Science.gov

Sample records for adult primary brain

  1. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  2. Analgesic use and the risk of primary adult brain tumor.

    PubMed

    Egan, Kathleen M; Nabors, Louis B; Thompson, Zachary J; Rozmeski, Carrie M; Anic, Gabriella A; Olson, Jeffrey J; LaRocca, Renato V; Chowdhary, Sajeel A; Forsyth, Peter A; Thompson, Reid C

    2016-09-01

    Glioma and meningioma are uncommon tumors of the brain with few known risk factors. Regular use of aspirin has been linked to a lower risk of gastrointestinal and other cancers, though evidence for an association with brain tumors is mixed. We examined the association of aspirin and other analgesics with the risk of glioma and meningioma in a large US case-control study. Cases were persons recently diagnosed with glioma or meningioma and treated at medical centers in the southeastern US. Controls were persons sampled from the same communities as the cases combined with friends and other associates of the cases. Information on past use of analgesics (aspirin, other anti-inflammatory agents, and acetaminophen) was collected in structured interviews. Logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for analgesic use adjusted for potential confounders. All associations were considered according to indication for use. A total of 1123 glioma cases, 310 meningioma cases and 1296 controls were included in the analysis. For indications other than headache, glioma cases were less likely than controls to report regular use of aspirin (OR 0.69; CI 0.56, 0.87), in a dose-dependent manner (P trend < 0.001). No significant associations were observed with other analgesics for glioma, or any class of pain reliever for meningioma. Results suggest that regular aspirin use may reduce incidence of glioma. PMID:26894804

  3. Occupational and environmental risk factors of adult primary brain cancers: a systematic review.

    PubMed

    Gomes, J; Al Zayadi, A; Guzman, A

    2011-04-01

    The incidence of brain neoplasm has been progressively increasing in recent years in the industrialized countries. One of the reasons for this increased incidence could be better access to health care and improved diagnosis in the industrialized countries. It also appears that Caucasians have a higher incidence than blacks or Hispanics or Asians. A number of risk factors have been identified and described including the genetic, ethnic and age-based factors. Certain occupational and environmental factors are also believed to influence the risk of primary adult brain tumors. Potential occupational and environmental factors include exposure to diagnostic and therapeutic radiations, electromagnetic radiation from cellular phones and other wireless devices, infectious agents, air pollution and residence near landfills and high-voltage power lines and jobs as firefighters, farmers, physician, chemists and jobs in industries such as petrochemical, power generation, synthetic rubber manufacturing, agricultural chemicals manufacturing. The purpose of this systematic review is to examine occupational and environmental risk factors of brain neoplasm. A range of occupational and environmental exposures are evaluated for significance of their relationship with adult primary brain tumors. On the basis of this review we suggest a concurrent evaluation of multiple risk factors both within and beyond occupational and environmental domains. The concurrent approach needs to consider better exposure assessment techniques, lifetime occupational exposures, genotypic and phenotypic characteristics and lifestyle and dietary habits. This approach needs to be interdisciplinary with contributions from neurologists, oncologists, epidemiologists and molecular biologists. Conclusive evidence that has eluded multitude of studies with single focus and single exposure needs to multifaceted and multidisciplinary. PMID:23022824

  4. Systematic Review of Interventions to Improve the Provision of Information for Adults with Primary Brain Tumors and Their Caregivers

    PubMed Central

    Langbecker, Danette; Janda, Monika

    2014-01-01

    Background: Adults with primary brain tumors and their caregivers have significant information needs. This review assessed the effect of interventions to improve information provision for adult primary brain tumor patients and/or their caregivers. Methods: We included randomized or non-randomized trials testing educational interventions that had outcomes of information provision, knowledge, understanding, recall, or satisfaction with the intervention, for adults diagnosed with primary brain tumors and/or their family or caregivers. PubMed, MEDLINE, EMBASE, and Cochrane Reviews databases were searched for studies published between 1980 and June 2014. Results: Two randomized controlled, 1 non-randomized controlled, and 10 single group pre–post trials enrolled more than 411 participants. Five group, four practice/process change, and four individual interventions assessed satisfaction (12 studies), knowledge (4 studies), and information provision (2 studies). Nine studies reported high rates of satisfaction. Three studies showed statistically significant improvements over time in knowledge and two showed greater information was provided to intervention than control group participants, although statistical testing was not performed. Discussion: The trials assessed intermediate outcomes such as satisfaction, and only 4/13 reported on knowledge improvements. Few trials had a randomized controlled design and risk of bias was either evident or could not be assessed in most domains. PMID:25667919

  5. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  6. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. Patients who have a weakened immune system are at high risk of primary lymphoma of the ...

  7. Brain tumor - primary - adults

    MedlinePlus

    ... are best treated by a team that includes: Neuro-oncologist Neurosurgeon Medical oncologist Radiation oncologist Other health ... pdq . Accessed January 18, 2016. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): ...

  8. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  9. Brain size and limits to adult neurogenesis.

    PubMed

    Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo

    2016-02-15

    The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added. PMID:26417888

  10. General Information about Adult Primary Liver Cancer

    MedlinePlus

    ... Primary Liver Cancer Treatment (PDQ®)–Patient Version General Information About Adult Primary Liver Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  11. Primary Neuroendocrine Tumor in Brain

    PubMed Central

    Tamura, Ryota; Kuroshima, Yoshiaki; Nakamura, Yoshiki

    2014-01-01

    The incidence of brain metastases for neuroendocrine tumor (NET) is reportedly 1.5~5%, and the origin is usually pulmonary. A 77-year-old man presented to our hospital with headache and disturbance of specific skilled motor activities. Computed tomography (CT) showed a massive neoplastic lesion originating in the left temporal and parietal lobes that caused a mass edematous effect. Grossly, total resection of the tumor was achieved. Histological examination revealed much nuclear atypia and mitotic figures. Staining for CD56, chromogranin A, and synaptophysin was positive, indicating NET. The MIB-1 index was 37%. Histopathologically, the tumor was diagnosed as NET. After surgery, gastroscopy and colonoscopy were performed, but the origin was not seen. After discharge, CT and FDG-PET (fluoro-2-deoxy-d-glucose positron emission tomography) were performed every 3 months. Two years later we have not determined the origin of the tumor. It is possible that the brain is the primary site of this NET. To our knowledge, this is the first reported case of this phenomenon. PMID:25506006

  12. MR Imaging Evaluation of Intracerebral Hemorrhages and T2 Hyperintense White Matter Lesions Appearing after Radiation Therapy in Adult Patients with Primary Brain Tumors

    PubMed Central

    Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Park, Chul-Kee; Kim, Il Han; Choi, Seung Hong

    2015-01-01

    The purpose of our study was to determine the frequency and severity of intracerebral hemorrhages and T2 hyperintense white matter lesions (WMLs) following radiation therapy for brain tumors in adult patients. Of 648 adult brain tumor patients who received radiation therapy at our institute, magnetic resonance (MR) image data consisting of a gradient echo (GRE) and FLAIR T2-weighted image were available three and five years after radiation therapy in 81 patients. Intracerebral hemorrhage was defined as a hypointense dot lesion appearing on GRE images after radiation therapy. The number and size of the lesions were evaluated. The T2 hyperintense WMLs observed on the FLAIR sequences were graded according to the extent of the lesion. Intracerebral hemorrhage was detected in 21 (25.9%) and 35 (43.2) patients in the three- and five-year follow-up images, respectively. The number of intracerebral hemorrhages per patient tended to increase as the follow-up period increased, whereas the size of the intracerebral hemorrhages exhibited little variation over the course of follow-up. T2 hyperintense WMLs were observed in 27 (33.3%) and 32 (39.5) patients in the three and five year follow-up images, respectively. The age at the time of radiation therapy was significantly higher (p < 0.001) in the patients with T2 hyperintense WMLs than in those without lesions. Intracerebral hemorrhages are not uncommon in adult brain tumor patients undergoing radiation therapy. The incidence and number of intracerebral hemorrhages increased over the course of follow-up. T2 hyperintense WMLs were observed in more than one-third of the study population. PMID:26322780

  13. Primary phospholipase C and brain disorders.

    PubMed

    Yang, Yong Ryoul; Kang, Du-Seock; Lee, Cheol; Seok, Heon; Follo, Matilde Y; Cocco, Lucio; Suh, Pann-Ghill

    2016-05-01

    In the brain, the primary phospholipase C (PLC) proteins, PLCβ, and PLCγ, are activated primarily by neurotransmitters, neurotrophic factors, and hormones through G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Among the primary PLC isozymes, PLCβ1, PLCβ4, and PLCγ1 are highly expressed and differentially distributed, suggesting a specific role for each PLC subtype in different regions of the brain. Primary PLCs control neuronal activity, which is important for synapse function and development. In addition, dysregulation of primary PLC signaling is linked to several brain disorders including epilepsy, schizophrenia, bipolar disorder, Huntington's disease, depression and Alzheimer's disease. In this review, we included current knowledge regarding the roles of primary PLC isozymes in brain disorders. PMID:26639088

  14. Development and evaluation of information resources for patients, families, and healthcare providers addressing behavioral and cognitive sequelae among adults with a primary brain tumor.

    PubMed

    Wright, Kylie M; Simpson, Grahame K; Koh, Eng-Siew; Whiting, Diane L; Gillett, Lauren; Simpson, Teresa; Firth, Rochelle

    2015-06-01

    Behavioral and cognitive changes in patients with primary brain tumor (PBT) are common and may be distressing to patients and their family members. Healthcare professionals report a strong need for information, practical strategies, and training to assist consumers and better address management issues. A literature review by the current project found that 53% of the information resources currently available to consumers and health professionals contained minimal or no information about cognitive/behavioral changes after PBT, and 71% of the resources contained minimal or no information on associated strategies to manage these changes. This project aimed to develop an information resource for patients, carers, and health professionals addressing the behavioral and cognitive sequelae of PBT, including strategies to minimize the disabling impact of such behaviors. In consultation with staff and patient groups, 16 key information topics were identified covering cognitive and communication changes and challenging behaviors including executive impairment, behavioral disturbance, and social/emotional dysfunction. Sixteen fact sheets and 11 additional resource sheets were developed and evaluated according to established consumer communication guidelines. Preliminary data show that these resources have been positively received and well utilized. These sheets are the first of their kind addressing challenging behaviors in the neuro-oncology patient group and are a practical and useful information resource for health professionals working with these patients and their families. The new resource assists in reinforcing interventions provided to individual patients and their relatives who are experiencing difficulties in managing challenging behaviors after PBT. PMID:25827649

  15. Neural repair in the adult brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  16. Computed tomographic features of primary brain lymphoma.

    PubMed

    Barsky, M F; Coates, R K; Macdonald, D R

    1989-04-01

    Head computed tomographic (CT) examinations of 14 patients with primary brain lymphoma were reviewed to assess the CT features of the presenting and subsequent lesions. Presenting lesions were single in 62% and multiple in 38%. Lesions tended to be iso- or hyperdense and homogeneously enhancing. They were commonly located in the deep hemispheric regions, corpus callosum, and posterior fossa. Despite these characteristic patterns, the diagnosis of lymphoma was initially considered in just three patients. Follow-up CT showed good initial response to radiotherapy in 10 patients although mortality was high and posttherapy changes were frequent. Consideration of primary brain lymphoma by radiologists is important, as needle biopsy and radiotherapy may be preferred to a surgical resection. PMID:2702505

  17. Primary care of adults with developmental disabilities

    PubMed Central

    Sullivan, William F.; Berg, Joseph M.; Bradley, Elspeth; Cheetham, Tom; Denton, Richard; Heng, John; Hennen, Brian; Joyce, David; Kelly, Maureen; Korossy, Marika; Lunsky, Yona; McMillan, Shirley

    2011-01-01

    Abstract Objective To update the 2006 Canadian guidelines for primary care of adults with developmental disabilities (DD) and to make practical recommendations based on current knowledge to address the particular health issues of adults with DD. Quality of evidence Knowledgeable health care providers participating in a colloquium and a subsequent working group discussed and agreed on revisions to the 2006 guidelines based on a comprehensive review of publications, feedback gained from users of the guidelines, and personal clinical experiences. Most of the available evidence in this area of care is from expert opinion or published consensus statements (level III). Main message Adults with DD have complex health issues, many of them differing from those of the general population. Good primary care identifies the particular health issues faced by adults with DD to improve their quality of life, to improve their access to health care, and to prevent suffering, morbidity, and premature death. These guidelines synthesize general, physical, behavioural, and mental health issues of adults with DD that primary care providers should be aware of, and they present recommendations for screening and management based on current knowledge that practitioners can apply. Because of interacting biologic, psychoaffective, and social factors that contribute to the health and well-being of adults with DD, these guidelines emphasize involving caregivers, adapting procedures when appropriate, and seeking input from a range of health professionals when available. Ethical care is also emphasized. The guidelines are formulated within an ethical framework that pays attention to issues such as informed consent and the assessment of health benefits in relation to risks of harm. Conclusion Implementation of the guidelines proposed here would improve the health of adults with DD and would minimize disparities in health and health care between adults with DD and those in the general population

  18. Life Satisfaction in Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Crom, Deborah B.; Li, Zhenghong; Brinkman, Tara M.; Hudson, Melissa M.; Armstrong, Gregory T.; Neglia, Joseph; Ness, Kirsten K.

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, life-long deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors’ physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggests some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population–based matched controls. Chi-square tests, t-tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors’ general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. PMID:25027187

  19. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  20. Electrophysiological recording in the brain of intact adult zebrafish.

    PubMed

    Johnston, Lindsey; Ball, Rebecca E; Acuff, Seth; Gaudet, John; Sornborger, Andrew; Lauderdale, James D

    2013-01-01

    Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages. PMID:24300281

  1. [Chemotherapy for brain tumors in adult patients].

    PubMed

    Weller, M

    2008-02-01

    Chemotherapy has become a third major treatment option for patients with brain tumors, in addition to surgery and radiotherapy. The role of chemotherapy in the treatment of gliomas is no longer limited to recurrent disease. Temozolomide has become the standard of care in newly diagnosed glioblastoma. Several ongoing trials seek to define the role of chemotherapy in the primary care of other gliomas. Some of these studies are no longer only based on histological diagnoses, but take into consideration molecular markers such as MGMT promoter methylation and loss of genetic material on chromosomal arms 1p and 19q. Outside such clinical trials chemotherapy is used in addition to radiotherapy, e.g., in anaplastic astrocytoma, medulloblastoma or germ cell tumors, or as an alternative to radiotherapy, e.g., in anaplastic oligodendroglial tumors or low-grade gliomas. In contrast, there is no established role for chemotherapy in other tumors such as ependymomas, meningiomas or neurinomas. Primary cerebral lymphomas are probably the only brain tumors which can be cured by chemotherapy alone and only by chemotherapy. The chemotherapy of brain metastases follows the recommendations for the respective primary tumors. Further, strategies of combined radiochemotherapy using mainly temozolomide or topotecan are currently explored. Leptomeningeal metastases are treated by radiotherapy or systemic or intrathecal chemotherapy depending on their pattern of growth. PMID:18253773

  2. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  3. Morphological brain network assessed using graph theory and network filtration in deaf adults.

    PubMed

    Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Hyo-Jeong; Suh, Myung-Whan; Song, Jae-Jin; Oh, Seung-Ha; Lee, Dong Soo

    2014-09-01

    Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based on graph theory and network filtration based on persistent homology were examined. Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults. Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech

  4. Guidelines for Better Communication with Brain Impaired Adults

    MedlinePlus

    ... A You are here Home Guidelines for Better Communication with Brain Impaired Adults Printer-friendly version Communicating ... easy solutions, following some basic guidelines should ease communication, and lower levels of stress both for you ...

  5. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol

    ERIC Educational Resources Information Center

    Coles, Claire D.; Goldstein, Felicia C.; Lynch, Mary Ellen; Chen, Xiangchuan; Kable, Julie A.; Johnson, Katrina C.; Hu, Xiaoping

    2011-01-01

    The impact of prenatal alcohol exposure on memory and brain development was investigated in 92 African-American, young adults who were first identified in the prenatal period. Three groups (Control, n = 26; Alcohol-related Neurodevelopmental Disorder, n = 36; and Dysmorphic, n = 30) were imaged using structural MRI with brain volume calculated for…

  6. Analysis of primary cilia in the developing mouse brain.

    PubMed

    Paridaen, Judith T M L; Huttner, Wieland B; Wilsch-Bräuninger, Michaela

    2015-01-01

    Stem and progenitor cells in the developing mammalian brain are highly polarized cells that carry a primary cilium protruding into the brain ventricles. Here, cilia detect signals present in the cerebrospinal fluid that fills the ventricles. Recently, striking observations have been made regarding the dynamics of primary cilia in mitosis and cilium reformation after cell division. In neural progenitors, primary cilia are not completely disassembled during cell division, and some ciliary membrane remnant can be inherited by one daughter cell that tends to maintain a progenitor fate. Furthermore, newborn differentiating cells grow a primary cilium on their basolateral plasma membrane, in spite of them possessing apical membrane and adherens junctions, and thus change the environment to which the primary cilium is exposed. These phenomena are proposed to be involved in cell fate determination and delamination of daughter cells in conjunction with the production of neurons. Here, we describe several methods that can be used to study the structure, localization, and dynamics of primary cilia in the developing mouse brain; these include time-lapse imaging of live mouse embryonic brain tissues, and analysis of primary cilia structure and localization using correlative light- and electron- and serial-block-face scanning electron microscopy. PMID:25837388

  7. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  8. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  9. Can deceased donor with recurrent primary brain tumor donate kidneys for transplantation?

    PubMed Central

    Kumar, Suresh; Modi, Pranjal R.; Pal, Bipin C.; Modi, Jayesh

    2016-01-01

    Kidney transplantation from deceased donors is in its infancy in India. Cadaver organ donation was accepted legally in 1994 by the “Human Organs Transplantation Act.” Marginal donors are now accepted by many centers for kidney transplantation. We report a case of procurement of both kidneys from a young deceased donor having recurrent primary brain tumor, transplanted into two adult recipients with successful outcome. PMID:26941500

  10. Can deceased donor with recurrent primary brain tumor donate kidneys for transplantation?

    PubMed

    Kumar, Suresh; Modi, Pranjal R; Pal, Bipin C; Modi, Jayesh

    2016-01-01

    Kidney transplantation from deceased donors is in its infancy in India. Cadaver organ donation was accepted legally in 1994 by the "Human Organs Transplantation Act." Marginal donors are now accepted by many centers for kidney transplantation. We report a case of procurement of both kidneys from a young deceased donor having recurrent primary brain tumor, transplanted into two adult recipients with successful outcome. PMID:26941500

  11. New Nerve Cells for the Adult Brain.

    ERIC Educational Resources Information Center

    Kempermann, Gerd; Gage, Fred H.

    1999-01-01

    Contrary to dogma, the human brain does produce new nerve cells in adulthood. The mature human brain spawns neurons routinely in the hippocampus, an area important to memory and learning. This research can make it possible to ease any number of disorders involving neurological damage and death. (CCM)

  12. Substance use and brain reward mechanisms in older adults.

    PubMed

    Snyder, Marsha; Platt, Lois

    2013-07-01

    Substance use among older adults is on the rise, with statistics indicating this to be a growing health problem. Brain changes in the reward center of the brain that naturally occur with aging are offered as one source of these statistics. Aging is generally associated with increased prevalence of chronic disease, disability, and death, and therefore a public health goal for older adults is to maintain health, independence, and function. Psychiatric-mental health nurses are uniquely positioned to assist older adults in achievement of these goals through health assessment and promotion. The use of client-centered counseling approaches that recognize the older adult's developmental need for autonomy and choice in decision making have been shown to be effective in increasing motivation in this adult population. PMID:23758223

  13. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  14. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  15. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-01

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. PMID:21664231

  16. What primary microcephaly can tell us about brain growth.

    PubMed

    Cox, James; Jackson, Andrew P; Bond, Jacquelyn; Woods, Christopher G

    2006-08-01

    Autosomal recessive primary microcephaly (MCPH) is a neuro-developmental disorder that causes a great reduction in brain growth in utero. MCPH is hypothesized to be a primary disorder of neurogenic mitosis, leading to reduced neuron number. Hence, MCPH proteins are likely to be important components of cellular pathways regulating human brain size. At least six genes can cause this disorder and four of these have recently been identified: autosomal recessive primary microcephaly 1 (MCPH1), abnormal spindle-like, microcephaly associated (ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) and centromere protein J (CENPJ). Whereas aberration of ASPM is the most common cause of MCPH, MCPH1 patients can be more readily diagnosed by the finding of increased numbers of "prophase-like cells" on routine cytogenetic investigation. Three MCPH proteins are centrosomal components but have apparently diverse roles that affect mitosis. There is accumulating evidence that evolutionary changes to the MCPH genes have contributed to the large brain size seen in primates, particularly humans. The aim of this article is to review what has been learnt about the rare condition primary microcephaly and the information this provides about normal brain growth. PMID:16829198

  17. A brain sexual dimorphism controlled by adult circulating androgens.

    PubMed

    Cooke, B M; Tabibnia, G; Breedlove, S M

    1999-06-22

    Reports of structural differences between the brains of men and women, heterosexual and homosexual men, and male-to-female transsexuals and other men have been offered as evidence that the behavioral differences between these groups are likely caused by differences in the early development of the brain. However, a possible confounding variable is the concentration of circulating hormones seen in these groups in adulthood. Evaluation of this possibility hinges on the extent to which circulating hormones can alter the size of mammalian brain regions as revealed by Nissl stains. We now report a sexual dimorphism in the volume of a brain nucleus in rats that can be completely accounted for by adult sex differences in circulating androgen. The posterodorsal nucleus of the medial amygdala (MePD) has a greater volume in male rats than in females, but adult castration of males causes the volume to shrink to female values within four weeks, whereas androgen treatment of adult females for that period enlarges the MePD to levels equivalent to normal males. This report demonstrates that adult hormone manipulations can completely reverse a sexual dimorphism in brain regional volume in a mammalian species. The sex difference and androgen responsiveness of MePD volume is reflected in the soma size of neurons there. PMID:10377450

  18. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  19. Inflammation is detrimental for neurogenesis in adult brain

    NASA Astrophysics Data System (ADS)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  20. Treatment of Adult Primary Alveolar Proteinosis.

    PubMed

    Rodríguez Portal, José Antonio

    2015-07-01

    Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the accumulation of surfactant-like lipoproteinaceous material in the distal air spaces and terminal bronchi, which may lead to impaired gas exchange. This accumulation of surfactant is due to decreased clearance by the alveolar macrophages. Its primary, most common form, is currently considered an autoimmune disease. Better knowledge of the causes of PAP have led to the emergence of alternatives to whole lung lavage, although this is still considered the treatment of choice. Most studies are case series, often with limited patient numbers, so the level of evidence is low. Since the severity of presentation and clinical course are variable, not all patients will require treatment. Due to the low level of evidence, some objective criteria based on expert opinion have been arbitrarily proposed in an attempt to define in which patients it is best to initiate treatment. PMID:25896950

  1. Signaling the Unfolded Protein Response in primary brain cancers.

    PubMed

    Le Reste, Pierre-Jean; Avril, Tony; Quillien, Véronique; Morandi, Xavier; Chevet, Eric

    2016-07-01

    The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. PMID:27016056

  2. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  3. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. PMID:26683083

  4. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  5. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  6. Outpatient Treatment of Primary Anorexia Nervosa in Adult Males.

    ERIC Educational Resources Information Center

    Ziesat, Harold A., Jr.; Ferguson, James M.

    1984-01-01

    Describes three cases of adult-onset primary anorexia nervosa in males. For each case, the history and diagnostic patterns are considered, followed by a discussion of the course of outpatient treatment. The therapy was multimodal and included elements of behavioral contingency management, cognitive therapy, and dynamic psychotherapy. (JAC)

  7. Radiosurgery for Brain Metastases From Unknown Primary Cancers

    SciTech Connect

    Niranjan, Ajay; Kano, Hideyuki; Khan, Aftab; Kim, In-Young; Kondziolka, Douglas; Flickinger, John C.; Lunsford, L. Dade

    2010-08-01

    Purpose: We evaluated the role of Gamma Knife stereotactic radiosurgery in the multidisciplinary management of brain metastases from an undiagnosed primary cancer. Methods and Materials: Twenty-nine patients who had solitary or multiple brain metastases without a detectable primary site underwent stereotactic radiosurgery between January 1990 and March 2007 at the University of Pittsburgh. The median patient age was 61.7 years (range, 37.9-78.7 years). The median target volume was 1.0 cc (range, 0.02-23.6 cc), and the median margin radiosurgical dose was 16 Gy (range, 20-70 Gy). Results: After radiosurgery, the local tumor control rate was 88.5%. Twenty four patients died and 5 patients were living at the time of this analysis. The overall median survival was 12 months. Actuarial survival rates from stereotactic radiosurgery at 1 and 2 years were 57.2% and 36.8%, respectively. Factors associated with poor progression-free survival included large tumor volume (3 cc or more) and brainstem tumor location. Conclusions: Radiosurgery is an effective and safe minimally invasive option for patients with brain metastases from an unknown primary site.

  8. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-06-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than {approximately}0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model.

  9. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  10. Immunological regulation of neurogenic niches in the adult brain

    PubMed Central

    Gonzalez-Perez, Oscar; Gutierrez-Fernandez, Fernando; Lopez-Virgen, Veronica; Collas-Aguilar, Jorge; Quinones-Hinojosa, Alfredo; Garcia-Verdugo, Jose M.

    2012-01-01

    In mammals, neurogenesis and oligodendrogenesis are germinal processes that occur in the adult brain throughout life. The subventricular (SVZ) and subgranular (SGZ) zones are the main neurogenic regions in adult brain. Therein, it resides a subpopulation of astrocytes that act as neural stem cells. Increasing evidence indicates that pro-inflammatory and other immunological mediators are important regulators of neural precursors into the SVZ and the SGZ. There are a number of inflammatory cytokines that regulate the function of neural stem cells. Some of the most studied include: interleukin-1, interleukin-6, tumor necrosis factor-alpha, insulin-like growth factor-1, growth-regulated oncogene-alpha, leukemia inhibitory factor, cardiotrophin-1, ciliary neurotrophic factor, interferon-gamma, monocyte chemotactic protein-1 and macrophage inflammatory protein-1alpha. This plethora of immunological mediators can control the migration, proliferation, quiescence, cell-fate choices and survival of neural stem cells and their progeny. Thus, systemic or local inflammatory processes represent important regulators of germinal niches in the adult brain. In this review, we summarized the current evidence regarding the effects of pro-inflammatory cytokines involved in the regulation of adult neural stem cells under in vitro and in vivo conditions. Additionally, we described the role of proinflammatory cytokines in neurodegenerative diseases and some therapeutical approaches for the immunomodulation of neural progenitor cells. PMID:22986164

  11. Isolation and culture of neurospheres from the adult newt brain.

    PubMed

    Hameed, Liyakath Ali Shahul; Simon, András

    2015-01-01

    Neural stem cells (NSCs) give rise to neurons in the adult brain and are possible targets in regenerative therapies. In vitro cultures of NSCs as neurospheres have been established from cells isolated from diverse species. Newts are exceptional regenerators among vertebrates. These animals are able to efficiently replace neurons following ablation of those by activation and subsequent differentiation of NSCs. Here we describe the method for isolating and culturing of NSCs from the newt brain both during self-renewing and differentiating conditions. Newt NSC culture provides a useful tool for functional studies of NSC fate with the potential of resulting in novel regenerative strategies. PMID:25740488

  12. Primary care for adults on the autism spectrum.

    PubMed

    Nicolaidis, Christina; Kripke, Clarissa Calliope; Raymaker, Dora

    2014-09-01

    Autism spectrum disorder (ASD) is defined by differences in social communication and restricted, repetitive patterns of behavior, interests, or activities. Skills and challenges can change depending on environmental stimuli, supports, and stressors. Quality of life can be improved by the use of accommodations, assistive technologies, therapies to improve adaptive function or communication, caregiver training, acceptance, access, and inclusion. This article focuses on the identification of ASD in adults, referrals for services, the recognition of associated conditions, strategies and accommodations to facilitate effective primary care services, and ethical issues related to caring for autistic adults. PMID:25134878

  13. Higher brain functions served by the lowly rodent primary visual cortex

    PubMed Central

    Gavornik, Jeffrey P.

    2014-01-01

    It has been more than 50 years since the first description of ocular dominance plasticity—the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain as a potential substrate for learning and memory. The pace of discovery has quickened considerably in recent years as mice have become the preferred species to study visual cortical plasticity, and new studies have overturned the dogma that primary sensory cortex is immutable after a developmental critical period. Recent work has shown that, in addition to ocular dominance plasticity, adult visual cortex exhibits several forms of response modification previously considered the exclusive province of higher cortical areas. These “higher brain functions” include neural reports of stimulus familiarity, reward-timing prediction, and spatiotemporal sequence learning. Primary visual cortex can no longer be viewed as a simple visual feature detector with static properties determined during early development. Rodent V1 is a rich and dynamic cortical area in which functions normally associated only with “higher” brain regions can be studied at the mechanistic level. PMID:25225298

  14. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    NASA Astrophysics Data System (ADS)

    Luther, Eva M.; Koehler, Yvonne; Diendorf, Joerg; Epple, Matthias; Dringen, Ralf

    2011-09-01

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO3 already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 °C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 °C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  15. Primary familial brain calcification: update on molecular genetics.

    PubMed

    Taglia, Ilaria; Bonifati, Vincenzo; Mignarri, Andrea; Dotti, Maria Teresa; Federico, Antonio

    2015-05-01

    Primary familial brain calcification is a neuropsychiatric disorder with calcium deposits in the brain, especially in basal ganglia, cerebellum and subcortical white matter. The disease is characterized by a clinical heterogeneity, with a various combination of symptoms that include movement disorders and psychiatric disturbances; asymptomatic patients have been also reported. To date, three causative genes have been found: SLC20A2, PDGFRB and PDGFB. SLC20A2 gene codes for the 'sodium-dependent phosphate transporter 2' (PiT-2), a cell membrane transporters of inorganic phosphate, involved in Pi uptake by cells and maintenance of Pi body levels. Over 40 pathogenic variants of SLC20A2 have been reported, affecting the regulation of Pi homeostasis. It was hypothesized that SLC20A2 mutations cause brain calcification most likely through haploinsufficiency. PDGFRB encodes for the platelet-derived growth factor receptor-β (PDGFRβ), a cell-surface tyrosine-kinase (RTK) receptor that regulates cell proliferation, migration, survival and differentiation. PDGFB encodes for the 'platelet-derived growth factor beta' (PDGFβ), the ligand of PDGFRβ. The loss of function of PDGFRβ and PDGFβ could lead to the impairment of the pericytes function and blood brain barrier integrity, causing vascular and perivascular calcium accumulation. SLC20A2 accounts for about 40 % of familial form and 14 % of sporadic cases, while PDGFRB and PDGFB mutations are likely rare. However, approximately 50 % of patients are not genetically defined and there should be at least another causative gene. PMID:25686613

  16. Exploration and visualization of connectivity in the adult mouse brain.

    PubMed

    Feng, David; Lau, Chris; Ng, Lydia; Li, Yang; Kuan, Leonard; Sunkin, Susan M; Dang, Chinh; Hawrylycz, Michael

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. All data were aligned to a common template in 3D space to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. A suite of computational tools were developed to search and visualize the projection labeling experiments, available at http://connectivity.brain-map.org. We present three use cases illustrating how these publicly-available tools can be used to perform analyses of long range brain region connectivity. The use cases make extensive use of advanced visualization tools integrated with the atlas including projection density histograms, 3D computed anterograde and retrograde projection paths, and multi-specimen projection composites. These tools offer convenient access to detailed axonal projection information in the adult mouse brain and the ability to perform data analysis and visualization of projection fields and neuroanatomy in an integrated manner. PMID:25637033

  17. The role of integrins in primary and secondary brain tumors.

    PubMed

    Schittenhelm, Jens; Tabatabai, Ghazaleh; Sipos, Bence

    2016-10-01

    The tumor environment plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Integrins, a family of cell surface receptors, bridge the extracellular matrix to the intracellular cytoskeleton. Since their first characterization 25 years ago, a vast amount of work has been performed to understand the essential role of integrins in cell development, tissue organization, tumor growth, vessel development and their signaling mechanisms. Their potential as therapeutic targets in various types of cancer is intensively studied. In this review, we discuss the expression patterns and functional role of integrin in primary brain tumors and brain metastases, provide an overview of clinical data on integrin inhibition and their potential application in imaging and therapy of these tumors. PMID:27097828

  18. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID

  19. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  20. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  1. Primary Prevention of Cardiovascular Disease in Older Adults.

    PubMed

    Barry, Arden R; O'Neill, Deirdre E; Graham, Michelle M

    2016-09-01

    Primary prevention of cardiovascular events in older adults is challenging because of a general paucity of evidence for safe and efficacious therapy. Furthermore, there is no validated cardiovascular risk assessment tool for older adults (≥75 years of age), yet most are intermediate-to high-risk. Assessment of cardiovascular risk should include a discussion of the potential benefits and risks of therapy, and allow for incorporation of the patients' values and preferences, functionality and/or frailty, comorbidities, and concomitant medications (eg, polypharmacy, drug-drug interactions, adherence). The best available evidence for the primary prevention of cardiovascular events in older adults is for statin therapy and blood pressure control. Statin therapy reduces the risk of myocardial infarction and stroke, although close monitoring for adverse events is warranted. Evidence does not support an association between statin therapy and either cognitive impairment or cancer. Rates of adverse effects, such as myopathy and diabetes, do not appear to be increased in elderly patients. Blood pressure control is also paramount to prevent cardiovascular events and mortality in elderly patients, although the target is debatable and should be individualized to the patient. Conversely, the benefit of antiplatelet therapy in primary prevention does not appear to outweigh the risk, and should not be recommended. Other interventions shown to reduce the risk of cardiovascular disease in elderly patients include smoking cessation, physical activity, and maintaining a normal body weight. PMID:27113770

  2. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  3. Astaxanthin reduces ischemic brain injury in adult rats

    PubMed Central

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N.; Post, Jeremy; Woods, Amina S.; Hoffer, Barry J.; Wang, Yun; Harvey, Brandon K.

    2009-01-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.—Shen, H., Kuo, C.-C., Chou, J., Delvolve, A., Jackson, S. N., Post, J., Woods, A. S., Hoffer, B. J., Wang, Y., Harvey, B. K. Astaxanthin reduces ischemic brain injury in adult rats. PMID:19218497

  4. The Role of Radiotherapy and Chemotherapy in the Treatment of Primary Adult High Grade Gliomas: Assessment of Patients for These Treatment Approaches and the Common Immediate Side Effects

    PubMed Central

    Philip-Ephraim, E. E.; Eyong, K. I.; Williams, U. E.; Ephraim, R. P.

    2012-01-01

    Gliomas are the commonest primary brain tumours in adults. They are usually classified and graded according to the criteria by the World Health Organisation. High-grade gliomas are the most malignant primary brain tumours. Conventional therapies include surgery, radiotherapy, and chemotherapy. The tumours often demonstrate high levels of resistance to these conventional therapies, and in spite of treatment advances the prognosis remains poor. PMID:23304556

  5. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  6. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    SciTech Connect

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  7. Neuroimaging in adult penetrating brain injury: a guide for radiographers.

    PubMed

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings. PMID:26229677

  8. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  9. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  10. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  11. Roles for Oestrogen Receptor β in Adult Brain Function

    PubMed Central

    Handa, R. J.; Ogawa, S.; Wang, J. M.; Herbison, A. E.

    2012-01-01

    Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function. PMID:21851428

  12. Neurogenesis in the adult brain: implications for Alzheimer's disease.

    PubMed

    Galvan, Veronica; Bredesen, Dale E

    2007-10-01

    The function of neurogenesis in the adult brain is still unknown. Interventions such as environmental enrichment and exercise impinge on neurogenesis, suggesting that the process is regulated by experience. Conversely, a role for neurogenesis in learning has been proposed through 'cellular plasticity', a process akin to synaptic plasticity but operating at the network level. Although neurogenesis is stimulated by acute injury, and possibly by neurodegenerative processes such as Alzheimer's disease (AD), it does not suffice to restore function. While the role and direction of change in the neurogenic response at different stages of AD is still a matter of debate, it is possible that a deficit in neurogenesis may contribute to AD pathogenesis since at least one of the two regions ostensibly neurogenic in the adult human brain (the subgranular zone of the dentage gyrus and the ventriculo-olfactory neurogenic system) support high-level functions affected in early AD (associative memory and olfaction respectively). The age of onset and the rate of progression of sporadic forms of AD are highly variable. Sporadic AD may have a component of insufficient neurogenic replacement or insufficient neurogenic stimulation that is correlated with traits of personal history; the rate of neurogenesis and the survival of replicating progenitors is strongly modified by behavioral interventions known to impinge on the rate of neurogenesis and the probability of survival of newly born neurons--exercise, enriched experience, and learning. This view is consistent with epidemiological data suggesting that higher education and increased participation in intellectual, social and physical aspects of daily life are associated with slower cognitive decline in healthy elderly ("cognitive reserve") and may reduce the risk of AD. Although neurogenesis can be modulated exogenously by growth factors, stimulation of neurogenesis as a mean to treat neurodegeneration is still for the most part

  13. Multimodal magnetic resonance imaging evaluation of primary brain tumors.

    PubMed

    Treister, Daniel; Kingston, Sara; Hoque, Kristina E; Law, Meng; Shiroishi, Mark S

    2014-08-01

    Gliomas comprise 80% of primary brain neoplasms, with glioblastoma multiforme being the most commonly diagnosed glioma. The annual incidence is 5.26 per 100,000, or 17,000 newly diagnosed cases per year in the United States. The incidence increases with age, peaking between the 6th and 8th decades. Gliomas are more common among Caucasians and occur more often in men. They can be associated with certain rare hereditary syndromes including Cowden, Turcot, Li-Fraumeni, neurofibromatosis type 1 and type 2, tuberous sclerosis, and familial schwannomatosis. Known risk factors include a history of ionizing radiation, family history of glioma, and certain genetic susceptibility variants that are weakly associated with glioma. Preventative measures have not been shown to decrease the risk of later development. In addition, screening tests are unwarranted since early diagnosis and treatment have not been shown to improve outcome. PMID:25173141

  14. Isolation of Primary Murine Brain Microvascular Endothelial Cells

    PubMed Central

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M.; Meuth, Sven G.

    2014-01-01

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed. PMID:25489873

  15. Pallidal deep brain stimulation relieves camptocormia in primary dystonia.

    PubMed

    Hagenacker, Tim; Gerwig, Marcus; Gasser, Thomas; Miller, Dorothea; Kastrup, Oliver; Jokisch, Daniel; Sure, Ulrich; Frings, Markus

    2013-07-01

    Camptocormia, characterised by a forward flexion of the thoracolumbar spine may occur in various movement disorders, mainly in Parkinson's disease or in primary dystonia. In severe cases, patients with camptocormia are unable to walk. While treatment options are limited, deep brain stimulation (DBS) with bilateral stimulation of the subthalamic nucleus or globus pallidus internus (GPi) has been proposed as a therapeutic option in refractory cases of Parkinson's disease. Here we present two patients with severe camptocormia as an isolated form of dystonia and as part of generalised dystonia, respectively, which were both treated with bilateral stimulation of the GPi. Symptoms of dystonia were assessed using the Burke-Fahn-Marsden dystonia rating scale (BFM) before and during deep brain stimulation. In both patients there was a significant functional improvement following long-term bilateral GPi stimulation and both patients gained ability to walk. In the first patient with an isolated dystonic camptocormia the BFM motor subscore for the truncal flexion improved by 75 %. The total BFM motor score in the second patient with a camptocormia in generalised dystonia improved by 45 %, while the BFM score for truncal flexion improved by 87 %. In both patients the effect of the bilateral GPi stimulation on camptocormia was substantial, independent of generalisation of dystonia. Therefore, GPi DBS is a possible treatment option for this rare disease. PMID:23483215

  16. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  17. Diminished adult neurogenesis in the marmoset brain precedes old age

    PubMed Central

    Leuner, Benedetta; Kozorovitskiy, Yevgenia; Gross, Charles G.; Gould, Elizabeth

    2007-01-01

    With aging there is a decline in the number of newly generated neurons in the dentate gyrus of the hippocampus. In rodents and tree shrews, this age-related decrease in neurogenesis is evident long before the animals become aged. No previous studies have investigated whether primates exhibit a similar decline in hippocampal neurogenesis with aging. To investigate this possibility, young to middle aged adult common marmosets (Callithrix jacchus) were injected with BrdU and perfused 3 weeks later. The number of newly generated cells in the subgranular zone/granule cell layer of the dentate gyrus was significantly lower in older animals and decreased linearly with age. A similar age-related decline in new cells was observed in the subventricular zone but not in the hilar region of the dentate gyrus. These data demonstrate that a substantial decrease in neurogenesis occurs before the onset of old age in the adult marmoset brain, suggesting the possibility that similar alterations occur in the human brain. PMID:17940008

  18. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    PubMed

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-10-01

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization. PMID:26384869

  19. [Primary prevention of adult obesity. an interdisciplinary analysis].

    PubMed

    Hilbert, Anja; Ried, Jens; Schneider, Daniel; Juttner, Clemens; Sosna, Marc; Dabrock, Peter; Lingenfelder, Michael; Voit, Wolfgang; Rief, Winfried; Hebebrand, Johannes

    2007-10-01

    The primary prevention of adult obesity requires combined efforts by stakeholders at various societal levels, based on the knowledge from multiple disciplines. The goal of the present study was, therefore, to analyze current preventive approaches and delineate implications for future prevention research and practice by integrating knowledge from genetics, law, economics, psychology, and social ethics (Figure 1). Inconclusive evidence on the etiology of obesity, a complex, multifactorial condition, likely complicates prevention, contributing to a lack of specificity regarding target groups, focus, and techniques of prevention. Given the urgency and significance of the "obesity problem" that requires immediate and effective solutions, it is recommended that the various existing and developing prevention programs are evaluated to ensure orientation at current risk factor research. Results from genetic risk factor research can be used as a rationale to increase specificity of preventive measures regarding identification of high-risk groups, timing, and goals of prevention. Further, it is important to evaluate prevention programs for systematic application of behavior modification techniques and consideration of individual risk factors and resources to ensure promotion of long-term behavior change that leads to weight maintenance and a reduction of incidence rates of obesity in adults (Figure 3). Although the primary prevention of childhood obesity may lead to a reduction of incidence rates of obesity in adults, high rates of adult-onset obesity and the related medical and psychosocial sequelae in adulthood underscore the necessity of preventive efforts for adults. Concerning the environmental basis of obesity prevention, in many countries, the institutional and legal framework of preventive approaches requires further examination in order to improve funding, coordination between multiple stakeholders, and implementation of prevention in the health-care system. Evidence

  20. Axonal injury and regeneration in the adult brain of Drosophila

    PubMed Central

    Ayaz, Derya; Leyssen, Maarten; Koch, Marta; Yan, Jiekun; Srahna, Mohammed; Sheeba, Vasu; Fogle, Keri J.; Holmes, Todd C.; Hassan, Bassem A.

    2009-01-01

    Drosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the Central Nervous System (CNS). We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain. We use this method to develop a novel Drosophila model for CNS axonal injury and regeneration. We first show that, similar to mammalian CNS axons, injured adult wild type fly CNS axons fail to regenerate, whereas adult-specific enhancement of Protein Kinase A activity increases the regenerative capacity of lesioned neurons. Combined, these observations suggest conservation of neuronal regeneration mechanisms following injury. We next exploit this model to explore pathways that induce robust regeneration and find that adult-specific activation of JNK signalling is sufficient for de novo CNS axonal regeneration after injury, including the growth of new axons past the lesion site and into the normal target area. PMID:18524906

  1. Stroke Incidence Following Traumatic Brain Injury in Older Adults

    PubMed Central

    Albrecht, Jennifer S.; Liu, Xinggang; Smith, Gordon S.; Baumgarten, Mona; Rattinger, Gail B.; Gambert, Steven R.; Langenberg, Patricia; Zuckerman, Ilene H.

    2015-01-01

    Objective Following traumatic brain injury (TBI), older adults are at increased risk of hemorrhagic and thromboembolic events, but it is unclear whether the increased risk continues after hospital discharge. We estimated incidence rates of hemorrhagic and ischemic stroke following hospital discharge for TBI among adults ≥65 and compared them with pre-TBI rates. Participants 16,936 Medicare beneficiaries aged ≥65 with a diagnosis of TBI in any position on an inpatient claim between 6/1/2006 and 12/31/2009 who survived to hospital discharge. Design Retrospective analysis of a random 5% sample of Medicare claims data Main Measures Hemorrhagic stroke was defined as ICD-9 codes 430.xx-432.xx. Ischemic stroke was defined as ICD-9 codes 433.xx-435.xx, 437.0x, and 437.1x. Results There was a six-fold increase in the rate of hemorrhagic stroke following TBI compared to the pre-TBI period (adjusted Rate Ratio (RR) 6.5; 95% Confidence Interval (CI) 5.3, 7.8), controlling for age and sex. A smaller increase in the rate of ischemic stroke was observed (adjusted RR 1.3; 95% CI 1.2, 1.4). Conclusion Future studies should investigate causes of increased stroke risk post-TBI as well as effective treatments to reduce stroke risk and improve outcomes post-TBI among older adults. PMID:24816156

  2. Resting-State Brain Activity in Adult Males Who Stutter

    PubMed Central

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  3. Significant predictors of patients' uncertainty in primary brain tumors.

