Specifically, the neural induction and expansion methods after EB formation are described in this review.

  8. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    PubMed Central

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J.; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F.; Psathaki, Olympia E.; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R.; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34+ hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34+ hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34+ cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. PMID:25326431

  9. Induced pluripotent stem cells and Parkinson's disease: modelling and treatment.

    PubMed

    Xu, Xiaoyun; Huang, Jinsha; Li, Jie; Liu, Ling; Han, Chao; Shen, Yan; Zhang, Guoxin; Jiang, Haiyang; Lin, Zhicheng; Xiong, Nian; Wang, Tao

    2016-02-01

    Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment.

  10. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model

    PubMed Central

    Kobari, Ladan; Yates, Frank; Oudrhiri, Noufissa; Francina, Alain; Kiger, Laurent; Mazurier, Christelle; Rouzbeh, Shaghayegh; El-Nemer, Wassim; Hebert, Nicolas; Giarratana, Marie-Catherine; François, Sabine; Chapel, Alain; Lapillonne, Hélène; Luton, Dominique; Bennaceur-Griscelli, Annelise; Douay, Luc

    2012-01-01

    Background Human induced pluripotent stem cells offer perspectives for cell therapy and research models for diseases. We applied this approach to the normal and pathological erythroid differentiation model by establishing induced pluripotent stem cells from normal and homozygous sickle cell disease donors. Design and Methods We addressed the question as to whether these cells can reach complete erythroid terminal maturation notably with a complete switch from fetal to adult hemoglobin. Sickle cell disease induced pluripotent stem cells were differentiated in vitro into red blood cells and characterized for their terminal maturation in terms of hemoglobin content, oxygen transport capacity, deformability, sickling and adherence. Nucleated erythroblast populations generated from normal and pathological induced pluripotent stem cells were then injected into non-obese diabetic severe combined immunodeficiency mice to follow the in vivo hemoglobin maturation. Results We observed that in vitro erythroid differentiation results in predominance of fetal hemoglobin which rescues the functionality of red blood cells in the pathological model of sickle cell disease. We observed, in vivo, the switch from fetal to adult hemoglobin after infusion of nucleated erythroid precursors derived from either normal or pathological induced pluripotent stem cells into mice. Conclusions These results demonstrate that human induced pluripotent stem cells: i) can achieve complete terminal erythroid maturation, in vitro in terms of nucleus expulsion and in vivo in terms of hemoglobin maturation; and ii) open the way to generation of functionally corrected red blood cells from sickle cell disease induced pluripotent stem cells, without any genetic modification or drug treatment. PMID:22733021

  11. Derivation of novel human ground state naive pluripotent stem cells.

    PubMed

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  12. Livestock models for exploiting the promise of pluripotent stem cells.

    PubMed

    Roberts, R Michael; Yuan, Ye; Genovese, Nicholas; Ezashi, Toshihiko

    2015-01-01

    Livestock species are widely used as biomedical models. Pigs, in particular, are beginning to have a significant role in regenerative medicine for testing the applicability, success, and safety of grafts derived from induced pluripotent stem cells. Animal testing must always be performed before any clinical trials are performed in humans, and pigs may sometimes be the species of choice because of their physiological and anatomical similarities to humans. Induced pluripotent stem cells (iPSC) have been generated with some success from livestock species by a variety of reprogramming procedures, but authenticated embryonic stem cells (ESC) have not. There are now several studies in which porcine iPSC have been tested for their ability to provide functional grafts in pigs. Pigs have also served as recipients for grafts derived from human iPSC. There have also been recent advances in creating pigs with severe combined immunodeficiency (SCID). Like SCID mice, these pigs are expected to be graft tolerant. Additionally, chimeric, partially humanized pigs could be sources of human organs. Another potential application of pluripotent stem cells from livestock is for the purpose of differentiating the cells into skeletal muscle, which, in turn, could be used either to produce cultured meat or to engraft into damaged muscle. None of these technologies has advanced to a stage that they have become mainstream, however. Despite the value of livestock models in regenerative medicine, only a limited number of institutions are able to use these animals.

  13. Reversible mitochondrial DNA accumulation in nuclei of pluripotent stem cells.

    PubMed

    Schneider, Joel S; Cheng, Xin; Zhao, Qingshi; Underbayev, Chingiz; Gonzalez, J Patrick; Raveche, Elizabeth S; Fraidenraich, Diego; Ivessa, Andreas S

    2014-11-15

    According to the endosymbiotic hypothesis, the precursor of mitochondria invaded the precursor of eukaryotic cells, a process that began roughly 2 billion years ago. Since then, the majority of the genetic material translocated from the mitochondria to the nucleus, where now almost all mitochondrial proteins are expressed. Only a tiny amount of DNA remained in the mitochondria, known as mitochondrial DNA (mtDNA). In this study, we report that the transfer of mtDNA fragments to the nucleus of pluripotent stem cells is still ongoing. We show by in situ hybridization and agarose DNA two-dimensional gel technique that induced pluripotent stem (iPS) cells contain high levels of mtDNA in the nucleus. We found that a large proportion of the accumulated mtDNA sequences appear to be extrachromosomal. Accumulation of mtDNA in the nucleus is present not only in the iPS cells, but also in embryonic stem (ES) cells. However upon differentiation, the level of mtDNA in the nuclei of iPS and ES cells is substantially reduced. This reversible accumulation of mtDNA in the nucleus supports the notion that the nuclear copy number of mtDNA sequences may provide a novel mechanism by which chromosomal DNA is dynamically regulated in pluripotent stem cells.

  14. [Induced pluripotent stem cells. A new resource in modern medicine].

    PubMed

    Liebau, S; Stockmann, M; Illing, A; Seufferlein, T; Kleger, A

    2014-04-01

    Pluripotent stem cells possess a remarkable unlimited self-renewal capacity and offer unparalleled in vitro differentiation potential. This provides a unique model system not only to study early human development but also gives renewed hope in terms of developing cell therapies and regenerative medicine. S. Yamanaka, a medical doctor and researcher, reported the possibility of reprogramming somatic cells to so-called induced pluripotent stem cells via the ectopic expression of four transcription factors, namely Oct4, Sox2, Klf4 and c-Myc. This Nobel Prize winning work has since revolutionized stem cell research and paved the way for countless new avenues within regenerative medicine. This includes disease modeling in a patient-specific context with the ultimate aim of individually tailored pharmaceutical therapy. Additionally, genetic correction studies have rapidly increased in basic science and thus there is hope that these can be effectively and efficiently translated into clinical applications. Addressing the medical community this review gives a broad general overview about the state of the research field and possible clinical applications of pluripotent stem cells.

  15. Livestock models for exploiting the promise of pluripotent stem cells.

    PubMed

    Roberts, R Michael; Yuan, Ye; Genovese, Nicholas; Ezashi, Toshihiko

    2015-01-01

    Livestock species are widely used as biomedical models. Pigs, in particular, are beginning to have a significant role in regenerative medicine for testing the applicability, success, and safety of grafts derived from induced pluripotent stem cells. Animal testing must always be performed before any clinical trials are performed in humans, and pigs may sometimes be the species of choice because of their physiological and anatomical similarities to humans. Induced pluripotent stem cells (iPSC) have been generated with some success from livestock species by a variety of reprogramming procedures, but authenticated embryonic stem cells (ESC) have not. There are now several studies in which porcine iPSC have been tested for their ability to provide functional grafts in pigs. Pigs have also served as recipients for grafts derived from human iPSC. There have also been recent advances in creating pigs with severe combined immunodeficiency (SCID). Like SCID mice, these pigs are expected to be graft tolerant. Additionally, chimeric, partially humanized pigs could be sources of human organs. Another potential application of pluripotent stem cells from livestock is for the purpose of differentiating the cells into skeletal muscle, which, in turn, could be used either to produce cultured meat or to engraft into damaged muscle. None of these technologies has advanced to a stage that they have become mainstream, however. Despite the value of livestock models in regenerative medicine, only a limited number of institutions are able to use these animals. PMID:25991700

  16. Introduction to Hair-Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Hoffman, Robert M

    2016-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.

  17. Characterizing the radioresponse of pluripotent and multipotent human stem cells.

    PubMed

    Lan, Mary L; Acharya, Munjal M; Tran, Katherine K; Bahari-Kashani, Jessica; Patel, Neal H; Strnadel, Jan; Giedzinski, Erich; Limoli, Charles L

    2012-01-01

    The potential capability of stem cells to restore functionality to diseased or aged tissues has prompted a surge of research, but much work remains to elucidate the response of these cells to genotoxic agents. To more fully understand the impact of irradiation on different stem cell types, the present study has analyzed the radioresponse of human pluripotent and multipotent stem cells. Human embryonic stem (ES) cells, human induced pluripotent (iPS) cells, and iPS-derived human neural stem cells (iPS-hNSCs) cells were irradiated and analyzed for cell survival parameters, differentiation, DNA damage and repair and oxidative stress at various times after exposure. While irradiation led to dose-dependent reductions in survival, the fraction of surviving cells exhibited dose-dependent increases in metabolic activity. Irradiation did not preclude germ layer commitment of ES cells, but did promote neuronal differentiation. ES cells subjected to irradiation exhibited early apoptosis and inhibition of cell cycle progression, but otherwise showed normal repair of DNA double-strand breaks. Cells surviving irradiation also showed acute and persistent increases in reactive oxygen and nitrogen species that were significant at nearly all post-irradiation times analyzed. We suggest that stem cells alter their redox homeostasis to adapt to adverse conditions and that radiation-induced oxidative stress plays a role in regulating the function and fate of stem cells within tissues compromised by radiation injury.

  18. Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell.

    PubMed

    Ratajczak, Mariusz Z; Zuba-Surma, Ewa K; Wysoczynski, Marcin; Wan, Wu; Ratajczak, Janina; Wojakowski, Wojciech; Kucia, Magda

    2008-05-01

    Regenerative medicine and tissue engineering are searching for a novel stem cell based therapeutic strategy that will allow for efficient treatment or even potential replacement of damaged organs. The pluripotent stem cell (PSC), which gives rise to cells from all three germ lineages, seems to be the most ideal candidate for such therapies. PSC could be extracted from developing embryos. However, since this source of stem cells for potential therapeutic purposes remains controversial, stem cell researchers look for PSC that could be isolated from the adult tissues or generated from already differentiated cells. True PSC should possess both potential for multilineage differentiation in vitro and, more importantly, also be able to complement in vivo blastocyst development. This review will summarize current approaches and limitations to isolate PSC from adult tissues or, alternatively, to generate it by nuclear reprogramming from already differentiated somatic cells.

  19. Teratomas from pluripotent stem cells: A clinical hurdle.

    PubMed

    Fong, Chui-Yee; Gauthaman, Kalamegam; Bongso, Ariff

    2010-11-01

    Although basic research on human embryonic stem cells (hESCs) at the laboratory bench has progressed with enviable speed there has been little head way in terms of its clinical application. A look at the Internet however shows several stem cell clinics worldwide offering direct transplantation of undifferentiated hESCs to patients for the cure of a variety of diseases before bona fide evidence-based results can be demonstrated from large controlled studies. This raises concern because reliable protocols have to be first developed to resolve the three major hurdles delaying clinical trials such as inadequate cell numbers, immunorejection and tumorigenesis. Cell expansion methods using bioreactors, rotary culture and mitotic agents have now been developed to generate stem cell derivatives in large numbers. The problem of immunorejection can now be overcome with the development of indirect and direct reprogramming protocols to personalize tissues to patients (human induced pluripotent stem cells, hiPSCs; nuclear transfer stem cells, NTSCs; induced neuronal cells, iN). However, hESC, hiPSC, and NTSCs being pluripotent have the disadvantage of teratoma formation in vivo which has to be carefully addressed so as to provide safe stem cell based therapies to the patient. This review addresses the issue of tumorigenesis and discusses approaches by which this concern may be overcome and at the same time emphasizes the need to concurrently explore alternative stem cell sources that do not confer the disadvantages of pluripotency but are widely multipotent so as to yield safe desirable tissues for clinical application as soon as possible. PMID:20665544

  20. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  1. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  2. Research on neurodegenerative diseases using induced pluripotent stem cells.

    PubMed

    Imamura, Keiko; Inoue, Haruhisa

    2012-06-01

    Induced pluripotent stem cells (iPSC) are derived from somatic cells. These somatic cells have had their gene expression experimentally reprogrammed to an embryonic stem cell-like pluripotent state, gaining the capacity to differentiate various cell types in the three embryonic germ layers. Thus, iPSC technology makes it possible to obtain neuronal cells from any human cells. iPSC can be generated from various kinds of somatic cells and from patients with neurodegenerative diseases. Disease modelling using iPSC technology would elucidate the pathogenesis of such diseases and contribute to related drug discoveries. In this review, we discuss the recent advances in iPSC technology as well as its potential applications.

  3. Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine

    PubMed Central

    Skalova, Stepanka; Svadlakova, Tereza; Qureshi, Wasay Mohiuddin Shaikh; Dev, Kapil; Mokry, Jaroslav

    2015-01-01

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges. PMID:25689424

  4. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells.

    PubMed

    Srikanth, Priya; Young-Pearse, Tracy L

    2014-01-01

    Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.

  5. Adult stem-like cells in kidney

    PubMed Central

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-01-01

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  6. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  7. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    PubMed

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  8. Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration.

    PubMed

    Magli, Alessandro; Incitti, Tania; Perlingeiro, Rita C R

    2016-01-01

    Muscle homeostasis is maintained by resident stem cells which, in both pathologic and non-pathologic conditions, are able to repair or generate new muscle fibers. Although muscle stem cells have tremendous regenerative potential, their application in cell therapy protocols is prevented by several restrictions, including the limited ability to grow ex vivo. Since pluripotent stem cells have the unique potential to both self-renew and expand almost indefinitely, they have become an attractive source of progenitors for regenerative medicine studies. Our lab has demonstrated that embryonic stem cell (ES)-derived myogenic progenitors retain the ability to repair existing muscle fibers and contribute to the pool of resident stem cells. Because of their relevance in both cell therapy and disease modeling, in this chapter we describe the protocol to derive myogenic progenitors from murine ES cells followed by their intramuscular delivery in a murine muscular dystrophy model. PMID:27492174

  9. The safety of human pluripotent stem cells in clinical treatment.

    PubMed

    Simonson, Oscar E; Domogatskaya, Anna; Volchkov, Pavel; Rodin, Sergey

    2015-01-01

    Human pluripotent stem cells (hPSCs) have practically unlimited proliferation potential and a capability to differentiate into any cell type in the human body. Since the first derivation in 1998, they have been an attractive source of cells for regenerative medicine. Numerous ethical, technological, and regulatory complications have been hampering hPSC use in clinical applications. Human embryonic stem cells (ESCs), parthenogenetic human ESCs, human nuclear transfer ESCs, and induced pluripotent stem cells are four types of hPSCs that are different in many clinically relevant features such as propensity to epigenetic abnormalities, generation methods, and ability for development of autologous cell lines. Propensity to genetic mutations and tumorigenicity are common features of all pluripotent cells that complicate hPSC-based therapies. Several recent advances in methods of derivation, culturing, and monitoring of hPSCs have addressed many ethical concerns and technological challenges in development of clinical-grade hPSC lines. Generation of banks of such lines may be useful to minimize immune rejection of hPSC-derived allografts. In this review, we discuss different sources of hPSCs available at the moment, various safety risks associated with them, and possible solutions for successful use of hPSCs in the clinic. We also discuss ongoing clinical trials of hPSC-based treatments.

  10. The safety of human pluripotent stem cells in clinical treatment.

    PubMed

    Simonson, Oscar E; Domogatskaya, Anna; Volchkov, Pavel; Rodin, Sergey

    2015-01-01

    Human pluripotent stem cells (hPSCs) have practically unlimited proliferation potential and a capability to differentiate into any cell type in the human body. Since the first derivation in 1998, they have been an attractive source of cells for regenerative medicine. Numerous ethical, technological, and regulatory complications have been hampering hPSC use in clinical applications. Human embryonic stem cells (ESCs), parthenogenetic human ESCs, human nuclear transfer ESCs, and induced pluripotent stem cells are four types of hPSCs that are different in many clinically relevant features such as propensity to epigenetic abnormalities, generation methods, and ability for development of autologous cell lines. Propensity to genetic mutations and tumorigenicity are common features of all pluripotent cells that complicate hPSC-based therapies. Several recent advances in methods of derivation, culturing, and monitoring of hPSCs have addressed many ethical concerns and technological challenges in development of clinical-grade hPSC lines. Generation of banks of such lines may be useful to minimize immune rejection of hPSC-derived allografts. In this review, we discuss different sources of hPSCs available at the moment, various safety risks associated with them, and possible solutions for successful use of hPSCs in the clinic. We also discuss ongoing clinical trials of hPSC-based treatments. PMID:26140342

  11. Efficient induction of pluripotent stem cells from menstrual blood.

    PubMed

    Li, Yang; Li, Xiaoni; Zhao, Hongxi; Feng, Ruopeng; Zhang, Xiaoyan; Tai, Dapeng; An, Guangyu; Wen, Jinhua; Tan, Jichun

    2013-04-01

    The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs. PMID:23151296

  12. Expression of stem cell pluripotency factors during regeneration in newts.

    PubMed

    Maki, Nobuyasu; Suetsugu-Maki, Rinako; Tarui, Hiroshi; Agata, Kiyokazu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2009-06-01

    In this study, we present data indicating that mammalian stem cell pluripotency-inducing factors are expressed during lens and limb regeneration in newts. The apparent expression even in intact tissues and the ensued regulation during regeneration raises the possibility that these factors might regulate tissue-specific reprogramming and regeneration. Furthermore, these factors should enable us to understand the similarities and differences between animal regeneration in the newt and stem cell strategies in mammals. Developmental Dynamics 238:1613-1616, 2009. (c) 2009 Wiley-Liss, Inc.

  13. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming. PMID:26947975

  14. Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?

    PubMed Central

    Petkova, Rumena; Arabadjiev, Borislav; Chakarov, Stoyan; Pankov, Roumen

    2014-01-01

    The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells. PMID:26019504

  15. Vascular potential of human pluripotent stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an ess...

  16. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.

    PubMed

    Rony, I K; Baten, A; Bloomfield, J A; Islam, M E; Billah, M M; Islam, K D

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.

  17. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    PubMed

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  18. The application of induced pluripotent stem cells for bone regeneration: current progress and prospects.

    PubMed

    Teng, Songsong; Liu, Chaoxu; Krettek, Christian; Jagodzinski, Michael

    2014-08-01

    Loss of healthy bone tissue and dysosteogenesis are still common and significant problems in clinics. Cell-based therapy using mesenchymal stem cells (MSCs) has been performed in patients for quite some time, but the inherent drawbacks of these cells, such as the reductions in proliferation rate and osteogenic differentiation potential that occur with aging, greatly limit their further application. Moreover, embryonic stem cells (ESCs) have brought new hope to osteoregenerative medicine because of their full pluripotent differentiation potential and excellent performance in bone regeneration. However, the ethical issues involved in destroying human embryos and the immune reactions that occur after transplantation are two major stumbling blocks impeding the clinical application of ESCs. Instead, induced pluripotent stem cells (iPSCs), which are ESC-like pluripotent cells that are reprogrammed from adult somatic cells using defined transcription factors, are considered a more promising source of cells for regenerative medicine because they present no ethical or immunological issues. Here, we summarize the primary technologies for generating iPSCs and the biological properties of these cells, review the current advances in iPSC-based bone regeneration and, finally, discuss the remaining challenges associated with these cells, particularly safety issues and their potential application for osteoregenerative medicine.

  19. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells.

    PubMed

    Hayashi, Yohei; Furue, Miho Kusuda

    2016-01-01

    In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development. PMID:27656216

  20. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    PubMed Central

    2016-01-01

    In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development. PMID:27656216

  1. Human pluripotent stem cell culture density modulates YAP signaling.

    PubMed

    Hsiao, Cheston; Lampe, Michael; Nillasithanukroh, Songkhun; Han, Wenqing; Lian, Xiaojun; Palecek, Sean P

    2016-05-01

    Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however, the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway, which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs, we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities, YAP phosphorylation and localization to the cytoplasm increased, which led to decreased YAP-mediated transcriptional activity. Furthermore, total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally, the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.

  2. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    PubMed

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  3. Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content.

    PubMed

    Zhou, Jing; Ghoroghi, Shima; Benito-Martin, Alberto; Wu, Hao; Unachukwu, Uchenna John; Einbond, Linda Saxe; Guariglia, Sara; Peinado, Hector; Redenti, Stephen

    2016-01-22

    Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm-1 uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue.

  4. Derivation of endodermal progenitors from pluripotent stem cells†

    PubMed Central

    Ikonomou, Laertis; Kotton, Darrell N.

    2014-01-01

    Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, i.e. the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells. PMID:25160562

  5. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells.

  6. Nanoengineered Platforms to Guide Pluripotent Stem Cell Fate

    PubMed Central

    Rutledge, Katy; Jabbarzadeh, Ehsan

    2016-01-01

    Tissue engineering utilizes cells, signaling molecules, and scaffolds towards creating functional tissue to repair damaged organs. Pluripotent stem cells (PSCs) are a promising cell source due to their ability to self-renewal indefinitely and their potential to differentiate into almost any cell type. Great strides have been taken to parse the physiological mechanisms by which PSCs respond to their microenvironment and commit to a specific lineage. The combination of physical cues and chemical factors is thought to have the most profound influence on stem cell behavior, therefore a major focus of tissue engineering strategies is scaffold design to incorporate these signals. One overlooked component of the in vivo microenvironment researchers attempt to recapitulate with three dimensional (3D) substrates is the nanoarchitecture formed by the fibrillar network of extracellular matrix (ECM) proteins. These nanoscale features have the ability to impact cell adhesion, migration, proliferation, and lineage commitment. Significant advances have been made in deciphering how these nanoscale cues interact with stem cells to determine phenotype, but much is still unknown as to how the interplay between physical and chemical signals regulate in vitro and in vivo cellular fate. This review dives deeper to investigate nanoscale platforms for engineering tissue, as well use the use of these nanotechnologies to drive pluripotent stem cell lineage determination. PMID:26918198

  7. Characterization and criteria of embryonic stem and induced pluripotent stem cells for a dopamine replacement therapy.

    PubMed

    Cooper, Oliver; Parmar, Malin; Isacson, Ole

    2012-01-01

    Human pluripotent stem cells provide new choices for sources of A9-type dopaminergic (DA) neurons in clinical trials of neural transplantation for patients with Parkinson's disease (PD). For example, "self" and HLA-matched A9 DA neurons may improve the patient-to-patient variability observed in previous clinical trials using fetal DA neurons and obviate the need for long-term immunosuppression in the patient. Normal chromosomal structure and minimal somatic mutations in pluripotent stem cells are necessary criteria for assuring the safe and reproducible transplantation of differentiated DA neurons into patients with PD in clinical trials. However, with these new choices of cell source, the application of pluripotency assays as criteria to ensure pluripotent stem cell quality becomes less relevant. New more relevant standards of quality control, assurance, and function are required. We suggest that quality assurance measures for pluripotent stem cells need to focus upon readouts for authentic midbrain DA neurons, their integration and growth using in vivo assays, and their long-term functional stability.

  8. Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns.

    PubMed

    Ben-Yehudah, Ahmi; Easley, Charles A; Hermann, Brian P; Castro, Carlos; Simerly, Calvin; Orwig, Kyle E; Mitalipov, Shoukhrat; Schatten, Gerald

    2010-08-05

    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.

  9. [Human pluripotent stem cell and neural differentiation].

    PubMed

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  10. Establishment and Characterization of Naïve Pluripotency in Human Embryonic Stem Cells.

    PubMed

    Warrier, Sharat; Popovic, Mina; Van der Jeught, Margot; Heindryckx, Björn

    2016-01-01

    Mouse embryonic stem cells are known to represent the naïve state of pluripotency, while human embryonic stem cells typically represented the primed state of pluripotency, characterized by a higher drift toward differentiation and some other disadvantages. Here we describe an efficient method for rapid, transgene free induction of the naïve pluripotent state in human by applying a novel combination of small molecules and growth factors in the culture medium (2i, LIF, basic fibroblast growth factor, ascorbic acid, and forskolin). Conversion of primed human embryonic stem cells towards the naive pluripotent state should be confirmed by a detailed characterization of the cells, as described in this chapter.

  11. Hurdles to clinical translation of human induced pluripotent stem cells

    PubMed Central

    Neofytou, Evgenios; O’Brien, Connor Galen; Couture, Larry A.; Wu, Joseph C.

    2015-01-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development. PMID:26132109

  12. Utilizing FUCCI reporters to understand pluripotent stem cell biology.

    PubMed

    Singh, Amar M; Trost, Robert; Boward, Benjamin; Dalton, Stephen

    2016-05-15

    The fluorescence ubiquitination cell cycle indicator (FUCCI) system provides a powerful method to evaluate cell cycle mechanisms associated with stem cell self-renewal and cell fate specification. By integrating the FUCCI system into human pluripotent stem cells (hPSCs) it is possible to isolate homogeneous fractions of viable cells representative of all cell cycle phases. This method avoids problems associated with traditional tools used for cell cycle analysis such as synchronizing drugs, elutriation and temperature sensitive mutants. Importantly, FUCCI reporters allow cell cycle events in dynamic systems, such as differentiation, to be evaluated. Initial reports on the FUCCI system focused on its strengths in reporting spatio-temporal aspects of cell cycle events in living cells and developmental models. In this report, we describe approaches that broaden the application of FUCCI reporters in PSCs through incorporation of FACS. This approach allows molecular analysis of the cell cycle in stem cell systems that were not previously possible.

  13. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies.

    PubMed

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2016-02-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer. PMID:26424535

  14. Concise review: programming human pluripotent stem cells into blood.

    PubMed

    Easterbrook, Jennifer; Fidanza, Antonella; Forrester, Lesley M

    2016-06-01

    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future.