    PubMed

    Lin, Lin; Chien, Lung-Chang; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Gilbert, Mark R; Armstrong, Terri S

    2015-05-01

    Patients with primary brain tumors (PBT) face uncertainty related to prognosis, symptoms and treatment response and toxicity. Uncertainty is correlated to negative mood states and symptom severity and interference. This study identified predictors of uncertainty during different treatment stages (newly-diagnosed, on treatment, followed-up without active treatment). One hundred eighty six patients with PBT were accrued at various points in the illness trajectory. Data collection tools included: a clinical checklist/a demographic data sheet/the Mishel Uncertainty in Illness Scale-Brain Tumor Form. The structured additive regression model was used to identify significant demographic and clinical predictors of illness-related uncertainty. Participants were primarily white (80 %) males (53 %). They ranged in age from 19-80 (mean = 44.2 ± 12.6). Thirty-two of the 186 patients were newly-diagnosed, 64 were on treatment at the time of clinical visit with MRI evaluation, 21 were without MRI, and 69 were not on active treatment. Three subscales (ambiguity/inconsistency; unpredictability-disease prognoses; unpredictability-symptoms and other triggers) were different amongst the treatment groups (P < .01). However, patients' uncertainty during active treatment was as high as in newly-diagnosed period. Other than treatment stages, change of employment status due to the illness was the most significant predictor of illness-related uncertainty. The illness trajectory of PBT remains ambiguous, complex, and unpredictable, leading to a high incidence of uncertainty. There was variation in the subscales of uncertainty depending on treatment status. Although patients who are newly diagnosed reported the highest scores on most of the subscales, patients on treatment felt more uncertain about unpredictability of symptoms than other groups. Due to the complexity and impact of the disease, associated symptoms, and interference with functional status, comprehensive assessment of patients

  4. All-Trans Retinoic Acid Induces Expression of a Novel Intergenic Long Noncoding RNA in Adult rat Primary Hippocampal Neurons.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-02-01

    Around 90% of the mammalian genome undergoes pervasive transcription into various types of small and long regulatory noncoding RNAs, whereas only ∼ 1.5% codes for proteins. Long noncoding RNAs (lncRNAs) constitute diverse classes of sense- and antisense transcripts that are abundantly expressed in the mammalian central nervous system (CNS) in cell type- and developmental stage-specific manners. They are implicated in brain development, differentiation, neuronal plasticity, and other cognitive functions. Mammalian brain requires the vitamin A metabolite all-trans retinoic acid (atRA) for its normal development, differentiation, and cell-fate determination. However, its role in adult brain function is less understood. Here, we report atRA-mediated transcriptional upregulation of endogenous expression of a novel long intergenic noncoding RNA-rat brain expressed (LINC-RBE) in cultured primary hippocampal neurons from adult rat. We have previously reported LINC-RBE as an intergenic, simple repeat sequence containing lncRNA highly expressed in the rat brain. This is a first-time report of involvement of atRA in transcriptional upregulation of lncRNA expression in rat hippocampal neurons. Therefore, it may be involved in regulation of brain function and disease. PMID:26572536

  5. Primary Care Use before Cancer Diagnosis in Adolescents and Young Adults – A Nationwide Register Study

    PubMed Central

    Ahrensberg, Jette Møller; Fenger-Grøn, Morten; Vedsted, Peter

    2016-01-01

    Introduction Survival rates of cancer patients have generally improved in recent years. However, children and older adults seem to have experienced more significant clinical benefits than adolescents and young adults (AYAs). Previous studies suggest a prolonged diagnostic pathway in AYAs, but little is known about their pre-diagnostic healthcare use. This study investigates the use of primary care among AYAs during the two years preceding a cancer diagnosis. Methods The study is a retrospective population-based matched cohort study using Danish nationwide registry data. All persons diagnosed with cancer during 2002–2011 in the age group 15–39 years were included (N = 12,306); each participant was matched on gender, age and general practice with 10 randomly selected references (N = 123,060). The use of primary healthcare services (face-to-face contacts, blood tests and psychometric tests) was measured during the two years preceding the diagnosis (index date), and collected data were analysed in a negative binomial regression model. Results The cases generally increased their use of primary care already from 8 months before a cancer diagnosis, whereas a similar trend was not found for controls. The increase was observed for all cancer types, but it started at different times: 17 months before a diagnosis of CNS tumour, 12 months before a diagnosis of soft tissue sarcoma, 9 months before a diagnosis of lymphoma, 5–6 months before a diagnosis of leukaemia, bone tumour or GCT, and 3 months before a diagnosis of malignant melanoma. Conclusion The use of primary care among AYAs increase several months before a cancer diagnosis. The diagnostic intervals are generally short for malignant melanomas and long for brain tumours. A prolonged diagnostic pathway may indicate non-specific or vague symptomatology and low awareness of cancer among AYAs primary-care personnel. The findings suggest potential of faster cancer diagnosis in AYAs. PMID:27203083

  6. Traumatic Brain Injury among Older Adults at Level I and II Trauma Centers

    PubMed Central

    Cuthbert, Jeffrey P.; Whyte, John; Corrigan, John D.; Faul, Mark; Harrison-Felix, Cynthia

    2013-01-01

    Abstract Individuals 65 years of age and over have the highest rates of traumatic brain injury (TBI)-related hospitalizations and deaths, and older adults (defined variably across studies) have particularly poor outcomes after TBI. The factors predicting these outcomes remain poorly understood, and age-specific care guidelines for TBI do not exist. This study provides an overview of TBI in older adults using data from the National Trauma Data Bank (NTDB) gathered between 2007 and 2010, evaluates age group-specific trends in rates of TBI over time using U.S. Census data, and examines whether routinely collected information is able to predict hospital discharge status among older adults with TBI in the NTDB. Results showed a 20–25% increase in trauma center admissions for TBI among the oldest age groups (those >=75 years), relative to the general population, between 2007 and 2010. Older adults (>=65 years) with TBI tended to be white females who have incurred an injury from a fall resulting in a “severe” Abbreviated Injury Scale (AIS) score of the head. Older adults had more in-hospital procedures, such as neuroimaging and neurosurgery, tended to experience longer hospital stays, and were more likely to require continued medical care than younger adults. Older age, injury severity, and hypotension increased the odds of in-hospital death. The public health burden of TBI among older adults will likely increase as the Baby Boom generation ages. Improved primary and secondary prevention of TBI in this cohort is needed. PMID:23962046

  7. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  8. Donepezil markedly potentiates memantine neurotoxicity in the adult rat brain.

    PubMed

    Creeley, Catherine E; Wozniak, David F; Nardi, Anthony; Farber, Nuri B; Olney, John W

    2008-02-01

    The NMDA antagonist, memantine (Namenda), and the cholinesterase inhibitor, donepezil (Aricept), are currently being used widely, either individually or in combination, for treatment of Alzheimer's disease (AD). NMDA antagonists have both neuroprotective and neurotoxic properties; the latter is augmented by drugs, such as pilocarpine, that increase cholinergic activity. Whether donepezil, by increasing cholinergic activity, might augment memantine's neurotoxic potential has not been investigated. In the present study, we determined that a dose of memantine (20mg/kg, i.p.), considered to be in the therapeutic (neuroprotective) range for rats, causes a mild neurotoxic reaction in the adult rat brain. Co-administration of memantine (20 or 30 mg/kg) with donepezil (2.5-10mg/kg) markedly potentiated this neurotoxic reaction, causing neuronal injury at lower doses of memantine, and causing the toxic reaction to become disseminated and lethal to neurons throughout many brain regions. These findings raise questions about using this drug combination in AD, especially in the absence of evidence that the combination is beneficial, or that either drug arrests or reverses the disease process. PMID:17112636

  9. Exploratory case-control study of brain tumors in adults

    SciTech Connect

    Burch, J.D.; Craib, K.J.; Choi, B.C.; Miller, A.B.; Risch, H.A.; Howe, G.R.

    1987-04-01

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies.

  10. Traumatic brain injury: endocrine consequences in children and adults.

    PubMed

    Richmond, Erick; Rogol, Alan D

    2014-02-01

    Traumatic brain injury (TBI) is a common cause of death and disability in young adults with consequences ranging from physical disabilities to long-term cognitive, behavioral, psychological and social defects. Recent data suggest that pituitary hormone deficiency is not infrequent among TBI survivors; the prevalence of reported hypopituitarism following TBI varies widely among published studies. The most common cause of TBI is motor vehicle accidents, including pedestrian-car and bicycle car encounters, falls, child abuse, violence and sports injuries. Prevalence of hypopituitarism, from total to isolated pituitary deficiency, ranges from 5 to 90 %. The time interval between TBI and pituitary function evaluation is one of the major factors responsible for variations in the prevalence of hypopituitarism reported. Endocrine dysfunction after TBI in children and adolescents is common. Adolescence is a time of growth, freedom and adjustment, consequently TBI is also common in this group. Sports-related TBI is an important public health concern, but many cases are unrecognized and unreported. Sports that are associated with an increased risk of TBI include those involving contact and/or collisions such as boxing, football, soccer, ice hockey, rugby, and the martial arts, as well as high velocity sports such as cycling, motor racing, equestrian sports, skiing and roller skating. The aim of this paper is to summarize the best evidence of TBI as a cause of pituitary deficiency in children and adults. PMID:24030696

  11. Adult neurogenesis in the decapod crustacean brain: A hematopoietic connection?

    PubMed Central

    Beltz, Barbara S.; Zhang, Yi; Benton, Jeanne L.; Sandeman, David C.

    2011-01-01

    New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the 1st- generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors coexist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the 1st-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the 1st-generation precursor pool, because although these cells divide and produce a continuous efflux of 2nd-generation cells from the niche, the population of 1st-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition. PMID:21929622

  12. Differential CD44 expression patterns in primary brain tumours and brain metastases.

    PubMed Central

    Li, H.; Liu, J.; Hofmann, M.; Hamou, M. F.; de Tribolet, N.

    1995-01-01

    Splicing variants of CD44 (CD44v) are increasingly recognised as metastasis-promoting factors in rodent and some human cancers. However, the frequency for CD44v expression in human cancers and their metastases and the status of CD44v expression in low or non-metastatic tumours is still uncertain. To address this issue, we investigated CD44 expression patterns in brain metastases (BMTs) spread from more than ten organs and five types of primary brain tumours (PBTs) by Northern blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical analysis. The results demonstrated that all of the 56 PBTs examined express standard form of CD44 (CD44s) but none of them express CD44v. In contrast, 22 of 26 BMTs studied were found with CD44v expression. Our data thus present direct evidence of a general distribution of CD44 in BMTs but suggest that such expression is an extremely rare event in PBTs. Therefore, the presence or absence of CD44v expression may be related to high or low metastatic potential of human malignancies. Images Figure 2 Figure 1 PMID:7541233

  13. Psychotherapy Interventions for Managing Anxiety and Depressive Symptoms in Adult Brain Tumor Patients: A Scoping Review

    PubMed Central

    Kangas, Maria

    2015-01-01

    Background Adult brain tumor (BT) patients and longer-term survivors are susceptible to experiencing emotional problems, including anxiety and/or depression disorders, which may further compromise their quality-of-life (QOL) and general well-being. The objective of this paper is to review psychological approaches for managing anxiety and depressive symptoms in adult BT patients. A review of psychological interventions comprising mixed samples of oncology patients, and which included BT patients is also evaluated. The review concludes with an overview of a recently developed transdiagnostic psychotherapy program, which was specifically designed to treat anxiety and/or depressive symptoms in adult BT patients. Methods Electronic databases (PsycINFO, Medline, Embase, and Cochrane) were searched to identify published studies investigating psychological interventions for managing anxiety and depressive symptoms in adult BT patients. Only four randomized controlled trials (RCTs) were identified. Results Only one of the RCTs tested a psychosocial intervention, which was specifically developed for primary BT patients, and which was found to improve QOL including existential well-being as well as reducing depressive symptoms. A second study tested a combined cognitive rehabilitation and problem-solving intervention, although was not found to significantly improve mood or QOL. The remaining two studies tested multidisciplinary psychosocial interventions in heterogeneous samples of cancer patients (included BT patients) with advanced stage disease. Maintenance of QOL was found in both studies, although no secondary gains were found for improvements in mood. Conclusion There is a notable paucity of psychological interventions for adult BT patients across the illness trajectory. Further research is required to strengthen the evidence base for psychological interventions in managing anxiety and depressive symptoms, and enhancing the QOL of distressed adults diagnosed with a BT

  14. Primary brain tumors and posterior reversible encephalopathy syndrome

    PubMed Central

    Kamiya-Matsuoka, Carlos; Cachia, David; Olar, Adriana; Armstrong, Terri S.; Gilbert, Mark R.

    2014-01-01

    Background Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic encephalopathic state associated with reversible cerebral vasogenic edema. It is an increasingly recognized occurrence in the oncology population. However, it is very uncommon in patients with primary brain tumors (PBTs). The aim of this study was to analyze the clinicoradiological features and report the clinical outcomes of PRES in PBT patients. Methods We identified 4 cases with PBT who developed PRES at MD Anderson Cancer Center (MDACC) between 2012 and 2014. Clinical and radiological data were abstracted from their records. In addition, we also solicited 8 cases from the literature. Results The median age at PRES onset was 19 years, male-to-female ratio was 1:1, and the syndrome occurred in patients with ependymoma (n = 4), glioblastoma (n = 3), diffuse intrinsic pontine glioma (DIPG; n = 3), juvenile pilocytic astrocytoma (n = 1), and atypical meningioma (n = 1). Two glioblastomas and 2 DIPG cases received bevacizumab and vandetanib before the onset of symptoms, respectively. The most common clinical presentation was seizures (n = 7). Three MDACC patients recovered completely in 3–4 weeks after the onset of symptoms. One patient died due to active cancer and several comorbidities including PRES. Conclusions Hypertension seems to be the most important coexisting risk factor for development of PRES; however, the potential effects of chemotherapeutic agents in the pathogenesis of PRES should also be examined. The clinicoradiological course of PRES in PBT patients did not vary from the classical descriptions of PRES found in other causes. PRES must be considered as part of the differential diagnosis in patients with PBTs presenting with seizures or acute encephalopathy. PMID:26034631

  15. [Primary immunodeficiencies presenting with autoimmune cytopenias in adults].

    PubMed

    Sève, P; Broussolle, C; Pavic, M

    2013-03-01

    Although primary immunodeficiencies (PID) are typically marked by increased susceptibility to infections, autoimmune manifestations have increasingly been recognized as an important component of several forms of PID. Here, we discuss two forms of PID in which autoimmune cytopenias are particularly common and may be the first manifestation of the disease in adults: autoimmune lymphoproliferative syndrome (ALPS) and common variable immunodeficiency (CVID). Approximately one fifth of patients with CVID develop autoimmune diseases, and immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AHA) are the most common. Since autoimmune cytopenias frequently precede the diagnosis of CVID, testing for immunoglobulin levels should be performed in patients diagnosed with AITP and AHA. Patients with CVID in association with autoimmune cytopenias have a "particular phenotype" with lower susceptibility to infection and higher susceptibility to autoimmune manifestations and, for patients with AHA, a more frequent development of splenomegaly and lymphoma. Corticosteroids and high doses of intravenous immunoglobulins (IVIg) seem to have the same efficacy as in idiopathic AITP and AHA. Splenectomy and rituximab are as effective as in idiopathic autoimmune cytopenias but are associated with an increased risk of severe infection and should, in our opinion, be considered only for those rare patients with "refractory diseases". The course and outcome of autoimmune cytopenias is not affected by supportive IVIg therapy. Autoimmune destruction of blood cells affects over 70% of ALPS patients. The median age of first presentation is 24 months of age, but with increasing awareness of this condition, adults with autoimmune cytopenias are now being diagnosed more frequently. Testing for ALPS should therefore be considered in young adults with unexplained Evan's syndrome. Patients usually respond to immunosuppressive medications, including corticosteroids. Unlike many patients

  16. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults.

    PubMed

    Liang, Peipeng; Shi, Lin; Chen, Nan; Luo, Yishan; Wang, Xing; Liu, Kai; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng; Li, Kuncheng

    2015-01-01

    Despite the known morphological differences (e.g., brain shape and size) in the brains of populations of different origins (e.g., age and race), the Chinese brain atlas is less studied. In the current study, we developed a statistical brain atlas based on a multi-center high quality magnetic resonance imaging (MRI) dataset of 2020 Chinese adults (18-76 years old). We constructed 12 Chinese brain atlas from the age 20 year to the age 75 at a 5 years interval. New Chinese brain standard space, coordinates, and brain area labels were further defined. The new Chinese brain atlas was validated in brain registration and segmentation. It was found that, as contrast to the MNI152 template, the proposed Chinese atlas showed higher accuracy in hippocampus segmentation and relatively smaller shape deformations during registration. These results indicate that a population-specific time varying brain atlas may be more appropriate for studies involving Chinese populations. PMID:26678304

  17. A multicenter study of primary brain tumor incidence in Australia (2000–2008)

    PubMed Central

    Dobes, Martin; Shadbolt, Bruce; Khurana, Vini G.; Jain, Sanjiv; Smith, Sarah F.; Smee, Robert; Dexter, Mark; Cook, Raymond

    2011-01-01

    There are conflicting reports from Europe and North America regarding trends in the incidence of primary brain tumor, whereas the incidence of primary brain tumors in Australia is currently unknown. We aimed to determine the incidence in Australia with age-, sex-, and benign-versus-malignant histology-specific analyses. A multicenter study was performed in the state of New South Wales (NSW) and the Australian Capital Territory (ACT), which has a combined population of >7 million with >97% rate of population retention for medical care. We retrospectively mined pathology databases servicing neurosurgical centers in NSW and ACT for histologically confirmed primary brain tumors diagnosed from January 2000 through December 2008. Data were weighted for patient outflow and data completeness. Incidence rates were age standardized and trends analyzed using joinpoint analysis. A weighted total of 7651 primary brain tumors were analyzed. The overall US-standardized incidence of primary brain tumors was 11.3 cases 100 000 person-years (±0.13; 95% confidence interval, 9.8–12.3) during the study period with no significant linear increase. A significant increase in primary malignant brain tumors from 2000 to 2008 was observed; this appears to be largely due to an increase in malignant tumor incidence in the ≥65-year age group. This collection represents the most contemporary data on primary brain tumor incidence in Australia. Whether the observed increase in malignant primary brain tumors, particularly in persons aged ≥65 years, is due to improved detection, diagnosis, and care delivery or a true change in incidence remains undetermined. We recommend a direct, uniform, and centralized approach to monitoring primary brain tumor incidence that can be independent of multiple interstate cancer registries. PMID:21727214

  18. Rituximab use in adult primary glomerulopathy: where is the evidence?

    PubMed Central

    Mallat, Samir G; Itani, Houssam S; Abou-Mrad, Rana M; Abou Arkoub, Rima; Tanios, Bassem Y

    2016-01-01

    Rituximab is a chimeric anti-CD20 antibody that results in depletion of B-cell lymphocytes. It is currently used in the treatment of a variety of autoimmune diseases, in addition to CD20-positive lymphomas. The use of rituximab in the treatment of the adult primary glomerular diseases has emerged recently, although not yet established as first-line therapy in international guidelines. In patients with steroid-dependent minimal change disease or frequently relapsing disease, and in patients with idiopathic membranous nephropathy (IMN), several retrospective and prospective studies support the use of rituximab to induce remission, whereas in idiopathic focal and segmental glomerulosclerosis (FSGS), the use of rituximab has resulted in variable results. Evidence is still lacking for the use of rituximab in patients with immunoglobulin A nephropathy (IgAN) and idiopathic membranoproliferative glomerulonephritis (MPGN), as only few reports used rituximab in these two entities. Randomized controlled trials (RCTs) are warranted and clearly needed to establish the definitive role of rituximab in the management of steroid-dependent and frequently relapsing minimal change disease, IMN, both as first-line and second-line treatment, and in MPGN. We await the results of an ongoing RCT of rituximab use in IgAN. Although current evidence for the use of rituximab in patients with idiopathic FSGS is poor, more RCTs are needed to clarify its role, if any, in the management of steroid-resistant or steroid-dependent FSGS. PMID:27621641

  19. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    PubMed

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  20. Primary blast injury-induced lesions in the retina of adult rats

    PubMed Central

    2013-01-01

    Background The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina. Methods Adult male Sprague–Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL. Results The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury. Conclusions Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Müller cells and suggest important roles for these cells in retina pathophysiology after blast. PMID:23819902

  1. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  2. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2016-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. PMID:26609811

  3. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  4. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  5. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  6. Encoding of mechanical nociception differs in the adult and infant brain

    PubMed Central

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0–19 days (n = 18, clinically required) and adults aged 23–48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2–4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  7. Encoding of mechanical nociception differs in the adult and infant brain.

    PubMed

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0-19 days (n = 18, clinically required) and adults aged 23-48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2-4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  8. Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution.

    PubMed

    Holloway, Ralph L; Broadfield, Douglas C; Yuan, Michael S

    2003-07-01

    Human brain evolution is characterized by an overall increase in brain size, cerebral reorganization, and cerebral lateralization. It is generally understood when brain enlargement occurred during human evolution. However, issues concerning cerebral reorganization and hemispheric lateralization are more difficult to determine from brain endocasts, and they are topics of considerable debate. One region of the cerebral cortex that may represent the earliest evidence for brain reorganization is the primary visual cortex (PVC), or area 17 of Brodmann. In nonhuman primates, this region is larger in volume (demarcated anteriorly by the lunate sulcus), and extends further rostrally than it does in modern humans. In early hominid fossil (Australopithecus) endocasts, this region appears to occupy a smaller area compared to that in nonhuman primates. Some have argued that the brain first underwent size expansion prior to reorganization, while others maintain that reorganization predated brain expansion. To help resolve this question, we provide a description of two male, common chimpanzee (Pan troglodytes) brains, YN77-111 and YN92-115, which clearly display a more posterior lunate sulcal morphology than seen in other chimpanzees. These data show that neurogenetic variability exists in chimpanzees, and that significant differences in organization (e.g., a reduced PVC) can predate brain enlargement. While the human brain has experienced numerous expansion and reorganization events throughout evolution, the data from these two chimpanzees offer significant support for the hypothesis that the neurogenetic basis for brain reorganization was present in our early fossil ancestors (i.e., the australopithecines) prior to brain enlargement. PMID:12808644

  9. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences

    PubMed Central

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M.; Kennedy, Kristen M.; Lindenberger, Ulman

    2010-01-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital–frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial–temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEε4 allele exhibited declines not noted in the whole sample. PMID:20298790

  10. Intravenous immunoglobulin treatment preserves and protects primary rat hippocampal neurons and primary human brain cultures against oxidative insults.

    PubMed

    Lahiri, Debomoy K; Ray, Balmiki

    2014-01-01

    Alzheimer's disease (AD) is characterized by deleterious accumulation of amyloid-β (Aβ) peptide into senile plaque, neurofibrillary tangles formed from hyperphosphorylated tau protein, and loss of cholinergic synapses in the cerebral cortex. The deposition of Aβ-loaded plaques results in microglial activation and subsequent production of reactive oxygen species (ROS), including free radicals. Neurons in aging and AD brains are particularly vulnerable to ROS and other toxic stimuli. Therefore, agents that decrease the vulnerability of neurons against ROS may provide therapeutic values for the treatment or prevention of AD. In the present study, our goal was to test whether intravenous immunoglobulin (IVIG) treatment could preserve as well as protect neurons from oxidative damage. We report that treatment with IVIG protects neuronal viability and synaptic proteins in primary rat hippocampal neurons. Further, we demonstrate the tolerability of IVIG treatment in the primary human fetal mixed brain cultures. Indeed, a high dose (20 mg/ml) of IVIG treatment was well-tolerated by primary human brain cultures that exhibit a normal neuronal phenotype. We also observed a potent neuropreservatory effect of IVIG against ROS-mediated oxidative insults in these human fetal brain cultures. These results indicate that IVIG treatment has great potential to preserve and protect primary human neuronal-enriched cultures and to potentially rescue dying neurons from oxidative insults. Therefore, our findings suggest that IVIG treatment may represent an important therapeutic agent for clinical trials designed to prevent and delay the onset of neurodegeneration as well as AD pathology. PMID:25115544

  11. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  12. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    PubMed

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  13. Intracerebral haemorrhage in primary and metastatic brain tumours.

    PubMed

    Salmaggi, Andrea; Erbetta, Alessandra; Silvani, Antonio; Maderna, Emanuela; Pollo, Bianca

    2008-09-01

    Intracerebral haemorrhage may both be a presenting manifestation in unrecognised brain tumour or--more frequently--take place in the disease course of known/suspected brain tumour due to diagnostic/therapeutic procedures, including biopsy, locoregional treatments and anti-angiogenic therapies. Apart from the difficulties inherent to accurate neuroradiological diagnosis in selected cases with small tumour volume, the main clinical problem that neurologists face is represented by decision making in prophylaxis/treatment of venous thromboembolism in these patients. These points are briefly discussed and available evidence on the last point is commented on. PMID:18690513

  14. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  15. Physical performance limitations among adult survivors of childhood brain tumors

    PubMed Central

    Ness, Kirsten K.; Morris, E. Brannon; Nolan, Vikki G.; Howell, Carrie R.; Gilchrist, Laura S.; Stovall, Marilyn; Cox, Cheryl L.; Klosky, James L.; Gajjar, Amar; Neglia, Joseph P.

    2013-01-01

    Background Young adult survivors of childhood brain tumors (BT) may have late-effects that compromise physical performance and everyday task participation. Objective To evaluate muscle strength, fitness, physical performance, and task participation among adult survivors of childhood BT. Design/Method In-home evaluations and interviews were conducted for 156 participants (54% male). Results on measures of muscle strength, fitness, physical performance, and participation were compared between survivors and population-group members with chi-squared statistics and two-sample t-tests. Associations between late effects and physical performance, and physical performance and participation, were evaluated in regression models. Results BT survivors were a median age of 22 (18–58), and 14.7 (6.5–45.9) years from diagnosis. Survivors had lower estimates of grip strength (Female: 24.7±9.2 vs. 31.5±5.8, Male: 39.0±12.2 vs. 53.0±10.1 kilograms), knee extension strength (Female: 246.6±95.5 vs. 331.5±5.8, Male: 304.7±116.4 vs. 466.6±92.1 Newtons) and peak oxygen uptake (Female: 25.1±8.8 vs. 31.3±5.1, Male: 24.6±9.5 vs. 33.2±3.4 milliliters/kilogram/minute) than population-group members. Physical performance was lower among survivors and associated with not living independently (OR=5.0, 95% CI=2.0–12.2) and not attending college (OR=2.3, 95% CI 1.2–4.4). Conclusion Muscle strength and fitness values among BT survivors are similar to those among persons 60+ years, and are associated with physical performance limitations. Physical performance limitations are associated with poor outcomes in home and school environments. These data indicate an opportunity for interventions targeted at improving long-term physical function in this survivor population. PMID:20564409

  16. Depression in Older Adults in Primary Care: An Integrative Approach to Care.

    PubMed

    Lill, Sheila

    2015-09-01

    Depression in older adults is a problem often encountered in primary care. While depression is evident in all populations in the primary care setting, assessment and care are more complicated in the older adult due to factors such as comorbidities, clinical presentation, adverse drug effects and drug interactions, and psychosocial factors. Due to these complications, it is essential to incorporate both conventional and alternative methods in assessment and treatment. This article aims to define depression in older adults, present the epidemiology, discuss clinical presentation and screening, and offer an integrative approach to intervention, including both pharmacological and nonpharmacological methods. Providing holistic and integrative care to older adults diagnosed with depression in the primary care setting is essential to promote healing and recovery. This article aims to provide insight for nurses, nurse practitioners, and other providers regarding the holistic and integrative care of depression in older adults in the primary care setting. PMID:25673577

  17. Primary Blast-Induced Traumatic Brain Injury in Rats Leads to Increased Prion Protein in Plasma: A Potential Biomarker for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory

    2015-01-01

    Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  18. Primary blast-induced traumatic brain injury in rats leads to increased prion protein in plasma: a potential biomarker for blast-induced traumatic brain injury.

    PubMed

    Pham, Nam; Sawyer, Thomas W; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory; Taghibiglou, Changiz

    2015-01-01

    Traumatic brain injury (TBI) is deemed the "signature injury" of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague-Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4-206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL ± 0.13 SE) is significantly increased compared with controls (2.46 ng/mL ± 0.14 SE; two tailed test p < 0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  19. Nurse Practitioner Primary Care Competencies in Specialty Areas: Adult, Family, Gerontological, Pediatric, and Women's Health.

    ERIC Educational Resources Information Center

    Crabtree, M. Katherine; Stanley, Joan; Werner, Kathryn E.; Schmid, Emily

    This document presents the nurse practitioner primary care competencies that a national panel of representatives of nine national organizations of the five primary care nurse practitioner specialties--adult, family, gerontological, pediatric, and women's health--identified as necessary for entry-level primary care nurse practitioners. Section 1…

  20. Recovery from Mild Traumatic Brain Injury in Previously Healthy Adults.

    PubMed

    Losoi, Heidi; Silverberg, Noah D; Wäljas, Minna; Turunen, Senni; Rosti-Otajärvi, Eija; Helminen, Mika; Luoto, Teemu M; Julkunen, Juhani; Öhman, Juha; Iverson, Grant L

    2016-04-15

    This prospective longitudinal study reports recovery from mild traumatic brain injury (MTBI) across multiple domains in a carefully selected consecutive sample of 74 previously healthy adults. The patients with MTBI and 40 orthopedic controls (i.e., ankle injuries) completed assessments at 1, 6, and 12 months after injury. Outcome measures included cognition, post-concussion symptoms, depression, traumatic stress, quality of life, satisfaction with life, resilience, and return to work. Patients with MTBI reported more post-concussion symptoms and fatigue than the controls at the beginning of recovery, but by 6 months after injury, did not differ as a group from nonhead injury trauma controls on cognition, fatigue, or mental health, and by 12 months, their level of post-concussion symptoms and quality of life was similar to that of controls. Almost all (96%) patients with MTBI returned to work/normal activities (RTW) within the follow-up of 1 year. A subgroup of those with MTBIs and controls reported mild post-concussion-like symptoms at 1 year. A large percentage of the subgroup who had persistent symptoms had a modifiable psychological risk factor at 1 month (i.e., depression, traumatic stress, and/or low resilience), and at 6 months, they had greater post-concussion symptoms, fatigue, insomnia, traumatic stress, and depression, and worse quality of life. All of the control subjects who had mild post-concussion-like symptoms at 12 months also had a mental health problem (i.e., depression, traumatic stress, or both). This illustrates the importance of providing evidence-supported treatment and rehabilitation services early in the recovery period. PMID:26437675

  1. Monte Carlo simulation of light propagation in the adult brain

    NASA Astrophysics Data System (ADS)

    Mudra, Regina M.; Nadler, Andreas; Keller, Emanuella; Niederer, Peter

    2004-06-01

    When near infrared spectroscopy (NIRS) is applied noninvasively to the adult head for brain monitoring, extra-cerebral bone and surface tissue exert a substantial influence on the cerebral signal. Most attempts to subtract extra-cerebral contamination involve spatially resolved spectroscopy (SRS). However, inter-individual variability of anatomy restrict the reliability of SRS. We simulated the light propagation with Monte Carlo techniques on the basis of anatomical structures determined from 3D-magnetic resonance imaging (MRI) exhibiting a voxel resolution of 0.8 x 0.8 x 0.8 mm3 for three different pairs of T1/T2 values each. The MRI data were used to define the material light absorption and dispersion coefficient for each voxel. The resulting spatial matrix was applied in the Monte Carlo Simulation to determine the light propagation in the cerebral cortex and overlaying structures. The accuracy of the Monte Carlo Simulation was furthermore increased by using a constant optical path length for the photons which was less than the median optical path length of the different materials. Based on our simulations we found a differential pathlength factor (DPF) of 6.15 which is close to with the value of 5.9 found in the literature for a distance of 4.5cm between the external sensors. Furthermore, we weighted the spatial probability distribution of the photons within the different tissues with the probabilities of the relative blood volume within the tissue. The results show that 50% of the NIRS signal is determined by the grey matter of the cerebral cortex which allows us to conclude that NIRS can produce meaningful cerebral blood flow measurements providing that the necessary corrections for extracerebral contamination are included.

  2. Angiotropism in primary cutaneous melanoma with brain metastasis: a study of 20 cases.

    PubMed

    Hung, Tawny; Morin, Jason; Munday, William R; Mackenzie, Ian R A; Lugassy, Claire; Barnhill, Raymond L

    2013-08-01

    Previous clinical and experimental studies suggested that invasion of the brain by metastatic melanoma may follow the external surfaces of vascular channels, that is, angiotropic extravascular migratory metastasis. Such angiotropic invasion seemss analogous to that of neoplastic glial invasion of the nervous system. We, therefore, have retrospectively investigated 20 primary melanoma cases and their respective metastatic brain lesions. The following parameters were analyzed in each primary melanoma: presence of angiotropism, Breslow thickness, Clark level, mitotic rate, sentinel lymph node (SLN) status, and time interval between the primary lesion and the metastasis. The metastatic brain lesions were examined for the presence of angiotropism. Of the 20 cases, 14 showed angiotropism in the primary lesion. The angiotropic group had a significantly deeper Breslow thickness (median 4.4 mm vs. 1.4 mm, P < 0.01) and was more mitotically active (median 11 vs. 4.7 mitoses/mm, P = 0.04). Interestingly, the angiotropic group had an average time lapse of 33 months from the primary lesion to the brain metastasis, whereas the nonangiotropic group had a 57-month time interval. Although the Kaplan-Meier analysis failed to show a survival difference in this small cohort (P = 0.235), there was a trend toward significance. Seven of 20 brain metastases showed angiotropism; however, no significant correlation between angiotropism in the primary melanomas and the corresponding metastatic lesions could be demonstrated. Indeed, angiotropism in the brain metastases was difficult to assess because the available material were generally small partial biopsy samplings and many showed conspicuous necrosis. Ten melanoma patients underwent SLN biopsy. The 3 of 6 positive cases in the angiotropic group had an average time lapse of 32 months from the primary lesion to the brain metastasis, whereas the 4 positive SLN biopsies in the nonangiotropic group had an average of 63 months. This preliminary

  3. Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images.

    PubMed

    Krafft, Christoph; Shapoval, Larysa; Sobottka, Stephan B; Geiger, Kathrin D; Schackert, Gabriele; Salzer, Reiner

    2006-07-01

    Brain metastases are secondary intracranial lesions which occur more frequently than primary brain tumors. The four most abundant types of brain metastasis originate from primary tumors of lung cancer, colorectal cancer, breast cancer and renal cell carcinoma. As metastatic cells contain the molecular information of the primary tissue cells and IR spectroscopy probes the molecular fingerprint of cells, IR spectroscopy based methods constitute a new approach to determine the origin of brain metastases. IR spectroscopic images of 4 by 4 mm2 tissue areas were recorded in transmission mode by a FTIR imaging spectrometer coupled to a focal plane array detector. Unsupervised cluster analysis revealed variances within each cryosection. Selected clusters of five IR images with known diagnoses trained a supervised classification model based on the algorithm soft independent modeling of class analogies (SIMCA). This model was applied to distinguish normal brain tissue from brain metastases and to identify the primary tumor of brain metastases in 15 independent IR images. All specimens were assigned to the correct tissue class. This proof-of-concept study demonstrates that IR spectroscopy can complement established methods such as histopathology or immunohistochemistry for diagnosis. PMID:16787638

  4. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  5. Primary hydatid cyst of the brain during pregnancy.

    PubMed

    Yilmaz, Nebi; Kiymaz, Nejmi; Etlik, Omer; Yazici, Taner

    2006-08-01

    A 26-year-old woman in the 28th week of pregnancy presented with a primary cerebral hydatid cyst manifesting as deteriorating consciousness and weakness in the left arm and leg. Cranial computed tomography revealed an intracranial hydatid cyst. The cyst was surgically removed and albendazole was administered. The patient had a spontaneous vaginal term delivery and no problem was observed in the mother or child. No primary focus was found in the lungs, liver, and other organs. Hydatid cyst is still an important disease. Intracranial hydatid cyst without primary foci in organs such as the liver and lungs is very rare. Primary cerebral hydatid cyst during pregnancy can be successfully treated by surgical and medical intervention. PMID:16936466

  6. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  7. Future Concerns of Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Olney, Marjorie F.

    2008-01-01

    This study examined future concerns conveyed by adult siblings who provided regular caregiving support to their brothers and sisters with traumatic brain injury (TBI). The authors surveyed a national sample of 280 adult siblings of persons with TBI. Using a constant comparative approach to text analysis, the authors analyzed responses to the…

  8. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast

    PubMed Central

    Anderson, Ryan; Maga, A. Murat

    2015-01-01

    High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine. PMID:26571123

  9. Environmental enrichment influences neuronal stem cells in the adult crayfish brain

    PubMed Central

    Ayub, Neishay; Benton, Jeanne L.; Zhang, Yi; Beltz, Barbara S.

    2011-01-01

    New neurons are incorporated throughout life into the brains of many vertebrate and non-vertebrate species. This process of adult neurogenesis is regulated by a variety of external and endogenous factors, including environmental enrichment, which increases the production of neurons in juvenile mice and crayfish. The primary goal of the present study was to exploit the spatial separation of the neuronal precursor cell lineage in crayfish to determine which generation(s) of precursors is altered by environmental conditions. Further, in crayfish, an intimate relationship between the 1st generation neuronal precursors (stem cells) and cells circulating in the hemolymph has been proposed (Zhang et al., 2009). Therefore, a second goal was to assess whether environmental enrichment alters the numbers or types of cells circulating in the hemolymph. We find that neurogenesis in the brains of sexually differentiated procambarid crayfish is enhanced by environmental enrichment as previously demonstrated by Sandeman and Sandeman (2000) in young, sexually undifferentiated Cherax destructor. We also show that environmental enrichment increases the cell cycle rate of neuronal stem cells. While there was no effect of environment on the overall numbers of cells circulating in the hemolymph, enrichment resulted in increased expression of glutamine synthetase, a marker of the neuronal stem cells, in a small percentage of circulating cells; there was little or no expression of this enzyme in hemolymph cells extracted from deprived animals. Thus, environmental enrichment influences the rate of neuronal stem cell division in adult crayfish, as well as the composition of cells circulating in the hemolymph. PMID:21485010

  10. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  11. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    ERIC Educational Resources Information Center

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  12. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility

    PubMed Central

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T.

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility. PMID:24275185

  13. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-01-01

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases. PMID:27098178

  14. Primary feather molt of adult mourning doves in North and South Carolina

    USGS Publications Warehouse

    Haas, G.H.; Amend, S.R.

    1979-01-01

    Examination of 8,141 adult mourning doves (Zenaida macroura) in North and South Carolina revealed that substantial numbers complete primary feather molt in September. Adult mourning doves shed primaries at the rate of 1 per 14 days. No difference was found in this rate between sexes or among years, 1969-74. The initiation of molt differed from year to year, and female molt always preceded male molt. Available data show that southern doves complete primary molt a month earlier than northern doves. Therefore, age based on primary molt can be biased upward if all molt-complete wings from southern hunting samples are considered immature.

  15. Psychology and primary care: New collaborations for providing effective care for adults with chronic health conditions.

    PubMed

    Fisher, Lawrence; Dickinson, W Perry

    2014-01-01

    The rapid transformation of primary care in the United States provides an opportunity for psychologists to become actively involved as integrated members of primary care teams in the provision of services for adults with chronic disease. The differences between primary care clinicians and psychologists with respect to education, culture, practice styles, reimbursement, and roles, however, pose notable barriers to effective integration. In this report we review models of collaboration, barriers to effective integration of services, and potential areas in which psychologists can make major contributions both to direct service delivery and to primary care practice, with special reference to the care of adults with chronic conditions. PMID:24820685

  16. Identification of primary tumors of brain metastases by infrared spectroscopic imaging and linear discriminant analysis.

    PubMed

    Krafft, Christoph; Shapoval, Larysa; Sobottka, Stephan B; Schackert, Gabriele; Salzer, Reiner

    2006-06-01

    This study applies infrared (IR) spectroscopy to distinguish normal brain tissue from brain metastases and to determine the primary tumor of four frequent brain metastases such as lung cancer, colorectal cancer, breast cancer, and renal cell carcinoma. Standard methods sometimes fail to identify the origin of brain metastases. As metastatic cells contain the molecular information of the primary tissue cells and IR spectroscopy probes the molecular fingerprint of cells, IR spectroscopy based methods constitute a new approach to determine the primary tumor of a brain metastasis. IR spectroscopic images were recorded by a FTIR spectrometer equipped with a macro sample chamber and coupled to a focal plane array detector. Unsupervised cluster analysis of IR images revealed variances within each sample and between samples of the same tissue type. Cluster averaged IR spectra of tissue classes with known diagnoses were selected to develop a metric with eight variables. These data trained a supervised classification model based on linear discriminant analysis that was used to identify the origin of 20 cryosections including one brain metastasis with an unknown primary tumor. PMID:16700626

  17. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  18. Primary Care of Adult Women: Common Dermatologic Conditions.

    PubMed

    Ruiz de Luzuriaga, Arlene M; Mhlaba, Julie; Roman, Carly

    2016-06-01

    Dermatologic disease often presents in the primary care setting. Therefore, it is important for the primary care provider to be familiar with the presentation, diagnosis, and treatment of common skin conditions. This article provides an overview of acne, rosacea, melasma, vitiligo, alopecia, nonmelanoma, and melanoma skin cancer, dermatitis, and lichen sclerosus. PMID:27212088

  19. Enhancing Primary Health Care Services for Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Melville, C. A.; Finlayson, J.; Cooper, S.-A.; Allan, L.; Robinson, N.; Burns, E.; Martin, G.; Morrison, J.

    2005-01-01

    Primary health care teams have an important part to play in addressing the health inequalities and high levels of unmet health needs experienced by people with intellectual disabilities (ID). Practice nurses have an expanding role within primary health care teams. However, no previous studies have measured their attitudes, knowledge, training…

  20. Insulin-like growth factor I is required for vessel remodeling in the adult brain

    PubMed Central

    Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I.

    2004-01-01

    Although vascular dysfunction is a major suspect in the etiology of several important neurodegenerative diseases, the signals involved in vessel homeostasis in the brain are still poorly understood. We have determined whether insulin-like growth factor I (IGF-I), a wide-spectrum growth factor with angiogenic actions, participates in vascular remodeling in the adult brain. IGF-I induces the growth of cultured brain endothelial cells through hypoxiainducible factor 1α and vascular endothelial growth factor, a canonical angiogenic pathway. Furthermore, the systemic injection of IGF-I in adult mice increases brain vessel density. Physical exercise that stimulates widespread brain vessel growth in normal mice fails to do so in mice with low serum IGF-I. Brain injury that stimulates angiogenesis at the injury site also requires IGF-I to promote perilesion vessel growth, because blockade of IGF-I input by an anti-IGF-I abrogates vascular growth at the injury site. Thus, IGF-I participates in vessel remodeling in the adult brain. Low serum/brain IGF-I levels that are associated with old age and with several neurodegenerative diseases may be related to an increased risk of vascular dysfunction. PMID:15210967

  1. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    PubMed Central

    Scott, Gregory D.; Karns, Christina M.; Dow, Mark W.; Stevens, Courtney; Neville, Helen J.

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11–15° vs. 2–7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf

  2. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  3. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export

    PubMed Central

    Legati, Andrea; Giovannini, Donatella; Nicolas, Gaël; López-Sánchez, Uriel; Quintáns, Beatriz; Oliveira, João; Sears, Renee L.; Marisa Ramos, Eliana; Spiteri, Elizabeth; Sobrido, María-Jesús; Carracedo, Ángel; Castro-Fernández, Cristina; Cubizolle, Stéphanie; Fogel, Brent L.; Goizet, Cyril; Jen, Joanna C.; Kirdlarp, Suppachok; Lang, Anthony E.; Miedzybrodzka, Zosia; Mitarnun, Witoon; Paucar, Martin; Paulson, Henry; Pariente, Jérémie; Richard, Anne-Claire; Salins, Naomi S.; Simpson, Sheila A.; Striano, Pasquale; Svenningsson, Per; Tison, François; Unni, Vivek K.; Vanakker, Olivier; Wessels, Marja W.; Wetchaphanphesat, Suppachok; Yang, Michele; Boller, Francois; Campion, Dominique; Hannequin, Didier; Sitbon, Marc; Geschwind, Daniel H.; Battini, Jean-Luc; Coppola, Giovanni

    2015-01-01

    Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions, thus far associated with SLC20A2, PDGFB, or PDGFRB mutations. We identified in multiple PFBC families mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, providing a direct evidence of an impact of XPR1 and phosphate homeostasis in PFBC. PMID:25938945

  4. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  5. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  6. Acute brain slice methods for adult and aging animals: application of targeted patch clampanalysis and optogenetics

    PubMed Central

    Daigle, Tanya L.; Chen, Qian; Feng, Guoping

    2014-01-01

    Summary The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically-defined neuronal subtypes. PMID:25023312

  7. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  8. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  9. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles.

    PubMed

    Freitag, Tanja C; Maisner, Andrea

    2016-03-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  10. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles

    PubMed Central

    Freitag, Tanja C.

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  11. Prevalence and Predictors of Change in Adult-Child Primary Caregivers

    ERIC Educational Resources Information Center

    Szinovacz, Maximiliane E.; Davey, Adam

    2013-01-01

    Family caregiving research is increasingly contextual and dynamic, but few studies have examined prevalence and predictors of change in primary caregivers, those with the most frequent contact with healthcare professionals. We identified prevalence and predictors of 2-year change in primary adult-child caregivers. Data pooled from the 1992-2000…

  12. Primary Care for Adults with Down Syndrome: Adherence to Preventive Healthcare Recommendations

    ERIC Educational Resources Information Center

    Jensen, K. M.; Taylor, L. C.; Davis, M. M.

    2013-01-01

    Background: Due to significant medical improvements, persons with Down syndrome now live well into adulthood. Consequently, primary care for adults with Down syndrome needs to incorporate routine care with screening for condition-specific comorbidities. This study seeks to evaluate the adherence of primary care physicians to age- and…

  13. Giant Primary Retroperitoneal Teratoma in an Adult: A Case Report

    PubMed Central

    Mathur, Poonam; Lopez-Viego, Miguel A.; Howell, Myron

    2010-01-01

    Teratomas are bizarre neoplasms derived from embryonic tissues that are typically found only in the gonadal and sacrococcygeal regions of adults. Retroperitoneal teratomas are rare and present challenging management options. We report here the case of a histologically unusual retroperitoneal tumor detected on computed tomography during the workup of abdominal pain in a 32-year-old male. The evaluation and treatment of this condition and a review of the literature are included in this paper. PMID:20862380

  14. Guideline for primary care management of headache in adults

    PubMed Central

    Becker, Werner J.; Findlay, Ted; Moga, Carmen; Scott, N. Ann; Harstall, Christa; Taenzer, Paul

    2015-01-01

    Abstract Objective To increase the use of evidence-informed approaches to diagnosis, investigation, and treatment of headache for patients in primary care. Quality of evidence A comprehensive search was conducted for relevant guidelines and systematic reviews published between January 2000 and May 2011. The guidelines were critically appraised using the AGREE (Appraisal of Guidelines for Research and Evaluation) tool, and the 6 highest-quality guidelines were used as seed guidelines for the guideline adaptation process. Main message A multidisciplinary guideline development group of primary care providers and other specialists crafted 91 specific recommendations using a consensus process. The recommendations cover diagnosis, investigation, and management of migraine, tension-type, medication-overuse, and cluster headache. Conclusion A clinical practice guideline for the Canadian health care context was created using a guideline adaptation process to assist multidisciplinary primary care practitioners in providing evidence-informed care for patients with headache. PMID:26273080

  15. Progress of primary feather molt of adult mourning doves in Missouri

    USGS Publications Warehouse

    Sadler, K.C.; Tomlinson, R.E.; Wight, H.M.

    1970-01-01

    The examination of 7,892 adult doves in Missouri between 1953 and 1965 showed that less than 2.5% of adult doves completed their molt before October 1. Adult doves of both sexes began molting their primary feathers during early June in Missouri and lost the last (tenth) primary during the latter half of October. Approximately 140-150 days were required to complete the molt. Thus, early-hatched immatures, which begin their primary molt 25-30 days after hatching, contributed the bulk of the wings with completed molts in September. By correctly classifying September samples of dove wings with a completed molt as young-of-the-year a more accurate young:adult ratio is obtained.

  16. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  17. Altered Cross-Modal Processing in the Primary Auditory Cortex of Congenitally Deaf Adults: A Visual-Somatosensory fMRI Study with a Double-Flash Illusion

    PubMed Central

    Dow, Mark W.; Neville, Helen J.

    2012-01-01

    The developing brain responds to the environment by using statistical correlations in input to guide functional and structural changes—that is, the brain displays neuroplasticity. Experience shapes brain development throughout life, but neuroplasticity is variable from one brain system to another. How does the early loss of a sensory modality affect this complex process? We examined cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus, the site of human primary auditory cortex, in congenitally deaf humans by measuring the fMRI signal change in response to spatially coregistered visual, somatosensory, and bimodal stimuli. In the deaf Heschl's gyrus, signal change was greater for somatosensory and bimodal stimuli than that of hearing participants. Visual responses in Heschl's gyrus, larger in deaf than hearing, were smaller than those elicited by somatosensory stimulation. In contrast to Heschl's gyrus, in the superior-temporal cortex visual signal was comparable to somatosensory signal. In addition, deaf adults perceived bimodal stimuli differently; in contrast to hearing adults, they were susceptible to a double-flash visual illusion induced by two touches to the face. Somatosensory and bimodal signal change in rostrolateral Heschl's gyrus predicted the strength of the visual illusion in the deaf adults in line with the interpretation that the illusion is a functional consequence of the altered cross-modal organization observed in deaf auditory cortex. Our results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex. PMID:22787048

  18. Primary Care for the Older Adult Patient: Common Geriatric Issues and Syndromes.

    PubMed

    Thompson, Katherine; Shi, Sandra; Kiraly, Carmela

    2016-06-01

    Older adults are the fastest growing segment of the US population and the majority of older adults are women. Primary care for the older adult patient requires a wide variety of skills, reflecting the complexity and heterogeneity of this patient population. Individualizing care through consideration of patients' goals, medical conditions, and prognosis is paramount. Quality care for the older adult patient requires familiarity with common geriatric syndromes, such as dementia, falls, and polypharmacy. In addition, developing the knowledge and communication skills necessary for complex care and end-of-life care planning is essential. PMID:27212097

  19. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  20. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.; Atkins, H.L.; Poston, J.W. ||

    1996-07-01

    During the last decade, several new radiopharmaceuticals have been introduced for brain imaging. The marked differences of these tracers in tissue specificicity within the brain and their increasing use for diagnostic studies support the need for a more antihropomorphic model of the human brain and head. Brain and head models developed in the past have comprised only simplistic representations of this anatomic region. A new brain model has been developed which includes eight subregions: the caudate nucleus, the cerebellium, the cerebral cortex, the lateral ventricles, the lentiform nucleus, the thalamus, the third ventricle and the white matter. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. The head model, which includes both the thyroid and eyes, was modified in this work to include the cerebrospinal fluid within the cranial and spinal regions. Absorbed fractions of energy for photon and electron sources located in thirteen source regions within the new head model were calculated using the EGS4 Monte Carlo radiation transport code for radiations in the energy range 10 keV to 4 MeV. S-values were calculated for five radionuclides used in brain imaging ({sup 11}C, {sup 15}O, {sup 18}F, {sup 99m}Tc and {sup 123}I) and for three radionuclides showing selective uptake in the thyroid ({sup 99m}Tc, {sup 123}I, and {sup 131}I). S-values were calculated using 100 discrete energy points in the beta-emission spectrum of the different radionuclides. 17 refs., 14 figs., 3 tabs.

  1. aBEAT: a toolbox for consistent analysis of longitudinal adult brain MRI.

    PubMed

    Dai, Yakang; Wang, Yaping; Wang, Li; Wu, Guorong; Shi, Feng; Shen, Dinggang

    2013-01-01

    Longitudinal brain image analysis is critical for revealing subtle but complex structural and functional changes of brain during aging or in neurodevelopmental disease. However, even with the rapid increase of clinical research and trials, a software toolbox dedicated for longitudinal image analysis is still lacking publicly. To cater for this increasing need, we have developed a dedicated 4D Adult Brain Extraction and Analysis Toolbox (aBEAT) to provide robust and accurate analysis of the longitudinal adult brain MR images. Specially, a group of image processing tools were integrated into aBEAT, including 4D brain extraction, 4D tissue segmentation, and 4D brain labeling. First, a 4D deformable-surface-based brain extraction algorithm, which can deform serial brain surfaces simultaneously under temporal smoothness constraint, was developed for consistent brain extraction. Second, a level-sets-based 4D tissue segmentation algorithm that incorporates local intensity distribution, spatial cortical-thickness constraint, and temporal cortical-thickness consistency was also included in aBEAT for consistent brain tissue segmentation. Third, a longitudinal groupwise image registration framework was further integrated into aBEAT for consistent ROI labeling by simultaneously warping a pre-labeled brain atlas to the longitudinal brain images. The performance of aBEAT has been extensively evaluated on a large number of longitudinal MR T1 images which include normal and dementia subjects, achieving very promising results. A Linux-based standalone package of aBEAT is now freely available at http://www.nitrc.org/projects/abeat. PMID:23577105

  2. Proactive Learning in Primary Health Care: An Adult Education Model.

    ERIC Educational Resources Information Center

    Marsick, Victoria J.

    1988-01-01

    A two-week workshop was held by the United Nations Children Fund and the World Health Organization for planners of training in primary health care (PHC) to increase their ability to plan effectively for PHC training. The emphasis was on placing training within the national context and ensuring that people would be trained to meet national goals.…

  3. Development of a conceptual model to predict physical activity participation in adults with brain injuries.

    PubMed

    Driver, Simon

    2008-10-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with brain injuries completed a series of questionnaires measuring each psychosocial variable. The structural analysis indicated a nonsignificant chi squared value and good fit indices for model two which included affect as the mediating variable. Findings indicate that affect is critical in shaping the physical activity cognitions and behaviors of adults with brain injuries. Suggestions are made on practical ways to enhance affect and subsequently physical activity participation. PMID:18955746

  4. White matter structure in young adults with familial risk for psychosis - The Oulu Brain and Mind Study.

    PubMed

    Koivukangas, Jenni; Björnholm, Lassi; Tervonen, Osmo; Miettunen, Jouko; Nordström, Tanja; Kiviniemi, Vesa; Mäki, Pirjo; Jääskeläinen, Erika; Mukkala, Sari; Moilanen, Irma; Barnett, Jennifer H; Jones, Peter B; Nikkinen, Juha; Veijola, Juha

    2015-09-30

    According to the disconnectivity model, disruptions in neural connectivity play an essential role in the pathology of schizophrenia. The aim of this study was to determine whether these abnormalities are present in young adults with familial risk (FR) for psychosis in the general population based sample. We used diffusion tensor imaging (DTI) and tract-based spatial statistics to compare whole-brain fractional anisotropy, mean diffusivity, and axial and radial diffusion in 47 (17 males) FR subjects to 51 controls (17 males). All the participants were aged between 20 and 25 years and were members of the Northern Finland Birth Cohort 1986 (Oulu Brain and Mind Study). Region of interest analyses were conducted for 12 tracts. Separately, we analysed whole-brain FA for the subgroup with FR for schizophrenia (n=13) compared with 13 gender-matched controls. Contrary to our expectations there were no differences in any of the DTI measures between FR and control groups. This suggests that white matter abnormalities may not be a genetic feature for risk of psychosis and preceding the onset of a psychotic disorder. Our findings do not support the theory of disconnectivity as a primary sign of psychosis in young adults with FR for the illness. PMID:26231121

  5. Primary gonadal damage following treatment of brain tumors in childhood

    SciTech Connect

    Ahmed, S.R.; Shalet, S.M.; Campbell, R.H.; Deakin, D.P.

    1983-10-01

    Gonadal function was studied in two groups of children previously treated for medulloblastoma with surgery followed by postoperative craniospinal irradiation. In group 1 but not in group 2, the children also received adjuvant chemotherapy for one to two years. All children in group 1 received a nitrosourea (BCNU or CCNU), plus vincristine in four and procarbazine in three patients. The nine children in group 1 showed clinical and biochemical evidence of gonadal damage with elevated serum FSH concentrations and, in the boys, small testes for their stage of pubertal development. In group 2 (n . 8), each child had completed pubertal development normally, the boys had adult sized testes and the girls regular menses. Gonadotropin values were normal in all eight children. We conclude that nitrosoureas were responsible for the gonadal damage in the children in group 1, with procarbazine also contributing to the damage in the three children who received this drug. In view of the limited proved value of adjuvant chemotherapy with nitrosoureas in the treatment of medulloblastoma, recognition of this serious complication of cytotoxic drug therapy may necessitate reassessing in which subgroups of children with medulloblastoma the benefits of adjuvant chemotherapy outweigh the complications.

  6. Ephrin/Eph receptor expression in brain of adult nonhuman primates: implications for neuroadaptation.

    PubMed

    Xiao, Danqing; Miller, Gregory M; Jassen, Amy; Westmoreland, Susan V; Pauley, Douglas; Madras, Bertha K

    2006-01-01

    In developing brain, Eph receptors and their ephrin ligands (Ephs/ephrins) are implicated in facilitating topographic guidance of a number of pathways, including the nigrostriatal and mesolimbic dopamine (DA) pathways. In adult rodent brain, these molecules are implicated in neuronal plasticity associated with learning and memory. Cocaine significantly alters the expression of select members of this family of axonal guidance molecules, implicating Ephs, ephrins in drug-induced neuroadaptation. The potential contribution of Ephs, ephrins to cocaine-induced reorganization of striatal circuitry brain in primates [Saka, E., Goodrich, C., Harlan, P., Madras, B.K., Graybiel, A.M., 2004. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557-7565] is unknown because there are no documented reports of Eph/ephrin expression or function in adult primate brain. We now report that brains of adult old and new world monkeys express mRNA encoding EphA4 receptor and ephrin-B2 ligand, implicated in topographic guidance of dopamine and striatal neurons during development. Their encoded proteins distributed highly selectively in regions of adult monkey brain. EphA4 mRNA levels were prominent in the DA-rich caudate/putamen, nucleus accumbens and globus pallidus, as well as the medial and orbitofrontal cortices, hippocampus, amygdala, thalamus and cerebellum. Immunocytochemical localization of EphA4 protein revealed discrete expression in caudate/putamen, globus pallidus, substantia nigra, cerebellar Purkinje cells, pyramidal cells of frontal cortices (layers II, III and V) and the subgranular zone of the hippocampus. Evidence for EphA4 expression in dopamine neurons emerged from colocalization with tyrosine-hydroxylase-positive terminals in striatum and substantia nigra and ventral tegmental area cell bodies. The association of axonal guidance molecules with drug-induced reorganization of adult primate brain circuitry warrants

  7. miR-20b is up-regulated in brain metastases from primary breast cancers

    PubMed Central

    Ahmad, Aamir; Ginnebaugh, Kevin R.; Sethi, Seema; Chen, Wei; Ali, Rouba; Mittal, Sandeep; Sarkar, Fazlul H.

    2015-01-01

    Brain metastases are frequent in patients with advanced breast cancer and are associated with poor prognosis. However, unique molecular biomarkers have not yet been established. We hypothesized that microRNA-20b (miR-20b) plays a role in breast cancer brain metastasis. Our study cohort comprised of eleven breast cancer patients with brain metastasis and nine control patients (age, stage, and follow-up matched) with breast cancer without brain metastasis. Cases were reviewed microscopically to select tumor blocks with >50% tumor cells, RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks and expression of miR-20b analyzed using qRT-PCR. We further tested the effect of miR-20b overexpression on colony formation and invasion in vitro using MCF-7 and MDA-MB-231 cells. In the patient-derived samples, miR-20b expression was significantly higher in brain metastases of breast cancer patients, compared to primary breast tumors as well as the patients without brain metastasis. miR-20b also significantly induced the colony formation and invasiveness of breast cancer cells. Further, miR-20b levels were observed to be high in brain-metastasizing cells, compared to bone-metastasizing cells. Together, our findings suggest a novel role of miR-20b in breast cancer brain metastasis that warrants further investigation for its potential to be developed as prognostic and/or therapeutic target. PMID:25893380

  8. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  9. Using Network Science to Evaluate Exercise-Associated Brain Changes in Older Adults

    PubMed Central

    Burdette, Jonathan H.; Laurienti, Paul J.; Espeland, Mark A.; Morgan, Ashley; Telesford, Qawi; Vechlekar, Crystal D.; Hayasaka, Satoru; Jennings, Janine M.; Katula, Jeffrey A.; Kraft, Robert A.; Rejeski, W. Jack

    2010-01-01

    Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET) or healthy aging educational control (HAC) treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P) trial. Following the 4-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group's hippocampal cerebral blood flow (CBF) exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module) as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and CBF, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise. PMID:20589103

  10. Brain function differences in language processing in children and adults with autism.

    PubMed

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience. PMID:23495230

  11. Brain Function Differences in Language Processing in Children and Adults with Autism

    PubMed Central

    Williams, Diane L.; Cherkassky, Vladimir L.; Mason, Robert A.; Keller, Timothy A.; Minshew, Nancy J.; Just, Marcel Adam

    2015-01-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience. PMID:23495230

  12. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  13. Educating the adult brain: How the neuroscience of learning can inform educational policy

    NASA Astrophysics Data System (ADS)

    Knowland, Victoria C. P.; Thomas, Michael S. C.

    2014-05-01

    The acquisition of new skills in adulthood can positively affect an individual's quality of life, including their earning potential. In some cases, such as the learning of literacy in developing countries, it can provide an avenue to escape from poverty. In developed countries, job retraining in adulthood contributes to the flexibility of labour markets. For all adults, learning opportunities increase participation in society and family life. However, the popular view is that adults are less able to learn for an intrinsic reason: their brains are less plastic than in childhood. This article reviews what is currently known from neuroscientific research about how brain plasticity changes with age, with a particular focus on the ability to acquire new skills in adulthood. Anchoring their review in the examples of the adult acquisition of literacy and new motor skills, the authors address five specific questions: (1) Are sensitive periods in brain development relevant to learning complex educational skills like literacy? (2) Can adults become proficient in a new skill? (3) Can everyone learn equally effectively in adulthood? (4) What is the role of the learning environment? (5) Does adult education cost too much? They identify areas where further research is needed and conclude with a summary of principles for enhancing adult learning now established on a neuroscience foundation.

  14. The effects of sleep deprivation on brain functioning in older adults.

    PubMed

    Almklov, Erin L; Drummond, Sean P A; Orff, Henry; Alhassoon, Omar M

    2015-01-01

    Few studies have examined the effects of total sleep deprivation (TSD) on cognitive performance and brain activation using functional MRI (fMRI) in older adults. The current study examines blood oxygen level-dependent (BOLD) activation in older adults and younger adults during the sustained attention (GO) and response inhibition (NOGO) portions of a GO-NOGO cognitive task following 36 hr of total sleep deprivation. No significant performance differences were observed between the groups on the behavioral outcome measures of total hits and false alarms. Neuroimaging results, however, revealed a significant interaction between age-group and sleep-deprivation status. Specifically, older adults showed greater BOLD activation as compared to younger adults after 36 hours total sleep deprivation in brain regions typically associated with attention and inhibitory processes. These results suggest in order for older adults to perform the GO-NOGO task effectively after sleep deprivation, they rely on compensatory recruitment of brain regions that aide in the maintenance of cognitive performance. PMID:24787041

  15. Vitamin D as a neurosteroid affecting the developing and adult brain.

    PubMed

    Groves, Natalie J; McGrath, John J; Burne, Thomas H J

    2014-01-01

    Vitamin D deficiency is prevalent throughout the world, and growing evidence supports a requirement for optimal vitamin D levels for the healthy developing and adult brain. Vitamin D has important roles in proliferation and differentiation, calcium signaling within the brain, and neurotrophic and neuroprotective actions; it may also alter neurotransmission and synaptic plasticity. Recent experimental studies highlight the impact that vitamin D deficiency has on brain function in health and disease. In addition, results from recent animal studies suggest that vitamin D deficiency during adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain stressors. An increasing number of epidemiological studies indicate that vitamin D deficiency is associated with a wide range of neuropsychiatric disorders and neurodegenerative diseases. Vitamin D supplementation is readily available and affordable, and this review highlights the need for further research. PMID:25033060

  16. Mental Health Screening of Older Adults in Primary Care

    PubMed Central

    Davis, Mary J.; Moye, Jennifer; Karel, Michele J.

    2016-01-01

    In an effort to document mental health outreach in our primary care clinic, 316 veterans (mean age 72) not currently in psychiatric treatment were screened for multiple mental health symptoms. Depressed mood was reported by 18% of the sample, insomnia by 26%, and morbid/suicidal ideation by 6.9% for at least several days during the past 2 weeks. Of those who experienced a loss over the past year (43%), 36% remained affected by the loss. Also reported were anxiety symptoms (29%) and PTSD symptoms (14%). Two-fifths (39%) of patients reported drinking alcohol in the past week, 18% more than 5 days, and 13% more than 3 drinks per sitting. Twenty-six percent of the patients reported symptoms warranting intervention; of these, only 39% accepted a treatment referral. While screening for depressed mood and alcohol use is now common in primary care, we found it useful to screen for specific symptoms of depression (including insomnia and suicidal ideation), persisting grief reactions, anxiety, and PTSD in this setting. Further research is necessary to determine factors that underlie some patients’ refusal to accept mental health treatment.

  17. Fetal Alcohol Exposure Reduces Adult Brain Plasticity. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This Brief summarizes the findings and implications of "Moderate Fetal Alcohol Exposure Impairs the Neurogenic Response to an Enriched Environment in Adult Mice" (I. Y. Choi; A. M. Allan; and L. A. Cunningham). Observations of mice…

  18. Amphetamine modulates brain signal variability and working memory in younger and older adults

    PubMed Central

    Garrett, Douglas D.; Nagel, Irene E.; Preuschhof, Claudia; Burzynska, Agnieszka Z.; Marchner, Janina; Wiegert, Steffen; Jungehülsing, Gerhard J.; Nyberg, Lars; Villringer, Arno; Li, Shu-Chen; Heekeren, Hauke R.; Bäckman, Lars; Lindenberger, Ulman

    2015-01-01

    Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics. PMID:26034283

  19. Structural and functional rich club organization of the brain in children and adults.

    PubMed

    Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism. PMID:24505468

  20. Regulation of brain water during acute glucose-induced hyperosmolality in ovine fetuses, lambs, and adults.

    PubMed

    Stonestreet, Barbara S; Petersson, Katherine H; Sadowska, Grazyna B; Patlak, Clifford S

    2004-02-01

    We tested the hypothesis that, during acute glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and that brain volume regulation is present in fetuses, premature and newborn lambs. Brain water responses to glucose-induced hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, and adult sheep. After exposure of the sheep to increases in osmolality with glucose plus NaCl, brain water and electrolytes were measured. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. In the absence of volume regulation, brain solute remains constant as osmolality changes. The osmotically active solute demonstrated direct linear correlations with plasma osmolality in the cerebral cortex of the fetuses at 60% of gestation (r = 0.72, n = 24, P = 0.0001), premature lambs (r = 0.58, n = 22, P = 0.005), newborn lambs (r = 0.57, n = 24, P = 0.004), and adult sheep (r = 0.70, n = 18, P = 0.001). Similar findings were observed in the cerebellum and medulla. Increases in the quantity of osmotically active solute over the range of plasma osmolalities indicate that volume regulation was present in the brain regions of the fetuses, premature lambs, newborn lambs, and adult sheep during glucose-induced hyperosmolality. We conclude that, during glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and exhibits volume regulation in fetuses at 60% of gestation, premature lambs, newborn lambs, and adult sheep. PMID:14578364

  1. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    SciTech Connect

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  2. Personality Assessment Screener, Childhood Abuse, and Adult Partner Violence in African American Women Using Primary Care.

    PubMed

    Porcerelli, John H; Hurrell, Kristen; Cogan, Rosemary; Jeffries, Keturah; Markova, Tsveti

    2015-12-01

    This study assessed the relationship between psychopathology with the Personality Assessment Screener (PAS) and childhood physical and sexual abuse and adult physical and sexual partner violence in a primary care sample of 98 urban-dwelling African American women. Patients completed the PAS, the Childhood Trauma Questionnaire, and the Conflict Tactics Scale. The PAS total score significantly correlated with all measures of childhood and adult abuse. Stepwise regression analyses revealed that PAS element scores of Suicidal Thinking and Hostile Control significantly predicted a history of childhood physical abuse; Suicidal Thinking, Hostile Control, and Acting Out significantly predicted a history of childhood sexual abuse; Suicidal Thinking, Negative Affect, and Alienation significantly predicted current adult partner physical violence; and Psychotic Features, Alcohol Problems, and Anger Control significantly predicted current adult sexual partner violence. The PAS appears to be a useful measure for fast-paced primary care settings for identifying patients who need a more thorough assessment for abuse. PMID:26374084

  3. Use of and interest in alternative therapies among adult primary care clinicians and adult members in a large health maintenance organization.

    PubMed Central

    Gordon, N P; Sobel, D S; Tarazona, E Z

    1998-01-01

    During spring 1996, random samples of adult primary care physicians, obstetrics-gynecology physicians and nurse practitioners, and adult members of a large northern California group practice model health maintenance organization (HMO) were surveyed by mail to assess the use of alternative therapies and the extent of interest in having them incorporated into HMO-delivered care. Sixty-one percent (n = 624) of adult primary care physicians, 70% (n = 157) of obstetrics-gynecology clinicians, and 50% (2 surveys, n = 1,507 and n = 17,735) of adult HMO members responded. During the previous 12 months, 25% of adults reported using and nearly 90% of adult primary care physicians and obstetrics-gynecology clinicians reported recommending at least 1 alternative therapy, primarily for pain management. Chiropractic, acupuncture, massage, and behavioral medicine techniques such as meditation and relaxation training were most often cited. Obstetrics-gynecology clinicians used herbal and homeopathic medicines more often than adult primary care physicians, primarily for menopause and premenstrual syndrome. Two thirds of adult primary care physicians and three fourths of obstetrics-gynecology clinicians were at least moderately interested in using alternative therapies with patients, and nearly 70% of young and middle-aged adult and half of senior adult members were interested in having alternative therapies incorporated into their health care. Adult primary care physicians and members were more interested in having the HMO cover manipulative and behavioral medicine therapies than homeopathic or herbal medicines. PMID:9771154

  4. Use of and interest in alternative therapies among adult primary care clinicians and adult members in a large health maintenance organization.

    PubMed

    Gordon, N P; Sobel, D S; Tarazona, E Z

    1998-09-01

    During spring 1996, random samples of adult primary care physicians, obstetrics-gynecology physicians and nurse practitioners, and adult members of a large northern California group practice model health maintenance organization (HMO) were surveyed by mail to assess the use of alternative therapies and the extent of interest in having them incorporated into HMO-delivered care. Sixty-one percent (n = 624) of adult primary care physicians, 70% (n = 157) of obstetrics-gynecology clinicians, and 50% (2 surveys, n = 1,507 and n = 17,735) of adult HMO members responded. During the previous 12 months, 25% of adults reported using and nearly 90% of adult primary care physicians and obstetrics-gynecology clinicians reported recommending at least 1 alternative therapy, primarily for pain management. Chiropractic, acupuncture, massage, and behavioral medicine techniques such as meditation and relaxation training were most often cited. Obstetrics-gynecology clinicians used herbal and homeopathic medicines more often than adult primary care physicians, primarily for menopause and premenstrual syndrome. Two thirds of adult primary care physicians and three fourths of obstetrics-gynecology clinicians were at least moderately interested in using alternative therapies with patients, and nearly 70% of young and middle-aged adult and half of senior adult members were interested in having alternative therapies incorporated into their health care. Adult primary care physicians and members were more interested in having the HMO cover manipulative and behavioral medicine therapies than homeopathic or herbal medicines. PMID:9771154

  5. Regeneration, Plasticity, and Induced Molecular Programs in Adult Zebrafish Brain

    PubMed Central

    Cosacak, Mehmet Ilyas; Papadimitriou, Christos; Kizil, Caghan

    2015-01-01

    Regenerative capacity of the brain is a variable trait within animals. Aquatic vertebrates such as zebrafish have widespread ability to renew their brains upon damage, while mammals have—if not none—very limited overall regenerative competence. Underlying cause of such a disparity is not fully evident; however, one of the reasons could be activation of peculiar molecular programs, which might have specific roles after injury or damage, by the organisms that regenerate. If this hypothesis is correct, then there must be genes and pathways that (a) are expressed only after injury or damage in tissues, (b) are biologically and functionally relevant to restoration of neural tissue, and (c) are not detected in regenerating organisms. Presence of such programs might circumvent the initial detrimental effects of the damage and subsequently set up the stage for tissue redevelopment to take place by modulating the plasticity of the neural stem/progenitor cells. Additionally, if transferable, those “molecular mechanisms of regeneration” could open up new avenues for regenerative therapies of humans in clinical settings. This review focuses on the recent studies addressing injury/damage-induced molecular programs in zebrafish brain, underscoring the possibility of the presence of genes that could be used as biomarkers of neural plasticity and regeneration. PMID:26417601

  6. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  7. Canonical genetic signatures of the adult human brain.

    PubMed

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  8. Asymptomatic Primary Merkel Cell Polyomavirus Infection among Adults

    PubMed Central

    Tolstov, Yanis L.; Knauer, Alycia; Chen, Jian Guo; Kensler, Thomas W.; Kingsley, Lawrence A.; Moore, Patrick S.

    2011-01-01

    Merkel cell polyomavirus (MCV) is a recently discovered virus that causes 80% of Merkel cell carcinomas. We examined data for 564 gay/bisexual male participants >18 years of age in the Multicenter AIDS Cohort Study in Pittsburgh, Pennsylvania, USA, and found that 447 (79.3%) were MCV-antibody positive at initial enrollment. Of the 117 MCV-seronegative men, 31 subsequently seroconverted over a 4-year follow-up period, corresponding to a 6.6% annual conversion rate. MCV immunoglobulin G levels remained detectable up to 25 years after exposure. No signs, symptoms, or routine diagnostic test results were associated with MCV infection, and no correlation between HIV infection or AIDS progression and MCV infection was noted. An initial correlation between chronic hepatitis B virus infection and MCV prevalence could not be confirmed among MCV seroconverters or in studies of a second hepatitis B virus–hyperendemic cohort from Qidong, China. In adults, MCV is typically an asymptomatic, common, and commensal viral infection that initiates rare cancers after virus (rather than host cell) mutations. PMID:21801612

  9. Genetic Methods to Identify and Manipulate Newly Born Neurons in the Adult Brain

    PubMed Central

    Imayoshi, Itaru; Sakamoto, Masayuki; Kageyama, Ryoichiro

    2011-01-01

    Although mammalian neurogenesis is mostly completed by the perinatal period, new neurons are continuously generated in the subventricular zone of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. Since the discovery of adult neurogenesis, many extensive studies have been performed on various aspects of adult neurogenesis, including proliferation and fate-specification of adult neural stem cells, and the migration, maturation and synaptic integration of newly born neurons. Furthermore, recent research has shed light on the intensive contribution of adult neurogenesis to olfactory-related and hippocampus-mediated brain functions. The field of adult neurogenesis progressed tremendously thanks to technical advances that facilitate the identification and selective manipulation of newly born neurons among billions of pre-existing neurons in the adult central nervous system. In this review, we introduce recent advances in the methodologies for visualizing newly generated neurons and manipulating neurogenesis in the adult brain. Particularly, the application of site-specific recombinases and Tet inducible system in combination with transgenic or gene targeting strategy is discussed in further detail. PMID:21562606

  10. Brain Blood Flow Related to Acoustic Laryngeal Reaction Time in Adult Developmental Stutterers.

    ERIC Educational Resources Information Center

    Watson, Ben C.; And Others

    1992-01-01

    This study sought to identify patterns of impaired acoustic laryngeal reaction time as a function of response complexity parallel to metabolic measures of brain function. Findings indicated that the disruption in speech motor control for 16 adult male developmental stutterers was systematically related to metabolic asymmetry in left superior and…

  11. Brain Mapping of Language and Auditory Perception in High-Functioning Autistic Adults: A PET Study.

    ERIC Educational Resources Information Center

    Muller, R-A.; Behen, M. E.; Rothermel, R. D.; Chugani, D. C.; Muzik, O.; Mangner, T. J.; Chugani, H. T.

    1999-01-01

    A study used positron emission tomography (PET) to study patterns of brain activation during auditory processing in five high-functioning adults with autism. Results found that participants showed reversed hemispheric dominance during the verbal auditory stimulation and reduced activation of the auditory cortex and cerebellum. (CR)

  12. Humor, Rapport, and Uncomfortable Moments in Interactions with Adults with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kovarsky, Dana; Schiemer, Christine; Murray, Allison

    2011-01-01

    We examined uncomfortable moments that damaged rapport during group interactions between college students in training to become speech-language pathologists and adults with traumatic brain injury. The students worked as staff in a community-based program affiliated with a university training program that functioned as a recreational gathering…

  13. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Cancer.gov

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  14. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    PubMed Central

    Zheng, Zhiwei; Zhu, Xinyi; Yin, Shufei; Wang, Baoxi; Niu, Yanan; Huang, Xin; Li, Rui; Li, Juan

    2015-01-01

    Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age. PMID:25810927

  15. Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors.

    PubMed

    King, Tricia Z; Na, Sabrina; Mao, Hui

    2015-08-01

    Adult survivors of childhood brain tumors are at risk for cognitive performance deficits that require the core cognitive skill of working memory. Our goal was to examine the neural mechanisms underlying working memory performance in survivors. We studied the working memory of adult survivors of pediatric posterior fossa brain tumors using a letter n-back paradigm with varying cognitive workload (0-, 1-, 2-, and 3-back) and functional magnetic resonance imaging as well as neuropsychological measures. Survivors of childhood brain tumors evidenced lower working memory performance than demographically matched healthy controls. Whole-brain analyses revealed significantly greater blood-oxygen level dependent (BOLD) activation in the left superior / middle frontal gyri and left parietal lobe during working memory (2-back versus 0-back contrast) in survivors. Left frontal BOLD response negatively correlated with 2- and 3-back working memory performance, Auditory Consonant Trigrams (ACT), and Digit Span Backwards. In contrast, parietal lobe BOLD response negatively correlated with 0-back (vigilance task) and ACT. The results revealed that adult survivors of childhood posterior fossa brain tumors recruited additional cognitive control resources in the prefrontal lobe during increased working memory demands. This increased prefrontal activation is associated with lower working memory performance and is consistent with the allocation of latent resources theory. PMID:26234757

  16. Primary brain calcification in patients undergoing treatment with the biphosphanate alendronate.

    PubMed

    Oliveira, J R M; Oliveira, M F

    2016-01-01

    Brain calcification might be associated with various metabolic, infectious or vascular conditions. Clinically, brain calcification can include symptoms such as migraine, parkinsonism, psychosis or dementia. The term Primary Brain Calcification was recently used for those patients without an obvious cause (formerly idiopathic) while Primary Familial Brain Calcifications was left for the cases with autosomal dominant inheritance. Recent studies found mutations in four genes (SLC20A2, PDGFRB, PDGFB and XPR1). However, these gene represent only 60% of all familial cases suggesting other genes remain to be elucidated. Studies evaluating treatments for such a devastating disease are scattered, usually appearing as single case reports. In the present study, we describe a case series of 7 patients treated with Alendronate, a widely prescribed biphosphanate. We observed good tolerance and evidence of improvements and stability by some patients. No side effects were reported and no specific symptoms related to medication. Younger patients and one individual continuing a prescription (prior to study commencement) appeared to respond more positively with some referred improvements in symptoms. Biphosphanates may represent an excellent prospect for the treatment of brain calcifications due to their being well tolerated and easily available. Conversely, prospective and controlled studies should promptly address weaknesses found in the present analysis. PMID:26976513

  17. Primary brain calcification in patients undergoing treatment with the biphosphanate alendronate

    PubMed Central

    Oliveira, J. R. M; Oliveira, M. F

    2016-01-01

    Brain calcification might be associated with various metabolic, infectious or vascular conditions. Clinically, brain calcification can include symptons such as migraine, parkinsonism, psychosis or dementia. The term Primary Brain Calcification was recently used for those patients without an obvious cause (formerly idiopathic) while Primary Familial Brain Calcifications was left for the cases with autosomal dominant inheritance. Recent studies found mutations in four genes (SLC20A2, PDGFRB, PDGFB and XPR1). However, these gene represent only 60% of all familial cases suggesting other genes remain to be elucidated. Studies evaluating treatments for such a devastating disease are scattered, usually appearing as single case reports. In the present study, we describe a case series of 7 patients treated with Alendronate, a widely prescribed biphosphanate. We observed good tolerance and evidence of improvements and stability by some patients. No side effects were reported and no specific symptoms related to medication. Younger patients and one individual continuing a prescription (prior to study commencement) appeared to respond more positively with some referred improvements in symptoms. Biphosphanates may represent an excellent prospect for the treatment of brain calcifications due to their being well tolerated and easily available. Conversely, prospective and controlled studies should promptly address weaknesses found in the present analysis. PMID:26976513

  18. Hypotonic hyponatremia by primary polydipsia caused brain death in a 10-year-old boy

    PubMed Central

    Ko, A Ra; Kim, Soo Jung; Jung, Mo Kyung; Kim, Ki Eun; Chae, Hyun Wook; Kim, Duk Hee; Kim, Ho-Seong

    2015-01-01

    Hypotonic hyponatremia by primary polydipsia can cause severe neurologic complications due to cerebral edema. A 10-year-and-4-month-old boy with a psychiatric history of intellectual disability and behavioral disorders who presented with chief complaints of seizure and mental change showed severe hypotonic hyponatremia with low urine osmolality (serum sodium, 101 mmol/L; serum osmolality, 215 mOsm/kg; urine osmolality, 108 mOsm/kg). The patient had been polydipsic for a few months prior, and this had been worse in the previous few days. A diagnosis of hypotonic hyponatremia caused by primary polydipsia was made. The patient was in a coma, and developed respiratory arrest and became brain death shortly after admission, despite the treatment. The initial brain magnetic resonance imaging showed severe brain swelling with tonsillar and uncal herniation, and the patient was declared as brain death. It has been reported that antidiuretic hormone suppression is inadequate in patients with chronic polydipsia, and that this inadequate suppression of antidiuretic hormone is aggravated in patients with acute psychosis. Therefore, hyponatremia by primary polydipsia, although it is rare, can cause serious and life-threatening neurologic complications. PMID:26512354

  19. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche.

    PubMed

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V; Sun, Bin; Dizon, Maria L V; Szele, Francis G

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  20. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    PubMed Central

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  1. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-01-01

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells. PMID:27259217

  2. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  3. Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastasis and post-brain metastasis survival

    PubMed Central

    Zakrzewski, Jan; Geraghty, Laurel N.; Rose, Amy E.; Christos, Paul J.; Mazumdar, Madhu; Polsky, David; Shapiro, Richard; Berman, Russell; Darvishian, Farbod; Hernando, Eva; Pavlick, Anna; Osman, Iman

    2010-01-01

    Background Melanoma patients who develop brain metastases (B-Met) have limited survival and are excluded from most clinical trials. In this study, we sought to identify primary tumor characteristics and clinical features predictive of B-Met development and post-B-Met survival. Methods We studied a prospectively accrued cohort of 900 melanoma patients to identify clinicopathologic features of primary melanoma (e.g. thickness, ulceration, mitotic index, lymphovascular invasion) that are predictive of B-Met development and post-B-Met survival. Associations between clinical variables present at the time of B-Met diagnosis (e.g. extracranial metastases, B-Met location, presence of neurological symptoms) and post-B-Met survival were also assessed. Univariate associations were analyzed using Kaplan-Meier survival analysis, and the effect of independent predictors assessed using a multivariate Cox proportional hazards regression. Results 89 (10%) of the 900 patients developed B-Met. Ulceration and site of primary on the head and neck were independent predictors of B-Met development on multivariate analysis (p=0.001 and p=0.003, respectively). Clinical variables predictive of post-B-Met survival on multivariate analysis included the presence of neurological symptoms (p=0.008) and extracranial metastases (p=0.04). Ulceration was the only primary tumor characteristic that remained a significant predictor of post-B-Met survival on multivariate analysis (p=0.04). Conclusions Primary tumor ulceration was the strongest predictor of B-Met development and remained an independent predictor of decreased post-B-Met survival in a multivariate analysis inclusive of primary tumor characteristics and clinical variables. Our results suggest that patients with ulcerated primaries should be prospectively studied to determine if heightened surveillance for B-Met can improve clinical outcome. PMID:21472718

  4. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  5. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  6. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  7. Regional Brain Volumes and ADHD Symptoms in Middle-Aged Adults: The PATH Through Life Study.

    PubMed

    Das, Debjani; Cherbuin, Nicolas; Anstey, Kaarin J; Abhayaratna, Walter; Easteal, Simon

    2014-02-24

    Objective: We investigated whether volumetric differences in ADHD-associated brain regions are related to current symptoms of inattention and hyperactivity in healthy middle-aged adults and whether co-occurring anxiety/depression symptoms moderate these relationships. Method: ADHD Self-Report Scale and Brief Patient Health Questionnaire were used to assess current symptoms of inattention, hyperactivity, anxiety, and depression in a population-based sample (n = 269). Brain volumes, measured using a semi-automated method, were analyzed using multiple regression and structural equation modeling to evaluate brain volume-inattention/hyperactivity symptom relationships for selected regions. Results: Volumes of the left nucleus accumbens and a region overlapping the dorsolateral prefrontal cortex were positively associated with inattention symptoms. Left hippocampal volume was negatively associated with hyperactivity symptoms. The brain volume-inattention/hyperactivity symptom associations were stronger when anxiety/depression symptoms were controlled for. Conclusion: Inattention and hyperactivity symptoms in middle-aged adults are associated with different brain regions and co-occurring anxiety/depression symptoms moderate these brain-behavior relationships. (J. of Att. Dis. XXXX; XX(X) XX-XX). PMID:24567365

  8. [Primary immunodeficiency in adults: common variable immunodeficiency--clinical manifestations, immunological and genetic defects, treatment].

    PubMed

    2011-01-01

    The most prevalent form of primary immunodeficiency with a total defect of antibody production in adults is common variable immunodeficiency (CVID). Compared to other forms of primary immunodeficiency, CVID is characterized by later onset of clinical manifestations represented by infectious, autoimmune and malignant diseases. To avoid development of complications and patient incapacitation, it is necessary to make an early diagnosis and initiate regular replacement therapy with intravenous immunoglobulins. PMID:22185026

  9. Treatment results of stereotactic interstitial brachytherapy for primary and metastatic brain tumors

    SciTech Connect

    Lucas, G.L.; Luxton, G.; Cohen, D.; Petrovich, Z.; Langholz, B.; Apuzzo, M.L.; Sapozink, M.D. )

    1991-08-01

    A total of 41 stereotactic interstitial brain implants in 39 patients were performed for recurrence after teletherapy (recurrence implant), or as part of initial treatment in conjunction with teletherapy (primary implant). Implanted tumors consisted of malignant gliomas (33), other primary brain tumors (3), and single metastatic lesions (3). All patients were temporarily implanted with Ir-192 using a coaxial catheter afterloading system; two patients were implanted twice. Survival post-implant for glioblastoma multiforme (GBM), 13 patients, was 10 months whether implanted primarily or for recurrence. Mean time to recurrence, measured from initiation of teletherapy to implantation, was 10 months. Twenty patients with anaplastic astrocytoma (AA) had a median survival post-implant of 23 months for primary implants (7 patients) and 11 months for recurrence implants (13 patients). Mean time to recurrence, measured from initiation of teletherapy to implantation, was 19 months. Three patients (9%) of the evaluable group required reoperation for symptomatic mass effect, all with initial diagnosis of AA. Survival for this subgroup was 14, 22, and 32 months post-implantation. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically feasible with negligible acute morbidity and mortality, and appeared to offer limited prolongation of control for a subset of patients with recurrent malignant gliomas. The role of this modality in primary treatment for malignant gliomas needs to be further defined by prospectively randomized trials.