  15. Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells

    PubMed Central

    Mor-Shaked, Hagar; Eiges, Rachel

    2016-01-01

    Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a loss-of-function mutation by a CGG repeat expansion at the 5′ untranslated region of the X-linked fragile X mental retardation 1 (FMR1) gene. Expansion of the CGG repeats beyond 200 copies results in protein deficiency by leading to aberrant methylation of the FMR1 promoter and the switch from active to repressive histone modifications. Additionally, the CGGs become increasingly unstable, resulting in high degree of variation in expansion size between and within tissues of affected individuals. It is still unclear how the FMR1 protein (FMRP) deficiency leads to disease pathology in neurons. Nor do we know the mechanisms by which the CGG expansion results in aberrant DNA methylation, or becomes unstable in somatic cells of patients, at least in part due to the lack of appropriate animal or cellular models. This review summarizes the current contribution of pluripotent stem cells, mutant human embryonic stem cells, and patient-derived induced pluripotent stem cells to disease modeling of FXS for basic and applied research, including the development of new therapeutic approaches. PMID:27690107

  16. Induced pluripotent stem cell technology in regenerative medicine and biology.

    PubMed

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A

    2010-01-01

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  17. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    NASA Astrophysics Data System (ADS)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  18. hPSCreg--the human pluripotent stem cell registry.

    PubMed

    Seltmann, Stefanie; Lekschas, Fritz; Müller, Robert; Stachelscheid, Harald; Bittner, Marie-Sophie; Zhang, Weiping; Kidane, Luam; Seriola, Anna; Veiga, Anna; Stacey, Glyn; Kurtz, Andreas

    2016-01-01

    The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application. PMID:26400179

  19. hPSCreg—the human pluripotent stem cell registry

    PubMed Central

    Seltmann, Stefanie; Lekschas, Fritz; Müller, Robert; Stachelscheid, Harald; Bittner, Marie-Sophie; Zhang, Weiping; Kidane, Luam; Seriola, Anna; Veiga, Anna; Stacey, Glyn; Kurtz, Andreas

    2016-01-01

    The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application. PMID:26400179

  20. Developing High-Fidelity Hepatotoxicity Models From Pluripotent Stem Cells

    PubMed Central

    Medine, Claire N.; Lucendo-Villarin, Baltasar; Storck, Christopher; Wang, Faye; Szkolnicka, Dagmara; Khan, Ferdous; Pernagallo, Salvatore; Black, James R.; Marriage, Howard M.; Ross, James A.; Bradley, Mark; Iredale, John P.; Flint, Oliver

    2013-01-01

    Faithfully recapitulating human physiology “in a dish” from a renewable source remains a holy grail for medicine and pharma. Many procedures have been described that, to a limited extent, exhibit human tissue-specific function in vitro. In particular, incomplete cellular differentiation and/or the loss of cell phenotype postdifferentiation play a major part in this void. We have developed an interdisciplinary approach to address this problem, using skill sets in cell biology, materials chemistry, and pharmacology. Pluripotent stem cells were differentiated to hepatocytes before being replated onto a synthetic surface. Our approach yielded metabolically active hepatocyte populations that displayed stable function for more than 2 weeks in vitro. Although metabolic activity was an important indication of cell utility, the accurate prediction of cellular toxicity in response to specific pharmacological compounds represented our goal. Therefore, detailed analysis of hepatocellular toxicity was performed in response to a custom-built and well-defined compound set and compared with primary human hepatocytes. Importantly, stem cell-derived hepatocytes displayed equivalence to primary human material. Moreover, we demonstrated that our approach was capable of modeling metabolic differences observed in the population. In conclusion, we report that pluripotent stem cell-derived hepatocytes will model toxicity predictably and in a manner comparable to current gold standard assays, representing a major advance in the field. PMID:23757504

  1. Modeling neurodevelopmental disorders using human pluripotent stem cells.

    PubMed

    Telias, Michael; Ben-Yosef, Dalit

    2014-08-01

    Neurodevelopmental disorders (NDs) are impairments that affect the development and growth of the brain and the central nervous system during embryonic and early postnatal life. Genetically manipulated animals have contributed greatly to the advancement of ND research, but many of them differ considerably from the human phenotype. Cellular in vitro models are also valuable, but the availability of human neuronal cells is limited and their lifespan in culture is short. Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, comprise a powerful tool for studying developmentally regulated diseases, including NDs. We reviewed all recent studies in which hPSCs were used as in vitro models for diseases and syndromes characterized by impairment of neurogenesis or synaptogenesis leading to intellectual disability and delayed neurodevelopment. We analyzed their methodology and results, focusing on the data obtained following in vitro neural differentiation and gene expression and profiling of the derived neurons. Electrophysiological recording of action potentials, synaptic currents and response to neurotransmitters is pivotal for validation of the neuronal fate as well as for assessing phenotypic dysfunctions linked to the disease in question. We therefore focused on the studies which included electrophysiological recordings on the in vitro-derived neurons. Finally, we addressed specific issues that are critical for the advancement of this area of research, specifically in providing a reliable human pre-clinical research model and drug screening platform. PMID:24728983

  2. Concise review: programming human pluripotent stem cells into blood.

    PubMed

    Easterbrook, Jennifer; Fidanza, Antonella; Forrester, Lesley M

    2016-06-01

    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future. PMID:26996518

  3. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective.

    PubMed

    Bai, Qiang; Desprat, Romain; Klein, Bernard; Lemaître, Jean-Marc; De Vos, John

    2013-04-01

    Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are two types of pluripotent stem cells that hold great promise for biomedical research and medical applications. iPSCs were initially favorably compared to ESCs. This view was first based on ethical arguments (the generation of iPSCs does not require the destruction of an embryo) and on immunological reasons (it is easier to derive patient HLA-matched iPSCs than ESCs). However, several reports suggest that iPSCs might be characterized by higher occurrence of epigenetic and genetic aberrations than ESCs as a consequence of the reprogramming process. We focus here on the DNA integrity of pluripotent stem cells and examine the three main sources of genomic abnormalities in iPSCs: (1) genomic variety of the parental cells, (2) cell reprogramming, and (3) in vitro cell culture. Recent reports claim that it is possible to generate mouse or human iPSC lines with a mutation level similar to that of the parental cells, suggesting that "genome-friendly" reprogramming techniques can be developed. The issue of iPSC DNA integrity clearly highlights the crucial need of guidelines to define the acceptable level of genomic integrity of pluripotent stem cells for biomedical applications. We discuss here the main issues that such guidelines should address.

  4. The current state of research with human pluripotent stem cells in Brazil.

    PubMed

    Pranke, Patricia; Chagastelles, Pedro; Sperling, Laura E

    2014-12-01

    This article provides a brief overview of research with human pluripotent stem cells in Brazil, the federal funding supporting this research, and the legislation that allows the isolation of human embryonic stem cells.

  5. Pluripotent stem cells in regenerative medicine: challenges and recent progress

    PubMed Central

    Tabar, Viviane; Studer, Lorenz

    2015-01-01

    After years of incremental progress, several recent studies have succeeded in deriving disease-relevant cell types from human pluripotent stem cell (hPSC) sources. The prospect of an unlimited cell source, combined with promising preclinical data, indicates that hPSC technology may be on the verge of clinical translation. In this Review, we discuss recent progress in directed differentiation, some of the new technologies that have facilitated the success of hPSC therapies and the remaining hurdles on the road towards developing hPSC-based cell therapies. PMID:24434846

  6. Maintaining embryonic stem cell pluripotency with Wnt signaling.

    PubMed

    Sokol, Sergei Y

    2011-10-01

    Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression. PMID:21903672

  7. [Induced pluripotent stem cells revolutionise research of neurodegenerative diseases].

    PubMed

    Schmidt, Sissel Ida; Knudsen, Matias Jul; Barnkob, Helle Bogetofte; Meyer, Morten

    2016-07-18

    Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's disease has long been hampered by the lack of access to live disease-afflicted neurons for in vitro studies. The introduction of induced pluripotent stem (iPS) cells has made such studies possible. iPS cells can be reprogrammed from somatic patient-derived cells (e.g. skin cells) and differentiated into any cell type of the body. This allows for the production of neurons, which have the genetic background of the patients and show disease-relevant phenotypes.

  8. Engineering human cells and tissues through pluripotent stem cells.

    PubMed

    Jones, Jeffrey R; Zhang, Su-Chun

    2016-08-01

    The utility of human pluripotent stem cells (hPSCs) depends on their ability to produce functional cells and tissues of the body. Two strategies have been developed: directed differentiation of enriched populations of cells that match a regional and functional profile and spontaneous generation of three-dimensional organoids that resemble tissues in the body. Genomic editing of hPSCs and their differentiated cells broadens the use of the hPSC paradigm in studying human cellular function and disease as well as developing therapeutics.

  9. Pluripotent Stem Cells and Skeletal Regeneration – Promise and Potential

    PubMed Central

    Wu, Joy Y.

    2015-01-01

    Bone is a regenerative tissue, capable of healing itself after fractures. However, some circumstances such as critical size defects, malformations, and tumor destruction may exceed the skeleton’s capacity for self-repair. In addition, bone mass and strength decline with age, leading to an increase in fragility fractures. Therefore the ability to generate large numbers of patient-specific osteoblasts would have enormous clinical implications for the treatment of skeletal defects and diseases. This review will highlight recent advances in the derivation of pluripotent stem cells, and in their directed differentiation towards bone-forming osteoblasts. PMID:26260198

  10. Human Pluripotent Stem Cells: Applications and Challenges in Neurological Diseases

    PubMed Central

    Hibaoui, Youssef; Feki, Anis

    2012-01-01

    The ability to generate human pluripotent stem cells (hPSCs) holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery, and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises, and challenges of hPSC applications in human neurological disease modeling and therapies. PMID:22934023

  11. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    PubMed Central

    Kasai, T; Chen, L; Mizutani, AZ; Kudoh, T; Murakami, H; Fu, L; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-environment, which induces malignant tumors. In this review, we propose this micro-environment as a ‘cancerous niche’ and discuss its importance on the formation and maintenance of cancer stem cells with the recent experimental results to establish cancer stem cell models from induced pluripotent stem cells. These models of cancer stem cell will provide the great advantages in cancer research and its therapeutic applications in the future. PMID:25075155

  12. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

    PubMed

    Fiorenzano, Alessandro; Pascale, Emilia; D'Aniello, Cristina; Acampora, Dario; Bassalert, Cecilia; Russo, Francesco; Andolfi, Gennaro; Biffoni, Mauro; Francescangeli, Federica; Zeuner, Ann; Angelini, Claudia; Chazaud, Claire; Patriarca, Eduardo J; Fico, Annalisa; Minchiotti, Gabriella

    2016-01-01

    Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. PMID:27586544

  13. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency

    PubMed Central

    Fiorenzano, Alessandro; Pascale, Emilia; D'Aniello, Cristina; Acampora, Dario; Bassalert, Cecilia; Russo, Francesco; Andolfi, Gennaro; Biffoni, Mauro; Francescangeli, Federica; Zeuner, Ann; Angelini, Claudia; Chazaud, Claire; Patriarca, Eduardo J.; Fico, Annalisa; Minchiotti, Gabriella

    2016-01-01

    Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. PMID:27586544

  14. Cryopreservation of the Hair Follicle Maintains Pluripotency of Nestin-Expressing Hair Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Kajiura, Satoshi; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Li, Lingna; Katsuoka, Kensei; Hoffman, Robert M; Amoh, Yasuyuki

    2015-08-01

    Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. In the present study, we established efficient cryopreservation methods of the hair follicle that maintained the pluripotency of HAP stem cells. We cryopreserved the whole hair follicle from green fluorescent protein transgenic mice by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen. After thawing, the upper part of the hair follicle was isolated and cultured in Dulbecco's Modified Eagle's Medium (DMEM) with fetal bovine serum (FBS). After 4 weeks of culture, cells from the upper part of the hair follicle grew out. The growing cells were transferred to DMEM/F12 without FBS. After 1 week of culture, the growing cells formed hair spheres, each containing ∼1×10(2) HAP stem cells. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The thawed and cultured upper part of the hair follicle produced almost as many pluripotent hair spheres as fresh follicles. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. In contrast, rapid-cooling (vitrification) cryopreservation poorly preserved the pluripotency of the hair follicle stem cells. Stem cell marker genes (nestin, Sox2, and SSEA-1) were as highly expressed in slow-rate cooled cryopreserved follicles, after thawing, as in fresh follicles. However, in the vitrification cryopreserved follicles, the expression of the stem cell marker genes was greatly reduced. Direct cryopreservation of hair spheres by either the rapid-cooling, or slow-cooling method, resulted in loss of pluripotency. These results suggest that the slow-rate cooling cryopreservation of the whole hair follicle is effective to store HAP stem cells. Stored HAP stem cells would be very useful

  15. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs.

    PubMed

    Kashyap, Vasundhra; Rezende, Naira C; Scotland, Kymora B; Shaffer, Sebastian M; Persson, Jenny Liao; Gudas, Lorraine J; Mongan, Nigel P

    2009-09-01

    Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.

  16. Snapshots of Pluripotency

    PubMed Central

    Tesar, Paul J.

    2016-01-01

    Summary Pluripotency is a unique developmental state that lays the foundation upon which the entire embryo is built. Pluripotent cells possess the unique capacity to generate, in an exquisitely defined sequence, all the distinct cell types comprising the fetal and adult organism. The discovery of pluripotent stem cells and now the ability to generate them from differentiated cells has had a profound impact on a vast array of scientific disciplines. In addition to their clinical potential as a source of therapeutic cell types, pluripotent stem cells provide scalable access to otherwise experimentally inaccessible development- and disease-associated biology. Here I provide my perspective on the continuum of pluripotency in the early mammalian embryo. I also discuss how novel genomic technologies are now enabling the capture of molecular “snapshots” of the several distinct pluripotent states that stem cells undergo during this pivotal developmental period. PMID:26833092

  17. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells

    PubMed Central

    Biswas, Dhruba; Jiang, Peng

    2016-01-01

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming. PMID:26861316

  18. Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk.

    PubMed

    Smith, Alyson J; Nelson, Natalie G; Oommen, Saji; Hartjes, Katherine A; Folmes, Clifford D; Terzic, Andre; Nelson, Timothy J

    2012-10-01

    Pluripotent stem cells have been the focus of bioengineering efforts designed to generate regenerative products, yet harnessing therapeutic capacity while minimizing risk of dysregulated growth remains a challenge. The risk of residual undifferentiated stem cells within a differentiated progenitor population requires a targeted approach to eliminate contaminating cells prior to delivery. In this study we aimed to validate a toxicity strategy that could selectively purge pluripotent stem cells in response to DNA damage and avoid risk of uncontrolled cell growth upon transplantation. Compared with somatic cell types, embryonic stem cells and induced pluripotent stem cells displayed hypersensitivity to apoptotic induction by genotoxic agents. Notably, hypersensitivity in pluripotent stem cells was stage-specific and consistently lost upon in vitro differentiation, with the mean half-maximal inhibitory concentration increasing nearly 2 orders of magnitude with tissue specification. Quantitative polymerase chain reaction and Western blotting demonstrated that the innate response was mediated through upregulation of the BH3-only protein Puma in both natural and induced pluripotent stem cells. Pretreatment with genotoxic etoposide purged hypersensitive pluripotent stem cells to yield a progenitor population refractory to teratoma formation upon transplantation. Collectively, this study exploits a hypersensitive apoptotic response to DNA damage within pluripotent stem cells to decrease risk of dysregulated growth and augment the safety profile of transplant-ready, bioengineered progenitor cells.

  19. Autophagic response to cell culture stress in pluripotent stem cells.

    PubMed

    Gregory, Siân; Swamy, Sushma; Hewitt, Zoe; Wood, Andrew; Weightman, Richard; Moore, Harry

    2016-05-01

    Autophagy is an important conserved cellular process, both constitutively as a recycling pathway for long lived proteins and as an upregulated stress response. Recent findings suggest a fundamental role for autophagic processes in the maintenance of pluripotent stem cell function. In human embryonic stem cells (hESCS), autophagy was investigated by transfection of LC3-GFP to visualize autophagosomes and with an antibody to LC3B protein. The presence of the primary cilium (PC) in hESCs as the site of recruitment of autophagy-related proteins was also assessed. HESCs (mShef11) in vitro displayed basal autophagy which was upregulated in response to deprivation of culture medium replacement. Significantly higher levels of autophagy were exhibited on spontaneous differentiation of hESCs in vitro. The PC was confirmed to be present in hESCs and therefore may serve to coordinate autophagy function. PMID:26385182

  20. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking.

    PubMed

    Focosi, Daniele; Pistello, Mauro

    2016-03-01

    Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises.

  1. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  2. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models.

    PubMed

    Sandoe, Jackson; Eggan, Kevin

    2013-07-01

    Human neurodegenerative disorders are among the most difficult to study. In particular, the inability to readily obtain the faulty cell types most relevant to these diseases has impeded progress for decades. Recent advances in pluripotent stem cell technology now grant access to substantial quantities of disease-pertinent neurons both with and without predisposing mutations. While this suite of technologies has revolutionized the field of 'in vitro disease modeling', great care must be taken in their deployment if robust, durable discoveries are to be made. Here we review what we perceive to be several of the stumbling blocks in the use of stem cells for the study of neurological disease and offer strategies to overcome them.

  3. Modeling hippocampal neurogenesis using human pluripotent stem cells.

    PubMed

    Yu, Diana Xuan; Di Giorgio, Francesco Paolo; Yao, Jun; Marchetto, Maria Carolina; Brennand, Kristen; Wright, Rebecca; Mei, Arianna; McHenry, Lauren; Lisuk, David; Grasmick, Jaeson Michael; Silberman, Pedro; Silberman, Giovanna; Jappelli, Roberto; Gage, Fred H

    2014-03-11

    The availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD), we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs). We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine.

  4. Induced pluripotent stem cell technology and aquatic animal species.

    PubMed

    Temkin, Alexis M; Spyropoulos, Demetri D

    2014-06-01

    Aquatic animal species are the overall leaders in the scientific investigation of tough but important global health issues, including environmental toxicants and climate change. Historically, aquatic animal species also stand at the forefront of experimental biology, embryology and stem cell research. Over the past decade, intensive and high-powered investigations principally involving mouse and human cells have brought the generation and study of induced pluripotent stem cells (iPSCs) to a level that facilitates widespread use in a spectrum of species. A review of key features of these investigations is presented here as a primer for the use of iPSC technology to enhance ongoing aquatic animal species studies. iPSC and other cutting edge technologies create the potential to study individuals from "the wild" closer to the level of investigation applied to sophisticated inbred mouse models. A wide variety of surveys and hypothesis-driven investigations can be envisioned using this new capability, including comparisons of organism-specific development and exposure response and the testing of fundamental dogmas established using inbred mice. However, with these new capabilities, also come new criteria for rigorous baseline assessments and testing. Both the methods for inducing pluripotency and the source material can negatively impact iPSC quality and bourgeoning applications. Therefore, more rigorous strategies not required for inbred mouse models will have to be implemented to approach global health issues using individuals from "the wild" for aquatic animal species.

  5. Effects of benzene inhalation on murine pluripotent stem cells.

    PubMed

    Cronkite, E P; Inoue, T; Carsten, A L; Miller, M E; Bullis, J E; Drew, R T

    1982-03-01

    Effects of benzene inhalation on mouse pluripotent hematopoietic stem cells have been evaluated. Male mice 8--12 wk old were exposed to 400 ppm benzene for 6 h/d, 5 d/wk, for up to 9 1/2 wk. At various time intervals exposed and control animals were killed, and cardiac blood was evaluated for changes in white blood cell (WBC) and red blood cell (RBC) content. In addition, femora and tibiae were evaluated for total marrow cellularity, stem cell content (as measured by the spleen colony technique), and the percent of stem cells in DNA synthesis (as determined by the tritiated thymidine cytocide technique). Exogenous spleen colonies grown from marrow of exposed animals were counted, identified, and scored by histological type. Exposure to benzene caused significant depressions of RBCs and WBCs throughout the exposure period, which continued for at least 14 d after exposure. Bone marrow cellularity and stem cell content were also depressed in exposed animals throughout the study. Tritiated thymidine cytocide of spleen colony-forming cells was generally increased in exposed animals, perhaps indicating a compensatory response to the reduction of circulating cells. Spleen colonies of all types were depressed after exposure to benzene. The significance of the reduction in cellularity, stem cell content, and changes in morphology of spleen colonies is discussed in relation to cellular toxicity and residual injury.

  6. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells.

    PubMed

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  7. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells

    PubMed Central

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  8. [Breakthrough in research on pluripotent stem cells and their application in medicine].

    PubMed

    Valdimarsdóttir, Guðrún; Richter, Anne

    2015-12-01

    Embryonic stem cells are, as the name indicates, isolated from embryos. They are pluripotent cells which can be maintained undifferentiated or induced to differentiate into any cell type of the body. In 1998 the first isolation of human embryonic stem cells was successful and they became an interesting source for stem cell regenerative medicine. Only 8 years later pluripotent stem cells were generated by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). This was a revolution in the way people thought of cell commitment during development. Since then, a lot of research has been done in understanding the molecular biology of pluripotent stem cells. iPSCs can be generated from somatic cells of a patient and therefore have the same genome. Hence, iPSCs have great potential application in medicine, as they can be utilized in disease modelling, drug screening and cell replacement therapy.

  9. Human pluripotent stem cells: Towards therapeutic development for the treatment of lifestyle diseases.

    PubMed

    Nishio, Miwako; Nakahara, Masako; Yuo, Akira; Saeki, Kumiko

    2016-02-26

    There are two types of human pluripotent stem cells: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iPSCs. It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies. Regarding lifestyle diseases, we have already several therapeutic options, and thus, development of human pluripotent stem cell-based therapeutics tends to be avoided. Nevertheless, human pluripotent stem cells can contribute to the development of new therapeutics in this field. As we will show, there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected. In those cases, immunologically rejections of ESC- or allogenic iPSC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects. Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable. For example, clinical specimens of human classical brown adipocytes (BAs), which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders, are unobtainable from living individuals due to scarcity, fragility and ethical problems. However, BA can easily be produced from human pluripotent stem cells. In this review, we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases.

  10. Human pluripotent stem cells: Towards therapeutic development for the treatment of lifestyle diseases

    PubMed Central

    Nishio, Miwako; Nakahara, Masako; Yuo, Akira; Saeki, Kumiko

    2016-01-01

    There are two types of human pluripotent stem cells: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iPSCs. It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies. Regarding lifestyle diseases, we have already several therapeutic options, and thus, development of human pluripotent stem cell-based therapeutics tends to be avoided. Nevertheless, human pluripotent stem cells can contribute to the development of new therapeutics in this field. As we will show, there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected. In those cases, immunologically rejections of ESC- or allogenic iPSC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects. Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable. For example, clinical specimens of human classical brown adipocytes (BAs), which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders, are unobtainable from living individuals due to scarcity, fragility and ethical problems. However, BA can easily be produced from human pluripotent stem cells. In this review, we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases. PMID:26981171

  11. Genome surveillance in pluripotent stem cells: Low apoptosis threshold and efficient antioxidant defense

    PubMed Central

    Dannenmann, Benjamin; Lehle, Simon; Essmann, Frank; Schulze-Osthoff, Klaus

    2016-01-01

    ABSTRACT Pluripotent stem cells must be endowed with efficient genome surveillance. Here we describe the multiple mechanisms that ensure their genome integrity, including high susceptibility to apoptosis and efficient prevention of DNA lesions. In induced pluripotent stem cells, apoptosis hypersensitivity is mediated by increased expression of proapoptotic BCL-2 protein, whereas DNA damage is prevented by the upregulation of several antioxidant enzymes. Antioxidants might be therefore employed for safer stem cell therapies. PMID:27308586

  12. Stem cell pluripotency and transcription factor Oct4.

    PubMed

    Pan, Guang Jin; Chang, Zeng Yi; Schöler, Hans R; Pei, Duanqing

    2002-12-01

    Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lasting question whether some of the somatic cells retains totipotency was answered by the cloning of Dolly at the end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessing the power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts of the human body by stem cell engineering. Considerable resources will be devoted to harness the untapped potentials of stem cells in the foreseeable future which may transform medicine as we know today. At the molecular level, totipotency has been linked to a singular transcription factor and its expression appears to define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression of various genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. The mechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarize the structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotency or pluripotency of embryonic stem cells. PMID:12528890

  13. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  14. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture.

    PubMed

    Rebuzzini, Paola; Zuccotti, Maurizio; Redi, Carlo Alberto; Garagna, Silvia

    2016-07-01

    Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.

  15. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective.

    PubMed

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine. PMID:27069483

  16. Use of human pluripotent stem cells to study and treat retinopathies

    PubMed Central

    Ben M’Barek, Karim; Regent, Florian; Monville, Christelle

    2015-01-01

    Human cell types affected by retinal diseases (such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells (hPSCs), either of embryonic origin or through reprogramming of adult somatic cells, represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of hPSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs. PMID:25914766

  17. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    PubMed Central

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine. PMID:27069483

  18. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.

    PubMed

    Nakagawa, Masato; Koyanagi, Michiyo; Tanabe, Koji; Takahashi, Kazutoshi; Ichisaka, Tomoko; Aoi, Takashi; Okita, Keisuke; Mochiduki, Yuji; Takizawa, Nanako; Yamanaka, Shinya

    2008-01-01

    Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.

  19. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture.

    PubMed

    Rebuzzini, Paola; Zuccotti, Maurizio; Redi, Carlo Alberto; Garagna, Silvia

    2016-07-01

    Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types. PMID:26961132

  20. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    PubMed

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  1. DNA and Chromatin Modification Networks Distinguish Stem Cell Pluripotent Ground States*

    PubMed Central

    Song, Jing; Saha, Sudipto; Gokulrangan, Giridharan; Tesar, Paul J.; Ewing, Rob M.

    2012-01-01

    Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates. PMID:22822199

  2. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    PubMed Central

    2015-01-01

    Background Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. Results We report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog. Conclusions We had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature. PMID:26694224

  3. Alternative sources of pluripotent stem cells: ethical and scientific issues revisited.

    PubMed

    Condic, Maureen L; Rao, Mahendra

    2010-08-01

    Stem cell researchers in the United States continue to face an uncertain future, because of the changing federal guidelines governing this research, the restrictive patent situation surrounding the generation of new human embryonic stem cell lines, and the ethical divide over the use of embryos for research. In this commentary, we describe how recent advances in the derivation of induced pluripotent stem cells and the isolation of germ-line-derived pluripotent stem cells resolve a number of these uncertainties. The availability of patient-matched, pluripotent stem cells that can be obtained by ethically acceptable means provides important advantages for stem cell researchers, by both avoiding protracted ethical debates and giving U.S. researchers full access to federal funding. Thus, ethically uncompromised stem cells, such as those derived by direct reprogramming or from germ-cell precursors, are likely to yield important advances in stem cell research and move the field rapidly toward clinical applications.

  4. Induced pluripotent stem cells: from Nobel Prizes to clinical applications.

    PubMed

    Rashid, S Tamir; Alexander, Graeme J M

    2013-03-01

    Advances in basic hepatology have been constrained for many years by the inability to culture primary hepatocytes in vitro, until just over five years ago when the scientific playing field was changed beyond recognition with the demonstration that human skin fibroblasts could be reprogrammed to resemble embryonic cells. The reprogrammed cells, known as induced pluripotent stem cells (iPSCs), were then shown to have the capacity to re-differentiate into almost any human cell type, including hepatocytes. The unlimited number and isogenic nature of the cells that can be generated from tiny fragments of tissue have massive implications for the study of human liver diseases in vitro. Of more immediate clinical importance were recent data demonstrating precision gene therapy on patient specific iPSCs, which opens up the real and exciting possibility of autologous hepatocyte transplantation as a substitute for allogeneic whole liver transplantation, which has been an effective approach to end-stage liver disease, but one that has now been outstripped by demand. In this review, we describe the historical development, current technology and potential clinical applications of induced pluripotency, concluding with a perspective on possible future directions in this dynamic field.

  5. Induced pluripotent stem cells: from Nobel Prizes to clinical applications.

    PubMed

    Rashid, S Tamir; Alexander, Graeme J M

    2013-03-01

    Advances in basic hepatology have been constrained for many years by the inability to culture primary hepatocytes in vitro, until just over five years ago when the scientific playing field was changed beyond recognition with the demonstration that human skin fibroblasts could be reprogrammed to resemble embryonic cells. The reprogrammed cells, known as induced pluripotent stem cells (iPSCs), were then shown to have the capacity to re-differentiate into almost any human cell type, including hepatocytes. The unlimited number and isogenic nature of the cells that can be generated from tiny fragments of tissue have massive implications for the study of human liver diseases in vitro. Of more immediate clinical importance were recent data demonstrating precision gene therapy on patient specific iPSCs, which opens up the real and exciting possibility of autologous hepatocyte transplantation as a substitute for allogeneic whole liver transplantation, which has been an effective approach to end-stage liver disease, but one that has now been outstripped by demand. In this review, we describe the historical development, current technology and potential clinical applications of induced pluripotency, concluding with a perspective on possible future directions in this dynamic field. PMID:23131523

  6. Generation of induced pluripotent stem cells from the prairie vole.

    PubMed

    Manoli, Devanand S; Subramanyam, Deepa; Carey, Catriona; Sudin, Erik; Van Westerhuyzen, Julie A; Bales, Karen L; Blelloch, Robert; Shah, Nirao M

    2012-01-01

    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation. PMID:22675440

  7. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells

    PubMed Central

    Gowran, Aoife; Rasponi, Marco; Perrucci, Gianluca L.; Righetti, Stefano; Zanobini, Marco; Pompilio, Giulio

    2016-01-01

    A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy. PMID:27110250

  8. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    PubMed

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells. PMID:26900863

  9. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    PubMed

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  10. Generation of serotonin neurons from human pluripotent stem cells.

    PubMed

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2-3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates.

  11. Systematic search for recipes to generate induced pluripotent stem cells.

    PubMed

    Chang, Rui; Shoemaker, Robert; Wang, Wei

    2011-12-01

    Generation of induced pluripotent stem cells (iPSCs) opens a new avenue in regenerative medicine. One of the major hurdles for therapeutic applications is to improve the efficiency of generating iPSCs and also to avoid the tumorigenicity, which requires searching for new reprogramming recipes. We present a systems biology approach to efficiently evaluate a large number of possible recipes and find those that are most effective at generating iPSCs. We not only recovered several experimentally confirmed recipes but we also suggested new ones that may improve reprogramming efficiency and quality. In addition, our approach allows one to estimate the cell-state landscape, monitor the progress of reprogramming, identify important regulatory transition states, and ultimately understand the mechanisms of iPSC generation.

  12. Induced pluripotent stem cells for modelling human diseases

    PubMed Central

    Unternaehrer, Juli J.; Daley, George Q.

    2011-01-01

    Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation. PMID:21727133

  13. Auxetic nuclei in embryonic stem cells exiting pluripotency

    NASA Astrophysics Data System (ADS)

    Pagliara, Stefano; Franze, Kristian; McClain, Crystal R.; Wylde, George W.; Fisher, Cynthia L.; Franklin, Robin J. M.; Kabla, Alexandre J.; Keyser, Ulrich F.; Chalut, Kevin J.

    2014-06-01

    Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.

  14. Generation of functional podocytes from human induced pluripotent stem cells.

    PubMed

    Ciampi, Osele; Iacone, Roberto; Longaretti, Lorena; Benedetti, Valentina; Graf, Martin; Magnone, Maria Chiara; Patsch, Christoph; Xinaris, Christodoulos; Remuzzi, Giuseppe; Benigni, Ariela; Tomasoni, Susanna

    2016-07-01

    Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  15. Multiple sclerosis: getting personal with induced pluripotent stem cells

    PubMed Central

    Di Ruscio, A; Patti, F; Welner, R S; Tenen, D G; Amabile, G

    2015-01-01

    Human induced pluripotent stem (iPS) cells can be derived from lineage-restricted cells and represent an important tool to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. Recently, patient-derived iPS cells, containing donor genetic background, have offered a breakthrough approach to study human genetics of neurodegenerative diseases. By offering an unlimited source of patient-specific disease-relevant cells, iPS cells hold great promise for understanding disease mechanisms, identifying molecular targets and developing phenotypic screens for drug discovery. This review will discuss the potential impact of using iPS cell-derived models in multiple sclerosis (MS) research and highlight some of the current challenges and prospective for generating novel therapeutic treatments for MS patients. PMID:26158512

  16. Generation of serotonin neurons from human pluripotent stem cells

    PubMed Central

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates. PMID:26655496

  17. Neurodegenerative disease-specific induced pluripotent stem cell research.

    PubMed

    Inoue, Haruhisa

    2010-10-01

    Neurodegenerative disease-specific induced pluripotent stem cell (iPSC) research contributes to the following 3 areas; "Disease modeling", "Disease material" and "Disease therapy". "Disease modeling", by recapitulating the disease phenotype in vitro, will reveal the pathomechanisms. Neurodegenerative disease-specific iPSC-derived non-neuronal cells harboring disease-causative protein(s), which play critical roles in neurodegeneration including motor neuron degeneration in amyotrophic lateral sclerosis, could be "Disease material", the target cell(s) for drug screening. These differentiated cells also could be used for "Disease therapy", an autologous cellular replacement/neuroprotection strategy, for patients with neurodegenerative disease. Further progress in these areas of research can be made for currently incurable neurodegenerative diseases.

  18. Generation of pluripotent stem cells via protein transduction.

    PubMed

    Li, Xia; Zhang, Pengfei; Wei, Chao; Zhang, Yunhai

    2014-01-01

    The development of techniques for reprogramming somatic cells led to the birth of the cloned sheep “Dolly” and the generation of induced pluripotent stem cells (iPSCs). iPSCs hold great promise for in vitro disease modeling, new drug screening, regenerative medicine and agricultural production. These cells can differentiate into almost any tissue types and they can be used to produce autografts that will not be rejected by the patient. However, practical application has been limited by the potential for insertion mutagenesis and by the complexity of the associated procedures. A protein-based approach to generation of iPSCs could offer better prospects by avoiding these problems. This review provides an overview of the key processes and mechanism involved in protein-based somatic cell reprogramming, discusses some promising methods for increasing its efficiency and future challenges. PMID:24860991

  19. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220

  20. Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency

    PubMed Central

    Sheridan, Steven D.; Surampudi, Vasudha; Rao, Raj R.

    2012-01-01

    Human induced pluripotent stem cells (hiPSCs) have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB) assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs. PMID:22550517

  1. Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis

    PubMed Central

    Völkner, Manuela; Zschätzsch, Marlen; Rostovskaya, Maria; Overall, Rupert W.; Busskamp, Volker; Anastassiadis, Konstantinos; Karl, Mike O.

    2016-01-01

    Summary The plasticity of pluripotent stem cells provides new possibilities for studying development, degeneration, and regeneration. Protocols for the differentiation of retinal organoids from embryonic stem cells have been developed, which either recapitulate complete eyecup morphogenesis or maximize photoreceptor genesis. Here, we have developed a protocol for the efficient generation of large, 3D-stratified retinal organoids that does not require evagination of optic-vesicle-like structures, which so far limited the organoid yield. Analysis of gene expression in individual organoids, cell birthdating, and interorganoid variation indicate efficient, reproducible, and temporally regulated retinogenesis. Comparative analysis of a transgenic reporter for PAX6, a master regulator of retinogenesis, shows expression in similar cell types in mouse in vivo, and in mouse and human retinal organoids. Early or late Notch signaling inhibition forces cell differentiation, generating organoids enriched with cone or rod photoreceptors, respectively, demonstrating the power of our improved organoid system for future research in stem cell biology and regenerative medicine. PMID:27050948

  2. Smooth Muscle Precursor Cells Derived from Human Pluripotent Stem Cells for Treatment of Stress Urinary Incontinence

    PubMed Central

    Wang, Zhe; Li, Yan Hui; Wei, Yi; Green, Morgaine; Wani, Prachi; Zhang, Pengbo; Pera, Renee Reijo; Chen, Bertha

    2016-01-01

    There is great interest in using stem cells (SC) to regenerate a deficient urethral sphincter in patients with urinary incontinence. The smooth muscle component of the sphincter is a significant contributor to sphincter function. However, current translational efforts for sphincter muscle restoration focus only on skeletal muscle regeneration because they rely on adult mesenchymal SC as cell source. These adult SC do not yield sufficient smooth muscle cells (SMCs) for transplantation. We may be able to overcome this limitation by using pluripotent stem cell (PSC) to derive SMCs. Hence, we sought to investigate whether smooth muscle precursor cells (pSMCs) derived from human PSCs can restore urethral function in an animal model generated by surgical urethrolysis and ovariectomy. Rats were divided into four groups: control (no intervention), sham saline (surgery + saline injection), bladder SMC (surgery + human bladder SMC injection), and treatment (surgery + pSMC injection, which includes human embryonic stem cell (hESC) H9-derived pSMC, episomal reprogrammed induced pluripotent stem cells (iPSCs)-derived pSMC, or viral reprogrammed iPSC-derived pSMC). pSMCs (2 × 106 cells/rat) were injected periurethrally 3 weeks postsurgery. Leak point pressure (LPP) and baseline external urethral sphincter electromyography were measured 5 weeks postinjection. Both iPSC-derived pSMC treatment groups showed significantly higher LPP compared to the sham saline group, consistent with restoration of urethral sphincter function. While the difference between the H9-derived pSMC treatment and sham saline group was not significant, it did show a trend toward restoration of the LPP to the level of intact controls. Our data indicate that pSMCs derived from human PSCs (hESC and iPSC) can restore sphincter function. PMID:26785911

  3. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer.

    PubMed

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient's somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  4. Cell metabolism under microenvironmental low oxygen tension levels in stemness, proliferation and pluripotency.

    PubMed

    De Miguel, M P; Alcaina, Y; de la Maza, D Sainz; Lopez-Iglesias, P

    2015-01-01

    Hypoxia is defined as a reduction in oxygen supply to a tissue below physiological levels. However, physiological hypoxic conditions occur during early embryonic development; and in adult organisms, many cells such as bone marrow stem cells are located within hypoxic niches. Thus, certain processes take place in hypoxia, and recent studies highlight the relevance of hypoxia in stem cell cancer physiology. Cellular response to hypoxia depends on hypoxia-inducible factors (HIFs), which are stabilized under low oxygen conditions. In a hypoxic context, various inducible HIF alpha subunits are able to form dimers with constant beta subunits and bind the hypoxia response elements (HRE) in the genome, acting as transcription factors, inducing a wide variety of gene expression. Typically, the HIF pathway has been shown to enhance vascular endothelial growth factor (VEGF) expression, which would be responsible for angiogenesis and, therefore, re-oxygenation of the hypoxic sites. Embryonic stem cells inhibit a severely hypoxic environment, which dictates their glycolytic metabolism, whereas differentiated cells shift toward the more efficient aerobic respiration for their metabolic demands. Accordingly, low oxygen tension levels have been reported to enhance induced pluripotent stem cell (iPS) generation. HIFs have also been shown to enhance pluripotency-related gene expression, including Oct4 (Octamer-binding transcription factor 4), Nanog and Wnt. Therefore, cell metabolism might play a role in stemness maintenance, proliferation and cell reprogramming. Moreover, in the hypoxic microenvironment of cancer cells, metabolism shifts from oxidative phosphorylation to anaerobic glycolysis, a process known as the Warburg effect, which is involved in cancer progression and malignancy. PMID:25941818

  5. In Vitro Gamete Differentiation from Pluripotent Stem Cells as a Promising Therapy for Infertility.

    PubMed

    Mouka, Aurélie; Tachdjian, Gérard; Dupont, Joëlle; Drévillon, Loïc; Tosca, Lucie

    2016-04-01

    Generation of gametes derived in vitro from pluripotent stem cells holds promising prospects for future reproductive applications. Indeed, it provides information on molecular and cellular mechanisms underlying germ cell (GC) development and could offer a new potential treatment for infertility. Great progress has been made in derivation of gametes from embryonic stem cells, despite ethical issues. Induced pluripotent stem cells (iPSCs) technology allows the reprogramming of a differentiated somatic cell, possibly emanating from the patient, into a pluripotent state. With the emergence of iPSCs, several studies created primordial GC stage to mature gamete-like cells in vitro in mice and humans. Recent findings in GC derivation suggest that in mice, functional gametes can be generated in vitro. This strengthens the idea that it might be possible in the future to generate functional human sperm and oocytes from pluripotent stem cells in culture.

  6. In Vitro Gamete Differentiation from Pluripotent Stem Cells as a Promising Therapy for Infertility.

    PubMed

    Mouka, Aurélie; Tachdjian, Gérard; Dupont, Joëlle; Drévillon, Loïc; Tosca, Lucie

    2016-04-01

    Generation of gametes derived in vitro from pluripotent stem cells holds promising prospects for future reproductive applications. Indeed, it provides information on molecular and cellular mechanisms underlying germ cell (GC) development and could offer a new potential treatment for infertility. Great progress has been made in derivation of gametes from embryonic stem cells, despite ethical issues. Induced pluripotent stem cells (iPSCs) technology allows the reprogramming of a differentiated somatic cell, possibly emanating from the patient, into a pluripotent state. With the emergence of iPSCs, several studies created primordial GC stage to mature gamete-like cells in vitro in mice and humans. Recent findings in GC derivation suggest that in mice, functional gametes can be generated in vitro. This strengthens the idea that it might be possible in the future to generate functional human sperm and oocytes from pluripotent stem cells in culture. PMID:26873432

  7. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells.

    PubMed

    Kajiwara, Masatoshi; Aoi, Takashi; Okita, Keisuke; Takahashi, Ryosuke; Inoue, Haruhisa; Takayama, Naoya; Endo, Hiroshi; Eto, Koji; Toguchida, Junya; Uemoto, Shinji; Yamanaka, Shinya

    2012-07-31

    Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, the in vitro directed differentiation of human pluripotent stem cells into mature hepatocytes remains challenging. Little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. In the current study, we developed an improved hepatic differentiation protocol and compared 28 hiPSC lines originated from various somatic cells and derived using retroviruses, Sendai viruses, or episomal plasmids. This comparison indicated that the origins, but not the derivation methods, may be a major determinant of variation in hepatic differentiation. The hiPSC clones derived from peripheral blood cells consistently showed good differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts showed poor differentiation. However, when we compared hiPSCs from peripheral blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. These data underscore the importance of donor differences when comparing the differentiation propensities of hiPSC clones.

  8. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    PubMed

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  9. Therapeutics from Adult Stem Cells and the Hype Curve.

    PubMed

    Maguire, Greg

    2016-05-12

    The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment. PMID:27190588

  10. Therapeutics from Adult Stem Cells and the Hype Curve.

    PubMed

    Maguire, Greg

    2016-05-12

    The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment.

  11. A Novel Role for miR-1305 in Regulation of Pluripotency-Differentiation Balance, Cell Cycle, and Apoptosis in Human Pluripotent Stem Cells.

    PubMed

    Jin, Shibo; Collin, Joseph; Zhu, Lili; Montaner, David; Armstrong, Lyle; Neganova, Irina; Lako, Majlinda

    2016-09-01

    Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are defined as pluripotent in view of their self-renewal ability and potential to differentiate to cells of all three germ layers. Recent studies have indicated that microRNAs (miRNAs) play an important role in the maintenance of pluripotency and cell cycle regulation. We used a microarray based approach to identify miRNAs that were enriched in hESCs when compared to differentiated cells and at the same time showed significant expression changes between different phases of cell cycle. We identified 34 candidate miRNAs and performed functional studies on one of these, miR-1305, which showed the highest expression change during cell cycle transition. Overexpression of miR-1305 induced differentiation of pluripotent stem cells, increased cell apoptosis and sped up G1/S transition, while its downregulation facilitated the maintenance of pluripotency and increased cell survival. Using target prediction software and luciferase based reporter assays we identified POLR3G as a downstream target by which miR-1305 regulates the fine balance between maintenance of pluripotency and onset of differentiation. Overexpression of POLR3G rescued pluripotent stem cell differentiation induced by miR-1305 overexpression. In contrast, knock-down of POLR3G expression abolished the miR-1305-knockdown mediated enhancement of pluripotency, thus validating its role as miR-1305 target in human pluripotent stem cells. Together our data point to an important role for miR-1305 as a novel regulator of pluripotency, cell survival and cell cycle and uncovers new mechanisms and networks by which these processes are intertwined in human pluripotent stem cells. Stem Cells 2016;34:2306-2317.

  12. Modeling Huntington's disease with induced pluripotent stem cells.

    PubMed

    Kaye, Julia A; Finkbeiner, Steven

    2013-09-01

    Huntington's disease (HD) causes severe motor dysfunction, behavioral abnormalities, cognitive impairment and death. Investigations into its molecular pathology have primarily relied on murine tissues; however, the recent discovery of induced pluripotent stem cells (iPSCs) has opened new possibilities to model neurodegenerative disease using cells derived directly from patients, and therefore may provide a human-cell-based platform for unique insights into the pathogenesis of HD. Here, we will examine the practical implementation of iPSCs to study HD, such as approaches to differentiate embryonic stem cells (ESCs) or iPSCs into medium spiny neurons, the cell type most susceptible in HD. We will explore the HD-related phenotypes identified in iPSCs and ESCs and review how brain development and neurogenesis may actually be altered early, before the onset of HD symptoms, which could inform the search for drugs that delay disease onset. Finally, we will speculate on the exciting possibility that ESCs or iPSCs might be used as therapeutics to restore or replace dying neurons in HD brains.

  13. Generation of functional hepatic cells from pluripotent stem cells

    PubMed Central

    Han, Songyan; Bourdon, Alice; Hamou, Wissam; Dziedzic, Noelle; Goldman, Orit; Gouon-Evans, Valerie

    2014-01-01

    Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models. PMID:25364624

  14. Human induced pluripotent stem cell and nanotechnology-based therapeutics.

    PubMed

    Liu, Wei-Hsiu; Chang, Yuh-Lih; Lo, Wen-Liang; Li, Hsin-Yang; Hsiao, Chia-Wei; Peng, Chi-Hsien; Chiou, Shih-Hwa; Ma, Hsin-I; Chen, Shih-Jen

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) can be genetically reprogrammed to an embryonic stem cell-like state and can provide promising medical applications, such as diagnosis, prognosis, drug screening for therapeutical development, and monitoring disease progression. Despite myriad advances, traditional viral-based reprogramming for generating hiPSCs has safety risks that hinder further practical applications of hiPSCs. In the past decade, nonviral-based reprogramming has been used as an alternative to produce hiPSCs and enhance their differentiation. In addition, the efficiency of nonviral-based reprogramming is generally poor, compared to that of viral-based reprogramming. Recent studies in nanoscale-structured particles have made progress in addressing many applications of hiPSCs for clinical practice. The combination of hiPSCs and nanotechnology will actually act as the therapeutic platform for personalized medicine and can be the remedies against various diseases in the future. In this article, we review recent advances in cellular reprogramming and hiPSC-related research, such as cell source, delivery system, and direct reprogramming, as well as some of its potential clinical applications, including mitochondrial and retinal disease. We also briefly summarize the current incorporation of nanotechnology in patient-specific hiPSCs for future treatments.

  15. Induced pluripotent stem cells: origins, applications, and future perspectives.

    PubMed

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  16. Investigation of Rett syndrome using pluripotent stem cells.

    PubMed

    Dajani, Rana; Koo, Sung-Eun; Sullivan, Gareth J; Park, In-Hyun

    2013-11-01

    Rett syndrome (RTT) is one of most prevalent female neurodevelopmental disorders. De novo mutations in X-linked MECP2 are mostly responsible for RTT. Since the identification of MeCP2 as the underlying cause of RTT, murine models have contributed to understanding the pathophysiology of RTT and function of MeCP2. Reprogramming is a procedure to produce induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors. iPSCs obtain similar features as embryonic stem cells and are capable of self-renewing and differentiating into cells of all three layers. iPSCs have been utilized in modeling human diseases in vitro. Neurons differentiated from RTT-iPSCs showed the recapitulation of RTT phenotypes. Despite the early success, genetic and epigenetic instability upon reprogramming and ensuing maintenance of iPSCs raise concerns in using RTT-iPSCs as an accurate in vitro model. Here, we update the current iPSC-based RTT modeling, and its concerns and challenges. PMID:23744605

  17. Induced pluripotent stem cells: origins, applications, and future perspectives.

    PubMed

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells. PMID:24302707

  18. Application of Induced Pluripotent Stem Cells in Liver Diseases

    PubMed Central

    Yu, Yue; Wang, Xuehao; Nyberg, Scott L.

    2014-01-01

    Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from therapy involving hepatocyte transplantation. Liver transplantation is presently the only proven treatment for many medically refractory liver diseases including end-stage liver failure and inherited metabolic liver disease. However, the shortage in transplantable livers prevents over 40% of listed patients per year from receiving a liver transplant; many of these patients die before receiving an organ offer or become too sick to transplant. Therefore, new therapies are needed to supplement whole-organ liver transplantation and reduce mortality on waiting lists worldwide. Furthermore, the remarkable regenerative capacity of hepatocytes in vivo is exemplified by the increasing number of innovative cell-based therapies and animal models of human liver disorders. Induced pluripotent stem cells (iPSCs) have similar properties to those of embryonic stem cells (ESCs) but bypass the ethical concerns of embryo destruction. Therefore, generation of hepatocyte-like cells (HLCs) using iPSC technology may be beneficial for the treatment of severe liver diseases, screening of drug toxicities, basic research of several hepatocytic disorders, and liver transplantation. Here we briefly summarize the growing number of potential applications of iPSCs for treatment of liver disease. PMID:26858888

  19. Mimicking Retinal Development and Disease With Human Pluripotent Stem Cells.

    PubMed

    Sinha, Divya; Phillips, Jenny; Joseph Phillips, M; Gamm, David M

    2016-04-01

    As applications of human pluripotent stem cells (hPSCs) continue to be refined and pursued, it is important to keep in mind that the strengths and weaknesses of this technology lie with its developmental origins. The remarkable capacity of differentiating hPSCs to recapitulate cell and tissue genesis has provided a model system to study stages of human development that were not previously amenable to investigation and experimentation. Furthermore, demonstration of developmentally appropriate, stepwise differentiation of hPSCs to specific cell types offers support for their authenticity and their suitability for use in disease modeling and cell replacement therapies. However, limitations to farming cells and tissues in an artificial culture environment, as well as the length of time required for most cells to mature, are some of the many issues to consider before using hPSCs to study or treat a particular disease. Given the overarching need to understand and modulate the dynamics of lineage-specific differentiation in stem cell cultures, this review will first examine the capacity of hPSCs to serve as models of retinal development. Thereafter, we will discuss efforts to model retinal disorders with hPSCs and present challenges that face investigators who aspire to use such systems to study disease pathophysiology and/or screen for therapeutics. We also refer readers to recent publications that provide additional insight and details on these rapidly evolving topics. PMID:27116663

  20. Induced pluripotent stem cells for modeling neurological disorders

    PubMed Central

    Russo, Fabiele B; Cugola, Fernanda R; Fernandes, Isabella R; Pignatari, Graciela C; Beltrão-Braga, Patricia C B

    2015-01-01

    Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism. PMID:26722648

  1. Generating trunk neural crest from human pluripotent stem cells

    PubMed Central

    Huang, Miller; Miller, Matthew L.; McHenry, Lauren K.; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages. PMID:26812940

  2. Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding.

    PubMed

    Bhartiya, Deepa

    2013-01-01

    Stem cells have excited researchers because of their potential to regenerate. However, which stem cells will be the best candidate for regenerative medicine remains an enigma. Compared to pluripotent stem cells with associated risks of immune rejection and teratoma formation, adult stem cells especially the mesenchymal stem cells (MSCs) are hyped to be a suitable alternate since they also exhibit pluripotent properties. This review shows that there is a subpopulation of pluripotent very small embryonic-like stem cells (VSELs) among MSCs culture. The two populations differ from each other in expression pattern of OCT-4. VSELs exhibit nuclear OCT-4A, whereas the MSCs have cytoplasmic OCT-4B, similar to our earlier findings in testis and ovary. Pluripotent VSELs with nuclear OCT-4A exist in various adult body organs, and the immediate progenitors express cytoplasmic OCT-4B which is eventually lost as the cell differentiates further. To conclude it is essential to discriminate between nuclear and cytoplasmic OCT-4 expression and also to acknowledge the presence of VSELs. PMID:24187558

  3. Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding.

    PubMed

    Bhartiya, Deepa

    2013-01-01

    Stem cells have excited researchers because of their potential to regenerate. However, which stem cells will be the best candidate for regenerative medicine remains an enigma. Compared to pluripotent stem cells with associated risks of immune rejection and teratoma formation, adult stem cells especially the mesenchymal stem cells (MSCs) are hyped to be a suitable alternate since they also exhibit pluripotent properties. This review shows that there is a subpopulation of pluripotent very small embryonic-like stem cells (VSELs) among MSCs culture. The two populations differ from each other in expression pattern of OCT-4. VSELs exhibit nuclear OCT-4A, whereas the MSCs have cytoplasmic OCT-4B, similar to our earlier findings in testis and ovary. Pluripotent VSELs with nuclear OCT-4A exist in various adult body organs, and the immediate progenitors express cytoplasmic OCT-4B which is eventually lost as the cell differentiates further. To conclude it is essential to discriminate between nuclear and cytoplasmic OCT-4 expression and also to acknowledge the presence of VSELs.