  10. A case of primary central nervous system vasculitis diagnosed by second brain biopsy and treated successfully.

    PubMed

    Mizuno, Yuri; Shigeto, Hiroshi; Yamada, Takeshi; Maeda, Norihisa; Suzuki, Satoshi O; Kira, Jun-Ichi

    2016-03-30

    We report a case of primary central nervous system vasculitis (PCNSV) diagnosed by second brain biopsy. A 53-year-old man initially presented with left lateral gaze diplopia. Brain MRI revealed multiple enhanced lesions in the bilateral frontal lobe, bilateral basal ganglia, left cerebellum and brainstem. An initial brain biopsy of the right frontal lobe suggested immune-related encephalitis with angiocentric accumulation of chronic inflammatory cells, while malignant lymphoma could not be completely ruled out. The patient deteriorated despite being treated with repeated methylprednisolone pulse therapy, cyclophosphamide, and plasmapheresis. A second brain biopsy of the right temporal lobe was then performed. The biopsied specimens showed vascular wall disruption and fibrinoid necrosis with perivascular inflammatory infiltrates, mainly composed of CD8-positive T cells, and PCNSV was diagnosed. He was treated with high dose corticosteroids, in combination with methotrexate (8 mg/week), which reduced the brain lesions. As brain biopsy is an essential investigation for the histological diagnosis of PCNSV; subsequent biopsies may be required when a histopathological diagnosis has not been obtained by the first biopsy, and further aggressive therapy is being considered. PMID:26960271

  11. Brain Pathology in Adult Rats Treated With Domoic Acid.

    PubMed

    Vieira, A C; Alemañ, N; Cifuentes, J M; Bermúdez, R; Peña, M López; Botana, L M

    2015-11-01

    Domoic acid (DA) is a neurotoxin reported to produce damage to the hippocampus, which plays an important role in memory. The authors inoculated rats intraperitoneally with an effective toxic dose of DA to study the distribution of the toxin in major internal organs by using immunohistochemistry, as well as to evaluate the induced pathology by means of histopathologic and immunohistochemical methods at different time points after toxin administration (6, 10, and 24 hours; 5 and 54 days). DA was detected by immunohistochemistry exclusively in pyramidal neurons of the hippocampus at 6 and 10 hours after dosing. Lesions induced by DA were prominent at 5 days following treatment in selected regions of the brain: hippocampus, amygdala, piriform and perirhinal cortices, olfactory tubercle, septal nuclei, and thalamus. The authors found 2 types of lesions: delayed death of selective neurons and large areas of necrosis, both accompanied by astrocytosis and microgliosis. At 54 days after DA exposure, the pathology was characterized by still-distinguishable dying neurons, calcified lesions in the thalamus, persistent astrocytosis, and pronounced microgliosis. The expression of nitric oxide synthases suggests a role for nitric oxide in the pathogenesis of neuronal degeneration and chronic inflammation induced by DA in the brain. PMID:25939577

  12. Uptake and utilization of CDP-choline in primary brain cell cultures from fetal brain

    SciTech Connect

    Vecchini, A.; Binaglia, L.; Floridi, A.; Palmerini, C.A.; Procellati, G.

    1983-03-01

    The utilization of double-labeled CDP-choline by cultured brain cells has been studied. CDP-choline is demonstrated to be rapidly hydrolysed into CMP and choline phosphate. The fragments, or their hydrolysis products, penetrate into the cells and are utilized for lipid synthesis. At short times after the isotope administration a rapid labeling of phosphatidylcholine was detected, when cells were incubated with CDP-choline. The same was not seen when cells were incubated with labeled choline. From these observations it can be inferred that either CDP- choline can penetrate the cell membrane or that some mechanism involving CDP-choline and leading to phospholipid synthesis can work at the external surface of the plasma membranes.

  13. Screening for Suicide Risk in Adolescents, Adults, and Older Adults in Primary Care

    MedlinePlus

    ... Task Force learned about the potential benefits and harms of suicide screening by primary care clinicians: There ... not enough evidence to weigh the benefits and harms of screening the general population for suicide risk. ...

  14. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    ClinicalTrials.gov

    2016-09-07

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  15. Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain.

    PubMed Central

    Stamm, S; Casper, D; Lees-Miller, J P; Helfman, D M

    1993-01-01

    In this study we report on the developmental and regional expression of two brain-specific isoforms of tropomyosin, TMBr-1 and TMBr-3, that are generated from the rat alpha-tropomyosin gene via the use of alternative promoters and alternative RNA splicing. Western blot analysis using an exon-specific peptide polyclonal antibody revealed that the two isoforms are differentially expressed in development with TMBr-3 appearing in the embryonic brain at 16 days of gestation, followed by the expression of TMBr-1 at 20 days after birth. TMBr-3 was detected in all brain regions examined, whereas TMBr-1 was detected predominantly in brain areas that derived from the prosencephalon. Immunocytochemical studies on mixed primary cultures made from rat embryonic midbrain indicate that expression of the brain-specific epitope is restricted to neurons. The developmental pattern and neuronal localization of these forms of tropomyosin suggest that these isoforms have a specialized role in the development and plasticity of the nervous system. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7694294

  16. Rejecting familiar distracters during recognition in young adults with traumatic brain injury and in healthy older adults.

    PubMed

    Ozen, Lana J; Skinner, Erin I; Fernandes, Myra A

    2010-05-01

    The most common cognitive complaint reported by healthy older adults and young adults with traumatic brain injury (TBI) is memory difficulties. We investigated the effects of normal aging and the long-term effects of TBI in young adults on the susceptibility to incorrectly endorse distracter information on a memory test. Prior to a study phase, participants viewed a "pre-exposure" list containing distracter words, presented once or three times, and half of the target study words. Subsequently, during the study phase, all target words were presented such that, across lists, study words were viewed either once or three times. On the recognition test, TBI and older adult participants were more likely to falsely endorse "pre-exposed" distracter words viewed three times as being from the target study list, compared to non-head-injured young controls. Normal aging and head injury in young may similarly compromise one's ability to reject highly familiar, but distracting, information during recognition. Older adult and TBI participants were also slower to complete the Trail Making task and had poorer output on a Digit Span task, suggesting these two populations share a deficit in executive function and working memory. Similar changes in frontal lobe function may underlie these shared cognitive deficits. PMID:20211048

  17. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  18. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  19. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity. PMID:24671703

  20. Brain metabolite concentrations across cortical regions in healthy adults

    PubMed Central

    Bracken, Bethany K.; Jensen, J. Eric; Prescot, Andrew P.; Cohen, Bruce M.; Renshaw, Perry F.; Öngür, Dost

    2010-01-01

    Magnetic resonance spectroscopy (MRS) can provide in vivo information about metabolite levels across multiple brain regions. This study used MRS to examine concentrations of N-acetylaspartate (NAA), a marker of neuronal integrity and function, and choline (Cho) which is related to the amount of cell membrane per unit volume, in anterior cingulate cortex (ACC) and parieto-occipital cortex (POC) in healthy individuals. Data were drawn from two experiments which examined glutamatergic and GABAergic signaling in schizophrenia and bipolar disorder. After controlling for gray matter percentages, NAA/Creatine (Cr) was 18% higher in POC than in ACC (p<0.001); Cho/Cr was 46% lower in POC than in ACC (p<0.001). There was an effect of study (p<0.001 for both metabolites), but no region by study interaction (NAA p=0.101, Cho p=0.850). Since NAA is localized to the intracellular space, these data suggest that ACC neuronal compartment is reduced as compared with POC, or that there is a lower concentration of NAA per cell in the ACC than POC, or both. Since elevated Cho suggests more cell membrane per unit volume, reduced NAA in ACC appears to be coupled with increases in overall cell membrane compartment. These findings are consistent with a number of previous studies using proton MRS which found increasing NAA and decreasing Cho moving caudally, and with post mortem anatomical studies which found neurons in more widely spaced bundles in ACC when compared to parietal and occipital cortices. MRS may be a useful tool for studying physical properties of the living human brain. PMID:21081116

  1. Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction

    PubMed Central

    De Jesús Andino, Francisco; Jones, Letitia; Maggirwar, Sanjay B.; Robert, Jacques

    2016-01-01

    While increasing evidence points to a key role of monocytes in amphibian host defenses, monocytes are also thought to be important in the dissemination and persistent infection caused by ranavirus. However, little is known about the fate of infected macrophages or if ranavirus exploits immune privileged organs, such as the brain, in order to establish a reservoir. The amphibian Xenopus laevis and Frog Virus 3 (FV3) were established as an experimental platform for investigating in vivo whether ranavirus could disseminate to the brain. Our data show that the FV3 infection alters the BBB integrity, possibly mediated by an inflammatory response, which leads to viral dissemination into the central nervous system in X. laevis tadpole but not adult. Furthermore, our data suggest that the macrophages play a major role in viral dissemination by carrying the virus into the neural tissues. PMID:26931458

  2. Prevalence of Epilepsy in Adults with Mental Retardation and Related Disabilities in Primary Care

    ERIC Educational Resources Information Center

    McDermott, Suzanne; Moran, Robert; Platt, Tan; Wood, Hope; Isaac, Terri; Dasari, Srikanth

    2005-01-01

    Two primary care practices were used to recruit adults with and without disability. Disability groups included autism, Down syndrome, cerebral palsy, and mental retardation. The patients without disability had an epilepsy prevalence rate of 1%. The prevalence of epilepsy within the disability groups was 13% for cerebral palsy, 13.6% for Down…

  3. Health Checks in Primary Care for Adults with Intellectual Disabilities: How Extensive Should They Be?

    ERIC Educational Resources Information Center

    Chauhan, U.; Kontopantelis, E.; Campbell, S.; Jarrett, H.; Lester, H.

    2010-01-01

    Background: Routine health checks have gained prominence as a way of detecting unmet need in primary care for adults with intellectual disabilities (ID) and general practitioners are being incentivised in the UK to carry out health checks for many conditions through an incentivisation scheme known as the Quality and Outcomes Framework (QOF).…

  4. A Meta-Analysis of Adult-Rated Child Personality and Academic Performance in Primary Education

    ERIC Educational Resources Information Center

    Poropat, Arthur E.

    2014-01-01

    Background: Personality is reliably associated with academic performance, but personality measurement in primary education can be problematic. Young children find it difficult to accurately self-rate personality, and dominant models of adult personality may be inappropriate for children. Aims: This meta-analysis was conducted to determine the…

  5. Physician Perspectives on Providing Primary Medical Care to Adults with Autism Spectrum Disorders (ASD)

    ERIC Educational Resources Information Center

    Warfield, Marji Erickson; Crossman, Morgan K.; Delahaye, Jennifer; Der Weerd, Emma; Kuhlthau, Karen A.

    2015-01-01

    We conducted in-depth case studies of 10 health care professionals who actively provide primary medical care to adults with autism spectrum disorders. The study sought to understand their experiences in providing this care, the training they had received, the training they lack and their suggestions for encouraging more physicians to provide this…

  6. Adult Antisocial Behavior and Affect Regulation among Primary Crack/Cocaine-Using Women

    ERIC Educational Resources Information Center

    Litt, Lisa Caren; Hien, Denise A.; Levin, Deborah

    2003-01-01

    The relationship between deficits in affect regulation and Adult Antisocial Behavior (ASB) in primary crack/cocaine-using women was explored in a sample of 80 inner-city women. Narrative early memories were coded for two components of affect regulation, Affect Tolerance and Affect Expression, using the Epigenetic Assessment Rating Scale (EARS;…

  7. Segmentation of center brains and optic lobes in 3D confocal images of adult fruit fly brains.

    PubMed

    Lam, Shing Chun Benny; Ruan, Zongcai; Zhao, Ting; Long, Fuhui; Jenett, Arnim; Simpson, Julie; Myers, Eugene W; Peng, Hanchuan

    2010-02-01

    Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the significant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider separating CB and OLs and align them independently. This paper reports our automatic method to segregate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the variation of the image intensity is big, and the relative displacement of OLs and CB is substantial. We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL (of one side, either left or right) from CB. This surface is defined as an aggregation of the respective minimum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy function that includes an image energy term defined by local pixel intensities and two internal energy terms that constrain the curve's smoothness and length. Gradient descent method is used to optimize this energy function. To improve both the speed and robustness of the method, for each stack, the locations of optimized control points in a slice are taken as the initialization prior for the next slice. We have tested this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can reasonably segregate OLs from CBs despite the aforementioned difficulties. PMID:19698789

  8. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    NASA Astrophysics Data System (ADS)

    Filas, Benjamen A.; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V.; Beebe, David C.; Taber, Larry A.

    2012-12-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.

  9. Epidemiology of primary brain tumors: current concepts and review of the literature.

    PubMed Central

    Wrensch, Margaret; Minn, Yuriko; Chew, Terri; Bondy, Melissa; Berger, Mitchel S.

    2002-01-01

    The purpose of this review is to provide a sufficiently detailed perspective on epidemiologic studies of primary brain tumors to encourage multidisciplinary etiologic and prognostic studies among surgeons, neuro-oncologists, epidemiologists, and molecular scientists. Molecular tumor markers that predict survival and treatment response are being identified with hope of even greater gains in this area from emerging array technologies. Regarding risk factors, studies of inherited susceptibility and constitutive polymorphisms in genes pertinent to carcinogenesis (for example, DNA repair and detoxification genes and mutagen sensitivity) have revealed provocative findings. Inverse associations of the history of allergies with glioma risk observed in 3 large studies and reports of inverse associations of glioma with common infections suggest a possible role of immune factors in glioma genesis or progression. Studies continue to suggest that brain tumors might result from workplace, dietary, and other personal and residential exposures, but studies of cell phone use and power frequency electromagnetic fields have found little to support a causal connection with brain tumors; caveats remain. The only proven causes of brain tumors (that is, rare hereditary syndromes, therapeutic radiation, and immune suppression giving rise to brain lymphomas) account for a small proportion of cases. Progress in understanding primary brain tumors might result from studies of well-defined histologic and molecular tumor types incorporating assessment of potentially relevant information on subject susceptibility and environmental and noninherited endogenous factors (viruses, radiation, and carcinogenic or protective chemical exposures through diet, workplace, oxidative metabolism, or other sources). Such studies will require the cooperation of researchers from many disciplines. PMID:12356358

  10. The functional organisation of glia in the adult brain of Drosophila and other insects

    PubMed Central

    Edwards, Tara N.; Meinertzhagen, Ian A.

    2010-01-01

    This review annotates and categorises the glia of adult Drosophila and other model insects and describes the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia - the pseudocartridge and fenestrated glia; two types of cortex glia - the distal and proximal satellite glia; and two types of neuropile glia - the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour. PMID:20109517

  11. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons. PMID:25956166

  12. Calpain proteolysis of alpha II-spectrin in the normal adult human brain.

    PubMed

    Huh, G Y; Glantz, S B; Je, S; Morrow, J S; Kim, J H

    2001-12-01

    The proteolysis of alphaII-spectrin by calpain may be physiologically involved with synaptic remodeling, long-term potentiation, and memory formation. Calpain activation may also mediate neuronal apoptosis, responses to hypoxic insult, and excitotoxic injury. Surprisingly little is known of the activity of these calpain-mediated processes in the adult human brain. Using an antibody that specifically recognizes calpain-cleaved alphaII-spectrin, we have mapped the topographic distribution of the major alphaII-spectrin break-down product (alphaII-bdp1) in six adult brains examined post-mortem. All brains were from patients without evident neurological disease. Focally positive alphaII-bdp1 was consistently detected in the neuropil of the cortical gray matter, in occasional pyramidal neurons, and in rare reactive astrocytes in the cerebral cortex and hippocampus. Cerebellar Purkinje cells were more frequently, and more intensely, immunopositive. In all fields, staining was most intense in the soma and dendrites of neurons. There was no correlation of the frequency of positive cells with the postmortem interval or clinical condition. While these findings do not rigorously exclude contributions from postmortem calpain activation, they do suggest that a low-level of calpain processing of alphaII-spectrin is likely to be a constitutive process in the adult human brain. PMID:11720774

  13. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    SciTech Connect

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-07-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of /sup 125/I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of /sup 125/I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of /sup 125/I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence (/sup 3/H) norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors.

  14. Development of a new biomechanical indicator for primary blast-induced brain injury.

    PubMed

    Zhu, Feng; Chou, Cliff-C; Yang, King-H; King, Albert-I

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) has been observed at the boundary of brain tissue and cerebrospinal fluid (CSF). Such injury can hardly be explained by using the theory of compressive wave propagation, since both the solid and fuid materials have similar compressibility and thus the intracranial pressure (ICP) has a continuous distribution across the boundary. Since they have completely different shear properties, it is hypothesized the injury at the interface is caused by shear wave. In the present study, a preliminary combined numerical and theoretical analysis was conducted based on the theory of shear wave propagation/reflection. Simulation results show that higher lateral acceleration of brain tissue particles is concentrated in the boundary region. Based on this fnding, a new biomechanical vector, termed as strain gradient, was suggested for primary bTBI. The subsequent simple theoretical analysis reveals that this parameter is proportional to the value of lateral acceleration. At the boundary of lateral ventricles, high spatial strain gradient implies that the brain tissue in this area (where neuron cells may be contained) undergo significantly different strains and large velocity discontinuity, which may result in mechanical damage of the neuron cells. PMID:26169087

  15. Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats

    PubMed Central

    Sántha, Petra; Veszelka, Szilvia; Hoyk, Zsófia; Mészáros, Mária; Walter, Fruzsina R.; Tóth, Andrea E.; Kiss, Lóránd; Kincses, András; Oláh, Zita; Seprényi, György; Rákhely, Gábor; Dér, András; Pákáski, Magdolna; Kálmán, János; Kittel, Ágnes; Deli, Mária A.

    2016-01-01

    Stress is well-known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognized in the development of neurodegenerative disorders, such as Alzheimer's disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3, and 21 days) were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occluding, and glucose transporter-1) and astroglia (GFAP). Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, 1-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5, and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes, cognitive and

  16. Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain

    PubMed Central

    Stubblefield, Elizabeth A.; Felsen, Gidon

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue. PMID:23874433

  17. Are preoperative sex-related differences of affective symptoms in primary brain tumor patients associated with postoperative histopathological grading?

    PubMed

    Richter, Andre; Jenewein, J; Krayenbühl, N; Woernle, C; Bellut, D

    2016-01-01

    Our objective was to explore the impact of the histopathological tumor type on affective symptoms before surgery among male and female patients with supratentorial primary brain tumors. A total of 44 adult patients were included in the study. Depression and anxiety were measured using the Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory. Additionally, clinical interviews, including the Hamilton Depression Rating Scale (HDRS), were conducted. The general function of patients was measured with the Karnofsky Performance Status scale (KPS). All measures were obtained before surgery and therefore before the final histopathological diagnosis. All self-rating questionnaires but not the HDRS, showed significantly higher scores in female patients. The functional status assessed with the KPS was lower in female patients and correlated to the somatic part of the BDI. We further found a tendency for higher HDRS scores in male patients with a WHO grade 4 tumor stage compared to female patients. This finding was supported by positive correlations between HDRS scores and WHO grade in male and negative correlations between HDRS scores and WHO grade in female patients. In conclusion the preoperative evaluation of affective symptoms with self-rating questionnaires in patients with brain tumors may be invalidated by the patient’s functional status. Depression should be explored with clinical interviews in these patients. Sex differences of affective symptoms in this patient group may also be related to the malignancy of the tumor, but further studies are needed to disentangle this relationship. PMID:26468140

  18. Structural and Functional Rich Club Organization of the Brain in Children and Adults

    PubMed Central

    Grayson, David S.; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G. Costa; Stevens, Corinne; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain’s white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain’s major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism. PMID:24505468

  19. Nuclear receptors of the honey bee: annotation and expression in the adult brain

    PubMed Central

    Velarde, Rodrigo A; Robinson, Gene E; Fahrbach, Susan E

    2006-01-01

    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain. PMID:17069634

  20. A microfluidic system to study cytoadhesion of Plasmodium falciparum infected erythrocytes to primary brain microvascularendothelial cells.

    PubMed

    Herricks, Thurston; Seydel, Karl B; Turner, George; Molyneux, Malcolm; Heyderman, Robert; Taylor, Terrie; Rathod, Pradipsinh K

    2011-09-01

    The cellular events leading to severe and complicated malaria in some Plasmodium falciparum infections are poorly understood. Additional tools are required to better understand the pathogenesis of this disease. In this technical report, we describe a microfluidic culture system and image processing algorithms that were developed to observe cytoadhesion interactions of P. falciparum parasitized erythrocytes rolling on primary brain microvascularendothelial cells. We isolated and cultured human primary microvascular brain endothelial cells in a closed loop microfluidic culture system where a peristaltic pump and media reservoirs were integrated onto a microscope stage insert. We developed image processing methods to enhance contrast of rolling parasitized erythrocytes on endothelial cells and to estimate the local wall shear stress. The velocity of parasitized erythrocytes rolling on primary brain microvascularendothelial cells was then measured under physiologically relevant wall shear stresses. Finally, we deployed this method successfully at a field site in Blantyre, Malawi. The method is a promising new tool for the investigation of the pathogenesis of severe malaria. PMID:21743938

  1. Protein synthesis in the rat brain: a comparative in vivo and in vitro study in immature and adult animals

    SciTech Connect

    Shahbazian, F.M.

    1985-01-01

    Rates of protein synthesis of CNS and other organs were compared in immature and adult rats by in vivo and slice techniques with administration of flooding doses of labeled precursor. The relationship between synthesis and brain region, cell type, subcellular fraction, or MW was examined. Incorporation of (/sup 14/C)valine into protein of CNS regions in vivo was about 1.2% per hour for immature rats and 0.6% for adults. For slices, the rates decreased significantly more in adults. In adult organs, the highest synthesis rate in vivo was found in liver (2.2% per hour) followed by kidney, spleen, lung, heart, brain, and muscle (0.5% per hour). In immature animals synthesis was highest in liver and spleen (2.5% per hour) and lowest in muscle (0.9% per hour). Slices all showed lower rates than in vivo, especially in adults. In vivo, protein synthesis rates of immature neurons and astrocytes and adult neurons exceeded those of whole brain, while that in adult astrocytes was the same. These results demonstrate a developmental difference of protein synthesis (about double in immature animals) in all brain cells, cell fractions and most brain protein. Similarly the decreased synthesis in brain slices - especially in adults, affects most proteins and structural elements.

  2. Normative data for subcortical regional volumes over the lifetime of the adult human brain.

    PubMed

    Potvin, Olivier; Mouiha, Abderazzak; Dieumegarde, Louis; Duchesne, Simon

    2016-08-15

    Normative data for volumetric estimates of brain structures are necessary to adequately assess brain volume alterations in individuals with suspected neurological or psychiatric conditions. Although many studies have described age and sex effects in healthy individuals for brain morphometry assessed via magnetic resonance imaging, proper normative values allowing to quantify potential brain abnormalities are needed. We developed norms for volumetric estimates of subcortical brain regions based on cross-sectional magnetic resonance scans from 2790 healthy individuals aged 18 to 94years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting subcortical regional volumes of each hemisphere were produced including age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The mean explained variance by the models was 48%. For most regions, age, sex and eTIV predicted most of the explained variance while manufacturer, magnetic field strength and interactions predicted a limited amount. Estimates of the expected volumes of an individual based on its characteristics and the scanner characteristics can be obtained using derived formulas. For a new individual, significance test for volume abnormality, effect size and estimated percentage of the normative population with a smaller volume can be obtained. Normative values were validated in independent samples of healthy adults and in adults with Alzheimer's disease and schizophrenia. PMID:27165761

  3. Robert Feulgen Prize Lecture. Grenzgänger: adult bone marrow cells populate the brain.

    PubMed

    Priller, Josef

    2003-08-01

    While the brain has traditionally been considered a rather secluded site, recent studies suggest that adult bone marrow (BM)-derived stem cells can generate glia and neurons in rodents and humans. Macrophages and microglia are the first to appear in the murine brain after transplantation of genetically marked BM cells. Within weeks after transplantation, some authors have found astrocytes and cells expressing neuronal antigens. We detected cerebellar Purkinje neurons and interneurons, such as basket cells, expressing the green fluorescent protein (GFP) 10-15 months after transplantation of GFP-labeled BM cells. The results push the boundaries of our classic view of lineage restriction. PMID:12898276

  4. Retrospective Analysis of Levetiracetam Compared to Phenytoin for Seizure Prophylaxis in Adults with Traumatic Brain Injury

    PubMed Central

    Caballero, G. Christina; Hughes, Darrel W.; Maxwell, Pamela R.; Green, Kay; Gamboa, Conrado D.; Barthol, Colleen A.

    2013-01-01

    Background: Phenytoin is standard of care for seizure prophylaxis following traumatic brain injury (TBI). Levetiracetam, an alternative antiepileptic drug, is utilized for seizure prophylaxis despite limited data supporting its use. Objective: Our primary outcome was post-TBI seizure activity measured by electroencephalogram (EEG) for levetiracetam versus phenytoin. Secondary outcomes were length of intensive care unit (ICU) stay, requirement for additional antiepileptic drugs (AED), and drug and monitoring costs. Methods: A retrospective review was performed of patients admitted to neurosurgical or surgical trauma ICU. Adult patients with at least 1 day of EEG monitoring were included. Patients were excluded if they had history of epilepsy, prior TBI, less than 48 hours of AED therapy, or additional AED prior to EEG monitoring. Results: A total 90 patients met inclusion criteria, with 18 receiving levetiracetam and 72 receiving phenytoin. Prevalence of EEG-confirmed seizure activity was similar between the levetiracetam and phenytoin groups (28% vs 29%; P = .99). ICU length of stay (13 vs 18 days; P = .28), time to EEG-confirmed seizure activity (4 vs 6 days; P = .24), and duration of seizure prophylaxis (9 vs 14 days; P = .18) were also similar. The median daily cost of levetiracetam therapy was $43 compared to $55 for phenytoin therapy and monitoring (P = .08). When all anticonvulsant therapy and monitoring were included, costs were lower for the levetiracetam group ($45 vs $83; P = .02). Conclusion: Levetiracetam may provide an alternative treatment option for seizure prevention in TBI patients in the ICU. Total antiepileptic drug and monitoring costs were lower for levetiracetam patients. PMID:24421550

  5. Gender and age related expression of Oct-6--a POU III domain transcription factor, in the adult mouse brain.

    PubMed

    Ilia, Maria; Sugiyama, Yuka; Price, Jack

    2003-06-26

    Oct-6 is a POU III domain transcription factor whose primary role is thought to be developmental. It is expressed in embryonic stem cells, Schwann cells, and in neuronal subpopulations during telencephalic development. Its best characterised role is in Schwann cells where it is thought to regulate myelin specific gene expression. Expression of Oct-6 was recently discovered in neurons in post-mortem human schizophrenic specimens while being undetectable in matched controls. This study of human tissue contrasted in a number of regards with earlier studies of rodent brain, and questioned what we can consider to be normal adult expression of this gene. In this study, we have investigated Oct-6 expression via in situ hybridisation and Western blot analysis in normal adult female mice of different ages. We show that both RNA and protein levels of Oct-6 expression are highly sustained in the adult and aging cerebellum, whereas they are attenuated in the telencephalon by PW30 (postnatal week 30). These observations suggest that Oct-6 expression takes place in a sex and age dependent way. PMID:12782346

  6. Brain metabolism and memory in age differentiated healthy adults

    SciTech Connect

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.

    1984-01-01

    The (F-18)-fluorodeoxyglucose (FDG) scan method with positron emission tomography was used to determine age differences in factors underlying both the performances on 18 multivariate memory tests and the rates of cerebral glucose utilization in 9 left and 9 right hemispheric regions of 23 healthy adults in the age range of 27-78 years. Young persons below age 42 had higher scores than middle-aged (age 48-65 yrs) or old (age 66-78 yrs) persons on two of seven factors, reflecting memory for sequences of words or events together with metabolic indices of Broca's (and its mirror region) and Thalamic areas. Reliable correlations (critical r = 0.48, p<0.02) indicated that persons with high Superior Frontal and low Caudate-Thalamic metabolic measures were the same who performed well in tests of memory for sentences, story, designs, and complex patterns; while metabolic indices of Occipital and Posterior Temporal regions were correlated with the decision criteria adopted in testing. The mean metabolic ratio (b = -0.033, F = 5.47, p<0.03) and those of bilateral Broca's regions (b = -0.002, F = 13.65, p<0.001) significantly declined with age. The functional interrelation of frontal-subcortical metabolic ratios with memory processing was more prominent in younger persons under study and implicates decreasing thalamo-frontal interaction with age.

  7. Pediatric Cancers and Brain Tumors in Adolescents and Young Adults.

    PubMed

    McCabe, Martin G; Valteau-Couanet, Dominique

    2016-01-01

    Embryonal tumors classically occur in young children, some principally within the first year of life. Prospective national and international clinical trials during recent decades have brought about progressive improvements in survival, and associated biological studies have advanced our understanding of tumor biology, in some cases allowing biological tumor characteristics to be harnessed for therapeutic benefit. Embryonal tumors continue to occur, albeit less commonly, during childhood, adolescence and throughout adulthood. These tumors are less well understood, usually not managed according to standardized protocols and rarely included in clinical trials. Survival outcomes are generally poorer than their childhood equivalents. We present here a summary of the published literature on embryonal tumors that present ectopically during adolescence and adulthood. We show that for some tumors protocol-driven treatment, supported by accurate and complete diagnostics and staging, can result in equivalent outcomes to those seen during childhood. We make the case that clinical trial eligibility criteria should be disease-based rather than age-based, and support improvements in dialogue between children's and adults' cancer clinicians to improve outcomes for these rare tumors. PMID:27595358

  8. Rehabilitation for Adults with Traumatic Brain Injury: Where Will We Be Clinically in 2026?

    PubMed

    Turkstra, Lyn S

    2016-08-01

    In 10 years, there might be fewer adults who need rehabilitation after traumatic brain injury because of advances in injury prevention and very early treatment. For adults who do need rehabilitation, assessment might include biosensor recordings in their everyday communication contexts, and home practice might be delivered by a robot that can be programmed to mimic target characteristics of human behavior. These advances in science and technology will enhance rehabilitation, but it will always be our responsibility as speech-language pathologists to advocate for our patients and clients and support them in achieving the best possible quality of communication life. PMID:27232097

  9. The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans.

    PubMed

    Bruner, Emiliano; Amano, Hideki; de la Cuétara, José Manuel; Ogihara, Naomichi

    2015-09-01

    The spatial relationships between brain and braincase represent a major topic in surgery and evolutionary neuroanatomy. In paleoneurology, neurocranial landmarks are often used as references for brain areas. In this study, we analyze the variation and covariation of midsagittal brain and skull coordinates in a sample of adult modern humans in order to demonstrate spatial associations between hard and soft tissues. The correlation between parietal lobe size and parietal bone size is very low, and there is a marked individual variation. The distances between lobes and bones are partially influenced by the dimensions of the parietal lobes. The main pattern of morphological variability among individuals, associated with the size of the precuneus, apparently does not influence the position of the neurocranial sutures. Therefore, variations in precuneal size modify the distance between the paracentral lobule and bregma, and between the parietal lobe and lambda. Hence, the relative position of the cranial and cerebral landmarks can change as a function of the parietal dimensions. The slight correlation and covariation among these elements suggests a limited degree of spatial integration between soft and hard tissues. Therefore, although the brain influences the cranial size and shape during morphogenesis, the specific position of the cerebral components is sensitive to multiple effects and local factors, without a strict correspondence with the bone landmarks. This absence of correspondent change between brain and skull boundaries suggests caution when making inferences about the brain areas from the position of the cranial sutures. The fact that spatial relationships between cranial and brain areas may vary according to brain proportions must be considered in paleoneurology, when brain anatomy is inferred from cranial evidence. PMID:26200138

  10. Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults

    PubMed Central

    Voss, Michelle W.; Prakash, Ruchika S.; Erickson, Kirk I.; Basak, Chandramallika; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Heo, Susie; Szabo, Amanda N.; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Gothe, Neha; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.

    2010-01-01

    Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction. PMID:20890449

  11. Comparative study of the primary cilia in thyrocytes of adult mammals.

    PubMed

    Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I

    2015-10-01

    Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270

  12. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    PubMed Central

    2012-01-01

    Background Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted. PMID:22695063

  13. Seizures in patients with primary brain tumors: what is their psychosocial impact?

    PubMed

    Shin, John Y; Kizilbash, Sani H; Robinson, Steven I; Uhm, Joon H; Hammack, Julie E; Lachance, Daniel H; Buckner, Jan C; Jatoi, Aminah

    2016-06-01

    Seizures occur in most patients with primary malignant tumors and are associated with poor quality of life. To our knowledge, no previous studies have sought descriptions of quality of life in patients' own words. Patients with a history of a malignant primary brain tumor and seizures participated in semi-structured interviews, which were analyzed with qualitative methodology. Twenty-seven patients participated, most with high grade brain tumors. Most were receiving anti-seizure medication. Three distinct themes emerged: (1) the first seizure as a sentinel event, as manifested in part by how patients described their first seizure in remarkable detail ("I clearly remember the date…"); (2) seizures as inextricably tied to the brain tumor itself; for example, one patient explained how he "always wondered what was happening with my brain tumor" with each seizure; and (3) adaptation and acceptance-or lack therefore-to seizures. With respect to this third theme, patients conveyed frustration from an inability to work, to drive, and to take care of their children ("It's like you are 15 all over again.") Others described frustration with taking antiseizure medications ("I felt like an 80 year old, now taking her pills every day"). However, some patients had adapted or resigned themselves ("…so much of life is out of control-you just gotta take what you get."). These findings have future research implications but should also serve to make healthcare providers more aware of the heavy emotional burden that seizures thrust upon brain tumor patients. PMID:26979915

  14. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain

    PubMed Central

    Sprecher, Simon G.; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map (Urbach and Technau, 2003a). However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles (“primary axon bundles” or “PABs”) are now available (Younossi-Hartenstein et al., 2006). In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops. PMID:17300994

  15. Primary brain tumor patients' supportive care needs and multidisciplinary rehabilitation, community and psychosocial support services: awareness, referral and utilization.

    PubMed

    Langbecker, Danette; Yates, Patsy

    2016-03-01

    Primary brain tumors are associated with significant physical, cognitive and psychosocial changes. Although treatment guidelines recommend offering multidisciplinary rehabilitation and support services to address patients' residual deficits, the extent to which patients access such services is unclear. This study aimed to assess patients' supportive care needs early after diagnosis, and quantify service awareness, referral and utilization. A population-based sample of 40 adults recently diagnosed with primary brain tumors was recruited through the Queensland Cancer Registry, representing 18.9 % of the eligible population of 203 patients. Patients or carer proxies completed surveys of supportive care needs at baseline (approximately 3 months after diagnosis) and 3 months later. Descriptive statistics summarized needs and service utilization, and linear regression identified predictors of service use. Unmet supportive care needs were highest at baseline for all domains, and highest for the physical and psychological needs domains at each time point. At follow-up, participants reported awareness of, referral to, and use of 32 informational, support, health professional or practical services. All or almost all participants were aware of at least one informational (100 %), health professional (100 %), support (97 %) or practical service (94 %). Participants were most commonly aware of speech therapists (97 %), physiotherapists (94 %) and diagnostic information from the internet (88 %). Clinician referrals were most commonly made to physiotherapists (53 %), speech therapists (50 %) and diagnostic information booklets (44 %), and accordingly, participants most commonly used physiotherapists (56 %), diagnostic information booklets (47 %), diagnostic information from the internet (47 %), and speech therapists (43 %). Comparatively low referral to and use of psychosocial services may limit patients' abilities to cope with their condition and the changes they

  16. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration. PMID:25977550

  17. Environmental Impact on Direct Neuronal Reprogramming In Vivo in the Adult Brain

    PubMed Central

    López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 (Neurog2) can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurog2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo. PMID:23974433

  18. Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial

    PubMed Central

    Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta

    2013-01-01

    Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial

  19. Applications of hybrid diffuse optics for clinical management of adults after brain injury

    NASA Astrophysics Data System (ADS)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  20. Regulation of netrin-1 receptors by amphetamine in the adult brain.

    PubMed

    Yetnikoff, L; Labelle-Dumais, C; Flores, C

    2007-12-19

    Netrin-1 is a guidance cue molecule fundamental to the organization of neuronal connectivity during development. Netrin-1 and its receptors, deleted in colorectal cancer (DCC) and UNC-5 homologues (UNC-5), continue to be expressed in the adult brain, although neither their function nor the kinds of events that activate their expression are known. Two lines of evidence suggest a role for netrin-1 in amphetamine-induced dopamine plasticity in the adult. First, DCC is highly expressed by adult dopamine neurons. Second, adult mice with reduced DCC levels do not develop amphetamine-induced behavioral sensitization. To explore the role of netrin-1 in amphetamine-induced plasticity, we examined the effects of sensitizing treatment regimens of amphetamine on DCC and/or UNC-5 protein expression in the adult rat. These treatments produced striking and enduring increases in DCC and UNC-5 expression in the cell body, but not terminal regions, of the mesocorticolimbic dopamine system. Notably, neuroadaptations in the cell body region of mesocorticolimbic dopamine neurons underlie the development of sensitization to the effects of amphetamine. Furthermore, these localized amphetamine-induced changes were prevented by co-treatment with an N-methyl-d-aspartate receptor antagonist, a treatment known to block the development of amphetamine-induced sensitization of behavioral activation, dopamine release and motivated behavior. Using immunohistochemistry, we showed that both DCC and UNC-5 receptors are highly expressed by adult mesocorticolimbic dopamine neurons. These results provide the first evidence that repeated exposure to a stimulant drug such as amphetamine affects netrin-1 receptor expression in the adult brain. Taken together, our findings suggest that changes in netrin-1 receptor expression may play a role in the lasting effects of exposure to amphetamine and other stimulant drugs. PMID:17996376

  1. REGULATION OF NETRIN-1 RECEPTORS BY AMPHETAMINE IN THE ADULT BRAIN

    PubMed Central

    YETNIKOFF, L.; LABELLE-DUMAIS, C.; FLORES, C.

    2016-01-01

    Netrin-1 is a guidance cue molecule fundamental to the organization of neuronal connectivity during development. Netrin-1 and its receptors, deleted in colorectal cancer (DCC) and UNC-5 homologues (UNC-5), continue to be expressed in the adult brain, although neither their function nor the kinds of events that activate their expression are known. Two lines of evidence suggest a role for netrin-1 in amphetamine-induced dopamine plasticity in the adult. First, DCC is highly expressed by adult dopamine neurons. Second, adult mice with reduced DCC levels do not develop amphetamine-induced behavioral sensitization. To explore the role of netrin-1 in amphetamine-induced plasticity, we examined the effects of sensitizing treatment regimens of amphetamine on DCC and/or UNC-5 protein expression in the adult rat. These treatments produced striking and enduring increases in DCC and UNC-5 expression in the cell body, but not terminal regions, of the mesocorticolimbic dopamine system. Notably, neuroadaptations in the cell body region of mesocorticolimbic dopamine neurons underlie the development of sensitization to the effects of amphetamine. Furthermore, these localized amphetamine-induced changes were prevented by co-treatment with an N-methyl-D-aspartate receptor antagonist, a treatment known to block the development of amphetamine-induced sensitization of behavioral activation, dopamine release and motivated behavior. Using immunohistochemistry, we showed that both DCC and UNC-5 receptors are highly expressed by adult mesocorticolimbic dopamine neurons. These results provide the first evidence that repeated exposure to a stimulant drug such as amphetamine affects netrin-1 receptor expression in the adult brain. Taken together, our findings suggest that changes in netrin-1 receptor expression may play a role in the lasting effects of exposure to amphetamine and other stimulant drugs. PMID:17996376

  2. A METHODOLOGY FOR ANALYZING CURVATURE IN THE DEVELOPING BRAIN FROM PRETERM TO ADULT

    PubMed Central

    PIENAAR, R.; FISCHL, B.; CAVINESS, V.; MAKRIS, N.; GRANT, P. E.

    2009-01-01

    The character and timing of gyral development is one manifestation of the complex orchestration of human brain development. The ability to quantify these changes would not only allow for deeper understanding of cortical development, but also conceivably allow for improved detection of pathologies. This paper describes a FreeSurfer based image-processing analysis “pipeline” or methodology that inputs an MRI volume, corrects possible contrast defects, creates surface reconstructions, and outputs various curvature-based function analyses. A technique of performing neonate reconstructions using FreeSurfer, which has not been possible previously due to inverted image contrast in pre-myelinated brains, is described. Once surfaces are reconstructed, the analysis component of the pipeline incorporates several surface-based curvature functions found in literature (principle curvatures, Gaussian, mean curvature, “curvedness”, and Willmore Bending Energy). We consider the problem of analyzing curvatures from different sized brains by introducing a Gaussian-curvature based variable-radius filter. Segmented volume data is also analyzed for folding measures: a gyral folding index (gyrification-white index GWI), and a gray-white matter junction folding index (WMF). A very simple curvature-based classifier is proposed that has the potential to discriminate between certain classes of subjects. We also present preliminary results of this curvature analysis pipeline on nine neonate subjects (30.4 weeks through 40.3 weeks Corrected Gestational Age), 3 children (2, 3, and 7 years) and 3 adults (33, 37, and 39 years). Initial results demonstrate that curvature measures and functions across our subjects peaked at term, with a gradual decline through early childhood and further decline continuing through to adults. We can also discriminate older neonates, children, and adults based on curvature analysis. Using a variable radius Gaussian-curvature filter, we also observed that the

  3. Eph receptor and ephrin signaling in developing and adult brain of the honeybee (Apis mellifera).

    PubMed

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-02-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, significantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  4. Eph Receptor and Ephrin Signaling in Developing and Adult Brain of the Honeybee (Apis mellifera)

    PubMed Central

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-01-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, sig-nificantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  5. Graph Theory Analysis of Functional Brain Networks and Mobility Disability in Older Adults

    PubMed Central

    Burdette, Jonathan H.; Morgan, Ashley R.; Williamson, Jeff D.; Kritchevsky, Stephen B.; Laurienti, Paul J.

    2014-01-01

    Background. The brain’s structural integrity is associated with mobility function in older adults. Changes in function may be evident earlier than changes in structure and may be more directly related to mobility. Therefore, we assessed whether functional brain networks varied with mobility function in older adults. Methods. Short Physical Performance Battery (SPPB) and resting state functional magnetic resonance imaging were collected on 24 young (mean age = 26.4±5.1) and 48 older (mean age = 72.04±5.1) participants. Older participants were divided into three groups by SPPB score: Low SPPB (score = 7–9), Mid SPPB (score = 10), High SPPB (score = 11–12).Graph theory–based methods were used to characterize and compare brain network organization. Results. Connectivity in the somatomotor cortex distinguished between groups based on SPPB score. The community structure of the somatomotor cortex was significantly less consistent in the Low SPPB group (mean = 0.097±0.05) compared with Young (mean = 0.163±0.09, p = .03) SPPB group. Striking differences were evident in second-order connections between somatomotor cortex and superior temporal gyrus and insula that reached statistical significance. The Low SPPB group (mean = 140.87±109.30) had a significantly higher number of connections than Young (mean = 45.05±33.79, p = .0003) or High (mean = 49.61±35.31, p = .002) SPPB group. Conclusions. Older adults with poorer mobility function exhibited reduced consistency of somatomotor community structure and a greater number of secondary connections with vestibular and multisensory regions of the brain. Further study is needed to fully interpret these effects, but analysis of functional brain networks adds new insights to the contribution of the brain to mobility. PMID:24717331

  6. Melatonin promotes blood-brain barrier integrity in methamphetamine-induced inflammation in primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2016-09-01

    Melatonin is a neurohormone and has high potent of antioxidant that is widely reported to be active against methamphetamine (METH)-induced toxicity to neuron, glial cells, and brain endothelial cells. However, the role of melatonin on the inflammatory responses which are mostly caused by blood-brain barrier (BBB) impairment by METH administration has not been investigated. This study used the primary rat brain microvascular endothelial cells (BMVECs) to determine the protective mechanism of melatonin on METH-induced inflammatory responses in the BBB via nuclear factor-ĸB (NF-κB) and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Herein, we demonstrated that melatonin reduced the level of the inflammatory mediators, including intercellular adhesion molecules (ICAM)-1, vascular cell adhesion molecules (VCAM)-1, matrix metallopeptidase (MMP)-9, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) caused by METH. These responses were related to the decrease of the expression and translocation of the NF-κB p65 subunit and the activity of NADPH oxidase (NOX)-2. In addition, melatonin promoted the antioxidant processes, modulated the expression and translocation of Nrf2, and also increased the level of heme oxygenase (HO)-1, NAD (P) H: quinone oxidoreductase (NQO)-1, γ-glutamylcysteine synthase (γ-GCLC), and the activity of superoxide dismutase (SOD) through NOX2 mechanism. In addition, we found that the protective role of melatonin in METH-induced inflammatory responses in the BBB was mediated through melatonin receptors (MT1/2). We concluded that the interaction of melatonin with its receptor prevented METH-induced inflammatory responses by suppressing the NF-κB signaling and promoting the Nrf2 signaling before BBB impairment. PMID:27268413

  7. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Anadón, Ramón

    2015-10-15

    Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus. PMID:25846052

  8. [The first experience in interstitial brachytherapy for primary and metastatic tumors of the brain].

    PubMed

    Bentsion, D L; Gvozdev, P B; Sakovich, V P; Fialko, N V; Kolotvinov, V S; Baiankina, S N

    2006-01-01

    In 2001-2002, the authors performed a course of brachytherapy in 15 patients with inoperable primary, recurrent, and metastatic brain tumors. The histostructural distribution was as follows: low-grade astrocytoma (grade II according to the WHO classification) in 2 patients, anaplastic astrocytoma (AA) in 3, glioblastoma multiforme (GBM) in 5. Five patients had solid tumor deposits in the brain. Computer tomographic (CT) and magnetic resonance imaging (MRI) data were used to define a path for forthcoming biopsy and implantation at a "Stryker" navigation station, by taking into account the anatomy of the brain, vessels, and functionally significant areas. After having histological findings, plastic intrastats whose number had been determined by the volume of a target were implanted into a tumor by the predetermined path. Dosimetric planning was accomplished by using CT and MRI images on an "Abacus" system. The final stage involved irradiation on a "GammaMed plus" with a source of 192Ir. Irradiation was given, by hyperfractionating its dose (3-4 Gy twice daily at an interval of 4-5 hours) to the total focal dose (TFD) of 36-44 Gy. Patients with gliomas untreated with radiation also underwent external radiation in a TFD of 54-56 Gy and patients with brain metastases received total external irradiation of the brain in a TFD of 36-40 Gy. The tolerance of a course of irradiation was fair. In patients with AA and GBM, one-year survival was observed in 66 and 60%, respectively; in those having metastasis, it was in 20%. Six patients died from progressive disease. All patients with low-grade astrocytoma and one patient with anaplastic astrocytoma were alive at month 24 after treatment termination. The mean lifespan of patients with malignant gliomas and solid tumor metastasis was 11.5 and 5.8 months, respectively. Brachytherapy is a noninvasive and tolerable mode of radiotherapy that increases survival in some groups of patients with inoperable brain tumors. PMID:16739930

  9. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results.

    PubMed

    Szymkowicz, Sarah M; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  10. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic.

    PubMed

    Tyler, Christina R; Weber, Jessica A; Labrecque, Matthew; Hessinger, Justin M; Edwards, Jeremy S; Allan, Andrea M

    2015-12-01

    Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain. PMID:26543888

  11. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    PubMed Central

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  12. Reawakening the sleeping beauty in the adult brain: neurogenesis from parenchymal glia.

    PubMed

    Péron, Sophie; Berninger, Benedikt

    2015-10-01

    Life-long neurogenesis is highly restricted to specialized niches in the adult mammalian brain and therefore the brain's capacity for spontaneous regeneration is extremely limited. However, recent work has demonstrated that under certain circumstances parenchymal astrocytes and NG2 glia can generate neuronal progeny. In the striatum, stroke or excitotoxic lesions can reawaken in astrocytes a latent neurogenic program resulting in the genesis of new neurons. By contrast, in brain areas that fail to mount a neurogenic response following injury, such as the cerebral cortex, forced expression of neurogenic reprogramming factors can lineage convert local glia into induced neurons. Yet, injury-induced and reprogramming-induced neurogenesis exhibit intriguing commonalities, suggesting that they may converge on similar mechanisms. PMID:26296150

  13. Breast cancer brain metastases responding to lapatinib plus capecitabine as second-line primary systemic therapy.

    PubMed

    Bergen, Elisabeth S; Berghoff, Anna S; Rudas, Margaretha; Preusser, Matthias; Bartsch, Rupert

    2015-06-01

    Brain metastases (BM) are diagnosed in up to 40% of HER2-positive breast cancer patients. Standard treatment includes local approaches such as whole-brain radiotherapy (WBRT), radiosurgery, and neurosurgery. The landscape trial established primary systemic therapy as an effective and safe alternative to WBRT in selected patients with Her2-positive BM. We aim to further focus on the role of systemic therapy in oligosymptomatic patients by presenting this case report. We report on a 50-year-old patient diagnosed with multiple BM 5 years after early breast cancer diagnosis. As the patient was asymptomatic and had a favorable diagnosis-specific GPA score, she received primary systemic treatment with T-DM1. She achieved partial remission within the brain for eight treatment cycles and then progressed despite stable extracranial disease. As the patient remained asymptomatic and refused WBRT, we decided upon trastuzumab, lapatinib plus capecitabine as second-line therapy. Another partial remission of BM was observed; to date, she has received 11 treatment cycles without any sign of disease progression. In this case, WBRT was delayed by at least 14 months, again indicating the activity of systemic treatment in BM. Apparently, in selected patients, BM can be controlled with multiple lines of systemic therapy similar to extracranial disease. Further investigation of systemic treatment approaches is therefore warranted. PMID:25714248

  14. Liposomal cytarabine in neoplastic meningitis from primary brain tumors: a single institutional experience.

    PubMed

    Gaviani, P; Corsini, E; Salmaggi, A; Lamperti, E; Botturi, A; Erbetta, A; Milanesi, I; Legnani, F; Pollo, B; Silvani, A

    2013-12-01

    Neoplastic meningitis (NM) is diagnosed in 1-2 % of patients with primary brain tumors. Standard treatment of NM includes single-agent or combination chemotherapy, with compounds such as methotrexate, thiotepa, and cytarabine (Ara-C) or its injectable, sustained-release formulation Depocyte(®). In this Report, we reported the data of efficacy and tolerability of an intrathecal Depocyte(®) regimen for patients presenting with NM from primary brain tumors. We described 12 patients with NM confirmed at magnetic resonance imaging (MRI) and with a positive cerebrospinal fluid (CSF) cytology. Patients were treated with repeated courses of intrathecal Depocyte(®) (once every 2 weeks for 1 month of induction therapy and as consolidation therapy on a monthly base in responding patients). Twelve patients (10 males and 2 females) were treated by our Institution. The diagnosis of primitive brain tumor was medulloblastoma in six patients, germinoma in two patients, pylocitic astrocytomas with spongioblastic aspects, teratocarcinoma, meningeal melanoma, and ependimoma in the other four patients. The total number of Depocyte(®) cycles ranged from one to nine. In 7/12 patients, there was clinical and/or radiological response after Depocyte(®), and the toxicity was moderate and transient, mainly due to the lumbar puncture procedure. In the two patients with germinoma, we observed a normalization of MRI Imaging and negativization of CSF with disappearance of the tumor cells. OS was 180 days (range 20-300, CI 95 %). PMID:23525755

  15. Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain

    PubMed Central

    de Oliveira-Carlos, Vanessa; Ganz, Julia; Hans, Stefan; Kaslin, Jan; Brand, Michael

    2013-01-01

    The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches. PMID:24039926

  16. Brain morphological changes in adolescent and adult patients with anorexia nervosa.

    PubMed

    Seitz, J; Herpertz-Dahlmann, B; Konrad, K

    2016-08-01

    Gray matter (GM) and white matter (WM) volume loss occur in the brains of patients with acute anorexia nervosa (AN) and improve again upon weight restoration. Adolescence is an important time period for AN to begin. However, little is known about the differences between brain changes in adolescents vs adults. We used a meta-analysis and a qualitative review of all MRI studies regarding acute structural brain volume changes and their recovery in adolescents and adults with AN. 29 studies with 473 acute, 121 short-term weight-recovered and 255 long-term recovered patients with AN were included in the meta-analysis. In acute AN, GM and WM were reduced compared to healthy controls. Acute adolescent patients showed a significantly greater GM reduction than adults (-8.4 vs -3.1 %), the difference in WM (-4.0 vs -2.1 %) did not reach significance. Short-term weight-recovered patients showed a remaining GM deficit of 3.6 % and a non-significant WM reduction of 0.9 % with no age differences. Following 1.5-8 years of remission, GM and WM were no longer significantly reduced in adults (GM -0.4 %, WM -0.7 %); long-term studies for adolescents were scarce. The qualitative review showed that GM volume loss was correlated with cognitive deficits and three studies found GM regions, cerebellar deficits and WM to be predictive of outcome. GM and WM are strongly reduced in acute AN and even more pronounced in adolescence. Long-term recovery appears to be complete for adults while no conclusions can be drawn for adolescents, thus caution remains. PMID:27188331

  17. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum

    PubMed Central

    Olivera-Pasilio, Valentina; Peterson, Daniel A.; Castelló, María E.

    2014-01-01

    Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones. PMID:25249943

  18. An Update of the Mayo Clinic Cohort of Patients With Adult Primary Central Nervous System Vasculitis

    PubMed Central

    Salvarani, Carlo; Brown, Robert D.; Christianson, Teresa; Miller, Dylan V.; Giannini, Caterina; Huston, John; Hunder, Gene G.

    2015-01-01

    Abstract Primary central nervous system vasculitis (PCNSV) is an uncommon condition in which lesions are limited to vessels of the brain and spinal cord. Because the clinical manifestations are not specific, the diagnosis is often difficult, and permanent disability and death are frequent outcomes. This study is based on a cohort of 163 consecutive patients with PCNSV who were examined at the Mayo Clinic over a 29-year period from 1983 to 2011. The aim of the study was to define the characteristics of these patients, which represents the largest series in adults reported to date. A total of 105 patients were diagnosed by angiographic findings and 58 by biopsy results. The patients diagnosed by biopsy more frequently had at presentation cognitive dysfunction, greater cerebrospinal fluid total protein concentrations, less frequent cerebral infarcts, and more frequent leptomeningeal gadolinium-enhanced lesions on magnetic resonance imaging (MRI), along with less mortality and disability at last follow-up. The patients diagnosed by angiograms more frequently had at presentation hemiparesis or a persistent neurologic deficit or stroke, more frequent infarcts on MRI and an increased mortality. These differences were mainly related to the different size of the vessels involved in the 2 groups. Although most patients responded to therapy with glucocorticoids alone or in conjunction with cyclophosphamide and tended to improve during the follow-up period, an overall increased mortality rate was observed. Relapses occurred in one-quarter of the patients and were less frequent in patients treated with prednisone and cyclophosphamide compared with those treated with prednisone alone. The mortality rate and degree of disability at last follow-up were greater in those with increasing age, cerebral infarctions on MRI, angiographic large vessel involvement, and diagnosis made by angiography alone, but were lower in those with gadolinium-enhanced lesions on MRI and in those with

  19. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-02-01

    Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally. PMID:23974804

  20. Brain changes in older adults at very low risk for Alzheimer's disease.

    PubMed

    Fjell, Anders M; McEvoy, Linda; Holland, Dominic; Dale, Anders M; Walhovd, Kristine B

    2013-05-01

    Alzheimer's disease (AD) has a slow onset, so it is challenging to distinguish brain changes in healthy elderly persons from incipient AD. One-year brain changes with a distinct frontotemporal pattern have been shown in older adults. However, it is not clear to what extent these changes may have been affected by undetected, early AD. To address this, we estimated 1-year atrophy by magnetic resonance imaging (MRI) in 132 healthy elderly persons who had remained free of diagnosed mild cognitive impairment or AD for at least 3 years. We found significant volumetric reductions throughout the brain. The sample was further divided into low-risk groups based on clinical, biomarker, genetic, or cognitive criteria. Although sample sizes varied, significant reductions were observed in all groups, with rates and topographical distribution of atrophy comparable to that of the full sample. Volume reductions were especially pronounced in the default mode network, closely matching the previously described frontotemporal pattern of changes in healthy aging. Atrophy in the hippocampus predicted change in memory, with no additional default mode network contributions. In conclusion, reductions in regional brain volumes can be detected over the course of 1 year even in older adults who are unlikely to be in a presymptomatic stage of AD. PMID:23658162

  1. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas

    PubMed Central

    Aboody, Karen S.; Brown, Alice; Rainov, Nikolai G.; Bower, Kate A.; Liu, Shaoxiong; Yang, Wendy; Small, Juan E.; Herrlinger, Ulrich; Ourednik, Vaclav; Black, Peter McL.; Breakefield, Xandra O.; Snyder, Evan Y.

    2000-01-01

    One of the impediments to the treatment of brain tumors (e.g., gliomas) has been the degree to which they expand, infiltrate surrounding tissue, and migrate widely into normal brain, usually rendering them “elusive” to effective resection, irradiation, chemotherapy, or gene therapy. We demonstrate that neural stem cells (NSCs), when implanted into experimental intracranial gliomas in vivo in adult rodents, distribute themselves quickly and extensively throughout the tumor bed and migrate uniquely in juxtaposition to widely expanding and aggressively advancing tumor cells, while continuing to stably express a foreign gene. The NSCs “surround” the invading tumor border while “chasing down” infiltrating tumor cells. When implanted intracranially at distant sites from the tumor (e.g., into normal tissue, into the contralateral hemisphere, or into the cerebral ventricles), the donor cells migrate through normal tissue targeting the tumor cells (including human glioblastomas). When implanted outside the CNS intravascularly, NSCs will target an intracranial tumor. NSCs can deliver a therapeutically relevant molecule—cytosine deaminase—such that quantifiable reduction in tumor burden results. These data suggest the adjunctive use of inherently migratory NSCs as a delivery vehicle for targeting therapeutic genes and vectors to refractory, migratory, invasive brain tumors. More broadly, they suggest that NSC migration can be extensive, even in the adult brain and along nonstereotypical routes, if pathology (as modeled here by tumor) is present. PMID:11070094

  2. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals

    PubMed Central

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-01-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. PMID:24397462

  3. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.

    PubMed

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-04-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. PMID:24397462

  4. Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment.

    PubMed Central

    Gurney, J. G.; van Wijngaarden, E.

    1999-01-01

    Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (EMF) has now been conducted for over two decades. Cancer epidemiology studies in relation to EMF have focused primarily on brain cancer and leukemia, both from residential sources of exposure in children and adults and from occupational exposure in adult men. Because genotoxic effects of EMF have not been shown, most recent laboratory research has attempted to show biological effects that could be related to cancer promotion. In this report, we briefly review residential and occupational EMF studies on brain cancer. We also provide a general review of experimental studies as they relate both to the biological plausibility of an EMF-brain cancer relation and to the insufficiency of such research to help guide exposure assessment in epidemiologic studies. We conclude from our review that no recent research, either epidemiologic or experimental, has emerged to provide reasonable support for a causal role of EMF on brain cancer. PMID:11550314

  5. Arginine vasotocin neuronal development and its projection in the adult brain of the medaka.

    PubMed

    Kagawa, Nao; Honda, Akira; Zenno, Akiko; Omoto, Ryosuke; Imanaka, Saya; Takehana, Yusuke; Naruse, Kiyoshi

    2016-02-01

    The neurohypophysial peptide arginine vasotocin (AVT) and its mammalian ortholog arginine vasopressin function in a wide range of physiological and behavioral events. Here, we generated a new line of transgenic medaka (Oryzias latipes), which allowed us to monitor AVT neurons by enhanced green fluorescent protein (EGFP) and demonstrate AVT neuronal development in the embryo and the projection of AVT neurons in the adult brain of avt-egfp transgenic medaka. The onset of AVT expression manifested at 2 days postfertilization (dpf) as a pair of signals in the telencephalon of the brain. The telencephalic AVT neurons migrated and converged on the preoptic area (POA) by 4dpf. At the same stage, another onset of AVT expression manifested in the central optic tectum (OT), and they migrated to the ventral part of the hypothalamus (VH) by 6dpf. In the adult brain, the AVT somata with EGFP signals existed in the gigantocellular POA (gPOA), magnocellular POA (mPOA), and parvocellular POA (pPOA) and in the VH. Whereas the major projection of AVT fibers was found from the pPOA and VH to the posterior pituitary, it was also found that AVT neurons in the three POAs send their fibers into wide regions of the brain such as the telencephalon, mesencephalon and diencephalon. This study suggests that the avt-egfp transgenic medaka is a useful model to explore AVT neuronal development and function. PMID:26739197

  6. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  7. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  8. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  9. A Rare Case of Primary Anterior Mediastinal Yolk Sac Tumor in an Elderly Adult Male

    PubMed Central

    Nakhla, Sammy G.; Sundararajan, Srinath

    2016-01-01

    Mediastinal germ cell tumors are extragonadal germ cell tumors (EGGCTs) commonly seen in children and young adults. They are more common in men. Clinically they are classified as teratomas, seminomas, and nonseminomatous germ cell tumors. Primary mediastinal yolk sac neoplasm is an extremely rare tumor. We present here a very rare case of primary yolk sac tumor of the anterior mediastinum in a 73-year-old male. Mediastinal germ cell tumors have a worse prognosis than gonadal germ cell tumors. Chemotherapy followed by adjuvant surgery improves overall response in EGGCTs. However, comorbidities can render treatment with chemotherapy and surgery challenging in elderly patients. PMID:27144043

  10. New findings about iron oxide nanoparticles and their different effects on murine primary brain cells

    PubMed Central

    Neubert, Jenni; Wagner, Susanne; Kiwit, Jürgen; Bräuer, Anja U; Glumm, Jana

    2015-01-01

    The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs) enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to. PMID:25792834

  11. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan

    PubMed Central

    Betts, Matthew J.; Cardenas-Blanco, Arturo; Yang, Shan; Nestor, Peter J.

    2016-01-01

    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)—a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20–79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM–age associations were identified in several deep-brain nuclei—chiefly the striatum and midbrain—and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. SIGNIFICANCE STATEMENT This study used a whole-brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI

  12. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    SciTech Connect

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L.

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57 refs., 3 figs., 3 tabs.

  13. [Primary vesico-uretero-renal reflux in adults: therapeutic outcome. Apropos of 68 cases].

    PubMed

    Desgrez, J P; Baaklini, J; Ba, M; Verges, J

    1984-02-01

    The authors compare two series of adult patients presenting with primary vesico-uretero-renal reflux. The first series was treated before 1974, and the second, over the past ten years. The salient feature of this comparison is the reduction in the number of renal failures. More systematic investigation of the reflux highlights a greater number of cases which will evolve without further impairment of renal function. This point has a considerable bearing on operative indications. PMID:6529197

  14. Functional Characterization of Germline Mutations in PDGFB and PDGFRB in Primary Familial Brain Calcification

    PubMed Central

    Andaloussi Mäe, Maarja; Nahar, Khayrun; Hornemann, Simone; Kenkel, David; Cunha, Sara I.; Lennartsson, Johan; Boss, Andreas; Heldin, Carl-Henrik; Keller, Annika; Betsholtz, Christer

    2015-01-01

    Primary Familial Brain Calcification (PFBC), a neurodegenerative disease characterized by progressive pericapillary calcifications, has recently been linked to heterozygous mutations in PDGFB and PDGFRB genes. Here, we functionally analyzed several of these mutations in vitro. All six analyzed PDGFB mutations led to complete loss of PDGF-B function either through abolished protein synthesis or through defective binding and/or stimulation of PDGF-Rβ. The three analyzed PDGFRB mutations had more diverse consequences. Whereas PDGF-Rβ autophosphorylation was almost totally abolished in the PDGFRB L658P mutation, the two sporadic PDGFRB mutations R987W and E1071V caused reductions in protein levels and specific changes in the intensity and kinetics of PLCγ activation, respectively. Since at least some of the PDGFB mutations were predicted to act through haploinsufficiency, we explored the consequences of reduced Pdgfb or Pdgfrb transcript and protein levels in mice. Heterozygous Pdgfb or Pdgfrb knockouts, as well as double Pdgfb+/-;Pdgfrb+/- mice did not develop brain calcification, nor did Pdgfrbredeye/redeye mice, which show a 90% reduction of PDGFRβ protein levels. In contrast, Pdgfbret/ret mice, which have altered tissue distribution of PDGF-B protein due to loss of a proteoglycan binding motif, developed brain calcifications. We also determined pericyte coverage in calcification-prone and non-calcification-prone brain regions in Pdgfbret/ret mice. Surprisingly and contrary to our hypothesis, we found that the calcification-prone brain regions in Pdgfbret/ret mice model had a higher pericyte coverage and a more intact blood-brain barrier (BBB) compared to non-calcification-prone brain regions. While our findings provide clear evidence that loss-of-function mutations in PDGFB or PDGFRB cause PFBC, they also demonstrate species differences in the threshold levels of PDGF-B/PDGF-Rβ signaling that protect against small-vessel calcification in the brain. They

  15. Naïve adult stem cells isolation from primary human fibroblast cultures.

    PubMed

    Wenzel, Vera; Roedl, Daniela; Ring, Johannes; Djabali, Karima

    2013-01-01

    Over the last decade, several adult stem cell populations have been identified in human skin (1-4). The isolation of multipotent adult dermal precursors was first reported by Miller F. D laboratory (5, 6). These early studies described a multipotent precursor cell population from adult mammalian dermis (5). These cells--termed SKPs, for skin-derived precursors-- were isolated and expanded from rodent and human skin and differentiated into both neural and mesodermal progeny, including cell types never found in skin, such as neurons (5). Immunocytochemical studies on cultured SKPs revealed that cells expressed vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors, in addition to fibronectin and multipotent stem cell markers (6). Until now, the adult stem cells population SKPs have been isolated from freshly collected mammalian skin biopsies. Recently, we have established and reported that a population of skin derived precursor cells could remain present in primary fibroblast cultures established from skin biopsies (7). The assumption that a few somatic stem cells might reside in primary fibroblast cultures at early population doublings was based upon the following observations: (1) SKPs and primary fibroblast cultures are derived from the dermis, and therefore a small number of SKP cells could remain present in primary dermal fibroblast cultures and (2) primary fibroblast cultures grown from frozen aliquots that have been subjected to unfavorable temperature during storage or transfer contained a small number of cells that remained viable (7). These rare cells were able to expand and could be passaged several times. This observation suggested that a small number of cells with high proliferation potency and resistance to stress were present in human fibroblast cultures (7). We took advantage of these findings to establish a protocol for rapid isolation of adult stem cells from primary fibroblast cultures that are

  16. Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells

    SciTech Connect

    Feurstein, D.; Holst, K.; Fischer, A.; Dietrich, D.R.

    2009-01-15

    Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brain-barrier (BBB) and blood-cerebrospinal-fluid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses, the presence of murine Oatp (mOatp) in primary murine whole brain cells (mWBC) was investigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LF) with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays. All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 {mu}M) and BSP (50 {mu}M). MC-Western blot analysis demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vitro data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.

  17. Fundamental reform of payment for adult primary care: comprehensive payment for comprehensive care.

    PubMed

    Goroll, Allan H; Berenson, Robert A; Schoenbaum, Stephen C; Gardner, Laurence B

    2007-03-01

    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed. PMID:17356977

  18. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  19. Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors

    PubMed Central

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-01-01

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  20. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors.

    PubMed

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-08-15

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  1. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults.

    PubMed

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Keebler, Molly W; DeFina, Laura F; Didehbani, Nyaz; Perez, Alison M; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health. PMID:27462210

  2. Promoting brain health through exercise and diet in older adults: a physiological perspective.

    PubMed

    Jackson, Philippa A; Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I; Eskes, Gail A; Poulin, Marc J

    2016-08-15

    The rise in incidence of age-related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter-individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote 'brain health'. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792

  3. The Whole-Brain N-Acetylaspartate Correlates with Education in Normal Adults

    PubMed Central

    Glodzik, Lidia; Wu, William E.; Babb, James S.; Achtnichts, Lutz; Amann, Michael; Sollberger, Marc; Monsch, Andreas U.; Gass, Achim; Gonen, Oded

    2012-01-01

    N-acetylaspartate (NAA) is an index of neuronal integrity. We hypothesized that in healthy subjects its whole brain concentration (WBNAA) may be related to formal educational attainment, a common proxy for cognitive reserve. To test this hypothesis 97 middle aged to elderly subjects (51–89 years old, 38% women) underwent brain MRI and non-localizing proton spectroscopy. Their WBNAA was obtained by dividing their whole-head NAA amount with the brain volume. Intracranial volume and fractional brain volume, a metric of brain atrophy, were also determined. Each subject’s educational attainment was the sum of their years of formal education. In the entire group higher education was associated with larger intracranial volume. The relationship between WBNAA and education was observed only in younger (51–70 years old) participants. In this group education explained 21% variance in WBNAA. More WBNAA was related to more years of formal education in adults and younger elders. Prospective studies can determine whether this relationship reflects a true advantage from years of training versus innate characteristic predisposing to higher achievements later in life. We offer that late life WBNAA may be more affected by other like factors acting at midlife and later. PMID:23177924

  4. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults

    PubMed Central

    Chapman, Sandra B.; Aslan, Sina; Spence, Jeffrey S.; Keebler, Molly W.; DeFina, Laura F.; Didehbani, Nyaz; Perez, Alison M.; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56–75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health. PMID:27462210

  5. Clinical significance of brain white matter hyperintensities in young adults with psychiatric illness.

    PubMed

    Breeze, Janis L; Hesdorffer, Dale C; Hong, Xiaoni; Frazier, Jean A; Renshaw, Perry F

    2003-01-01

    Magnetic resonance imaging (MRI) provides detailed images of brain anatomy, with especially clear definition of gray and white matter structures. Several brain MRI studies have suggested that adults with bipolar disorder (BD) are more likely to have "white matter hyperintensities" (WMH) than adults without BD. The disproportionately greater frequency of these lesions in otherwise physically healthy patients suggests that the illness itself, or treatments used to control the illness, may be risk factors for the development of white matter changes. Similarly, WMH may be an etiological factor for some types of BD. In addition to reviewing the relevant literature, this research study attempted to determine whether lithium treatment is associated with an increased prevalence of WMH in young adults with psychiatric illness. To test this hypothesis, we evaluated over 600 brain MRI scans from inpatients at McLean Hospital, Belmont, Massachusetts. We controlled for possible confounding variables such as age, vascular disease, substance abuse, and markers of illness severity. We found that individuals with BD were no more likely to have WMH than other psychiatric patients. Lithium use was nonsignificantly associated with the presence of WMH. A multivariate regression model for the presence of WMH showed that heart disease, female gender, and multiple psychiatric admissions were significant predictors of WMH. This study does not support previous findings that BD, compared to other psychiatric illnesses, was associated with increased risk of WMH. Lithium use may be subtly associated with WMH. Our results are consistent with previous research that found an association between cardiovascular disease, advanced age, and the presence of WMH, though our analysis appears to be unique in its inclusion of cardiovascular disease as a risk factor in young adults with psychiatric illness. PMID:14555427

  6. The distinction between juvenile and adult-onset primary open-angle glaucoma

    SciTech Connect

    Wiggs, J.L.; Haines, J.L.; Damji, K.F.

    1996-01-01

    Because of the significant differences between the juvenile and adult forms of open-angle glaucoma, especially with regard to inheritance, prevalence, severity, and age of onset, we read with interest the recent publication by Morissette et al., describing a pedigree with a phenotype that overlaps the distinctive features of juvenile-onset open-angle glaucoma (JOAG) and adult-onset primary open-angle glaucoma (usually abbreviated as POAG or COAG). These authors conclude that a gene mapped to human chromosome 1q21-q31 (GLC1A) can be responsible for both juvenile and adult forms of open-angle glaucoma. The implications of such a result could be extremely important, in light of the high prevalence of the adult form of the disease. However, while the data presented in this report suggest that variable expressivity of the GLC1A gene may lead to a broader range of onset for this form of juvenile glaucoma, these data do not identify the GLC1A gene as an important cause of POAG. To prevent misleading interpretations of this and similar studies, we wish to clarify the distinction between the juvenile and adult forms of open-angle glaucoma. 8 refs.

  7. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  8. Cyclophilin D-Sensitive Mitochondrial Permeability Transition in Adult Human Brain and Liver Mitochondria

    PubMed Central

    Morota, Saori; Chen, Li; Matsuyama, Nagahisa; Suzuki, Yoshiaki; Nakajima, Satoshi; Tanoue, Tadashi; Omi, Akibumi; Shibasaki, Futoshi; Shimazu, Motohide; Ikeda, Yukio; Uchino, Hiroyuki; Elmér, Eskil

    2011-01-01

    Abstract The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death under a variety of pathophysiological conditions of the central nervous system (CNS) and other organs. Pharmacological inhibition or genetic knockout of the matrix protein cyclophilin D (CypD) prevents mPT and cell degeneration in several models of brain injury. If these findings in animal models are translatable to human disease, pharmacological inhibition of mPT offers a promising therapeutic target. The objective of this study was to validate the presence of a CypD-sensitive mPT in adult human brain and liver mitochondria. In order to perform functional characterization of human mitochondria, fresh tissue samples were obtained during hemorrhage or tumor surgery and mitochondria were rapidly isolated. Mitochondrial calcium retention capacity, a quantitative assay for mPT, was significantly increased by the CypD inhibitor cyclosporin A in both human brain and liver mitochondria, whereas thiol-reactive compounds and oxidants sensitized mitochondria to calcium-induced mPT. Brain mitochondria underwent swelling upon calcium overload, which was reversible upon calcium removal. To further explore mPT of human mitochondria, liver mitochondria were demonstrated to exhibit several classical features of the mPT phenomenon, such as calcium-induced loss of membrane potential and respiratory coupling, as well as release of the pro-apoptotic protein cytochrome c. We concluded that adult viable human brain and liver mitochondria possess an active CypD-sensitive mPT. Our findings support the rationale of CypD and mPT inhibition as pharmacological targets in acute and chronic neurodegeneration. PMID:21121808

  9. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890892

  10. Onset aging conditions of adults with an intellectual disability associated with primary caregiver depression.

    PubMed

    Lin, Lan-Ping; Hsu, Shang-Wei; Kuo, Meng-Ting; Wu, Jia-Lin; Chu, Cordia; Lin, Jin-Ding

    2014-03-01

    Caregivers of adults with an intellectual disability experience depressive symptoms, but the aging factors of the care recipients associated with the depressive symptoms are unknown. The objective of this study was to analyze the onset aging conditions of adults with an intellectual disability that associated with the depression scores of their primary caregivers. A cross-sectional survey was administered to gather information from 455 caregivers of adults with an intellectual disability about their symptoms of depression which assessed by a 9-item Patient Health Questionnaire (PHQ-9). The 12 aging conditions of adults with an intellectual disability include physical and mental health. The results indicate that 78% of adults with an intellectual disability demonstrate aging conditions. Physical conditions associated with aging include hearing decline (66.3%), vision decline (63.6%), incontinence (44%), articulation and bone degeneration (57.9%), teeth loss (80.4), physical strength decline (81.2%), sense of taste and smell decline (52.8%), and accompanied chronic illnesses (74.6%). Mental conditions associated with aging include memory loss (77%), language ability deterioration (74.4%), poor sleep quality (74.2%), and easy onset of depression and sadness (50.3%). Aging conditions of adults with an intellectual disability (p<0.001) was one factor that significantly affected the presence of depressive symptom among caregivers after controlling demographic characteristics. Particularly, poor sleep quality of adults with an intellectual disability (yes vs. no, OR=3.807, p=0.002) was statistically correlated to the occurrence of significant depressive symptoms among their caregivers. This study suggests that the authorities should reorient community services and future policies toward the needs of family caregivers to decrease the burdens associated with caregiving. PMID:24467811

  11. Suicide Risk in Primary Care: Identification and Management in Older Adults

    PubMed Central

    Raue, Patrick J.; Ghesquiere, Angela R.; Bruce, Martha L.

    2014-01-01

    The National Strategy for Suicide Prevention (2012) has set a goal to reduce suicides by 20% within 5 years. Suicide rates are higher in older adults compared to most other age groups, and the majority of suicide completers have visited their primary care physician in the year before suicide. Primary care is an ideal setting to identify suicide risk and initiate mental health care. We review risk factors for late-life suicide; methods to assess for different levels of suicidality; and recent research developments regarding both effective assessment and management of suicide risk among older primary care patients. We highlight that broader scale screening of suicide risk may be considered in light of findings that suicidality can occur even in the absence of major risk factors like depression. We also highlight collaborative care models targeting suicide risk, and recent innovative interventions that aim to prevent the development of suicidal ideation and suicidal behavior. PMID:25030971

  12. Genus Distichopora (Cnidaria, Hydrozoa): from primary cyclosystem to adult pore organisation

    NASA Astrophysics Data System (ADS)

    Puce, S.; Pica, D.; Brun, F.; Mancini, L.; Bavestrello, G.

    2012-09-01

    This investigation provides the first detailed description of the growth stages of two Distichopora species showing the formation of a primary cyclosystem and explaining the growth process leading from primary cyclosystem to adult pore organisation. The earliest observed stage is an oval calcareous disc from which, at a later stage, a primary cyclosystem raises up. Then, the addition of new gastropores and dactylopores leads to the pore rows typical of the genus. Using X-ray computed microtomography, we are able to visualise the dense canal network that permeates the coenosteum and envelops the gastropores and the dactylopores in all the observed growth stages. In both species, the thin canals surrounding the gastropores are responsible for the formation of the new gastropores that originate between the old ones, while the thin canals placed on the external side of the dactylopore rows produce the new dactylopores.

  13. Activating Older Adults With Serious Mental Illness for Collaborative Primary Care Visits

    PubMed Central

    Bartels, Stephen J.; Aschbrenner, Kelly A.; Rolin, Stephanie A.; Hendrick, Delia Cimpean; Naslund, John A.; Faber, Marjan J.

    2016-01-01

    Objective Persons with serious mental illness frequently receive inadequate medical care and are more likely to experience difficulty navigating the health care system compared with the general population. To address this gap in quality, we developed a program of peer co-led collaborative activation training for primary care (CAT-PC) designed to improve “patient activation” and person-centered care in primary care visits for middle-aged and older adults with serious mental illness and cardiovascular risk. This report presents pilot study feasibility and participant outcomes for CAT-PC. Method A pre-post pilot evaluation of CAT-PC included N = 17 adults (age ≥ 50) with serious mental illness and cardiovascular health risk conditions, and N = 6 primary care providers. CAT-PC consists of 9 weekly peer co-led patient education and skills training sessions and a 45-min video-based training for primary care providers. Pre-post measures included the Patient Activation Measure (PAM), Perceived Efficacy in Patient-Physician Interactions (PEPPI), Autonomy Preference Index (API) for preferred role in primary care encounters, and Social Skills Performance Assessment (SSPA) role-play test for medical visits. Results All 17 participants attended 5 or more sessions. Post-intervention improvement was found for patient activation and simulated performance of medical visit communication skills. Trends were observed for improved self-efficacy in provider interactions and greater preference for a more collaborative role in decision-making. Conclusions and Implications CAT-PC is a brief, peer co-led education and skills training intervention potentially improving patient activation in primary care encounters and providing an important missing component in emerging models of “patient-centered behavioral health homes” for this high-risk group. PMID:24219769

  14. Acquisition of Visual Perception in Blind Adults Using the BrainPort Artificial Vision Device

    PubMed Central

    Pintar, Christine; Arnoldussen, Aimee; Fisher, Christopher

    2015-01-01

    OBJECTIVE. We sought to determine whether intensive low vision rehabilitation would confer any functional improvement in a sample of blind adults using the BrainPort artificial vision device. METHOD. Eighteen adults ages 28–69 yr (n = 10 men and n = 8 women) who had light perception only or worse vision bilaterally spent up to 6 hr per day for 1 wk undergoing structured rehabilitation interventions. The functional outcomes of object identification and word recognition were tested at baseline and after rehabilitation training. RESULTS. At baseline, participants were unable to complete the two functional assessments. After participation in the 1-wk training protocol, participants were able to use the BrainPort device to complete the two tasks with moderate success. CONCLUSION. Without training, participants were not able to perform above chance level using the BrainPort device. As artificial vision technologies become available, occupational therapy practitioners can play a key role in clients’ success or failure in using these devices. PMID:25553750

  15. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  16. Differential, regional, and cellular expression of the stathmin family transcripts in the adult rat brain.

    PubMed

    Ozon, S; El Mestikawy, S; Sobel, A

    1999-06-01

    Stathmin is a ubiquitous cytosolic phosphoprotein, preferentially expressed in the nervous system, and previously described as a relay integrating diverse intracellular signaling pathways. Stathmin is the generic element of a mammalian protein family including SCG10, SCLIP, and RB3 with its splice variants RB3' and RB3". In contrast with stathmin, SCG10, SCLIP, and RB3/RB3'/RB3" are exclusively expressed in the nervous system, stathmin and SCG10 being mostly expressed during cell proliferation and differentiation, and SCLIP and RB3 rather in mature neural cells. To further understand their specific roles in the CNS, we compared the localization of the stathmin, SCG10, SCLIP, and RB3 transcripts in adult rat brain. Northern blot analysis as well as in situ hybridization experiments showed that all stathmin-related mRNAs are expressed in a wide range of adult rat brain areas. At a regional level, SCG10 and SCLIP appear generally distributed similarly except in a few areas. The pattern of expression of the RB3 transcript is very different from that of the three other members of the stathmin family. Furthermore, unlike SCG10 and SCLIP, which were detected only in neurons, but like stathmin, RB3 was detected in neurons and also in glial cells of the white matter. Altogether, our results suggest distinct roles for each member of the stathmin-related phosphoprotein family, in regard to their specific regional and cellular localization in the rat brain. PMID:10369222

  17. In vivo quantification of brain injury in adult Niemann-Pick Disease Type C.

    PubMed

    Zaaraoui, Wafaa; Crespy, Lydie; Rico, Audrey; Faivre, Anthony; Soulier, Elisabeth; Confort-Gouny, Sylviane; Cozzone, Patrick J; Pelletier, Jean; Ranjeva, Jean-Philippe; Kaphan, Elsa; Audoin, Bertrand

    2011-06-01

    Development of surrogate markers is necessary to assess the potential efficacy of new therapeutics in Niemann-Pick Disease Type C (NP-C). In the present study, magnetization transfer ratio (MTR) imaging, a quantitative MRI imaging technique sensitive to subtle brain microstructural changes, was applied in two patients suffering from adult NP-C. Statistical mapping analysis was performed to compare each patient's MTR maps with those of a group of 34 healthy controls to quantify and localize the extent of brain injury of each patient. Using this method, pathological changes were evidenced in the cerebellum, the thalami and the lenticular nuclei in both patients and also in the fronto-temporal cortices in the patient with the worse functional deficit. In addition, white matter changes were located in the midbrain, the cerebellum and the fronto-temporal lobes in the patient with the higher level of disability and in only one limited periventricular white matter region in the other patient. A 6-month follow-up was performed in the patient with the lower functional deficit and evidenced significant extension of grey matter (GM) and white matter (WM) injuries during the following period (14% of increased injury for GM and 53% for WM). This study demonstrates that significant brain injury related to clinical deficit can be assessed in vivo in adult NP-C using MTR imaging. Although preliminary, these findings suggest that MTR imaging may be a relevant candidate for the development of biomarker in NP-C. PMID:21397539

  18. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    ClinicalTrials.gov

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  19. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice.

    PubMed

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-04-14

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  20. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  1. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    PubMed Central

    Chen, Hongyan; Zhang, Xiaozhe; Wang, Kai; Huang, Shuhua; Cao, Qingtian; Wang, Hong; Liang, Yuhong; Shi, Chuanying; Li, Mengyuan; Ha, Tingting; Ai, Lin; Li, Shaowu; Ma, Jun; Wei, Wenjuan; You, Youbo; Liu, Zhenyu; Tian, Jie; Bai, Lijun

    2013-01-01

    The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male) were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM) as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP) and heart rate (HR) decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005) decreased and vitality (P = 0.036) increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem. PMID:23781269

  2. Blood-brain barrier dysfunction after primary blast injury in vitro.

    PubMed

    Hue, Christopher D; Cao, Siqi; Haider, Syed F; Vo, Kiet V; Effgen, Gwen B; Vogel, Edward; Panzer, Matthew B; Bass, Cameron R Dale; Meaney, David F; Morrison, Barclay

    2013-10-01

    The incidence of blast-induced traumatic brain injury (bTBI) has increased substantially in recent military conflicts. However, the consequences of bTBI on the blood-brain barrier (BBB), a specialized cerebrovascular structure essential for brain homeostasis, remain unknown. In this study, we utilized a shock tube driven by compressed gas to generate operationally relevant, ideal pressure profiles consistent with improvised explosive devices (IEDs). By multiple measures, the barrier function of an in vitro BBB model was disrupted following exposure to a range of controlled blast loading conditions. Trans-endothelial electrical resistance (TEER) decreased acutely in a dose-dependent manner that was most strongly correlated with impulse, as opposed to peak overpressure or duration. Significantly increased hydraulic conductivity and solute permeability post-injury further confirmed acute alterations in barrier function. Compromised ZO-1 immunostaining identified a structural basis for BBB breakdown. After blast exposure, TEER remained significantly depressed 2 days post-injury, followed by spontaneous recovery to pre-injury control levels at day 3. This study is the first to report immediate disruption of an in vitro BBB model following primary blast exposure, which may be important for the development of novel helmet designs to help mitigate the effects of blast on the BBB. PMID:23581482

  3. Use of complementary and alternative medical therapy by patients with primary brain tumors.

    PubMed

    Armstrong, Terri S; Gilbert, Mark R

    2008-05-01

    The use of complementary and alternative medicine (CAM) is increasing. CAM includes mind-body interventions, biologically based therapies, energy therapies, and body-based methods. Primary brain tumors arise within the brain and have a poor prognosis when malignant. Even patients with benign tumors suffer neurologic and systemic symptoms as a result of the tumor or its treatment. CAM is used by 30% of brain tumor patients, who often do not report its use to their physician. Herbal medicines may affect the metabolism of prescribed medications or produce adverse effects that may be attributed to other causes. In patients with systemic cancer, mind-body modalities such as meditation and relaxation therapy have been shown to be helpful in reducing anxiety and pain; acupuncture and hypnotherapy may also reduce both pain and nausea. Recent preclinical studies have reported that ginseng, Scutellaria baicalensis, and Angelica sinensis may promote apoptosis of tumor cells or exercise antiangiogenic effects. Further studies are needed to evaluate the impact of CAM on symptom control or tumor growth in this vulnerable patient population. PMID:18541122

  4. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression. PMID:24931850

  5. An ultrastructural study of the phagocytic activity of astrocytes in adult rat brain.

    PubMed Central

    al-Ali, S Y; al-Hussain, S M

    1996-01-01

    The role of adult astrocytes in the removal of cell debris and foreign particles following injury to the brain is controversial. This study was undertaken to elucidate the response of adult astrocytes to needle injury of the rat cerebral cortex, using a suspension of colloidal carbon as a marker for phagocytosis. Either a single or 2 successive injections of colloidal carbon suspension were made into the cerebral cortex. The animals were allowed to survive for periods of from 1 to 30 d. Unequivocal involvement of astrocytes in the removal of carbon particles was evident only in those brains which had been subjected to 2 successive injections of carbon. The particles were located in membrane-bound vacuoles and were subsequently sequestered in lysosomes. Carbon-containing astrocytes were observed in the immediate vicinity of the lesion, in the adjacent parenchyma, around blood vessels and abutting carbon-containing macrophages. This study demonstrates that adult astrocytes are involved in phagocytosis, but only as a second line of defence. The possible significance of carbon-laden astrocytes further away from the site of the lesion is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8621323

  6. Traumatic Brain Injury Causes Aberrant Migration of Adult-Born Neurons in the Hippocampus

    PubMed Central

    Ibrahim, Sara; Hu, Weipeng; Wang, Xiaoting; Gao, Xiang; He, Chunyan; Chen, Jinhui

    2016-01-01

    Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in an attempt to initiate innate repair mechanisms. However, all immature neurons in the CNS are required to migrate from their birthplace to their final destination to develop into functional neurons. Here we assessed the destination of adult-born neurons following TBI. We found that a large percentage of immature neurons migrated past their normal stopping site at the inner granular cell layer (GCL), and became misplaced in the outer GCL of the hippocampal dentate gyrus. The aberrant migration of adult-born neurons in the hippocampus occurred 48 hours after TBI, and lasted for 8 weeks, resulting in a great number of newly generated neurons misplaced in the outer GCL in the hippocampus. Those misplaced neurons were able to become mature and differentiate into granular neurons, but located ectopically in the outer GCL with reduced dendritic complexity after TBI. The adult-born neurons at the misplaced position may make wrong connections with inappropriate nearby targets in the pre-existing neural network. These results suggest that although stimulation of endogenous NSCs following TBI might offer new avenues for cell-based therapy, additional intervention is required to further enhance successful neurogenesis for repairing the damaged brain. PMID:26898165

  7. Acute effect of a high nitrate diet on brain perfusion in older adults

    PubMed Central

    Presley, Tennille D.; Morgan, Ashley R.; Bechtold, Erika; Clodfelter, William; Dove, Robin W.; Jennings, Janine M.; Kraft, Robert A.; King, S. Bruce; Laurienti, Paul J.; Rejeski, W. Jack; Burdette, Jonathan H.; Kim-Shapiro, Daniel B.; Miller, Gary D.

    2010-01-01

    Aims Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults. Methods and Results In this investigation we administered a high vs. low nitrate diet to older adults (74.7 ± 6.9 years) and measured cerebral perfusion using arterial spin labeling magnetic resonance imaging. We found that the high nitrate diet did not alter global cerebral perfusion, but did lead to increased regional cerebral perfusion in frontal lobe white matter, especially between the dorsolateral prefrontal cortex and anterior cingulate cortex. Conclusion These results suggest that dietary nitrate may be useful in improving regional brain perfusion in older adults in critical brain areas known to be involved in executive functioning. PMID:20951824

  8. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  9. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine

    PubMed Central

    Fried, Nathan T.; Moffat, Cynthia; Seifert, Erin L.