  4. Protein Kinase A Signaling Is Inhibitory for Reprogramming into Pluripotent Stem Cells.

    PubMed

    Kim, Jong Soo; Hong, Yean Ju; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2016-03-01

    Somatic cells may be reprogrammed into pluripotent cells by the ectopic expression of defined transcription factors. However, some of the hurdles that affect the generation of induced pluripotent stem cells include extremely low efficiency and slow reprogramming. In the present study, we examined the effects of small molecules on cellular reprogramming and found that 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), an analog of cyclic adenosine monophosphate (cAMP), improves the reprogramming efficiency of reprogrammable mouse fibroblasts induced with dox in serum replacement (SR) medium. Interestingly, treatment with 8-Br-cAMP in mouse embryonic stem cell culture conditions does not affect reprogramming into the pluripotent state; however, reprogramming efficiency is significantly enhanced by inhibition of protein kinase A (PKA) in SR medium. Therefore, our results suggest that PKA signaling is unnecessary and may in fact act as a barrier to reprogramming into pluripotent stem cells. PMID:26728702

  5. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass

    PubMed Central

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-01-01

    Summary Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. PMID:26947977

  6. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness.

    PubMed

    Sadeghian-Nodoushan, Fatemeh; Aflatoonian, Reza; Borzouie, Zahra; Akyash, Fatemeh; Fesahat, Farzaneh; Soleimani, Mehrdad; Aghajanpour, Samaneh; Moore, Harry D; Aflatoonian, Behrouz

    2016-04-01

    Human male germ-line stem cells (hmGSCs) and human testis-derived embryonic stem cell-like (htESC-like) cells are claimed to be in vitro pluripotent counterparts of spermatogonial stem cells (SSCs), but the origin and pluripotency of human testis-derived cell cultures are still under debate. The aim of this study was to generate putative pluripotent stem cells in vitro from human testicular sperm-extracted (TESE) samples of infertile men, and to assess their pluripotency and capacity to differentiate. TESE samples were minced, enzymatically disaggregated and dispersed into single-cell or cluster suspensions, and then cultured. Initially, cell clusters resembled those described for hmGSCs and htESC-like cells, and were positive for markers such as OCT4/POU5F1, NANOG, and TRA-2-54. Prolonged propagation of cell clusters expressing pluripotency markers did not thrive; instead, the cells that emerged possessed characteristics of mesenchymal stromal cells (MSCs) such as STRO-1, CD105/EGLN1, CD13/ANPEP, SOX9, vimentin, and fibronectin. KIT, SOX2, and CD44 were not expressed by these MSCs. The multipotential differentiation capacity of these cells was confirmed using Oil Red-O and Alizarin Red staining after induction with specific culture conditions. It is therefore concluded that pluripotent stem cells could not be derived using the conditions previously reported to be successful for TESE samples. PMID:27077675

  7. Small-Molecule-Driven Hepatocyte Differentiation of Human Pluripotent Stem Cells

    PubMed Central

    Siller, Richard; Greenhough, Sebastian; Naumovska, Elena; Sullivan, Gareth J.

    2015-01-01

    Summary The differentiation of pluripotent stem cells to hepatocytes is well established, yet current methods suffer from several drawbacks. These include a lack of definition and reproducibility, which in part stems from continued reliance on recombinant growth factors. This has remained a stumbling block for the translation of the technology into industry and the clinic for reasons associated with cost and quality. We have devised a growth-factor-free protocol that relies on small molecules to differentiate human pluripotent stem cells toward a hepatic phenotype. The procedure can efficiently direct both human embryonic stem cells and induced pluripotent stem cells to hepatocyte-like cells. The final population of cells demonstrates marker expression at the transcriptional and protein levels, as well as key hepatic functions such as serum protein production, glycogen storage, and cytochrome P450 activity. PMID:25937370

  8. Role of the small subunit processome in the maintenance of pluripotent stem cells.

    PubMed

    You, Kwon Tae; Park, Joha; Kim, V Narry

    2015-10-01

    RNA-binding proteins (RBPs) play integral roles in gene regulation, yet only a small fraction of RBPs has been studied in the context of stem cells. Here we applied an RNAi screen for RBPs in mouse embryonic stem cells (ESCs) and identified 16 RBPs involved in pluripotency maintenance. Interestingly, six identified RBPs, including Krr1 and Ddx47, are part of a complex called small subunit processome (SSUP) that mediates 18S rRNA biogenesis. The SSUP components are preferentially expressed in stem cells and enhance the global translational rate, which is critical to sustain the protein levels of labile pluripotency factors such as Nanog and Esrrb. Furthermore, the SSUP proteins are required for efficient reprogramming of induced pluripotent stem cells. Our study uncovers the role of the SSUP and the importance of translational control in stem cell fate decision.

  9. Present state and future perspectives of using pluripotent stem cells in toxicology research

    PubMed Central

    Löser, Peter

    2011-01-01

    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed. PMID:21225242

  10. Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors.

    PubMed

    Gareau, Tia; Lara, Giovanna G; Shepherd, Robert D; Krawetz, Roman; Rancourt, Derrick E; Rinker, Kristina D; Kallos, Michael S

    2014-04-01

    Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs.

  11. Modeling ALS using motor neurons derived from human induced pluripotent stem cells

    PubMed Central

    Sances, S; Bruijn, LI; Chandran, S; Eggan, K; Ho, R; Klim, J; Livesey, MR; Lowry, E; Macklis, JD; Rushton, D; Sadegh, C; Sareen, D; Wichterle, H; Zhang, SC; Svendsen, CN

    2016-01-01

    Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop novel models of ALS. However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or co-culture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease. PMID:27021939

  12. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    PubMed Central

    Ruiz, Sergio; Lopez-Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Gutierrez-Martinez, Paula; Bua, Sabela; Ramirez, Oscar; Olalde, Iñigo; Rodrigo-Perez, Sara; Li, Han; Marques-Bonet, Tomas; Serrano, Manuel; Blasco, Maria A.; Batada, Nizar N.; Fernandez-Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress. Increasing the levels of the checkpoint kinase 1 (CHK1) reduces reprogramming-induced replication stress and increases the efficiency of iPSC generation. Similarly, nucleoside supplementation during reprogramming reduces the load of DNA damage and genomic rearrangements on iPSC. Our data reveal that lowering replication stress during reprogramming, genetically or chemically, provides a simple strategy to reduce genomic instability on mouse and human iPSC. PMID:26292731

  13. Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model?

    PubMed

    Knollmann, Björn C

    2013-03-15

    This article reviews the strengths and limitations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) as models of cardiac arrhythmias. Specifically, the article attempts to answer the following questions: Which clinical arrhythmias can be modeled by iPSC-CM? How well can iPSC-CM model adult ventricular myocytes? What are the strengths and limitations of published iPSC-CM arrhythmia models? What new mechanistic insight has been gained? What is the evidence that would support using iPSC-CM to personalize antiarrhythmic drug therapy? The review also discusses the pros and cons of using the iPSC-CM technology for modeling specific genetic arrhythmia disorders, such as long QT syndrome, Brugada Syndrome, or Catecholaminergic Polymorphic Ventricular Tachycardia.

  14. The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases.

    PubMed

    Peng, Jun; Zeng, Xianmin

    2011-07-28

    Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia are the most common human neurodegenerative diseases pathologically characterized by a progressive and specific loss of certain neuronal populations. The exact mechanisms of neuronal cell death in these diseases are unclear, although some forms of the diseases are inherited and genes causing these diseases have been identified. Currently there are no effective clinical therapies for many of these diseases. The recently acquired ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture may provide a powerful tool for in vitro neurodegenerative disease modeling and an unlimited source for cell replacement therapy. In the present review, we summarize recent progress on iPSC generation and differentiation into neuronal cell types and discuss the potential application for in vitro disease mechanism study and in vivo cell replacement therapy.

  15. Building a microphysiological skin model from induced pluripotent stem cells

    PubMed Central

    2013-01-01

    The discovery of induced pluripotent stem cells (iPSCs) in 2006 was a major breakthrough for regenerative medicine. The establishment of patient-specific iPSCs has created the opportunity to model diseases in culture systems, with the potential to rapidly advance the drug discovery field. Current methods of drug discovery are inefficient, with a high proportion of drug candidates failing during clinical trials due to low efficacy and/or high toxicity. Many drugs fail toxicity testing during clinical trials, since the cells on which they have been tested do not adequately model three-dimensional tissues or their interaction with other organs in the body. There is a need to develop microphysiological systems that reliably represent both an intact tissue and also the interaction of a particular tissue with other systems throughout the body. As the port of entry for many drugs is via topical delivery, the skin is the first line of exposure, and also one of the first organs to demonstrate a reaction after systemic drug delivery. In this review, we discuss our strategy to develop a microphysiological system using iPSCs that recapitulates human skin for analyzing the interactions of drugs with the skin. PMID:24564920

  16. Therapeutic potential of perivascular cells from human pluripotent stem cells.

    PubMed

    Dar, Ayelet; Itskovitz-Eldor, Joseph

    2015-09-01

    Vascularization of injured tissues or artificial grafts is a major challenge in tissue engineering, stimulating a continued search for alternative sources for vasculogenic cells and the development of therapeutic strategies. Human pluripotent stem cells (hPSCs), either embryonic or induced, offer a plentiful platform for the derivation of large numbers of vasculogenic cells, as required for clinical transplantations. Various protocols for generation of vasculogenic smooth muscle cells (SMCs) from hPSCs have been described with considerably different SMC derivatives. In addition, we recently identified hPSC-derived pericytes, which are similar to their physiological counterparts, exhibiting unique features of blood vessel-residing perivascular cells, as well as multipotent mesenchymal precursors with therapeutic angiogenic potential. In this review we refer to methodologies for the development of a variety of perivascular cells from hPSCs with respect to developmental induction, differentiation capabilities, potency and their dual function as mesenchymal precursors. The therapeutic effect of hPSC-derived perivascular cells in experimental models of tissue engineering and regenerative medicine are described and compared to those of their native physiological counterparts.

  17. The business of exploiting induced pluripotent stem cells

    PubMed Central

    Prescott, Catherine

    2011-01-01

    Induced pluripotent stem cells (iPS cells) can be exploited for both research and clinical applications. The first part of this review seeks to provide an understanding of the financial drivers and key elements of a successful business strategy that underpin a company focused on developing iPS-related products and services targeted at the research market. The latter part of the review highlights some of the reasons as to why the reprogramming of somatic cells is currently being used to develop cell-based models to screen for small molecules with drug-like properties rather than to develop cell-based regenerative medicines per se. The latter may be used to repair or replace a patient's damaged cells and thereby have the potential to ‘cure’ a disease and, in doing so, prevent or delay the onset of associated medical conditions. However, the cost of an expensive regenerative medicine and time to accrue any benefit linked to a decrease in co-morbidity expenditure may not outweigh the benefit for a healthcare community that has finite resources. The implications of this are discussed together with evidence that the UK National Institute for Health and Clinical Excellence (NICE) and the National Health Service (NHS) have established a precedent for a cost-sharing strategy with the pharmaceutical industry. PMID:21727138

  18. Modeling Familial Cancer with Induced Pluripotent Stem Cells

    PubMed Central

    Lee, Dung-Fang; Su, Jie; Kim, Huen Suk; Chang, Betty; Papatsenko, Dmitri; Zhao, Ruiying; Yuan, Ye; Gingold, Julian; Xia, Weiya; Darr, Henia; Mirzayans, Razmik; Hung, Mien-Chie; Schaniel, Christoph; Lemischka, Ihor R.

    2015-01-01

    SUMMARY In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni Syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs. PMID:25860607

  19. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  20. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    PubMed Central

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  1. Pluripotent stem cells: An in vitro model for nanotoxicity assessments.

    PubMed

    Handral, Harish K; Tong, Huei Jinn; Islam, Intekhab; Sriram, Gopu; Rosa, Vinicus; Cao, Tong

    2016-10-01

    The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27241574

  2. Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva.

    PubMed

    Cai, Jie; Orlova, Valeria V; Cai, Xiujuan; Eekhoff, Elisabeth M W; Zhang, Keqin; Pei, Duanqing; Pan, Guangjin; Mummery, Christine L; Ten Dijke, Peter

    2015-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by progressive ossification of soft tissues, for which there is no effective treatment. Mutations in the bone morphogenetic protein (BMP) type I receptor activin receptor-like kinase 2 (ACVR1/ALK2) are the main cause of FOP. We generated human induced pluripotent stem cells (hiPSCs) from FOP patients with the ALK2 R206H mutation. The mutant ALK2 gene changed differentiation efficiencies of hiPSCs into FOP bone-forming progenitors: endothelial cells (ECs) and pericytes. ECs from FOP hiPSCs showed reduced expression of vascular endothelial growth factor receptor 2 and could transform into mesenchymal cells through endothelial-mesenchymal transition. Increased mineralization of pericytes from FOP hiPSCs could be partly inhibited by the ALK2 kinase inhibitor LDN-212854. Thus, differentiated FOP hiPSCs recapitulate some aspects of the disease phenotype in vitro, and they could be instrumental in further elucidating underlying mechanisms of FOP and development of therapeutic drug candidates. PMID:26626181

  3. Generation of kidney organoids from human pluripotent stem cells.

    PubMed

    Takasato, Minoru; Er, Pei X; Chiu, Han S; Little, Melissa H

    2016-09-01

    The human kidney develops from four progenitor populations-nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors-resulting in the formation of maximally 2 million nephrons. Until recently, the reported methods differentiated human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor cells, consequently forming only nephrons or collecting ducts, respectively. Here we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and they respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 d of monolayer culture for intermediate mesoderm induction, followed by 18 d of 3D culture to facilitate self-organizing renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol. PMID:27560173

  4. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.

    PubMed

    Shoji, Emi; Woltjen, Knut; Sakurai, Hidetoshi

    2016-01-01

    Patient-derived induced pluripotent stem cells (iPSCs) have opened the door to recreating pathological conditions in vitro using differentiation into diseased cells corresponding to each target tissue. Yet for muscular diseases, a method for reproducible and efficient myogenic differentiation from human iPSCs is required for in vitro modeling. Here, we introduce a myogenic differentiation protocol mediated by inducible transcription factor expression that reproducibly and efficiently drives human iPSCs into myocytes. Delivering a tetracycline-inducible, myogenic differentiation 1 (MYOD1) piggyBac (PB) vector to human iPSCs enables the derivation of iPSCs that undergo uniform myogenic differentiation in a short period of time. This differentiation protocol yields a homogenous skeletal muscle cell population, reproducibly reaching efficiencies as high as 70-90 %. MYOD1-induced myocytes demonstrate characteristics of mature myocytes such as cell fusion and cell twitching in response to electric stimulation within 14 days of differentiation. This differentiation protocol can be applied widely in various types of patient-derived human iPSCs and has great prospects in disease modeling particularly with inherited diseases that require studies of early pathogenesis and drug screening. PMID:25971915

  5. A new class of pluripotent stem cell cytotoxic small molecules.

    PubMed

    Richards, Mark; Phoon, Chee Wee; Goh, Gwendoline Tze Wei; Seng, Eng Khuan; Guo, Xu Ming; Tan, Cherine Mei Fong; Chan, Woon-Khiong; Lee, Joel Mun Kin

    2014-01-01

    A major concern in Pluripotent Stem Cell (PSC)-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo. PMID:24647085

  6. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  7. Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva

    PubMed Central

    Cai, Jie; Orlova, Valeria V.; Cai, Xiujuan; Eekhoff, Elisabeth M.W.; Zhang, Keqin; Pei, Duanqing; Pan, Guangjin; Mummery, Christine L.; ten Dijke, Peter

    2015-01-01

    Summary Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by progressive ossification of soft tissues, for which there is no effective treatment. Mutations in the bone morphogenetic protein (BMP) type I receptor activin receptor-like kinase 2 (ACVR1/ALK2) are the main cause of FOP. We generated human induced pluripotent stem cells (hiPSCs) from FOP patients with the ALK2 R206H mutation. The mutant ALK2 gene changed differentiation efficiencies of hiPSCs into FOP bone-forming progenitors: endothelial cells (ECs) and pericytes. ECs from FOP hiPSCs showed reduced expression of vascular endothelial growth factor receptor 2 and could transform into mesenchymal cells through endothelial-mesenchymal transition. Increased mineralization of pericytes from FOP hiPSCs could be partly inhibited by the ALK2 kinase inhibitor LDN-212854. Thus, differentiated FOP hiPSCs recapitulate some aspects of the disease phenotype in vitro, and they could be instrumental in further elucidating underlying mechanisms of FOP and development of therapeutic drug candidates. PMID:26626181

  8. Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva.

    PubMed

    Cai, Jie; Orlova, Valeria V; Cai, Xiujuan; Eekhoff, Elisabeth M W; Zhang, Keqin; Pei, Duanqing; Pan, Guangjin; Mummery, Christine L; Ten Dijke, Peter

    2015-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare disease characterized by progressive ossification of soft tissues, for which there is no effective treatment. Mutations in the bone morphogenetic protein (BMP) type I receptor activin receptor-like kinase 2 (ACVR1/ALK2) are the main cause of FOP. We generated human induced pluripotent stem cells (hiPSCs) from FOP patients with the ALK2 R206H mutation. The mutant ALK2 gene changed differentiation efficiencies of hiPSCs into FOP bone-forming progenitors: endothelial cells (ECs) and pericytes. ECs from FOP hiPSCs showed reduced expression of vascular endothelial growth factor receptor 2 and could transform into mesenchymal cells through endothelial-mesenchymal transition. Increased mineralization of pericytes from FOP hiPSCs could be partly inhibited by the ALK2 kinase inhibitor LDN-212854. Thus, differentiated FOP hiPSCs recapitulate some aspects of the disease phenotype in vitro, and they could be instrumental in further elucidating underlying mechanisms of FOP and development of therapeutic drug candidates.

  9. Human-induced pluripotent stem cells: potential for neurodegenerative diseases.

    PubMed

    Ross, Christopher A; Akimov, Sergey S

    2014-09-15

    The cell biology of human neurodegenerative diseases has been difficult to study till recently. The development of human induced pluripotent stem cell (iPSC) models has greatly enhanced our ability to model disease in human cells. Methods have recently been improved, including increasing reprogramming efficiency, introducing non-viral and non-integrating methods of cell reprogramming, and using novel gene editing techniques for generating genetically corrected lines from patient-derived iPSCs, or for generating mutations in control cell lines. In this review, we highlight accomplishments made using iPSC models to study neurodegenerative disorders such as Huntington's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Fronto-Temporal Dementia, Alzheimer's disease, Spinomuscular Atrophy and other polyglutamine diseases. We review disease-related phenotypes shown in patient-derived iPSCs differentiated to relevant neural subtypes, often with stressors or cell "aging", to enhance disease-specific phenotypes. We also discuss prospects for the future of using of iPSC models of neurodegenerative disorders, including screening and testing of therapeutic compounds, and possibly of cell transplantation in regenerative medicine. The new iPSC models have the potential to greatly enhance our understanding of pathogenesis and to facilitate the development of novel therapeutics.

  10. Pluripotent stem cells for Parkinson's disease: progress and challenges.

    PubMed

    Zeng, Xianmin; Couture, Larry A

    2013-04-15

    Parkinson's disease (PD) is a common debilitating neurodegenerative disease. The motor symptoms of PD are caused mainly by a progressive loss of dopaminergic neurons from the substania nigra, resulting in a loss of dopamine production. Current therapies are palliative and, in the long term, ineffective. In addition, some can result in significant clinical side effects. The relatively localized pathology of PD makes it an ideal candidate for cell replacement therapy. Initial efforts focused on fetal cell transplantation, and significant clinical benefit lasting more than 10 years has been reported in some cases. However, the approach is controversial and results have been inconsistent. Inherent limitations of this approach for widespread use are the limited availability and variability of transplant material. In contrast, the self-renewal and differentiation potential of human pluripotent stem cells (hPSCs) make them a promising alternative cell source for cell replacement therapy for PD. Efforts in the past decade have demonstrated that hPSCs can be induced to differentiate in culture to functional dopaminergic neurons. Studies in delivering these cells into PD animal models have demonstrated survival, engraftment, and behavioral deficit improvements. Several groups are developing these cells with clinical trials in mind. Here, we review the state of the technology and consider the suitability of current manufacturing processes, cell purity, and tumorgenicity for clinical testing.

  11. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    PubMed

    Doulames, Vanessa M; Plant, Giles W

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  12. Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells.

    PubMed

    Shoji, Emi; Woltjen, Knut; Sakurai, Hidetoshi

    2016-01-01

    Patient-derived induced pluripotent stem cells (iPSCs) have opened the door to recreating pathological conditions in vitro using differentiation into diseased cells corresponding to each target tissue. Yet for muscular diseases, a method for reproducible and efficient myogenic differentiation from human iPSCs is required for in vitro modeling. Here, we introduce a myogenic differentiation protocol mediated by inducible transcription factor expression that reproducibly and efficiently drives human iPSCs into myocytes. Delivering a tetracycline-inducible, myogenic differentiation 1 (MYOD1) piggyBac (PB) vector to human iPSCs enables the derivation of iPSCs that undergo uniform myogenic differentiation in a short period of time. This differentiation protocol yields a homogenous skeletal muscle cell population, reproducibly reaching efficiencies as high as 70-90 %. MYOD1-induced myocytes demonstrate characteristics of mature myocytes such as cell fusion and cell twitching in response to electric stimulation within 14 days of differentiation. This differentiation protocol can be applied widely in various types of patient-derived human iPSCs and has great prospects in disease modeling particularly with inherited diseases that require studies of early pathogenesis and drug screening.

  13. The business of exploiting induced pluripotent stem cells.

    PubMed

    Prescott, Catherine

    2011-08-12

    Induced pluripotent stem cells (iPS cells) can be exploited for both research and clinical applications. The first part of this review seeks to provide an understanding of the financial drivers and key elements of a successful business strategy that underpin a company focused on developing iPS-related products and services targeted at the research market. The latter part of the review highlights some of the reasons as to why the reprogramming of somatic cells is currently being used to develop cell-based models to screen for small molecules with drug-like properties rather than to develop cell-based regenerative medicines per se. The latter may be used to repair or replace a patient's damaged cells and thereby have the potential to 'cure' a disease and, in doing so, prevent or delay the onset of associated medical conditions. However, the cost of an expensive regenerative medicine and time to accrue any benefit linked to a decrease in co-morbidity expenditure may not outweigh the benefit for a healthcare community that has finite resources. The implications of this are discussed together with evidence that the UK National Institute for Health and Clinical Excellence (NICE) and the National Health Service (NHS) have established a precedent for a cost-sharing strategy with the pharmaceutical industry.

  14. Intricacies of Pluripotency.

    PubMed

    Bhartiya, Deepa

    2015-01-01

    Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the 'embryonic remnants' in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term 'pluripotency'. PMID:26195889

  15. Generation of induced pluripotent stem cells from domestic goats.

    PubMed

    Sandmaier, Shelley E S; Nandal, Anjali; Powell, Anne; Garrett, Wesley; Blomberg, Leann; Donovan, David M; Talbot, Neil; Telugu, Bhanu P

    2015-09-01

    The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc.

  16. Generation of induced pluripotent stem cells from domestic goats.

    PubMed

    Sandmaier, Shelley E S; Nandal, Anjali; Powell, Anne; Garrett, Wesley; Blomberg, Leann; Donovan, David M; Talbot, Neil; Telugu, Bhanu P

    2015-09-01

    The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc. PMID:26118622

  17. A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence

    PubMed Central

    Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P.B.; Panicker, Mitradas M.

    2014-01-01

    Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. PMID:25068130

  18. A method to identify and isolate pluripotent human stem cells and mouse epiblast stem cells using lipid body-associated retinyl ester fluorescence.

    PubMed

    Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P B; Panicker, Mitradas M

    2014-07-01

    We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450-500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies.

  19. Prospects and Challenges of Induced Pluripotent Stem Cells in Equine Health

    PubMed Central

    Donadeu, F. Xavier; Esteves, Cristina L.

    2015-01-01

    Pluripotent stem cells (PSCs) hold, through the capacity to differentiate into virtually all body cell types, unprecedented promise for human and animal medicine. PSCs are naturally found in the early embryo, and in rodents and humans they can be robustly harvested and grown in culture in the form of embryonic stem cells (ESCs); however, the availability of ESCs from horses is limited. ES-like cells named induced pluripotent stem cells (iPSCs) can be derived in vitro by transcription factor-mediated reprogramming of adult cells. As such, iPSCs can be generated in a patient-specific manner providing unmatched potential for tissue transplantation and in vitro disease modeling. In humans, clinical trials using iPSC-derived cells are already taking place and the use of in vitro iPSC models has identified novel mechanisms of disease and therapeutic targets. Although to a more limited extent, iPSCs have also been generated from horses, a species in which, after humans, these cells are likely to hold the greatest potential in regenerative medicine. Before a clinical use can be envisioned, however, significant challenges will need to be addressed in relation to the robust derivation, long-term culture, differentiation, and clinical safety of equine iPSCs. Toward this objective, recent studies have reported significant improvement in culture conditions and the successful derivation for the first time of functional cell types from equine iPSCs. Given the wide range of exciting applications they could have, it is hoped future research will make the biomedical promise of iPSCs a reality not only for humans but also horses. PMID:26664986

  20. Prospects and Challenges of Induced Pluripotent Stem Cells in Equine Health.

    PubMed

    Donadeu, F Xavier; Esteves, Cristina L

    2015-01-01

    Pluripotent stem cells (PSCs) hold, through the capacity to differentiate into virtually all body cell types, unprecedented promise for human and animal medicine. PSCs are naturally found in the early embryo, and in rodents and humans they can be robustly harvested and grown in culture in the form of embryonic stem cells (ESCs); however, the availability of ESCs from horses is limited. ES-like cells named induced pluripotent stem cells (iPSCs) can be derived in vitro by transcription factor-mediated reprogramming of adult cells. As such, iPSCs can be generated in a patient-specific manner providing unmatched potential for tissue transplantation and in vitro disease modeling. In humans, clinical trials using iPSC-derived cells are already taking place and the use of in vitro iPSC models has identified novel mechanisms of disease and therapeutic targets. Although to a more limited extent, iPSCs have also been generated from horses, a species in which, after humans, these cells are likely to hold the greatest potential in regenerative medicine. Before a clinical use can be envisioned, however, significant challenges will need to be addressed in relation to the robust derivation, long-term culture, differentiation, and clinical safety of equine iPSCs. Toward this objective, recent studies have reported significant improvement in culture conditions and the successful derivation for the first time of functional cell types from equine iPSCs. Given the wide range of exciting applications they could have, it is hoped future research will make the biomedical promise of iPSCs a reality not only for humans but also horses. PMID:26664986

  1. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    PubMed

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification.

  2. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells

    PubMed Central

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-01-01

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. PMID:26416676

  3. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells.

    PubMed

    Malaver-Ortega, Luis F; Sumer, Huseyin; Jain, Kanika; Verma, Paul J

    2016-02-01

    Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation.

  4. Induced pluripotent stem cells: progress and future perspectives in the stem cell world.

    PubMed

    Rezanejad, Habib; Matin, Maryam M

    2012-12-01

    Pluripotent stem cells (PSCs) have the potential to differentiate into many cell types and therefore can be a valuable source for cell therapy. Embryonic stem cells (ESCs), which are derived from the inner cell mass (ICM) of the blastocyst, are representative of PSCs. However, use of these cells has some limitations, especially ethical restrictions and immune response. As a result, researchers have been looking for other cell sources or strategies to overcome these limitations. One kind of cellular reprogramming is the process of guiding mature cells into a state of gene expression similar to PSCs. It has been demonstrated that somatic cells can be reprogrammed by various methods, including somatic cell nuclear transfer (SCNT) and cell fusion with ESCs or treatment with their extracts. This implies that some factors in oocytes and ESCs are able to initiate the reprogramming process. Accordingly, induced pluripotent stem cells (iPSCs) have been derived from somatic cells by ectopic expression of some transcription factors. This discovery has resulted in raising several important questions about the mechanisms by which these factors influence the reprogramming and epigenetic status of the cells. iPSCs hold great promise for regenerative medicine, developmental biology, and drug discovery because they circumvent problems associated with both ethical issues and immunological rejection. Here we review the experiments involved in the discovery of iPSCs, important factors in their reprogramming, and their future perspectives in cell therapy.

  5. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    PubMed

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  6. Genetic control of wayward pluripotent stem cells and their progeny after transplantation.

    PubMed

    Kiuru, Maija; Boyer, Julie L; O'Connor, Timothy P; Crystal, Ronald G

    2009-04-01

    The proliferative capacity of pluripotent stem cells and their progeny brings a unique aspect to therapeutics, in that once a transplant is initiated the therapist no longer has control of the therapy. In the context of the recent FDA approval of a human ESC trial and report of a neuronal-stem-cell-derived tumor in a human trial, strategies need to be developed to control wayward pluripotent stem cells. Here, we focus on one approach: direct genetic modification of the cells prior to transplantation with genes that can prevent the adverse events and/or eliminate the transplanted cells and their progeny.

  7. Small-Molecule Induction of Canine Embryonic Stem Cells Toward Naïve Pluripotency.

    PubMed

    Tobias, Ian C; Brooks, Courtney R; Teichroeb, Jonathan H; Villagómez, Daniel A; Hess, David A; Séguin, Cheryle A; Betts, Dean H

    2016-08-15

    Naïve and primed pluripotent stem cells (PSCs) reflect discrete pluripotent states that approximate the inner cell mass or the progressively lineage-restricted perigastrulation epiblast, respectively. Cells that occupy primed pluripotency have distinct epigenetic landscapes, transcriptional circuitry, and trophic requirements compared with their naïve counterparts. The existence of multiple pluripotent states has not been explored in dogs, which show promise as outbred biomedical models with more than 300 inherited diseases that also afflict humans. However, our understanding of canine embryogenesis and embryo-derived stem cells is limited. Herein, we converted leukemia inhibitory factor (LIF)-dependent and fibroblast growth factor 2 (FGF2)-dependent canine embryonic stem cells (cESCs) resembling primed PSCs toward a naïve pluripotent state using LIF and inhibitors of glycogen synthase kinase 3β and mitogen-activated protein kinase kinase 1/2 [called 2i and LIF (2iL)]. cESCs propagated in 2iL exhibited significant induction of genes associated with the naïve pluripotent state (eg, REX1, TBX3) and downregulation of primed pluripotency markers (eg, OTX2, FGF5) (P < 0.05). Differential phosphorylation of signal transducer and activator of transcription 3 (STAT3) and cell fate decisions on exposure to bone morphogenetic protein 4 (BMP4) suggested that a novel pluripotent identity has been established with 2iL. Accordingly, cESCs cultured with 2iL formed colonies at a greater efficiency than LIF-FGF2 cESCs following single-cell dissociation. Total genomic DNA methylation and histone H3 lysine 27 trimethylation signals were reduced in 2iL-treated cESCs. Our data suggest that 2iL culture conditions promote the conversion of cESCs toward an epigenetically distinct pluripotent state resembling naïve PSCs. PMID:27392793

  8. A murine-ES like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    PubMed Central

    Buecker, Christa; Chen, Hsu-Hsin; Polo, Jose; Daheron, Laurence; Bu, Lei; Barakat, Tahsin Stefan; Okwieka, Patricia; Porter, Andrew; Gribnau, Joost; Hochedlinger, Konrad; Geijsen, Niels

    2010-01-01

    Murine embryonic stem cells have been shown to exist in two functionally distinct pluripotent states, embryonic stem cells (ES cell)- and epiblast stem cells (EpiSCs), which are defined by the culture growth factor conditions. Human ES cells appear to exist in an epiblast-like state, which in comparison to their murine counterparts, is relatively difficult to propagate and manipulate. As a result, gene targeting is difficult and to-date only a handful of human knock-in or knock-out cell lines exist. We explored whether an alternative stem cell state exists for human stem cells as well, and demonstrate that manipulation of the growth factor milieu allows the derivation of a novel human stem cell type that displays morphological, molecular and functional properties of murine ES cells and facilitates gene targeting. As such, the murine ES-like state provides a powerful tool for the generation of recombinant human pluripotent stem cell lines. PMID:20569691

  9. Expression of stem cell pluripotency factors during regeneration in the earthworm Eisenia foetida.

    PubMed

    Zheng, Pengfei; Shao, Qiang; Diao, Xiaoping; Li, Zandong; Han, Qian

    2016-01-01

    Stem cell pluripotency factors can induce somatic cells to form induced pluripotent stem cells, which are involved in cell reprogramming and dedifferentiation. The tissue regeneration in the earthworm Eisenia foetida may involve cell dedifferentiation. There is limited information about associations between pluripotency factors and the regeneration. In this report, cDNA sequences of pluripotency factors, oct4, nanog, sox2, c-myc and lin28 genes from the earthworm E. foetida were cloned, and quantitative PCR analysis was performed for their mRNA expressions in the head, clitellum and tail. The maximum up-regulation of oct4, nanog, sox2, c-myc and lin28 occurred at 12h, 4 days, 12h, 2 days, and 24h after amputation for 110, 178, 21, 251 and 325-fold, respectively, in comparison with the controls. The results suggest that the tissues are regenerated via cellular dedifferentiation and reprogramming. PMID:26299657

  10. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming. PMID:20201064

  11. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.

  12. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals.

    PubMed

    Koh, Sehwon; Piedrahita, Jorge A

    2014-01-01

    Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs.

  13. Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts.

    PubMed

    Palma, C S; Tannous, M A; Malta, T M; Russo, E M S; Covas, D T; Picanço-Castro, V

    2013-04-02

    Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation potential. The mechanisms that lead to induced pluripotency and the effect of each transcription factor are not completely understood. We performed a critical evaluation of the effect of overexpressing OCT4 in mesenchymal stem cells and fibroblasts and found that OCT4 can activate the expression of other stemness genes, such as SOX2, NANOG, CMYC, FOXD3, KLF4, and βCATENIN, which are not normally or are very weakly expressed in mesenchymal stem cells. Transient expression of OCT4 was also performed to evaluate whether these genes are affected by its overexpression in the first 48 h. Transfected fibroblast cells expressed around 275-fold more OCT4 than non-transfected cells. In transient expression, in which cells were analyzed after 48 h, we detected only the up-regulation of FOXD3, SOX2, and KLF4 genes, suggesting that these genes are the earlier targets of OCT4 in this cellular type. We conclude that forced expression of OCT4 can alter cell status and activate the pluripotent network. Knowledge gained through study of these systems may help us to understand the kinetics and mechanism of cell reprogramming.

  14. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    PubMed Central

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT) combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system) this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is the question of

  15. Protocols for Cryopreservation of Intact Hair Follicle That Maintain Pluripotency of Nestin-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells.

    PubMed

    Kajiura, Satoshi; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Li, Lingna; Katsuoka, Kensei; Hoffman, Robert M; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair-follicle-associated pluripotent (HAP) stem cells. Cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells are described in this chapter. Intact hair follicles from green fluorescent protein (GFP) transgenic mice were cryopreserved by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen. After thawing, the upper part of the hair follicle was isolated and cultured in DMEM with fetal bovine serum (FBS). After 4 weeks culture, cells from the upper part of the hair follicles grew out. The growing cells were transferred to DMEM/F12 without FBS. After 1 week culture, the growing cells formed hair spheres, each containing approximately 1 × 10(2) HAP stem cells. The hair spheres contained cells which could differentiate to neurons, glial cells, and other cell types. The formation of hair spheres by the thawed and cultured upper part of the hair follicle produced almost as many pluripotent hair spheres as fresh follicles. The hair spheres derived from cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. These results suggest that the cryopreservation of the whole hair follicle is an effective way to store HAP stem cells for personalized regenerative medicine, enabling any individual to maintain a bank of pluripotent stem cells for future clinical use. PMID:27431257

  16. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  17. Role of bioinspired polymers in determination of pluripotent stem cell fate

    PubMed Central

    Abraham, Sheena; Eroshenko, Nikolai; Rao, Raj R

    2009-01-01

    Human pluripotent stem cells, including embryonic and induced pluripotent stem cells, hold enormous potential for the treatment of many diseases, owing to their ability to generate cell types useful for therapeutic applications. Currently, many stem cell culture propagation and differentiation systems incorporate animal-derived components for promoting self-renewal and differentiation. However, use of these components is labor intensive, carries the risk of xenogeneic contamination and yields compromised experimental results that are difficult to duplicate. From a biomaterials perspective, the generation of an animal- and cell-free biomimetic microenvironment that provides the appropriate physical and chemical cues for stem cell self-renewal or differentiation into specialized cell types would be ideal. This review presents the use of natural and synthetic polymers that support propagation and differentiation of stem cells, in an attempt to obtain a clear understanding of the factors responsible for the determination of stem cell fate. PMID:19580405

  18. Traceability in stem cell research: from participant sample to induced pluripotent stem cell and back.

    PubMed

    Morrison, Michael; Moraia, Linda Briceño; Steele, Jane C

    2016-01-01

    This paper describes a traceability system developed for the Stem cells for Biological Assays of Novel drugs and prediCtive toxiCology consortium. The system combines records and labels that to biological material across geographical locations and scientific processes from sample donation to induced pluripotent stem cell line. The labeling system uses a unique identification number to link every aliquot of sample at every stage of the reprogramming pathway back to the original donor. Only staff at the clinical recruitment site can reconnect the unique identification number to the identifying details of a specific donor. This ensures the system meets ethical and legal requirements for protecting privacy while allowing full traceability of biological material. The system can be adapted to other projects and for use with different primary sample types. PMID:26679283

  19. Traceability in stem cell research: from participant sample to induced pluripotent stem cell and back.

    PubMed

    Morrison, Michael; Moraia, Linda Briceño; Steele, Jane C

    2016-01-01

    This paper describes a traceability system developed for the Stem cells for Biological Assays of Novel drugs and prediCtive toxiCology consortium. The system combines records and labels that to biological material across geographical locations and scientific processes from sample donation to induced pluripotent stem cell line. The labeling system uses a unique identification number to link every aliquot of sample at every stage of the reprogramming pathway back to the original donor. Only staff at the clinical recruitment site can reconnect the unique identification number to the identifying details of a specific donor. This ensures the system meets ethical and legal requirements for protecting privacy while allowing full traceability of biological material. The system can be adapted to other projects and for use with different primary sample types.

  20. Stem-Cell Work Yielding New Approach to Disease: Induced Pluripotent Stem-Cell Research Soars, Spurring Dreams of Clinical Applications.

    PubMed

    Mertz, Leslie

    2016-01-01

    Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications.

  1. Stem-Cell Work Yielding New Approach to Disease: Induced Pluripotent Stem-Cell Research Soars, Spurring Dreams of Clinical Applications.

    PubMed

    Mertz, Leslie

    2016-01-01

    Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications. PMID:27414628

  2. Alternative Routes to Induce Naïve Pluripotency in Human Embryonic Stem Cells.

    PubMed

    Duggal, Galbha; Warrier, Sharat; Ghimire, Sabitri; Broekaert, Dorien; Van der Jeught, Margot; Lierman, Sylvie; Deroo, Tom; Peelman, Luc; Van Soom, Ann; Cornelissen, Ria; Menten, Björn; Mestdagh, Pieter; Vandesompele, Jo; Roost, Matthias; Slieker, Roderick C; Heijmans, Bastiaan T; Deforce, Dieter; De Sutter, Petra; De Sousa Lopes, Susana Chuva; Heindryckx, Björn

    2015-09-01

    Human embryonic stem cells (hESCs) closely resemble mouse epiblast stem cells exhibiting primed pluripotency unlike mouse ESCs (mESCs), which acquire a naïve pluripotent state. Efforts have been made to trigger naïve pluripotency in hESCs for subsequent unbiased lineage-specific differentiation, a common conundrum faced by primed pluripotent hESCs due to heterogeneity in gene expression existing within and between hESC lines. This required either ectopic expression of naïve genes such as NANOG and KLF2 or inclusion of multiple pluripotency-associated factors. We report here a novel combination of small molecules and growth factors in culture medium (2i/LIF/basic fibroblast growth factor + Ascorbic Acid + Forskolin) facilitating rapid induction of transgene-free naïve pluripotency in hESCs, as well as in mESCs, which has not been shown earlier. The converted naïve hESCs survived long-term single-cell passaging, maintained a normal karyotype, upregulated naïve pluripotency genes, and exhibited dependence on signaling pathways similar to naïve mESCs. Moreover, they undergo global DNA demethylation and show a distinctive long noncoding RNA profile. We propose that in our medium, the FGF signaling pathway via PI3K/AKT/mTORC induced the conversion of primed hESCs toward naïve pluripotency. Collectively, we demonstrate an alternate route to capture naïve pluripotency in hESCs that is fast, reproducible, supports naïve mESC derivation, and allows efficient differentiation.

  3. Human induced pluripotent stem cells: a review of the US patent landscape.

    PubMed

    Georgieva, Bilyana P; Love, Jane M

    2010-07-01

    Human induced pluripotent stem (iPS) cells and human embryonic stem cells are cells that have the ability to differentiate into a variety of cell types. Embryonic stem cells are derived from human embryos; however, by contrast, human iPS cells can be obtained from somatic cells that have undergone a process of 'reprogramming' via genetic manipulation such that they develop pluripotency. Since iPS cells are not derived from human embryos, they are a less complicated source of human pluripotent cells and are considered valuable research tools and potentially useful in therapeutic applications in regenerative medicine. Worldwide, there are only three issued patents concerning iPS cells. Therefore, the patent landscape in this field is largely undefined. This article provides an overview of the issued patents as well as the pending published patent applications in the field.

  4. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells.

    PubMed

    Mae, Shin-Ichi; Shono, Akemi; Shiota, Fumihiko; Yasuno, Tetsuhiko; Kajiwara, Masatoshi; Gotoda-Nishimura, Nanaka; Arai, Sayaka; Sato-Otubo, Aiko; Toyoda, Taro; Takahashi, Kazutoshi; Nakayama, Naoki; Cowan, Chad A; Aoi, Takashi; Ogawa, Seishi; McMahon, Andrew P; Yamanaka, Shinya; Osafune, Kenji

    2013-01-01

    A method for stimulating the differentiation of human pluripotent stem cells into kidney lineages remains to be developed. Most cells in kidney are derived from an embryonic germ layer known as intermediate mesoderm. Here we show the establishment of an efficient system of homologous recombination in human pluripotent stem cells by means of bacterial artificial chromosome-based vectors and single-nucleotide polymorphism array-based detection. This system allowed us to generate human-induced pluripotent stem cell lines containing green fluorescence protein knocked into OSR1, a specific intermediate mesoderm marker. We have also established a robust induction protocol for intermediate mesoderm, which produces up to 90% OSR1(+) cells. These human intermediate mesoderm cells can differentiate into multiple cell types of intermediate mesoderm-derived organs in vitro and in vivo, thereby supplying a useful system to elucidate the mechanisms of intermediate mesoderm development and potentially providing a cell source for regenerative therapies of the kidney.

  5. Pluripotent human stem cells as novel tools in drug discovery and toxicity testing.

    PubMed

    Sartipy, Peter; Bjorquist, Petter; Strehl, Raimund; Hyllner, Johan

    2006-10-01

    Improved technologies are urgently needed to develop effective and safe new drugs in a cost-efficient manner. Cell-based assays have many advantages in drug research, particularly because these assays can be adapted in a high-throughput format. In addition, technological advances in the areas of instrumentation and automation are providing expanding opportunities for high-content analyses. However, in cell-based research, none of these systems is particularly useful unless the cells that are being evaluated are clinically relevant. Pluripotent human stem cells are expected to revolutionize the accessibility to a variety of human cell types. The possibility to propagate pluripotent human stem cells and to subsequently differentiate these cells into desired target cell types will provide a stable supply of cells for a range of applications in drug discovery and toxicity testing. This feature discusses some of the research opportunities for pluripotent human stem cells.

  6. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    PubMed

    Nagata, Shogo; Hirano, Kunio; Kanemori, Michele; Sun, Liang-Tso; Tada, Takashi

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  7. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  8. Protein post-translational modifications and regulation of pluripotency in human stem cells.

    PubMed

    Wang, Yu-Chieh; Peterson, Suzanne E; Loring, Jeanne F

    2014-02-01

    Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.

  9. Small Molecule Screening in Human Induced Pluripotent Stem Cell-derived Terminal Cell Types*

    PubMed Central

    Engle, Sandra J.; Vincent, Fabien

    2014-01-01

    A need for better clinical outcomes has heightened interest in the use of physiologically relevant human cells in the drug discovery process. Patient-specific human induced pluripotent stem cells may offer a relevant, robust, scalable, and cost-effective model of human disease physiology. Small molecule high throughput screening in human induced pluripotent stem cell-derived cells with the intent of identifying novel therapeutic compounds is starting to influence the drug discovery process; however, the use of these cells presents many high throughput screening development challenges. This technology has the potential to transform the way drug discovery is performed. PMID:24362033

  10. Pluripotent stem cell transcription factors during human odontogenesis.

    PubMed

    da Cunha, Juliana Malta; da Costa-Neves, Adriana; Kerkis, Irina; da Silva, Marcelo Cavenaghi Pereira

    2013-09-01

    Stem cells are capable of generating various cell lines and can be obtained from adult or embryonic tissues for clinical therapies. Stem cells from deciduous dental pulp are among those that are easily obtainable from adult tissues and have been widely studied because of their ability to differentiate into a variety of cell lines in the presence of various chemical mediators. We have analyze the expression of several proteins related to the differentiation and proliferative potential of cell populations that compose the tooth germ of human fetuses. We evaluate 20 human fetuses of both genders. After being paraffin-embedded, cap and bell stages of tooth germ development were subjected to immunohistochemistry for the following markers: Oct-4, Nanog, Stat-3 and Sox-2. The studied antibodies showed nuclear or cytoplasmic immunnostaining within various anatomical structures and with various degrees of expression, indicating the action of these proteins during tooth development. We conclude that the interrelationship between these transcription factors is complex and associated with self-renewal and cell differentiation. Our results suggest that the expression of Oct-4, Nanog, Sox-2 and Stat-3 are related to differentiation in ameloblasts and odontoblasts.

  11. Mucin-Inspired Thermoresponsive Synthetic Hydrogels Induce Stasis in Human Pluripotent Stem Cells and Human Embryos

    PubMed Central

    2016-01-01

    Human pluripotent stem cells (hPSCs; both embryonic and induced pluripotent) rapidly proliferate in adherent culture to maintain their undifferentiated state. However, for mammals exhibiting delayed gestation (diapause), mucin-coated embryos can remain dormant for days or months in utero, with their constituent PSCs remaining pluripotent under these conditions. Here we report cellular stasis for both hPSC colonies and preimplantation embryos immersed in a wholly synthetic thermoresponsive gel comprising poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) [PGMA55-PHPMA135] diblock copolymer worms. This hydroxyl-rich mucin-mimicking nonadherent 3D gel maintained PSC viability and pluripotency in the quiescent G0 state without passaging for at least 14 days. Similarly, gel-coated human embryos remain in a state of suspended animation (diapause) for up to 8 days. The discovery of a cryptic cell arrest mechanism for both hPSCs and embryos suggests an important connection between the cellular mechanisms that evoke embryonic diapause and pluripotency. Moreover, such synthetic worm gels offer considerable utility for the short-term (weeks) storage of either pluripotent stem cells or human embryos without cryopreservation. PMID:27163030

  12. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552.

  13. Intricacies of Pluripotency

    PubMed Central

    Bhartiya, Deepa

    2015-01-01

    Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the ‘embryonic remnants’ in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term ‘pluripotency’. PMID:26195889

  14. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds.

    PubMed

    Ye, Junqing; Ge, Jian; Zhang, Xu; Cheng, Lin; Zhang, Zhengyuan; He, Shan; Wang, Yuping; Lin, Hua; Yang, Weifeng; Liu, Junfang; Zhao, Yang; Deng, Hongkui

    2016-01-01

    Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. However, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demonstrate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differentiation capacity, and germline transmission competency. Interestingly, the pluripotency gene Sall4 is expressed at the initial stage in the chemical reprogramming process from different cell types, and the same core small molecules are required for the reprogramming, suggesting conservation in the molecular mechanism underlying chemical reprogramming from these diverse cell types. Our analysis also shows that the use of these small molecules should be fine-tuned to meet the requirement of reprogramming from different cell types. Together, these findings demonstrate that full chemical reprogramming approach can be applied in cells of different tissue origins and suggest that chemical reprogramming is a promising strategy with the potential to be extended to more initial types. PMID:26704449

  15. Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors

    PubMed Central

    2013-01-01

    Advances in the fields of stem cell biology, biomaterials, and tissue engineering over the last decades have brought the possibility of constructing tissue substitutes with a broad range of applications in regenerative medicine, disease modeling, and drug discovery. Different types of human stem cells have been used, each presenting a unique set of advantages and limitations with regard to the desired research goals. Whereas adult stem cells are at the frontier of research for tissue and organ regeneration, pluripotent stem cells represent a more challenging cell source for clinical translation. However, with their unlimited growth and wide differentiation potential, pluripotent stem cells represent an unprecedented resource for the construction of advanced human tissue models for biological studies and drug discovery. At the heart of these applications lies the challenge to reproducibly expand, differentiate, and organize stem cells into mature, stable tissue structures. In this review, we focus on the derivation of mesenchymal tissue progenitors from human pluripotent stem cells and the control of their osteogenic differentiation and maturation by modulation of the biophysical culture environment. Similarly to enhancing bone development, the described principles can be applied to the construction of other mesenchymal tissues for basic and applicative studies. PMID:24004835

  16. Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment.

    PubMed

    Tomotsune, Daihachiro; Hirashima, Kanji; Fujii, Masako; Yue, Fengming; Matsumoto, Ken; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2016-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are potential resources for the regeneration of defective organs, including the liver. However, some obstacles must be overcome before this becomes reality. Undifferentiated cells that remain following differentiation have teratoma-forming potential. Additionally, practical applications require a large quantity of differentiated cells, so the differentiation process must be economical. Here we describe a DNA microarray-based global analysis of the gene expression profiles of differentiating human pluripotent stem cells. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Embryoid bodies (EBs) formed without requiring supplementation with inducing factors. EBs also expressed some liver-specific metabolic genes including the ammonia-metabolizing enzymes glutamine synthetase and carbamoyl-phosphate synthase 1. Real-time PCR analysis revealed hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium. Analysis of DNA microarray data suggested that hepatocyte-like cells were the most abundant population in ammonia-treated cells. Furthermore, expression levels of undifferentiated pluripotent stem cell markers were drastically reduced, suggesting a reduced teratoma-forming capacity. These results indicate that treatment of EBs with ammonia in Lanford medium may be an effective inducer of hepatic differentiation in absence of expensive inducing factors. PMID:27632182

  17. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors.

    PubMed

    Olmer, Ruth; Lange, Andreas; Selzer, Sebastian; Kasper, Cornelia; Haverich, Axel; Martin, Ulrich; Zweigerdt, Robert

    2012-10-01

    Therapeutic and industrial applications of pluripotent stem cells and their derivatives require large cell quantities generated in defined conditions. To this end, we have translated single cell-inoculated suspension cultures of human pluripotent stem cells (hPSCs; including human induced pluripotent stem cells [hiPS] and human embryonic stem cells [hESC]) to stirred tank bioreactors. These systems that are widely used in biopharmaceutical industry allow straightforward scale up and detailed online monitoring of key process parameters. To ensure minimum medium consumption, but in parallel functional integration of all probes mandatory for process monitoring, that is, for pO₂ and pH, experiments were performed in 100 mL culture volume in a "mini reactor platform" consisting of four independently controlled vessels. By establishing defined parameters for tightly controlled cell inoculation and aggregate formation up to 2×10⁸ hiPSCs/100 mL were generated in a single process run in 7 days. Expression of pluripotency markers and ability of cells to differentiate into derivates of all three germ layers in vitro was maintained, underlining practical utility of this new process. The presented data provide key steps toward scalable mass expansion of human iPS and ES cells thereby enabling translation of stem cell research to (pre)clinical application in relevant large animal models and valuable in vitro assays for drug development and validation as well.