    2014-01-01

    Mitochondrial dysfunction has been implicated in many neurological disorders that only develop or are much more severe in adults, yet no methodology exists that allows for medium-throughput functional mitochondrial analysis of brain sections from adult animals. We developed a technique for quantifying mitochondrial respiration in acutely isolated adult rat brain sections with the Seahorse XF Analyzer. Evaluating a range of conditions made quantifying mitochondrial function from acutely derived adult brain sections from the cortex, cerebellum, and trigeminal nucleus caudalis possible. Optimization of this technique demonstrated that the ideal section size was 1 mm wide. We found that sectioning brains at physiological temperatures was necessary for consistent metabolic analysis of trigeminal nucleus caudalis sections. Oxygen consumption in these sections was highly coupled to ATP synthesis, had robust spare respiratory capacities, and had limited nonmitochondrial respiration, all indicative of healthy tissue. We demonstrate the effectiveness of this technique by identifying a decreased spare respiratory capacity in the trigeminal nucleus caudalis of a rat model of chronic migraine, a neurological disorder that has been associated with mitochondrial dysfunction. This technique allows for 24 acutely isolated sections from multiple brain regions of a single adult rat to be analyzed simultaneously with four sequential drug treatments, greatly advancing the ability to study mitochondrial physiology in adult neurological disorders. PMID:25252946

  10. Differences in Brain Structure and Function in Older Adults with Self-Reported Disabling and Non-Disabling Chronic Low Back Pain

    PubMed Central

    Buckalew, Neilly; Haut, Marc W.; Aizenstein, Howard; Morrow, Lisa; Perera, Subashan; Kuwabara, Hiroto; Weiner, Debra K.

    2010-01-01

    Objective The primary aim of this pilot study was to identify structural and functional brain differences in older adults with self-reported disabling chronic low back pain (CLBP) compared with those who reported non-disabling CLBP. Design Cross-sectional. Participants Sixteen cognitively intact older adults, eight with disabling CLBP and eight with non-disabling. Exclusions were psychiatric or neurological disorders, substance abuse, opioid use, or diabetes mellitus. Methods Participants underwent: structural and functional brain MRI; neuropsychological assessment using the Repeatable Battery for the Assessment of Neuropsychological Status, Trail Making Tests A and B; and physical performance assessment using the Short Physical Performance Battery. Results In the disabled group there was significantly lower white matter (WM) integrity (P < 0.05) of the splenium of the corpus callosum. This group also demonstrated activation of the right medial prefrontal cortex at rest whereas the non-disabled demonstrated activation of the left lateral prefrontal cortex. Combined groups analysis revealed a strong positive correlation (rs = 0.80, P < 0.0002) between WM integrity of the left centrum semiovale with gait-speed. Secondary analysis revealed a strong negative correlation between total months of CLBP and WM integrity of the SCC (rs = −0.59, P < 0.02). Conclusions Brain structure and function is different in older adults with disabling CLBP compared to those with non-disabling CLBP. Deficits in brain morphology combining groups are associated with pain duration and poor physical function. Our findings suggest brain structure and function may play a key role in chronic-pain-related-disability and may be important treatment targets. PMID:20609128

  11. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo

    PubMed Central

    Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain. PMID:26466323

  12. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    PubMed

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity. PMID:26315689

  13. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides

    PubMed Central

    Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues. PMID:25894337

  14. The pattern of amyloid accumulation in the brains of adults with Down syndrome

    PubMed Central

    Annus, Tiina; Wilson, Liam R.; Hong, Young T.; Acosta–Cabronero, Julio; Fryer, Tim D.; Cardenas–Blanco, Arturo; Smith, Robert; Boros, Istvan; Coles, Jonathan P.; Aigbirhio, Franklin I.; Menon, David K.; Zaman, Shahid H.; Nestor, Peter J.; Holland, Anthony J.

    2016-01-01

    Introduction Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. Methods Forty-nine adults with DS aged 25–65 underwent positron emission tomography with Pittsburgh compound–B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. Results Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. Discussion PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial. PMID:26362596

  15. Biochemical effect of a ketogenic diet on the brains of obese adult rats.

    PubMed

    Mohamed, Hoda E; El-Swefy, Sahar E; Rashed, Leila A; Abd El-Latif, Sally K

    2010-07-01

    Excess weight, particularly abdominal obesity, can cause or exacerbate cardiovascular and metabolic disease. Obesity is also a proven risk factor for Alzheimer's disease (AD). Various studies have demonstrated the beneficial effects of a ketogenic diet (KD) in weight reduction and in modifying the disease activity of neurodegenerative disorders, including AD. Therefore, in this study we examined the metabolic and neurodegenerative changes associated with obesity and the possible neuroprotective effects of a KD in obese adult rats. Compared with obese rats fed a control diet, obese rats fed a KD showed significant weight loss, improvement in lipid profiles and insulin resistance, and upregulation of adiponectin mRNA expression in adipose tissue. In addition, the KD triggered significant downregulation of brain amyloid protein precursor, apolipoprotein E and caspase-3 mRNA expression, and improvement of brain oxidative stress responses. These findings suggest that a KD has anti-obesity and neuroprotective effects. PMID:20395146

  16. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    PubMed

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. PMID:27156560

  17. Beyond utterances: distributed cognition as a framework for studying discourse in adults with acquired brain injury.

    PubMed

    Duff, Melissa C; Mutlu, Bilge; Byom, Lindsey; Turkstra, Lyn S

    2012-02-01

    Considerable effort has been directed at understanding the nature of the communicative deficits observed in individuals with acquired brain injuries. Yet several theoretical, methodological, and clinical challenges remain. In this article, we examine distributed cognition as a framework for understanding interaction among communication partners, interaction of communication and cognition, and interaction with the environments and contexts of everyday language use. We review the basic principles of distributed cognition and the implications for applying this approach to the study of discourse in individuals with cognitive-communication disorders. We also review a range of protocols and findings from our research that highlight how the distributed cognition approach might offer a deeper understanding of communicative mechanisms and deficits in individuals with cognitive communication impairments. The advantages and implications of distributed cognition as a framework for studying discourse in adults with acquired brain injury are discussed. PMID:22362323

  18. Brain activation deficit in increased-load working memory tasks among adults with ADHD using fMRI.

    PubMed

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen; Wang, Peng-Wei; Liu, Gin-Chung

    2013-10-01

    Working memory (WM) is impaired among adults with attention-deficit hyperactivity disorder (ADHD). This study aimed to investigate the brain activation deficit for low-level or increased-load WM among adults with ADHD. A total of 20 adults with ADHD and controls were recruited according to diagnostic interviewing by a psychiatrist. Phonological and visual-spatial 2-back and 3-back tasks were performed under functional magnetic resonance scanning. The results demonstrated that both the adults with ADHD and the controls exhibited activation of the fronto-parietal network for WM, and the intensity was greater in the adult ADHD group. The ADHD group had higher brain activation over the bilateral anterior cingulate, left inferior frontal lobe, hippocampus, and supplementary motor area (SMA) for phonological WM than the control group. When the task loading increased from 2-back to 3-back tasks, the adults with ADHD perceived greater difficulty. The control group exhibited increased brain activation over the frontal-parietal network in response to increased phonological WM load. However, the ADHD group showed decreased brain activation over the left precuneus, insula, and SMA. Further analysis demonstrated that the ADHD group exhibited a greater decrease in brain activation over the left fronto-parietal network, including the precuneus, SMA, insula/inferior frontal lobe, and dorsolateral prefrontal cortex, than the control group. These results suggest that adults with ADHD pay more effort to low demanding phonological WM. On the other hand, brain activation of the left fronto-parietal network is impaired when the demands of WM exceed the capacity of adults with ADHD. PMID:23645101

  19. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  20. Netrin-5 is highly expressed in neurogenic regions of the adult brain

    PubMed Central

    Yamagishi, Satoru; Yamada, Kohei; Sawada, Masato; Nakano, Suguru; Mori, Norio; Sawamoto, Kazunobu; Sato, Kohji

    2015-01-01

    Mammalian netrin family proteins are involved in targeting of axons, neuronal migration, and angiogenesis and act as repulsive and attractive guidance molecules. Netrin-5 is a new member of the netrin family with homology to the C345C domain of netrin-1. Unlike other netrin proteins, murine netrin-5 consists of two EGF motifs of the laminin V domain (LE) and the C345C domain, but lacks the N-terminal laminin VI domain and one of the three LE motifs. We generated a specific antibody against netrin-5 to investigate its expression pattern in the rodent adult brain. Strong netrin-5 expression was observed in the olfactory bulb (OB), rostral migrate stream (RMS), the subventricular zone (SVZ), and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, where neurogenesis occurs in the adult brain. In the SVZ and RMS, netrin-5 expression was observed in Mash1-positive transit-amplifying cells and in Doublecortin (DCX)-positive neuroblasts, but not in GFAP-positive astrocytes. In the OB, netrin-5 expression was maintained in neuroblasts, but its level was decreased in NeuN-positive mature neurons. In the hippocampal SGZ, netrin-5 was observed in Mash1-positive cells and in DCX-positive neuroblasts, but not in GFAP-positive astrocytes, suggesting that netrin-5 expression occurs from type 2a to type 3 cells. These data suggest that netrin-5 is produced by both transit-amplifying cells and neuroblasts to control neurogenesis in the adult brain. PMID:25941474

  1. The long-term side effects of radiation therapy for benign brain tumors in adults

    SciTech Connect

    al-Mefty, O.; Kersh, J.E.; Routh, A.; Smith, R.R. )

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors. One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered safe treatment for benign brain tumors. 163 refs.

  2. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain.

    PubMed

    Resnick, Susan M; Pham, Dzung L; Kraut, Michael A; Zonderman, Alan B; Davatzikos, Christos

    2003-04-15

    Age-related loss of brain tissue has been inferred from cross-sectional neuroimaging studies, but direct measurements of gray and white matter changes from longitudinal studies are lacking. We quantified longitudinal magnetic resonance imaging (MRI) scans of 92 nondemented older adults (age 59-85 years at baseline) in the Baltimore Longitudinal Study of Aging to determine the rates and regional distribution of gray and white matter tissue loss in older adults. Using images from baseline, 2 year, and 4 year follow-up, we found significant age changes in gray (p < 0.001) and white (p < 0.001) volumes even in a subgroup of 24 very healthy elderly. Annual rates of tissue loss were 5.4 +/- 0.3, 2.4 +/- 0.4, and 3.1 +/- 0.4 cm3 per year for total brain, gray, and white volumes, respectively, and ventricles increased by 1.4 +/- 0.1 cm3 per year (3.7, 1.3, 2.4, and 1.2 cm3, respectively, in very healthy). Frontal and parietal, compared with temporal and occipital, lobar regions showed greater decline. Gray matter loss was most pronounced for orbital and inferior frontal, cingulate, insular, inferior parietal, and to a lesser extent mesial temporal regions, whereas white matter changes were widespread. In this first study of gray and white matter volume changes, we demonstrate significant longitudinal tissue loss for both gray and white matter even in very healthy older adults. These data provide essential information on the rate and regional pattern of age-associated changes against which pathology can be evaluated and suggest slower rates of brain atrophy in individuals who remain medically and cognitively healthy. PMID:12716936

  3. [Hypertension and primary glomerulonephritis in adults. A study of 302 cases].

    PubMed

    Seba, A; Rayane, T; Kaci, L; Haddoum, F; Benabadji, M

    1997-08-01

    The purpose of the present work was to show the place of hypertension in primary glomerulonephritis in adults. Hypertension was defined as diastolic blood pressure above 90 mmHg and renal insufficiency as serum creatinine above 135 mc mol/L. Secondary glomerulonephritis was excluded. The study was performed in 302 patients with primary glomerulonephritis biopsied between March 1994 and March 1996. They were 183 males and 119 females, aged from 16 to 63 years (mean: 29.8 years). The incidence of hypertension at the time of admission was 46.6%: 141/302 cases. The only consideration of prolonged hypertension (excluded transient hypertension of acute nephritic syndrome) shows an incidence of 31.4%: 95/302 cases (table). Frequency of hypertension (HT) in different types of primary glomerulonephritis (GN): [table: see text] The histological types observed in these cases of hypertension were represented essentially by the proliferative lesions: 73% (72/95 cases) who were grouped mainly in proliferative glomerulonephritis postinfectious and IgA nephropathy. No proliferative lesions: 24% (23/95 cases) were especially represented by focal segmental sclerosis. Renal insufficiency noted in 69 cases on 95 hypertensions was probably the result of the parallel evolution of hypertension renal lesions and those belonging to these histologic types. In conclusion, this study shows a narrow correlation between the hypertension and proliferative glomerulonephritis in our young adults population. PMID:9404432

  4. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring

    PubMed Central

    Sussman, Dafna; Germann, Jurgen; Henkelman, Mark

    2015-01-01

    Introduction The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. Methods To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. Results The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. Conclusions These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood. PMID:25642385

  5. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults: A STROBE Article.

    PubMed

    Su, Yun Yan; Liang, Xue; Schoepf, U Joseph; Varga-Szemes, Akos; West, Henry C; Qi, Rongfeng; Kong, Xiang; Chen, Hui Juan; Lu, Guang Ming; Zhang, Long Jiang

    2015-12-01

    To investigate the effect of apolipoprotein E (APOE) gene polymorphism on the resting-state brain function, structure, and blood flow in healthy adults younger than 35 years, using multimodality magnetic resonance (MR) imaging.Seventy-six healthy adults (34 men, 23.7 ± 2.8 y; 31 APOE ε4/ε3 carriers, 31 ε3/ε3 carriers, and 14 ε2/ε3 carriers) were included. For resting-state functional MRI data, default mode network (DMN) and amplitude of low-frequency fluctuation maps were extracted and analyzed. Voxel-based morphometry, diffusion tensor imaging from structural imaging, and cerebral blood flow based on arterial spin labeling MR imaging were also analyzed. Correlation analysis was performed between the above mentioned brain parameters and neuropsychological tests.There were no differences in neuropsychological performances, amplitude of low-frequency fluctuation, gray/white matter volumes, fractional anisotropy, mean diffusivity, or whole brain cerebral blood flow among the 3 groups. As for DMN, the ε4/ε3 group showed increased functional connectivities (FCs) in the left medial prefrontal cortex and bilateral posterior cingulate cortices/precuneus compared with the ε3/ε3 group, and increased FCs in the left medial prefrontal cortex and right temporal lobe compared with the ε2/ε3 group (P < 0.05, Alphasim corrected). No differences of DMN FCs were found between the ε2/ε3 and ε3/ε3 groups. FCs in the right temporal lobe positively correlated with the performances of vocabulary learning, delayed recall, and graph recall in all participants (P < 0.05).APOE ε4 carriers exhibited significantly increased DMN FCs when compared with ε3 and ε2 carriers. The ε4 affects DMN FCs before brain structure and blood flow in cognitively intact young patients, suggesting DMN FC may serve as a potential biomarker for the detection of early manifestations of genetic effect. PMID:26717353

  6. Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA.

    PubMed Central

    Iñiguez, M A; Rodriguez-Peña, A; Ibarrola, N; Morreale de Escobar, G; Bernal, J

    1992-01-01

    The mammalian brain is considered to be poorly responsive to thyroid hormone after the so called "critical periods" of brain development, which occur in the rat before postnatal days 15-20. In a previous work (Muñoz, A., A. Rodriguez-Peña, A. Perez-Castillo, B. Ferreiro, J.G. Sutcliffe, and J. Bernal. 1991. Mol. Endocrinol. 5:273-280) we have identified one neuronal gene, RC3, whose expression is influenced by early neonatal hypothyroidism and thyroid hormone treatment. In the present work we show that adult-onset hypothyroidism leads to a reversible decrease of RC3 mRNA. Rats thyroidectomized on postnatal day 40 and killed three months later showed a decreased RC3 mRNA concentration in the cerebral cortex and striatum. The same effect was observed in animals made hypothyroid on postnatal day 32 and killed on postnatal day 52. RC3 expression was normal when hypothyroid animals were treated with T4 five days before being killed. In contrast, the mRNA encoding myelin proteolipid protein showed no changes in either experimental situation. RC3 mRNA levels were not affected by food restriction demonstrating that the effect of hypothyroidism was not related to the lack of weight gain. The control of RC3 mRNA is so far the only molecular event known to be regulated by thyroid hormone once the critical periods of brain development are over and could represent a molecular correlate for the age-independent, reversible alterations induced by hypothyroidism in the adult brain. Images PMID:1379612

  7. Differentiation in boron distribution in adult male and female rats' normal brain: a BNCT approach.

    PubMed

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Khojasteh, Nasrin Baghban

    2012-06-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection. PMID:22484141

  8. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults

    PubMed Central

    Baicy, Kate; London, Edythe D.; Monterosso, John; Wong, Ma-Li; Delibasi, Tuncay; Sharma, Anil; Licinio, Julio

    2007-01-01

    A missense mutation in the ob gene causes leptin deficiency and morbid obesity. Leptin replacement to three adults with this mutation normalized body weight and eating behavior. Because the neural circuits mediating these changes were unknown, we paired functional magnetic resonance imaging (fMRI) with presentation of food cues to these subjects. During viewing of food-related stimuli, leptin replacement reduced brain activation in regions linked to hunger (insula, parietal and temporal cortex) while enhancing activation in regions linked to inhibition and satiety (prefrontal cortex). Leptin appears to modulate feeding behavior through these circuits, suggesting therapeutic targets for human obesity. PMID:17986612

  9. Neuroinflammation and Neurodegeneration in Adult Rat Brain from Binge Ethanol Exposure: Abrogation by Docosahexaenoic Acid

    PubMed Central

    Tajuddin, Nuzhath; Moon, Kwan-Hoon; Marshall, S. Alex; Nixon, Kimberly; Neafsey, Edward J.; Kim, Hee-Yong; Collins, Michael A.

    2014-01-01

    Evidence that brain edema and aquaporin-4 (AQP4) water channels have roles in experimental binge ethanol-induced neurodegeneration has stimulated interest in swelling/edema-linked neuroinflammatory pathways leading to oxidative stress. We report here that neurotoxic binge ethanol exposure produces comparable significant effects in vivo and in vitro on adult rat brain levels of AQP4 as well as neuroinflammation-linked enzymes: key phospholipase A2 (PLA2) family members and poly (ADP-ribose) polymerase-1 (PARP-1). In adult male rats, repetitive ethanol intoxication (3 gavages/d for 4 d, ∼9 g/kg/d, achieving blood ethanol levels ∼375 mg/dl; “Majchrowicz” model) significantly increased AQP4, Ca+2-dependent PLA2 GIVA (cPLA2), phospho-cPLA2 GIVA (p-cPLA2), secretory PLA2 GIIA (sPLA2) and PARP-1 in regions incurring extensive neurodegeneration in this model—hippocampus, entorhinal cortex, and olfactory bulb—but not in two regions typically lacking neurodamage, frontal cortex and cerebellum. Also, ethanol reduced hippocampal Ca+2-independent PLA2 GVIA (iPLA2) levels and increased brain “oxidative stress footprints” (4-hydroxynonenal-adducted proteins). For in vitro studies, organotypic cultures of rat hippocampal-entorhinocortical slices of adult age (∼60 d) were ethanol-binged (100 mM or ∼450 mg/dl) for 4 d, which augments AQP4 and causes neurodegeneration (Collins et al. 2013). Reproducing the in vivo results, cPLA2, p-cPLA2, sPLA2 and PARP-1 were significantly elevated while iPLA2 was decreased. Furthermore, supplementation with docosahexaenoic acid (DHA; 22:6n-3), known to quell AQP4 and neurodegeneration in ethanol-treated slices, blocked PARP-1 and PLA2 changes while counteracting endogenous DHA reduction and increases in oxidative stress footprints (3-nitrotyrosinated proteins). Notably, the PARP-1 inhibitor PJ-34 suppressed binge ethanol-dependent neurodegeneration, indicating PARP upstream involvement. The results with corresponding models

  10. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling.

    PubMed

    Farmer, W Todd; Abrahamsson, Therése; Chierzi, Sabrina; Lui, Christopher; Zaelzer, Cristian; Jones, Emma V; Bally, Blandine Ponroy; Chen, Gary G; Théroux, Jean-Francois; Peng, Jimmy; Bourque, Charles W; Charron, Frédéric; Ernst, Carl; Sjöström, P Jesper; Murai, Keith K

    2016-02-19

    Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties. PMID:26912893

  11. Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.

    PubMed

    Jin, Yunju; Dougherty, Sarah E; Wood, Kevin; Sun, Landy; Cudmore, Robert H; Abdalla, Aya; Kannan, Geetha; Pletnikov, Mikhail; Hashemi, Parastoo; Linden, David J

    2016-08-17

    It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests. PMID:27499084

  12. Effects of alcohol consumption on cognition and regional brain volumes among older adults.

    PubMed

    Downer, Brian; Jiang, Yang; Zanjani, Faika; Fardo, David

    2015-06-01

    This study utilized data from the Framingham Heart Study Offspring Cohort to examine the relationship between midlife and late-life alcohol consumption, cognitive functioning, and regional brain volumes among older adults without dementia or a history of abusing alcohol. The results from multiple linear regression models indicate that late life, but not midlife, alcohol consumption status is associated with episodic memory and hippocampal volume. Compared to late life abstainers, moderate consumers had larger hippocampal volume, and light consumers had higher episodic memory. The differences in episodic memory according to late life alcohol consumption status were no longer significant when hippocampal volume was included in the regression model. The findings from this study provide new evidence that hippocampal volume may contribute to the observed differences in episodic memory among older adults and late life alcohol consumption status. PMID:25202027

  13. Effects of Alcohol Consumption on Cognition and Regional Brain Volumes Among Older Adults

    PubMed Central

    Downer, Brian; Jiang, Yang; Zanjani, Faika; Fardo, David

    2015-01-01

    This study utilized data from the Framingham Heart Study Offspring Cohort to examine the relationship between midlife and late-life alcohol consumption, cognitive functioning, and regional brain volumes among older adults without dementia or a history of abusing alcohol. The results from multiple linear regression models indicate that late life, but not midlife, alcohol consumption status is associated with episodic memory and hippocampal volume. Compared to late life abstainers, moderate consumers had larger hippocampal volume, and light consumers had higher episodic memory. The differences in episodic memory according to late life alcohol consumption status were no longer significant when hippocampal volume was included in the regression model. The findings from this study provide new evidence that hippocampal volume may contribute to the observed differences in episodic memory among older adults and late life alcohol consumption status. PMID:25202027

  14. Adult depression screening in Saudi primary care: prevalence, instrument and cost

    PubMed Central

    2014-01-01

    Background By the year 2020 depression would be the second major cause of disability adjusted life years lost, as reported by the World Health Organization. Depression is a mental illness which causes persistent low mood, a sense of despair, and has multiple risk factors. Its prevalence in primary care varies between 15.3-22%, with global prevalence up to 13% and between 17-46% in Saudi Arabia. Despite several studies that have shown benefit of early diagnosis and cost-savings of up to 80%, physicians in primary care setting continue to miss out on 30-50% of depressed patients in their practices. Methods A cross sectional study was conducted at three large primary care centers in Riyadh, Saudi Arabia aiming at estimating point prevalence of depression and screening cost among primary care adult patients, and comparing Patient Health Questionnaires PHQ-2 with PHQ-9. Adult individuals were screened using Arabic version of PHQ-2 and PHQ-9. PHQ-2 scores were correlated with PHQ-9 scores using linear regression. A limited cost-analysis and cost saving estimates of depression screening was done using the Human Capital approach. Results Patients included in the survey analysis were 477, of whom 66.2% were females, 77.4% were married, and nearly 20% were illiterate. Patients exhibiting depressive symptoms on the basis of PHQ9 were 49.9%, of which 31% were mild, 13.4% moderate, 4.4% moderate-severe and 1.0% severe cases. Depression scores were significantly associated with female gender (p-value 0.049), and higher educational level (p-value 0.002). Regression analysis showed that PHQ-2 & PHQ-9 were strongly correlated R = 0.79, and R2 = 0.62. The cost-analysis showed savings of up to 500 SAR ($133) per adult patient screened once a year. Conclusion The point prevalence of screened depression is high in primary care visitors in Saudi Arabia. Gender and higher level of education were found to be significantly associated with screened depression. Majority of cases were mild to

  15. Increase in primary and secondary syphilis cases in older adults in Louisiana.

    PubMed

    Holden, Julie; Trachtman, Louis

    2011-01-01

    Sexually active young adults and adolescents experience a majority of the burden of sexually transmitted diseases in the United States and public health resources are appropriately directed at these age groups. However, sexual health of older adults is often ignored. An analysis of sexually transmitted disease surveillance data from the Louisiana Office of Public Health show that both the numbers and rates of primary and secondary syphilis cases have increased in older age groups over the past 10 years. Clinicians must be aware of increased use of erectile dysfunction drugs in older persons as a possible risk factor for sexually transmitted diseases. Clinicians must also realize that a significant number of older persons display sexually risky behavior and safe sexual health counseling is often overlooked in this population. PMID:22324089

  16. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain.

    PubMed Central

    Goldman, S A; Nottebohm, F

    1983-01-01

    The vocal control nucleus designated HVc (hyperstriatum ventrale, pars caudalis) of adult female canaries expands in response to systemic testosterone administration, which also induces the females to sing in a male-like manner. We became interested in the possibility of neurogenesis as a potential basis for this phenomenon. Intact adult female canaries were injected with [3H]thymidine over a 2-day period. Some birds were given testosterone implants at various times before thymidine. The birds were sacrificed 5 wk after hormone implantation, and their brains were processed for autoradiography. In parallel control experiments, some birds were given implants of cholesterol instead of testosterone. All birds showed considerable numbers of labeled neurons, glia, endothelia, and ventricular zone cells in and around HVc. Ultrastructural analysis confirmed the identity of these labeled neurons. Cholesterol- and testosterone-treated birds had similar neuronal labeling indices, which ranged from 1.8% to 4.0% in HVc. Thus, neurogenesis occurred in these adults independently of exogenous hormone treatment. Conversely, both glial and endothelial proliferation rates were markedly stimulated by exogenous testosterone treatment. We determined the origin of the thymidine-incorporating neurons by sacrificing two thymidine-treated females soon after their thymidine injections, precluding any significant migration of newly labeled cells. Analysis of these brains revealed no cells of neuronal morphology present in HVc but a very heavily labeled ventricular zone overlying HVc. We conclude that neuronal precursors exist in the HVc ventricular zone that incorporate tritiated thymidine during the S phase preceding their mitosis; after division these cells migrate into, and to some extent beyond, HVc. This ventricular zone neurogenesis seems to be a normally occurring phenomenon in intact adult female canaries. Images PMID:6572982

  17. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  18. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    PubMed

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. PMID:23039863

  19. Should milk-specific IgE antibodies be measured in adults in primary care?

    PubMed Central

    Anthoni, Sari; Elg, Peter; Haahtela, Tari; Kolho, Kaija-Leena

    2008-01-01

    Objective To study the association of milk-IgE antibodies in serum to milk-related gastrointestinal symptoms in adults in primary care. Design Open clinical study. Setting Five outpatient clinics in primary care in Southern Finland. Subjects A total of 756 subjects who reported milk-related gastrointestinal symptoms in primary care and as controls 101 subjects with no such symptoms. Methods IgE values for specific food antigens were measured (Pharmacia CAP System) in a total of 857 subjects. All food screen-positive samples (>0.35 IU/l) were analysed further for IgE for untreated skimmed milk (milk-IgE) and for boiled milk. Those found positive for milk-IgE were invited for an open milk challenge test. Results Some 5.4% (46/857) of all subjects had a positive IgE antibody screen for food antigens. Of those with a positive food screen, 28% (13/46) had milk-IgE antibodies comprising 1.5% of the total group screened. The prevalence of milk-IgE was not statistically different between those with milk-related symptoms and those with no such symptoms. IgE antibodies for boiled milk were rare. All specific IgE antibody levels were low. Bloating was the only observed symptom in milk challenge tests. Conclusion IgE antibodies to cow's milk were relatively rare in the adult population and were not indicative of milk protein allergy. The observed IgE levels were low and did not correlate with subjective milk-related symptoms. The measurement of milk-specific IgE in adults should be discouraged in outpatient clinics. PMID:18609255

  20. On the relationship between cellular and hemodynamic properties of the human brain cortex throughout adult lifespan.

    PubMed

    Zhao, Yue; Wen, Jie; Cross, Anne H; Yablonskiy, Dmitriy A

    2016-06-01

    Establishing baseline MRI biomarkers for normal brain aging is significant and valuable for separating normal changes in the brain structure and function from different neurological diseases. In this paper for the first time we have simultaneously measured a variety of tissue specific contributions defining R2* relaxation of the gradient recalled echo (GRE) MRI signal in human brains of healthy adults (ages 22 to 74years) and related these measurements to tissue structural and functional properties. This was accomplished by separating tissue (R2t(⁎)) and extravascular BOLD contributions to the total tissue specific GRE MRI signal decay (R2(⁎)) using an advanced version of previously developed Gradient Echo Plural Contrast Imaging (GEPCI) approach and the acquisition and post-processing methods that allowed the minimization of artifacts related to macroscopic magnetic field inhomogeneities, and physiological fluctuations. Our data (20 healthy subjects) show that in most cortical regions R2t(⁎) increases with age while tissue hemodynamic parameters, i.e. relative oxygen extraction fraction (OEFrel), deoxygenated cerebral blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) remain practically constant. We also found the important correlations characterizing the relationships between brain structural and hemodynamic properties in different brain regions. Specifically, thicker cortical regions have lower R2t(⁎) and these regions have lower OEF. The comparison between GEPCI-derived tissue specific structural and functional metrics and literature information suggests that (a) regions in a brain characterized by higher R2t(⁎) contain higher concentration of neurons with less developed cellular processes (dendrites, spines, etc.), (b) regions in a brain characterized by lower R2t(⁎) represent regions with lower concentration of neurons but more developed cellular processes, and (c) the age-related increases in the cortical R2t(⁎) mostly

  1. Brain Volumetrics, Regional Cortical Thickness and Radiographic Findings in Adults with Cyanotic Congenital Heart Disease☆

    PubMed Central

    Cordina, Rachael; Grieve, Stuart; Barnett, Michael; Lagopoulos, Jim; Malitz, Nathan; Celermajer, David S.

    2014-01-01

    Background Chronic cyanosis in adults with congenital heart disease (CHD) may cause structural brain changes that could contribute to impaired neurological functioning. The extent of these changes has not been adequately characterized. Hypothesis We hypothesized that adults with cyanotic CHD would have widespread changes including abnormal brain volumetric measures, decreased cortical thickness and an increased burden of small and large vessel ischemic changes. Methods Ten adults with chronic cyanosis from CHD (40 ± 4 years) and mean oxygen saturations of 82 ± 2% were investigated using quantitative MRI. Hematological and biochemical parameters were also assessed. All subjects were free from major physical or intellectual impairment. Brain volumetric results were compared with randomly selected age- and sex-matched controls from our database of normal subjects. Results Five of 10 cyanotic subjects had cortical lacunar infarcts. The white matter (WM) hyperintensity burden was also abnormally high (Scheltens Scale was 8 ± 2). Quantitative MRI revealed evidence of extensive generalized WM and gray matter (GM) volumetric loss; global GM volume was reduced in cyanosed subjects (630 ± 16 vs. 696 ± 14 mL in controls, p = 0.01) as was global WM volume (471 ± 10 vs. 564 ± 18 mL, p = 0.003). Ventricular cerebrospinal fluid volume was increased (35 ± 10 vs. 26 ± 5 mL, p = 0.002). There were widespread regions of local cortical thickness reduction observed across the brain. These changes included bilateral thickness reductions in the frontal lobe including the dorsolateral prefrontal cortex and precentral gyrus, the posterior parietal lobe and the middle temporal gyrus. Sub-cortical volume changes were observed in the caudate, putamen and in the thalamus (p ≤ 0.005 for all regions). Cortical GM volume negatively correlated with brain natriuretic peptide (R = − 0.89, p = 0.009), high sensitivity C-reactive protein (R = − 0

  2. Transporters involved in regulation of intracellular pH in primary cultured rat brain endothelial cells

    PubMed Central

    Taylor, Caroline J; Nicola, Pieris A; Wang, Shanshan; Barrand, Margery A; Hladky, Stephen B

    2006-01-01

    Fluid secretion across the blood–brain barrier, critical for maintaining the correct fluid balance in the brain, entails net secretion of HCO3−, which is brought about by the combined activities of ion transporters situated in brain microvessels. These same transporters will concomitantly influence intracellular pH (pHi). To analyse the transporters that may be involved in the maintenance of pHi and hence secretion of HCO3−, we have loaded primary cultured endothelial cells derived from rat brain microvessels with the pH indicator BCECF and suspended them in standard NaCl solutions buffered with Hepes or Hepes plus 5% CO2/HCO3−. pHi in the standard solutions showed a slow acidification over at least 30 min, the rate being less in the presence of HCO3− than in its absence. However, after accounting for the difference in buffering, the net rates of acid loading with and without HCO3− were similar. In the nominal absence of HCO3− the rate of acid loading was increased equally by removal of external Na+ or by inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA). By contrast, in the presence of HCO3− the increase in the rate of acid loading when Na+ was removed was much larger and the rate was then also significantly greater than the rate observed in the absence of both Na+ and HCO3−. Removal of Cl− in the presence of HCO3− produced an alkalinization followed by a resumption of the slow acid gain. Removal of Na+ following removal of Cl− increased the rate of acid gain. In the presence of HCO3− and initial presence of Na+ and Cl−, DIDS inhibited the changes in pHi produced by removal of either Na+ or Cl−. These are the expected results if these cells possess an AE-like Cl−/HCO3− exchanger, a ‘channel-like’ permeability allowing slow influx of acid (or efflux of HCO3−), a NBC-like Cl−-independent Na+−HCO3− cotransporter, and a NHE-like Na+/H+ exchanger. The in vitro rates of HCO3− loading via the Na+−HCO3

  3. A detailed viscoelastic characterization of the P17 and adult rat brain.

    PubMed

    Elkin, Benjamin S; Ilankovan, Ashok I; Morrison, Barclay

    2011-11-01

    Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. These ages are commonly used in rat experimental models. We measured mechanical properties of both white and gray matter regions in coronal slices with a custom-designed microindentation device performing stress-relaxation indentations to 10% effective strain. Shear moduli calculated for short (100?ms), intermediate (1?sec), and long (20?sec) time points, ranged from ?1?kPa for short term moduli to ?0.4?kPa for long term moduli. Both age and anatomic region were significant factors affecting the time-dependent shear modulus. White matter regions and regions of the cerebellum were much more compliant than those of the hippocampus, cortex, and thalamus. Linear viscoelastic models (Prony series, continuous phase lag, and a power law model) were fit to the time-dependent shear modulus data. All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data. PMID:21341982

  4. Functional Neuroanatomy of Executive Function after Neonatal Brain Injury in Adults Who Were Born Very Preterm

    PubMed Central

    Kalpakidou, Anastasia K.; Allin, Matthew P. G.; Walshe, Muriel; Giampietro, Vincent; McGuire, Philip K.; Rifkin, Larry; Murray, Robin M.; Nosarti, Chiara

    2014-01-01

    Individuals who were born very preterm (VPT; <33 gestational weeks) are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI) the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD), 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH), 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads (‘easy’ and ‘hard’ letters). Two groups of VPT individuals (PVH+VD; n = 10, UPVH; n = 8) performed an n-back task with three cognitive loads (1-, 2-, 3-back). Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory) may be particularly sensitive to the extent of neonatal brain injury. PMID:25438043

  5. Reading in the brain of children and adults: A meta‐analysis of 40 functional magnetic resonance imaging studies

    PubMed Central

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin

    2015-01-01

    Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041

  6. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult

    PubMed Central

    Paolini, Brielle M.; Laurienti, Paul J.; Simpson, Sean L.; Burdette, Jonathan H.; Lyday, Robert G.; Rejeski, W. Jack

    2015-01-01

    Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI) scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus) were highly integrated as evidenced by the results of a principal component analysis (PCA). After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy) and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  7. Global integration of the hot-state brain network of appetite predicts short term weight loss in older adult.

    PubMed

    Paolini, Brielle M; Laurienti, Paul J; Simpson, Sean L; Burdette, Jonathan H; Lyday, Robert G; Rejeski, W Jack

    2015-01-01

    Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI) scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus) were highly integrated as evidenced by the results of a principal component analysis (PCA). After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy) and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  8. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae)

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 ( RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in ds AccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  9. 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity

    PubMed Central

    Dreyer, David; Vitt, Holger; Dippel, Stefan; Goetz, Brigitte; el Jundi, Basil; Kollmann, Martin; Huetteroth, Wolf; Schachtner, Joachim

    2009-01-01

    The red flour beetle Tribolium castaneum is emerging as a further standard insect model beside Drosophila. Its genome is fully sequenced and it is susceptible for genetic manipulations including RNA-interference. We use this beetle to study adult brain development and plasticity primarily with respect to the olfactory system. In the current study, we provide 3D standard brain atlases of freshly eclosed adult female and male beetles (A0). The atlases include eight paired and three unpaired neuropils including antennal lobes (ALs), optic lobe neuropils, mushroom body calyces and pedunculi, and central complex. For each of the two standard brains, we averaged brain areas of 20 individual brains. Additionally, we characterized eight selected olfactory glomeruli from 10 A0 female and male beetles respectively, which we could unequivocally recognize from individual to individual owing to their size and typical position in the ALs. In summary, comparison of the averaged neuropil volumes revealed no sexual dimorphism in any of the reconstructed neuropils in A0 Tribolium brains. Both, the female and male 3D standard brain are also used for interspecies comparisons, and, importantly, will serve as future volumetric references after genetical manipulation especially regarding metamorphic development and adult plasticity. PMID:20339482

  10. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  11. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain

    PubMed Central

    Richards, Alexander L; Jones, Lesley; Moskvina, Valentina; Kirov, George; Gejman, Pablo V; Levinson, Douglas F; Sanders, Alan R; Purcell, Shaun; Visscher, Peter M; Craddock, Nick; Owen, Michael J; Holmans, Peter; O’Donovan, Michael C

    2016-01-01

    It is widely thought that alleles that influence susceptibility to common diseases, including schizophrenia, will frequently do so through effects on gene expression. Since only a small proportion of the genetic variance for schizophrenia has been attributed to specific loci, this remains an unproven hypothesis. The International Schizophrenia Consortium (ISC) recently reported a substantial polygenic contribution to that disorder, and that schizophrenia risk alleles are enriched among SNPs selected for marginal evidence for association (p<0.5) from genome wide association studies (GWAS). It follows that if schizophrenia susceptibility alleles are enriched for those that affect gene expression, those marginally associated SNPs which are also eQTLs should carry more true association signals compared with SNPs which are not. To test this, we identified marginally associated (p<0.5) SNPs from two of the largest available schizophrenia GWAS datasets. We assigned eQTL status to those SNPs based upon an eQTL dataset derived from adult human brain. Using the polygenic score method of analysis reported by the ISC, we observed and replicated the observation that higher probability cis-eQTLs predicted schizophrenia better than those with a lower probability for being a cis-eQTL. Our data support the hypothesis that alleles conferring risk of schizophrenia are enriched among those that affect gene expression. Moreover, our data show that notwithstanding the likely developmental origin of schizophrenia, studies of adult brain tissue can in principle allow relevant susceptibility eQTLs to be identified. PMID:21339752

  12. Brain structure and cognitive correlates of body mass index in healthy older adults

    PubMed Central

    Bolzenius, Jacob D.; Laidlaw, David H.; Cabeen, Ryan P.; Conturo, Thomas E.; McMichael, Amanda R.; Lane, Elizabeth M.; Heaps, Jodi M.; Salminen, Lauren E.; Baker, Laurie M.; Scott, Staci E.; Cooley, Sarah A.; Gunstad, John; Paul, Robert H.

    2014-01-01

    Obesity, commonly measured with body mass index (BMI), is associated with numerous deleterious health conditions including alterations in brain integrity related to advanced age. Prior research has suggested that white matter integrity observed using diffusion tensor imaging (DTI) is altered in relation to high BMI, but the integrity of specific white matter tracts remains poorly understood. Additionally, no studies have examined white matter tract integrity in conjunction with neuropsychological evaluation associated with BMI among older adults. The present study examined white matter tract integrity using DTI and cognitive performance associated with BMI in 62 healthy older adults (20 males, 42 females) aged 51 to 81. Results revealed that elevated BMI was associated with lower fractional anisotropy (FA) in the uncinate fasciculus, though there was no evidence of an age by BMI interaction relating to FA in this tract. No relationships were observed between BMI and other white matter tracts or cognition after controlling for demographic variables. Findings suggest that elevated BMI is associated with lower structural integrity in a brain region connecting frontal and temporal lobes and this alteration precedes cognitive dysfunction. Future studies should examine biological mechanisms that mediate the relationships between BMI and white matter tract integrity, as well as the evolution of these abnormalities utilizing longitudinal designs. PMID:25448431

  13. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  14. Brain structure and cognitive correlates of body mass index in healthy older adults.

    PubMed

    Bolzenius, Jacob D; Laidlaw, David H; Cabeen, Ryan P; Conturo, Thomas E; McMichael, Amanda R; Lane, Elizabeth M; Heaps, Jodi M; Salminen, Lauren E; Baker, Laurie M; Scott, Staci E; Cooley, Sarah A; Gunstad, John; Paul, Robert H

    2015-02-01

    Obesity, commonly measured with body mass index (BMI), is associated with numerous deleterious health conditions including alterations in brain integrity related to advanced age. Prior research has suggested that white matter integrity observed using diffusion tensor imaging (DTI) is altered in relation to high BMI, but the integrity of specific white matter tracts remains poorly understood. Additionally, no studies have examined white matter tract integrity in conjunction with neuropsychological evaluation associated with BMI among older adults. The present study examined white matter tract integrity using DTI and cognitive performance associated with BMI in 62 healthy older adults (20 males, 42 females) aged 51-81. Results revealed that elevated BMI was associated with lower fractional anisotropy (FA) in the uncinate fasciculus, though there was no evidence of an age by BMI interaction relating to FA in this tract. No relationships were observed between BMI and other white matter tracts or cognition after controlling for demographic variables. Findings suggest that elevated BMI is associated with lower structural integrity in a brain region connecting frontal and temporal lobes and this alteration precedes cognitive dysfunction. Future studies should examine biological mechanisms that mediate the relationships between BMI and white matter tract integrity, as well as the evolution of these abnormalities utilizing longitudinal designs. PMID:25448431

  15. In-vivo RGB marking and multicolour single-cell tracking in the adult brain

    PubMed Central

    Gomez-Nicola, Diego; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    In neuroscience it is a technical challenge to identify and follow the temporal and spatial distribution of cells as they differentiate. We hypothesised that RGB marking, the tagging of individual cells with unique hues resulting from simultaneous expression of the three basic colours red, green and blue, provides a convenient toolbox for the study of the CNS anatomy at the single-cell level. Using γ-retroviral and lentiviral vector sets we describe for the first time the in-vivo multicolour RGB marking of neurons in the adult brain. RGB marking also enabled us to track the spatial and temporal fate of neural stem cells in the adult brain. The application of different viral envelopes and promoters provided a useful approach to track the generation of neurons vs. glial cells at the neurogenic niche, allowing the identification of the prominent generation of new astrocytes to the striatum. Multicolour RGB marking could serve as a universal and reproducible method to study and manipulate the CNS at the single-cell level, in both health and disease. PMID:25531807

  16. Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells.

    PubMed Central

    Huynh, H. K.; Dorovini-Zis, K.

    1993-01-01

    Primary cultures of human brain microvessel endothelial cells were used to study the effects of human recombinant interferon-gamma (IFN-gamma) on cerebral endothelium in vitro. Incubation of monolayers with various concentrations of IFN-gamma (10 to 200 U/ml) for 12 to 96 hours induced surface expression of class II major histocompatibility complex (Ia) antigen in a time- and concentration-dependent manner. In immunogold-stained cultures, labeling was observed as early as 12 hours, was maximal after 48 hours, and persisted at plateau levels in the continuous presence of the cytokine. Expression was blocked by coincubation with anti-IFN-gamma antibody and was reversed 4 days following removal of IFN-gamma from the culture media. Endothelial cells treated with IFN-gamma for 3 to 4 days became spindle-shaped, extensively overlapped, and frequently formed cellular whorls. These changes did not occur in the presence of anti-IFN-gamma antibody and reversed upon removal of IFN-gamma from the media. The morphological alterations were associated with increased permeability of confluent monolayers to macromolecules as compared with untreated cultures. The results of these studies indicate that human brain microvessel endothelial cells respond to in vitro cytokine stimulation by undergoing profound morphological, functional, and permeability changes. We conclude that cerebral endothelium may play an important role in the initiation and regulation of lymphocyte traffic across the blood-brain barrier in inflammatory disorders of the human central nervous system. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8475997

  17. Primary and Specialty Medical Care Among Ethnically Diverse, Older Rural Adults With Type 2 Diabetes: The ELDER Diabetes Study

    ERIC Educational Resources Information Center

    Bell, Ronny A.; Quandt, Sara A.; Arcury, Thomas A.; Snively, Beverly M.; Stafford, Jeanette M.; Smith, Shannon L.; Skelly, Anne H.

    2005-01-01

    Purpose: Residents in rural communities in the United States, especially ethnic minority group members, have limited access to primary and specialty health care that is critical for diabetes management. This study examines primary and specialty medical care utilization among a rural, ethnically diverse, older adult population with diabetes.…

  18. Primary and Specialty Medical Care among Ethnically Diverse, Older Rural Adults with Type 2 Diabetes: The ELDER Diabetes Study

    ERIC Educational Resources Information Center

    Bell, Ronny A.; Quandt, Sara A.; Arcury, Thomas A.; Snively, Beverly M.; Stafford, Jeanette M.; Smith, Shannon L.; Skelly, Anne H.