  18. Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment

    PubMed Central

    Tomotsune, Daihachiro; Hirashima, Kanji; Fujii, Masako; Yue, Fengming; Matsumoto, Ken; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2016-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are potential resources for the regeneration of defective organs, including the liver. However, some obstacles must be overcome before this becomes reality. Undifferentiated cells that remain following differentiation have teratoma-forming potential. Additionally, practical applications require a large quantity of differentiated cells, so the differentiation process must be economical. Here we describe a DNA microarray-based global analysis of the gene expression profiles of differentiating human pluripotent stem cells. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Embryoid bodies (EBs) formed without requiring supplementation with inducing factors. EBs also expressed some liver-specific metabolic genes including the ammonia-metabolizing enzymes glutamine synthetase and carbamoyl-phosphate synthase 1. Real-time PCR analysis revealed hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium. Analysis of DNA microarray data suggested that hepatocyte-like cells were the most abundant population in ammonia-treated cells. Furthermore, expression levels of undifferentiated pluripotent stem cell markers were drastically reduced, suggesting a reduced teratoma-forming capacity. These results indicate that treatment of EBs with ammonia in Lanford medium may be an effective inducer of hepatic differentiation in absence of expensive inducing factors. PMID:27632182

  19. Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment

    PubMed Central

    Tomotsune, Daihachiro; Hirashima, Kanji; Fujii, Masako; Yue, Fengming; Matsumoto, Ken; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2016-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are potential resources for the regeneration of defective organs, including the liver. However, some obstacles must be overcome before this becomes reality. Undifferentiated cells that remain following differentiation have teratoma-forming potential. Additionally, practical applications require a large quantity of differentiated cells, so the differentiation process must be economical. Here we describe a DNA microarray-based global analysis of the gene expression profiles of differentiating human pluripotent stem cells. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Embryoid bodies (EBs) formed without requiring supplementation with inducing factors. EBs also expressed some liver-specific metabolic genes including the ammonia-metabolizing enzymes glutamine synthetase and carbamoyl-phosphate synthase 1. Real-time PCR analysis revealed hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium. Analysis of DNA microarray data suggested that hepatocyte-like cells were the most abundant population in ammonia-treated cells. Furthermore, expression levels of undifferentiated pluripotent stem cell markers were drastically reduced, suggesting a reduced teratoma-forming capacity. These results indicate that treatment of EBs with ammonia in Lanford medium may be an effective inducer of hepatic differentiation in absence of expensive inducing factors. PMID:27632182

  20. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds.

    PubMed

    Kimura, Tohru; Kaga, Yoshiaki; Sekita, Yoichi; Fujikawa, Keita; Nakatani, Tsunetoshi; Odamoto, Mika; Funaki, Soichiro; Ikawa, Masahito; Abe, Kuniya; Nakano, Toru

    2015-01-01

    Primordial germ cells (PGCs) can give rise to pluripotent stem cells known as embryonic germ cells (EGCs) when cultured with basic fibroblast growth factor (bFGF), stem cell factor (SCF), and leukemia inhibitory factor. Somatic cells can give rise to induced pluripotent stem cells (iPSCs) by introduction of the reprogramming transcription factors Oct4, Sox2, and Klf4. The effects of Sox2 and Klf4 on somatic cell reprogramming can be reproduced using the small molecule compounds, transforming growth factor-β receptor (TGFβR) inhibitor and Kempaullone, respectively. Here we examined the effects of TGFβR inhibitor and Kempaullone on EGC derivation from PGCs. Treatment of PGCs with TGFβR inhibitor and/or Kempaullone generated pluripotent stem cells under standard embryonic stem cell (ESC) culture conditions without bFGF and SCF, which we termed induced EGCs (iEGCs). The derivation efficiency of iEGCs was dependent on the differentiation stage and sex. DNA methylation levels of imprinted genes in iEGCs were reduced, with the exception of the H19 gene. The promoters of genes involved in germline development were generally hypomethylated in PGCs, but three germline genes showed comparable DNA methylation levels among iEGs, ESCs, and iPSCs. These results show that PGCs can be reprogrammed into pluripotent state using small molecule compounds, and that DNA methylation of these germline genes is not maintained in iEGCs. PMID:25186651

  1. Suspension Culture of Human Pluripotent Stem Cells in Controlled, Stirred Bioreactors

    PubMed Central

    Olmer, Ruth; Lange, Andreas; Selzer, Sebastian; Kasper, Cornelia; Haverich, Axel

    2012-01-01

    Therapeutic and industrial applications of pluripotent stem cells and their derivatives require large cell quantities generated in defined conditions. To this end, we have translated single cell-inoculated suspension cultures of human pluripotent stem cells (hPSCs; including human induced pluripotent stem cells [hiPS] and human embryonic stem cells [hESC]) to stirred tank bioreactors. These systems that are widely used in biopharmaceutical industry allow straightforward scale up and detailed online monitoring of key process parameters. To ensure minimum medium consumption, but in parallel functional integration of all probes mandatory for process monitoring, that is, for pO2 and pH, experiments were performed in 100 mL culture volume in a “mini reactor platform” consisting of four independently controlled vessels. By establishing defined parameters for tightly controlled cell inoculation and aggregate formation up to 2×108 hiPSCs/100 mL were generated in a single process run in 7 days. Expression of pluripotency markers and ability of cells to differentiate into derivates of all three germ layers in vitro was maintained, underlining practical utility of this new process. The presented data provide key steps toward scalable mass expansion of human iPS and ES cells thereby enabling translation of stem cell research to (pre)clinical application in relevant large animal models and valuable in vitro assays for drug development and validation as well. PMID:22519745

  2. Functional Characterization and Expression Profiling of Human Induced Pluripotent Stem Cell- and Embryonic Stem Cell-Derived Endothelial Cells

    PubMed Central

    Li, Zongjin; Hu, Shijun; Ghosh, Zhumur; Han, Zhongchao

    2011-01-01

    With regard to human induced pluripotent stem cells (hiPSCs), in which adult cells are reprogrammed into embryonic-like cells using defined factors, their functional and transcriptional expression pattern during endothelial differentiation has yet to be characterized. In this study, hiPSCs and human embryonic stem cells (hESCs) were differentiated using the embryoid body method, and CD31+ cells were sorted. Fluorescence activated cell sorting analysis of hiPSC-derived endothelial cells (hiPSC-ECs) and hESC-derived endothelial cells (hESC-ECs) demonstrated similar endothelial gene expression patterns. We showed functional vascular formation by hiPSC-ECs in a mouse Matrigel plug model. We compared the gene profiles of hiPSCs, hESCs, hiPSC-ECs, hESC-ECs, and human umbilical vein endothelial cells (HUVECs) using whole genome microarray. Our analysis demonstrates that gene expression variation of hiPSC-ECs and hESC-ECs contributes significantly to biological differences between hiPSC-ECs and hESC-ECs as well as to the “distances” among hiPSCs, hESCs, hiPSC-ECs, hESC-ECs, and HUVECs. We further conclude that hiPSCs can differentiate into functional endothelial cells, but with limited expansion potential compared with hESC-ECs; thus, extensive studies should be performed to explore the cause and extent of such differences before clinical application of hiPSC-ECs can begin. PMID:21235328

  3. Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells (hEMSCPCs)

    PubMed Central

    Huang, Bing; Li, Kaijing; Yu, Jie; Zhang, Min; Li, Yongping; Li, Weihua; Wang, Wencong; Guan, Liping; Zhang, Wenxin; Lin, Shaochun; Huang, Xintao; Lin, Liping; Lin, Yongliang; Zhang, Yichi; Song, Xinming; Wang, Zhichong; Ge, Jian

    2013-01-01

    We isolated human epidermis-derived mesenchymal stem cell-like pluripotent cells (hEMSCPCs) and demonstrate efficient harvesting, maintenance in vitro for at least 30 passages, reprogramming into multiple phenotypes in vivo, and integration into adult host tissues after injection into the mouse blastocyst to create chimeras. Cell phenotype was examined by karyotyping, immunostaining, immunofluorescence, and flow cytometry. A nested PCR protocol using primers specific for human SRY genes was designed to detect hEMSCPC-derived cells in female chimeric mice. FISH was used to validate the results of nested PCR. Results indicated that hEMSCPCs were derived from epidermis but were distinct from epidermal cells; they resembled mesenchymal stem cells (MSCs) morphologically and expressed the main markers of MSCs. About half of all female offspring of mice implanted with embryos injected with hEMSCPCs at the blastocyst stage harbored the human Y chromosome and tissue-specific human protein, thereby demonstrating the transdifferentiation of hEMSCPCs. PMID:23733028

  4. Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells.

    PubMed

    Wu, Ling; Bluguermann, Carolina; Kyupelyan, Levon; Latour, Brooke; Gonzalez, Stephanie; Shah, Saumya; Galic, Zoran; Ge, Sundi; Zhu, Yuhua; Petrigliano, Frank A; Nsair, Ali; Miriuka, Santiago G; Li, Xinmin; Lyons, Karen M; Crooks, Gay M; McAllister, David R; Van Handel, Ben; Adams, John S; Evseenko, Denis

    2013-01-01

    Joint injury and osteoarthritis affect millions of people worldwide, but attempts to generate articular cartilage using adult stem/progenitor cells have been unsuccessful. We hypothesized that recapitulation of the human developmental chondrogenic program using pluripotent stem cells (PSCs) may represent a superior approach for cartilage restoration. Using laser-capture microdissection followed by microarray analysis, we first defined a surface phenotype (CD166(low/neg)CD146(low/neg)CD73(+)CD44(low)BMPR1B(+)) distinguishing the earliest cartilage committed cells (prechondrocytes) at 5-6 weeks of development. Functional studies confirmed these cells are chondrocyte progenitors. From 12 weeks, only the superficial layers of articular cartilage were enriched in cells with this progenitor phenotype. Isolation of cells with a similar immunophenotype from differentiating human PSCs revealed a population of CD166(low/neg)BMPR1B(+) putative cartilage-committed progenitors. Taken as a whole, these data define a developmental approach for the generation of highly purified functional human chondrocytes from PSCs that could enable substantial progress in cartilage tissue engineering.

  5. Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells

    PubMed Central

    Umeda, Katsutsugu; Zhao, Jiangang; Simmons, Paul; Stanley, Edouard; Elefanty, Andrew; Nakayama, Naoki

    2012-01-01

    Directed specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDR−PDGFRα+ progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFβ signaling controller. Isolated (GFP+)KDR−PDGFRα+ mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFβ and BMP. Under these conditions, the cells showed robust chondrogenic activity in micromass culture, and generated a hyaline-like translucent cartilage particle in serum-free medium. In contrast, both STRO1+ mesenchymal stem/stromal cells from adult human marrow and mesenchymal cells spontaneously arising from hPS cells showed a relatively weaker chondrogenic response in vitro, and formed more of the fibrotic cartilage particles. Thus, hPS cell-derived KDR−PDGFRα+ paraxial mesoderm-like cells have potential in engineered cartilage formation and cartilage repair. PMID:22701159

  6. The moral value of induced pluripotent stem cells: a Japanese bioethics perspective on human embryo research.

    PubMed

    Sawai, Tsutomu

    2014-11-01

    In contemporary Japan, at least in the field of regenerative medicine, human induced pluripotent stem cells (hiPSCs) are given no moral status and are treated in a purely instrumental way. However, some authors have mentioned the potentiality of hiPSCs in that 'tetraploid complementation' would make it possible to create humans directly from human embryonic stem cells (hESCs) and hiPSCs. A blastocyst consists of inner cell mass (ICM) cells and a trophoblast. The tetraploid complementation technique demonstrates that hESCs and hiPSCs both have the same capacity as ICM cells. If ICM cells, hESCs and hiPSCs were all provided with a trophoblast or a substitute with the same function, which would work as a placenta, they would have the same potential to develop into embryos, fetuses and adult human beings. Thus hiPSCs could be regarded as potential humans. However, no authority or guideline in Japan has specifically considered the status and use of hiPSCs. In this paper, I will address the extent to which the existing recommendations apply to hiPSCs and develop a novel Japanese bioethical perspective on the status of hiPSCs and its implications for hiPSC research, based on the reasoning in the report, 'The fundamental way of thinking in treating the human embryo' presented by the Bioethics Committee of the Council for Science and Technology Policy in 2004, and broader consideration of Japanese culture.

  7. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals

    PubMed Central

    Kumar, Dharmendra; Talluri, Thirumala R; Anand, Taruna; Kues, Wilfried A

    2015-01-01

    Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals. PMID:25815117

  8. Induction of Human Embryonic and Induced Pluripotent Stem Cells Into Urothelium

    PubMed Central

    Osborn, Stephanie L.; Thangappan, Ravikumar; Luria, Ayala; Lee, Justin H.; Nolta, Jan

    2014-01-01

    In vitro generation of human urothelium from stem cells would be a major advancement in the regenerative medicine field, providing alternate nonurologic and/or nonautologous tissue sources for bladder grafts. Such a model would also help decipher the mechanisms of urothelial differentiation and would facilitate investigation of deviated differentiation of normal progenitors into urothelial cancer stem cells, perhaps elucidating areas of intervention for improved treatments. Thus far, in vitro derivation of urothelium from human embryonic stem cells (hESCs) or human induced pluripotent stem (hiPS) cells has not been reported. The goal of this work was to develop an efficient in vitro protocol for the induction of hESCs into urothelium through an intermediary definitive endoderm step and free of matrices and cell contact. During directed differentiation in a urothelial-specific medium (“Uromedium”), hESCs produced up to 60% urothelium, as determined by uroplakin expression; subsequent propagation selected for 90% urothelium. Alteration of the epithelial and mesenchymal cell signaling contribution through noncell contact coculture or conditioned media did not enhance the production of urothelium. Temporospatial evaluation of transcription factors known to be involved in urothelial specification showed association of IRF1, GET1, and GATA4 with uroplakin expression. Additional hESC and hiPS cell lines could also be induced into urothelium using this in vitro system. These results demonstrate that derivation and propagation of urothelium from hESCs and hiPS cells can be efficiently accomplished in vitro in the absence of matrices, cell contact, or adult cell signaling and that the induction process appears to mimic normal differentiation. PMID:24657961

  9. A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells.

    PubMed

    Tsankov, Alexander M; Akopian, Veronika; Pop, Ramona; Chetty, Sundari; Gifford, Casey A; Daheron, Laurence; Tsankova, Nadejda M; Meissner, Alexander

    2015-11-01

    Research on human pluripotent stem cells has been hampered by the lack of a standardized, quantitative, scalable assay of pluripotency. We previously described an assay called ScoreCard that used gene expression signatures to quantify differentiation efficiency. Here we report an improved version of the assay based on qPCR that enables faster, more quantitative assessment of functional pluripotency. We provide an in-depth characterization of the revised signature panel (commercially available as the TaqMan hPSC Scorecard Assay) through embryoid body and directed differentiation experiments as well as a detailed comparison to the teratoma assay. We further show that the improved ScoreCard enables a wider range of applications, such as screening of small molecules, genetic perturbations and assessment of culture conditions. Our approach can be extended beyond stem cell applications to characterize and assess the utility of other cell types and lineages. PMID:26501952

  10. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    PubMed Central

    Bayzigitov, Daniel R.; Medvedev, Sergey P.; Dementyeva, Elena V.; Bayramova, Sevda A.; Pokushalov, Evgeny A.; Karaskov, Alexander M.; Zakian, Suren M.

    2016-01-01

    Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes. PMID:27110425

  11. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells.

    PubMed

    Neganova, Irina; Shmeleva, Evgenija; Munkley, Jennifer; Chichagova, Valeria; Anyfantis, George; Anderson, Rhys; Passos, Joao; Elliott, David J; Armstrong, Lyle; Lako, Majlinda

    2016-05-01

    Reprogramming of somatic cells to the phenotypic state termed "induced pluripotency" is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well-established molecular barriers in human somatic cell induced

  12. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.

    PubMed

    Deng, Yanfei; Liu, Qingyou; Luo, Chan; Chen, Shibei; Li, Xiangping; Wang, Caizhu; Liu, Zhenzhen; Lei, Xiaocan; Zhang, Huina; Sun, Hongliang; Lu, Fenghua; Jiang, Jianrong; Shi, Deshun

    2012-09-01

    Ectopically, expression of defined factors could reprogram mammalian somatic cells into induced pluripotent stem cells (iPSCs), which initiates a new strategy to obtain pluripotent stem cell lines. Attempts have been made to generate buffalo pluripotent stem cells by culturing primary germ cells or inner cell mass, but the efficiency is extremely low. Here, we report a successful method to reprogram buffalo fetal fibroblasts (BFFs) into pluripotent stem cells [buffalo induced pluripotent stem cell (biPSCs)] by transduction of buffalo defined factors (Oct4, Sox2, Klf4, and c-Myc) using retroviral vectors. The established biPSCs displayed typical morphological characteristics of pluripotent stem cells, normal karyotype, positive staining of alkaline phosphatase, and expressed pluripotent markers including Oct4, Sox2, Nanog, Lin28, E-Cadherin, SSEA-1, SSEA-4, TRA-1-81, STAT3, and FOXD3. They could form embryoid bodies (EBs) in vitro and teratomas after injecting into the nude BALB/C mice, and 3 germ layers were identified in the EBs and teratomas. Methylation assay revealed that the promoters of Oct4 and Nanog were hypomethylated in biPSCs compared with BFFs and pre-biPSCs, while the promoters of Sox2 and E-Cadherin were hypomethylated in both BFFs and biPSCs. Further, inhibiting p53 expression by coexpression of SV40 large T antigen and buffalo defined factors in BFFs or treating BFFs with p53 inhibitor pifithrin-a (PFT) could increase the efficiency of biPSCs generation up to 3-fold, and nuclear transfer embryos reconstructed with biPSCs could develop to blastocysts. These results indicate that BFFs can be reprogrammed into biPSCs by buffalo defined factors, and the generation efficiency of biPSCs can be increased by inhibition of p53 expression. These efforts will provide a feasible approach for investigating buffalo stem cell signal pathways, establishing buffalo stem cell lines, and producing genetic modification buffaloes in the future. PMID:22420535

  13. Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking

    PubMed Central

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.

    2014-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489

  14. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    PubMed

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  15. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells.

    PubMed

    van den Berg, Cathelijne W; Okawa, Satoshi; Chuva de Sousa Lopes, Susana M; van Iperen, Liesbeth; Passier, Robert; Braam, Stefan R; Tertoolen, Leon G; del Sol, Antonio; Davis, Richard P; Mummery, Christine L

    2015-09-15

    Differentiated derivatives of human pluripotent stem cells (hPSCs) are often considered immature because they resemble foetal cells more than adult, with hPSC-derived cardiomyocytes (hPSC-CMs) being no exception. Many functional features of these cardiomyocytes, such as their cell morphology, electrophysiological characteristics, sarcomere organization and contraction force, are underdeveloped compared with adult cardiomyocytes. However, relatively little is known about how their gene expression profiles compare with the human foetal heart, in part because of the paucity of data on the human foetal heart at different stages of development. Here, we collected samples of matched ventricles and atria from human foetuses during the first and second trimester of development. This presented a rare opportunity to perform gene expression analysis on the individual chambers of the heart at various stages of development, allowing us to identify not only genes involved in the formation of the heart, but also specific genes upregulated in each of the four chambers and at different stages of development. The data showed that hPSC-CMs had a gene expression profile similar to first trimester foetal heart, but after culture in conditions shown previously to induce maturation, they cluster closer to the second trimester foetal heart samples. In summary, we demonstrate how the gene expression profiles of human foetal heart samples can be used for benchmarking hPSC-CMs and also contribute to determining their equivalent stage of development.

  16. Continuous chromosomal instability in human pluripotent stem cells - the role of DNA replication.

    PubMed

    Lamm, Noa; Kerem, Batsheva

    2016-07-01

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations, including aneuploidy, during culture. Recently, we identified a replication stress-based mechanism leading to ongoing chromosomal instability in aneuploid hPSCs that may also operate during the initiation of instability in diploid cells. PMID:27652327

  17. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    ERIC Educational Resources Information Center

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  18. Induced Pluripotent Stem Cells: Generation, Characterization, and Differentiation--Methods and Protocols.

    PubMed

    Graversen, Veronica Kon; Chavala, Sai H

    2016-01-01

    Reprogramming fibroblasts into induced pluripotent stem cells (iPSC) remains a promising technique for cell replacement therapy. Diverse populations of somatic cells have been examined for their reprogramming potential. Recently, ocular ciliary body epithelial cells (CECs) have been reprogrammed with high reprogramming efficiency and single transcription factor reprogramming, making them an exciting candidate for cellular reprogramming strategies.

  19. Pluripotent stem cell derivation and differentiation toward cardiac muscle: novel techniques and advances in patent literature.

    PubMed

    Quattrocelli, Mattia; Thorrez, Lieven; Sampaolesi, Maurilio

    2013-04-01

    Pluripotent stem cells hold unprecedented potential for regenerative medicine, disease modeling and drug screening. Embryonic stem cells (ESCs), standard model for pluripotency studies, have been recently flanked by induced pluripotent stem cells (iPSCs). iPSCs are obtained from somatic cells via epigenetic and transcriptional reprogramming, overcoming ESC-related ethical issues and enabling the possibility of donor-matching pluripotent cell lines. Since the European Court of Justice banned patents involving embryo disaggregation to generate human ESCs, iPSCs can now fuel the willingness of European companies to invest in treatments based on stem cells. Moreover, iPSCs share many unique features of ESCs, such as unlimited self-renewal potential and broad differentiation capability, even though iPSCs seem more susceptible to genomic instability and display epigenetic biases as compared to ESCs. Both ESCs and iPSCs have been intensely investigated for cardiomyocyte production and cardiac muscle regeneration, both in human and animal models. In vitro and in vivo studies are continuously expanding and refining this field via genetic manipulation and cell conditioning, trying to achieve standard and reproducible products, eligible for clinical and biopharmaceutical scopes. This review focuses on the recently growing body of patents, concerning technical advances in production, expansion and cardiac differentiation of ESCs and iPSCs.

  20. MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells.

    PubMed

    Parr, Callum J C; Katayama, Shota; Miki, Kenji; Kuang, Yi; Yoshida, Yoshinori; Morizane, Asuka; Takahashi, Jun; Yamanaka, Shinya; Saito, Hirohide

    2016-01-01

    The efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation. We synthesized a new RNA tool, miR-switch, as a live-cell reporter mRNA for miR-302a activity that can specifically detect human induced pluripotent stem cells (hiPSCs) down to a spiked level of 0.05% of hiPSCs in a heterogeneous population and can prevent teratoma formation in an in vivo tumorigenicity assay. Automated and selective hiPSC-elimination was achieved by controlling puromycin resistance using the miR-302a switch. Our system uniquely provides sensitive detection of pluripotent stem cells and partially differentiated cells. In addition to its ability to eliminate undifferentiated cells, miR-302a switch also holds great potential in investigating the dynamics of differentiation and/or reprograming of live-cells based on intracellular information. PMID:27608814

  1. MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells

    PubMed Central

    Parr, Callum J. C.; Katayama, Shota; Miki, Kenji; Kuang, Yi; Yoshida, Yoshinori; Morizane, Asuka; Takahashi, Jun; Yamanaka, Shinya; Saito, Hirohide

    2016-01-01

    The efficiency of pluripotent stem cell differentiation is highly variable, often resulting in heterogeneous populations that contain undifferentiated cells. Here we developed a sensitive, target-specific, and general method for removing undesired cells before transplantation. MicroRNA-302a-5p (miR-302a) is highly and specifically expressed in human pluripotent stem cells and gradually decreases to basal levels during differentiation. We synthesized a new RNA tool, miR-switch, as a live-cell reporter mRNA for miR-302a activity that can specifically detect human induced pluripotent stem cells (hiPSCs) down to a spiked level of 0.05% of hiPSCs in a heterogeneous population and can prevent teratoma formation in an in vivo tumorigenicity assay. Automated and selective hiPSC-elimination was achieved by controlling puromycin resistance using the miR-302a switch. Our system uniquely provides sensitive detection of pluripotent stem cells and partially differentiated cells. In addition to its ability to eliminate undifferentiated cells, miR-302a switch also holds great potential in investigating the dynamics of differentiation and/or reprograming of live-cells based on intracellular information. PMID:27608814

  2. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    PubMed

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  3. 3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Palankar, Raghavendra; Glaubitz, Michael; Martens, Ulrike; Medvedev, Nikolay; von der Ehe, Marvin; Felix, Stephan B; Münzenberg, Markus; Delcea, Mihaela

    2016-02-01

    3D micropillars generated by photolithography are used as a platform to probe by atomic force microscopy the mechanodynamics of human induced pluripotent stem cell-derived cardiomyocytes. 3D micropillars guide subcellular cytoskeletal modifications of cardiomyocytes and lead to biochemical changes altering beating rate, stiffness, and calcium dynamics of the cells.

  4. Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells.

    PubMed

    Ishii, Tetsuya; Pera, Renee A Reijo; Greely, Henry T

    2013-08-01

    Derivation of eggs or sperm from pluripotent stem cells or direct reprogramming from somatic cells would have huge effects on assisted reproductive technology. Here we discuss important ethical, legal, and social issues that would be raised by the development of such female or male gametes for clinical use.

  5. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  6. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming. PMID:27053247

  7. miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner

    PubMed Central

    Li, H-L; Wei, J-F; Fan, L-Y; Wang, S-H; Zhu, L; Li, T-P; Lin, G; Sun, Y; Sun, Z-J; Ding, J; Liang, X-L; Li, J; Han, Q; Zhao, R-C-H

    2016-01-01

    Pluripotency makes human pluripotent stem cells (hPSCs) promising for regenerative medicine, but the teratoma formation has been considered to be a major obstacle for their clinical applications. Here, we determined that the downregulation of miR-302 suppresses the teratoma formation, hampers the self-renewal and pluripotency, and promotes hPSC differentiation. The underlying mechanism is that the high endogenous expression of miR-302 suppresses the AKT1 expression by directly targeting its 3'UTR and subsequently maintains the pluripotent factor OCT4 at high level. Our findings reveal that miR-302 regulates OCT4 by suppressing AKT1, which provides hPSCs two characteristics related to their potential for clinical applications: the benefit of pluripotency and the hindrance of teratoma formation. More importantly, we demonstrate that miR-302 upregulation cannot lead OCT4 negative human adult mesenchymal stem cells (hMSCs) to acquire the teratoma formation in vivo. Whether miR-302 upregulation can drive hMSCs to acquire a higher differentiation potential is worthy of deep investigation. PMID:26821070

  8. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    PubMed

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  9. Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells.

    PubMed

    Vega-Crespo, Agustin; Truong, Brian; Hermann, Kip J; Awe, Jason P; Chang, Katherine M; Lee, Patrick C; Schoenberg, Benjamen E; Wu, Lily; Byrne, James A; Lipshutz, Gerald S

    2016-01-01

    Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics. PMID:27500178

  10. Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling

    PubMed Central

    Hu, Jing; Yang, Zhiyong; Wang, Jinbo; Yu, Jia; Guo, Jing; Liu, Shiying; Qian, Chunmei; Song, Liwen; Wu, Yi; Cheng, Jiajing

    2016-01-01

    An improved understanding of the pluripotency maintenance of embryonic stem (ES) cells is important for investigations of early embryo development and for cell replacement therapy, but the mechanism behind pluripotency is still incompletely understood. Recent findings show that zinc, an essential trace element in humans, is critically involved in regulating various signaling pathways and genes expression. However, its role in ES cell fate determination remains to be further explored. Here we showed that 2μM zinc chloride (ZnCl2) transiently maintained mouse ES cell pluripotency in vitro. The cultured mouse ES cells remained undifferentiated under 2μM ZnCl2 treatment in leukemia inhibitory factor (LIF) withdrawal, retinoic acid (RA) or embryoid bodies (EBs) differentiation assays. In addition, ZnCl2 increased pluripotency genes expression and inhibited differentiation genes expression. Further mechanistic studies revealed that ZnCl2 transiently activated signal transducers and activators of transcription 3 (Stat3) signaling through promoting Stat3 phosphorylation. Inhibition of Stat3 signaling abrogated the effects of ZnCl2 on mouse ES cell pluripotency. Taken together, this study demonstrated a critical role of zinc in the pluripotency maintenance of mouse ES cells, as well as an important regulator of Stat3 signaling. PMID:26910359

  11. Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells

    PubMed Central

    Vega-Crespo, Agustin; Truong, Brian; Hermann, Kip J; Awe, Jason P; Chang, Katherine M; Lee, Patrick C; Schoenberg, Benjamen E; Wu, Lily; Byrne, James A; Lipshutz, Gerald S

    2016-01-01

    Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics. PMID:27500178

  12. V-Myc Immortalizes Human Neural Stem Cells in the Absence of Pluripotency-Associated Traits

    PubMed Central

    Pino-Barrio, María José; García-García, Elisa; Menéndez, Pablo; Martínez-Serrano, Alberto

    2015-01-01

    A better understanding of the molecular mechanisms governing stem cell self-renewal will foster the use of different types of stem cells in disease modeling and cell therapy strategies. Immortalization, understood as the capacity for indefinite expansion, is needed for the generation of any cell line. In the case of v-myc immortalized multipotent human Neural Stem Cells (hNSCs), we hypothesized that v-myc immortalization could induce a more de-differentiated state in v-myc hNSC lines. To test this, we investigated the expression of surface, biochemical and genetic markers of stemness and pluripotency in v-myc immortalized and control hNSCs (primary precursors, that is, neurospheres) and compared these two cell types to human Embryonic Stem Cells (hESCs) and fibroblasts. Using a Hierarchical Clustering method and a Principal Component Analysis (PCA), the v-myc hNSCs associated with their counterparts hNSCs (in the absence of v-myc) and displayed a differential expression pattern when compared to hESCs. Moreover, the expression analysis of pluripotency markers suggested no evidence supporting a reprogramming-like process despite the increment in telomerase expression. In conclusion, v-myc expression in hNSC lines ensures self-renewal through the activation of some genes involved in the maintenance of stem cell properties in multipotent cells but does not alter the expression of key pluripotency-associated genes. PMID:25764185

  13. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  14. Transcriptome Characteristics and X-Chromosome Inactivation Status in Cultured Rat Pluripotent Stem Cells.

    PubMed

    Vaskova, Evgeniya A; Medvedev, Sergey P; Sorokina, Anastasiya E; Nemudryy, Artem A; Elisaphenko, Evgeniy A; Zakharova, Irina S; Shevchenko, Alexander I; Kizilova, Elena A; Zhelezova, Antonina I; Evshin, Ivan S; Sharipov, Ruslan N; Minina, Julia M; Zhdanova, Natalia S; Khegay, Igor I; Kolpakov, Fedor A; Sukhikh, Gennadiy T; Pokushalov, Evgeniy A; Karaskov, Alexander M; Vlasov, Valentin V; Ivanova, Ludmila N; Zakian, Suren M

    2015-12-15

    Rat pluripotent stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) as mouse and human ones have a great potential for studying mammalian early development, disease modeling, and evaluation of regenerative medicine approaches. However, data on pluripotency realization and self-renewal maintenance in rat cells are still very limited, and differentiation protocols of rat ESCs (rESCs) and iPSCs to study development and obtain specific cell types for biomedical applications are poorly developed. In this study, the RNA-Seq technique was first used for detailed transcriptome characterization in rat pluripotent cells. The rESC and iPSC transcriptomes demonstrated a high similarity and were significantly different from those in differentiated cells. Additionally, we have shown that reprogramming of rat somatic cells to a pluripotent state was accompanied by X-chromosome reactivation. There were two active X chromosomes in XX rESCs and iPSCs, which is one of the key attributes of the pluripotent state. Differentiation of both rESCs and iPSCs led to X-chromosome inactivation (XCI). The dynamics of XCI in differentiating rat cells was very similar to that in mice. Two types of facultative heterochromatin described in various mammalian species were revealed on the rat inactive X chromosome. To explore XCI dynamics, we established a new monolayer differentiation protocol for rESCs and iPSCs that may be applied to study different biological processes and optimized for directed derivation of specific cell types. PMID:26418521

  15. PRMT5 is required for human embryonic stem cell proliferation but not pluripotency.

    PubMed

    Gkountela, Sofia; Li, Ziwei; Chin, Chee Jia; Lee, Serena A; Clark, Amander T

    2014-04-01

    Human pluripotent stem cells (PSCs) are critical in vitro tools for understanding mechanisms that regulate lineage differentiation in the human embryo as well as a potentially unlimited supply of stem cells for regenerative medicine. Pluripotent human and mouse embryonic stem cells (ESCs) derived from the inner cell mass of blastocysts share a similar transcription factor network to maintain pluripotency and self-renewal, yet there are considerable molecular differences reflecting the diverse environments in which mouse and human ESCs are derived. In the current study we evaluated the role of Protein arginine methyltransferase 5 (PRMT5) in human ESC (hESC) self-renewal and pluripotency given its critical role in safeguarding mouse ESC pluripotency. Unlike the mouse, we discovered that PRMT5 has no role in hESC pluripotency. Using microarray analysis we discovered that a significant depletion in PRMT5 RNA and protein from hESCs changed the expression of only 78 genes, with the majority being repressed. Functionally, we discovered that depletion of PRMT5 had no effect on expression of OCT4, NANOG or SOX2, and did not prevent teratoma formation. Instead, we show that PRMT5 functions in hESCs to regulate proliferation in the self-renewing state by regulating the fraction of cells in Gap 1 (G1) of the cell cycle and increasing expression of the G1 cell cycle inhibitor P57. Taken together our data unveils a distinct role for PRMT5 in hESCs and identifies P57 as new target. PMID:24477620

  16. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells

    PubMed Central

    Rodrigues, Ana Sofia; Pereira, Sandro L.; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João

    2015-01-01

    Background Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Methodology/Principal Findings Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Conclusions/Findings Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency

  17. From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals

    PubMed Central

    Koh, Sehwon; Piedrahita, Jorge A.

    2013-01-01

    Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat, however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as “ES-like” cells due to similar morphological characteristics to mouse ESCs but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of induced pluripotent stem cells. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of induced pluripotent stem cells. PMID:24274415

  18. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells.

    PubMed

    Novo, Clara Lopes; Tang, Calvin; Ahmed, Kashif; Djuric, Ugljesa; Fussner, Eden; Mullin, Nicholas P; Morgan, Natasha P; Hayre, Jasvinder; Sienerth, Arnold R; Elderkin, Sarah; Nishinakamura, Ryuichi; Chambers, Ian; Ellis, James; Bazett-Jones, David P; Rugg-Gunn, Peter J

    2016-05-01

    An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells. PMID:27125671

  19. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine.

    PubMed

    Szkolnicka, Dagmara; Hay, David C

    2016-06-01

    The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426.

  20. [CRISPR/Cas system for genome editing in pluripotent stem cells].

    PubMed

    Vasil'eva, E A; Melino, D; Barlev, N A

    2015-01-01

    Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.

  1. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced Pluripotent Stem Cells

    PubMed Central

    Kaitsuka, Taku; Tomizawa, Kazuhito

    2015-01-01

    Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies. PMID:26561805

  2. Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale.

    PubMed

    Wright, Lynda S; Phillips, M Joseph; Pinilla, Isabel; Hei, Derek; Gamm, David M

    2014-06-01

    Human pluripotent stem cells have made a remarkable impact on science, technology and medicine by providing a potentially unlimited source of human cells for basic research and clinical applications. In recent years, knowledge gained from the study of human embryonic stem cells and mammalian somatic cell reprogramming has led to the routine production of human induced pluripotent stem cells (hiPSCs) in laboratories worldwide. hiPSCs show promise for use in transplantation, high throughput drug screening, "disease-in-a-dish" modeling, disease gene discovery, and gene therapy testing. This review will focus on the first application, beginning with a discussion of methods for producing retinal lineage cells that are lost in inherited and acquired forms of retinal degenerative disease. The selection of appropriate hiPSC-derived donor cell type(s) for transplantation will be discussed, as will the caveats and prerequisite steps to formulating a clinical Good Manufacturing Practice (cGMP) product for clinical trials.

  3. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering

    PubMed Central

    Lucendo-Villarin, B.; Rashidi, H.; Cameron, K.

    2016-01-01

    Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions. PMID:27746914

  4. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    PubMed Central

    Pesl, Martin; Lacampagne, Alain; Dvorak, Petr; Rotrekl, Vladimir; Meli, Albano C.

    2014-01-01

    Human pluripotent stem cells (hPSCs), namely, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). PMID:24800237

  5. Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro

    2015-01-01

    The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1.

  6. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  7. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing

    PubMed Central

    Jacinto, Filipe V.; Benner, Chris; Hetzer, Martin W.

    2015-01-01

    Nucleoporins (Nups) are a family of proteins best known as the constituent building blocks of nuclear pore complexes (NPCs), membrane-embedded channels that mediate nuclear transport across the nuclear envelope. Recent evidence suggests that several Nups have additional roles in controlling the activation and silencing of developmental genes; however, the mechanistic details of these functions remain poorly understood. Here, we show that depletion of Nup153 in mouse embryonic stem cells (mESCs) causes the derepression of developmental genes and induction of early differentiation. This loss of stem cell identity is not associated with defects in the nuclear import of key pluripotency factors. Rather, Nup153 binds around the transcriptional start site (TSS) of developmental genes and mediates the recruitment of the polycomb-repressive complex 1 (PRC1) to a subset of its target loci. Our results demonstrate a chromatin-associated role of Nup153 in maintaining stem cell pluripotency by functioning in mammalian epigenetic gene silencing. PMID:26080816

  8. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine

    PubMed Central

    Szkolnicka, Dagmara

    2016-01-01

    Abstract The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life‐threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell‐derived hepatocytes as a renewable source of cells for therapy. In addition to cell‐based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte‐like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421–1426 PMID:27015786

  9. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    PubMed

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-01-01

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells. PMID:26573336

  10. HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells

    PubMed Central

    DeLaForest, Ann; Nagaoka, Masato; Si-Tayeb, Karim; Noto, Fallon K.; Konopka, Genevieve; Battle, Michele A.; Duncan, Stephen A.

    2011-01-01

    The availability of pluripotent stem cells offers the possibility of using such cells to model hepatic disease and development. With this in mind, we previously established a protocol that facilitates the differentiation of both human embryonic stem cells and induced pluripotent stem cells into cells that share many characteristics with hepatocytes. The use of highly defined culture conditions and the avoidance of feeder cells or embryoid bodies allowed synchronous and reproducible differentiation to occur. The differentiation towards a hepatocyte-like fate appeared to recapitulate many of the developmental stages normally associated with the formation of hepatocytes in vivo. In the current study, we addressed the feasibility of using human pluripotent stem cells to probe the molecular mechanisms underlying human hepatocyte differentiation. We demonstrate (1) that human embryonic stem cells express a number of mRNAs that characterize each stage in the differentiation process, (2) that gene expression can be efficiently depleted throughout the differentiation time course using shRNAs expressed from lentiviruses and (3) that the nuclear hormone receptor HNF4A is essential for specification of human hepatic progenitor cells by establishing the expression of the network of transcription factors that controls the onset of hepatocyte cell fate. PMID:21852396

  11. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species

    PubMed Central

    Rosselló, Ricardo Antonio; Chen, Chun-Chun; Dai, Rui; Howard, Jason T; Hochgeschwender, Ute; Jarvis, Erich D

    2013-01-01

    Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI: http://dx.doi.org/10.7554/eLife.00036.001 PMID:24015354

  12. Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells.

    PubMed

    Zhang, Chao; Cao, Jiani; Li, Xiaoyan; Xu, Haoyu; Wang, Weixu; Wang, Libin; Zhao, Xiaoyang; Li, Wei; Jiao, Jianwei; Hu, Baoyang; Zhou, Qi; Zhao, Tongbiao

    2016-09-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs. PMID:27233903

  13. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    PubMed

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  14. Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells.

    PubMed

    Ge, Xiaohu; Wang, I-Ning E; Toma, Ildiko; Sebastiano, Vittorio; Liu, Jianwei; Butte, Manish J; Reijo Pera, Renee A; Yang, Phillip C

    2012-10-10

    Human amniotic mesenchymal stem cells (hAMSCs) demonstrated partially pluripotent characteristics with a strong expression of Oct4 and Nanog genes and immunomodulatory properties characterized by the absence of HLA-DR and the presence of HLA-G and CD59. The hAMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) that generate a promising source of universal cardiac cells. The hAMSC-derived iPSCs (MiPSCs) successfully underwent robust cardiac differentiation to generate cardiomyocytes. This study investigated 3 key properties of the hAMSCs and MiPSCs: (1) the reprogramming efficiency of the partially pluripotent hAMSCs to generate MiPSCs; (2) immunomodulatory properties of the hAMSCs and MiPSCs; and (3) the cardiac differentiation potential of the MiPSCs. The characteristic iPSC colony formation was observed within 10 days after the transduction of the hAMSCs with a single integration polycistronic vector containing 4 Yamanaka factors. Immunohistology and reverse transcription-polymerase chain reaction assays revealed that the MiPSCs expressed stem cell surface markers and pluripotency-specific genes. Furthermore, the hAMSCs and MiPSCs demonstrated immunomodulatory properties enabling successful engraftment in the SVJ mice. Finally, the cardiac differentiation of MiPSCs exhibited robust spontaneous contractility, characteristic calcium transience across the membrane, a high expression of cardiac genes and mature cardiac phenotypes, and a contractile force comparable to cardiomyocytes. Our results demonstrated that the hAMSCs are reprogrammed with a high efficiency into MiPSCs, which possess pluripotent, immunomodulatory, and precardiac properties. The MiPSC-derived cardiac cells express a c-kit cell surface marker, which may be employed to purify the cardiac cell population and enable allogeneic cardiac stem cell therapy.

  15. Robust Pluripotent Stem Cell Expansion and Cardiomyocyte Differentiation via Geometric Patterning

    PubMed Central

    Myers, Frank B.; Silver, Jason S.; Zhuge, Yan; Beygui, Ramin E.; Zarins, Christopher K.; Lee, Luke P.; Abilez, Oscar J.

    2013-01-01

    Geometric factors including the size, shape, density, and spacing of pluripotent stem cell colonies play a significant role in the maintenance of pluripotency and in cell fate determination. These factors are impossible to control using standard tissue culture methods. As such, there can be substantial batch-to-batch variability in cell line maintenance and differentiation yield. Here, we demonstrate a simple, robust technique for pluripotent stem cell expansion and cardiomyocyte differentiation by patterning cell colonies with a silicone stencil. We have observed that patterning human induced pluripotent stem cell (hiPSC) colonies improves the uniformity and repeatability of their size, density, and shape. Uniformity of colony geometry leads to improved homogeneity in the expression of pluripotency markers SSEA4 and Nanog as compared with conventional clump passaging. Patterned cell colonies are capable of undergoing directed differentiation into spontaneously beating cardiomyocyte clusters with improved yield and repeatability over unpatterned cultures seeded either as cell clumps or uniform single cell suspensions. Circular patterns result in a highly repeatable 3D ring-shaped band of cardiomyocytes which electrically couple and lead to propagating contraction waves around the ring. Because of these advantages, geometrically patterning stem cells using stencils may offer greater repeatability from batch-to-batch and person-to-person, an increase in differentiation yield, a faster experimental workflow, and a simpler protocol to communicate and follow. Furthermore, the ability to control where cardiomyocytes arise across a culture well during differentiation could greatly aid the design of electrophysiological assays for drug-screening. PMID:24141327

  16. Robust pluripotent stem cell expansion and cardiomyocyte differentiation via geometric patterning.

    PubMed

    Myers, Frank B; Silver, Jason S; Zhuge, Yan; Beygui, Ramin E; Zarins, Christopher K; Lee, Luke P; Abilez, Oscar J

    2013-12-01

    Geometric factors including the size, shape, density, and spacing of pluripotent stem cell colonies play a significant role in the maintenance of pluripotency and in cell fate determination. These factors are impossible to control using standard tissue culture methods. As such, there can be substantial batch-to-batch variability in cell line maintenance and differentiation yield. Here, we demonstrate a simple, robust technique for pluripotent stem cell expansion and cardiomyocyte differentiation by patterning cell colonies with a silicone stencil. We have observed that patterning human induced pluripotent stem cell (hiPSC) colonies improves the uniformity and repeatability of their size, density, and shape. Uniformity of colony geometry leads to improved homogeneity in the expression of pluripotency markers SSEA4 and Nanog as compared with conventional clump passaging. Patterned cell colonies are capable of undergoing directed differentiation into spontaneously beating cardiomyocyte clusters with improved yield and repeatability over unpatterned cultures seeded either as cell clumps or uniform single cell suspensions. Circular patterns result in a highly repeatable 3D ring-shaped band of cardiomyocytes which electrically couple and lead to propagating contraction waves around the ring. Because of these advantages, geometrically patterning stem cells using stencils may offer greater repeatability from batch-to-batch and person-to-person, an increase in differentiation yield, a faster experimental workflow, and a simpler protocol to communicate and follow. Furthermore, the ability to control where cardiomyocytes arise across a culture well during differentiation could greatly aid the design of electrophysiological assays for drug-screening. PMID:24141327

  17. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  18. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  19. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier.

    PubMed

    Watanabe, Akira; Yamada, Yasuhiro; Yamanaka, Shinya

    2013-01-01

    The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process.

  20. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier.

    PubMed

    Watanabe, Akira; Yamada, Yasuhiro; Yamanaka, Shinya

    2013-01-01

    The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process. PMID:23166402

  1. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues

    PubMed Central

    Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.

    2013-01-01

    Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110

  2. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.

    PubMed

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E

    2016-07-01

    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  3. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells.

    PubMed

    Iyer, Dharini; Gambardella, Laure; Bernard, William G; Serrano, Felipe; Mascetti, Victoria L; Pedersen, Roger A; Talasila, Amarnath; Sinha, Sanjay

    2015-04-15

    The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFβ1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.

  4. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling

    PubMed Central

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-01-01

    Summary Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  5. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    PubMed

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  6. JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells.

    PubMed

    Zhu, Hui; Hu, Shijun; Baker, Julie

    2014-08-01

    In mammalian embryos, embryonic stem cells (ESCs) and induced pluripotent cells, a shortened G1 phase is correlated with the pluripotent state. To molecularly define this phase, we compared transcripts from the shortened G1 of human ESCs (hESCs) with those from the longer G1 of derived endoderm. We identified JMJD5, a JmjC (Jumonji C) domain containing protein that, when depleted in hESCs, causes the accumulation of cells in G1 phase, loss of pluripotency, and subsequent differentiation into multiple lineages, most prominently ectoderm and trophectoderm. Furthermore, we demonstrate that the JMJD5 phenotype is caused by the upregulation of CDKN1A (p21), as depleting both JMJD5 and CDKN1A (p21) in hESCs restores the rapid G1 phase and rescues the pluripotent state. Overall, we provide genetic and biochemical evidence that the JMJD5/CDKN1A (p21) axis is essential to maintaining the short G1 phase which is critical for pluripotency in hESCs.

  7. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells.

    PubMed

    Asprer, Joanna S T; Lakshmipathy, Uma

    2015-04-01

    Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.

  8. Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells.

    PubMed

    Ghosal, Suman; Das, Shaoli; Chakrabarti, Jayprokas

    2013-08-15

    Maintenance of the pluripotent state or differentiation of the pluripotent state into any germ layer depends on the factors that orchestrate expression of thousands of genes through epigenetic, transcriptional, and post-transcriptional regulation. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry in the developmental processes. The ENCODE project has opened up new avenues for studying these lncRNA transcripts with the availability of new datasets for lncRNA annotation and regulation. Expression studies identified hundreds of long noncoding RNAs differentially expressed in the pluripotent state, and many of these lncRNAs are found to control the pluripotency and stemness in embryonic and induced pluripotent stem cells or, in the reverse way, promote differentiation of pluripotent cells. They are generally transcriptionally activated or repressed by pluripotency-associated transcription factors and function as molecular mediators of gene expression that determine the pluripotent state of the cell. They can act as molecular scaffolds or guides for the chromatin-modifying complexes to direct them to bind into specific genomic loci to impart a repressive or activating effect on gene expression, or they can transcriptionally or post-transcriptionally regulate gene expression by diverse molecular mechanisms. This review focuses on recent findings on the regulatory role of lncRNAs in two main aspects of pluripotency, namely, self renewal and differentiation into any lineage, and elucidates the underlying molecular mechanisms that are being uncovered lately.

  9. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors

    PubMed Central

    Doulatov, Sergei; Vo, Linda T.; Chou, Stephanie S.; Kim, Peter G.; Arora, Natasha; Li, Hu; Hadland, Brandon K.; Bernstein, Irwin D.; Collins, James J.; Zon, Leonard I.; Daley, George Q.

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells. PMID:24094326

  10. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells

    PubMed Central

    Klawitter, Sabine; Fuchs, Nina V.; Upton, Kyle R.; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J.; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J. Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J.; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L.; Faulkner, Geoffrey J.; Schumann, Gerald G.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  11. Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells.

    PubMed

    Barone, Angela; Säljö, Karin; Benktander, John; Blomqvist, Maria; Månsson, Jan-Eric; Johansson, Bengt R; Mölne, Johan; Aspegren, Anders; Björquist, Petter; Breimer, Michael E; Teneberg, Susann

    2014-07-01

    Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 10(9) cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells.

  12. Letter to the Editor: Human Pluripotent Stem Cells Release Oncogenic Soluble E-Cadherin.

    PubMed

    Rosner, Margit; Hengstschläger, Markus

    2016-09-01

    Since their discovery, human pluripotent stem cells (hPSCs) including embryonic and induced pluripotent stem cells hold great promise in disease modeling and regenerative medicine. Despite intensive research and remarkable progress, it is becoming increasingly acknowledged that their yet incomplete, biological characterisation represents one of the major drawbacks to their successful translation into the clinics. The expression of the transmembrane protein E-cadherin in hPSCs is well defined to be pivotal to the maintenance of the pluripotent state by mediating intercellular adhesion and intracellular signaling. Next to these canonical functions, were here report for the first time that hPSCs are subject to matrix metalloproteinase-dependent E-cadherin ectodomain shedding. This generates a ∼80-kD, soluble E-cadherin fragment which is released into the extracellular space, and which is well described to exert paracrine signaling activity and classified as being oncogenic. Collectively, this finding does not only improve our knowledge on the signaling crosstalk between hPSCs and their cellular environment and the type and nature of the paracrine signals produced by these cells, but also has clear implications for the development of efficient and safe stem cell-based therapies. Stem Cells 2016;34:2443-2446. PMID:27399873

  13. Human induced pluripotent stem cells--from mechanisms to clinical applications.

    PubMed

    Drews, Katharina; Jozefczuk, Justyna; Prigione, Alessandro; Adjaye, James

    2012-07-01

    Human pluripotent stem cells hold great promise for basic research and regenerative medicine due to their inherent property to propagate infinitely, while maintaining the potential to differentiate into any given cell type of the human body. Since the first derivation in 1998, pluripotent human embryonic stem cells (ESCs) have been studied intensively, and although these cells provoke ethical and immune rejection concerns, translation of human ESC research into the clinics has been initiated. The generation of embryonic stem cell-like human induced pluripotent stem cells (iPSCs) from somatic cells by virus-mediated overexpression of distinct sets of reprogramming factors (OCT4, SOX2, KLF4, and c-MYC, or OCT4, SOX2, NANOG, and LIN28) in 2007 has opened up further opportunities in the field. While circumventing the major disputes associated with human ESCs, iPSCs offer the same advantages and, in addition, new perspectives for personalized medicine. This review summarizes technical advances toward the generation of potentially clinically relevant human iPSCs. We also highlight key molecular events underlying the process of cellular reprogramming and discuss inherent features of iPSCs, including genome instability and epigenetic memory. Furthermore, we will give an overview of particular envisaged human iPSC applications and point out which improvements are yet to come and what has been achieved so far.

  14. Dendritic cells derived from pluripotent stem cells: Potential of large scale production

    PubMed Central

    Li, Yan; Liu, Meimei; Yang, Shang-Tian

    2014-01-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells (DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension culture of embryoid bodies (EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail. PMID:24567783

  15. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA.

    PubMed

    Karow, Marisa; Chavez, Christopher L; Farruggio, Alfonso P; Geisinger, Jonathan M; Keravala, Annahita; Jung, W Edward; Lan, Feng; Wu, Joseph C; Chen-Tsai, Yanru; Calos, Michele P

    2011-11-01

    Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting. PMID:21898697

  16. Full biological characterization of human pluripotent stem cells will open the door to translational research.

    PubMed

    Kramer, Nina; Rosner, Margit; Kovacic, Boris; Hengstschläger, Markus

    2016-09-01

    Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells. PMID:27325309

  17. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    PubMed

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  18. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    PubMed

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714

  19. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells.

    PubMed

    Thompson, Lachlan H; Björklund, Anders

    2015-07-01

    Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.

  20. Sialyl-lactotetra, a Novel Cell Surface Marker of Undifferentiated Human Pluripotent Stem Cells*

    PubMed Central

    Barone, Angela; Säljö, Karin; Benktander, John; Blomqvist, Maria; Månsson, Jan-Eric; Johansson, Bengt R.; Mölne, Johan; Aspegren, Anders; Björquist, Petter; Breimer, Michael E.; Teneberg, Susann

    2014-01-01

    Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 109 cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells. PMID:24841197

  1. Full biological characterization of human pluripotent stem cells will open the door to translational research.

    PubMed

    Kramer, Nina; Rosner, Margit; Kovacic, Boris; Hengstschläger, Markus

    2016-09-01

    Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.

  2. Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells.

    PubMed

    Kassem, Dina H; Kamal, Mohamed M; El-Kholy, Abd El-Latif G; El-Mesallamy, Hala O

    2016-08-01

    Recently, there has been much attention towards generation of insulin producing cells (IPCs) from stem cells, especially from Wharton's jelly mesenchymal stem cells (WJ-MSCs). However, generation of mature IPCs remains a challenge. Assessment of generation of IPCs was usually done by examining β-cell markers, however, assessment of pluripotency/stem cell markers drew less attention. Therefore, the purpose of this study was to investigate the levels of pluripotency/stem cell markers during differentiation of WJ-MSCs into IPCs and the association of these levels with differentiation outcomes. WJ-MSCs were isolated, characterized then induced to differentiate into IPCs using three different protocols namely A, B and C. Differentiated IPCs were assessed by the expression of pluripotency/stem cell markers, together with β-cell markers using qRT-PCR, and functionally by measuring glucose stimulated insulin secretion. Differentiated cells from protocol A showed lowest expression of pluripotency/stem cell markers and relatively best GSIS. However, protocol B showed concomitant expression of pluripotency/stem cell and β-cell markers with relatively less insulin secretion as compared to protocol A. Protocol C failed to generate glucose-responsive IPCs. In conclusion, sustained expression of pluripotency/stem cell markers could be associated with the incomplete differentiation of WJ-MSCs into IPCs. A novel finding for which further investigations are warranted.

  3. Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells.

    PubMed

    Godfrey, K J; Mathew, B; Bulman, J C; Shah, O; Clement, S; Gallicano, G I

    2012-01-01

    Type 1 diabetes mellitus--characterized by the permanent destruction of insulin-secreting β-cells--is responsive to cell-based treatments that replace lost β-cell populations. The current gold standard of pancreas transplantation provides only temporary independence from exogenous insulin and is fraught with complications, including increased mortality. Stem cells offer a number of theoretical advantages over current therapies. Our review will focus on the development of treatments involving tissue stem cells from bone marrow, liver and pancreatic cells, as well as the potential use of embryonic and induced pluripotent stem cells for Type 1 diabetes therapy. While the body of research involving stem cells is at once promising and inconsistent, bone marrow-derived mesenchymal stem cell transplantation seems to offer the most compelling evidence of efficacy. These cells have been demonstrated to increase endogenous insulin production, while partially mitigating the autoimmune destruction of newly formed β-cells. However, recently successful experiments involving induced pluripotent stem cells could quickly move them into the foreground of therapeutic research. We address the limitations encountered by present research and look toward the future of stem cell treatments for Type 1 diabetes.

  4. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    PubMed

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  5. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    PubMed

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  6. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo

    PubMed Central

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs. PMID:26991423

  7. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells

    PubMed Central

    Wamaitha, Sissy E.; del Valle, Ignacio; Cho, Lily T.Y.; Wei, Yingying; Fogarty, Norah M.E.; Blakeley, Paul; Sherwood, Richard I.; Ji, Hongkai; Niakan, Kathy K.

    2015-01-01

    Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types. PMID:26109048

  8. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells.

    PubMed

    Lavial, Fabrice; Acloque, Hervé; Bertocchini, Federica; Macleod, David J; Boast, Sharon; Bachelard, Elodie; Montillet, Guillaume; Thenot, Sandrine; Sang, Helen M; Stern, Claudio D; Samarut, Jacques; Pain, Bertrand

    2007-10-01

    Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In non-mammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 (spg; pou5f1) and Xenopus Pou91 (XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC (cESC), which display similar properties of pluripotency and long-term self-renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV (cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self-renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self-renewal are not exclusive to mammals.

  9. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells.

    PubMed

    Sakurai, Hidetoshi; Sakaguchi, Yasuko; Shoji, Emi; Nishino, Tokiko; Maki, Izumi; Sakai, Hiroshi; Hanaoka, Kazunori; Kakizuka, Akira; Sehara-Fujisawa, Atsuko

    2012-01-01

    Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α(+)/Flk-1(-) population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α(+)/KDR(-) population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α(+)/KDR(-) population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.

  10. Generation of induced pluripotent stem cells from the pig

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The value of stem cells has become increasingly evident in recent years with the advent of genetic engineering tools that allow site-specific modifications to the genome. The use of stem cells to induce modifications has several potential benefits for the livestock industry including improving anim...

  11. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis

    PubMed Central

    Wang, Yu-Chieh; Nakagawa, Masato; Garitaonandia, Ibon; Slavin, Ileana; Altun, Gulsah; Lacharite, Robert M; Nazor, Kristopher L; Tran, Ha T; Lynch, Candace L; Leonardo, Trevor R; Liu, Ying; Peterson, Suzanne E; Laurent, Louise C; Yamanaka, Shinya; Loring, Jeanne F

    2011-01-01

    Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications. Using lectin arrays, we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples, and identified a small group of lectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types. These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined, regardless of the laboratory of origin, the culture conditions, the somatic cell type reprogrammed, or the reprogramming method used. We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry, and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation. Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases, which may underlie these differences in protein glycosylation and lectin binding. Taken together, our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells, and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations. PMID:21894191

  12. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease.

    PubMed

    Son, Mi-Young; Lee, Mi-Ok; Jeon, Hyejin; Seol, Binna; Kim, Jung Hwa; Chang, Jae-Suk; Cho, Yee Sook

    2016-01-01

    Autoimmune diseases (AIDs), a heterogeneous group of immune-mediated disorders, are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs, the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However, stem cell transplantation therapy has limitations, including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology, which allows the generation of patient-specific pluripotent stem cells, could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS), Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally, all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS, SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs, including AS, SS and SLE. PMID:27174201

  13. Regulatory issues for personalized pluripotent cells.

    PubMed

    Condic, Maureen L; Rao, Mahendra

    2008-11-01

    The development of personalized pluripotent stem cells for research and for possible therapies holds out great hope for patients. However, such cells will face significant technical and regulatory challenges before they can be used as therapeutic reagents. Here we consider two possible sources of personalized pluripotent stem cells: embryonic stem cells derived from nuclear transfer (NT-ESCs) and induced pluripotent stem cells (iPSCs) derived from direct reprogramming of adult somatic cells. Both sources of personalized pluripotent stem cells face unique regulatory hurdles that are in some ways significantly higher than those facing stem cells derived from embryos produced by fertilization (ESCs). However, the outstanding long-term potential of iPSCs and their relative freedom from the ethical concerns raised by both ESCs and NT-ESCs makes direct reprogramming an exceptionally promising approach to advancing research and providing therapies in the field of regenerative medicine.

  14. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment

    PubMed Central

    Lach, Michał; Richter, Magdalena; Pawlicz, Jarosław; Suchorska, Wiktoria M

    2014-01-01

    In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage. PMID:25383175

  15. Concise Review: Induced Pluripotent Stem Cells as New Model Systems in Oncology.

    PubMed

    Laplane, Lucie; Beke, Allan; Vainchenker, William; Solary, Eric

    2015-10-01

    The demonstration that pluripotent stem cells could be generated by somatic cell reprogramming led to wonder if these so-called induced pluripotent stem (iPS) cells would extend our investigation capabilities in the cancer research field. The first iPS cells derived from cancer cells have now revealed the benefits and potential pitfalls of this new model. iPS cells appear to be an innovative approach to decipher the steps of cell transformation as well as to screen the activity and toxicity of anticancer drugs. A better understanding of the impact of reprogramming on cancer cell-specific features as well as improvements in culture conditions to integrate the role of the microenvironment in their behavior may strengthen the epistemic interest of iPS cells as model systems in oncology.

  16. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  17. Large animal induced pluripotent stem cells as pre-clinical models for studying human disease

    PubMed Central

    Plews, Jordan R; Gu, Mingxia; Longaker, Michael T; Wu, Joseph C

    2012-01-01

    Abstract The derivation of human embryonic stem cells and subsequently human induced pluripotent stem cells (iPSCs) has energized regenerative medicine research and enabled seemingly limitless applications. Although small animal models, such as mouse models, have played an important role in the progression of the field, typically, they are poor representations of the human disease phenotype. As an alternative, large animal models should be explored as a potentially better approach for clinical translation of cellular therapies. However, only fragmented information regarding the derivation, characterization and clinical usefulness of pluripotent large animal cells is currently available. Here, we briefly review the latest advances regarding the derivation and use of large animal iPSCs. PMID:22212700

  18. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?

    PubMed

    de Lázaro, Irene; Yilmazer, Açelya; Kostarelos, Kostas

    2014-07-10

    The generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of defined transcription factors has provided the regenerative medicine field with a new tool for cell replacement strategies. The advantages that these pluripotent cells can offer in comparison to other sources of stem cells include the generation of patient-derived cells and the lack of embryonic tissue while maintaining a versatile differentiation potential. The promise of iPS cell derivatives for therapeutic applications is encouraging albeit very early in development, with the first clinical study currently ongoing in Japan. Many challenges are yet to be circumvented before this technology can be clinically translated widely though. The delivery and expression of the reprogramming factors, the genomic instability, epigenetic memory and impact of cell propagation in culture are only some of the concerns. This article aims to critically discuss the potential of iPS cells as a new source of cell therapeutics.

  19. Progresses and challenges in optimization of human pluripotent stem cell culture.

    PubMed

    Lin, Ge; Xu, Ren-He

    2010-09-01

    The pressing demand to elucidate the biology of human embryonic stem (ES) cells and to realize their therapeutic potential has greatly promoted the progresses in the optimization of the culture systems used for this highly promising cell type. These progresses include the characterization of exogenous regulators of pluripotency and differentiation, the development of animal-free, defined, and scalable culture systems, and some pioneering efforts to establish good manufactory practice facilities to derive and expand clinical-grade human ES cells and their derivatives. All of these advancements appear to be also applicable to the derivation and culture of human induced pluripotent stem cells, an ES cell-like cell type derived from somatic cells via reprogramming. This review attempts to summarize these progresses and discuss some of the remaining challenges.

  20. Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells

    PubMed Central

    Tanaka, Atsushi; Yuasa, Shinsuke; Node, Koichi; Fukuda, Keiichi

    2015-01-01

    The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use. PMID:26274955

  1. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.

    PubMed

    Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F

    2015-01-01

    Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin. PMID:26272139

  2. Hematopoietic differentiation of pluripotent stem cells in culture.

    PubMed

    Mills, Jason A; Paluru, Prasuna; Weiss, Mitchell J; Gadue, Paul; French, Deborah L

    2014-01-01

    This chapter describes a two-dimensional "monolayer" system for differentiating human pluripotent stem cells (PSCs) into "primitive" hematopoietic progenitor cells (HPCs) resembling those produced in vivo by the early embryonic yolk sac. This experimental system utilizes defined conditions without serum or feeder cells. Cytokines are added sequentially to stimulate the formation of mesoderm and its subsequent patterning to hematopoietic progenitors. The HPCs produced by this protocol have multi-lineage potential (erythroid, megakaryocyte, and myeloid) and can be isolated as a homogeneous population for use in standard hematopoietic studies including liquid expansion to mature lineages and colony assays. In addition, the HPCs can be cryopreserved for distribution or analysis at later times. The HPCs generated by this protocol have been used successfully to better define intrinsic variation in hematopoietic potential between different PSC lines and to model human hematopoietic diseases using patient-derived induced pluripotent stem cells. PMID:25062629

  3. Concise Review: Induced Pluripotent Stem Cells as New Model Systems in Oncology.

    PubMed

    Laplane, Lucie; Beke, Allan; Vainchenker, William; Solary, Eric

    2015-10-01

    The demonstration that pluripotent stem cells could be generated by somatic cell reprogramming led to wonder if these so-called induced pluripotent stem (iPS) cells would extend our investigation capabilities in the cancer research field. The first iPS cells derived from cancer cells have now revealed the benefits and potential pitfalls of this new model. iPS cells appear to be an innovative approach to decipher the steps of cell transformation as well as to screen the activity and toxicity of anticancer drugs. A better understanding of the impact of reprogramming on cancer cell-specific features as well as improvements in culture conditions to integrate the role of the microenvironment in their behavior may strengthen the epistemic interest of iPS cells as model systems in oncology. PMID:26179060

  4. Construction of a functional thymic microenvironment from pluripotent stem cells for the induction of central tolerance.

    PubMed

    Bredenkamp, Nicholas; Jin, Xin; Liu, Dong; O'Neill, Kathy E; Manley, Nancy R; Blackburn, Catherine Clare

    2015-01-01

    The thymus is required for generation of a self-tolerant, self-restricted T-cell repertoire. The capacity to manipulate or replace thymus function therapeutically would be beneficial in a variety of clinical settings, including for improving recovery following bone marrow transplantation, restoring immune system function in the elderly and promoting tolerance to transplanted organs or cells. An attractive strategy would be transplantation of thymus organoids generated from cells produced in vitro, for instance from pluripotent stem cells. Here, we review recent progress toward this goal, focusing on advances in directing differentiation of pluripotent stem cells to thymic epithelial cells, a key cell type of the thymic stroma, and related direct reprogramming strategies.

  5. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    SciTech Connect

    Morizane, Ryuji; Monkawa, Toshiaki; Itoh, Hiroshi

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  6. Generation of Footprint-Free Induced Pluripotent Stem Cells from Human Fibroblasts Using Episomal Plasmid Vectors.

    PubMed

    Ovchinnikov, Dmitry A; Sun, Jane; Wolvetang, Ernst J

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.

  7. The Characterisation of Pluripotent and Multipotent Stem Cells Using Fourier Transform Infrared Microspectroscopy

    PubMed Central

    Cao, Julie; Ng, Elizabeth S.; McNaughton, Donald; Stanley, Edouard G.; Elefanty, Andrew G.; Tobin, Mark J.; Heraud, Philip

    2013-01-01

    Fourier transform infrared (FTIR) microspectroscopy shows potential as a benign, objective and rapid tool to screen pluripotent and multipotent stem cells for clinical use. It offers a new experimental approach that provides a holistic measurement of macromolecular composition such that a signature representing the internal cellular phenotype is obtained. The use of this technique therefore contributes information that is complementary to that acquired by conventional genetic and immunohistochemical methods. PMID:24065090

  8. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    PubMed Central

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  9. Looking to the future following 10 years of induced pluripotent stem cell technologies.

    PubMed

    Li, Mo; Izpisua Belmonte, Juan Carlos

    2016-09-01

    The development of induced pluripotent stem cells (iPSCs) has fundamentally changed our view on developmental cell-fate determination and led to a cascade of technological innovations in regenerative medicine. Here we provide an overview of the progress in the field over the past decade, as well as our perspective on future directions and clinical implications of iPSC technology. PMID:27490631

  10. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Mei, Ying; Saha, Krishanu; Bogatyrev, Said R.; Yang, Jing; Hook, Andrew L.; Kalcioglu, Z. Ilke; Cho, Seung-Woo; Mitalipova, Maisam; Pyzocha, Neena; Rojas, Fredrick; van Vliet, Krystyn J.; Davies, Martyn C.; Alexander, Morgan R.; Langer, Robert; Jaenisch, Rudolf; Anderson, Daniel G.

    2010-09-01

    Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin αvβ3 and αvβ5 engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.

  11. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    PubMed

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

  12. The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos.

    PubMed

    McEwen, Kirsten R; Leitch, Harry G; Amouroux, Rachel; Hajkova, Petra

    2013-06-01

    Cultured pluripotent stem cells hold great promise for regenerative medicine. Considerable efforts have been invested into the refinement and definition of improved culture systems that sustain self-renewal and avoid differentiation of pluripotent cells in vitro. Recent studies have, however, found that the choice of culture condition has a significant impact on epigenetic profiles of cultured pluripotent cells. Mouse and human ESCs (embryonic stem cells) show substantial epigenetic differences that are dependent on the culture condition, including global changes to DNA methylation and histone modifications and, in female human ESCs, to the epigenetic process of X chromosome inactivation. Epigenetic perturbations have also been detected during culture of pre-implantation embryos; limited research undertaken in mouse suggests a direct effect of the in vitro environment on epigenetic processes in this system. Widespread epigenetic changes induced by the culture condition in stem cells thus emphasize the necessity for extensive research into both immediate and long-term epigenetic effects of embryo culture during assisted reproductive technologies.

  13. Generating human intestinal tissue from pluripotent stem cells in vitro.

    PubMed

    McCracken, Kyle W; Howell, Jonathan C; Wells, James M; Spence, Jason R

    2011-12-01

    Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids, pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction, the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step, 3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors, and they proliferate and expand over 1-3 months to give rise to intestinal tissue, complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date, this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro. PMID:22082986

  14. Direct generation of induced pluripotent stem cells from human nonmobilized blood.

    PubMed

    Kunisato, Atsushi; Wakatsuki, Mariko; Shinba, Haruna; Ota, Toshio; Ishida, Isao; Nagao, Kenji

    2011-01-01

    The use of induced pluripotent stem cells (iPSCs) is an exciting frontier in the study and treatment of human diseases through the generation of specific cell types. Here we show the derivation of iPSCs from human nonmobilized peripheral blood (PB) and bone marrow (BM) mononuclear cells (MNCs) by retroviral transduction of OCT3/4, SOX2, KLF4, and c-MYC. The PB- and BM-derived iPSCs were quite similar to human embryonic stem cells with regard to morphology, expression of surface antigens and pluripotency-associated transcription factors, global gene expression profiles, and differentiation potential in vitro and in vivo. Infected PB and BM MNCs gave rise to iPSCs in the presence of several cytokines, although transduction efficiencies were not high. We found that 5 × 10(5) PB MNCs, which corresponds to less than 1 mL of PB, was enough for the generation of several iPSC colonies. Generation of iPSCs from MNCs of nonmobilized PB, with its relative efficiency and ease of harvesting, could enable the therapeutic use of patient-specific pluripotent stem cells. PMID:20497033

  15. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming.

    PubMed

    Talluri, Thirumala R; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Niemann, Heiner; Kues, Wilfried A

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are a seminal breakthrough in stem cell research and are promising tools for advanced regenerative therapies in humans and reproductive biotechnology in farm animals. iPSCs are particularly valuable in species in which authentic embryonic stem cell (ESC) lines are yet not available. Here, we describe a nonviral method for the derivation of bovine iPSCs employing Sleeping Beauty (SB) and piggyBac (PB) transposon systems encoding different combinations of reprogramming factors, each separated by self-cleaving peptide sequences and driven by the chimeric CAGGS promoter. One bovine iPSC line (biPS-1) generated by a PB vector containing six reprogramming genes was analyzed in detail, including morphology, alkaline phosphatase expression, and typical hallmarks of pluripotency, such as expression of pluripotency markers and formation of mature teratomas in immunodeficient mice. Moreover, the biPS-1 line allowed a second round of SB transposon-mediated gene transfer. These results are promising for derivation of germ line-competent bovine iPSCs and will facilitate genetic modification of the bovine genome. PMID:25826726

  16. Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming

    PubMed Central

    Talluri, Thirumala R.; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Niemann, Heiner

    2015-01-01

    Abstract Induced pluripotent stem cells (iPSCs) are a seminal breakthrough in stem cell research and are promising tools for advanced regenerative therapies in humans and reproductive biotechnology in farm animals. iPSCs are particularly valuable in species in which authentic embryonic stem cell (ESC) lines are yet not available. Here, we describe a nonviral method for the derivation of bovine iPSCs employing Sleeping Beauty (SB) and piggyBac (PB) transposon systems encoding different combinations of reprogramming factors, each separated by self-cleaving peptide sequences and driven by the chimeric CAGGS promoter. One bovine iPSC line (biPS-1) generated by a PB vector containing six reprogramming genes was analyzed in detail, including morphology, alkaline phosphatase expression, and typical hallmarks of pluripotency, such as expression of pluripotency markers and formation of mature teratomas in immunodeficient mice. Moreover, the biPS-1 line allowed a second round of SB transposon-mediated gene transfer. These results are promising for derivation of germ line–competent bovine iPSCs and will facilitate genetic modification of the bovine genome. PMID:25826726

  17. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics

    PubMed Central

    Lin, Sabrina C.; Bays, Brett C.; Omaiye, Esther; Bhanu, Bir; Talbot, Prue

    2016-01-01

    There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells. PMID:26848582

  18. Nestin-expressing hair follicle-accessible pluripotent stem cells for nerve and spinal cord repair.

    PubMed

    Hoffman, Robert M

    2014-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form neurons and other nonfollicle cell types. We have shown that the nestin-expressing stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. We have termed these cells hair follicle-accessible pluripotent (HAP) stem cells. When the excised hair follicle with its nerve stump was placed in Gelfoam 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. Our results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. HAP stem cells have critical advantages over embryonic stem cells and induced pluripotent stem cells in that they are highly accessible, require no genetic manipulation, are nontumorigenic, and do not present ethical issues for regenerative medicine.

  19. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics.

    PubMed

    Zahedi, Atena; On, Vincent; Lin, Sabrina C; Bays, Brett C; Omaiye, Esther; Bhanu, Bir; Talbot, Prue

    2016-01-01

    There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells.

  20. Evaluating Cell Processes, Quality, and Biomarkers in Pluripotent Stem Cells Using Video Bioinformatics.

    PubMed

    Zahedi, Atena; On, Vincent; Lin, Sabrina C; Bays, Brett C; Omaiye, Esther; Bhanu, Bir; Talbot, Prue

    2016-01-01

    There is a foundational need for quality control tools in stem cell laboratories engaged in basic research, regenerative therapies, and toxicological studies. These tools require automated methods for evaluating cell processes and quality during in vitro passaging, expansion, maintenance, and differentiation. In this paper, an unbiased, automated high-content profiling toolkit, StemCellQC, is presented that non-invasively extracts information on cell quality and cellular processes from time-lapse phase-contrast videos. Twenty four (24) morphological and dynamic features were analyzed in healthy, unhealthy, and dying human embryonic stem cell (hESC) colonies to identify those features that were affected in each group. Multiple features differed in the healthy versus unhealthy/dying groups, and these features were linked to growth, motility, and death. Biomarkers were discovered that predicted cell processes before they were detectable by manual observation. StemCellQC distinguished healthy and unhealthy/dying hESC colonies with 96% accuracy by non-invasively measuring and tracking dynamic and morphological features over 48 hours. Changes in cellular processes can be monitored by StemCellQC and predictions can be made about the quality of pluripotent stem cell colonies. This toolkit reduced the time and resources required to track multiple pluripotent stem cell colonies and eliminated handling errors and false classifications due to human bias. StemCellQC provided both user-specified and classifier-determined analysis in cases where the affected features are not intuitive or anticipated. Video analysis algorithms allowed assessment of biological phenomena using automatic detection analysis, which can aid facilities where maintaining stem cell quality and/or monitoring changes in cellular processes are essential. In the future StemCellQC can be expanded to include other features, cell types, treatments, and differentiating cells. PMID:26848582

  1. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    PubMed Central

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir

    2013-01-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions. PMID:24113065

  2. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    PubMed

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  3. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation.

    PubMed

    Bratt-Leal, Andrés M; Carpenedo, Richard L; Ungrin, Mark D; Zandstra, Peter W; McDevitt, Todd C

    2011-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  4. [Generation of functional organs from pluripotent stem cells].

    PubMed

    Miyamoto, Tatsuyuki; Nakauchi, Hiromitsu

    2015-10-01

    Hematopoietic stem cells (HSCs) have played a major role in stem cell biology, providing many conceptual ideas and models. Among them is the concept of the "niche", a special bone-marrow microenvironment that by exchanging cues regulates stem-cell fate. The HSC niche also plays an important role in HSC transplantation. Successful engraftment of donor HSCs depends on myeloablative pretreatment to empty the niche. The concept of the stem-cell niche has now been extended to the generation of organs. We postulated that an empty "organ niche" exists in a developing animal when development of an organ is genetically disabled. This organ niche should be developmentally compensated by blastocyst complementation using wild-type primary stem cells (PSCs). We proved the principle of organogenesis from xenogeneic PSCs in an embryo unable to form a specific organ, demonstrating the generation of functionally normal rat pancreas by injecting rat PSCs into pancreatogenesis-disabled mouse embryos. This principle has held in pigs. When pancreatogenesis-disabled pig embryos underwent complementation with blastomeres from wild-type pig embryos to produce chimeric pigs, the chimeras had normal pancreata and survived to adulthood. Demonstration of the generation of a functional organ from PSCs in pigs is a very important step toward generation of human cells, tissues, and organs from individual patients' own PSCs in large animals. PMID:26458462

  5. The state of the art for pluripotent stem cells derivation in domestic ungulates.

    PubMed

    Malaver-Ortega, Luis Fernando; Sumer, Huseyin; Liu, Jun; Verma, Paul J

    2012-11-01

    Since the successful isolation, characterization and long-term culture of embryonic stem cells (ESCs) from mice in the early 1980s and from humans a decade later, considerable effort has been made to establish ESCs lines from livestock. The derivation of validated ESCs lines is a necessary step if the generation of economically relevant transgenic animals is to be achieved. However, this is still elusive, as the isolation of true ESCs lines for livestock has not been accomplished to date. It has been demonstrated that by forced expression of a defined set of transcription factors, it is possible to reprogram somatic cells to cells that closely resemble an ES-like state. These cells were termed induced pluripotent stem cells (iPSCs). We introduce the basic concepts relating to stem cell biology and give an overview of the various attempts to isolate and generate pluripotent stem cells (PSCs) from species relevant to livestock production. Further, we point out the issues to be addressed and hurdles to be overcome to realize the promise of stem cells in agriculture.

  6. Thinking outside the liver: induced pluripotent stem cells for hepatic applications.

    PubMed

    Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D

    2013-06-14

    The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.

  7. Induction of pluripotency in human umbilical cord mesenchymal stem cells in feeder layer-free condition.

    PubMed

    Daneshvar, Nasibeh; Rasedee, Abdullah; Shamsabadi, Fatemeh Tash; Moeini, Hassan; Mehrboud, Parvaneh; Rahman, Heshu Sulaiman; Boroojerdi, Mohadeseh Hashem; Vellasamy, Shalini

    2015-12-01

    Induced Pluripotent Stem Cells (iPSCs) has been produced by the reprogramming of several types of somatic cells through the expression of different sets of tra