    2005-01-01

    Purpose: Residents in rural communities in the United States, especially ethnic minority group members, have limited access to primary and specialty health care that is critical for diabetes management. This study examines primary and specialty medical care utilization among a rural, ethnically diverse, older adult population with diabetes.…

  19. A computational study on brain tissue under blast: primary and tertiary blast injuries.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G; Ziejewski, M

    2014-08-01

    In this paper, a biomechanical study of a human head model exposed to blast shock waves followed by a blunt impact with the surface of the enclosing walls of a confined space is carried out. Under blast, the head may experience primary blast injury (PBI) due to exposure to the shockwaves and tertiary blast injury (TeBI) due to a possible blunt impact. We examine the brain response data in a deformable finite element head model in terms of the inflicted stress/pressure, velocity, and acceleration on the brain for several blast scenarios with different intensities. The data will be compared for open space and confined spaces. Following the initial impact of the shock front in the confined space, one can see the fluctuations in biomechanical data due to wave reflections. Although the severity of the PBI and TeBI is dependent on the situation, for the cases studied here, PBI is considerably more pronounced than TeBI in confined spaces. PMID:24515869

  20. Hemispheric asymmetry of primary auditory cortex and Heschl’s gyrus in schizophrenia and nonpsychiatric brains

    PubMed Central

    Smiley, John F.; Hackett, Troy A.; Preuss, Todd M.; Bleiwas, Cynthia; Figarsky, Khadija; Mann, J. John; Rosoklija, Gorazd; Javitt, Daniel C.; Dwork, Andrew J.

    2013-01-01

    Heschl’s gyrus (HG) is reported to have a normal left>right hemispheric volume asymmetry, and reduced asymmetry in schizophrenia. Primary auditory cortex (A1) occupies the caudal-medial surface of HG, but it is unclear if A1 has normal asymmetry, or whether its asymmetry is altered in schizophrenia. To address these issues, we compared bilateral gray matter volumes of HG and A1, and neuron density and number in A1, in autopsy brains from male subjects with or without schizophrenia. Comparison of diagnostic groups did not reveal altered gray matter volumes, neuron density, neuron number or hemispheric asymmetries in schizophrenia. With respect to hemispheric differences, HG displayed a clear left>right asymmetry of gray matter volume. Area A1 occupied nearly half of HG, but had less consistent volume asymmetry, that was clearly present only in a subgroup of archival brains from elderly subjects. Neuron counts, in layers IIIb-c and V-VI, showed that the A1 volume asymmetry reflected differences in neuron number, and was not caused simply by changes in neuron density. Our findings confirm previous reports of striking hemispheric asymmetry of HG, and additionally show evidence that A1 has a corresponding asymmetry, although less consistent than that of HG. PMID:24148910

  1. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii

    PubMed Central

    Dietrich, Hans K.; Nguyen, Elizabeth; MacDonald, Wes R.; Trivedi, Tapasya; Devineni, Asha; Koshy, Anita A.

    2016-01-01

    Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma’s primary in vivo target. PMID:26895155

  2. Hepatocyte growth factor enhances the barrier function in primary cultures of rat brain microvascular endothelial cells.

    PubMed

    Yamada, Narumi; Nakagawa, Shinsuke; Horai, Shoji; Tanaka, Kunihiko; Deli, Maria A; Yatsuhashi, Hiroshi; Niwa, Masami

    2014-03-01

    The effects of hepatocyte growth factor (HGF) on barrier functions were investigated by a blood-brain barrier (BBB) in vitro model comprising a primary culture of rat brain capillary endothelial cells (RBEC). In order to examine the response of the peripheral endothelial cells to HGF, human umbilical vascular endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) were also treated with HGF. HGF decreased the permeability of RBEC to sodium fluorescein and Evans blue albumin, and dose-dependently increased transendothelial electrical resistance (TEER) in RBEC. HGF altered the immunochemical staining pattern of F-actin bands and made ZO-1 staining more distinct on the linear cell borders in RBEC. In contrast, HGF increased sodium fluorescein and Evans blue albumin permeability in HMVEC and HUVEC, and decreased TEER in HMVEC. In HMVEC, HGF reduced cortical actin bands and increased stress fiber density, and increased the zipper-like appearance of ZO-1 staining. Western blot analysis showed that HGF significantly increased the amount of ZO-1 and VE-cadherin. HGF seems to act on the BBB to strengthen BBB integrity. These findings indicated that cytoskeletal rearrangement and cell-cell adhesion, such as through VE-cadherin and ZO-1, are candidate mechanisms for the influence of HGF on the BBB. The possibility that HGF has therapeutic significance in protecting the BBB from damage needs to be considered. PMID:24370951

  3. Survival of Patients with Primary Brain Tumors: Comparison of Two Statistical Approaches

    PubMed Central

    Selingerová, Iveta; Doleželová, Hana; Horová, Ivanka; Katina, Stanislav; Zelinka, Jiří

    2016-01-01

    Purpose We reviewed the survival time for patients with primary brain tumors undergoing treatment with stereotactic radiation methods at the Masaryk Memorial Cancer Institute Brno. We also identified risk factors and characteristics, and described their influence on survival time. Methods In summarizing survival data, there are two functions of principal interest, namely, the survival function and the hazard function. In practice, both of them can depend on some characteristics. We focused on nonparametric methods, propose a method based on kernel smoothing, and compared our estimates with the results of the Cox regression model. The hazard function is conditional to age and gross tumor volume and visualized as a color-coded surface. A multivariate Cox model was also designed. Results There were 88 patients with primary brain cancer, treated with stereotactic radiation. The median survival of our patient cohort was 47.8 months. The estimate of the hazard function has two peaks (about 10 months and about 40 months). The survival time of patients was significantly different for various diagnoses (p≪0.001), KI (p = 0.047) and stereotactic methods (p = 0.033). Patients with a greater GTV had higher risk of death. The suitable threshold for GTV is 20 cm3. Younger patients with a survival time of about 50 months had a higher risk of death. In the multivariate Cox regression model, the selected variables were age, GTV, sex, diagnosis, KI, location, and some of their interactions. Conclusion Kernel methods give us the possibility to evaluate continuous risk variables and based on the results offer risk-prone patients a different treatment, and can be useful for verifying assumptions of the Cox model or for finding thresholds of continuous variables. PMID:26863415

  4. Measuring health-related quality of life in adults with chronic conditions in primary care settings

    PubMed Central

    Hand, Carri

    2016-01-01

    Abstract Objective To describe health-related quality of life (HRQOL) conceptual frameworks, critically review 3 commonly used HRQOL scales relevant to adults with chronic conditions in primary care settings, and make recommendations for using HRQOL scales in primary care practice. Data sources Information was accessed regarding HRQOL conceptual and theoretical approaches. A comprehensive search strategy identified 3 commonly used scales that met the review criteria and evidence regarding use of the scales in adults with chronic conditions in community settings. Scale selection Scales were selected if they were designed for clinical use; were easy to administer; were generic and broad in content areas; and contained some individualized items. Scales were critiqued according to content development, theoretical basis, psychometric properties, scoring, feasibility, the concepts being measured, and the number of items that measured an individualized concept. Synthesis Early HRQOL approaches focused on health and functional status while recent approaches incorporate individualized concepts such as the person’s own values and the environment. The abbreviated World Health Organization Quality of Life Scale (WHOQOL-BREF), the 36-Item Short Form Health Survey (SF-36), and the Duke Health Profile were critiqued. All address physical, mental, and social domains, while the WHOQOL-BREF also addresses environment. Psychometric evidence supports use of the SF-36 and WHOQOL-BREF with this population. The SF-36 has the most evidence of responsiveness but has some floor and ceiling effects, while the WHOQOL-BREF does not appear to have floor or ceiling effects but has limited evidence of responsiveness. The WHOQOL-BREF has the highest proportion of individualized items. Conclusion Measurement of HRQOL in adults with chronic conditions can support patient management and contribute to primary care service evaluation. Scales that are based on a broad definition of health and that

  5. Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Jeremias, Gabriela C; Furlanetto, Camila B; Morais, Meline O S; Mello-Santos, Lis Maira; Quevedo, João; Streck, Emilio L

    2014-10-01

    Methylphenidate (MPH) is commonly prescribed for children who have been diagnosed with attention deficit hyperactivity disorder (ADHD); however, the action mechanisms of methylphenidate have not been fully elucidated. Studies have shown a relationship between apoptosis signaling pathways and psychiatric disorders, as well as in therapeutic targets for such disorders. So, we investigated if chronic treatment with MPH at doses of 1, 2 and 10mg/kg could alter the levels of pro-apoptotic protein, Bax, anti-apoptotic protein, Bcl-2, caspase-3 and cytochrome c in the brain of young and adult Wistar rats. Our results showed that MPH at all doses increased Bax in the cortex; the Bcl-2 and caspase-3 were increased with MPH (1mg/kg) and were reduced with MPH (2 and 10mg/kg); the cytochrome c was reduced in the cortex after treatment with MPH at all doses; in the cerebellum there was an increase of Bax with MPH at all doses, however, there was a reduction of Bcl-2, caspase-3, and cytochrome c with MPH (2 and 10mg/kg); in the striatum the treatment with MPH (10mg/kg) decreased caspase-3 and cytochrome c; treatment with MPH (2 and 10mg/kg) increased Bax and decreased Bcl-2 in the hippocampus; and the caspase-3 and cytochrome c were reduced in the hippocampus with MPH (10mg/kg). In conclusion, our results suggest that MPH influences plasticity in the brain of young and adult rats; however, the effects were dependent of age and brain area, on the one hand activating the initial cascade of apoptosis, increasing Bax and reducing Bcl-2, but otherwise inhibiting apoptosis by reduction of caspase-3 and cytochrome c. PMID:25128604

  6. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    PubMed Central

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  7. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury’s etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  8. Neurobehavioural treatment for obsessive-compulsive disorder in an adult with traumatic brain injury.

    PubMed

    Arco, Lucius

    2008-01-01

    Although obsessive-compulsive disorder has been reported as one of many anxiety-related sequelae of brain injury, few empirical data of its responsiveness to psychological intervention are available. In this study, a single participant changing criterion experimental design was used to evaluate a neurobehavioural intervention for compulsive behaviour of an adult with severe traumatic brain injury. The participant, a man aged 24 years, had sustained frontal-temporal lobe brain trauma 12 months earlier, and presented with compulsive counting and voiding of bladder. The neurobehavioural intervention consisted of regular in-home consultations, self-regulation procedures including self-recording of compulsive behaviour, stress-coping strategies, errorless remediation, social reinforcement, and gradual fading of intervention. Baseline showed counting occurred on average 80% of daily hourly intervals, and voiding 12 times per day. Intervention produced elimination of compulsive counting, acceptable voiding at 8 times per day, and reports of the participant's satisfaction with intervention methods and outcomes. At 6 months follow-up, counting remained at zero levels, and voiding had decreased further to 7 times per day. PMID:18058389

  9. Self-reported electrical appliance use and risk of adult brain tumors.

    PubMed

    Kleinerman, Ruth A; Linet, Martha S; Hatch, Elizabeth E; Tarone, Robert E; Black, Peter M; Selker, Robert G; Shapiro, William R; Fine, Howard A; Inskip, Peter D

    2005-01-15

    Electrical appliances produce the highest intensity exposures to residential extremely low frequency electromagnetic fields. The authors investigated whether appliances may be associated with adult brain tumors in a hospital-based case-control study at three centers in the United States from 1994 to 1998. A total of 410 glioma, 178 meningioma, and 90 acoustic neuroma cases and 686 controls responded to a self-administered questionnaire about 14 electrical appliances. There was little evidence of association between brain tumors and curling iron, heating pad, vibrating massager, electric blanket, heated water bed, sound system, computer, television, humidifier, microwave oven, and electric stove. Ever use of hair dryers was associated with glioma (odds ratio = 1.7, 95% confidence interval: 1.1, 2.5), but there was no evidence of increasing risk with increasing amount of use. In men, meningioma was associated with electric shaver use (odds ratio = 10.9, 95% confidence interval: 2.3, 50), and odds ratios increased with cumulative minutes of use, although they were based on only two nonexposed cases. Recall bias for appliances used regularly near the head or chance may provide an alternative explanation for the observed associations. Overall, results indicate that extremely low frequency electromagnetic fields from commonly used household appliances are unlikely to increase the risk of brain tumors. PMID:15632263

  10. Physical Activity and Brain Function in Older Adults at Increased Risk for Alzheimer’s Disease

    PubMed Central

    Smith, J. Carson; Nielson, Kristy A.; Woodard, John L.; Seidenberg, Michael; Rao, Stephen M.

    2013-01-01

    Leisure-time physical activity (PA) and exercise training are known to help maintain cognitive function in healthy older adults. However, relatively little is known about the effects of PA on cognitive function or brain function in those at increased risk for Alzheimer’s disease through the presence of the apolipoproteinE epsilon4 (APOE-ε4) allele, diagnosis of mild cognitive impairment (MCI), or the presence of metabolic disease. Here, we examine the question of whether PA and exercise interventions may differentially impact cognitive trajectory, clinical outcomes, and brain structure and function among individuals at the greatest risk for AD. The literature suggests that the protective effects of PA on risk for future dementia appear to be larger in those at increased genetic risk for AD. Exercise training is also effective at helping to promote stable cognitive function in MCI patients, and greater cardiorespiratory fitness is associated with greater brain volume in early-stage AD patients. In APOE-ε4 allele carriers compared to non-carriers, greater levels of PA may be more effective in reducing amyloid burden and are associated with greater activation of semantic memory-related neural circuits. A greater research emphasis should be placed on randomized clinical trials for exercise, with clinical, behavioral, and neuroimaging outcomes in people at increased risk for AD. PMID:24961307

  11. Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults.

    PubMed

    Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Acker, James D

    2007-03-01

    The impact of vascular health on the relations between structural brain changes and cognition was assessed in a longitudinal study of 46 adults, 23 of whom remained healthy for 5 years and 23 of whom had hypertension at baseline or acquired vascular problems during follow-up. At both measurement occasions, the volume of white matter hyperintensities (WMH) and regional brain volumes correlated with age. In 5 years, WMH volume more than doubled in the vascular risk group but did not increase in healthy participants. The frontal lobes had the highest WMH load at baseline and follow-up; the parietal WMH showed the greatest rate of expansion. In the vascular risk group, systolic blood pressure at follow-up correlated with posterior WMH volume. The fastest cortical shrinkage was observed in the prefrontal cortex and the hippocampus. Fluid intelligence correlated with WMH burden and declined along with faster WMH progression. In the vascular risk group, WMH progression and shrinkage of the fusiform cortex correlated with decline in working memory. Thus, poor vascular health contributes to age-related declines in brain and cognition, and some of the age-related declines may be limited to persons with elevated vascular risk. PMID:17402815

  12. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses.

    PubMed

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury's etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  13. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  14. Specific Distribution of the Autophagic Protein GABARAPL1/GEC1 in the Developing and Adult Mouse Brain and Identification of Neuronal Populations Expressing GABARAPL1/GEC1

    PubMed Central

    Le Grand, Jaclyn Nicole; Bon, Karine; Fraichard, Annick; Zhang, Jianhua; Jouvenot, Michèle; Risold, Pierre-Yves; Boyer-Guittaut, Michaël; Delage-Mourroux, Régis

    2013-01-01

    Macroautophagy is a highly conserved cellular degradation process, regulated by autophagy-related (atg) factors, in which a double membrane autophagosome engulfs cytoplasmic components to target them for degradation. In yeast, the Atg8 protein is indispensable for autophagosome formation. In mammals, this is complicated by the presence of six Atg8 homologues grouped into the GABARAP and MAP1LC3 subfamilies. Although these proteins share a high similarity, their transcript expression, regulation and protein interactions differ, suggesting they may display individual properties and specific functions. GABARAPL1/GEC1 is a member of the GABARAP subfamily and its mRNA is the most highly expressed Atg8 homologue in the central nervous system. Consequently, we performed an in depth study of GABARAPL1 distribution in the developing and adult murine brain. Our results show that GABARAPL1 brain expression is visible as early as embryonic day 11 and progressively increases to a maximum level in the adult. Immunohistochemical staining was detected in both fibers and immature neurons in embryos but was restrained to neurons in adult tissue. By E17, intense punctate-like structures were visible and these accumulated in cortical primary neurons treated with the autophagosome/lysosome fusion inhibitor Bafilomycin A1 (Baf A1), suggesting that they represent autophagosomes. Finally, GABARAPL1 expression was particularly intense in motoneurons in the embryo and in neurons involved in somatomotor and neuroendocrine functions in the adult, particularly in the substantia nigra pars compacta, a region affected in Parkinson's disease. Our study of cerebral GABARAPL1 protein expression provides insight into its role in the development and homeostasis of the mouse brain. PMID:23690988

  15. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    PubMed Central

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Flöel, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials. PMID:26052275

  16. Endogenous brain erythropoietin is a potent sex-specific respiratory stimulant in adult and newborn mice.

    PubMed

    Ballot, Orlane; Joseph, Vincent; Soliz, Jorge

    2015-06-01

    We tested the hypothesis that endogenous brain Epo is a respiratory stimulant. Adult (3 mo) and newborn (10 days) male and female mice received an intracisternal (cisterna magna) injection of soluble Epo receptor (sEpoR; competes with EpoR to bind Epo; 50 μg/ml) or vehicle (0.1% BSA in PBS). Twenty-four hours after injection, we used whole body plethysmography to record minute ventilation (V̇e) tidal volume (VT), respiratory frequency (fR), O2 consumption (V̇o2), and CO2 production (V̇co2) under normoxia and progressive exposure to hypoxia (12-10-6% O2; 10 min each). In adult male and female mice sEpoR decreased normoxic V̇e (-25%), due to a decrease of VT in males and fR in females. Moreover, sEpoR injection decreased the ventilatory response to 12% O2, assessed as V̇e/V̇o2 or V̇e/V̇co2, in male but not in female mice. In newborn male and female mice sEpoR decreased V̇e (-37% in males, -59% in females) and VT (-38% in males, -47% in females) in normoxia and fR in females. During hypoxia, sEpoR decreased V̇e/V̇o2 and V̇e/V̇co2 in mice of both sexes. Upon extreme hypoxia (6% O2), the newborn mice treated with sEpoR showed respiratory depression, signs of asphyxia (gasping) and a high mortality rate in males and females. We concluded that endogenous brain Epo is a potent respiratory stimulant under normoxia and hypoxia in adult and newborn mice. Because sex-specific effects are different in newborn male and female, sex steroids secreted at different ages mice appear to modulate the effects of Epo on respiratory regulation in normoxia and in response to hypoxia. PMID:25792712

  17. Globus pallidus deep brain stimulation for adult-onset axial dystonia

    PubMed Central

    Shaikh, Aasef G.; Mewes, Klaus; Jinnah, H.A.; DeLong, Mahlon R.; Gross, Robert E.; Triche, Shirley; Freeman, Alan; Factor, Stewart A.

    2016-01-01

    Introduction Generalized dystonia, both primary and secondary forms, and axial dystonias such as tardive dystonia, and idiopathic cervical dystonia are responsive to globus pallidus interna (GPi) DBS. There is a paucity of investigations probing the impact of DBS on adult-onset axial dystonia. We assessed the efficacy of GPi DBS in four patients with rare adult-onset axial dystonia. Methods Primary outcome measure was improvement in the motor component of the Burke-Fahn-Marsden (BFM) rating scale. Secondary outcome measures were quality of life as determined by the SF-36 questionnaire, time to achieve best possible benefit and DBS parameters that accounted for the best response. In patients with prominent concomitant cervical dystonia we also used the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Results GPi DBS improved BFM scores by 87.63 ± 11.46%. Improvement in total severity scale of TWSTRS was 71.5 ± 12.7%. Quality of life also remarkably improved as evidenced by 109.38 ± 82.97 and 7.05 ± 21.48% percent change in psychometrically-based physical component summary (PCS), and a mental component summary (MCS) score respectively. Conclusions GPi DBS is a very effective treatment for adult-onset axial dystonia. Considering its refractoriness to medical therapy and significant impact on quality of life DBS should be considered for this disorder. PMID:25260969

  18. Adult sports-related traumatic brain injury in United States trauma centers.

    PubMed

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis. RESULTS From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic

  19. Measuring inhibitory control in children and adults: brain imaging and mental chronometry

    PubMed Central

    Houdé, Olivier; Borst, Grégoire

    2014-01-01

    Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., “fast thinking” in Daniel Kahneman’s words). The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive ability that supports children’s conceptual insights associated with more advanced Piagetian stages, such as number-conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need “prefrontal pedagogy” in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative priming paradigm). We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks. PMID:24994993

  20. Measuring inhibitory control in children and adults: brain imaging and mental chronometry.

    PubMed

    Houdé, Olivier; Borst, Grégoire

    2014-01-01

    Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., "fast thinking" in Daniel Kahneman's words). The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive ability that supports children's conceptual insights associated with more advanced Piagetian stages, such as number-conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need "prefrontal pedagogy" in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative priming paradigm). We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks. PMID:24994993

  1. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction. PMID:24326094

  2. 15N labeled brain enables quantification of proteome and phosphoproteome in cultured primary neurons

    PubMed Central

    Liao, Lujian; Sando, Richard C.; Farnum, John B.; Vanderklish, Peter W.; Maximov, Anton; Yates, John R.

    2011-01-01

    Terminally differentiated primary cells represent a valuable in vitro model to study signaling events associated within a specific tissue. Quantitative proteomic methods using metabolic labeling in primary cells encounter labeling efficiency issues hindering the use of these cells. Here we developed a method to quantify the proteome and phosphoproteome of cultured neurons using 15N labeled brain tissue as an internal standard, and applied this method to determine how an inhibitor of an excitatory neural transmitter receptor, phencyclidine (PCP), affects the global phosphoproteome of cortical neurons. We identified over 10,000 phosphopeptides and made accurate quantitative measurements of the neuronal phosphoproteome after neuronal inhibition. We show that short PCP treatments lead to changes in phosphorylation for 7% of neuronal phosphopeptides and that prolonged PCP treatment alters the total levels of several proteins essential for synaptic transmission and plasticity and leads to a massive reduction in the synaptic strength of inhibitory synapses. The results provide valuable insights into the dynamics of molecular networks implicated in PCP-mediated NMDA receptor inhibition and sensorimotor deficits. PMID:22070516

  3. FUNCTIONAL IMPAIRMENT IN ADULTS WITH PAST POSTTRAUMATIC STRESS DISORDER: FINDINGS FROM PRIMARY CARE

    PubMed Central

    Westphal, Maren; Olfson, Mark; Gameroff, Marc J.; Wickramaratne, Priya; Pilowsky, Daniel J.; Neugebauer, Richard; Lantigua, Rafael; Shea, Steven; Neria, Yuval

    2013-01-01

    Background Although many patients with posttraumatic stress disorder (PTSD) experience a reduction in posttraumatic symptoms over time, little is currently known about the extent of their residual functional impairment. This study examines functional impairment in primary care patients with a history of PTSD as compared to patients with current PTSD, and those who never developed PTSD following exposure to trauma. Methods The sample consisted of 321 trauma-exposed low-income, predominantly Hispanic adults attending a large urban primary care practice. PTSD was assessed with the Lifetime Composite International Diagnostic Interview and other psychiatric disorders with the SCID-I. Physical and mental health-related quality of life was assessed with the Medical Outcome Health Survey (SF-12), and functional impairment with items from the Sheehan Disability Scale and Social Adjustment Scale Self-Report. Results Logistic regression analyses controlling for gender, psychiatric comorbidity, and interpersonal traumas showed that although patients with past PTSD function significantly better than patients with current PTSD, they experience persisting deficits in mental health-related quality of life compared to trauma-exposed patients who never developed PTSD. Overall, results revealed a continuum of severity in psychiatric comorbidity, functioning, and quality of life, with current PTSD associated with the most impairment, never having met criteria for PTSD with the least impairment, and history of PTSD falling in between. Conclusions In this primary care sample, adults with a history of past PTSD but no current PTSD continued to report enduring functional deficits, suggesting a need for ongoing clinical attention. PMID:21681868

  4. Severe chronic primary neutropenia in adults: report on a series of 108 patients.

    PubMed

    Sicre de Fontbrune, Flore; Moignet, Aline; Beaupain, Blandine; Suarez, Felipe; Galicier, Lionel; Socié, Gérard; Varet, Bruno; Coppo, Paul; Michel, Marc; Pautas, Cécile; Oksenhendler, Eric; Lengline, Etienne; Terriou, Louis; Moreau, Philippe; Chantepie, Sylvain; Casadevall, Nicole; Michot, Jean Marie; Gardembas, Martine; Michallet, Mauricette; Croisille, Laure; Audrain, Marie; Bellanné-Chantelot, Christine; Donadieu, Jean; Lamy, Thierry

    2015-10-01

    Severe chronic primary neutropenia (CPN) is a rare entity, and long-term outcome and risk factors for infections in severe CPN adults have not been described to date. We report the characteristics and outcomes of 108 severe adult CPN patients enrolled in a multi-institutional observational study. Severe CPN adults were mostly female (78%), and median age at diagnosis was 28.3 years. Diagnosis was fortuitous in 62% of cases. The median absolute neutrophil count (ANC) at diagnosis was 0.4 × 10(9)/L, and median ANC without granulocyte colony-stimulating factor (G-CSF) during follow-up was 0.5 × 10(9)/L. Twenty-three of 66 (34.8%) evaluable patients had neutrophil autoantibodies, and 6 of 47 (12.8%) a T-cell clone. The presence of neutrophil autoantibodies or T-cell clone was not associated with any specific clinical or biological characteristics. No death or hematologic malignancies occurred, and 44 severe bacterial infections were reported in 27 patients with a median follow-up of 8.3 years. Fifty patients received G-CSF either sporadically (n = 24) or continuously (n = 26) and responded (96%). Nineteen patients received immunosuppressive therapies: overall response (OR) was 41%, and median duration of response was 3 months. At diagnosis, the only predictive factor for the occurrence of severe bacterial infections was an ANC count below 0.2 × 10(9)/L (OR, 0.76). Severe CPN in adults is characterized by a female predominance and a benign outcome with a low rate of severe bacterial infections and no secondary malignancies. G-CSF is efficient and well tolerated but is not required in a majority of patients. PMID:26261239

  5. Implementing Routine Cognitive Screening of Older Adults in Primary Care: Process and Impact on Physician Behavior

    PubMed Central

    Scanlan, James; Hummel, Jeffrey; Gibbs, Kathy; Lessig, Mary; Zuhr, Elizabeth

    2007-01-01

    Background Early detection of cognitive impairment is a goal of high-quality geriatric medical care, but new approaches are needed to reduce rates of missed cases. Objective To evaluate whether adding routine cognitive screening to primary care visits for older adults increases rates of dementia diagnosis, specialist referral, or prescribing of antidementia medications. Setting Four primary care clinics in a university-affiliated primary care network. Design A quality improvement screening project and quasiexperimental comparison of 2 intervention clinics and 2 control clinics. The Mini-Cog was administered by medical assistants to intervention clinic patients aged 65+ years. Rates of dementia diagnoses, referrals, and medication prescribing were tracked over time using computerized administrative data. Results Twenty-six medical assistants successfully screened 70% (n = 524) of all eligible patients who made at least 1 clinic visit during the intervention period; 18% screened positive. There were no complaints about workflow interruption. Relative to baseline rates and control clinics, Mini-Cog screening was associated with increased dementia diagnoses, specialist referrals, and prescribing of cognitive enhancing medications. Patients without previous dementia indicators who had a positive Mini-Cog were more likely than all other patients to receive a new dementia diagnosis, specialty referral, or cognitive enhancing medication. However, relevant physician action occurred in only 17% of screen-positive patients. Responses were most related to the lowest Mini-Cog score level (0/5) and advanced age. Conclusion Mini-Cog screening by office staff is feasible in primary care practice and has measurable effects on physician behavior. However, new physician action relevant to dementia was likely to occur only when impairment was severe, and additional efforts are needed to help primary care physicians follow up appropriately on information suggesting cognitive

  6. Adult neurogenesis in the crayfish brain: proliferation, migration and possible origin of precursor cells

    PubMed Central

    Zhang, Y.; Allodi, S.; Sandeman, D.C.; Beltz, B.S.

    2015-01-01

    The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche. PMID:19294644

  7. Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells.

    PubMed

    Zhang, Yi; Allodi, Silvana; Sandeman, David C; Beltz, Barbara S

    2009-06-01

    The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche. PMID:19294644

  8. Distribution of angiotensin type-1 receptor messenger RNA expression in the adult rat brain.

    PubMed

    Lenkei, Z; Palkovits, M; Corvol, P; Llorens-Cortes, C

    1998-02-01

    Angiotensin II and angiotensin III in the brain exert their various effects by acting on two pharmacologically well-defined receptors, the type-1 (AT1) and the type-2 (AT2) receptors. Receptor binding autoradiography has revealed the dominant presence of AT1 in brain nuclei involved in cardiovascular, body fluid and neuroendocrine control. The cloning of the AT1 complementary DNA has revealed the existence of two receptor subtypes in rodents, AT1A and AT1B. Using specific riboprobes for in situ hybridization, we have previously shown that the AT1A messenger RNA is predominantly expressed in the rat forebrain; in contrast the AT1B subtype predominates in the anterior pituitary. Using a similar technical approach, the aim of the present study was to establish the precise anatomical localization of cells synthetising the AT1A receptor in the adult rat brain. High AT1A messenger RNA expression was found in the vascular organ of the lamina terminalis, the median preoptic nucleus, the subfornical organ, the hypothalamic periventricular nucleus, the parvocellular parts of the paraventricular nucleus, the nucleus of the solitary tract and the area postrema, in agreement with previous autoradiographic studies, describing a high density of AT1 binding sites in these nuclei. In addition, AT1A messenger RNA expression was detected in several brain areas, where no AT1 binding was reported previously. Thus, we identify strong expression of AT1A messenger RNA expression in scattered cells of the lateral parts of the preoptic region, the lateral hypothalamus and several brainstem nuclei. In none of these structures was the AT1B messenger RNA detectable at the microscopic level. In conclusion, it is suggested that angiotensins may exert their central effects on body fluid and cardiovascular homeostasis mainly via the AT1A receptor subtype. PMID:9483539

  9. The relation between brain activity during memory tasks and years of education in young and older adults.

    PubMed

    Springer, Mellanie V; McIntosh, Anthony R; Winocur, Gordon; Grady, Cheryl L

    2005-03-01

    Higher education is associated with less age-related decline in cognitive function, but the mechanism of this protective effect is unknown. The authors examined the effect of age on the relation between education and brain activity by correlating years of education with activity measured using functional MRI during memory tasks in young and older adults. In young adults, education was negatively correlated with frontal activity, whereas in older adults, education was positively correlated with frontal activity. Medial temporal activity was associated with more education in young adults but less education in older adults. This suggests that the frontal cortex is engaged by older adults, particularly by the highly educated, as an alternative network that may be engaged to aid cognitive function. PMID:15769202

  10. Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer

    ClinicalTrials.gov

    2014-04-21

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma

  11. The Content of Diet and Physical Activity Consultations with Older Adults in Primary Care

    PubMed Central

    Bardach, Shoshana H.; Schoenberg, Nancy E.

    2014-01-01

    Objective Despite numerous benefits of consuming a healthy diet and receiving regular physical activity, engagement in these behaviors is suboptimal. Since primary care visits are influential in promoting healthy behaviors, we sought to describe whether and how diet and physical activity are discussed during older adults’ primary care visits. Methods 115 adults ages 65 and older consented to have their routine primary care visits recorded. Audio-recorded visits were transcribed and diet and physical activity content was coded and analyzed. Results Diet and physical activity were discussed in the majority of visits. When these discussions occurred, they lasted an average of a minute and a half. Encouragement and broad discussion of benefits of improved diet and physical activity levels were the common type of exchange. Discussions rarely involved patient behavioral self-assessments, patient questions, or providers’ recommendations. Conclusions The majority of patient visits include discussion of diet and physical activity, but these discussions are often brief and rarely include recommendations. Practice Implications Providers may want to consider ways to expand their lifestyle behavior discussions to increase patient involvement and provide more detailed, actionable recommendations for behavior change. Additionally, given time constraints, a wider array of approaches to lifestyle counseling may be necessary. PMID:24736190

  12. Weight management services for adults--highlighting the role of primary care.

    PubMed

    Hassan, S J; O'Shea, D

    2012-01-01

    Ireland has the fourth highest prevalence of overweight and obese men in the European Union and the seventh highest prevalence among women. This study focuses on 777 referrals on the waiting list for Ireland's only fully funded hospital-based adult weight management service with special emphasis on the role of primary care in the referral process. Since our last review two years ago, we found that patients are now being referred at a younger age (mean 43 years). The mean BMI at referral has increased from 44 to 46. Five hundred and forty eight (70%) referrals were from primary care with males accounting for 163 (30%) of these, despite male obesity being more prevalent. Interestingly, as the distance from Dublin increased, the number of referrals decreased. Overall this is a concerning trend showing the increasing burden of obesity on a younger population and a health system inadequately equipped to deal with the problem. It also highlights the central role of the primary care physician in the timely and appropriate referral to optimise use of our available resources. PMID:23495548

  13. Cocaine-induced expression changes of axon guidance molecules in the adult rat brain.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2005-02-01

    Administration of drugs of abuse induces strong molecular adaptations and plasticity within the mesolimbic dopamine (DA) system, a pathway essential for reward-seeking behavior. Little is known about the specific targets involved in this neuroadaptation process, but there are indications that cocaine and other drugs of abuse share the ability to alter the morphology of neuronal dendrites and spines, the primary site of excitatory synapses in the brain. Axon guidance molecules, the very molecular cues that regulate the formation of axon-target connections during development, may mediate these alterations. To test this hypothesis, we investigated mRNA expression changes of 39 axon guidance molecules, including 17 Semaphorins, 12 Ephs, 8 Ephrins, and 2 neuropilins in the mesolimbic dopamine system of cocaine-treated animals under different paradigms by mean of DNA-Microarray and quantitative real-time PCR. In all cases, strong changes in gene expression are observed, yielding to up or downregulation of these axon guidance molecules. Our data suggest that cocaine treatment induces activation of a complex program of synaptic rearrangements, which may partly recapitulate the plastic changes occurring during development, and may underlie the important neuroplastic adaptations that occur in the reward- and memory-related brain centers following drug action. We conclude that in some brain regions, exposure to psychomotor-stimulant drugs produce expression changes in axon guidance molecules, which may contribute to cognitive deficits associated with drug abuse. PMID:15691709

  14. Structural alterations of brain grey and white matter in early deaf adults.

    PubMed

    Hribar, Manja; Suput, Dušan; Carvalho, Altiere Araujo; Battelino, Saba; Vovk, Andrej

    2014-12-01

    Functional and structural brain alterations in the absence of the auditory input have been described, but the observed structural brain changes in the deaf are not uniform. Some of the previous researchers focused only on the auditory areas, while others investigated the whole brain or other selected regions of interest. Majority of studies revealed decreased white matter (WM) volume or altered WM microstructure and preserved grey matter (GM) structure of the auditory areas in the deaf. However, preserved WM and increased or decreased GM volume of the auditory areas in the deaf have also been reported. Several structural alterations in the deaf were found also outside the auditory areas, but these regions differ between the studies. The observed differences between the studies could be due to the use of different single-analysis techniques, or the diverse population sample and its size, or possibly due to the usage of hearing aids by some participating deaf subjects. To overcome the aforementioned limitations four different image-processing techniques were used to investigate changes in the brain morphology of prelingually deaf adults who have never used hearing aids. GM and WM volume of the Heschl's gyrus (HG) were measured using manual volumetry, while whole brain GM volume, thickness and surface area were assessed by voxel-based morphometry (VBM) and surface-based analysis. The microstructural properties of the WM were evaluated by diffusion tensor imaging (DTI). The data were compared between 14 congenitally deaf adults and 14 sex- and age-matched normal hearing controls. Manual volumetry revealed preserved GM volume of the bilateral HG and significantly decreased WM volume of the left HG in the deaf. VBM showed increased cerebellar GM volume in the deaf, while no statistically significant differences were observed in the GM thickness or surface area between the groups. The results of the DTI analysis showed WM microstructural alterations between the groups in

  15. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2016-07-26

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  16. Subthalamic Nucleus Stimulation Increases Brain Derived Neurotrophic Factor in the Nigrostriatal System and Primary Motor Cortex

    PubMed Central

    Spieles-Engemann, Anne L.; Steece-Collier, Kathy; Behbehani, Michael M.; Collier, Timothy J.; Wohlgenant, Susan L.; Kemp, Christopher J.; Cole-Strauss, Allyson; Levine, Nathan D.; Gombash, Sara E.; Thompson, Valerie B.; Lipton, Jack W.; Sortwell, Caryl E.

    2011-01-01

    The mechanisms underlying the effects of long-term deep brain stimulation of the subthalamic nucleus (STN DBS) as a therapy for Parkinson’s disease (PD) remain poorly understood. The present study examined whether functionally effective, long-term STN DBS modulates glial cell line-derived neurotrophic factor (GDNF) and/or brain-derived neurotrophic factor (BDNF) in both unlesioned and unilateral 6-hydroxydopamine lesioned rats. Lesioned rats that received two weeks of continuous unilateral STN DBS exhibited significant improvements in parkinsonian motor behaviors in tests of forelimb akinesia and rearing activity. Unilateral STN DBS did not increase GDNF in the nigrostriatal system, primary motor cortex (M1), or hippocampus of unlesioned rats. In contrast, unilateral STN DBS increased BDNF protein 2–3 fold bilaterally in the nigrostriatal system with the location (substantia nigra vs. striatum) dependent upon lesion status. Further, BDNF protein was bilaterally increased in M1 cortex by as much as 2 fold regardless of lesion status. STN DBS did not impact cortical regions that receive less input from the STN. STN DBS also was associated with bilateral increases in BDNF mRNA in the substantia nigra (SN) and internal globus pallidus (GPi). The increase observed in GPi was completely blocked by pretreatment with 5-Methyl-10,11-dihydro-5 H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), suggesting that the activation of N-methyl-D-aspartate (NMDA) receptors was involved in this phenomenon. The upregulation of BDNF associated with long term STN DBS suggest that this therapy may exert pronounced and underappreciated effects on plasticity in the basal ganglia circuitry that may play a role in the symptomatic effects of this therapy as well as support the neuroprotective effect of stimulation documented in this rat model. PMID:22328911

  17. Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults

    PubMed Central

    Burzynska, Agnieszka Z.; Wong, Chelsea N.; Voss, Michelle W.; Cooke, Gillian E.; Gothe, Neha P.; Fanning, Jason; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness (CRF) and physical activity (PA) in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA), or moderate-to-vigorous physical activity (MV-PA) relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60–80 years). We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD), known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults. PMID:26244873

  18. Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults.

    PubMed

    Burzynska, Agnieszka Z; Wong, Chelsea N; Voss, Michelle W; Cooke, Gillian E; Gothe, Neha P; Fanning, Jason; McAuley, Edward; Kramer, Arthur F

    2015-01-01

    Higher cardiorespiratory fitness (CRF) and physical activity (PA) in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA), or moderate-to-vigorous physical activity (MV-PA) relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60-80 years). We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD), known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults. PMID:26244873

  19. Angiotensin-Converting Enzyme Gene Polymophism in Adult Primary Focal Segmental Glomerulosclerosis

    PubMed Central

    Mohd, Rozita; Wahab, Zaimi Abdul; Cader, Rizna; Gafor, Halim A.; Radzi, Azizah Md; Shah, Shamsul Azhar; Tong, Norella Kong Chiew

    2014-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) accounts for a third of biopsy-proven primary glomerulonephritis in Malaysia. Pediatric studies have found the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene to be associated with renal disease progression. The aim of this study was to determine the prevalence of the ACE (I/D) genotypes in adult primary FSGS and its association with renal outcome on follow-up. Methods Prospective observational study involving primary FSGS patients was conducted. Biochemical and urine tests at the time of study were compared to the time of the diagnosis and disease progression analyzed. ACE gene polymorphism was identified using polymerase chain reaction amplification technique and categorized into II, ID and DD genotypes. Results Forty-five patients with a median follow-up of 3.8 years (interquartile range: 1.8 - 5.6) were recruited. The commonest genotype was II (n = 23, 51.1%) followed by ID (n = 19, 42.2%) and DD (n = 3, 6.7%). The baseline characteristics were comparable between the II and non-II groups at diagnosis and at study recruitment except that the median urine protein-creatinine index was significantly lower in the II group compared to the non-II group (0.02 vs. 0.04 g/mmol (P = 0.03). Regardless of genotypes, all parameters of renal outcome improved after treatment. Conclusion The II followed by ID genotypes were the predominant ACE gene alleles in our FSGS. Although the D allele has been reported to have a negative impact on renal outcome, treatment appeared to be more important than genotype in preserving renal function in this cohort. PMID:24883149

  20. Impact of Patient Portal Secure Messages and Electronic Visits on Adult Primary Care Office Visits

    PubMed Central

    Crane, Sarah J.; Chaudhry, Rajeev; Ebbert, Jon O.; Ytterberg, Karen; Tulledge-Scheitel, Sidna M.; Stroebel, Robert J.

    2014-01-01

    Abstract Introduction: Secure messages and electronic visits (“e-visits”) through patient portals provide patients with alternatives to face-to-face appointments, telephone contact, letters, and e-mails. Limited information exists on how portal messaging impacts face-to-face visits in primary care. Materials and Methods: We conducted a retrospective cohort study of 2,357 primary care patients who used electronic messaging (both secure messages and e-visits) on a patient portal. Face-to-face appointment frequencies (visits/year) of each patient were calculated before and after the first message in a matched-pairs analysis. We analyzed visit frequencies with and without adjustments for a first message surge in visits, and we examined subgroups of high message utilizers and long-term users. Results: Primary care patients who sent at least one message (secure message or e-visit) had a mean of 2.43 (standard deviation [SD] 2.3) annual face-to-face visits before the first message and 2.47 (SD 2.8) after, a nonsignificant difference (p=0.45). After adjustment for a first message surge in visits, no significant visit frequency differences were observed (mean, 2.35 annual visits per patient both before and after first message; p=0.93). Subgroup analysis also showed no significant change in visit frequency for patients with higher message utilization or for those who had used the messaging feature longer. Conclusions: No significant change in face-to-face visit frequency was observed following implementation of portal messaging. Secure messaging and e-visits through a patient portal may not result in a change of adult primary care face-to-face visits. PMID:24350803

  1. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    ERIC Educational Resources Information Center

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  2. In-hospital Mobility Variations across Primary Diagnoses among Older Adults

    PubMed Central

    Valiani, Vincenzo; Gao, Shiyao; Chen, Zhiguo; Swami, Sunil; Harle, Christopher A.; Lipori, Gigi; Sourdet, Sandrine; Wu, Samuel; Nayfield, Susan G.; Sabbá, Carlo; Pahor, Marco; Manini, Todd M.

    2016-01-01

    Objectives To examine the relationship between primary diagnoses and mobility impairment and recovery among hospitalized older adults. Design Prospective cohort study. Setting UF Health Shands Hospital, an 852-bed level I trauma center located in Gainesville, Florida. Participants 18,551 older adults (≥65 years) with 29,148 hospitalizations between 1/2009 and 4/2014. Measurements Incident and discharge mobility impairment and recovery were assessed using the Braden activity subscale score that was recorded by the nursing staff at every shift change–approximately three times per day. Primary diagnosis ICD-9 codes were used as predictors and re-categorized by using the Agency for Health Care Research and Quality Clinical Classification Software. Results Out of the 15,498 hospital records where the patient was initially observed to “walk frequently”, 3,186 (20.6%) developed incident mobility impairment (chair-fast or bedfast). Primary diagnoses with a surgical or invasive procedure were the most prevalent (77.2 %) among the hospital observations with incident mobility impairment; otherwise primary diagnoses without surgery were much more associated with discharge mobility impairment (59%). The highest incidence of mobility impairment occurred in patients with heart valve disorders and aortic and peripheral/visceral artery aneurysms (6.24 and 6.05 events per 30 person-days, respectively); septicemia showed the highest incidence rate for mobility limitation at discharge (0.94 events per 30 person-days). Mobility impairment was observed in 13,650 (46.8% of total) records at admission and 5,930 (43.44%) were observed to recover to a state of walking occasionally or frequently. Osteoarthritis and cancer of gastrointestinal organs/peritoneum had the highest incidence rate for mobility recovery (7.68 and 5.63 events per 30 person-days respectively). Conclusions Approximately 1 out of 5 patients who were mobile at admission became significantly impaired during

  3. Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity

    PubMed Central

    Brenowitz, Eliot A.

    2014-01-01

    The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401

  4. Stability and Autolysis of Cortical Neurons in Post-Mortem Adult Rat Brains

    PubMed Central

    Sheleg, Sergey V; LoBello, Janine R; Hixon, Hugh; Coons, Stephen W; Lowry, David; Nedzved, Mikhail K

    2008-01-01

    We investigated the dynamics of autolytic damage of the cortical neurons in adult brains for 24 hours at room temperature (+20°C) after cardiac arrest. The progressive histological and ultrastructural changes were documented using routine and immunohistochemical staining as well as electron microscopy. Our results demonstrated that there were no autolytic damages in the ultrastructure of cerebral neurons in the first 6 hours after warm cardiac arrest, in agreement with previous studies in other mammals. Interestingly, the activation of caspase-3 was observed in a significant number of neurons of the cerebellum and neocortex 9 hours following cardiac arrest. No significant changes related to autolysis were observed using amnio-cupric acid and Nissl (thionine) staining. PMID:18784829

  5. Computer-based cognitive retraining for adults with chronic acquired brain injury: a pilot study.

    PubMed

    Li, Kitsum; Robertson, Julie; Ramos, Joshua; Gella, Stephanie

    2013-10-01

    This study evaluated the effectiveness of a computer-based cognitive retraining (CBCR) program on improving memory and attention deficits in individuals with a chronic acquired brain injury (ABI). Twelve adults with a chronic ABI demonstrating deficits in memory and attention were recruited from a convenience sample from the community. Using a quasi-experimental one-group pretest-posttest design, a significant improvement was found in both memory and attention scores postintervention using the cognitive screening tool. This study supported the effectiveness of CBCR programs in improving cognitive deficits in memory and attention in individuals with chronic ABI. Further research is recommended to validate these findings with a larger ABI population and to investigate transfer to improvement in occupational performance that supports daily living skills. PMID:24102589

  6. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells.

    PubMed

    Binley, Kate E; Ng, Wai S; Barde, Yves-Alain; Song, Bing; Morgan, James E

    2016-08-01

    We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as 'labelling' with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain-derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma. PMID:27285957

  7. Implementation of Patient-Centered Medical Homes in Adult Primary Care Practices.

    PubMed

    Alexander, Jeffrey A; Markovitz, Amanda R; Paustian, Michael L; Wise, Christopher G; El Reda, Darline K; Green, Lee A; Fetters, Michael D

    2015-08-01

    There has been relatively little empirical evidence about the effects of patient-centered medical home (PCMH) implementation on patient-related outcomes and costs. Using a longitudinal design and a large study group of 2,218 Michigan adult primary care practices, our study examined the following research questions: Is the level of, and change in, implementation of PCMH associated with medical surgical cost, preventive services utilization, and quality of care in the following year? Results indicated that both level and amount of change in practice implementation of PCMH are independently and positively associated with measures of quality of care and use of preventive services, after controlling for a variety of practice, patient cohort, and practice environmental characteristics. Results also indicate that lower overall medical and surgical costs are associated with higher levels of PCMH implementation, although change in PCMH implementation did not achieve statistical significance. PMID:25861803

  8. Antibody response to revaccination among adult non-responders to primary Hepatitis B vaccination in China

    PubMed Central

    Zhang, Li; Liu, Jiaye; Lu, Jingjing; Yan, Bingyu; Song, Lizhi; Li, Li; Cui, Fuqiang; Zhang, Guomin; Wang, Fuzhen; Liang, Xiaofeng; Xu, Aiqiang

    2015-01-01

    About 10% adult failed to develop antibody response after primary hepatitis B vaccination, and revaccination may be an option to improve immune response, but the antibody responses to revaccination in adult non-responders have not been fully examined. Adult non-responders to primary 3-dose hepatitis B vaccination were randomly divided into 2 groups and revaccinated with 20 μg hepatitis B vaccine (HepB) derived from Saccharomyces Cerevisiae (HepB-SC) or 20 μg HepB derived from Chinese hamster ovary cells (HepB-CHO), respectively, at 0-, 1-, 6- month. Seroconversion rate and titer of antibody against hepatitis B surface antigen (anti-HBs) was measured one month after the 1st and 3rd revaccination dose. Anti-HBs seroconversion rates significantly increased from 54.98% [95% confidence interval (CI) 48.60%–61.24%] after the 1st revaccination dose to 89.24% (95% CI: 84.74%–92.79%) after the 3rd revaccination dose (P < 0.001), and the geometric mean titer (GMT) of anti-HBs increased from 12.18mIU/ml (95%CI: 7.81–18.98 mIU/ml) to 208.31 mIU/ml (95% CI: 148.87–291.47 mIU/ml) (P = 0.008).Compared with those with anti-HBs titer <2 mIU/ml after primary vaccination, those with antibody titer ≥2 mIU/ml after primary vaccination had higher seroconversion rate after the 1st dose revaccination (38.36% vs. 78.10%, P < 0.001) and after the 3rd dose of revaccination (84.25% vs. 96.19%, P = 0.003), and had higher antibody titer after the 1st dose of revaccination (3.32mIU/ml vs. 74.21mIU/ml, P < 0.0001) and after the 3rd dose of revaccination (145.73mIU/ml vs. 342.34mIU/ml, P = 0.01). Anti-HBs titer was significantly higher in those revaccinated with HepB-CHO than those revaccinated with HepB-SC after the 3rd dose (131.46 mIU/ml vs. 313.38mIU/ml, P = 0.01). Revaccination on adult HepB non-responders increased the immune response to HepB and may confer further protection against hepatitis B virus infection. If possible, revaccination might be an option to HepB non

  9. Giant primary ossified cavernous hemangioma of the skull in an adult: A rare calvarial tumor

    PubMed Central

    Tyagi, Devendra K; Balasubramaniam, Srikant; Sawant, Hemant V

    2011-01-01

    Primary intraosseous cavernous hemangiomas (PICHs) of the cranium are rare benign vascular tumors that account for about 0.2 % of all bone tumors and 10 % of benign skull tumors. They generally present as osteolytic lesions with honeycomb pattern of calcification. Completely ossified cavernous hemangioma of the calvarium in an adult has not been reported previously. A 28-year-old female presented to us with a large right parietal skull mass that had been present since the last 15 years. Total resection of the lesion was performed. Pathological examination was suggestive of cavernous hemangioma of the skull bone. Cavernous hemangioma should be considered as one of the differential diagnosis in any case of bony swelling of the calvarium so that adequate preoperative planning can be made to minimize blood loss and subsequent morbidity. PMID:21897684

  10. Physician Perspectives on Providing Primary Medical Care to Adults with Autism Spectrum Disorders (ASD).

    PubMed

    Warfield, Marji Erickson; Crossman, Morgan K; Delahaye, Jennifer; Der Weerd, Emma; Kuhlthau, Karen A

    2015-07-01

    We conducted in-depth case studies of 10 health care professionals who actively provide primary medical care to adults with autism spectrum disorders. The study sought to understand their experiences in providing this care, the training they had received, the training they lack and their suggestions for encouraging more physicians to provide this care. Qualitative data were gathered by phone using a structured interview guide and analyzed using the framework approach. Challenges to providing care were identified at the systems, practice and provider, and education and training levels. Solutions and interventions targeting needed changes at each level were also proposed. The findings have implications for health care reform, medical school and residency training programs, and the development of best practices. PMID:25724445

  11. Primary brain tumors treated with steroids and radiotherapy: Low CD4 counts and risk of infection

    SciTech Connect

    Hughes, Michael A.; Parisi, Michele; Grossman, Stuart; Kleinberg, Lawrence . E-mail: kleinla@jhmi.edu

    2005-08-01

    Purpose: Patients with primary brain tumors are often treated with high doses of corticosteroids for prolonged periods to reduce intracranial swelling and alleviate symptoms such as headaches. This treatment may lead to immunosuppression, placing the patient at risk of life-threatening opportunistic infections, such as Pneumocystis carinii pneumonia. The risk of contracting some types of infection may be reduced with prophylactic antibiotics. The purpose of this study was to determine the occurrence of low CD4 counts and whether monitoring CD4 counts during and after radiotherapy (RT) is warranted. Methods and Materials: CD4 counts were measured during RT in 70 of 76 consecutive patients with newly diagnosed Grade III and IV astrocytoma and anaplastic oligodendroglioma treated with corticosteroids and seen at the Johns Hopkins Hospital. Weekly CD4 measurements were taken in the most recent 25 patients. Prophylactic trimethoprim-sulfamethoxazole (160 mg/800 mg p.o. every Monday, Wednesday, and Friday) or dapsone (100 mg p.o. daily) in those with sulfa allergy was prescribed only if patients developed a low CD4 count. Carmustine chemotherapy wafers were placed at surgery in 23% of patients, evenly distributed between the groups. No patient received any other chemotherapy concurrent with RT. Results: CD4 counts decreased to <200/mm{sup 3} in 17 (24%) of 70 patients. For the 25 patients with weekly CD4 counts, all CD4 counts were >450/mm{sup 3} before RT, but 6 (24%) of 25 fell to <200/mm{sup 3} during RT. Patients with counts <200/mm{sup 3} were significantly more likely to be hospitalized (41% vs. 9%, p <0.01) and be hospitalized for infection (23% vs. 4%, p <0.05) during RT. Overall survival was not significantly different between the groups. All patients with low CD4 counts were treated with prophylactic antibiotics, and no patient developed Pneumocystis carinii pneumonia. No patients developed a serious adverse reaction to antibiotic therapy. The mean dose of

  12. Dairy intake is associated with brain glutathione concentration in older adults123

    PubMed Central

    Lee, Phil; Denney, Douglas R; Spaeth, Kendra; Nast, Olivia; Ptomey, Lauren; Roth, Alexandra K; Lierman, Jo Ann; Sullivan, Debra K

    2015-01-01

    Background: A reduction in key antioxidants such as glutathione has been noted in brain tissue undergoing oxidative stress in aging and neurodegeneration. To date, no dietary factor has been linked to a higher glutathione concentration. However, in an earlier pilot study, we showed evidence of a positive association between cerebral glutathione and dairy intake. Objective: We tested the hypothesis that dairy food consumption is associated with cerebral glutathione concentrations in older adults. Design: In this observational study, we measured cerebral glutathione concentrations in 60 healthy subjects (mean ± SD age: 68.7 ± 6.2 y) whose routine dairy intakes varied. Glutathione concentrations were measured by using a unique, noninvasive magnetic resonance chemical shift imaging technique at 3 T and compared with dairy intakes reported in 7-d food records. Results: Glutathione concentrations in the frontal [Spearman's rank-order correlation (rs) = 0.39, P = 0.013], parietal (rs = 0.50, P = 0.001), and frontoparietal regions (rs = 0.47, P = 0.003) were correlated with average daily dairy servings. In particular, glutathione concentrations in all 3 regions were positively correlated with milk servings (P ≤ 0.013), and those in the parietal region were also correlated with cheese servings (P = 0.015) and calcium intake (P = 0.039). Dairy intake was related to sex, fat-free mass, and daily intakes of energy, protein, and carbohydrates. However, when these factors were controlled through a partial correlation, correlations between glutathione concentrations and dairy and milk servings remained significant. Conclusions: Higher cerebral glutathione concentrations were associated with greater dairy consumption in older adults. One possible explanation for this association is that dairy foods may serve as a good source of substrates for glutathione synthesis in the human brain. PMID:25646325

  13. Gender, intoxication and the developing brain: Problematisations of drinking among young adults in Australian alcohol policy.

    PubMed

    Manton, Elizabeth; Moore, David

    2016-05-01

    In this article, we draw on recent scholarly work in the poststructuralist analysis of policy to consider how policy itself functions as a key site in the constitution of alcohol 'problems', and the political implications of these problematisations. We do this by examining Australian alcohol policy as it relates to young adults (18-24 years old). Our critical analysis focuses on three national alcohol policies (1990, 2001 and 2006) and two Victorian state alcohol policies (2008 and 2013), which together span a 25-year period. We argue that Australian alcohol policies have conspicuously ignored young adult men, despite their ongoing over-representation in the statistical 'evidence base' on alcohol-related harm, while increasingly problematising alcohol consumption amongst other population subgroups. We also identify the development of a new problem representation in Australian alcohol policy, that of 'intoxication' as the leading cause of alcohol-related harm and rising hospital admissions, and argue that changes in the classification and diagnosis of intoxication may have contributed to its prioritisation and problematisation in alcohol policy at the expense of other forms of harm. Finally, we draw attention to how preliminary and inconclusive research on the purported association between binge drinking and brain development in those under 25 years old has been mobilised prematurely to support calls to increase the legal purchasing age from 18 to 21 years. Our critical analysis of the treatment of these three issues - gender, intoxication, and brain development - is intended to highlight the ways in which policy functions as a key site in the constitution of alcohol 'problems'. PMID:26644026

  14. Primary atypical teratoid/rhabdoid tumor of the spine in an adult patient

    PubMed Central

    Li, Luyuan; Patel, Mohit; Nguyen, Ha Son; Doan, Ninh; Sharma, Abhishiek; Maiman, Dennis

    2016-01-01

    Background: Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive neoplasm of the central nervous system that generally arises intracranially in patients under 2 years of age. Primary spinal AT/RT in an adult is rare. Case Description: A 23-year-old female presented with left lower extremity sciatica attributed to a magnetic resonance imaging (MRI)-documented intradural mass between L2 and L4. The lesion was biopsied (was unresectable) and treated with high-dose chemotherapy (methotrexate, vincristine, cyclophosphamide, etoposide, and cisplatin) with autologous hematopoietic stem cells rescue, followed by 2 months of radiation therapy (36 Gy to craniospinal axis, 20 Gy to lumbar region) with concurrent temozolomide; the latter was discontinued after 3 weeks due to myelosuppression. Tumor relapsed 1 year later at C7–T1 level. She was started on oral metronomic therapy, and bevacizumab was added 2 months later. Three months later, a cervical MRI showed progression of the tumor, along with new lesions in the thoracic/lumbar spine plus intracranial punctate nodular tumors. Following resection of the C7/T1 lesion, she was started on palliative alisertib; a month later, a cranial computed tomography showed progression of her disease with hydrocephalus. Treatment was discontinued, and she expired 12 months after initial diagnosis. Conclusion: Primary spinal AT/RT in the adult patient is rare. The pathology is associated with early recurrence and a poor prognosis. Although potential benefits of metronomic chemotherapy and alisertib have been reported, the patient in this study did not favorably respond to these modalities. PMID:27069744

  15. Changes in Young Adult Primary Care Under the Affordable Care Act

    PubMed Central

    Ford, Carol A.; French, Benjamin; Rubin, David M.

    2015-01-01

    Objectives. We sought to describe changes in young adults’ routine care and usual sources of care (USCs), according to provider specialty, after implementation of extended dependent coverage under the Affordable Care Act (ACA) in 2010. Methods. We used Medical Expenditure Panel Survey data from 2006 to 2012 to examine young adults’ receipt of routine care in the preceding year, identification of a USC, and USC provider specialties (pediatrics, family medicine, internal medicine, and obstetrics and gynecology). Results. The percentage of young adults who sought routine care increased from 42.4% in 2006 to 49.5% in 2012 (P < .001). The percentage identifying a USC remained stable at approximately 60%. Among young adults with a USC, there was a trend between 2006 and 2012 toward increasing percentages with pediatric (7.6% vs 9.1%) and family medicine (75.9% vs 80.9%) providers and declining percentages with internal medicine (11.5% vs 7.6%) and obstetrics and gynecology (5.0% vs 2.5%) providers. Conclusions. Efforts under the ACA to increase health insurance coverage had favorable effects on young adults’ use of routine care. Monitoring routine care use and USC choices in this group can inform primary care workforce needs and graduate medical education priorities across specialties. PMID:26447914

  16. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype.

    PubMed

    Thyberg, J; Nilsson, J; Palmberg, L; Sjölund, M

    1985-01-01

    Smooth muscle cells were isolated enzymatically from adult human arteries, grown in primary culture in medium containing 10% whole blood serum, and studied by transmission electron microscopy and [3H]thymidine autoradiography. In the intact arterial wall and directly after isolation, each smooth muscle cell had a nucleus with a wide peripheral zone of condensed chromatin and a cytoplasm dominated by myofilament bundles with associated dense bodies. After 1-2 days of culture, the cells had attached to the substrate and started to spread out. At the same time, a characteristic fine-structural modification took place. It included nuclear enlargement, dispersion of the chromatin and formation of large nucleoli. Moreover, myofilament bundles disappeared and an extensive rough endoplasmic reticulum and a large Golgi complex were organized in the cytoplasm. This morphological transformation of the cells was completed in 3-4 days. It was accompanied by initiation of DNA replication and mitosis. The observations demonstrate that adult human arterial smooth muscle cells, when cultivated in vitro, pass through a phenotypic modulation of the same type as arterial smooth muscle cells from experimental animals. This modulation gives the cells morphological and functional properties resembling those of the modified smooth muscle cells found in fibroproliferative lesions of atherosclerosis. Further studies of the regulation of smooth muscle phenotype and growth may provide important clues for a better understanding of the pathogenesis of atherosclerosis. PMID:3967287

  17. A quality-of-life measure for adults with primary ciliary dyskinesia: QOL–PCD

    PubMed Central

    Behan, Laura; Dunn Galvin, Audrey; Alpern, Adrianne; Morris, Anjana M.; Carroll, Mary P.; Knowles, Michael R.; Leigh, Margaret W.; Quittner, Alexandra L.

    2015-01-01

    Primary ciliary dyskinesia (PCD) is characterised by chronic suppurative lung disease, rhino-sinusitis, hearing impairment and sub-fertility. We have developed the first multidimensional measure to assess health-related quality of life (HRQoL) in adults with PCD (QOL–PCD). Following a literature review and expert panel meeting, open-ended interviews with patients investigated the impact of PCD on HRQoL in the UK and North America (n=21). Transcripts were content analysed to derive saturation matrices. Items were rated for relevance by patients (n=49). Saturation matrices, relevance scores, literature review, evaluation of existing measures, and expert opinion contributed to development of a preliminary questionnaire. The questionnaire was refined following cognitive interviews (n=18). Open-ended interviews identified a spectrum of issues unique to adults with PCD. Saturation matrices confirmed comprehensive coverage of content. QOL–PCD includes 48 items covering the following seven domains: Physical Functioning, Emotional Functioning, Treatment Burden, Respiratory and Sinus Symptoms, Ears and Hearing, Social Functioning, and Vitality and Health Perceptions. Cognitive testing confirmed that content was comprehensive and the items were well-understood by respondents. Content validity and cognitive testing supported the items and structure. QOL–PCD has been translated into other languages and is awaiting psychometric testing. PMID:25976687

  18. Compound heterozygote mutations in SPG7 in a family with adult-onset primary lateral sclerosis

    PubMed Central

    Yang, Yi; Lynch, David R.; Lukas, Thomas; Ahmeti, Kreshnik; Sleiman, Patrick M.A.; Ryan, Eanna; Schadt, Kimberly A.; Newman, Jordan H.; Deng, Han-Xiang; Siddique, Nailah

    2016-01-01

    Objective: To identify the genetic defect for adult-onset primary lateral sclerosis (PLS) in a family with 5 patients. Methods: Whole-exome sequencing was performed to identify the shared genetic variants in 3 affected members in a PLS family with 5 affected individuals. Sanger sequencing was used for validation of the variants and for cosegregation analysis. Mitochondrial activity for both patients and unaffected siblings was measured using a SeaHorse metabolic analyzer. Results: Whole-exome sequencing and subsequent cosegregation analysis demonstrated that compound heterozygous missense variants L695P and I743T in SPG7 were the only mutations cosegregating with the disease in an autosomal recessive fashion in this family. The parents and siblings are genetically heterozygous and clinically unaffected. Functional studies suggested that the PLS-associated SPG7 mutants affect mitochondrial function when glucose is reduced. Conclusions: Compound heterozygote mutations in SPG7 are associated with adult-onset PLS, extending the spectrum of SPG7-linked neurologic diseases. Patients with the PLS phenotype should have genetic testing for paraplegin, especially when the condition is familial. PMID:27123479

  19. Pharmacological Induction of Human Fetal Globin Gene in Hydroxyurea-Resistant Primary Adult Erythroid Cells.

    PubMed

    Chou, Yu-Chi; Chen, Ruei-Lin; Lai, Zheng-Sheng; Song, Jen-Shin; Chao, Yu-Sheng; Shen, Che-Kun James

    2015-07-01

    Pharmacological induction of the fetal γ globin gene and the consequent formation of HbF (α2/γ2) in adult erythroid cells are one feasible therapeutic strategy for sickle cell disease (SCD) and severe β-thalassemias. Hydroxyurea (HU) is the current drug of choice for SCD, but serious side effects limit its clinical use. Moreover, 30 to 50% of patients are irresponsive to HU treatment. We have used high-throughput screening to identify benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one and its derivatives (compounds I to VI) as potent γ globin inducers. Of the compounds, I to V exert superior γ globin induction and have better therapeutic potential than HU, likely because of their activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and modulation of expression levels and/or chromosome binding of γ globin gene regulators, including BCL11A, and chromatin structure over the γ globin promoter. Unlike sodium butyrate (NaB), the global levels of acetylated histones H3 and H4 are not changed by compound II treatment. Remarkably, compound II induces the γ globin gene in HU-resistant primary human adult erythroid cells, the p38 signaling pathway of which appears to be irresponsive to HU and NaB as well as compound II. This study provides a new framework for the development of new and superior compounds for treating SCD and severe β-thalassemias. PMID:25986606

  20. MRI-guided stereotaxic brain surgery in the infant and adult common marmoset.

    PubMed

    Mundinano, Inaki-Carril; Flecknell, Paul A; Bourne, James A

    2016-07-01

    In the past decade, the New World common marmoset (Callithrix jacchus) has taken a seminal position in neurobiological research, fueled in part by its smooth cortical sheet, which allows cortical areas to be easily accessed by current technologies on the dorsal surface of the brain. In this protocol, we describe a method for the precision placement of agents (e.g., tracers or neurotoxins) into small brain regions of the infant and adult marmoset, using an MRI-guided approach. This strategy uses a protocol for prolonged anesthesia without the need for intubation that we have recently developed, alongside appropriate analgesia and monitoring. The protocol can be readily adapted to be used together with advanced research techniques, such as two-photon microscopy and optical imaging. Including a 5-d postoperative care plan, this protocol takes 7 d to complete. The protocol requires a team of personnel experienced in marmoset care and handling, and small-animal neurosurgery; an assistant for monitoring the animal and assisting with anesthesia; and an MRI technician. PMID:27336707

  1. Characteristics of diffusion-tensor imaging for healthy adult rhesus monkey brains

    PubMed Central

    Zhao, Xinxiang; Pu, Jun; Fan, Yaodong; Niu, Xiaoqun; Yu, Danping; Zhang, Yanglin

    2013-01-01

    Diffusion-tensor imaging can be used to observe the microstructure of brain tissue. Fractional sotropy reflects the integrity of white matter fibers. Fractional anisotropy of a young adult brain is low in gray matter, high in white matter, and highest in the splenium of the corpus callosum. Thus, we selected the anterior and posterior limbs of the internal capsule, head of the caudate nucleus, semioval center, thalamus, and corpus callosum (splenium and genu) as regions of interest when using diffusion-tensor imaging to observe fractional anisotropy of major white matter fiber tracts and the deep gray matter of healthy rhesus monkeys aged 4–8 years. Results showed no laterality ferences in fractional anisotropy values. Fractional anisotropy values were low in the head of date nucleus and thalamus in gray matter. Fractional anisotropy values were highest in the splenium of corpus callosum in the white matter, followed by genu of the corpus callosum and the posterior limb of the internal capsule. Fractional anisotropy values were lowest in the semioval center and posterior limb of internal capsule. These results suggest that fractional anisotropy values in major white matter fibers and the deep gray matter of 4–8-year-old rhesus monkeys are similar to those of healthy young people. PMID:25206616

  2. Figurative language processing after traumatic brain injury in adults: a preliminary study.

    PubMed

    Yang, Fanpei Gloria; Fuller, Jerome; Khodaparast, Navid; Krawczyk, Daniel C

    2010-06-01

    Figurative speech (e.g., proverb, irony, metaphor, and idiom) has been reported to be particularly sensitive to measurement of abstract thinking in patients who suffer from impaired abstraction and language abilities. Metaphor processing was investigated with fMRI in adults with moderate to severe post-acute traumatic brain injury (TBI) and healthy age-matched controls using a valence-judgment task. We hypothesized that TBI patients would display decreased activation of the left inferior frontal gyrus (LIFG), which is considered central to semantic memory retrieval and abstract thought, in comparison with healthy controls. We also predicted that decreased activation in TBI individuals would correlate with their behavioral response times. A whole-brain analysis across the two participant groups revealed that patients did not strongly engage frontal and temporal regions related to semantic processing for novel metaphor comprehension, whereas control participants exhibited more intensive and concentrated activation within frontal and temporal areas. A region of interest (ROI) analysis verified that the LIFG was underactivated in TBI patients compared to controls across all conditions. TBI patients' impaired abstraction of novel stimuli may stem from reduced prefrontal control of semantic memory as well as disrupted interconnectivity of prefrontal cortex with other regions. PMID:20230844

  3. Competence in Caregivers of Adolescent and Young Adult Childhood Brain Tumor Survivors

    PubMed Central

    Deatrick, Janet A.; Hobbie, Wendy; Ogle, Sue; Fisher, Michael J.; Barakat, Lamia; Hardie, Thomas; Reilly, Maureen; Li, Yimei; Ginsberg, Jill P.

    2015-01-01

    Objective Caregivers of adolescents and young adults (AYA) with complex medical conditions, including brain tumor survivors, have protracted and often complex roles, yet a gap exists in understanding their perceived competence. The aim of this study is to test a hypothesized model based on the theoretical and empirical literature: better caregiver health, better survivor health, and better family functioning contribute directly to fewer caregiving demands, which in turn contribute to greater caregiver competence. Method Telephone interviews using structured self-report questionnaires were conducted in this cross-sectional study with a sample of 186 caregivers (mothers) of childhood brain tumor survivors aged 14–40 years old who live with at least one parent. Structural equation modeling (SEM) was used to test the hypothesized model. Results The final SEM model suggests that survivor health and family functioning directly predict caregiver competence. Caregiver health indirectly predicts caregiver competence through caregiver demands and then family functioning. Family income directly predicts family functioning. The model showed adequate fit (CFI = 0.905, TFI = 0.880, and RMSEA = 0.081). Overall, the model accounted for 45% of variance in caregiver competence. Conclusions For this sample of caregivers of AYA with medically complex conditions, family functioning and the health of survivors are both important to how they evaluate their skills as caregivers. The results of this study underscore the crucial role of care models that focus on optimizing the health of the survivor, caregiver, and family, along with supporting a family centered approach to their care. PMID:23957900

  4. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  5. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. PMID:26433146

  6. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury

    PubMed Central

    Yoshimura, Shinichi; Takagi, Yasushi; Harada, Jun; Teramoto, Tetsuyuki; Thomas, Sunu S.; Waeber, Christian; Bakowska, Joanna C.; Breakefield, Xandra O.; Moskowitz, Michael A.

    2001-01-01

    Fibroblast growth factor-2 (FGF-2) promotes proliferation of neuroprogenitor cells in culture and is up-regulated within brain after injury. Using mice genetically deficient in FGF-2 (FGF-2−/− mice), we addressed the importance of endogenously generated FGF-2 on neurogenesis within the hippocampus, a structure involved in spatial, declarative, and contextual memory, after seizures or ischemic injury. BrdUrd incorporation was used to mark dividing neuroprogenitor cells and NeuN expression to monitor their differentiation into neurons. In the wild-type strain, hippocampal FGF-2 increased after either kainic acid injection or middle cerebral artery occlusion, and the numbers of BrdUrd/NeuN-positive cells significantly increased on days 9 and 16 as compared with the controls. In FGF-2−/− mice, BrdUrd labeling was attenuated after kainic acid or middle cerebral artery occlusion, as was the number of neural cells colabeled with both BrdUrd and NeuN. After FGF-2−/− mice were injected intraventricularly with a herpes simplex virus-1 amplicon vector carrying FGF-2 gene, the number of BrdUrd-labeled cells increased significantly to values equivalent to wild-type littermates after kainate seizures. These results indicate that endogenously synthesized FGF-2 is necessary and sufficient to stimulate proliferation and differentiation of neuroprogenitor cells in the adult hippocampus after brain insult. PMID:11320217

  7. The Wechsler Adult Intelligence Scale-III and Malingering in Traumatic Brain Injury: Classification Accuracy in Known Groups

    ERIC Educational Resources Information Center

    Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.

    2009-01-01

    A known-groups design was used to determine the classification accuracy of Wechsler Adult Intelligence Scale-III (WAIS-III) variables in detecting malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI). TBI patients were classified into the following groups: (a) mild TBI not-MND (n = 26), (b) mild TBI MND (n = 31), and (c)…

  8. Brain Activity in Adults Who Stutter: Similarities across Speaking Tasks and Correlations with Stuttering Frequency and Speaking Rate

    ERIC Educational Resources Information Center

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent…

  9. Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.

    2007-01-01

    Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…

  10. Post-mortem brain pathology is related to declining respiratory function in community-dwelling older adults

    PubMed Central

    Buchman, Aron S.; Yu, Lei; Wilson, Robert S.; Dawe, Robert J.; VanderHorst, Veronique; Schneider, Julie A.; Bennett, David A.

    2015-01-01

    Damage to brain structures which constitute the distributed neural network that integrates respiratory muscle and pulmonary functions, can impair adequate ventilation and its volitional control. We tested the hypothesis that the level of brain pathology in older adults is associated with declining respiratory function measured during life. 1,409 older adults had annual testing with spirometry (SPI) and respiratory muscle strength (RMS) based on maximal inspiratory and maximal expiratory pressures (MEPs). Those who died underwent structured brain autopsy. On average, during 5 years of follow-up, SPI and RMS showed progressive decline which was moderately correlated (ρ = 0.57, p < 0.001). Among decedents (N = 447), indices of brain neuropathologies showed differential associations with declining SPI and RMS. Nigral neuronal loss was associated with the person-specific decline in SPI (Estimate, −0.016 unit/year, S.E. 0.006, p = 0.009) and reduction of the slope variance was equal to 4%. By contrast, Alzheimer’s disease (AD) pathology (Estimate, −0.030 unit/year, S.E. 0.009, p < 0.001) and macroscopic infarcts (−0.033 unit/year, S.E., 0.011, p = 0.003) were associated with the person-specific decline in RMS and reduction of the slope variance was equal to 7%. These results suggest that brain pathology is associated with the rate of declining respiratory function in older adults. PMID:26539108

  11. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  12. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults

    PubMed Central

    Virtanen, J K.; Siscovick, D S.; Longstreth, W T.; Kuller, L H.; Mozaffarian, D

    2008-01-01

    Objective: To investigate the association between fish consumption and subclinical brain abnormalities. Methods: In the population-based Cardiovascular Health Study, 3,660 participants age ≥65 underwent an MRI scan in 1992–1994. Five years later, 2,313 were scanned. Neuroradiologists assessed MRI scans in a standardized and blinded manner. Food frequency questionnaires were used to assess dietary intakes. Participants with known cerebrovascular disease were excluded from the analyses. Results: After adjustment for multiple risk factors, the risk of having one or more prevalent subclinical infarcts was lower among those consuming tuna/other fish ≥3 times/week, compared to <1/month (relative risk 0.74, 95% CI = 0.54–1.01, p = 0.06, p trend = 0.03). Tuna/other fish consumption was also associated with trends toward lower incidence of subclinical infarcts. Additionally, tuna/other fish intake was associated with better white matter grade, but not with sulcal and ventricular grades, markers of brain atrophy. No significant associations were found between fried fish consumption and any subclinical brain abnormalities. Conclusions: Among older adults, modest consumption of tuna/other fish, but not fried fish, was associated with lower prevalence of subclinical infarcts and white matter abnormalities on MRI examinations. Our results add to prior evidence that suggest that dietary intake of fish with higher eicosapentaenoic acid and docosahexaenoic acid content, and not fried fish intake, may have clinically important health benefits. GLOSSARY ARR = absolute risk reduction; BMI = body mass index; CHD = coronary heart disease; CHS = Cardiovascular Health Study; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; FFQ = food frequency questionnaire; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; PUFA = polyunsaturated fatty acid; RR = relative risk. PMID:18678827

  13. Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration.

    PubMed

    Schmidt, Rebecca; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2014-01-01

    Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair. PMID:25146302

  14. Neuroprotective Pathways: Lifestyle activity, brain pathology and cognition in cognitively normal older adults

    PubMed Central

    Wirth, Miranka; Haase, Claudia M.; Villeneuve, Sylvia; Vogel, Jacob; Jagust, William J.

    2014-01-01

    This study used path analysis to examine effects of cognitive activity and physical activity on cognitive functioning in older adults, through pathways involving beta-amyloid (Aβ) burden, cerebrovascular lesions, and neural injury within brain regions affected in Alzheimer’s disease (AD). Ninety-two cognitively normal older adults (75.2±5.6 years) reported lifetime cognitive activity and current physical activity using validated questionnaires. For each participant, we evaluated cortical Aβ burden (using PIB-PET), cerebrovascular lesions (using MRI-defined white matter lesion (WML)), and neural integrity within AD regions (using a multimodal biomarker). Path models (adjusted for age, gender, and education) indicated that higher lifetime cognitive activity and higher current physical activity was associated with fewer WMLs. Lower WML volumes were in turn related to higher neural integrity and higher global cognitive functioning. As shown previously, higher lifetime cognitive activity was associated with lower PIB retention, which itself moderated the impact of neural integrity on cognitive functioning. Lifestyle activity may thus promote cognitive health in aging by protecting against cerebrovascular pathology and Aβ pathology thought to be relevant to AD development. PMID:24656834

  15. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. PMID:26492830

  16. [Advances in diagnosis and treatment of brain metastases from the primary lung cancer].

    PubMed

    Liu, Yi; Chen, Jun

    2013-07-01

    Lung cancer with brain metastasis was 23% to 65%, and is the most common type in brain metastasis tumors with the poor prognosis. At present, diagnosis and treatment of brain metastases from lung carcinoma and its molecular mechanism have become one hot spot of amount researches. Here, we made a systematic review of the progress of the clinical features, diagnosis and treatment of brain metastases from lung and its molecular mechanism. PMID:23866671

  17. Most Uninsured Adults Could Schedule Primary Care Appointments Before The ACA, But Average Price Was $160.

    PubMed

    Saloner, Brendan; Polsky, Daniel; Kenney, Genevieve M; Hempstead, Katherine; Rhodes, Karin V

    2015-05-01

    Provisions of the Affordable Care Act (ACA) allow millions more Americans to obtain health insurance. However, a sizable number of people remain uninsured because they live in states that have not expanded Medicaid coverage or because they feel that Marketplace coverage is not affordable. Using data from a ten-state telephone survey in which callers posed as patients, we examined prices for primary care visits offered by physician offices to new uninsured patients in 2012-13, prior to ACA insurance expansions. Patients were quoted a mean price of $160. Significantly lower prices for the uninsured were offered by family practice offices compared to general internists, in offices participating in Medicaid managed care plans, and in federally qualified health centers. Prices were also lower for offices in ZIP codes with higher poverty rates. Only 18 percent of uninsured callers were told that they could bring less than the full amount to the visit and arrange to pay the rest later. ACA insurance expansions could greatly decrease out-of-pocket spending for low-income adults seeking primary care. However, benefits of health reform are likely to be greater in states expanding Medicaid eligibility. PMID:25941278

  18. Longitudinal Alterations to Brain Function, Structure, and Cognitive Performance in Healthy Older Adults: a fMRI-DTI study

    PubMed Central

    Hakun, Jonathan G.; Zhu, Zude; Brown, Christopher A.; Johnson, Nathan F.; Gold, Brian T.

    2015-01-01

    Cross-sectional research has shown that older adults tend to have different frontal cortex activation patterns, poorer brain structure, and lower task performance than younger adults. However, relationships between longitudinal changes in brain function, brain structure, and cognitive performance in older adults are less well understood. Here we present the results of a longitudinal, combined fMRI-DTI study in cognitive normal (CN) older adults. A two time-point study was conducted in which participants completed a task switching paradigm while fMRI data was collected and underwent the identical scanning protocol an average of 3.3 years later (SD = 2 months). We observed longitudinal fMRI activation increases in bilateral regions of lateral frontal cortex at time point 2. These fMRI activation increases were associated with longitudinal declines in WM microstructure in a portion of the corpus callosum connecting the increasingly recruited frontal regions. In addition, the fMRI activation increase in the left VLPFC was associated with longitudinal increases in response latencies. Taken together, our results suggest that local frontal activation increases in CN older adults may in part reflect a response to reduced inter-hemispheric signaling mechanisms. PMID:25862416

  19. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  20. Changes of Brain Connectivity in the Primary Motor Cortex After Subcortical Stroke

    PubMed Central

    Li, Yongxin; Wang, Defeng; Zhang, Heye; Wang, Ya; Wu, Ping; Zhang, Hongwu; Yang, Yang; Huang, Wenhua

    2016-01-01

    Abstract The authors investigated the changes in connectivity networks of the bilateral primary motor cortex (M1) of subcortical stroke patients using a multimodal neuroimaging approach with antiplatelet therapy. Nineteen patients were scanned at 2 time points: before and 1 month after the treatment. The authors assessed the resting-state functional connectivity (FC) and probabilistic fiber tracking of left and right M1 of every patient, and then compared these results to the 15 healthy controls. The authors also evaluated the correlations between the neuroimaging results and clinical scores. Compared with the controls, the patients showed a significant decrease of FC in the contralateral motor cortex before treatment, and the disrupted FC was restored after treatment. The fiber tracking results in the controls indicated that the body of the corpus callosum should be the main pathway connecting the M1 and contralateral hemispheres. All patients exhibited reduced probability of structural connectivity within this pathway before treatment and which was restored after treatment. Significant correlations were also found in these patients between the connectivity results and clinical scores, which might imply that the connectivity of M1 can be used to evaluate the motor skills in stroke patients. These findings can help elucidate the neural mechanisms responsible for the brain connectivity recovery after stroke. PMID:26871777

  1. Exploring Spirituality in Family Caregivers of Patients With Primary Malignant Brain Tumors Across the Disease Trajectory

    PubMed Central

    Newberry, Alyssa G.; Jean Choi, Chien-Wen; Donovan, Heidi S.; Schulz, Richard; Bender, Catherine; Given, Barbara; Sherwood, Paula

    2013-01-01

    Purpose/Objectives To determine whether the perceived level of spirituality in family caregivers of patients with primary malignant brain tumors (PMBTs) changes across the disease trajectory. Design Ongoing descriptive, longitudinal study. Setting Southwestern Pennsylvania. Sample 50 family caregivers of patients with PMBT. Methods Caregivers and care recipients were recruited at time of diagnosis. Participants were interviewed at two subse-quent time points, four and eight months following diagnosis. Main Research Variables Care recipients’ symptoms, neuro-psychologic status, and physical function, as well as caregiver social support. Findings Results showed no significant difference in spirituality scores reported at baseline and eight months (p = 0.8), suggesting that spirituality may be a stable trait across the disease trajectory. Conclusions Spirituality remains relatively stable along the course of the disease trajectory. Reports of caregiver depressive symptoms and anxiety were lower when paired with higher reports of spirituality. Implications for Nursing Clinicians can better identify caregivers at risk for negative outcomes by identifying those who report lower levels of spirituality. Future interventions should focus on the development and implementation of interventions that provide protective buffers such as increased social support. Knowledge Translation Spirituality is a relatively stable trait. High levels of spirituality can serve as a protective buffer from negative mental health outcomes. Caregivers with low levels of spirituality may be at risk for greater levels of burden, anxiety, and stress. PMID:23615145

  2. Adaptive Modulation of Adult Brain Gray and White Matter to High Altitude: Structural MRI Studies

    PubMed Central

    Zhang, Jiaxing; Zhang, Haiyan; Li, Jinqiang; Chen, Ji; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Fan, Ming

    2013-01-01

    The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits. PMID:23874692

  3. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures

    PubMed Central

    Bergey, Gregory K.; Mizrahi, Eli M.; Goldman, Alica; King-Stephens, David; Nair, Dileep; Srinivasan, Shraddha; Jobst, Barbara; Gross, Robert E.; Shields, Donald C.; Barkley, Gregory; Salanova, Vicenta; Olejniczak, Piotr; Cole, Andrew; Cash, Sydney S.; Noe, Katherine; Wharen, Robert; Worrell, Gregory; Murro, Anthony M.; Edwards, Jonathan; Duchowny, Michael; Spencer, David; Smith, Michael; Geller, Eric; Gwinn, Ryder; Skidmore, Christopher; Eisenschenk, Stephan; Berg, Michel; Heck, Christianne; Van Ness, Paul; Fountain, Nathan; Rutecki, Paul; Massey, Andrew; O'Donovan, Cormac; Labar, Douglas; Duckrow, Robert B.; Hirsch, Lawrence J.; Courtney, Tracy; Sun, Felice T.; Seale, Cairn G.

    2015-01-01

    Objective: The long-term efficacy and safety of responsive direct neurostimulation was assessed in adults with medically refractory partial onset seizures. Methods: All participants were treated with a cranially implanted responsive neurostimulator that delivers stimulation to 1 or 2 seizure foci via chronically implanted electrodes when specific electrocorticographic patterns are detected (RNS System). Participants had completed a 2-year primarily open-label safety study (n = 65) or a 2-year randomized blinded controlled safety and efficacy study (n = 191); 230 participants transitioned into an ongoing 7-year study to assess safety and efficacy. Results: The average participant was 34 (±11.4) years old with epilepsy for 19.6 (±11.4) years. The median preimplant frequency of disabling partial or generalized tonic-clonic seizures was 10.2 seizures a month. The median percent seizure reduction in the randomized blinded controlled trial was 44% at 1 year and 53% at 2 years (p < 0.0001, generalized estimating equation) and ranged from 48% to 66% over postimplant years 3 through 6 in the long-term study. Improvements in quality of life were maintained (p < 0.05). The most common serious device-related adverse events over the mean 5.4 years of follow-up were implant site infection (9.0%) involving soft tissue and neurostimulator explantation (4.7%). Conclusions: The RNS System is the first direct brain responsive neurostimulator. Acute and sustained efficacy and safety were demonstrated in adults with medically refractory partial onset seizures arising from 1 or 2 foci over a mean follow-up of 5.4 years. This experience supports the RNS System as a treatment option for refractory partial seizures. Classification of evidence: This study provides Class IV evidence that for adults with medically refractory partial onset seizures, responsive direct cortical stimulation reduces seizures and improves quality of life over a mean follow-up of 5.4 years. PMID:25616485

  4. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age

    PubMed Central

    Fillmore, Paul T.; Phillips-Meek, Michelle C.; Richards, John E.

    2015-01-01

    This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in five-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research.1 PMID:25904864

  5. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. PMID:25870909

  6. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice.

    PubMed

    Lu, Jianghua; E, Lezi; Wang, Wenfang; Frontera, Jennifer; Zhu, Hao; Wang, Wen-Tung; Lee, Phil; Choi, In Young; Brooks, William M; Burns, Jeffrey M; Aires, Daniel; Swerdlow, Russell H

    2011-04-01

    Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production. PMID:21244426

  7. Alternate Day Fasting Impacts the Brain Insulin Signaling Pathway of Young Adult Male C57BL/6 Mice

    PubMed Central

    Lu, Jianghua; Lezi, E; Wang, WenFang; Frontera, Jennifer; Zhu, Hao; Wang, Wen-Tung; Lee, Sang-Pil; Choi, In Young; Brooks, William M.; Burns, Jeffrey M.; Aires, Daniel; Swerdlow, Russell H.

    2011-01-01

    Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five month-old male mice were placed in ad libitum (AL) or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF+AO) fed group. During the 24 hour fast blood glucose levels initially fell but stabilized within 6 hours of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and GSK3β phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMPK phosphorylation, SIRT1 phosphorylation, PGC1a levels, and COX4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production. PMID:21244426

  8. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice

    PubMed Central

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A.; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Basselin, Mireille

    2014-01-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would decrease brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-14C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10 mg/kg i.p.) or saline during postnatal days P4–P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca2+-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. Comparable changes in humans might contribute to reported altered behavior following early SSRI. PMID:24529827

  9. Existential Well-Being and Meaning Making in the Context of Primary Brain Tumor: Conceptualization and Implications for Intervention

    PubMed Central

    Ownsworth, Tamara; Nash, Kimberley

    2015-01-01

    When faced with a significant threat to life, people tend to reflect more intensely upon existential issues, such as the meaning and purpose of one’s life. Brain tumor poses a serious threat to a person’s life, functioning, and personhood. Although recognized as an important dimension of quality of life, existential well-being is not well understood and reflects an overlooked area of support for people with brain tumor. This perspective article reviews the historical underpinnings of the concept of existential well-being and integrates this discussion with theoretical perspectives and research on meaning making and psychological adjustment to primary brain tumor. We then provide an overview of psychosocial support interventions for people with brain tumor and describe the findings of a recently published psychotherapy trial targeting existential well-being. Overall, this article highlights the importance of assessing the existential support needs of people with primary brain tumor and their family members, and providing different avenues of support to facilitate the meaning-making process across the illness trajectory. PMID:25964883

  10. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms.

    PubMed

    Courtney, Amy; Courtney, Michael

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. PMID:26539158

  11. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms

    PubMed Central

    Courtney, Amy; Courtney, Michael

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies