Science.gov

Sample records for adult rat cardiac

  1. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  2. Fetal-Adult Cardiac Transcriptome Analysis in Rats with Contrasting Left Ventricular Mass Reveals New Candidates for Cardiac Hypertrophy

    PubMed Central

    Grabowski, Katja; Riemenschneider, Mona; Schulte, Leonard; Witten, Anika; Schulz, Angela; Stoll, Monika; Kreutz, Reinhold

    2015-01-01

    Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns. PMID:25646840

  3. Alpha actin isoforms expression in human and rat adult cardiac conduction system.

    PubMed

    Orlandi, Augusto; Hao, Hiroyuki; Ferlosio, Amedeo; Clément, Sophie; Hirota, Seiichi; Spagnoli, Luigi Giusto; Gabbiani, Giulio; Chaponnier, Christine

    2009-04-01

    In the adult heart, cardiac muscle comprises the working myocardium and the conduction system (CS). The latter includes the sinoatrial node (SAN), the internodal tract or bundle (IB), the atrioventricular node (AVN), the atrioventricular bundle (AVB), the bundle branches (BB) and the peripheral Purkinje fibers (PF). Most of the information concerning the phenotypic features of CS tissue derives from the characterization of avian and rodent developing hearts; data concerning the expression of actin isoforms in adult CS cardiomyocytes are scarce. Using specific antibodies, we investigated the distribution of alpha-skeletal (alpha-SKA), alpha-cardiac (alpha-CA), alpha-smooth muscle (alpha-SMA) actin isoforms and other muscle-typical proteins in the CS of human and rat hearts at different ages. SAN and IB cardiomyocytes were characterized by the presence of alpha-SMA, alpha-CA, calponin and caldesmon, whereas alpha-SKA and vimentin were absent. Double immunofluorescence demonstrated the co-localisation of alpha-SMA and alpha-CA in I-bands of SAN cardiomyocytes. AVN, AVB, BB and PF cardiomyocytes were alpha-SMA, calponin, caldesmon and vimentin negative, and alpha-CA and alpha-SKA positive. No substantial differences in actin isoform distribution were observed in human and rat hearts, except for the presence of isolated subendocardial alpha-SMA positive cardiomyocytes co-expressing alpha-CA in the ventricular septum of the rat. Aging did not influence CS cardiomyocyte actin isoform expression profile. These findings support the concept that cardiomyocytes of SAN retain the phenotype of a developing myogenic cell throughout the entire life span. PMID:19281784

  4. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  5. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.

    PubMed Central

    Di Lisa, F; Blank, P S; Colonna, R; Gambassi, G; Silverman, H S; Stern, M D; Hansford, R G

    1995-01-01

    1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two emission peaks (539 and 597 nm with excitation at 490 nm) corresponding to monomer and aggregate forms of the dye. 2. De-energizing conditions applied to mitochondria, cell suspensions or single cells decreased the aggregate emission and increased the monomer emission. This latter result cannot be explained by changes of JC-1 concentration in the aqueous mitochondrial matrix phase indicating that hydrophobic interaction of the probe with membranes has to be taken into account to explain JC-1 fluorescence properties in isolated mitochondria or intact cells. 3. A different sensitivity of the two JC-1 forms to delta psi m changes was shown in isolated mitochondria by the effects of ADP and FCCP and the calibration with K+ diffusion potentials. The monomer emission was responsive to values of delta psi m below 140 mV, which hardly modified the aggregate emission. Thus JC-1 represents a unique double sensor which can provide semi-quantitative information in both low and high potential ranges. 4. At the onset of glucose-free anoxia the epifluorescence of individual myocytes studied in the single excitation (490 nm)-double emission (530 and 590 nm) mode showed a gradual decline of the aggregate emission, which reached a plateau while electrically stimulated (0.2 Hz) contraction was still retained. The subsequent failure of contraction was followed by the rise of the emission at 530 nm, corresponding to the monomer form of the dye, concomitantly with the development of rigor contracture. 5. The onset of the rigor was preceded by the increase in intracellular Mg2+ concentration ([Mg2+]i) monitored by mag-indo-1 epifluorescence

  6. Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    PubMed Central

    Oka, Masahiko; Ochi, Rikuo; Jong, Chian Ju; Gebb, Sarah; Benjamin, John; Schaffer, Stephen; Hobart, Holly H.; Downey, James; McMurtry, Ivan; Gupte, Rakhee

    2012-01-01

    Background Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. Methods We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. Results RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. Conclusion Our novel findings

  7. Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference.

    PubMed

    Pavón, Natalia; Martínez-Abundis, Eduardo; Hernández, Luz; Gallardo-Pérez, Juan Carlos; Alvarez-Delgado, Carolina; Cerbón, Marco; Pérez-Torres, Israel; Aranda, Alberto; Chávez, Edmundo

    2012-10-01

    In this work we studied the influence of sex hormones on heart and mitochondrial functions, from adult castrated female and male, and intact rats. Castration was performed at their third week of life and on the fourth month animals were subjected to heart ischemia and reperfusion. Electrocardiogram and blood pressure recordings were made, cytokines levels were measured, histopathological studies were performed and thiobarbituric acid reactive species were determined. At the mitochondrial level respiratory control, transmembranal potential and calcium management were determined; Western blot of some mitochondrial components was also performed. Alterations in cardiac function were worst in intact males and castrated females as compared with those found in intact females and castrated males, cytokine levels were modulated also by hormonal status. Regarding mitochondria, in those obtained from hearts from castrated females without ischemia-reperfusion, all evaluated parameters were similar to those observed in mitochondria after ischemia-reperfusion. The results show hormonal influences on the heart at functional and mitochondrial levels. PMID:22609314

  8. Comparative study of the effect of verapamil and vitamin D on iron overload-induced oxidative stress and cardiac structural changes in adult male rats.

    PubMed

    Abd Allah, Eman S H; Ahmed, Marwa A; Abdel Mola, Asmaa Fathi

    2014-11-01

    The present study was designed to compare the effect of verapamil and vitamin D on the expression of the voltage-dependent LTCC alpha 1c subunit (Cav1.2) and thereby on iron overload-induced cardiac dysfunction in adult male rat. Forty rats were randomly divided into four groups. Control group received the vehicle, iron overload group received ferrous sulfate intraperitoneally (IP) for 4 weeks, iron overload+verapamil received ferrous sulfate and verapamil IP concurrently for 4 weeks and iron overload+vitamin D group received ferrous sulfate IP and vitamin D3 orally concurrently for 4 weeks. Serum ferritin, total antioxidant capacity (TAC), total peroxide (TP) and cardiac iron and calcium were determined. Oxidative stress index (OSI) was calculated. Histopathological studies using H&E, Masson trichrome and Prussian blue stains and immunohistochemical studies using Cav1.2 antibody were also carried out. Administration of ferrous sulfate induced a significant increase in serum ferritin, OSI, cardiac iron and calcium contents. Moreover, cardiomyocytes were degenerated and the expression of Cav1.2 protein was increased in iron overload group as compared to control. Verapamil decreased ferrous sulfate-induced increase in serum ferritin, OSI and cardiac iron deposition. In addition, verapamil improved myocardial degeneration and decreased the expression of Cav1.2 protein. In contrast, vitamin D produced insignificant changes in ferrous sulfate-induced increase in cardiac iron content, myocardial degeneration and the expression of Cav1.2 protein. These results indicate that verapamil has a protective effect against iron overload-induced cardiac dysfunction, oxidative stress and structural changes, while vitamin D has an insignificant effect on these parameters. PMID:25092628

  9. Cardiac Rehabilitation in Older Adults.

    PubMed

    Schopfer, David W; Forman, Daniel E

    2016-09-01

    The biology of aging and the pathophysiology of cardiovascular disease (CVD) overlap, with the effect that CVD is endemic in the growing population of older adults. Moreover, CVD in older adults is usually complicated by age-related complexities, including multimorbidity, polypharmacy, frailty, and other intricacies that add to the risks of ambiguous symptoms, deconditioning, iatrogenesis, falls, disability, and other challenges. Cardiac rehabilitation (CR) is a comprehensive lifestyle program that can have particular benefit for older patients with cardiovascular conditions. Although CR was originally designed primarily as an exercise training program for younger adults after a myocardial infarction or coronary artery bypass surgery, it has evolved as a comprehensive lifestyle program (promoting physical activity as well as education, diet, risk reduction, and adherence) for a broader range of CVD (coronary heart disease, heart failure, and valvular heart disease). It provides a valuable opportunity to address and moderate many of the challenges pertinent for the large and growing population of older adults with CVD. Cardiac rehabilitation promotes physical function (cardiorespiratory fitness as well as strength and balance) that helps overcome disease and deconditioning as well as related vulnerabilities such as disability, frailty, and falls. Similarly, CR facilitates education, monitoring, and guidance to reduce iatrogenesis and promote adherence. Furthermore, CR fosters cognition, socialization, and independence in older patients. Yet despite all its conceptual benefits, CR is significantly underused in older populations. This review discusses benefits and the paradoxical underuse of CR, as well as evolving models of care that may achieve greater application and efficacy. PMID:27297002

  10. Incretin attenuates diabetes-induced damage in rat cardiac tissue.

    PubMed

    AbdElmonem Elbassuoni, Eman

    2014-09-01

    Glucagon-like peptide-1 (GLP-1), as a member of the incretin family, has a role in glucose homeostasis, its receptors distributed throughout the body, including the heart. The aim was to investigate cardiac lesions following diabetes induction, and the potential effect of GLP-1 on this type of lesions and the molecular mechanism driving this activity. Adult male rats were classified into: normal, diabetic, 4-week high-dose exenatide-treated diabetic rats, 4-week low-dose exenatide-treated diabetic rats, and 1-week exenatide-treated diabetic rats. The following parameters were measured: in blood: glucose, insulin, lactate dehydrogenase (LDH), total creatine kinase (CK), creatine kinase MB isoenzyme (CK-MB), and CK-MB relative index; in cardiac tissue: lipid peroxide (LPO) and some antioxidant enzymes. The untreated diabetic group displayed significant increases in blood level of glucose, LDH, and CK-MB, and cardiac tissue LPO, and a significant decrease in cardiac tissue antioxidant enzymes. GLP-1 supplementation in diabetic rats definitely decreased the hyperglycemia and abolished the detrimental effects of diabetes on the cardiac tissue. The effect of GLP-1 on blood glucose and on the heart also appeared after a short supplementation period (1 week). It can be concluded that GLP-1 has beneficial effects on diabetes-induced oxidative cardiac tissue damage, most probably via its antioxidant effect directly acting on cardiac tissue and independent of its hypoglycemic effect. PMID:25011640

  11. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes.

    PubMed

    Vila Petroff, M G; Egan, J M; Wang, X; Sollott, S J

    2001-08-31

    The gut hormone, glucagon-like peptide-1 (GLP-1), which is secreted in nanomolar amounts in response to nutrients in the intestinal lumen, exerts cAMP/protein kinase A-mediated insulinotropic actions in target endocrine tissues, but its actions in heart cells are unknown. GLP-1 (10 nmol/L) increased intracellular cAMP (from 5.7+/-0.5 to 13.1+/-0.12 pmol/mg protein) in rat cardiac myocytes. The effects of cAMP-doubling concentrations of both GLP-1 and isoproterenol (ISO, 10 nmol/L) on contraction amplitude, intracellular Ca(2+) transient (CaT), and pH(i) in indo-1 and seminaphthorhodafluor (SNARF)-1 loaded myocytes were compared. Whereas ISO caused a characteristic increase (above baseline) in contraction amplitude (160+/-34%) and CaT (70+/-5%), GLP-1 induced a significant decrease in contraction amplitude (-27+/-5%) with no change in the CaT after 20 minutes. Neither pertussis toxin treatment nor exposure to the cGMP-stimulated phosphodiesterase (PDE2) inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine or the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine nor the phosphatase inhibitors okadaic acid or calyculin A unmasked an ISO-mimicking response of GLP-1. In SNARF-1-loaded myocytes, however, both ISO and GLP-1 caused an intracellular acidosis (DeltapH(i) -0.09+/-0.02 and -0.08+/-0.03, respectively). The specific GLP-1 antagonist exendin 9-39 and the cAMP inhibitory analog Rp-8CPT-cAMPS inhibited both the GLP-1-induced intracellular acidosis and the negative contractile effect. We conclude that in contrast to beta-adrenergic signaling, GLP-1 increases cAMP but fails to augment contraction, suggesting the existence of functionally distinct adenylyl cyclase/cAMP/protein kinase A compartments, possibly determined by unique receptor signaling microdomains that are not controlled by pertussis toxin-sensitive G proteins or by enhanced local PDE or phosphatase activation. Furthermore, GLP-1 elicits a cAMP-dependent modest negative inotropic effect produced by a

  12. Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes.

    PubMed Central

    Pepe, S; Bogdanov, K; Hallaq, H; Spurgeon, H; Leaf, A; Lakatta, E

    1994-01-01

    The effect of docosahexaenoic acid (DHA; C22:6) on dihydropyridine (DHP) interaction with L-type Ca2+ channel current (ICa), cytosolic Ca2+ (Cai), and cell contraction in isolated adult rat cardiac myocytes was studied. The DHP L-type Ca(2+)-channel blocker nitrendipine (10 nM) reduced peak ICa (measured by whole-cell voltage clamp from -45 to 0 mV) and reduced the amplitude of the Ca2+ transient (measured as the transient in indo-1 fluorescence, 410/490 nm) and the twitch amplitude (measured via photodiode array) during steady-state electrical stimulation (0.5 Hz). The DHP L-type Ca2+ channel agonist BAY K 8644 (10 nM) significantly increased ICa, the amplitude of the Cai transient, and contraction. When cells were exposed to DHA (5 microM) simultaneously with either BAY K 8644 or nitrendipine, the drug effects were abolished. Arachidonic acid (C20:4) at 5 microM did not block the inhibitory effects of nitrendipine nor did it prevent the potentiating effects of BAY K 8644. DHA modulation of DHP action could be reversed by cell perfusion with fatty acid-free bovine serum albumin at 1 mg/ml. Neither DHA nor arachidonic acid alone (5 microM) had any apparent effect on the parameters measured. DHA (5 microM) had no influence over beta-adrenergic receptor stimulation (isoproterenol, 0.01-1 microM)-induced increases in ICa, Cai, or contraction. The findings that DHA inhibits the effect of DHP agonists and antagonists on Ca(2+)-channel current but has no effect alone or on beta-adrenergic-induced increases in ICa suggests that DHA specifically binds to Ca2+ channels at or near DHP binding sites and interferes with ICa modulation. Images PMID:7522322

  13. Effect of exercise training and anabolic androgenic steroids on hemodynamics, glycogen content, angiogenesis and apoptosis of cardiac muscle in adult male rats

    PubMed Central

    Hassan, Asmaa F.; Kamal, Manal M.

    2013-01-01

    Objectives To investigate the effects of exercise training and anabolic androgenic steroids (AAS) on hemodynamics, glycogen content, angiogenesis, apoptosis and histology of cardiac muscle. Methods Forty rats were divided into 4 groups; control, steroid, exercise-trained and exercise-trained plus steroid groups. The exercise-trained and trained plus steroid groups, after one week of water adaptation, were exercised by jumping into water for 5 weeks. The steroid and trained plus steroid groups received nandrolone decanoate, for 5 weeks. Systolic blood pressure and heart rate (HR) were monitored weekly. Heart weight/body weight ratio (HW/BW ratio) were determined. Serum testosterone, vascular endothelial growth factor (VEGF), cardiac caspase-3 activity and glycogen content were measured. Results Compared with control, the steroid group had significantly higher blood pressure, HR, sympathetic nerve activity, testosterone level, HW/BW and cardiac caspase-3 activity. Histological examination revealed apoptotic changes and hypertrophy of cardiomyocytes. In exercise-trained group, cardiac glycogen, VEGF and testosterone levels were significantly higher while HR was significantly lower than control. HW/BW was more than control confirmed by hypertrophy of cardiomyocytes with angiogenesis on histological examination. Trained plus steroid group, had no change in HR, with higher blood pressure and HW/BW than control, cardiac glycogen and serum VEGF were higher than control but lower than exercise-trained group. Histological examination showed hypertrophy of cardiomyoctes with mild angiogenesis rather than apoptosis. Conclusion When exercise is augmented with AAS, exercise-associated cardiac benefits may not be fully gained with potential cardiac risk from AAS if used alone or combined with exercise. PMID:23559905

  14. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats

    PubMed Central

    Gu, Ye; Zou, Wusong; Zhang, Mingjing; Zhu, Pengfei; Hu, Shao

    2015-01-01

    Background Aortocaval fistula (AV) in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX) rats. Methods Adult male Sprague-Dawley (SD) rats were divided into Sham (n = 10), UNX (right kidney remove, n = 10), AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18) and UNX+AV (AV at one week after UNX, n = 22), respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS) incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements. Results UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats. Conclusions Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals. PMID:26252578

  15. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  16. Cardiac adaptation to endurance exercise in rats.

    PubMed

    Fenning, Andrew; Harrison, Glenn; Dwyer, Dan; Rose'Meyer, Roselyn; Brown, Lindsay

    2003-09-01

    Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 (n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 miccrol) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. 31P-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function. PMID:14575304

  17. Administration of an anabolic steroid during the adolescent phase changes the behavior, cardiac autonomic balance and fluid intake in male adult rats.

    PubMed

    Olivares, Emerson L; Silveira, Anderson L B; Fonseca, Fabricia V; Silva-Almeida, Claudio; Côrtes, Rafael S; Pereira-Junior, Pedro P; Nascimento, Jose H M; Reis, Luis C

    2014-03-14

    Few data are available on adolescent users because most behavioral studies on anabolic-androgenic steroids (AAS) abuse have been performed in adults. Studies evaluating the impact of long-term effects of AAS abuse on the prepubertal phase are even more uncommon. Accordingly, this study was developed to test the hypothesis that changes induced by the use of AAS during the adolescent phase may be noted in the adult phase even when the AAS treatment cycle is discontinued. Therefore, not only behavioral changes but also possible autonomic and electrolyte disorders were evaluated. For this purpose, we used male prepubertal, 26-day-old (P26) Wistar rats that were treated with vehicle (control, n=10) or testosterone propionate (TP; 5 mg/kg intramuscular (IM) injection, AAS, n=10) five times per week for 5 weeks, totaling 25 applications during the treatment. Aggression tests were performed at the end of the cycle (P54-56), whereas open-field tests (OFTs), elevated plus maze (EPM) behavioral tests and measurements of heart rate variability (HRV), fluid intake and pathology were conducted in the adult phase (P87-92). The AAS group showed greater aggressiveness in the pubertal phase and higher levels of horizontal and vertical exploration and anxiety-related behavior in the adult phase than the control group (P<0.05). HRV tests showed an increase in sympathetic autonomic modulation, and hydroelectrolytic assessment showed lower basal intake levels of hypertonic saline than the control group (P<0.05), without statistically significant changes in the basal intake of water. These data together suggest that the use of AAS during the prepubertal phase induces behavioral, autonomic and hydroelectrolytic changes that manifest in the adult phase even when treatment is discontinued in late adolescence in rats. PMID:24382485

  18. Thallium kinetics in rat cardiac transplant rejection

    SciTech Connect

    Barak, J.H.; LaRaia, P.J.; Boucher, C.A.; Fallon, J.T.; Buckley, M.J.

    1988-04-01

    Cardiac transplant rejection is a very complex process involving both cellular and vascular injury. Recently, thallium imaging has been used to assess acute transplant rejection. It has been suggested that changes in thallium kinetics might be a sensitive indicator of transplant rejection. Accordingly, thallium kinetics were assessed in vivo in acute untreated rat heterotopic (cervical) transplant rejection. Male Lewis rats weighing 225-250 g received heterotopic heart transplants from syngeneic Lewis rats (group A; n = 13), or allogeneic Brown Norway rats (group B; n = 11). Rats were imaged serially on the 2nd and the 7th postoperative days. Serial cardiac thallium content was determined utilizing data collected every 150 sec for 2 hr. The data were fit to a monoexponential curve and the decay rate constant (/sec) derived. By day 7 all group B hearts had histological evidence of severe acute rejection, and demonstrated decreased global contraction. Group A hearts showed normal histology and contractility. However, thallium uptakes and washout of the two groups were the same. Peak thallium uptake of group B was +/- 3758 1166 counts compared with 3553 +/- 950 counts in the control group A (P = 0.6395); The 2-hr percentage of washout was 12.1 +/- 1.04 compared with 12.1 +/- 9.3 (P = 1.0000); and the decay constant was -0.00002065 +/- 0.00001799 compared with -0.00002202 +/- 0.00001508 (P = 0.8409). These data indicate that in vivo global thallium kinetics are preserved during mild-to-severe acute transplant rejection. These findings suggest that the complex cellular and extracellular processes of acute rejection limit the usefulness of thallium kinetics in the detection of acute transplant rejection.

  19. Cardiac Effects of Echinocandins in Endotoxemic Rats

    PubMed Central

    Koch, Christian; Wolff, Matthias; Henrich, Michael; Weigand, Markus A.; Lichtenstern, Christoph

    2015-01-01

    Echinocandins are known as effective and safe agents for the prophylaxis and treatment of different cohorts of patients with fungal infections. Recent studies revealed that certain pharmacokinetics of echinocandin antifungals might impact clinical efficacy and safety in special patient populations. The aim of our study was to evaluate echinocandin-induced aggravation of cardiac impairment in septic shock. Using an in vivo endotoxemic shock model in rats, we assessed hemodynamic parameters and time to hemodynamic failure (THF) after additional central-venous application of anidulafungin (2.5 mg/kg of body weight [BW]), caspofungin (0.875 mg/kg BW), micafungin (3 mg/kg BW), and control (0.9% sodium chloride). In addition, echinocandin-induced cytotoxicity was evaluated in isolated rat cardiac myocytes. THF of the animals in the caspofungin group (n = 7) was significantly reduced compared to that in the control (n = 6) (136 min versus 180 min; P = 0.0209). The anidulafungin group (n = 7) also showed a trend of reduced THF (136 min versus 180 min; log-rank test P = 0.0578). Animals in the micafungin group (n = 7) did not show significant differences in THF compared to those in the control. Control group animals and also micafungin group animals did not show altered cardiac output (CO) during our experiments. In contrast, administration of anidulafungin or caspofungin induced a decrease in CO. We also revealed a dose-dependent increase of cytotoxicity in anidulafungin- and caspofungin-treated cardiac myocytes. Treatment with micafungin did not cause significantly increased cytotoxicity. Further studies are needed to explore the underlying mechanism. PMID:26503647

  20. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  1. Cardiac acetylcholine concentration in the rat

    SciTech Connect

    Nomura, A.; Yasuda, H.; Takechi, S.; Matsuo, H.; Maruyama, Y. Gunma Univ., Maebashi )

    1990-01-01

    Varying values for the acetylcholine (ACh) concentration in the rat heart have been reported. The possibility that the method of sampling may influence prompted a comparison of heart levels of ACh obtained by two different procedures for sacrificing animals. One method was by microwave irradiation in vivo and the other being in vitro on the irradiated heart removed after decapitation. There were significant differences found in cardiac ACh concentration between the in vivo irradiated group and the decapitation groups. In decapitated animals, the cardiac ACh concentration became increasingly lower on standing. We also measured the ACh concentration of right atrium, left atrium, right ventricle and left ventricle. They were 4.62 {plus minus} 1.57 nmol/g (mean {plus minus} SD), 2.58 {plus minus} 1.01, 2.76 {plus minus} 1.00 and 2.12 {plus minus} 0.70, respectively. We conclude the microwave irradiation in vivo is a more appropriate method for determining the cardiac ACh concentration.

  2. Fructose lowers cardiac copper in rats

    SciTech Connect

    Cornatzer, W.E.; Klevay, L.M.

    1986-03-01

    A diet was made similar to that of Klevay containing finely ground zinc acetate and either fructose or corn starch. As the diet contained only 0.95 ..mu..g Cu/g, finely ground cupric sulfate was added to half of each carbohydrate diet so that 45 male, weanling Sprague Dawley rats could be fed in a 2x2 factorial design with normal or low Cu and fructose or starch to explore the lethal effect of fructose in Cu deficiency. Because analysis of diets by atomic absorption spectroscopy revealed a mean Zn of 14.8 ..mu..g/g and less Cu than expected (2.38 ..mu..g/g), normal Cu groups also received a drinking solution of 0.5 ..mu..g Cu/ml (as sulfate). Cholesterol was measured by fluorescence. Fructose lowered liver Cu (p = 0.0001) from 10.9 ..mu..g/dry g to 6.4 at normal dietary Cu and from 4.1 to 2.4 at low dietary Cu. Cardiac Cu, which was 16.9 and 8.7 ..mu..g/g respectively for starch and fructose groups at normal dietary Cu, was about 5.3 when dietary Cu was low (p = 0.0001). Plasma Cu was decreased 82 to 92% (p = 0.0001) by either fructose or low dietary Cu. Fructose lowered plasma cholesterol if dietary Cu was low or normal (p = 0.006). Only rats fed low Cu and fructose were anemic (hematocrit 32, p = 0.0001). The harmful effect of fructose when dietary copper is low is not related to cholesterol metabolism but may be related to decreased cardiac copper.

  3. Anti-rat soluble IL-6 receptor antibody down-regulates cardiac IL-6 and improves cardiac function following trauma-hemorrhage.

    PubMed

    Yang, Shaolong; Hu, Shunhua; Choudhry, Mashkoor A; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2007-03-01

    Although anti-IL-6-mAb down-regulates cardiac IL-6 and attenuates IL-6-mediated cardiac dysfunction following trauma-hemorrhage, it is not known whether blockade of IL-6 receptor will down-regulate cardiac IL-6 and improve cardiac function under those conditions. Six groups of male adult rats (275-325 g) were used: sham/trauma-hemorrhage+vehicle, sham/trauma-hemorrhage+IgG, sham/trauma-hemorrhage+anti-rat sIL-6R. Rats underwent trauma-hemorrhage (removal of 60% of the circulating blood volume and fluid resuscitation after 90 min). Vehicle (V), normal goat IgG or anti-rat sIL-6R (16.7 microg/kg BW) was administered intra-peritoneally in the middle of resuscitation. Two hours later, cardiac function was measured by ICG dilution technique; blood samples collected, cardiomyocytes isolated, and cardiomyocyte nuclei were then extracted. Cardiac IL-6, IL-6R, gp130, IkappaB-alpha/P-IkappaB-alpha, NF-kappaB, and ICAM-1 expressions were measured by immunoblotting. Plasma IL-6 and cardiomyocyte NF-kappaB DNA-binding activity were determined by ELISA. In additional animals, heart harvested and cardiac MPO activity and CINC-1 and -3 were also measured. In another group of rats, cardiac function was measure by microspheres at 24 h following trauma-hemorrhage. Cardiac function was depressed and cardiac IL-6, P-IkappaB-alpha, NF-kappaB and its DNA-binding activity, ICAM-1, MPO activity, and CINC-1 and -3 were markedly increased after trauma-hemorrhage. Moreover, cardiac dysfunction was evident even 24 h after trauma-hemorrhage. Administration of sIL-6R following trauma-hemorrhage: (1) improved cardiac output at 2 h and 24 h (p<0.05); (2) down-regulated both cardiac IL-6 and IL-6R (p<0.05); and (3) attenuated cardiac P-IkappaB-alpha, NF-kappaB, NF-kappaB DNA-binding activity, ICAM-1, CINC-1, -3, and MPO activity (p<0.05). IgG did not significantly influence the above parameters. Thus, IL-6-mediated up-regulation of cardiac NF-kappaB, ICAM-1, CINC-1, -3, and MPO activity likely

  4. Hypoxia in early pregnancy induces cardiac dysfunction in adult offspring of Rattus norvegicus, a non-hypoxia-adapted species.

    PubMed

    Hauton, David

    2012-11-01

    Environmental stresses such as hypoxia can alter the development of the fetus that are manifested later in life, but the impact of early maternal hypoxia (MH) on cardiac performance, coronary flow and catecholamine responsiveness in adult offspring is less clear. The effects of exposure to chronic hypoxia (FIO(2)=0.12) in early intrauterine development (days E1-10) on cardiac performance of the adult offspring were estimated using the Langendorff-perfused rat heart. Cardiac dysfunction is presented as increased end-diastolic volume, with decreased ventricular stiffness in both male and female adult offspring (P<0.01 for both). While developed pressures were preserved in female MH rats, males demonstrated a decrease in systolic function, estimated as peak developed pressure (P<0.01). Challenge with dobutamine (300 nM), an adrenergic positive inotrope, increased cardiac work for control rats (P<0.01 for male and female rats) but not in MH-male rats. Coronary flow was reduced (P<0.01) and SERCA2 protein expression increased (2-fold, P<0.05) in female offspring, while eNOS protein levels were increased (2.5-fold, P<0.05) in females. This suggests gender-specific differences in compensatory responses to early MH, with female rats increasing calcium turnover to improve contractility and increasing coronary flow through increased expression of eNOS protein, partially restoring coronary perfusion while male rats show little compensation. PMID:22892476

  5. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes

    PubMed Central

    Castro, Liliana R.V.; Verde, Ignacio; Cooper, Dermot M.; Fischmeister, Rodolphe

    2006-01-01

    Background Cyclic GMP is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides, such as ANP or BNP, which activate, respectively, the soluble and particulate form of guanylyl cyclase. Yet, natriuretic peptides and NO-donors exert different effects on cardiac and vascular smooth muscle function. We therefore tested whether these differences are due to an intracellular compartmentation of cGMP, and evaluated the role of phosphodiesterase (PDE) subtypes in this process. Methods and Results Subsarcolemmal cGMP signals were monitored in adult rat cardiomyocytes by expression of the rat olfactory CNG channel α subunit and recording of the associated cGMP-gated current (ICNG). ANP (10 nM) or BNP (10 nM) induced a clear activation of ICNG while NO-donors (SNAP, SNP, DEANO, SIN-1, spermine NO, all at 100 μM) had little effect. The ICNG current was strongly potentiated by non-selective PDE inhibition with IBMX (100 μM) and by the PDE2 inhibitors EHNA (10 μM) and Bay 60–7550 (50 nM). Surprisingly, sildenafil, a PDE5 inhibitor, produced a dose-dependent increase of ICNG activated by NO-donors but had no effect (at 100 nM) on the current elicited by ANP. Conclusions These results indicate that, in rat cardiomyocytes: i) the ‘particulate’ cGMP pool is readily accessible at the plasma membrane, while the ‘soluble’ pool is not; ii) PDE5 controls the ‘soluble’ but not the ‘particulate’ pool, whereas the latter is under the exclusive control of PDE2. Differential spatiotemporal distributions of cGMP may therefore contribute to the specific effects of natriuretic peptides and NO-donors on cardiac function. PMID:16651469

  6. In utero dimethadione exposure causes postnatal disruption in cardiac structure and function in the rat.

    PubMed

    Aasa, Kristiina L; Purssell, Elizabeth; Adams, Michael A; Ozolinš, Terence R S

    2014-12-01

    In utero exposure of rat embryos to dimethadione (DMO), the N-demethylated teratogenic metabolite of the anticonvulsant trimethadione, induces a high incidence of cardiac heart defects including ventricular septal defects (VSDs). The same exposure regimen also leads to in utero cardiac functional deficits, including bradycardia, dysrhythmia, and a reduction in cardiac output (CO) and ejection fraction that persist until parturition (10 days after the final dose). Despite a high rate of spontaneous postnatal VSD closure, we hypothesize that functional sequelae will persist into adulthood. Pregnant Sprague Dawley rats were administered six 300 mg/kg doses of DMO, one every 12 h in mid-pregnancy beginning on the evening of gestation day 8. Postnatal cardiac function was assessed in control (CTL) and DMO-exposed offspring using radiotelemetry and ultrasound at 3 and 11 months of age, respectively. Adult rats exposed to DMO in utero had an increased incidence of arrhythmia, elevated blood pressure and CO, greater left ventricular volume and elevated locomotor activity versus CTL. The mean arterial pressure of DMO-exposed rats was more sensitive to changes in dietary salt load compared with CTL. Importantly, most treated rats had functional deficits in the absence of a persistent structural defect. It was concluded that in utero DMO exposure causes cardiovascular deficits that persist into postnatal life in the rat, despite absence of visible structural anomalies. We speculate this is not unique to DMO, suggesting possible health implications for infants with unrecognized gestational chemical exposures. PMID:25239635

  7. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    PubMed

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions. PMID:26857347

  8. IN VITRO EFFECTS OF CHLORPYRIFOS, PARATHION, METHYL PARATHION AND THEIR OXONS ON CARDIAC MUSCARINIC RECEPTOR BINDING IN NEONATAL AND ADULT RATS. (R825811)

    EPA Science Inventory

    Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular...

  9. Testosterone deprivation accelerates cardiac dysfunction in obese male rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Sivasinprasasn, Sivaporn; Jaiwongkam, Thidarat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-06-01

    Low testosterone level is associated with increased risks of cardiovascular diseases. As obese-insulin-resistant condition could impair cardiac function and that the incidence of obesity is increased in aging men, a condition of testosterone deprivation could aggravate the cardiac dysfunction in obese-insulin-resistant subjects. However, the mechanism underlying this adverse effect is unclear. This study investigated the effects of obesity on metabolic parameters, heart rate variability (HRV), left ventricular (LV) function, and cardiac mitochondrial function in testosterone-deprived rats. Orchiectomized or sham-operated male Wistar rats (n=36per group) were randomly divided into groups and were given either a normal diet (ND, 19.77% of energy fat) or a high-fat diet (HFD, 57.60% of energy fat) for 12weeks. Metabolic parameters, HRV, LV function, and cardiac mitochondrial function were determined at 4, 8, and 12weeks after starting each feeding program. We found that insulin resistance was observed after 8weeks of the consumption of a HFD in both sham (HFS) and orchiectomized (HFO) rats. Neither the ND sham (NDS) group nor ND orchiectomized (NDO) rats developed insulin resistance. The development of depressed HRV, LV contractile dysfunction, and increased cardiac mitochondrial reactive oxygen species production was observed earlier in orchiectomized (NDO and HFO) rats at week 4, whereas HFS rats exhibited these impairments later at week 8. These findings suggest that testosterone deprivation accelerates the impairment of cardiac autonomic regulation and LV function via increased oxidative stress and impaired cardiac mitochondrial function in obese-orchiectomized male rats. PMID:27000685

  10. Variability in the Cardiac Venous System of Wistar Rats

    PubMed Central

    Krešáková, Lenka; Purzyc, Halina; Schusterová, Ingrid; Fulton, Benjamin; Maloveská, Marcela; Vdoviaková, Katarina; Kravcová, Zuzanna; Boldižár, Martin

    2015-01-01

    Rats are often used as animal models in experimental cardiology for studying myocardial infarctions and various cardiologic procedures. Currently the cardiac venous system is a target for the delivery of drugs, gene vectors, angiogenetic growth factors, stem cells, and cardioprotective reagents. The purpose of this study was to describe the anatomic configuration and variability of the cardiac venous system in Wistar rats, by using the corrosion cast method and perfusion of colored latex. The distribution of veins in the rat heart disagrees with prior descriptions for other mammals, except mice, which have a similar pattern. Coronary venous drainage in the 36 rats examined consistently involved the left cardiac, left conal, major caudal, right cardiac, and right conal veins. Other veins involved inconsistently included the cranial cardiac vein (58.3% of cases), minor caudal veins (16.7%), conoanastomotic vein (66.7%), and left atrial vein (75%). In 4 cases (11.1%), the collateral veins were located between the left conal and left cardiac veins. In this study, high morphologic variability between cases was manifested by differences in the arrangement, size, mode of opening, and formation of the common root and affected all regions of the heart but primarily the right ventricle. PMID:25651085

  11. Biological determinants of aldosterone-induced cardiac fibrosis in rats.

    PubMed

    Robert, V; Silvestre, J S; Charlemagne, D; Sabri, A; Trouvé, P; Wassef, M; Swynghedauw, B; Delcayre, C

    1995-12-01

    To determine the events leading to cardiac fibrosis in aldosterone-salt hypertensive rats, we studied protein and mRNA accumulation of procollagens I and III for 60 days. After 3 and 7 days of treatment systolic pressure was normal, and no histological or biochemical changes were seen in rat hearts. At day 15 arterial pressure was raised (+40%) and left ventricular hypertrophy was +15%. Cardiac examination after hemalun-eosin staining and immunolabeling with anticollagen I and III antibodies showed no structural alterations, but an 83% increase in right ventricular type III procollagen mRNA levels was found. At 30 and 60 days we found progressive cardiac fibrosis, with inflammatory cells, myocyte necrosis, and elevation of both types I and III procollagen mRNA levels in both ventricles. To determine whether aldosterone had effects on Na,K-ATPase that might lead to ionic disturbances and induce myocyte necrosis, we studied the major cardiac Na,K-ATPase isoform genes. Although Na,K-ATPase alpha 1- and beta 1-subunit mRNA levels were elevated in kidney at day 1, neither of these cardiac transcripts nor the specific alpha 2 isoform was altered between 1 and 15 days. These results show that accumulation of procollagen mRNAs occurs before collagen deposition. Cardiac alterations are late and not preceded by changes in Na,K-ATPase cardiac gene expression, precluding a direct modulation of cardiac collagen synthesis and Na,K-ATPase by aldosterone. PMID:7490157

  12. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    PubMed Central

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  13. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle.

    PubMed

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL(-1) for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL(-1). The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  14. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    PubMed

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-20

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4. PMID:26987380

  15. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    PubMed Central

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  16. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats.

    PubMed

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  17. Inhomogeneous derangement of cardiac autonomic nerve control in diabetic rats.

    PubMed

    Sanyal, Shamarendra Nath; Arita, Makoto; Ono, Katsushige

    2002-03-01

    The present study compared autonomic nervous function in Kob [Spontaneously Diabetic, Bio-Breeding (BB)] rats with control Wistar rats to determine the development of cardiac neuropathy in diabetic rats. Telemetric ECG signals were obtained from an ECG radio-transmitter placed in a dorsal subcutaneous pouch of male Kob and Wistar rats for 30min every 6h at a sample rate of 5kHz. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by a fast Fourier transform algorithm. RR interval, total power (TP), low frequency (LF) power (0.04-0.67 Hz), high frequency (HF) power (0.79-1.48 Hz) and LF/HF ratio were also measured. The Kob rats had lower HRV than the control Wistar rats; HR, TP, and HF power, but not the LF/HF ratio, in the Kob rats were significantly lower than those of the control rats (p<0.001). However, in the Kob rats the response of these parameters to a muscarinic antagonist (atropine: 2mg/kg) was left intact, but their response to a beta-adrenergic antagonist (propranolol: 4mg/kg) was impeded. Autonomic nervous control of HR in spontaneously diabetic rats was inhomogeneously deranged in terms of the balance in sympathetic and parasympathetic tone, not only in the baseline condition, but also in the regulatory systems, including postsynaptic receptor function. PMID:11922279

  18. Venoarterial Extracorporeal Membrane Oxygenation in Adults With Cardiac Arrest.

    PubMed

    Patel, Jignesh K; Schoenfeld, Elinor; Parnia, Sam; Singer, Adam J; Edelman, Norman

    2016-07-01

    Cardiac arrest (CA) is a major cause of morbidity and mortality worldwide. Despite the use of conventional cardiopulmonary resuscitation (CPR), rates of return of spontaneous circulation and survival with minimal neurologic impairment remain low. Utilization of venoarterial extracorporeal membrane oxygenation (ECMO) for CA in adults is steadily increasing. Propensity-matched cohort studies have reported outcomes associated with ECMO use to be superior to that of conventional CPR alone in in-hospital patients with CA. In this review, we discuss the mechanism, indications, complications, and evidence for ECMO in CA in adults. PMID:25922385

  19. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts

    PubMed Central

    Hensley, Michael Taylor; de Andrade, James; Keene, Bruce; Meurs, Kathryn; Tang, Junnan; Wang, Zegen; Caranasos, Thomas G; Piedrahita, Jorge; Li, Tao-Sheng; Cheng, Ke

    2015-01-01

    The regenerative potential of cardiosphere-derived cells (CDCs) for ischaemic heart disease has been demonstrated in mice, rats, pigs and a recently completed clinical trial. The regenerative potential of CDCs from dog hearts has yet to be tested. Here, we show that canine CDCs can be produced from adult dog hearts. These cells display similar phenotypes in comparison to previously studied CDCs derived from rodents and human beings. Canine CDCs can differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. In addition, conditioned media from canine CDCs promote angiogenesis but inhibit cardiomyocyte death. In a doxorubicin-induced mouse model of dilated cardiomyopathy (DCM), intravenous infusion of canine CDCs improves cardiac function and decreases cardiac fibrosis. Histology revealed that injected canine CDCs engraft in the mouse heart and increase capillary density. Out study demonstrates the regenerative potential of canine CDCs in a mouse model of DCM. PMID:25854418

  20. Homeobox Protein Hop Functions in the Adult Cardiac Conduction System

    PubMed Central

    Ismat, Fraz A.; Zhang, Maozhen; Kook, Hyun; Huang, Bin; Zhou, Rong; Ferrari, Victor A.; Epstein, Jonathan A.; Patel, Vickas V.

    2006-01-01

    Hop is an unusual homeobox gene expressed in the embryonic and adult heart. Hop acts downstream of Nkx2–5 during development, and Nkx2–5 mutations are associated with cardiac conduction system (CCS) defects. Inactivation of Hop in the mouse is lethal in half of the expected null embryos. Here, we show that Hop is expressed strongly in the adult CCS. Hop−/− adult mice display conduction defects below the atrioventricular node (AVN) as determined by invasive electrophysiological testing. These defects are associated with decreased expression of connexin40. Our results suggest that Hop functions in the adult CCS and demonstrate conservation of molecular hierarchies between embryonic myocardium and the specialized conduction tissue of the mature heart. PMID:15790958

  1. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: a sub-acute toxicity study.

    PubMed

    Nurulain, Syed M; Shafiullah, Mohamed; Yasin, Javed; Adem, Abdu; Kaabi, Juma Al; Tariq, Saeed; Adeghate, Ernest; Ojha, Shreesh

    2016-06-01

    Organophosphorus compounds (OPCs) have a wide range of applications, from agriculture to warfare. Exposure to these brings forward a varied kind of health issues globally. Terbufos is one of the leading OPCs used worldwide. The present study investigates the cardiac effect of no observable dose of a metabolite of terbufos, terbufos-sulfone (TS), under non-diabetic and streptozotocin-induced diabetic condition. One hundred nanomoles per rat (1/20 of LD50) was administered intraperitoneally to adult male Wister rats daily for fifteen days. The left ventricle was collected for ultrastructural changes by transmission electron microscopy. The blood samples were collected for biochemical tests including RBC acetylcholinesterase, creatinine kinase (CK), lactate dehydrogenase (LDH), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, ALT, AST, and GGT. The study revealed about 10 % inhibition of RBC-AChE in two weeks of TS treatment in non-diabetic rats whereas RBC-AChE activity was significantly decreased in diabetic TS treated rats. CK, LDH, and triglycerides were significantly higher in diabetic TS treated rats. Electron microscopy of the heart showed derangement and lesions of the mitochondria of cardiomyocytes in the TS treated groups. The present study concludes that a non-lethal dose of TS causes cardiac lesions which exacerbate under diabetic condition. Biochemical tests confirmed the ultrastructural changes. It is concluded that a non-lethal dose of TS may be a risk factor for a cardiovascular disease, which may be fatal under diabetic condition. PMID:27331300

  2. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.

    PubMed

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; MacLellan, W Robb; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  3. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  4. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue.

    PubMed

    Baar, Keith; Birla, Ravi; Boluyt, Marvin O; Borschel, Gregory H; Arruda, Ellen M; Dennis, Robert G

    2005-02-01

    The mammalian heart is not known to regenerate following injury. Therefore, there is great interest in developing viable tissue-based models for cardiac assist. Recent years have brought numerous advances in the development of scaffold-based models of cardiac tissue, but a self-organizing model has yet to be described. Here, we report the development of an in vitro cardiac tissue without scaffolding materials in the contractile region. Using an optimal concentration of the adhesion molecule laminin, a confluent layer of neonatal rat cardiomyogenic cells can be induced to self-organize into a cylindrical construct, resembling a papillary muscle, which we have termed a cardioid. Like endogenous heart tissue, cardioids contract spontaneously and can be electrically paced between 1 and 5 Hz indefinitely without fatigue. These engineered cardiac tissues also show an increased rate of spontaneous contraction (chronotropy), increased rate of relaxation (lusitropy), and increased force production (inotropy) in response to epinephrine. Cardioids have a developmental protein phenotype that expresses both alpha- and beta-tropomyosin, very low levels of SERCA2a, and very little of the mature isoform of cardiac troponin T. PMID:15574489

  5. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats.

    PubMed

    Zhang, KunYi; He, XuYu; Zhou, Yingling; Gao, Lijuan; Qi, Zhengyu; Chen, Jiyan; Gao, Xiuren

    2015-12-01

    Radiation-induced heart injury is one of the major side effects of radiotherapy for thoracic malignancies. Previous studies have shown that radiotherapy induced myocardial fibrosis and intensified myocardial remodeling. In this study, we investigated whether atorvastatin could inhibit radiation-induced heart fibrosis in Sprague-Dawley rats, which were randomly divided into six groups: control; radiation only; and four treatment groups receiving atorvastatin plus radiation (E1, E2, E3 and E4). All rats, except the control group, received local heart irradiation in 7 daily fractions of 3 Gy for a total of 21 Gy. Rats in groups E1 (10 mg/kg/day) and E2 (20 mg/kg/day) received atorvastatin and radiation treatment until week 12 after exposure. Rats in groups E3 (10 mg/kg/day) and E4 (20 mg/kg/day) received atorvastatin treatment from 3 months before irradiation to week 12 after irradiation. The expressions of TGF-β1, Smad2, Smad3, fibronectin, ROCK I and p-Akt in heart tissues were evaluated using real-time PCR or Western blot analyses. Atorvastatin significantly reduced the expression of TGF-β1, Smad3/P-Smad3, ROCK I and p-Akt in rats of the E1-E4 groups and in a dose-dependent manner. Fibronectin exhibited a similar pattern of expression changes. In addition, echocardiography showed that atorvastatin treatment can inhibit the increase of left ventricular end-diastolic dimension, left ventricular end-systolic diameter and left ventricular posterior wall thickness, and prevent the decrease of ejection fraction and fraction shortening in E1-E4 groups compared with the radiation only group. This study demonstrated that radiation exposure increased the expression of fibronectin in cardiac fibroblasts and induced cardiac fibrosis through activation of the TGF-β1/Smad3, RhoA/ROCK, and PI3K/AKT signaling pathways. Statins ameliorated radiation-induced cardiac fibrosis in Sprague-Dawley rats. Our results suggest that atorvastatin is effective for the treatment of radiation

  6. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    PubMed

    Gordon, Christopher J

    2008-12-01

    The cardiovascular and thermoregulatory systems are considered to be susceptible in the aged population, but little is known about baseline cardiac and thermoregulatory homeostasis in rodent models of aging. Radiotransmitters were implanted in male, Brown Norway rats obtained at 4, 12, and 24 months to monitor the electrocardiogram (ECG), interbeat interval (IBI), heart rate (HR), core temperature (Tc), and motor activity (MA). There was no significant effect of age on resting HR and MA. Daytime Tc of the 24-month-old rats was significantly elevated above those of the 4- and 12-month-old groups. Variability of the IBI was highest in the 24-month-old rats. The elevation in daytime Tc beginning around 8 months of age may be a physiological biomarker of aging and may be an important factor to consider in studies using caloric restriction-induced hypothermia to increase longevity. PMID:19126843

  7. Effect of Actual and Simulated Microgravity on Cardiac Mass and Function in the Rat

    NASA Technical Reports Server (NTRS)

    Ray, Chester H.; Vasques, Marilyn; Miller, Todd H.; Wilkerson, M. Keith; Delp, Michael D.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to actual or simulated microgravity induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: Preflight (PF, n = 12); Flight (FL, n = 7); Flight Cage Simulation (SIM, n = 6), and Vivarium Control (VIV, n = 7). Animals in the FL group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the simulated microgravity study were subdivided into three groups: Control (CON, n = 20); 7 day hindlimb unloaded (7HU, n = 10); and 28 day unloaded (28HU, n = 19). In a subset of CON (n = 7) and 28HU (n = 6) rats, a catheter was advanced into the left ventricle to measure the rate of rise in ventricular pressure (+dP/dt) during standing as an estimate of cardiac contractility. After completion of their respective treatments, hearts were removed and weighed. Animals in the PF group were sacrificed 24 hr prior to launch while the FL group was sacrificed 11- 17 hr after landing. The SM and VIV groups were sacrificed 48 and 96 hr after the FL group, respectively. Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- .03 g; FL 1.32 +/- 0.02 g; SIM 1.28 +/- 0.04 g; VIV 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hinlimb unloading (CON 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on myocardial contractility (CON 8055 +/- 385 mmHg/sec; 28HU 8545 +/- 755 mmHg/sec). These data suggest that cardiac atrophy does not occur following short-term exposure to microgravity, and that neither short- nor long-term simulated microgravity alter cardiac mass or function.

  8. Social stress, autonomic neural activation, and cardiac activity in rats.

    PubMed

    Sgoifo, A; Koolhaas, J; De Boer, S; Musso, E; Stilli, D; Buwalda, B; Meerlo, P

    1999-11-01

    Animal models of social stress represent a useful experimental tool to investigate the relationship between psychological stress, autonomic neural activity and cardiovascular disease. This paper summarizes the results obtained in a series of experiments performed on rats and aimed at verifying whether social challenges produce specific modifications in the autonomic neural control of heart rate and whether these changes can be detrimental for cardiac electrical stability. Short-term electrocardiographic recordings were performed via radiotelemetry and the autonomic input to the heart evaluated by means of time-domain heart rate variability measures. Compared to other stress contexts, a social defeat experience produces a strong shift of autonomic balance toward sympathetic dominance, poorly antagonized by vagal rebound, and associated with the occurrence of cardiac tachyarrhythmias. These effects were particularly severe when a wild-type strain of rats was studied. The data also suggest that the cardiac autonomic responses produced by different types of social contexts (dominant-subordinate interaction, dominant-dominant confrontation, social defeat) are related to different degrees of emotional activation, which in turn are likely modulated by the social rank of the experimental animal and the opponent, the prior experience with the stressor, and the level of controllability over the stimulus. PMID:10580306

  9. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  10. Detection of cardiac transplant rejection with radiolabeled lymphocytes. [Rats

    SciTech Connect

    Bergmann, S.R.; Lerch, R.A.; Carlson, E.M.; Saffitz, J.E.; Sobel, B.E.

    1982-03-01

    To determine whether rejections of cardiac transplants could be detected specifically and non-invasively by lymphocytes labeled with indium-111 (111In), we studied 36 allogeneic and 14 isogeneic heterotopic cardiac transplants in rats. Allogeneic grafts accumulated autologous 111In-lymphocytes, detectable scintigraphically 24 hours after i.v. injection of the labeled cells. At the time of peak histologic rejection, the allogeneic grafts accumulated 92. +/- 4.8 times more activity than the native hearts (determined by well counting). The tissue-to-blood ratio in the rejecting transplants was 3.7 +/- 2.2; total uptake by the graft was 2.9 +/- 2.1% of the injected dose. Autoradiography confirmed that graft radioactivity was associated with labeled lymphocytes. In contrast, isogeneic grafts showed no signs of rejection and did not accumulate radioactivity. Because conventionally isolated and labeled lymphocytes are often contaminated with platelets, we prepared both 111In-platelets and purified 111In-lymphocytes for use in additional experiments. Allogeneic grafts accumulated platelets and purified lymphocytes independently. Thus, deposition of immunologically active cells in the rejecting graft representing specific pathophysiologic events can be detected. The results suggest that rejection of cardiac transplants can be detected noninvasively, potentially facilitating objective early clinical detection of rejection and titration of antirejection therapy.

  11. Ketamine in adult cardiac surgery and the cardiac surgery Intensive Care Unit: An evidence-based clinical review

    PubMed Central

    Mazzeffi, Michael; Johnson, Kyle; Paciullo, Christopher

    2015-01-01

    Ketamine is a unique anesthetic drug that provides analgesia, hypnosis, and amnesia with minimal respiratory and cardiovascular depression. Because of its sympathomimetic properties it would seem to be an excellent choice for patients with depressed ventricular function in cardiac surgery. However, its use has not gained widespread acceptance in adult cardiac surgery patients, perhaps due to its perceived negative psychotropic effects. Despite this limitation, it is receiving renewed interest in the United States as a sedative and analgesic drug for critically ill-patients. In this manuscript, the authors provide an evidence-based clinical review of ketamine use in cardiac surgery patients for intensive care physicians, cardio-thoracic anesthesiologists, and cardio-thoracic surgeons. All MEDLINE indexed clinical trials performed during the last 20 years in adult cardiac surgery patients were included in the review. PMID:25849690

  12. Chronic cola drinking induces metabolic and cardiac alterations in rats

    PubMed Central

    Milei, José; Losada, Matilde Otero; Llambí, Hernán Gómez; Grana, Daniel R; Suárez, Daniel; Azzato, Francisco; Ambrosio, Giuseppe

    2011-01-01

    AIM: To investigate the effects of chronic drinking of cola beverages on metabolic and echocardiographic parameters in rats. METHODS: Forty-eight male Wistar rats were divided in 3 groups and allowed to drink regular cola (C), diet cola (L), or tap water (W) ad libitum during 6 mo. After this period, 50% of the animals in each group were euthanized. The remaining rats drank tap water ad libitum for an additional 6 mo and were then sacrificed. Rat weight, food, and beverage consumption were measured regularly. Biochemical, echocardiographic and systolic blood pressure data were obtained at baseline, and at 6 mo (treatment) and 12 mo (washout). A complete histopathology study was performed after sacrifice. RESULTS: After 6 mo, C rats had increased body weight (+7%, P < 0.01), increased liquid consumption (+69%, P < 0.001), and decreased food intake (-31%, P < 0.001). C rats showed mild hyperglycemia and hypertriglyceridemia. Normoglycemia (+69%, P < 0.01) and sustained hypertriglyceridemia (+69%, P < 0.01) were observed in C after washout. Both cola beverages induced an increase in left ventricular diastolic diameter (C: +9%, L: +7%, P < 0.05 vs W) and volumes (diastolic C: +26%, L: +22%, P < 0.01 vs W; systolic C: +24%, L: +24%, P < 0.05 vs W) and reduction of relative posterior wall thickness (C: -8%, L: -10%, P < 0.05 vs W). Cardiac output tended to increase (C: +25%, P < 0.05 vs W; L: +17%, not significant vs W). Heart rate was not affected. Pathology findings were scarce, related to aging rather than treatment. CONCLUSION: This experimental model may prove useful to investigate the consequences of high consumption of soft drinks. PMID:21526048

  13. Electrophysiological study of infant and adult rats under acute intoxication with fluoroacetamide.

    PubMed

    Kuznetsov, Sergey V; Jenkins, Richard O; Goncharov, Nikolay V

    2007-01-01

    A study was conducted of acute intoxication of infant and adult Wistar rats with fluoroacetamide (FAA), an inhibitor of oxidative metabolism. FAA was administered orally to adult rats at 1/2 LD(50) and subcutaneously to infant rats at LD(100) or 1/10 LD(50). Electrocardiogram (ECG), respiration and motor activity were registered for 7 days. Clinical analysis of ECG and the heart rate variability (HRV) was carried out to assess the state of the vegetative nervous system. In adult rats, FAA caused marked disturbances in the activity of cardiovascular and respiratory systems, including the development of a potentially lethal acute cor pulmonale. Conversely, there were no significant changes of cardiac function and respiration in infant rats; they died because of extreme emaciation accompanied by retardation of development. In adult rats, bursts of associated cardiac and respiratory tachyarrhythmia, as well as regular high amplitude spasmodic sighs having a deca-second rhythm were observed. In both infant and adult rats, FAA caused short-term enhancement of humoral (metabolic) and sympathetic activities, followed by a gradual and stable predominance of parasympathetic influence on HRV. Under conditions of FAA inhibition of the tricarboxylic acid cycle, the observed physiological reactions may be explained by activation of alternative metabolic pathways. This is also supported by a lack of ontogenetically caused inhibition of spontaneous motor activity in infant rats poisoned with FAA, which highlights the significance of the alternative metabolic pathways for implementation of deca-second and minute rhythms and a lack of a rigid dependence of these rhythms upon activity of neuronal networks. PMID:17351914

  14. Knowledge Management in Cardiac Surgery: The Second Tehran Heart Center Adult Cardiac Surgery Database Report

    PubMed Central

    Abbasi, Kyomars; Karimi, Abbasali; Abbasi, Seyed Hesameddin; Ahmadi, Seyed Hossein; Davoodi, Saeed; Babamahmoodi, Abdolreza; Movahedi, Namdar; Salehiomran, Abbas; Shirzad, Mahmood; Bina, Peyvand

    2012-01-01

    Background: The Adult Cardiac Surgery Databank (ACSD) of Tehran Heart Center was established in 2002 with a view to providing clinical prediction rules for outcomes of cardiac procedures, developing risk score systems, and devising clinical guidelines. This is a general analysis of the collected data. Methods: All the patients referred to Tehran Heart Center for any kind of heart surgery between 2002 and 2008 were included, and their demographic, medical, clinical, operative, and postoperative data were gathered. This report presents general information as well as in-hospital mortality rates regarding all the cardiac procedures performed in the above time period. Results: There were 24959 procedures performed: 19663 (78.8%) isolated coronary artery bypass grafting surgeries (CABGs); 1492 (6.0%) isolated valve surgeries; 1437 (5.8%) CABGs concomitant with other procedures; 832 (3.3%) CABGs combined with valve surgeries; 722 (2.9%) valve surgeries concomitant with other procedures; 545 (2.2%) surgeries other than CABG or valve surgery; and 267 (1.1%) CABGs concomitant with valve and other types of surgery. The overall mortality was 205 (1.04%), with the lowest mortality rate (0.47%) in the isolated CABGs and the highest (4.49%) in the CABGs concomitant with valve surgeries and other types of surgery. Meanwhile, the overall mortality rate was higher in the female patients than in the males (1.90% vs. 0.74%, respectively). Conclusion: Isolated CABG was the most prevalent procedure at our center with the lowest mortality rate. However, the overall mortality was more prevalent in our female patients. This database can serve as a platform for the participation of the other countries in the region in the creation of a regional ACSD. PMID:23304179

  15. Cardiac remodeling in rats with renal failure shows interventricular differences.

    PubMed

    Svíglerová, Jitka; Kuncová, Jitka; Nalos, Lukás; Holas, Jaromír; Tonar, Zbynek; Rajdl, Daniel; Stengl, Milan

    2012-09-01

    Chronic renal failure (CRF) is associated with an increased incidence of cardiovascular diseases. Intensive research revealed a number of alterations in the heart during CRF; however, possible interventricular differences in CRF-induced cardiac remodeling have so far not been addressed. CRF was induced by two-stage surgical 5/6 nephrectomy (NX) in male Wistar rats. Cellular hypertrophy was quantified using immunohistological morphometric analysis. Contraction force and membrane potential were recorded in left and right ventricle papillary muscles with an isometric force transducer and high-resistance glass microelectrodes. Hypertrophy was present in the left ventricle (LV) of NX animals, but not in the right ventricle (RV) of NX animals, as documented by both ventricle/body weight ratios and cellular morphometric analysis of the cross-sectional area of myocytes. The contraction force was reduced in the LV of NX animals but increased in the RV of NX animals compared with sham-operated rats. Rest potentiation of contraction force was relatively more pronounced in the LV of NX rats. Fifty percent substitution of extracellular sodium with lithium significantly increased the contraction force only in the LV of NX animals. Action potential durations were shortened in both ventricles of CRF animals. Cardiac structural and contractile remodeling in CRF shows significant interventricular differences. CRF induces hypertrophy of the LV but not of the RV. LV hypertrophy was associated with a reduction of contraction force, whereas in the RV, the contraction force was enhanced. Partial recovery of contractile function of the LV by rest potentiation or lithium substitution indicates a role of the Na(+)/Ca(2+) exchanger in this phenomenon. PMID:22929800

  16. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    PubMed

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  17. Linkage of cardiac gene expression profiles and ETS2 with lifespan variability in rats.

    PubMed

    Sheydina, Anna; Volkova, Maria; Jiang, Liqun; Juhasz, Ondrej; Zhang, Jing; Tae, Hyun-Jin; Perino, Maria G; Wang, Mingyi; Zhu, Yi; Lakatta, Edward G; Boheler, Kenneth R

    2012-04-01

    Longevity variability is a common feature of aging in mammals, but the mechanisms responsible for this remain largely unknown. Using microarray datasets coupled with prediction analysis of microarrays (PAM), we identified a set of 252 cardiac transcripts predictive of relative lifespan in Wistar and Fisher 344 rats. Prediction analysis of microarrays 'tests' of rat heart transcriptomes from a third longer lived Fisher × Norway Brown rat strain validated the predictive value of this gene subset. The expression patterns of these genes were highly conserved, and corresponding promoter regions were employed to identify common cis-elements and trans-activating factors implicated in their control. Specifically, four transcription factors (Max, Ets2, Erg, and Msx2) present in heart displayed longevity-dependent, strain-independent changes in abundance, but only ETS2 had an expression profile that directly correlated with the relative lifespan gene set. In heart, ETS2 was prevalent in cardiomyocytes (CMs) and showed a high degree of myocyte-to-myocyte variability predominantly in adult rat hearts prior to the exponential increase in the rate of mortality. Exclusively in this group, elevated ETS2 significantly overlapped with TUNEL staining in heart myocytes. In response to sympathetic stimuli, ETS2 is also up-regulated, and functionally, adenovirus-mediated over-expression of ETS2 promotes apoptosis-inducing factor-mediated, caspase-independent programmed necrosis exclusively in CMs that can be fully inhibited by the PARP-1 inhibitor DPQ. We conclude that variations in ETS2 abundance in hearts of adult rodents and the associated loss of CMs contribute at least partially, to the longevity variability observed during normal aging of rats through activation of programmed necrosis. PMID:22247964

  18. The cardiac effects of carbon nanotubes in rat

    PubMed Central

    Hosseinpour, Mina; Azimirad, Vahid; Alimohammadi, Maryam; Shahabi, Parviz; Sadighi, Mina; Ghamkhari Nejad, Ghazaleh

    2016-01-01

    Introduction: Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials’ biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. Methods: Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. Results: Results of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. Conclusion: Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate. PMID:27525224

  19. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease

    PubMed Central

    Velkoska, Elena; Patel, Sheila K.; Griggs, Karen

    2016-01-01

    Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1–7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1–7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined. PMID:27571511

  20. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease.

    PubMed

    Velkoska, Elena; Patel, Sheila K; Griggs, Karen; Burrell, Louise M

    2016-01-01

    Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1-7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1-7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined. PMID:27571511

  1. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    PubMed

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  2. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin

    PubMed Central

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-01-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  3. Astaxanthin reduces ischemic brain injury in adult rats

    PubMed Central

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N.; Post, Jeremy; Woods, Amina S.; Hoffer, Barry J.; Wang, Yun; Harvey, Brandon K.

    2009-01-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.—Shen, H., Kuo, C.-C., Chou, J., Delvolve, A., Jackson, S. N., Post, J., Woods, A. S., Hoffer, B. J., Wang, Y., Harvey, B. K. Astaxanthin reduces ischemic brain injury in adult rats. PMID:19218497

  4. THE MECHANISM OF PARTICULATE MATTER (PM)-ASSOCIATED ZINC IN CARDIAC INJURY IN WISTAR KYOTO RATS.

    EPA Science Inventory

    We have recently found that inhaled combustion particulate matter (PM) with leachable zinc causes myocardial damage without significant pulmonary inflammation or remodeling; this damage is histologically demonstrable in Wistar Kyoto (WKY) rats. Cardiac injury from PM exposure can...

  5. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Heyliger, Clayton E.; Tahiliani, Arun G.; McNeill, John H.

    1985-03-01

    The trace element vanadium has an unclear biological function. Vanadate, an oxidized form of vanadium, appears to have an insulin-like action. The effect of vanadate on blood glucose and cardiac performance was assessed in female Wistar rats 6 weeks after they were made diabetic with streptozotocin. When vanadate was administered for a 4-week period to the diabetic rats, their blood glucose was not significantly different from that of nondiabetic controls despite a low serum insulin. In contrast, blood glucose was increased about threefold in the diabetic rats that were not treated with vanadate; these rats also had low insulin levels. Cardiac performance was depressed in the untreated diabetic animals, but the cardiac performance of the vanadate-treated diabetic animals was not significantly different from that of nondiabetic controls. Thus vanadate controlled the high blood glucose and prevented the decline in cardiac performance due to diabetes.

  6. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Outcomes and Quality.

    PubMed

    D'Agostino, Richard S; Jacobs, Jeffrey P; Badhwar, Vinay; Paone, Gaetano; Rankin, J Scott; Han, Jane M; McDonald, Donna; Shahian, David M

    2016-01-01

    The Society of Thoracic Surgeons Adult Cardiac Database is one of the longest-standing, largest, and most highly regarded clinical data registries in health care. It serves as the foundation for all quality measurement and improvement activities of The Society of Thoracic Surgeons. This report summarizes current aggregate national outcomes in adult cardiac surgery and reviews database-related activities in the areas of quality measurement and performance improvement. PMID:26616408

  7. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.

    PubMed

    Ferrario, Carlos M; VonCannon, Jessica; Jiao, Yan; Ahmad, Sarfaraz; Bader, Michael; Dell'Italia, Louis J; Groban, Leanne; Varagic, Jasmina

    2016-04-15

    Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function. PMID:26873967

  8. Adult-Onset Still's Disease and Cardiac Tamponade: A Rare Association

    PubMed Central

    Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-01-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity. PMID:26175648

  9. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  10. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats

    PubMed Central

    Escobales, Nelson; Nuñez, Rebeca E.; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R.; Skoda, Erin M.; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-01-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3 mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20-min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca2+-induced swelling, an indicator of permeability transition pore opening, was reduced in mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  11. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury. PMID:25451170

  12. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats

    PubMed Central

    Xiao, DaLiao; Dasgupta, Chiranjib; Chen, Man; Zhang, Kangling; Buchholz, John; Xu, Zhice; Zhang, Lubo

    2014-01-01

    Aims The mechanisms of heart failure remain largely elusive. The present study determined a causative role of DNA methylation in norepinephrine-induced heart hypertrophy and reduced cardiac contractility. Methods and results Male adult rats were subjected to norepinephrine infusion for 28 days, some of which were treated with 5-aza-2′-deoxycytidine for the last 6 days of norepinephrine treatment. At the end of the treatment, hearts were isolated and left ventricular morphology and function as well as molecular assessments was determined. Animals receiving chronic norepinephrine infusion showed a sustained increase in blood pressure, heightened global genomic DNA methylation and changes in the expression of subsets of proteins in the left ventricle, left ventricular hypertrophy, and impaired contractility with an increase in the susceptibility to ischaemic injury. Treatment of animals with 5-aza-2′-deoxycytidine for the last 6 days of norepinephrine infusion reversed norepinephrine-induced hypermethylation, corrected protein expression patterns, and rescued the phenotype of heart hypertrophy and failure. Conclusions The findings provide novel evidence of a causative role of increased DNA methylation in programming of heart hypertrophy and reduced cardiac contractility, and suggest potential therapeutic targets of demethylation in the treatment of failing heart and ischaemic heart disease. PMID:24272874

  13. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats

    PubMed Central

    Aravamuthan, Bhooma R.; Shoykhet, Michael

    2016-01-01

    BACKGROUND The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. METHODS We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. RESULTS Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P < 0.05). Cardiac arrest survivors also demonstrate greater coherence between EPN single neurons and MCx LFP (3—100 Hz; P < 0.001). CONCLUSIONS This increased coherence indicates abnormal synchrony in the neuronal motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders. PMID:26083760

  14. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  15. Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: role of lowering circulating lipids.

    PubMed

    Huang, Tom Hsun-Wei; Peng, Gang; Kota, Bhavani Prasad; Li, George Qian; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2005-07-01

    Excess triglyceride (TG) accumulation and increased fatty acid (FA) oxidation in the diabetic heart contribute to cardiac dysfunction. Punica granatum flower (PGF) is a traditional antidiabetic medicine. Here, we investigated the effects and mechanisms of action of PGF extract on abnormal cardiac lipid metabolism both in vivo and in vitro. Long-term oral administration of PGF extract (500 mg kg(-1)) reduced cardiac TG content, accompanied by a decrease in plasma levels of TG and total cholesterol in Zucker diabetic fatty (ZDF) rats, indicating improvement by PGF extract of abnormal cardiac TG accumulation and hyperlipidemia in this diabetic model. Treatment of ZDF rats with PGF extract lowered plasma FA levels. Furthermore, the treatment suppressed cardiac overexpression of mRNAs encoding for FA transport protein, peroxisome proliferator-activated receptor (PPAR)-alpha, carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase alpha2, and restored downregulated cardiac acetyl-CoA carboxylase mRNA expression in ZDF rats, whereas it showed little effect in Zucker lean rats. The results suggest that PGF extract inhibits increased cardiac FA uptake and oxidation in the diabetic condition. PGF extract and its component oleanolic acid enhanced PPAR-alpha luciferase reporter gene activity in human embryonic kidney 293 cells, and this effect was completely suppressed by a selective PPAR-alpha antagonist MK-886, consistent with the presence of PPAR-alpha activator activity in the extract and this component. Our findings suggest that PGF extract improves abnormal cardiac lipid metabolism in ZDF rats by activating PPAR-alpha and thereby lowering circulating lipid and inhibiting its cardiac uptake. PMID:15880139

  16. Interactions between respiratory oscillators in adult rats

    PubMed Central

    Huckstepp, Robert TR; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. DOI: http://dx.doi.org/10.7554/eLife.14203.001 PMID:27300271

  17. Interactions between respiratory oscillators in adult rats.

    PubMed

    Huckstepp, Robert Tr; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. PMID:27300271

  18. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats.

    PubMed

    Wu, Jie; Cheng, Zhong; Zhang, Mingjing; Zhu, Pengfei; Gu, Ye

    2016-01-01

    We previously reported significantly enhanced cardiac remodeling post aortocaval fistula (AV) in unilateral nephrectomized (UNX) rats. However, the relationship between the size of the AV and the cardiorenal effects in UNX rats remains unknown. In the present study, AV was induced by 20, 18 and 16 gauge needles in UNX rats to see if larger shunt would definitely induce heavier cardiac and renal damage in UNX rats. Our results demonstrated that bigger shunt size is linked with proportional more significant cardiorenal remodeling and dysfunction in UNX rats. Expression of inflammatory biomarkers including CRP, TNF-α, IL-6, IL-1β, TGF-β and MCP-1 in left kidney and heart was significantly increased in all UNX + AV groups compared to Sham rats. Inflammation might thus participate in the worsening cardiorenal functions and remodeling processes in this model. PMID:27279232

  19. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats

    PubMed Central

    Wu, Jie; Cheng, Zhong; Zhang, Mingjing; Zhu, Pengfei; Gu, Ye

    2016-01-01

    We previously reported significantly enhanced cardiac remodeling post aortocaval fistula (AV) in unilateral nephrectomized (UNX) rats. However, the relationship between the size of the AV and the cardiorenal effects in UNX rats remains unknown. In the present study, AV was induced by 20, 18 and 16 gauge needles in UNX rats to see if larger shunt would definitely induce heavier cardiac and renal damage in UNX rats. Our results demonstrated that bigger shunt size is linked with proportional more significant cardiorenal remodeling and dysfunction in UNX rats. Expression of inflammatory biomarkers including CRP, TNF-α, IL-6, IL-1β, TGF-β and MCP-1 in left kidney and heart was significantly increased in all UNX + AV groups compared to Sham rats. Inflammation might thus participate in the worsening cardiorenal functions and remodeling processes in this model. PMID:27279232

  20. Cardiac issues in adults with the mucopolysaccharidoses: current knowledge and emerging needs.

    PubMed

    Braunlin, Elizabeth; Wang, Raymond

    2016-08-15

    The growing availability of innovative treatments for rare genetic diseases with a cardiac component-such as the mucopolysaccharidoses (MPSs)-has changed these syndromes from 'back of the textbook' curiosities of childhood to chronic, but rare, adult cardiac conditions that require both centres of expertise and knowledgeable subspecialists. The MPSs are inherited progressive lysosomal storage diseases, occurring in about 1:25 000 births and resulting from absence of functional hydrolases responsible for the degradation of glycosaminoglycans, naturally occurring complex sugars ubiquitous throughout the body. In the heart, accumulation of glycosaminoglycans occurs within the cardiac valves, the epicardial coronary arteries, the myocytes and cardiac interstitium and the walls of the great vessels. As a consequence, cardiac valve regurgitation and stenosis, diffuse coronary artery stenosis, myocardial dysfunction and aortic root dilation often occur. Haematopoietic cell transplantation and enzyme replacement therapy have changed the previously lethal natural history of the MPSs to one of survival well into adulthood. Despite this improved lifespan, the left-sided cardiac valves continue to show progressive functional involvement and cardiac valve replacement is not uncommon, especially in adults. The risk of any intervention is increased in these patients because of the systemic effects of the disease on the respiratory system and cervical cord. Our current understanding of other cardiac issues in adults with the MPSs, especially with the coronary circulation and myocardium, is meagre and more needs to be known to effectively care for this emerging population of adults. Incorporation of the MPSs, as well as other now-treatable rare diseases, into the educational curriculum of current and future adult subspecialists is an important next step. PMID:27102649

  1. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac

  2. Provision of Transition Education and Referral Patterns from Pediatric Cardiology to Adult Cardiac Care.

    PubMed

    Harbison, Anna L; Grady, Stafford; Chi, Kevin; Fernandes, Susan M

    2016-02-01

    ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted. PMID:26385471

  3. A rat model of liver transplantation with a steatotic donor liver after cardiac death

    PubMed Central

    Cai, Qiucheng; Fan, Hongkai; Xiong, Rihui; Jiang, Yi

    2015-01-01

    This study aimed to establish a rat liver transplantation model with a steatotic donor liver after cardiac death, reflecting clinical conditions. Rats were fed a high-fat diet for 8 weeks to establish the fatty liver model. This model simulates liver steatosis caused by various factors before clinical donation after cardiac death. A pneumothorax was created in the donor rat to induce hypoxia and cardiac arrest before incising the liver. This simulated the processes of hypoxia and cardiac arrest caused by withdrawal of treatment in actual clinical situations. The harvested cardiac death donor liver was then transplanted using the Kamada technique. Donor operative time was 45.7 ± 4.2 min; cardiac arrest time, 9 ± 0.8 min; recipient surgery time, 40.3 ± 4.9 min; and no-liver time, 15 ± 2.5 min. Of 40 liver-transplanted rats, 2 died within 24 h, with a surgical success rate of 95%. The transaminase levels on post-transplantation days 1, 3, 5, and 7 were 835.4 ± 71.33 U/L, 1334.5 ± 102.13 U/L, 536.4 ± 65.52 U/L, and 218.2 ± 36.77 U/L, respectively. This rat liver transplantation model with a steatotic donor liver after cardiac death could improve the simulation of the pathophysiological processes of clinical donation after cardiac death, and could be used as a reliable and stable animal model. PMID:26629068

  4. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    PubMed

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  5. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure

    PubMed Central

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  6. Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling

    PubMed Central

    Dawes, Timothy J.W.; Corden, Ben; Cotter, Sorcha; de Marvao, Antonio; Walsh, Roddy; Ware, James S.; Cook, Stuart A.

    2016-01-01

    Background— Cardiac mass and volumes are often elevated in athletes, but it is not known whether moderate physical activity is also associated with cardiac dilatation and hypertrophy in a healthy adult population. Methods and Results— In total, 1096 adults (54% female, median age 39 years) without cardiovascular disease or cardiomyopathy-associated genetic variants underwent cardiac magnetic resonance imaging to determine biventricular volumes and function. Physical activity was assessed using a validated activity questionnaire. The relationship between cardiac parameters and activity was assessed using multiple linear regression adjusting for age, sex, race, and systolic blood pressure. Logistic regression was performed to determine the effect of activity on the likelihood of subjects having cardiac dilatation or hypertrophy according to standard cardiac magnetic resonance normal ranges. Increasing physical activity was associated with greater left ventricular (LV) mass (β=0.23; P<0.0001) and elevated LV and right ventricular volumes (LV: β=0.26, P<0.0001; right ventricular: β=0.26, P<0.0001). Physical activity had a larger effect on cardiac parameters than systolic blood pressure (0.06≤β≤0.21) and a similar effect to age (−0.20≤β≤−0.31). Increasing physical activity was a risk factor for meeting imaging criteria for LV hypertrophy (adjusted odds ratio 2.1; P<0.0001), LV dilatation (adjusted odds ratio 2.2; P<0.0001), and right ventricular dilatation (adjusted odds ratio 2.2; P<0.0001). Conclusions— Exercise-related cardiac remodeling is not confined to athletes, and there is a risk of overdiagnosing cardiac dilatation or hypertrophy in a proportion of active, healthy adults. PMID:27502059

  7. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress

    PubMed Central

    Huang, Jinxian; Xu, Lipeng; Huang, Qiuju; Luo, Jiani; Liu, Peiqing; Chen, Shaorui; Yuan, Xi; Lu, Yao; Wang, Ping; Zhou, Sigui

    2015-01-01

    This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hypertensive rats (SHR). On the other hand, swim-trained rats developed physiological cardiac hypertrophy, whereas SHR developed pathological cardiac hypertrophy. The two kinds of cardiac hypertrophy exhibited divergent SCAD changes in myocardial fatty acids utilization. In addition, the expression of SCAD was significantly decreased in pathological cardiomyocyte hypertrophy, however, increased in physiological cardiomyocyte hypertrophy. SCAD siRNA treatment triggered the pathological cardiomyocyte hypertrophy, which showed that the down-regulation of SCAD expression may play an important role in pathological cardiac hypertrophy. The changes in peroxisome proliferator-activated receptor α (PPARα) was accordant with that of SCAD. Moreover, the specific PPARα ligand fenofibrate treatment increased the expression of SCAD and inhibited pathological cardiac hypertrophy. Therefore, we speculate that the down-regulated expression of SCAD in pathological cardiac hypertrophy may be responsible for ‘the recapitulation of foetal energy metabolism’. The deactivation of PPARα may result in the decrease in SCAD expression in pathological cardiac hypertrophy. Changes in SCAD are different in pathological and physiological cardiac hypertrophy, which may be used as the molecular markers of pathological and physiological cardiac hypertrophy. PMID:25753319

  8. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats.

    PubMed

    Matsakas, Antonios; Bozzo, Cyrille; Cacciani, Nicola; Caliaro, Francesca; Reggiani, Carlo; Mascarello, Francesco; Patruno, Marco

    2006-11-01

    The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle. PMID:16873457

  9. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  10. Impact of hepatic cirrhosis on outcome in adult cardiac surgery.

    PubMed

    Dimarakis, Ioannis; Grant, Stuart; Corless, Rebecca; Velissaris, Theodore; Prince, Martin; Bridgewater, Ben; Asimakopoulos, George

    2015-02-01

    Increasing prevalence of hepatic disease is likely to translate in a growing number of patients with significant hepatic disease requiring cardiac surgery. Available cardiac risk stratification models do not address the risk associated with hepatic disease. However, weighted mean mortality rates based on previous studies of cardiac surgery in patients with hepatic disease demonstrate operative mortality rates that range from 9.88% (standard deviation [SD] 9.69) for patients in Child-Turcotte-Pugh (CTP) class A cirrhosis to 69.23% (SD 28.55) for patients with CTP class C cirrhosis. This review comprehensively appraises the pathophysiology of hepatic disease, reported clinical outcomes and considerations for risk stratification. PMID:25291160

  11. Aging Effect on Post-recovery Hypofusion and Mortality Following Cardiac Arrest and Resuscitation in Rats.

    PubMed

    Xu, Kui; Puchowicz, Michelle A; LaManna, Joseph C

    2016-01-01

    In this study we investigated the effect of aging on brain blood flow following transient global ischemia. Male Fisher rats (6 and 24 months old) underwent cardiac arrest (15 min) and resuscitation. Regional brain (cortex, hippocampus, brainstem and cerebellum) blood flow was measured in non-arrested rats and 1-h recovery rats using [14C] iodoantipyrene (IAP) autoradiography; the 4-day survival rate was determined in the two age groups. The pre-arrest baseline blood flows were similar in cortex, brainstem and cerebellum between the 6-month and the 24-month old rats; however, the baseline blood flow in hippocampus was significantly lower in the 24-month old group. At 1 h following cardiac arrest and resuscitation, both 6-month and 24-month groups had significantly lower blood flows in all regions than the pre-arrest baseline values; compared to the 6-month old group, the blood flow was significantly lower (about 40% lower) in all regions in the 24-month old group. The 4-day survival rate for the 6-month old rats was 50% (3/6) whereas none of the 24-month old rats (0/10) survived for 4 days. The data suggest that there is an increased vulnerability to brain ischemic-reperfusion injury in the aged rats; the degree of post-recovery hypoperfusion may contribute to the high mortality in the aged rats following cardiac arrest and resuscitation. PMID:26782221

  12. Use of del Nido Cardioplegia for Adult Cardiac Surgery at the Cleveland Clinic: Perfusion Implications

    PubMed Central

    Kim, Kuna; Ball, Clifford; Grady, Patrick; Mick, Stephanie

    2014-01-01

    Abstract: Cardiac arrest by cardioplegia provides a reproducible and safe method to induce and maintain electromechanical cardiac quiescence. Techniques of intraoperative myocardial protection are constantly evolving. For the past three decades, modified Buckberg cardioplegia solution has been used for adult cardiac surgery at the Cleveland Clinic. This formulation serves as the crystalloid component, which is delivered 4:1 with oxygenated patient’s blood to crystalloid. Meanwhile, our use of the del Nido cardioplegia solution in adult patients, heretofore primarily used in pediatric cardiac surgical centers, has been increasing over the past several years. Single-dose, cold blood del Nido cardioplegia can be delivered antegrade if the duration of the operation will be limited and if there is no significant coronary artery disease or aortic insufficiency that would limit the distribution of cardioplegia. The addition of del Nido cardioplegia to our cardioplegia armamentarium allows us to customize our myocardial protection strategies for different surgical needs. This article aims to provide information on technical aspects of del Nido cardioplegia in adult cardiac surgery and its use at the Cleveland Clinic in the adult surgical population. PMID:26357803

  13. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    PubMed Central

    Pagliari, Stefania; Jelinek, Jakub; Grassi, Gabriele; Forte, Giancarlo

    2014-01-01

    The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction—which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs—would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors. PMID:25071583

  14. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-{alpha}-mediated transcription of fatty acid metabolic genes

    SciTech Connect

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-01-15

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-{alpha} plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-{alpha} activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-{alpha} mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-{alpha}-mediated FA metabolic gene transcription.

  15. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    PubMed

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats. PMID:24905340

  16. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  17. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    PubMed Central

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode. PMID:25590352

  18. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia.

    PubMed

    Reyes, Laura M; Kirschenman, Raven; Quon, Anita; Morton, Jude S; Shah, Amin; Davidge, Sandra T

    2015-09-01

    Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring (P < 0.05). In male offspring, exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group. PMID:26157059

  19. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    PubMed

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  20. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1. PMID:27035649

  1. Cardiac dysfunction in the diabetic rat: quantitative evaluation using high resolution magnetic resonance imaging

    PubMed Central

    Loganathan, Rajprasad; Bilgen, Mehmet; Al-Hafez, Baraa; Alenezy, Mohammed D; Smirnova, Irina V

    2006-01-01

    Background Diabetes is a major risk factor for cardiovascular disease. In particular, type 1 diabetes compromises the cardiac function of individuals at a relatively early age due to the protracted course of abnormal glucose homeostasis. The functional abnormalities of diabetic myocardium have been attributed to the pathological changes of diabetic cardiomyopathy. Methods In this study, we used high field magnetic resonance imaging (MRI) to evaluate the left ventricular functional characteristics of streptozotocin treated diabetic Sprague-Dawley rats (8 weeks disease duration) in comparison with age/sex matched controls. Results Our analyses of EKG gated cardiac MRI scans of the left ventricle showed a 28% decrease in the end-diastolic volume and 10% increase in the end-systolic volume of diabetic hearts compared to controls. Mean stroke volume and ejection fraction in diabetic rats were decreased (48% and 28%, respectively) compared to controls. Further, dV/dt changes were suggestive of phase sensitive differences in left ventricular kinetics across the cardiac cycle between diabetic and control rats. Conclusion Thus, the MRI analyses of diabetic left ventricle suggest impairment of diastolic and systolic hemodynamics in this rat model of diabetic cardiomyopathy. Our studies also show that in vivo MRI could be used in the evaluation of cardiac dysfunction in this rat model of type 1 diabetes. PMID:16595006

  2. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  3. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  4. Maternal hyperglycemia leads to fetal cardiac hyperplasia and dysfunction in a rat model.

    PubMed

    Lehtoranta, Lara; Vuolteenaho, Olli; Laine, V Jukka; Koskinen, Anna; Soukka, Hanna; Kytö, Ville; Määttä, Jorma; Haapsamo, Mervi; Ekholm, Eeva; Räsänen, Juha

    2013-09-01

    Accelerated fetal myocardial growth with altered cardiac function is a well-documented complication of human diabetic pregnancy, but its pathophysiology is still largely unknown. Our aim was to explore the mechanisms of fetal cardiac remodeling and cardiovascular hemodynamics in a rat model of maternal pregestational streptozotocin-induced hyperglycemia. The hyperglycemic group comprised 107 fetuses (10 dams) and the control group 219 fetuses (20 dams). Fetal cardiac function was assessed serially by Doppler ultrasonography. Fetal cardiac to thoracic area ratio, newborn heart weight, myocardial cell proliferative and apoptotic activities, and cardiac gene expression patterns were determined. Maternal hyperglycemia was associated with increased cardiac size, proliferative, apoptotic and mitotic activities, upregulation of genes encoding A- and B-type natriuretic peptides, myosin heavy chain types 2 and 3, uncoupling proteins 2 and 3, and the angiogenetic tumor necrosis factor receptor superfamily member 12A. The genes encoding Kv channel-interacting protein 2, a regulator of electrical cardiac phenotype, and the insulin-regulated glucose transporter 4 were downregulated. The heart rate was lower in fetuses of hyperglycemic dams. At 13-14 gestational days, 98% of fetuses of hyperglycemic dams had holosystolic atrioventricular valve regurgitation and decreased outflow mean velocity, indicating diminished cardiac output. Maternal hyperglycemia may lead to accelerated fetal myocardial growth by cardiomyocyte hyperplasia. In fetuses of hyperglycemic dams, expression of key genes that control and regulate cardiomyocyte electrophysiological properties, contractility, and metabolism are altered and may lead to major functional and clinical implications on the fetal heart. PMID:23839525

  5. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  6. ACUTE BEHAVIORAL TOXICITY OF CARBARYL AND PROPOXUR IN ADULT RATS

    EPA Science Inventory

    Motor activity and neuromotor function were examined in adult CD rats exposed to either carbaryl or propoxur, and behavioral effects were compared with the time course of cholinesterase inhibition. Rats received an IP injection of either 0, 2, 4, 6 or 8 mg/kg propoxur or 0, 4, 8,...

  7. Development of regulation of the cardiac chronotropic function in albino rats during the early postnatal ontogeny according to the results of spectral analysis of heart rhythm variability.

    PubMed

    Kurjanova, E V; Teplyj, D L; Zereninova, N V

    2012-04-01

    Regulation of the cardiac chronotropic function was studied by spectral analysis of cardiac rhythm variability in HF, LF, and VLF bands in rats at various stages of the early postnatal ontogeny. The inadequacy of the regulatory mechanisms during the first days of life manifested by low power of all waves (particularly HF) in the cardiac rhythm variability spectrum. On day 14 of life, the cardiointerval variability was formed by HF waves, their low power together with increasing heart rate indicating more intense sympathetic effects. On day 21 of life, a potent elevation of the VLF power reflected a stronger centralization of regulation from higher autonomic centers. The age of 28 days was characterized by a sharp increase of HF activity and could be regarded as the turning point in the development of parasympathetic effects and activity of the autonomic regulation contour. From the age of 35 days, the wave power and the proportion of the spectral components of cardiac rhythm variability in albino rats corresponded to the adult pattern; a trend to the central regulation predominance and to greater rigidity of cardiac rhythm formed only with the onset of sexual maturation. PMID:22803162

  8. Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats.

    PubMed

    Wei, Chih-Chang; Lucchesi, Pamela A; Tallaj, Jose; Bradley, Wayne E; Powell, Pamela C; Dell'Italia, Louis J

    2003-08-01

    In the current study, interstitial fluid (ISF), bradykinin (BK), and angiotensin II (ANG II) levels were measured using cardiac microdialysis in conscious, nonsedated rats at baseline and at 48 h and 5 days after each of the following: sham surgery (sham, n = 6), sham + administration of ANG-converting enzyme inhibitor ramipril (R, n = 6), creation of aortocaval fistula (ACF, n = 6), ACF + R (n = 6), and ACF + R + BK2 receptor antagonist (HOE-140) administration (n = 6). At 5 days, both ISF ANG II and BK increased in ACF rats (P < 0.05); however, in ACF + R rats, ISF ANG II did not differ from basal levels and ISF BK increased greater than threefold above baseline at 2 and 5 days (P < 0.05). Five days after ACF, the left ventricular (LV) weight-to-body weight ratio increased 30% (P < 0.05) in ACF but did not differ from sham in ACF + R and ACF + R + HOE-140 rats despite similar systemic arterial pressures across all ACF groups. However, ACF + R + HOE-140 rats had greater postmortem wall thickness-to-diameter ratio and smaller cross-sectional diameter compared with ACF + R rats. There was a significant increase in mast cell density in ACF and ACF + R rats that decreased below sham in ACF + R + HOE-140 rats. These results suggest a potentially important interaction of mast cells and BK in the cardiac interstitium that modulates the pattern of LV remodeling in the acute phase of volume overload. PMID:12663259

  9. Perioperative Hemoglobin Trajectory in Adult Cardiac Surgical Patients

    PubMed Central

    Scott, David A.; Tung, Hon-Ming Andrew; Slater, Reuben

    2015-01-01

    Abstract: Preoperative anemia and nadir hemoglobin (Hb) during cardiopulmonary bypass (CPB) have been identified as significant risk factors for blood transfusion during cardiac surgery. The aim of this study was to confirm the association between preoperative anemia, perioperative fluid management, and blood transfusion. In addition, the proportion of elective cardiac surgery patients presenting for surgery with anemia was identified to examine whether the opportunity exists for timely diagnosis and intervention. Data from referral until hospital discharge were comprehensively reviewed over a 12-month period for all nonemergency cardiac surgical patients operated on in our institution. Of the 342 patients identified, elective cases were referred a median of 35 days before preoperative clinic and operated on a median of 14 days subsequently. Subacute cases had a median of 3 days from referral to surgery. As per the World Health Organization (WHO) criteria for anemia, 24.2% of elective and 29.6% of subacute patients were anemic. Blood transfusion was administered to 46.2% of patients during their admission. Transfusion was more likely in patients who were female (odds ratio [OR]: 2.45, 95%confidence interval [CI]: 1.28–4.70), had a low body mass index (BMI) (OR: .89, 95% CI: .84–.94), preoperative anemia (OR: 5.15, 95% CI: 2.59–10.24), or renal impairment (OR: 5.44, 95% CI: 2.42–12.22). Hemodilution minimization strategies reduced the Hb fall during CPB, but not transfusion rates. This study identifies a high prevalence of preoperative anemia with sufficient time for elective referrals to undergo appropriate diagnosis and interventions. It also confirms that low red cell mass (anemia and low BMI) and renal impairment are predictors of perioperative blood transfusion. Perfusion strategies to reduce hemodilution are effective at minimizing the intraoperative fall in Hb concentration but did not influence transfusion rate. PMID:26543251

  10. SYSTEMIC BIOMARKERS AND CARDIAC GENE EXPRESSION PROFILES OF RAT DISEASE MODELS EMPLOYED IN AIR POLLUTION STUDIES

    EPA Science Inventory

    Cardiovascular disease (CVD) models are used for identification of mechanisms of susceptibility to air pollution. We hypothesized that baseline systemic biomarkers and cardiac gene expression in CVD rat models will have influence on their ozone-induced lung inflammation. Male 12-...

  11. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  12. EFFECTS OF PRENATAL NITROFEN EXPOSURE ON CARDIAC STRUCTURE AND FUNCTION IN THE RAT

    EPA Science Inventory

    The herbicide nitrofen was administered to pregnant Fischer-344 and Sprague-Dawley rats on days 10-13 of gestation (po., 20 or 40 mg/kg daily) and its effects on cardiac structure and function were investigated in the offspring. In the 21-day fetuses, nitrofen did not influence i...

  13. [Dynamic of myocarditis development in rats after injection of cardiac myosine combined with IFA].

    PubMed

    Morozova, M P; Gavrilova, S A; Zemtsova, L V; Pogodina, L S; Postnikov, A B; Chentsov, Iu S

    2012-02-01

    Myocarditis development was investigated after immunization rats with single subcutaneous injection of cardiac myosin (800 microg/kg) with incomplete Freund's adjuvant (IFA) (M + IFA group). Control group received equal volume of IFA alone or nothing (intact group). On days 4, 14, and 21 after injection, light and electron microscopy of heart sections, morphometric analysis, estimation of proinflammatory cytokines (IL-1p, IL-6, VEGF, TNFa and iNOS) expression were used to evaluate inflammatory response in myocardium. In addition, we estimated cardiac myosin antibody levels in blood serum and nitrite and nitrate levels in blood serum. Our data showed that immunization with cardiac myosin combined with IFA led to inflammatory response in the rat myocardium. Acute inflammation (i.e. lymphocyte infiltration of myocardium and increase of proinflammatory cytokines level) in M + IFA group occurred on 21 days after immunization. PMID:22650071

  14. Immunohistochemical evaluation of cardiac connexin43 in rats exposed to low-frequency noise

    PubMed Central

    Antunes, Eduardo; Borrecho, Gonçalo; Oliveira, Pedro; Brito, José; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Introduction: Low-frequency noise (LFN) leads to an abnormal proliferation of collagen and development of tissue fibrosis. It has been shown that myocardial fibrosis in association with gap junction remodeling occurs in several cardiac diseases and can be implicated in the development of ventricular tachyarrhythmias. We previously reported a strong development of myocardial fibrosis induced by LFN in rats but it is not known whether LFN induces any modification on cardiac connexin43 (Cx43). Objectives: The aim of this study was to evaluate modifications on cardiac Cx43 induced by LFN in Wistar rats. Methods: Two groups of rats were considered: A LFN-exposed group with 10 rats submitted continuously to LFN during 3 months and a control group with 8 rats. The hearts were sectioned from the ventricular apex to the atria and the mid-ventricular fragment was selected. The immunohistochemical evaluation of Cx43 was performed using the polyclonal antibody connexin-43m diluted 1:1000 overnight at 4°C. Quantifications of Cx43 and muscle were performed with the image J software and the ratio Cx43/muscle was analyzed in the left ventricle, interventricular septum and right ventricle. Results: The ratio Cx43/muscle was significantly reduced in LFN-exposed rats (p=0.001). The mean value decreased 46.2%, 22.2% and 55.6% respectively in the left ventricle (p=0.008), interventricular septum (p=0.301) and right ventricle (p=0.004). Conclusions: LFN induces modifications on cardiac Cx43 in rats. The Cx43 reduction observed in our study suggests that LFN may induce an arrhythmogenic substrate and opens a new investigational area concerning the effects of LFN on the heart. PMID:24040453

  15. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    EPA Science Inventory

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  16. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.

    PubMed

    Epelman, Slava; Lavine, Kory J; Beaudin, Anna E; Sojka, Dorothy K; Carrero, Javier A; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L; Ivanov, Stoyan; Satpathy, Ansuman T; Schilling, Joel D; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E Camilla; Yokoyama, Wayne M; Unanue, Emil R; Colonna, Marco; Randolph, Gwendalyn J; Mann, Douglas L

    2014-01-16

    Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size. PMID:24439267

  17. Simultaneous Characterization of Metabolic, Cardiac, Vascular and Renal Phenotypes of Lean and Obese SHHF Rats

    PubMed Central

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821

  18. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    PubMed

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  19. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes

    PubMed Central

    Agarwal, Shailesh R.; MacDougall, David A.; Tyser, Richard; Pugh, Sara D.; Calaghan, Sarah C.; Harvey, Robert D.

    2011-01-01

    β1-Adrenergic receptors (β1ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β1ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, β1AR activation enhanced the L-type Ca2+ current, intracellular Ca2+ transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-β-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by β1ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. β1AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected β1AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between β1AR and EPR responses. They also suggest that β1AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts. PMID:21115018

  20. Exercise Training Reduces Cardiac Dysfunction and Remodeling in Ovariectomized Rats Submitted to Myocardial Infarction

    PubMed Central

    de Almeida, Simone Alves; Claudio, Erick Roberto Gonçalves; Mengal, Vinícius Franskoviaky; de Oliveira, Suelen Guedes; Merlo, Eduardo; Podratz, Priscila Lang; Gouvêa, Sônia Alves; Graceli, Jones Bernardes; de Abreu, Gláucia Rodrigues

    2014-01-01

    The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI. PMID:25551214

  1. d-Propranolol protects against oxidative stress and progressive cardiac dysfunction in iron overloaded rats

    PubMed Central

    Kramer, Jay H.; Spurney, Christopher F.; Iantorno, Micaela; Tziros, Constantine; Chmielinska, Joanna J.; Mak, I. Tong; Weglicki, William B.

    2013-01-01

    d-Propranolol (d-Pro: 2–8 mg·(kg body mass)−1·day−1) protected against cardiac dysfunction and oxidative stress during 3–5 weeks of iron overload (2 mg Fe–dextran·(g body mass)−1·week−1) in Sprague–Dawley rats. At 3 weeks, hearts were perfused in working mode to obtain baseline function; red blood cell glutathione, plasma 8-isoprostane, neutrophil basal superoxide production, lysosomal-derived plasma N-acetyl-β-galactosaminidase (NAGA) activity, ventricular iron content, and cardiac iron deposition were assessed. Hearts from the Fe-treated group of rats exhibited lower cardiac work (26%) and output (CO, 24%); end-diastolic pressure rose 1.8-fold. Further, glutathione levels increased 2-fold, isoprostane levels increased 2.5-fold, neutrophil superoxide increased 3-fold, NAGA increased 4-fold, ventricular Fe increased 4.9-fold; and substantial atrial and ventricular Fe-deposition occurred. d-Pro (8 mg) restored heart function to the control levels, protected against oxidative stress, and decreased cardiac Fe levels. After 5 weeks of Fe treatment, echocardiography revealed that the following were depressed: percent fractional shortening (%FS, 31% lower); left ventricular (LV) ejection fraction (LVEF, 17%), CO (25%); and aortic pressure maximum (Pmax, 24%). Mitral valve E/A declined by 18%, indicating diastolic dysfunction. Cardiac CD11b+ infiltrates were elevated. Low d-Pro (2 mg) provided modest protection, whereas 4–8 mg greatly improved LVEF (54%–75%), %FS (51%–81%), CO (43%–78%), Pmax (56%–100%), and E/A >100%; 8 mg decreased cardiac inflammation. Since d-Pro is an antioxidant and reduces cardiac Fe uptake as well as inflammation, these properties may preserve cardiac function during Fe overload. PMID:22913465

  2. Neurological symptoms and cerebrovascular accidents: manifestations of left-sided cardiac tumours in adults

    PubMed Central

    Said, S.A.M.; Droste, H.T.; Baart, J.C.; Klaver, M.M.; Sie, H.T.

    2004-01-01

    We present two adult patients with a left-sided cardiac tumour in whom the diagnosis was established by transthoracic and transoesophageal echocardiography. They both presented with a cerebrovascular accident. Cardiac surgery for tumour excision was offered but refused by one and successfully performed in the other. In one of the patients, right femoro-crural bypass was undertaken because of arterial insufficiency. The patient who refused surgical intervention died secondary to severe septic shock. In the other patient serial transthoracic and transoesophageal echocardiography showed no tumour recurrence at four years of follow-up post tumour extirpation. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696276

  3. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    SciTech Connect

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei; Zhang, Meng; Chen, Wensheng; Yuan, Zu-Yi; Guo, Jing; Li, Hui-Hua; Zhu, Guo-Qing; Liu, Hao; Kang, Yu-Ming

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  4. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts

    PubMed Central

    Liao, Po-Hsiang; Hsieh, Dennis Jine-Yuan; Kuo, Chia-Hua; Day, Cecilia-Hsuan; Shen, Chia-Yao; Lai, Chao-Hung; Chen, Ray-Jade; Padma, V. Vijaya

    2015-01-01

    Aging is the most important risk factor in cardiovascular disease (CVD), which is the leading causes of death worldwide and the second major cause of death in Taiwan. The major factor in heart failure during aging is heart remodeling, including long-term stress-induced cardiac hypertrophy and fibrosis. Exercise is good for aging heart health, but the impact of exercise training on aging is not defined. This study used 3-, 12- and 18-month-old rats and randomly divided each age group into no exercise training control groups (C3, A12 and A18) and moderate gentle swimming exercise training groups (E3, AE12 and AE18). The protocol of exercise training was swimming five times weekly with gradual increases from the first week from 20 to 60 min for 12 weeks. Analyses of protein from rat heart tissues and sections revealed cardiac inflammation, hypertrophy and fibrosis pathway increases in aged rat groups (A12 and A18), which were improved in exercise training groups (AE12 and AE18). There were no heart injuries in young rat hearts in exercise group E3. These data suggest that moderate swimming exercise training attenuated aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. PMID:26496028

  5. Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function

    PubMed Central

    Sakabe, Noboru J.; Aneas, Ivy; Shen, Tao; Shokri, Leila; Park, Soo-Young; Bulyk, Martha L.; Evans, Sylvia M.; Nobrega, Marcelo A.

    2012-01-01

    The ongoing requirement in adult heart for transcription factors with key roles in cardiac development is not well understood. We recently demonstrated that TBX20, a transcriptional regulator required for cardiac development, has key roles in the maintenance of functional and structural phenotypes in adult mouse heart. Conditional ablation of Tbx20 in adult cardiomyocytes leads to a rapid onset and progression of heart failure, with prominent conduction and contractility phenotypes that lead to death. Here we describe a more comprehensive molecular characterization of the functions of TBX20 in adult mouse heart. Coupling genome-wide chromatin immunoprecipitation and transcriptome analyses (RNA-Seq), we identified a subset of genes that change expression in Tbx20 adult cardiomyocyte-specific knockout hearts which are direct downstream targets of TBX20. This analysis revealed a dual role for TBX20 as both a transcriptional activator and a repressor, and that each of these functions regulates genes with very specialized and distinct molecular roles. We also show how TBX20 binds to its targets genome-wide in a context-dependent manner, using various cohorts of co-factors to either promote or repress distinct genetic programs within adult heart. Our integrative approach has uncovered several novel aspects of TBX20 and T-box protein function within adult heart. Sequencing data accession number (http://www.ncbi.nlm.nih.gov/geo): GSE30943. PMID:22328084

  6. Effects of chronic delta-9-THC treatment on cardiac beta-adrenoceptors in rats

    SciTech Connect

    Evans, E.B.; Seifen, E.; Kennedy, R.H.; Kafiluddi, R.; Paule, M.G.; Scallet, A.C.; Ali, S.F.; Slikker, W. Jr.

    1987-10-01

    This study was designed to determine if chronic treatment with delta-9-tetrahydrocannabinol (THC) alters cardiac beta-adrenoceptors in the rat. Following daily oral administration of 10 or 20 mg/kg THC or an equivalent volume of control solvent for 90 days, rats were sacrificed, and sarcolemmal membranes were prepared from ventricular myocardium. Beta-adrenoceptor density and binding affinity estimated with (-)(/sup 3/H)dihydroalprenolol; a beta-adrenergic antagonist, were not significantly affected by treatment with THC when compared to vehicle controls. These results suggest that the tolerance to cardiovascular effects of THC which develops during chronic exposure in the rat is not associated with alterations in cardiac beta-adrenoceptors as monitored by radiolabeled antagonist binding.

  7. Cardiac content of brain natriuretic peptide in DOCA-salt hypertensive rats

    SciTech Connect

    Yokota, Naoto; Aburaya, Masahito; Yamamoto, Yoshitaka; Kato, Johji; Kitamura, Kazuo; Kida, Osamu; Eto, Tanenao; Kangawa, Kenji; Tanaka, Kenjiro ); Minamino, Naoto; Matsuo, Hisayuki )

    1991-01-01

    The cardiac content of immunoreactive rat brain natriuretic peptide (ir-rBNP) in deoxycorticosterone acetate (DOCA)-salt hypertensive rats was measured by radioimmunoassay (RIA). The atrial content of ir-rBNP was significantly lower in the DOCA-salt group than in the control group. However, the ventricular content of ir-rBNP was markedly increased in the DOCA-salt group as compared to the other groups. Ir-rBNP level in the atria was negatively correlated with blood pressure, while that in the ventricle was positively correlated with blood pressure. A significant correlation was observed between tissue levels of ir-rBNP and ir-rat atrial natriuretic peptide (rANP) both in atrium and ventricle. These results raise the possibility that rBNP as well as rANP functions as a cardiac hormone, the production of which probably changes in response to increased of body fluid and blood pressure.

  8. Reduction of Leukocyte Counts by Hydroxyurea Improves Cardiac Function in Rats with Acute Myocardial Infarction

    PubMed Central

    Zhu, Guiyue; Yao, Yucai; Pan, Lingyun; Zhu, Wei; Yan, Suhua

    2015-01-01

    Background This study aimed to decrease leukocytes counts by hydroxyurea (Hu) in an acute myocardial infarction (AMI) rat model and examine its effect on the inflammatory response of myocardial infarction and cardiac functions. Material/Methods AMI was successfully caused in 36 rats, and 12 control rats received sham operation. Rats in the AMI group were then randomly divided into Hu and vehicle group with 18 rats each. Rats in the Hu AMI group received Hu (200 mg/kg) intragastrically while vehicle AMI group received saline. Leukocytes counts, cardiac functions, myocardial tissue morphology, and levels of soluble intercellular adhesion molecule-1 (sICAM), P-selectin and platelet activating factor (PAF) were measured and compared among the three groups four weeks after AMI induction. Results Leukocytes, neutrophils, and leukomonocyte counts in vehicle AMI rats were significantly higher than that of the normal control group (p<0.05). However, Hu treatment decreased their counts significantly (p<0.05). sICAM, P-selectin, and PAF level in vehicle AMI group were significantly higher than those of the normal group, and their level was also decreased by Hu treatment (p<0.05). Echocardiography analysis showed that Hu treatment increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) compared to that of vehicle AMI group (p<0.05). Histopathological examination showed that Hu significantly reduced the swelling of the heart muscle fiber in necrotic foci and the number of inflammatory cells infiltrated into myocardial interstitium compared to vehicle AMI group. Conclusions Decrease leukocytes counts by Hu significantly reduced inflammatory reaction and improved cardiac functions in AMI rats. PMID:26675565

  9. The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers.

    PubMed

    Gollapudi, Sampath K; Gallon, Clare E; Chandra, Murali

    2013-05-13

    The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates. PMID:23357173

  10. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    PubMed Central

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  11. Effect of short-term microgravity and long-term hindlimb unloading on rat cardiac mass and function

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Vasques, M.; Miller, T. A.; Wilkerson, M. K.; Delp, M. D.

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to short-term microgravity or long-term hindlimb unloading induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: preflight (PF, n = 12); flight (Fl, n = 7); flight cage simulation (Sim, n = 6), and vivarium control (Viv, n = 7). Animals in the Fl group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the hindlimb-unloading study were subdivided into three groups: control (Con, n = 20), 7-day hindlimb-unloaded (7HU, n = 10), and 28-day hindlimb-unloaded (28HU, n = 19). Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- 0.03 g; Fl 1.32 +/- 0.02 g; Sim 1.28 +/- 0.04 g; Viv 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hindlimb unloading (Con 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on the peak rate of rise in left ventricular pressure, an estimate of myocardial contractility (Con 8,055 +/- 385 mmHg/s; 28HU 8,545 +/- 755 mmHg/s). These data suggest that cardiac atrophy does not occur after short-term exposure to microgravity and that neither short- nor long-term simulated microgravity alters cardiac mass or function.

  12. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation

    PubMed Central

    Cao, Ke; Xu, Jie; Pu, Wenjun; Dong, Zhizhong; Sun, Lei; Zang, Weijin; Gao, Feng; Zhang, Yong; Feng, Zhihui; Liu, Jiankang

    2015-01-01

    Obesity is associated with an increasing prevalence of cardiovascular diseases and metabolic syndrome. It is of paramount importance to reduce obesity-associated cardiac dysfunction and impaired energy metabolism. In this study, the activation of the AMP-activated protein kinase (AMPK) pathway by punicalagin (PU), a major ellagitannin in pomegranate was investigated in the heart of a rat obesity model. In male SD rats, eight-week administration of 150 mg/kg pomegranate extract (PE) containing 40% punicalagin sufficiently prevented high-fat diet (HFD)-induced obesity associated accumulation of cardiac triglyceride and cholesterol as well as myocardial damage. Concomitantly, the AMPK pathway was activated, which may account for prevention of mitochondrial loss via upregulating mitochondrial biogenesis and amelioration of oxidative stress via enhancing phase II enzymes in the hearts of HFD rats. Together with the normalized expression of uncoupling proteins and mitochondrial dynamic regulators, PE significantly prevented HFD-induced cardiac ATP loss. Through in vitro cultures, we showed that punicalagin was the predominant component that activated AMPK by quickly decreasing the cellular ATP/ADP ratio specifically in cardiomyocytes. Our findings demonstrated that punicalagin, the major active component in PE, could modulate mitochondria and phase II enzymes through AMPK pathway to prevent HFD-induced cardiac metabolic disorders. PMID:26369619

  13. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats

    PubMed Central

    Samniang, Bencharunan; Shinlapawittayatorn, Krekwit; Chunchai, Titikorn; Pongkan, Wanpitak; Kumfu, Sirinart; Chattipakorn, Siriporn C.; KenKnight, Bruce H.; Chattipakorn, Nipon

    2016-01-01

    Long-term high-fat diet (HFD) consumption leads to not only obese-insulin resistance, but also impaired left ventricular (LV) function. Vagus nerve stimulation (VNS) has been shown to exert cardioprotection. However, its effects on the heart and metabolic parameters under obese-insulin resistant condition is not known. We determined the effects of VNS on metabolic parameters, heart rate variability (HRV) and LV function in obese-insulin resistant rats. Male Wistar rats were fed with HFD for 12 weeks, and were randomly divided into sham and VNS groups. VNS was applied for the next 12 weeks. Echocardiography, blood pressure and HRV were examined. Blood samples were collected for metabolic parameters. At the end, the heart was removed for determination of apoptosis, inflammation, oxidative stress, and cardiac mitochondrial function. VNS for 12 weeks significantly decreased plasma insulin, HOMA index, total cholesterol, triglyceride, LDL and visceral fat. Serum adiponectin was significantly increased in the VNS group. VNS also significantly decreased blood pressure, improved HRV and LV function, decreased cardiac MDA, TNF-α and Bax levels, and improved cardiac mitochondrial function. VNS improves metabolic and hemodynamic parameters, and the LV function via its ability against apoptosis, inflammation and oxidative stress, and preserved cardiac mitochondrial function in obese-insulin resistant rats. PMID:26830020

  14. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis123

    PubMed Central

    Grigereit, Laura; Pickel, James

    2016-01-01

    Abstract The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis. PMID:27257630

  15. Comparison of cardiac refractory periods in children and adults.

    PubMed

    DuBrow, W; Fisher, E A; Amaty-Leon, G; Denes, P; Wu, D; Rosen, K; Hastreiter, A R

    1975-03-01

    Atrial (A) and A-V nodal (AVN) effective and functional refractory periods (ERP & FRP) were determined by atrial extrastimulus technique in 40 children, aged 7 months to 16 years, with normal P-R intervals and QRS durations. These data were compared to adult data at longest cycle lengths (CL) assuring atrial capture. All values are listed in msec as means plus or minus standard errors of the means. CL was 566 plus or minus 15 in children and 699 plus or minus 29 in adults (P less than .001). Refractory periods (RP) in children and adults were, respectively: AERP 196 plus or minus 9 and 239 plus or minus 13 (P less than .01), AFRP 225 plus or minus 8 and 284 plus or minus 11 (P less than .001), AVNERP 239 plus or minus 11 and 293 plus or minus 7 (P smaller than .001), AVNFRP 360 plus or minus 13 and 403 plus or minus 7 (P smaller than .005). RP were then compared at three equivalent CL ranges: CL1, 850-600; CL2 599-460; CL3 459-280. The following RP were significantly shorter in children (P smaller than .05-.001): AERP, AFRP, AVENERP and AVNFRP at CL2 and CL3. RP of the bundle branches were compared and tended to be shorter in children. In conclusion, atrial and A-V nodal ERP and FRP are shorter in children than adults. This shortening is only partially related to the shorter CL in children. These data are germane to understanding the maturation of the conduction system in man. PMID:1139759

  16. Unique brain region-dependent cytokine signatures after prolonged hypothermic cardiac arrest in rats.

    PubMed

    Drabek, Tomas; Wilson, Caleb D; Janata, Andreas; Stezoski, Jason P; Janesko-Feldman, Keri; Garman, Robert H; Tisherman, Samuel A; Kochanek, Patrick M

    2015-03-01

    We previously showed that prolonged cardiac arrest (CA) produces neuronal death with microglial proliferation. Microglial proliferation, but not neuronal death, was attenuated by deeper hypothermia. Microglia are reportedly a major source of cytokines. In this study, we tested the hypotheses that (1) CA will result in highly specific regional and temporal increases in brain cytokines; and (2) these increases will be attenuated by deep hypothermia. Adult male Sprague-Dawley rats were subjected to rapid exsanguination. After 6 minutes of normothermic no-flow, different levels of hypothermia were induced by either ice-cold (IC) or room-temperature (RT) aortic flush. After 20 minutes CA, rats were resuscitated with cardiopulmonary bypass (CPB), and sacrificed at 6 or 24 hours. Rats subjected to CPB only (without CA) and shams (no CPB or CA) served as controls (n=6 per group). Cytokines were analyzed in cerebellum, cortex, hippocampus, and striatum. Immunofluorescence was used to identify cell types associated with individual cytokines. Intra-CA temperature was lower after IC versus RT flush (21°C vs. 28°C, p<0.05). At 6 hours, striatum showed a massive increase in interleukin (IL)-1α and tumor necrosis factor-alpha (TNF-α) (>100-fold higher than in hippocampus), which was attenuated by deeper hypothermia in the IC versus RT group. In contrast, IL-12 was 50-fold higher in hippocampus versus striatum. At 24 hours, cytokines decreased. In striatum, IL-1α colocalized with astrocytes while TNF-α colocalized with neurons. In hippocampus, IL-12 colocalized with hippocampal hilar neurons, the only region where neuronal degeneration was observed at 24 hours at both IC and RT groups. We report important temporo-spatial differences in the brain cytokine response to hypothermic CA, with a novel role of striatum. Astrocytes and neurons, but not microglia colocalized with individual cytokines. Hypothermia showed protective effects. These neuroinflammatory reactions precede

  17. Effect of restraint and copper deficiency on blood pressure and mortality of adult rats

    SciTech Connect

    Klevay, L.M.; Halas, E.S. )

    1989-02-01

    The etiology of most hypertension is unknown; stress is thought to elevate blood pressure. Male, weanling Sprague-Dawley rats were fed a purified diet plus a drinking solution containing 10{mu}g Zn and 2{mu}g Cu/ml (acetate sulfate, respectively). Systolic blood pressure was measured without anesthesia. After being matched by mean weight (280g) and blood pressure into 4 groups of 15, groups 1 and 2 received a drinking solution without copper. After 24 days rats in groups 2 and 4 were restrained for 45 min. daily (A.M.) for 23 days in a small plastic cage (19{times}6{times}6 cm). Final pressures were affected both by stress and dietary Cu: group 1, 119; group 2, 131; group 3, 114; group 4, 123 mm Hg. One rat in each of groups 1, 3, 4 and 10 rats in group 2, died. Among these latter hemorrhage was prominent, blood being found in bladder (2), gut (2), peritoneum (2) and scrotum (1). Copper deficiency decreased cooper in both adrenal gland and liver by 58% and in heart by 29% restraint was without effect. Cardiac sodium was increased 6% only by deficiency. Results confirm the hypertensive effect of copper deficiency in adult rats and reveal that the stress of restraint increases blood pressure. Copper deficiency plus stress is harmful.

  18. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  19. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  20. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations. PMID:15514963

  1. Physical Therapy Management for Adult Patients Undergoing Cardiac Surgery: A Canadian Practice Survey

    PubMed Central

    Anderson, Cathy M.; Jackson, Jennifer; Lucy, S. Deborah; Prendergast, Monique; Sinclair, Susanne

    2010-01-01

    ABSTRACT Purpose: To determine current Canadian physical therapy practice for adult patients requiring routine care following cardiac surgery. Methods: A telephone survey was conducted of a selected sample (n=18) of Canadian hospitals performing cardiac surgery to determine cardiorespiratory care, mobility, exercises, and education provided to patients undergoing cardiac surgery. Results: An average of 21 cardiac surgeries per week (range: 6–42) were performed, with an average length of stay of 6.4 days (range: 4.0–10.6). Patients were seen preoperatively at 7 of 18 sites and on postoperative day 1 (POD-1) at 16 of 18 sites. On POD-1, 16 sites performed deep breathing and coughing, 7 used incentive spirometers, 13 did upper-extremity exercises, and 12 did lower-extremity exercises. Nine sites provided cardiorespiratory treatment on POD-3. On POD-1, patients were dangled at 17 sites and mobilized out of bed at 13. By POD-3, patients ambulated 50–120 m per session 2–5 times per day. Sternal precautions were variable, but the lifting limit was reported as ranging between 5 lb and 10 lb. Conclusions: Canadian physical therapists reported the provision of cardiorespiratory treatment after POD-1. According to current available evidence, this level of care may be unnecessary for uncomplicated patients following cardiac surgery. In addition, some sites provide cardiorespiratory treatment techniques that are not supported by evidence in the literature. Further research is required. PMID:21629599

  2. Electrocardiogram and cardiac function in a longitudinal study of copper deficiency in the Long-Evans rat

    SciTech Connect

    Zhiming Liao, Hamlin, R.; Medeiros, D.M. )

    1991-03-11

    Weanling Long-Evans rats were fed either copper-adequate or -restricted diets for varying periods of time up to 6 wk. Beginning at 2 wk after weaning, and weekly thereafter, 5 rats from each diet were evaluated for cardiac function and ECG activity and sacrificed. ECG traces revealed indications of cardiac failure at week 3 in rats fed the copper-restricted diet at which time concentric cardiac hypertrophy was evident. Prolonged P-R and Q-T intervals and greater QRS height and higher voltages were observed in copper-restricted rats. However, + and {minus} dP/dt max did not differ by diet copper treatment for any of the time intervals studied, nor was any notable difference in total left developed ventricular pressure apparent. These results suggest that the onset of cardiac dysfunction in copper deficiency is rapid, with both dysfunction and hypertrophy apparent within 3 weeks after copper restriction.

  3. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    PubMed

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  4. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  5. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  6. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways.

    PubMed

    Huang, Tom H W; Yang, Qinglin; Harada, Masaki; Li, George Q; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2005-12-01

    The diabetic heart shows increased fibrosis, which impairs cardiac function. Endothelin (ET)-1 and nuclear factor-kappaB (NF-kappaB) interactively regulate fibroblast growth. We have recently demonstrated that Punica granatum flower (PGF), a Unani anti-diabetic medicine, is a dual activator of peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma, and improves hyperglycemia, hyperlipidemia, and fatty heart in Zucker diabetic fatty (ZDF) rat, a genetic animal model of type 2 diabetes and obesity. Here, we demonstrated that six-week treatment with PGF extract (500 mg/kg, p.o.) in Zucker diabetic fatty rats reduced the ratios of van Gieson-stained interstitial collagen deposit area to total left ventricular area and perivascular collagen deposit areas to coronary artery media area in the heart. This was accompanied by suppression of overexpressed cardiac fibronectin and collagen I and III mRNAs. Punica granatum flower extract reduced the up-regulated cardiac mRNA expression of ET-1, ETA, inhibitor-kappaBbeta and c-jun, and normalized the down-regulated mRNA expression of inhibitor-kappaBalpha in Zucker diabetic fatty rats. In vitro, Punica granatum flower extract and its components oleanolic acid, ursolic acid, and gallic acid inhibited lipopolysaccharide-induced NF-kappaB activation in macrophages. Our findings indicate that Punica granatum flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats, at least in part, by modulating cardiac ET-1 and NF-kappaB signaling. PMID:16306813

  7. Lactate Up-Regulates the Expression of Lactate Oxidation Complex-Related Genes in Left Ventricular Cardiac Tissue of Rats

    PubMed Central

    Gabriel-Costa, Daniele; da Cunha, Telma Fatima; Bechara, Luiz Roberto Grassmann; Fortunato, Rodrigo Soares; Bozi, Luiz Henrique Marchesi; Coelho, Marcele de Almeida; Barreto-Chaves, Maria Luiza; Brum, Patricia Chakur

    2015-01-01

    Background Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hypothesis that lactate would increase cardiac levels of reactive oxygen species and up-regulate the expression of genes related to lactate oxidation complex. Methods/Principal Findings Isolated hearts from male adult Wistar rats were perfused with control, lactate or acetate (20mM) added Krebs-Henseleit solution during 120 min in modified Langendorff apparatus. Reactive oxygen species (O2●-/H2O2) levels, and NADH and NADPH oxidase activities (in enriched microsomal or plasmatic membranes, respectively) were evaluated by fluorimetry while SOD and catalase activities were evaluated by spectrophotometry. mRNA levels of lactate oxidation complex and energetic enzymes MCT1, MCT4, HK, LDH, PDH, CS, PGC1α and COXIV were quantified by real time RT-PCR. Mitochondrial DNA levels were also evaluated. Hemodynamic parameters were acquired during the experiment. The key findings of this work were that lactate elevated cardiac NADH oxidase activity but not NADPH activity. This response was associated with increased cardiac O2●-/H2O2 levels and up-regulation of MCT1, MCT4, LDH and PGC1α with no changes in HK, PDH, CS, COXIV mRNA levels and mitochondrial DNA levels. Lactate increased NRF-2 nuclear expression and SOD activity probably as counter-regulatory responses to increased O2●-/H2O2. Conclusions Our results provide evidence for lactate-induced up-regulation of lactate oxidation complex associated with increased NADH oxidase activity and cardiac O2●-/H2O2 driving to an anti-oxidant response. These results unveil lactate as an important signaling molecule regulating components of

  8. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  9. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure

    PubMed Central

    2010-01-01

    Background Accumulating evidence suggests glucagon-like peptide-1 (GLP-1) exerts cardioprotective effects in animal models of myocardial infarction (MI). We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC) in rats with MI-induced chronic heart failure (CHF) caused by coronary artery ligation. Methods Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min), AC3174 (1.7 or 5 pmol/kg/min) or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. Results Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV) ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. Conclusions Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes. PMID:21080957

  10. Renalase attenuates hypertension, renal injury and cardiac remodelling in rats with subtotal nephrectomy.

    PubMed

    Yin, Jianyong; Lu, Zeyuan; Wang, Feng; Jiang, Zhenzhen; Lu, Limin; Miao, Naijun; Wang, Niansong

    2016-06-01

    Chronic kidney disease is associated with higher risk of cardiovascular complication and this interaction can lead to accelerated dysfunction in both organs. Renalase, a kidney-derived cytokine, not only protects against various renal diseases but also exerts cardio-protective effects. Here, we investigated the role of renalase in the progression of cardiorenal syndrome (CRS) after subtotal nephrectomy. Sprague-Dawley rats were randomly subjected to sham operation or subtotal (5/6) nephrectomy (STNx). Two weeks after surgery, sham rats were intravenously injected with Hanks' balanced salt solution (sham), and STNx rats were randomly intravenously injected with adenovirus-β-gal (STNx+Ad-β-gal) or adenovirus-renalase (STNx+Ad-renalase) respectively. After 4 weeks of therapy, Ad-renalase administration significantly restored plasma, kidney and heart renalase expression levels in STNx rats. We noticed that STNx rats receiving Ad-renalase exhibited reduced proteinuria, glomerular hypertrophy and interstitial fibrosis after renal ablation compared with STNx rats receiving Ad-β-gal; these changes were associated with significant decreased expression of genes for fibrosis markers, proinflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components. At the same time, systemic delivery of renalase attenuated hypertension, cardiomyocytes hypertrophy and cardiac interstitial fibrosis; prevented cardiac remodelling through inhibition of pro-fibrotic genes expression and phosphorylation of extracellular signal-regulated kinase (ERK)-1/2. In summary, these results indicate that renalase protects against renal injury and cardiac remodelling after subtotal nephrectomy via inhibiting inflammation, oxidative stress and phosphorylation of ERK-1/2. Renalase shows potential as a therapeutic target for the prevention and treatment of CRS in patients with chronic kidney disease. PMID:26923216

  11. Gender comparison of contractile performance and beta-adrenergic response in isolated rat cardiac trabeculae.

    PubMed

    Monasky, Michelle M; Varian, Kenneth D; Janssen, Paul M L

    2008-03-01

    It is known that gender can affect susceptibility to development of various cardiomyopathies. However, it is unclear whether basic mechanical contractile function of the myocardium differs between genders, whether they respond differently to stressors, or both. To test for a possible gender factor, contractile parameters of healthy, isolated myocardium were investigated under near physiological conditions. Right ventricular ultra-thin trabeculae from young adult LBN-f1 rats were electrically stimulated to isometrically contract at 37 degrees C. No differences were found in developed force or kinetic parameters. In each muscle, the force-frequency relationship was measured at 4, 6, and 8 Hz, encompassing most of the in vivo range. Again, no differences were observed in force-frequency behavior; developed force rose from 21.6 +/- 4.0 at 4 Hz to 30.3 +/- 5.8 mN/mm(2) at 8 Hz in females and from 23.4 +/- 3.4 to 29.8 +/- 3.4 mN/mm(2 )in males. The response to beta-adrenergic stimulation was similar; at 1 microM isoproterenol, developed force increased to 34.5 +/- 6.2 mN/mm(2) in females and 32.3 +/- 3.2 mN/mm(2) in males (female vs. male, not significant). We conclude that basic mechanical performance of healthy isolated myocardium under physiological conditions is not different between males and females, and a different response to stress must underlie gender-based differences in cardiac performance. PMID:18030479

  12. Tai Chi as an adjunct physical activity for adults aged 45 years and older enrolled in phase III cardiac rehabilitation

    PubMed Central

    Taylor-Piliae, Ruth E; Silva, Edna; Sheremeta, Sharon Peachey

    2015-01-01

    Background Cardiac rehabilitation improves physical, cognitive and psychosocial functioning, yet services are greatly underutilized with increasing patterns of attrition over time. Tai Chi has been suggested as a possible adjunct to cardiac rehabilitation exercise training. Aim To describe differences in physical, cognitive and psychosocial functioning among adults ≥ 45 years old attending phase III cardiac rehabilitation, who have or have not self-selected Tai Chi exercise as an adjunct physical activity. Methods A cross-sectional design compared subjects attending group-based Wu style Tai Chi classes plus cardiac rehabilitation, with cardiac rehabilitation only. Subjects had a battery of physical and cognitive functioning tests administered to examine aerobic endurance, balance, strength, and flexibility, verbal retrieval/recall, attention, concentration and tracking. Subjects completed a health survey to ascertain cardiac event information, medical history, and psychosocial functioning (i.e. health-related quality of life, stress, depressive symptoms, social support, and Tai Chi self-efficacy). Results A total of 51 subjects (75% married, 84% college-educated, 96% White/European-American) participated. Subjects were on average 70 (± 8) years old and had attended cardiac rehabilitation for 45 (± 37) months. Approximately 45% (n = 23) attended Tai Chi classes plus cardiac rehabilitation, while 55% (n = 28) attended cardiac rehabilitation only. Subjects attending Tai Chi plus cardiac rehabilitation had better balance, perceived physical health, and Tai Chi self-efficacy compared to those attending cardiac rehabilitation only (p ≤ 0.03). Conclusion Tai Chi can be easily implemented in any community/cardiac rehabilitation facility, and may offer adults additional options after a cardiac event. PMID:21095159

  13. Effects of acute catecholamine depletion on cardiac function in normotensive and spontaneously hypertensive rats

    SciTech Connect

    Sellke, F.; Sadri, F.; Ely, D.

    1986-03-01

    Reserpine(6mg/Kg) was injected IP in Wistar (n = 5, age 10 wks.) and spontaneously hypertensive (SHR) rats (n = 5, age 16 wks.). After 4 hours the hearts were isolated (Langendorff), perfused with Krebs-Henseleit solution and paced at 240/min. Non-injected Wistar (N = 5) and SHR (n = 6) rats were used for controls. Myocardial levels of norepinephrine (NE) and epinephrine (E) were determined with radioenzymatic assay. Left ventricular systolic and distolic pressures were recorded for left ventricular end diastolic volumes (LVEDV) .05 to .40 ml. Despite a marked decrease in tissue levels of NE and E, peak systolic pressure (PSP) increased in reserpine treated normotensive and SHR rats. In isolated control SHR rat hearts (LVEDV = .20 ml), PSP was related to NE by PSP = .0145 (NE) + 93 (r = .819, p < .01). In conclusion, cardiac performance and tissue levels of myocardial catecholamines are correlated in control rats. However, rapid depletion of myocardial catecholamines may result in increased cardiac performance.

  14. MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-β in rats.

    PubMed

    Wang, Lei; Ma, LiKun; Fan, Hai; Yang, Zhe; Li, LongWei; Wang, HanZhang

    2016-06-01

    The proliferation of cardiac fibroblasts (CFs) and excessive deposition of extracellular matrix (ECM) are the main pathological characteristics of cardiac fibrosis. In recent years, microRNAs (miRNAs) have been found to be a new kind of regulator in cardiac fibrosis. The purpose of this study was to investigate the role of microRNA-9 (miR-9) in the process of cardiac fibrosis and its mechanism. Treatment of cultured neonatal rat CFs with PDGF-BB or serum suppressed the expression of miR-9. Overexpression of miR-9 obviously inhibited neonatal rat CFs proliferation and collagen production as detected by MTT assays, qRT-PCR, and western blotting. The effects of miR-9 in CFs were abrogated by co-transfection with miR-9 inhibitors. Overexpression of miR-9 reduced the mRNA and protein levels of PDGFR-βand its downstream protein, extracellular signal-regulated kinase (ERK) 1/2. Silencing PDGFR-βby small interfering RNA mimicked the anti-fibrotic action of miR-9, whereas overexpression of PGDFR-β canceled the effect of miR-9 in cultured CFs. Dual-luciferase reporter assays showed that PDGFR-βwas a direct target of miR-9. Overexpression of miR-9 inhibited cardiac fibrosis by targeting PDGFR-β, indicating that miR-9 might play a role in the treatment of cardiac fibrosis. PMID:26896308

  15. Techniques for High-speed Cardiac Magnetic Resonance Imaging in Rats and Rabbits

    PubMed Central

    Rehwald, Wolfgang G.; Reeder, Scott B.; McVeigh, Elliot R.; Judd, Robert M.

    2007-01-01

    Progress in research on hypertension, heart failure, aging, post-infarct remodeling, and the molecular basis of cardiovascular diseases in general has been greatly facilitated in recent years by the development of specialized small-mammal models by selective breeding and/or genetic alteration. Routine noninvasive evaluation of cardiac function and perfusion in these animals models, however, is difficult using existing methods. In principle, MRI can be used for this purpose, but in practice this is difficult because of problems related to RF coils, cardiac gating, and imaging pulse sequences. In this article, solutions to these problems are described that have allowed us to use MRI to routinely image the hearts of rats and rabbits. Specifically described are four RF coils, cardiac gating schemes, and an imaging pulse sequence specially designed for cardiac imaging in these animals on a 4.7 T Omega chemical-shift imaging (CSI) spectrometer. These techniques can be used to obtain, within 2 min, eight double-oblique short-axis images of the rat at different cardiac phases with 200 × 400 μm in-plane resolution and a slice thickness of 2 mm. Moreover, myocardial tissue tagging can be performed with tag thicknesses and separations comparable to those used routinely in humans. The technical information is presented in sufficient detail to allow researchers at other sites to reproduce the results. This information should facilitate the use of MRI for the noninvasive examination of cardiac function and perfusion, which can be combined with other established techniques for the study of cardiovascular disease in specialized animal models. PMID:8978641

  16. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  17. Regular exercise improves cardiac contractile activation by modulating MHC isoforms and SERCA activity in orchidectomized rats.

    PubMed

    Vutthasathien, Pavarana; Wattanapermpool, Jonggonnee

    2015-10-01

    Data from the trial known as Testosterone in Older Men with Mobility Limitations (TOM) has indicated an association between testosterone administration and a greater risk for adverse cardiovascular events. We therefore propose that regular exercise is a cardioprotective alternative that prevents detrimental changes in contractile activation when a deficiency in male sex hormones exists. Ten-week-old orchidectomized (ORX) rats were subjected to a 9-wk treadmill running program at moderate intensity starting 1 wk after surgery. Although exercise-induced cardiac hypertrophy was observed both in rats that underwent ORX and sham surgery, regular exercise enhanced cardiac myofilament Ca(2+) sensitivity and myosin light-chain 2 phosphorylation only in rats that underwent a sham operation. Although the rats that had sham surgery and and given exercise exhibited no change in maximum developed tension, regular running prevented the suppression of maximum active tension in the hearts of ORX rats. Regular exercise also prevented a shift in myosin heavy chain (MHC) isoforms toward β-MHC, a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity, and an increase in SERCA sensitivity in the hearts of ORX rats. Neither SERCA content nor its modulating component, phospholamban (PLB), was altered by exercise in either sham-operated or ORX rats. However, decreases in the phosphorylated Thr(17) form of PLB and the phosphorylated Thr(287) form of Ca(2+)/calmodulin-dependent kinase II in the hearts of ORX rats were abolished after regular exercise. These results thus support the use of regular running as a cardioprotective alternative to testosterone replacement in hypogonadal conditions. PMID:26272317

  18. Early life stress induces renal dysfunction in adult male rats but not female rats

    PubMed Central

    Loria, Analia S.; Yamamoto, Tatsuo; Pollock, Jennifer S.

    2013-01-01

    Maternal separation (MatSep) is a model of behavioral stress during early life. We reported that MatSep exacerbates ANG II-induced hypertension in adult male rats. The aims of this study were to determine whether exposure to MatSep in female rats sensitizes blood pressure to ANG II infusion similar to male MatSep rats and to elucidate renal mechanisms involved in the response in MatSep rats. Wistar Kyoto (WKY) pups were exposed to MatSep 3 h/day from days 2 to 14, while control rats remained with their mothers. ANG II-induced mean arterial pressure (MAP; telemetry) was enhanced in female MatSep rats compared with control female rats but delayed compared with male MatSep rats. Creatinine clearance (Ccr) was reduced in male MatSep rats compared with control rats at baseline and after ANG II infusion. ANG II infusion significantly increased T cells in the renal cortex and greater histological damage in the interstitial arteries of male MatSep rats compared with control male rats. Plasma testosterone was greater and estradiol was lower in male MatSep rats compared with control rats with ANG II infusion. ANG II infusion failed to increase blood pressure in orchidectomized male MatSep and control rats. Female MatSep and control rats had similar Ccr, histological renal analysis, and sex hormones at baseline and after ANG II infusion. These data indicate that during ANG II-induced hypertension, MatSep sensitizes the renal phenotype in male but not female rats. PMID:23174859

  19. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats

    PubMed Central

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J.; Ming, Guo-li; Christian, Kimberly M.

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  20. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats.

    PubMed

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J; Ming, Guo-Li; Christian, Kimberly M

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  1. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    SciTech Connect

    Scholfield, D.J.; Fields, M.; Beal, T.; Lewis, C.G.; Behall, K.M. )

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D) to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.

  2. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats.

    PubMed

    Wang, Peng; Yao, Lan; Zhou, Li-Li; Liu, Yuan-Shan; Chen, Ming-di; Wu, Hai-Dong; Chang, Rui-Ming; Li, Yi; Zhou, Ming-Gen; Fang, Xiang-Shao; Yu, Tao; Jiang, Long-Yuan; Huang, Zi-Tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis. PMID:27489503

  3. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats

    PubMed Central

    Wang, Peng; Yao, Lan; Zhou, Li-li; Liu, Yuan-shan; Chen, Ming-di; Wu, Hai-dong; Chang, Rui-ming; Li, Yi; Zhou, Ming-gen; Fang, Xiang-shao; Yu, Tao; Jiang, Long-yuan; Huang, Zi-tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis. PMID:27489503

  4. Effect of Transverse Aortic Constriction on Cardiac Structure, Function and Gene Expression in Pregnant Rats

    PubMed Central

    Songstad, Nils Thomas; Johansen, David; How, Ole-Jacob; Kaaresen, Per Ivar; Ytrehus, Kirsti; Acharya, Ganesh

    2014-01-01

    Background There is an increased risk of heart failure and pulmonary edema in pregnancies complicated by hypertensive disorders. However, in a previous study we found that pregnancy protects against fibrosis and preserves angiogenesis in a rat model of angiotensin II induced cardiac hypertrophy. In this study we test the hypothesis that pregnancy protects against negative effects of increased afterload. Methods Pregnant (gestational day 5.5–8.5) and non-pregnant Wistar rats were randomized to transverse aortic constriction (TAC) or sham surgery. After 14.2±0.14 days echocardiography was performed. Aortic blood pressure and left ventricular (LV) pressure-volume loops were obtained using a conductance catheter. LV collagen content and cardiomyocyte circumference were measured. Myocardial gene expression was assessed by real-time polymerase chain reaction. Results Heart weight was increased by TAC (p<0.001) but not by pregnancy. Cardiac myocyte circumference was larger in pregnant compared to non-pregnant rats independent of TAC (p = 0.01), however TAC per se did not affect this parameter. Collagen content in LV myocardium was not affected by pregnancy or TAC. TAC increased stroke work more in pregnant rats (34.1±2.4 vs 17.5±2.4 mmHg/mL, p<0.001) than in non-pregnant (28.2±1.7 vs 20.9±1.5 mmHg/mL, p = 0.06). However, it did not lead to overt heart failure in any group. In pregnant rats, α-MHC gene expression was reduced by TAC. Increased in the expression of β-MHC gene was higher in pregnant (5-fold) compared to non-pregnant rats (2-fold) after TAC (p = 0.001). Nine out of the 19 genes related to cardiac remodeling were affected by pregnancy independent of TAC. Conclusions This study did not support the hypothesis that pregnancy is cardioprotective against the negative effects of increased afterload. Some differences in cardiac structure, function and gene expression between pregnant and non-pregnant rats following TAC indicated that afterload

  5. The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats

    PubMed Central

    Kodavanti, Urmila P.; Schladweiler, Mette C.; Gilmour, Peter S.; Wallenborn, J. Grace; Mandavilli, Bhaskar S.; Ledbetter, Allen D.; Christiani, David C.; Runge, Marschall S.; Karoly, Edward D.; Costa, Daniel L.; Peddada, Shyamal; Jaskot, Richard; Richards, Judy H.; Thomas, Ronald; Madamanchi, Nageswara R.; Nyska, Abraham

    2008-01-01

    Background Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air. Objective We investigated the role of PM-associated zinc in cardiac injury. Methods We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks > 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects. PMID:18197293

  6. Methylprednisolone Protects Cardiac Pumping Mechanics from Deteriorating in Lipopolysaccharide-Treated Rats

    PubMed Central

    Ko, Ya-Hui; Tsai, Ming-Shian; Chang, Ru-Wen; Chang, Chun-Yi; Wang, Chih-Hsien; Wu, Ming-Shiou; Liang, Jin-Tung; Chang, Kuo-Chu

    2015-01-01

    It has been shown that a prolonged low-dose corticosteroid treatment attenuates the severity of inflammation and the intensity and duration of organ system failure. In the present study, we determined whether low-dose methylprednisolone (a synthetic glucocorticoid) can protect male Wistar rats against cardiac pumping defects caused by lipopolysaccharide-induced chronic inflammation. For the induction of chronic inflammation, a slow-release ALZET osmotic pump was subcutaneously implanted to infuse lipopolysaccharide (1 mg kg−1 d−1) for 2 weeks. The lipopolysaccharide-challenged rats were treated on a daily basis with intraperitoneal injection of methylprednisolone (5 mg kg−1 d−1) for 2 weeks. Under conditions of anesthesia and open chest, we recorded left ventricular (LV) pressure and ascending aortic flow signals to calculate the maximal systolic elastance (Emax) and the theoretical maximum flow (Qmax), using the elastance-resistance model. Physically, Emax reflects the contractility of the myocardium as an intact heart, whereas Qmax has an inverse relationship with the LV internal resistance. Compared with the sham rats, the cardiodynamic condition was characterized by a decline in Emax associated with the increased Qmax in the lipopolysaccharide-treated rats. Methylprednisolone therapy increased Emax, which suggests that the drug may have protected the contractile status from deteriorating in the inflamed heart. By contrast, methylprednisolone therapy considerably reduced Qmax, indicating that the drug may have normalized the LV internal resistance. In parallel, the benefits of methylprednisolone on the LV systolic pumping mechanics were associated with the reduced cardiac levels of negative inotropic molecules such as peroxynitrite, malondialdehyde, and high-mobility group box 1 protein. Based on these data, we suggested that low-dose methylprednisolone might prevent lipopolysaccharide-induced decline in cardiac intrinsic contractility and LV internal

  7. ACUTE TOXICITY OF PESTICIDES IN ADULT AND WEANLING RATS

    EPA Science Inventory

    LD sub 50 values were determined for 57 pesticides administered by the oral or dermal route to adult male and female Sherman rats. Nine pesticides tested by the oral route (bufencarb, cacodylic acid, dialifor, deltamethrin, dicamba, diquat, quintozene, phoxim, pyrazon) and 4 test...

  8. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.

    PubMed

    Belmonte, Steve; Morad, Martin

    2008-03-01

    Cardiac myocyte contraction occurs when Ca2+ influx through voltage-gated L-type Ca2+ channels causes Ca2+ release from ryanodine receptors of the sarcoplasmic reticulum (SR). Although mitochondria occupy about 35% of the cell volume in rat cardiac myocytes, and are thought to be located <300 nm from the junctional SR, their role in the beat-to-beat regulation of cardiac Ca2+ signaling remains unclear. We have recently shown that rapid ( approximately 20 ms) application of shear fluid forces ( approximately 25 dynes/cm2) to rat cardiac myocytes triggers slowly ( approximately 300 ms) developing Cai transients that were independent of activation of all transmembrane Ca2+ transporting pathways, but were suppressed by FCCP, CCCP, and Ru360, all of which are known to disrupt mitochondrial function. We have here used rapid 2-D confocal microscopy to monitor fluctuations in mitochondrial Ca2+ levels ([Ca2+]m) and mitochondrial membrane potential (Delta Psi m) in rat cardiac myocytes loaded either with rhod-2 AM or tetramethylrhodamine methyl ester (TMRM), respectively. Freshly isolated intact rat cardiac myocytes were plated on glass coverslips and incubated in 5 mM Ca2+ containing Tyrode's solution and 40 mM 2,3-butanedione monoxime (BDM) to inhibit cell contraction. Alternatively, myocytes were permeabilized with 10 microM digitonin and perfused with an "intracellular" solution containing 10 microM free [Ca2+], 5 mM EGTA, and 15 mM BDM. Direct [Ca2+]m measurements showed transient mitochondrial Ca2+ accumulation after exposure to 10 mM caffeine, as revealed by a 66% increase in the rhod-2 fluorescence intensity. Shear fluid forces, however, produced a 12% decrease in signal, suggesting that application of a mechanical force releases Ca2+ from the mitochondria. In addition, caffeine and CCCP or FCCP strongly reduced Delta Psi m, while application of a pressurized solution produced a transient Delta Psi m hyperpolarization in intact ventricular myocytes loaded with TMRM

  9. A Statistically Enhanced Spectral Counting Approach to TCDD Cardiac Toxicity in the Adult Zebrafish Heart

    PubMed Central

    Zhang, Jiang; Lanham, Kevin A; Heideman, Warren; Peterson, Richard E.; Li, Lingjun

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant and teratogen that produces cardiac toxicity in the developing zebrafish. Here we adopted a label free quantitative proteomic approach based on normalized spectral abundance factor (NSAF) to investigate the disturbance of the cardiac proteome induced by TCDD in the adult zebrafish heart. The protein expression level changes between heart samples from TCDD treated and control zebrafish were systematically evaluated by a large scale MudPIT analysis which incorporated triplicate analyses for both control and TCDD exposed heart proteomic samples to overcome the data dependant variation in shotgun proteomic experiments and obtain a statistically significant protein dataset with improved quantification confidence. A total of 519 and 443 proteins were identified in hearts collected from control and TCDD treated zebrafish, respectively, among which 106 proteins showed statistically significant expression changes. After correcting for the experimental variation between replicate analyses by statistical evaluation, 55 proteins exhibited NSAF ratio above 2 and 43 proteins displayed NSAF ratio smaller than 0.5, with statistical significance by t-test (p < 0.05). The proteins identified as altered by TCDD encompass a wide range of biological functions including calcium handling, myocardium cell architecture, energy production and metabolism, mitochondrial homeostasis, and stress response. Collectively, our results indicate that TCDD exposure alters the adult zebrafish heart in a way that could result in cardiac hypertrophy and heart failure, and suggests a potential mechanism for the diastolic dysfunction observed in TCDD exposed embryos. PMID:23682714

  10. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  11. Adipose stem cell sheets improved cardiac function in the rat myocardial infarction, but did not alter cardiac contractile responses to β-adrenergic stimulation.

    PubMed

    Otsuki, Yuki; Nakamura, Yoshinobu; Harada, Shingo; Yamamoto, Yasutaka; Ogino, Kazuhide; Morikawa, Kumi; Ninomiya, Haruaki; Miyagawa, Shigeru; Sawa, Yoshiki; Hisatome, Ichiro; Nishimura, Motonobu

    2015-01-01

    Adipose stem cells (ASCs) are a source of regenerative cells available for autologous transplantation to hearts. We compared protective actions of ASC sheets on rat myocardial infarction (MI) in comparison with those of skeletal myoblast cell sheets. Their effects on infarcted hearts were evaluated by biological, histochemical as well as physiological analyses. ASC sheets secreted higher concentrations of angiogenic factors (HGF, VEGF, and bFGF; P < 0.05) under normoxic and hypoxic conditions than those of myoblast cell sheets, associated with reduction of cell apoptosis (P < 0.05). Like myoblast cell sheets, ASC sheets improved cardiac function (P < 0.05) and decreased the plasma level of ANP (P < 0.05) in MI hearts. ASC sheets restored cardiac remodeling characterized by fibrosis, cardiac hypertrophy and impaired angiogenesis (P < 0.05), which was associated with increases in angiogenic factors (P < 0.05). In isolated perfused rat hearts, ASC sheets improved both systolic and diastolic functions, which was comparable to cardiac functions of myoblast cell sheets, while both cell sheets failed to restore cardiac contractile response to either isoproterenol, pimobendan or dibutyryl cAMP. These results indicated that ASC sheets improved cardiac function and remodeling of MI hearts mediated by their paracrine action and this improvement was comparable to those by myoblast cell sheets. PMID:25749147

  12. Effect of Cardiac Arrest on Cognitive Impairment and Hippocampal Plasticity in Middle-Aged Rats

    PubMed Central

    Dave, Kunjan R.; Alekseyenko, Aleksey; Binkert, Marc; Stransky, Kenneth; Lin, Hung Wen; Barnes, Carol A.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction. PMID:25933411

  13. High Glucose Accelerates Autophagy in Adult Rat Intervertebral Disc Cells

    PubMed Central

    Kong, Chae-Gwan; Kim, Man Soo; Park, Eun-Young

    2014-01-01

    Study Design In vitro cell culture. Purpose The purpose of this study was to investigate the effect of high glucose on autophagy in adult rat intervertebral disc cells. Overview of Literature Diabetes mellitus is considered to be an important etiologic factor for intervertebral disc degeneration, resulting in degenerative disc diseases. A glucose-mediated increase of autophagy is a major causative factor for the development of diseases associated with diabetes mellitus. However, no information is available for the effect of high glucose on autophagy in adult intervertebral disc cells. Methods Nucleus pulposus and annulus fibrosus cells were isolated from 24-week-old adult rats, cultured and placed in either 10% fetal bovine serum (normal control) or 10% fetal bovine serum plus two different high glucose concentrations (0.1 M and 0.2 M) (experimental conditions) for one and three days, respectively. The expressions of autophagy markers, such as beclin-1, light chain 3-I (LC3-I) and LC3-II, autophagy-related gene (Atg) 3, 5, 7 and 12, were identified and quantified. Results Two high glucoses significantly increased the expressions of beclin-1, LC3-II, Atg3, 5, 7, and 12 in adult rat nucleus pulposus and annulus fibrosus cells in a dose- and time-dependent manner. The ratio of LC3-II/LC3-I expression was also increased in a dose-respectively time-dependent manner. Conclusions The results suggest that autophagy of adult nucleus pulposus and annulus fibrosus cells might be a potential mechanism for the intervertebral disc degeneration in adult patients with diabetes mellitus. Thus, the prevention of autophagy in adult intervertebral disc cells might be considered as a novel therapeutic target to prevent or to delay the intervertebral disc degeneration in adult patients with diabetes mellitus. PMID:25346805

  14. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis

    PubMed Central

    2011-01-01

    Background Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabetic condition. Methods This study was designed to examine the effect of long-acting calcium channel blocker (CCB), Azelnidipine (AZL) on contractile dysfunction, intracellular calcium (Ca2+) cycling proteins, stress-activated signaling molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single intraperitoneal (IP) injection of streptozotocin (STZ). Contractile functions were traced from live diabetic rats to isolated individual cardiomyocytes including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR90), maximal velocity of shortening/relengthening (± dL/dt) and intracellular Ca2+ fluorescence. Results Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+ clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit, restored the levels of the mitochondrial superoxide dismutase (Mn-SOD), calcium regulatory proteins RyR2 and SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were reconciled by AZL treatment. Conclusion Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property. PMID:22054019

  15. Single bout of running exercise changes LC3-II expression in rat cardiac muscle.

    PubMed

    Ogura, Yuji; Iemitsu, Motoyuki; Naito, Hisashi; Kakigi, Ryo; Kakehashi, Chiaki; Maeda, Seiji; Akema, Tatsuo

    2011-11-01

    Macroautophagy (autophagy) is an intracellular catalytic process. We examined the effect of running exercise, which stimulates cardiac work physiologically, on the expression of microtubule-associated protein 1 light chain 3 (LC3)-II, an indicator of autophagy, as well as some autophagy-related proteins in rat cardiac muscle. The left ventricles were taken from rats immediately (0 h), and at 0.5h, 1h or 3h after a single bout of running exercise on a treadmill for 30 min and also from rats in a rest condition. In these samples, we evaluated the level of LC3-II and p62, and the phosphorylation level of mammalian target of rapamycin (mTOR), Akt and AMP-activated protein kinase alpha (AMPKα) by Western blotting. The exercise produced a biphasic change in LC3-II, with an initial decrease observed immediately after the exercise and a subsequent increase 1h thereafter. LC3-II then returned to the rest level at 3h after the exercise. A negative correlation was found between the LC3-II expression and mTOR phosphorylation, which plays a role in inhibiting autophagy. The exercise increased phosphorylation of AMPKα, which stimulates autophagy via suppression of mTOR phosphorylation, immediately after exercise. The level of p62 and phosphorylated Akt was not altered significantly by the exercise. These results suggest for the first time that a single bout of running exercise induces a biphasic change in autophagy in the cardiac muscle. The exercise-induced change in autophagy might be partially mediated by mTOR in the cardiac muscle. PMID:22005460

  16. Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats

    SciTech Connect

    Wallenborn, J. Grace Evansky, Paul; Shannahan, Jonathan H.; Vallanat, Beena; Ledbetter, Allen D.; Schladweiler, Mette C.; Richards, Judy H.; Gottipolu, Reddy R.; Nyska, Abraham; Kodavanti, Urmila P.

    2008-10-01

    Zinc is a common metal in most ambient particulate matter (PM), and has been proposed to be a causative component in PM-induced adverse cardiovascular health effects. Zinc is also an essential metal and has the potential to induce many physiological and nonphysiological changes. Most toxicological studies employ high levels of zinc. We hypothesized that subchronic inhalation of environmentally relevant levels of zinc would cause cardiac changes in healthy rats. To address this, healthy male WKY rats (12 weeks age) were exposed via nose only inhalation to filtered air or 10, 30 or 100 {mu}g/m{sup 3} of aerosolized zinc sulfate (ZnSO{sub 4}), 5 h/day, 3 days/week for 16 weeks. Necropsies occurred 48 h after the last exposure to ensure effects were due to chronic exposure rather than the last exposure. No significant changes were observed in neutrophil or macrophage count, total lavageable cells, or enzyme activity levels (lactate dehydrogenase, n-acetyl {beta}-D-glucosaminidase, {gamma}-glutamyl transferase) in bronchoalveolar lavage fluid, indicating minimal pulmonary effect. In the heart, cytosolic glutathione peroxidase activity decreased, while mitochondrial ferritin levels increased and succinate dehydrogenase activity decreased, suggesting a mitochondria-specific effect. Although no cardiac pathology was seen, cardiac gene array analysis indicated small changes in genes involved in cell signaling, a pattern concordant with known zinc effects. These data indicate that inhalation of zinc at environmentally relevant levels induces cardiac effects. While changes are small in healthy rats, these may be especially relevant in individuals with pre-existent cardiovascular disease.

  17. Subchronic dermal exposure to T-2 toxin produces cardiac toxicity in experimental Wistar rats.

    PubMed

    Chattopadhyay, Pronobesh; Islam, Johirul; Goyary, Danswrang; Agnihotri, Amit; Karmakar, Sanjev; Banerjee, Subham; Singh, Lokendra; Veer, Vijay

    2016-03-01

    Our study aimed to determine the cardiac toxicities of T-2 toxin, a representative mycotoxin that frequently contaminates maize, cereals, and other agricultural products, harvested and stored under damp and cold conditions. Dermal exposure to T-2 toxin caused severe cardiotoxicity in experimental Wistar rats. Electrocardiography studies showed the conduction abnormalities including prolongation of the QT and corrected QT interval, shortening of the PR interval, and tachycardia. Biochemical studies also reported the toxicity of T-2 toxin. T-2 toxin induced acute cardiotoxicity in rats and characterized by significant (p < 0.05) elevation of serum troponin I, creatine kinase (CK) isoenzyme MB, CK isoenzyme NAC, and lactate dehydrogenase as compared to control rats. It is concluded that cardiotoxicity effects of T-2 toxin are thought to be due to direct action on electrocardiac potentials and biochemical changes. PMID:24193048

  18. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  19. Abnormal Heart Rate Turbulence Predicts Cardiac Mortality in Low, Intermediate and High Risk Older Adults

    PubMed Central

    Stein, Phyllis K.; Barzilay, Joshua I.

    2011-01-01

    Introduction We examined whether heart rate turbulence (HRT) adds to traditional risk factors for cardiac mortality in older adults at low, intermediate and high risk. Methods and Results N=1298, age ≥65 years, with 24-hour Holter recordings were studied. HRT, which quantifies heart rate response to ventricular premature contractions, was categorized as: both turbulence onset (TO) and turbulence slope (TS) normal; TO abnormal; TS abnormal; or both abnormal. Independent risks for cardiac mortality associated with HRT or, for comparison, elevated C-reactive protein (CRP) (>3.0 mg/L), were calculated using Cox regression analysis adjusted for traditional cardiovascular disease risk factors and stratified by the presence of no, isolated subclinical (i.e., intermediate risk) or clinical CVD. Having both TS and TO abnormal compared to both normal was associated with cardiac mortality in the low risk group [HR 7.9, 95% CI 2.8–22.5, (p<0.001)]. In the high and intermediate risk groups, abnormal TS and TO ([HR 2.2, 95% CI 1.5–4.0, p=0.016] and [HR 2.7, 95% CI 1.2–5.9, p=0.012]), respectively, were also significantly associated with cardiac mortality. In contrast, elevated CRP was associated with increased cardiac mortality risk only in low risk individuals [HR 2.5, 95% CI 1.3–5.1, p=0.009]. In the low risk group, the c-statistic was 0.706 for the base model, 0.725 for the base model with CRP, and 0.767 for the base model with HRT. Conclusions Abnormal HRT independently adds to risk stratification of low, intermediate and high risk individuals but appears to add especially to the stratification of those considered at low risk. PMID:21134026

  20. Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart

    PubMed Central

    Pompilio, Giulio; Verduci, Lorena; Colombo, Gualtiero I.; Milano, Giuseppina; Guerrini, Uliano; Squadroni, Lidia; Cotelli, Franco; Pozzoli, Ombretta; Capogrossi, Maurizio C.

    2013-01-01

    Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely

  1. Pretreatment with a combination of ligustrazine and berberine improves cardiac function in rats with coronary microembolization

    PubMed Central

    Zhang, Ying; Ma, Xiao-juan; Guo, Chun-yu; Wang, Ming-ming; Kou, Na; Qu, Hua; Mao, Hui-min; Shi, Da-zhuo

    2016-01-01

    Aim: We have shown that a combination of ligustrazine and berberine produces more effective inhibition on platelet activation and inflammatory reactions in rat acute myocardial infarction compared with either agent alone. In this study we evaluated the beneficial effects of a combination of ligustrazine and berberine in a rat model of coronary microembolization (CME). Methods: SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses. Results: Pretreatment with the combination of ligustrazine (27 mg·kg−1·d−1) and berberine (90 mg·kg−1·d−1) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg−1·d−1). Conclusion: The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects. PMID:26924290

  2. Combinational effect of resveratrol and atorvastatin on isoproterenol-induced cardiac hypertrophy in rats

    PubMed Central

    Chakraborty, Songjukta; Pujani, Mukta; Haque, Syed Ehtaishamul

    2015-01-01

    Introduction: Resveratrol is a natural polyphenol present mainly in grapes. It has been shown to offer strong cardio protection in animal models due to its ability to correct lipid peroxidation and maintain antioxidants level. Atorvastatin, a HMG-CoA reductase inhibitor, lowers cholesterol level and is commonly prescribed to heart patients. Our aim in this study was to see the combination effect of these two drugs against Isoproterenol-induced cardiac hypertrophy in rats. Materials and Methods: Wister Albino rats were treated with resveratrol (20 mg/kg/day, p.o), atorvastatin (20 mg/kg/day, p.o) and in combination (resveratrol [10 mg/kg/day, p.o] + atorvastatin [10 mg/kg/day, p.o]) for a period of 25 days and from 15th till 25th day Isoproterenol (5 mg/kg/day, s.c) was co-administered to rats to induce cardiac hypertrophy. Results: A significant increase in creatine kinase, lactate dehydrogenase, aspartate transaminase and lipid peroxidation with the significant decrease in reduced glutathione, superoxide dismutase and catalase were observed in Isoproterenol treated rats. Resveratrol, atorvastatin and their combination significantly reversed the effect. The histopathological studies and myocardial infarct size evaluation also confirmed the protection. Conclusion: Comparing the data we came to this conclusion that atorvastatin although showed the protection along all the parameters, the extent of protection offered by resveratrol alone and in combination were more effective. Hence, it can be concluded that resveratrol, an herbal nutritional supplement, alone and in combination is better against cardiac hypertrophy. PMID:26229360

  3. Adipose-derived stromal cell therapy improves cardiac function after coronary occlusion in rats.

    PubMed

    Bagno, Luiza L S; Werneck-de-Castro, João Pedro S; Oliveira, Patrícia F; Cunha-Abreu, Márcia S; Rocha, Nazareth N; Kasai-Brunswick, Taís H; Lago, Vivian M; Goldenberg, Regina C S; Campos-de-Carvalho, Antonio C

    2012-01-01

    Recent studies have identified adipose tissue as a new source of mesenchymal stem cells for therapy. The purpose of this study was to investigate the therapy with adipose-derived stromal cells (ASCs) in a rat model of healed myocardial infarction (MI). ASCs from inguinal subcutaneous adipose tissue of male Wistar rats were isolated by enzymatic digestion and filtration. Cells were then cultured until passage 3. Four weeks after ligation of the left coronary artery of female rats, a suspension of either 100 µl with phosphate-buffered saline (PBS) + Matrigel + 2 × 10(6) ASCs labeled with Hoechst (n = 11) or 100 µl of PBS + Matrigel (n = 10) was injected along the borders of the ventricular wall scar tissue. A sham-operated group (n = 5) was submitted to the same surgical procedure except permanent ligation of left coronary artery. Cardiac performance was assessed by electro- and echocardiogram. Echo was performed prior to injections (baseline, BL) and 6 weeks after injections (follow-up, FU), and values after treatment were normalized by values obtained before treatment. Hemodynamic measurements were performed 6 weeks after injections. All infarcted animals exhibited cardiac function impairment. Ejection fraction (EF), shortening fractional area (SFA), and left ventricular akinesia (LVA) were similar between infarcted groups before treatment. Six weeks after therapy, ASC group showed significant improvement in all three ECHO indices in comparison to vehicle group. In anesthetized animals dp/dt(+) was also significantly higher in ASCs when compared to vehicle. In agreement with functional improvement, scar area was diminished in the ASC group. We conclude that ASCs improve cardiac function in infarcted rats when administered directly to the myocardium. PMID:22472303

  4. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance. PMID:23872579

  5. Cardiac and vascular responses of isolated rat tissues treated with diterpenes from Sinularia flexibilis (coelenterata: octocorallia).

    PubMed

    Aceret, T L; Brown, L; Miller, J; Coll, J C; Sammarco, P W

    1996-10-01

    The marine environment is a rich source of compounds with cardiovascular activity. This study characterizes the cardiac and vascular responses in isolated rat tissues of flexibilide, dihydroflexibilide and sinulariolide, three diterpenes isolated from the soft coral Sinularia flexibilis. On rat left ventricular papillary muscles, dihydroflexibilide and flexibilide showed similar potencies (-log EC50 = 4.69 +/- 0.05 and 4.66 +/- 0.06, respectively); the maximal response to dihydroflexibilide of 1.4 +/- 0.2 mN was 35 +/- 7% that of calcium chloride in the same muscles. All diterpenes relaxed rat thoracic aortic rings precontracted with KC1 (100 mM) with similar potencies (flexibilide, -log EC50 = 4.17 +/- 0.06). Flexibilide was further characterized and shown to increase force in isolated rat left atria by 0.8 +/- 0.5 mN at 1 x 10(-4) M, to increase rate of contraction in isolated rat right atria by 18 +/- 5 beta/min at 3 x 10(-5) M and to completely relax endothelium-denuded rat thoracic aortic rings (-log EC50 = 4.14 +/- 0.05). Toxicity as indicated by the occurrence of ectopic beats was not observed with the diterpenes at concentrations which produced complete relaxation of blood vessels, maximal positive inotropic activity and minor positive chronotropic responses. Thus, these compounds may be useful lead compounds in the search for improved treatment of cardiovascular disease, especially heart failure. PMID:8931257

  6. Cardiac output is an apparent determinant of nitroglycerin pharmacokinetics in rats.

    PubMed

    Fung, H L; Blei, A; Chong, S

    1986-12-01

    The steady-state pharmacokinetics of nitroglycerin (NTG) were investigated in 11 rats after sequential infusions of either NTG alone (10 micrograms/kg/min) or NTG plus vasopressin (the latter at 5.5 mU/kg/min). Arterial and venous plasma concentrations of NTG in the femoral bed were obtained at 41 and 45 min during each infusion phase. Cardiac output was estimated twice in each animal using 85Sr and 141Ce microspheres. NTG systemic clearance in arterial plasma was found to be strongly correlated with cardiac output (r = 0.784, n = 22, P less than .001). Because NTG distribution between red blood cells and plasma was independent of concentration (up to 150 ng/ml in plasma) and hematocrit (25-48%), the systemic clearance of NTG in arterial blood could be estimated as about 3/4 of cardiac output. Vasopressin co-infusion decreased both the cardiac output and the arterial NTG plasma clearance, but it also increased the arteriovenous extraction of NTG. Thus, vasopressin had not net effect on the venous plasma clearance, of NTG. In animals with NTG infusions alone, cardiac output also significantly correlated with NTG venous plasma clearance (P less than .01) and arteriovenous extraction (P less than .05). These data indicate that, in the absence of vasopressin, NTG pharmacokinetics are dependent on the cardiac output, thus providing an example wherein the systemic clearance of a drug was shown to be related to systemic blood flow. These results support the concept that the vasculature acts as a clearing organ for organic nitrates, and they also provide a hemodynamic explanation for the high variability in NTG plasma concentrations observed under presumed steady-state conditions. PMID:3098960

  7. A developmental analysis of clonidine's effects on cardiac rate and ultrasound production in infant rats.

    PubMed

    Blumberg, M S; Sokoloff, G; Kent, K J

    2000-04-01

    Under controlled conditions, infant rats emit ultrasonic vocalizations during extreme cold exposure and after administration of the alpha(2) adrenoceptor agonist, clonidine. Previous investigations have determined that, in response to clonidine, ultrasound production increases through the 2nd-week postpartum and decreases thereafter. Given that sympathetic neural dominance exhibits a similar developmental pattern, and given that clonidine induces sympathetic withdrawal and bradycardia, we hypothesized that clonidine's developmental effects on cardiac rate and ultrasound production would mirror each other. Therefore, in the present experiment, the effects of clonidine administration (0.5 mg/kg) on cardiac rate and ultrasound production were examined in 2-, 8-, 15-, and 20-day-old rats. Age-related changes in ultrasound production corresponded with changes in cardiovascular variables, including baseline cardiac rate and clonidine-induced bradycardia. This experiment is discussed with regard to the hypothesis that ultrasound production is the acoustic by-product of a physiological maneuver that compensates for clonidine's detrimental effects on cardiovascular function. PMID:10737864

  8. The declined phosphorylation of Hsp27 in rat cardiac muscle after simulated microgravity induced by hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Jiang, Shizhong; Li, Zhili; Yuan, Min; Dong, Weijun

    Many studies have shown that simulated microgravity induced by hindlimb unloading can decrease the contractility of rat cardiac muscle however the mechanisms responsible for which remain unclear Actin polymerization which can be regulated by Hsp27 has important role in the transmission of stress force during the contraction of cardiac muscle In this study western blot analysis was used to detect the expression of Hsp27 and phosphorylated Hsp27 FAK and phosphorylated FAK P38 MAPK and phosphorylated P38 MAPK in rat cardiac muscle after 14d hindlimb unloading The results showed that the phosphorylation levels of both Hsp27 and P38 MAPK were declined significantly which may decrease actin polymerization and inhibit the transmission of stress force during the contraction of rat cardiac muscle after hindlimb unloading However the phosphorylation level of FAK was not declined significantly in cardiac muscle The results suggested that the declined phosphorylation level of Hsp27 which may be ascribable to the decline of contractility of rat cardiac muscle after 14d hindlimb unloading may be induced by the declined phosphorylation level of P38 MAPK but not phosphorylation level of FAK

  9. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Research.

    PubMed

    Badhwar, Vinay; Rankin, J Scott; Jacobs, Jeffrey P; Shahian, David M; Habib, Robert H; D'Agostino, Richard S; Thourani, Vinod H; Suri, Rakesh M; Prager, Richard L; Edwards, Fred H

    2016-07-01

    The Society of Thoracic Surgeons Adult Cardiac Database (ACSD) is an international voluntary effort that is the foundation of our specialty's efforts in clinical performance assessment and quality improvement. Containing nearly 6,000,000 patient records, the ACSD is a robust resource for clinical research. Seven major original publications and four review articles were generated from the ACSD in 2015. The risk-adjusted outcome analyses and quality measures reported in these studies have made substantial contributions to inform daily clinical practice. This report summarizes the ACSD-based research efforts published in 2015. PMID:27262913

  10. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion.

    PubMed

    Senthamizhselvan, Oomaidurai; Manivannan, Jeganathan; Silambarasan, Thangarasu; Raja, Boobalan

    2014-08-01

    Reperfusion of ischemic tissue leads to the generation of oxygen derived free radicals which plays an important role in cellular damage. Objective of the current study is to evaluate the cardio-protective and antioxidant effect of diosmin on ischemia-reperfusion related cardiac dysfunction, oxidative stress and apoptosis. Diosmin (50 and 100 mg/kg body weight (bw)) was given every day to the rats orally throughout the experimental period. Ischemia/reperfusion protocol was carried out ex vivo using langendorff perfusion method and the cardiac functional recovery was assessed in terms of percentage rate pressure product. Coronary effluents of LDH and CK-MB activities, antioxidant enzyme activities, lipid peroxidation products, activity of TCA cycle enzymes were evaluated. Moreover, in vitro superoxide anion and hydroxyl radical scavenging potential of diosmin was also quantified. Finally, quantitative real-time PCR was used for assessing Bcl-2 mRNA expression in heart. Cardiac functional recovery was impaired after reperfusion compared with continuously perfused heart. It was significantly prevented by diosmin treatment. Impaired antioxidant enzyme activities and elevated lipid peroxidation products level were also significantly suppressed. The activity of TCA cycle enzymes was protected against reperfusion stress. Down regulated Bcl-2 was also significantly increased. This study concluded that diosmin pretreatment prevents all the impaired patterns including cardiac function, oxidative stress and apoptosis associated with reperfusion in control heart by its antioxidant role. PMID:24769512

  11. Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats

    PubMed Central

    2013-01-01

    Background Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome. Methods Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR. Results Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin

  12. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  13. Peripubertal ovariectomy influences thymic adrenergic network plasticity in adult rats.

    PubMed

    Pilipović, Ivan; Vujnović, Ivana; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Kosec, Duško; Stojić-Vukanić, Zorica; Leposavić, Gordana

    2016-08-15

    The study investigated the influence of peripubertal ovariectomy on the thymic noradrenaline (NA) concentration, and the thymocyte NA content and β2- and α1-adrenoceptor (AR) expression in adult 2- and 11-month-old rats. In control rats, the thymic NA concentration increased with age. This increase reflected rise in the density of catecholamine (CA)-containing fluorescent nerve fibers and cells and their CA content. Additionally, the average β2- and α1-AR thymocyte surface density changed in the opposite direction with age; the density of β2-AR decreased, whereas that of α1-AR increased. Ovariectomy diminished the thymic NA concentration in 2-month-old rats. This reflected the decrease in the density of fluorescent nerve fibers, and CA content in fluorescent nerve fibers and non-lymphoid cells, since the thymocyte NA content was increased in ovariectomized (Ox) rats. Estrogen supplementation prevented the ovariectomy-induced changes. In Ox rats, the density of CA-synthesizing nerve fibers and non-lymphoid cells diminished with age. To the contrary, NA content in thymocytes increased with age, but it did not exceed that in 11-month-old controls. Additionally, ovariectomy diminished the average thymocyte surface density of β2-ARs, but it increased that of α1-ARs in 2-month-old-rats (due to estrogen, and estrogen and progesterone deficiency, respectively). These changes, despite of the rise in circulating estrogen level post-ovariectomy, remained stable with age. This most likely reflected a decreased sensitivity to estrogen action, as a consequence of the hormone misprinting in peripubertal age. The analysis of thymocyte proliferation in culture suggested that age- and ovariectomy-induced alterations in thymocyte NA synthesis and AR expression altered NA autocrine/paracrine action on thymocytes. In conclusion, the study indicates that the ovarian hormone deficiency in peripubertal age affects ovarian steroid-dependent remodeling of thymic adrenergic

  14. BMP3 expression in the adult rat CNS.

    PubMed

    Yamashita, Kanna; Mikawa, Sumiko; Sato, Kohji

    2016-07-15

    Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain. PMID:27130896

  15. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  16. Analysis and neuronal modeling of the nonlinear characteristics of a local cardiac reflex in the rat.

    PubMed

    Vadigepalli, R; Doyle, F J; Schwaber, J S

    2001-10-01

    Previous experimental results have suggested the existence of a local cardiac reflex in the rat. In this study, the putative role of such a local reflex in cardiovascular regulation is quantitatively analyzed. A model for the local reflex is developed from anatomical experimental results and physiological data in the literature. Using this model, a systems-level analysis is conducted. Simulation results indicate that the neuromodulatory mechanism of the local reflex attenuates the nonlinearity of the relationship between cardiac vagal drive and arterial pressure. This behavior is characterized through coherence analysis. Furthermore, the modulation of phase-related characteristics of the cardiovascular system is suggested as a plausible mechanism for the nonlinear attenuation. Based on these results, it is plausible that the functional role of the local reflex is highly robust nonlinear compensation at the heart, which results in less complex dynamics in other parts of the reflex. PMID:11570998

  17. Applying the Gender Lens to Risk Factors and Outcome after Adult Cardiac Surgery

    PubMed Central

    Eifert, Sandra; Guethoff, Sonja; Kaczmarek, Ingo; Beiras-Fernandez, Andres; Seeland, Ute; Gulbins, Helmut; Seeburger, Jörg; Deutsch, Oliver; Jungwirth, Bettina; Katsari, Elpiniki; Dohmen, Pascal; Pfannmueller, Bettina; Hultgren, Rebecka; Schade, Ina; Kublickiene, Karolina; Mohr, Friedrich W.; Gansera, Brigitte

    2014-01-01

    Summary Background Applying the gender lens to risk factors and outcome after adult cardiac surgery is of major clinical interest, as the inclusion of sex and gender in research design and analysis may guarantee more comprehensive cardiovascular science and may consecutively result in a more effective surgical treatment as well as cost savings in cardiac surgery. Methods We have reviewed classical cardiovascular risk factors (diabetes, arterial hypertension, hyperlipidemia, smoking) according to a gender-based approach. Furthermore, we have examined comorbidities such as depression, renal insufficiency, and hormonal influences in regard to gender. Gender-sensitive economic aspects have been evaluated, surgical outcome has been analyzed, and cardiovascular research has been considered from a gender perspective. Results The influence of typical risk factors and outcome after cardiac surgery has been evaluated from a gender perspective, and the gender-specific distribution of these risk factors is reported on. The named comorbidities are listed. Economic aspects demonstrated a gender gap. Outcome after coronary and valvular surgeries as well as after heart transplantation are displayed in this regard. Results after postoperative use of intra-aortic balloon pump are shown. Gender-related aspects of clinical and biomedical cardiosurgical research are reported. Conclusions Female gender has become an independent risk factor of survival after the majority of cardiosurgical procedures. Severely impaired left ventricular ejection fraction independently predicts survival in men, whereas age does in females. PMID:26288584

  18. Impact of adiposity on cardiac structure in adult life: the childhood determinants of adult health (CDAH) study

    PubMed Central

    2014-01-01

    Background We have examined the association between adiposity and cardiac structure in adulthood, using a life course approach that takes account of the contribution of adiposity in both childhood and adulthood. Methods The Childhood Determinants of Adult Health study (CDAH) is a follow-up study of 8,498 children who participated in the 1985 Australian Schools Health and Fitness Survey (ASHFS). The CDAH follow-up study included 2,410 participants who attended a clinic examination. Of these, 181 underwent cardiac imaging and provided complete data. The measures were taken once when the children were aged 9 to 15 years, and once in adult life, aged 26 to 36 years. Results There was a positive association between adult left ventricular mass (LVM) and childhood body mass index (BMI) in males (regression coefficient (β) 0.41; 95% confidence interval (CI): 0.14 to 0.67; p = 0.003), and females (β = 0.53; 95% CI: 0.34 to 0.72; p < 0.001), and with change in BMI from childhood to adulthood (males: β = 0.27; 95% CI: 0.04 to 0.51; p < 0.001, females: β = 0.39; 95% CI: 0.20 to 0.58; p < 0.001), after adjustment for confounding factors (age, fitness, triglyceride levels and total cholesterol in adulthood). After further adjustment for known potential mediating factors (systolic BP and fasting plasma glucose in adulthood) the relationship of LVM with childhood BMI (males: β = 0.45; 95% CI: 0.19 to 0.71; p = 0.001, females: β = 0.49; 95% CI: 0.29 to 0.68; p < 0.001) and change in BMI (males: β = 0.26; 95% CI: 0.04 to 0.49; p = 0.02, females: β = 0.40; 95% CI: 0.20 to 0.59; p < 0.001) did not change markedly. Conclusions Adiposity and increased adiposity from childhood to adulthood appear to have a detrimental effect on cardiac structure. PMID:24980215

  19. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation

    PubMed Central

    Yang, Jin-long; Ma, Du-Fang; Lin, Hai-Qing; Su, Wen-ge; Wang, Zhen; Li, Xiao

    2015-01-01

    Background Cardiac sympathetic denervation is found in various cardiac pathologies; however, its relationship with myocardial injury has not been thoroughly investigated. Methods Twenty-four rats were assigned to the normal control group (NC), sympathectomy control group (SC), and a sympathectomy plus mecobalamin group (SM). Sympathectomy was induced by injection of 6-OHDA, after which, the destruction and distribution of sympathetic and vagal nerve in the left ventricle (LV) myocardial tissue were determined by immunofluorescence and ELISA. Heart rate variability (HRV), ECG and echocardiography, and assays for myocardial enzymes in serum before and after sympathectomy were examined. Morphologic changes in the LV by HE staining and transmission electron microscope were used to estimate levels of myocardial injury and concentrations of inflammatory cytokines were used to reflect the inflammatory reaction. Results Injection of 6-OHDA decreased NE (933.1 ± 179 ng/L for SC vs. 3418.1± 443.6 ng/L for NC, P < 0.01) and increased NGF (479.4± 56.5 ng/mL for SC vs. 315.85 ± 28.6 ng/mL for NC, P < 0.01) concentrations. TH expression was reduced, while ChAT expression showed no change. Sympathectomy caused decreased HRV and abnormal ECG and echocardiography results, and histopathologic examinations showed myocardial injury and increased collagen deposition as well as inflammatory cell infiltration in the cardiac tissue of rats in the SC and SM groups. However, all pathologic changes in the SM group were less severe compared to those in the SC group. Conclusions Chemical sympathectomy with administration of 6-OHDA caused dysregulation of the cardiac autonomic nervous system and myocardial injuries. Mecobalamin alleviated inflammatory and myocardial damage by protecting myocardial sympathetic nerves. PMID:26230083

  20. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    PubMed Central

    Junqueira, Adriana; Cicogna, Antônio Carlos; Engel, Letícia Estevam; Aldá, Maiara Almeida; de Tomasi, Loreta Casquel; Giuffrida, Rogério; Giometti, Inês Cristina; Freire, Ana Paula Coelho Figueira; Aguiar, Andreo Fernando; Pacagnelli, Francis Lopes

    2016-01-01

    Background Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport. PMID:26647722

  1. 2-Deoxy-d-Glucose (2-DG)-Induced Cardiac Toxicity in Rat: NT-proBNP and BNP as Potential Early Cardiac Safety Biomarkers.

    PubMed

    Terse, P S; Joshi, P S; Bordelon, N R; Brys, A M; Patton, K M; Arndt, T P; Sutula, T P

    2016-05-01

    2-Deoxy-d-glucose (2-DG) is being developed as a potential anticonvulsant and disease-modifying agent for patients with epilepsy; however, during preclinical development, cardiac toxicity has been encountered in rats. This study was performed to determine whether cardiac troponin (cTnI and cTnT), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), N-terminal pro-brain natriuretic peptide (NT-proBNP), and/or creatine kinase (CK) could be useful as indicators of 2-DG cardiac toxicity. In addition, this study also investigated the association of cardiac histopathological changes with these biomarkers. F344 rats (4/sex/group/sacrifice point) were gavaged with either vehicle or 2-DG (50, 125, or 375 mg/kg twice daily; total daily dose of 100, 250, or 750 mg/kg/d) for 7, 14, 21, or 45 days followed by a 15-day recovery. Dose-dependent increases in NT-proBNP and BNP plasma concentrations were observed. Following recovery period, the NT-proBNP and BNP concentrations returned to baseline levels. There were no remarkable increases in CK, ANP, cTnI, or cTnT concentrations. There were no gross cardiac lesions observed at the necropsy. Microscopic findings of vacuolar degeneration and hypertrophy of the endothelial cells of the endocardium were present in the heart at doses of 250 and 750 mg/kg/d. Microscopic findings, in general, were associated with increases in NT-proBNP levels. Cardiac toxicity appeared to be reversible. In conclusion, NT-proBNP and BNP are potential early biomarkers for 2-DG-induced cardiac toxicity that can be useful to monitor 2-DG therapy in clinical trials. PMID:26838190

  2. Cardiac energy metabolism and oxidative stress biomarkers in diabetic rat treated with resveratrol.

    PubMed

    Carolo dos Santos, Klinsmann; Pereira Braga, Camila; Octavio Barbanera, Pedro; Seiva, Fábio Rodrigues Ferreira; Fernandes Junior, Ary; Fernandes, Ana Angélica Henrique

    2014-01-01

    Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg(-1) body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS's ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers' level of oxidative stress under

  3. Adult stem cells and biocompatible scaffolds as smart drug delivery tools for cardiac tissue repair.

    PubMed

    Pagliari, Stefania; Romanazzo, Sara; Mosqueira, Diogo; Pinto-do-Ó, Perpetua; Aoyagi, Takao; Forte, Giancarlo

    2013-01-01

    The contribution of adult stem cells to cardiac repair is mostly ascribed to an indirect paracrine effect, rather than to their actual engraftment and differentiation into new contractile and vascular cells. This effect consists in a direct reduction of host cell death, promotion of neovascularization, and in a "bystander effect" on local inflammation. A number of cytokines secreted by adult stem/progenitor cells has been proposed to be responsible for the consistent beneficial effect reported in the early attempts to deliver different stem cell subsets to the injured myocardium. Aiming to maximize their beneficial activity on the diseased myocardium, the genetic modification of adult stem cells to enhance and/or control the secretion of specific cytokines would turn them into active drug delivery vectors. On the other hand, engineering biocompatible scaffolds as to release paracrine factors could result in multiple advantages: (1) achieve a local controlled release of the drug of interest, thus minimizing off-target effects, (2) enhance stem cell retention in the injured area and (3) boost the beneficial paracrine effects exerted by adult stem cells on the host tissue. In the present review, a critical overview of the state-of-the-art in the modification of stem cells and the functionalization of biocompatible scaffolds to deliver beneficial soluble factors to the injured myocardium is offered. Besides the number of concerns to be addressed before a clinical application can be foreseen for such concepts, this path could translate into the generation of active scaffolds as smart cell and drug delivery systems for cardiac repair. PMID:23745554

  4. [Transfer of cardiac catheterisation from a paediatric to an adult cardiological centre: results at 3 years].

    PubMed

    Agnoletti, G; Boudjemline, Y; Ladouceur, M; Iserin, L

    2007-05-01

    The advances of surgical and interventional treatment of congenital heart diseases have allowed a large number of patients with congenital heart disease to reach adult age. This population involves almost 0.3/1000 of total population in West Europe and North America and can be estimated around 200000 patients in France. Patients with operated Tetralogy of Fallot, benign forms of pulmonary atresia with ventricular septal defect, simple or complex transposition of the great arteries usually survive beyond childhood. These patients can need repeated interventions to treat lesions of native or reconstructed pulmonary arteries and/or aortic arch, to occlude residual shunts, to treat pulmonary incompetence. More complex heart diseases such as single ventricle, rarely allow survival until the adult age. The majority of these patients undergo heart transplant, often made difficult by multiple cardiac surgeries, anomalies of pulmonary arteries, chronic cyanosis, aorto-pulmonary shunts. Patients with relatively simple or complex congenital heart diseases need to be followed-up in specialized units, like those created more than twenty years ago in the United States, Canada, and United Kingdom. Interventional cardiac catheterisation play a major role in the management of this population. The results of 3 years of activity in a new centre treating GUCH patients are illustrated. PMID:17646764

  5. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    PubMed

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

  6. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  7. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  8. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  9. Low doses of memantine disrupt memory in adult rats.

    PubMed

    Creeley, Catherine; Wozniak, David F; Labruyere, Joanne; Taylor, George T; Olney, John W

    2006-04-12

    Memantine, a drug recently approved for treatment of Alzheimer's disease, has been characterized as a unique NMDA antagonist that confers protection against excitotoxic neurodegeneration without the serious side effects that other NMDA antagonists are known to cause. In the present study, we determined what dose of memantine is required to protect the adult rat brain against an NMDA receptor-mediated excitotoxic process and then tested that dose and a range of lower doses to determine whether the drug in this dose range is associated with significant side effects. Consistent with previous research, we found that memantine confers a neuroprotective effect beginning at an intraperitoneal dose of 20 mg/kg, a dose that we found, contrary to previous reports, produces locomotor disturbances severe enough to preclude testing for learning and memory effects. We then determined that, at intraperitoneal doses of 10 and 5 mg/kg, memantine disrupts both memory and locomotor behaviors. Rats treated with these doses performed at control-like levels in learning a hole-board task but were significantly impaired in demonstrating what they had learned when tested 24 h later. This impairment of memory retention was not state dependent in that it was demonstrable regardless of whether the rats were or were not exposed to memantine on the day of retention testing. We conclude that, in the adult rat, memantine behaves like other NMDA antagonists in that it is neuroprotective only at doses that produce intolerable side effects, including memory impairment. PMID:16611808

  10. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  11. Molecule specific effects of PKA-mediated phosphorylation on rat isolated heart and cardiac myofibrillar function.

    PubMed

    Hanft, Laurin M; Cornell, Timothy D; McDonald, Colin A; Rovetto, Michael J; Emter, Craig A; McDonald, Kerry S

    2016-07-01

    Increased cardiac myocyte contractility by the β-adrenergic system is an important mechanism to elevate cardiac output to meet hemodynamic demands and this process is depressed in failing hearts. While increased contractility involves augmented myoplasmic calcium transients, the myofilaments also adapt to boost the transduction of the calcium signal. Accordingly, ventricular contractility was found to be tightly correlated with PKA-mediated phosphorylation of two myofibrillar proteins, cardiac myosin binding protein-C (cMyBP-C) and cardiac troponin I (cTnI), implicating these two proteins as important transducers of hemodynamics to the cardiac sarcomere. Consistent with this, we have previously found that phosphorylation of myofilament proteins by PKA (a downstream signaling molecule of the beta-adrenergic system) increased force, slowed force development rates, sped loaded shortening, and increased power output in rat skinned cardiac myocyte preparations. Here, we sought to define molecule-specific mechanisms by which PKA-mediated phosphorylation regulates these contractile properties. Regarding cTnI, the incorporation of thin filaments with unphosphorylated cTnI decreased isometric force production and these changes were reversed by PKA-mediated phosphorylation in skinned cardiac myocytes. Further, incorporation of unphosphorylated cTnI sped rates of force development, which suggests less cooperative thin filament activation and reduced recruitment of non-cycling cross-bridges into the pool of cycling cross-bridges, a process that would tend to depress both myocyte force and power. Regarding MyBP-C, PKA treatment of slow-twitch skeletal muscle fibers caused phosphorylation of MyBP-C (but not slow skeletal TnI (ssTnI)) and yielded faster loaded shortening velocity and ∼30% increase in power output. These results add novel insight into the molecular specificity by which the β-adrenergic system regulates myofibrillar contractility and how attenuation of PKA

  12. Effects of acute stress on cardiac endocannabinoids, lipogenesis, and inflammation in rats

    PubMed Central

    Lim, James; Piomelli, Daniele

    2014-01-01

    Objective Trauma exposure can precipitate acute/post-traumatic stress responses (AS/PTSD) and disabling cardiovascular disorders (CVD). Identifying acute stress-related physiologic changes that may increase CVD risk could inform development of early CVD-prevention strategies. The endocannabinoid system (ECS) regulates hypothalamic-pituitary-adrenal (HPA) axis response and stress-related cardiovascular function. We examine stress-related endocannabinoid system (ECS) activity and its association with cardiovascular biochemistry/function following acute stress. Methods Rodents (n=8-16/group) were exposed to predator odor or saline; elevated plus maze (EPM), blood pressure (BP), serum and cardiac tissue ECS markers, and lipid metabolism were assessed at 24h and 2wks post-exposure. Results At 24h the predator odor group demonstrated anxiety-like behavior and had (a) elevated serum markers of cardiac failure/damage (brain natriuretic peptide [BNP]: 275.1 vs. 234.6, p=0.007; troponin-I: 1.50 vs. 0.78, p=0.076), lipogenesis (triacylglycerols [TAG]: 123.5 vs. 85.93, p=0.018), and inflammation (stearoyl delta-9 desaturase activity [SCD-16]: 0.21 vs. 0.07, p<0.001); (b) significant decrease in cardiac endocannabinoid (2-arachidonoyl-sn-glycerol, 2-AG: 29.90 vs. 65.95, p<0.001) and fatty acid ethanolamides (FAE: oleoylethanolamide, OEA: 114.3 vs. 125.4, p=0.047; palmitoylethanolamide, PEA: 72.96 vs. 82.87, p=0.008); and (c) increased cardiac inflammation (IL-1β/IL-6 ratio: 19.79 vs.13.57, p=0.038; TNF-α/IL-6 ratio: 1.73 vs. 1.03, p=0.019) and oxidative stress (thiobarbituric acid reactive substances [TBARS]: 7.81 vs. 7.05, p=0.022), that were associated with cardiac steatosis (higher TAG: 1.09 vs. 0.72, p<0.001). Cardiac lipogenesis persisted, and elevated BP emerged two weeks after exposure. Conclusions Acute psychological stress elicits ECS-related cardiac responses associated with persistent, potentially-pathological changes in rat cardiovascular biochemistry

  13. Regular exercise alleviates renovascular hypertension-induced cardiac/endothelial dysfunction and oxidative injury in rats.

    PubMed

    Kumral, Z N O; Sener, G; Ozgur, S; Koc, M; Suleymanoglu, S; Hurdag, C; Yegen, B C

    2016-02-01

    The importance of physical activity in the management of renovascular diseases is well-known, but lacks evidence of underlying mechanisms. The purpose of the study was to elucidate the protective/therapeutic effects of regular exercise on experimental renovascular hypertension (RVH)-induced oxidative stress and cardiac dysfunction. Wistar albino rats underwent a RVH surgery (2K1C, Goldblatt). Three weeks later half of the rats started swimming exercise for 9 weeks (n = 15), while the sedentary RVH group (n = 15) had no exercise during that period. Sham-operated control rats (n = 10), had the similar surgical procedures but the left renal artery was left unclipped. Body weights were monitored, and blood pressures were measured weekly using tail-cuff. Echocardiographic evaluation was performed on the 3(rd) week and on the 12(th) week of the experiment before the rats were decapitated. Heart and thoracic aorta were removed and serum was collected, while aortic samples were put in a 10% formaldehyde solution for immunochemistry. Cardiac tissue samples obtained from each animal were used for the determination of tissue myeloperoxidase (MPO) and catalase (CAT) activities, malondialdehyde (MDA), and glutathione (GSH) levels. In the sedentary RVH group, aortic contractile response (contraction/relaxation in isolated organ bath), left ventricular diastolic and systolic dimensions, and immunohistochemical staining of aortic inducible nitric oxide synthase (iNOS) were increased, while ejection fraction and aortic endothelial nitric oxide synthase (eNOS) staining were decreased. RVH in the sedentary rats resulted in increased pro-inflammatory cytokines (TNF-α, IL-2, IL-6), lipid peroxidation (malondialdehyde) and neutrophil infiltration (myeloperoxidase activity) along with reductions in antioxidant glutathione and catalase levels in the cardiac tissue. Exercise after RVH increased the immunhistochemical staining of aortic eNOS, decreased iNOS staining and reversed the

  14. Effects of Aerobic Exercise Training on Cardiac Renin-Angiotensin System in an Obese Zucker Rat Strain

    PubMed Central

    Barretti, Diego Lopes Mendes; Magalhães, Flávio de Castro; Fernandes, Tiago; do Carmo, Everton Crivoi; Rosa, Kaleizu Teodoro; Irigoyen, Maria Claudia; Negrão, Carlos Eduardo; Oliveira, Edilamar Menezes

    2012-01-01

    Objective Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results The resting HR decreased (∼12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p<0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats

  15. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  16. Ascending Aortic Constriction in Rats for Creation of Pressure Overload Cardiac Hypertrophy Model

    PubMed Central

    S, Santhosh Kumar; G, Sanjay; Kartha, Chandrasekharan Cheranellore

    2014-01-01

    Ascending aortic constriction is the most common and successful surgical model for creating pressure overload induced cardiac hypertrophy and heart failure. Here, we describe a detailed surgical procedure for creating pressure overload and cardiac hypertrophy in rats by constriction of the ascending aorta using a small metallic clip. After anesthesia, the trachea is intubated by inserting a cannula through a half way incision made between two cartilage rings of trachea. Then a skin incision is made at the level of the second intercostal space on the left chest wall and muscle layers are cleared to locate the ascending portion of aorta. The ascending aorta is constricted to 50–60% of its original diameter by application of a small sized titanium clip. Following aortic constriction, the second and third ribs are approximated with prolene sutures. The tracheal cannula is removed once spontaneous breathing was re-established. The animal is allowed to recover on the heating pad by gradually lowering anesthesia. The intensity of pressure overload created by constriction of the ascending aorta is determined by recording the pressure gradient using trans-thoracic two dimensional Doppler-echocardiography. Overall this protocol is useful to study the remodeling events and contractile properties of the heart during the gradual onset and progression from compensated cardiac hypertrophy to heart failure stage. PMID:24998889

  17. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations.

    PubMed

    Monette, Jeffrey S; Gómez, Luis A; Moreau, Régis F; Bemer, Brett A; Taylor, Alan W; Hagen, Tory M

    2010-07-23

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other. PMID:20599536

  18. Characteristics of the Rat Cardiac Sphingolipid Pool in Two Mitochondrial Subpopulations

    PubMed Central

    Monette, Jeffrey S.; Gómez, Luis A.; Moreau, Régis F.; Bemer, Brett A.; Taylor, Alan W.; Hagen, Tory M.

    2010-01-01

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary (IFM) and subsarcolemmal (SSM) mitochondria were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (~10,000 pmols/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (~70 pmols/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16 to 24 carbon units in their acyl side-chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmols/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other. PMID:20599536

  19. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.

    PubMed

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A B; Maguire, Mahon L; Whittington, Hannah J; Lygate, Craig A; Kohl, Peter; Schneider, Jürgen E

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  20. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

    PubMed Central

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A. B.; Maguire, Mahon L.; Whittington, Hannah J.; Lygate, Craig A.; Kohl, Peter; Schneider, Jürgen E.

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  1. Effect of valsartan on cardiac senescence and apoptosis in a rat model of cardiotoxicity.

    PubMed

    Sakr, Hussein F; Abbas, Amr M; Elsamanoudy, Ayman Z

    2016-06-01

    The clinical application of doxorubicin is limited by its cardiotoxicity. The present study investigated the effect of valsartan on doxorubicin-induced cardiotoxicity in rats. Rats were divided into 6 groups: control, control + valsartan (10 mg/kg, for 14 days, orally), doxorubicin-treated (2.5 mg/kg, 3 times/week for 2 weeks, intraperitoneally), valsartan then doxorubicin, valsartan + doxorubicin, and doxorubicin then valsartan. ECG, isolated heart, lipid peroxidation (thiobaribituric acid reactive substances (TBARS)), total antioxidant capacity (TAC), and Bax, Bcl-2, and senescence marker protein 30 (SMP30) gene expression were measured in cardiac tissue. Blood samples were collected to measure lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB). Doxorubicin significantly increased LDH, CK-MB, TBARS, heart rate (HR), Bax gene expression, and -dP/dtmax and decreased TAC, Bcl-2 and SMP30 gene expression, left ventricular developed pressure (LVDP), and +dP/dtmax. Also, doxorubicin lengthened ST, QT, and QTc intervals. Concurrent or post- but not pre-treatment of doxorubicin-treated rats with valsartan reduced LDH, CK-MB, TBARS, HR, Bax gene expression, -dP/dtmax, and ST, QT, and QTc intervals and increased TAC, Bcl-2 and SMP30 gene expression, LVDP, and +dP/dtmax. Therefore, we conclude that concurrent or post- but not pre-treatment of doxorubicin-induced rats with valsartan attenuated doxorubicin-induced cardiotoxicity through inhibiting oxidative stress, apoptosis, and senescence. PMID:26974593

  2. Influence of selenium deficiency on rat cardiac glutathione metabolism during hydroperoxide infusion

    SciTech Connect

    Taylor, M.A.; Hill, K.E.; Burk, R.F.

    1986-03-01

    Selenium-deficient (O Se) rats have decreased cardiac glutathione peroxidase (GSH-Px) activity. As a result, hydroperoxides cannot be detoxified effectively. The authors examined the effect of t-butylhydroperoxide (BuOOH) infusion on cardiac glutathione (G) pools in O Se and control (C) isolated perfused hearts. Hearts from male rats were perfused with oxygenated Krebs-Henseleit buffer by the Langendorff method. After 20 min, 30 ..mu..M BuOOH was infused for 20 min. The heart was freeze-clamped and intracellular GSH, GSSG and GSH-protein mixed disulfide (PS-SG) concentrations were determined. Recoverable G from hearts perfused with buffer only was 1180 + 180 nmol/g and 1340 +/- 95 nmol/g for C and O Se, respectively. C hearts had a 65% decrease in GSH. This was accounted for by GSSG and PS-SG formation and GSSG release to the perfusate. BuOOH infusion into the O Se heart did not increase intracellular GSSG, but decreased GSH by 24%. The fall in GSH was not accounted for by PS-SG or by GSH or GSSG release to the perfusate. These results suggest that there is a mechanism other than GSH-Px by which GSH and hydroperoxides interact in the O Se heart.

  3. Induction of tolerance to cardiac allografts in lethally irradiated rats reconstituted with syngeneic bone marrow

    SciTech Connect

    Hartnett, L.C.

    1983-01-01

    Generally, organ grafts from one individual animal to another are rejected in one-two weeks. However, if the recipients are given Total Body Irradiation (TBI) just prior to grafting, followed by reconstitution of hemopoietic function with syngeneic (recipient-type) bone marrow cells, then vascularized organ grafts are permanently accepted. Initially after irradiation, it is possible to induce tolerance to many strain combinations in rats. This thesis examines the system of TBI as applied to the induction of tolerance in LEW recipients of WF cardiac allografts. These two rat strains are mismatched across the entire major histocompatibility complex. When the LEW recipient are given 860 rads, a WF cardiac allograft and LEW bone marrow on the same day, 60% of the grafts are accepted. Methods employed to improve the rate of graft acceptance include: treating either donor or recipient with small amounts of methotrexate, or waiting until two days after irradiation to repopulate with bone marrow. It seems from these investigations of some of the early events in the induction of tolerance to allografts following TBI and syngeneic marrow reconstitution that an immature cell population in the bone marrow interacts with a radioresistant cell population in the spleen to produce tolerance to completely MHC-mismatched allografts.

  4. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    PubMed Central

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; de Cabo, Rafael; Ingram, Donald K.; Mattison, Julie A.

    2009-01-01

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound. PMID:20026095

  5. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    SciTech Connect

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; Cabo, Rafael de; Ingram, Donald K.; Mattison, Julie A.

    2010-03-15

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  6. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    PubMed

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart. PMID:24491919

  7. Effects of glutamine treatment on myocardial damage and cardiac function in rats after severe burn injury

    PubMed Central

    Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi

    2012-01-01

    Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promotedthe synthesis of ATP and GSH in cardiac myocytes. PMID:22977661

  8. Sulfur Dioxide Contributes to the Cardiac and Mitochondrial Dysfunction in Rats.

    PubMed

    Qin, Guohua; Wu, Meiqiong; Wang, Jiaoxia; Xu, Zhifang; Xia, Jin; Sang, Nan

    2016-06-01

    Epidemiological studies have demonstrated an association between sulfur dioxide (SO2) and an increase of morbidity and mortality of cardiovascular diseases, such as ischemic heart disease, heart failure, and arrhythmia. Mitochondrion is the most sensitive organelle in myocardium of animals exposed to SO2 Here we study the molecular characterization of mitochondrial dysfunction in cardiac muscles of rat after SO2 exposure. We found that the cytochrome c oxidase (COX) activity, mitochondrial membrane potential (ΔΨm), ATP contents, mitochondrial DNA (mtDNA) contents, and mRNA expression of complexes IV and V subunits encoded by mtDNA were decreased after NaHSO3 treatment in vitro or SO2 inhalation in vivo The mitochondrial dysfunctions were accompanied by depressions of co-activator of peroxisome proliferator activated receptor gamma (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (TFAM) mRNA and protein. We observed swollen mitochondria and lower amounts of cristae in hearts of rats after 3.5 mg/m(3) SO2 inhalation for 30 days. Interestingly, NaHSO3 induced mitochondrial dysfunctions marked by ΔΨm and ATP reduction could be inhibited by an antioxidant N-acetyl-L-cysteine (NALC), accompanied by the restoration of transcriptional factors expressions. The cardiac mitochondrial dysfunctions could also be alleviated by overexpression of TFAM. SO2 induced abnormal left ventricular function was restored by NALC in vivo Our findings demonstrate that SO2 induces cardiac and mitochondrial dysfunction. And inhibition of reactive oxygen species and enhancing the transcriptional network controlling mitochondrial biogenesis can mitigate the SO2-induced mitochondrial dysfunction. PMID:26980303

  9. High affinity ( sup 3 H)glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    SciTech Connect

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D. )

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea (3H) glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of (3H) glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer (3H)glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of (3H)glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats.

  10. Isolation and Culture of Adult Mouse Cardiomyocytes for Cell Signaling and in vitro Cardiac Hypertrophy

    PubMed Central

    Li, Daxiang; Wu, Jian; Bai, Yan; Zhao, Xiaochen; Liu, Lijun

    2014-01-01

    Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes’ terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice. PMID:24894542

  11. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    SciTech Connect

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.

  12. Dynamic Measurement of Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study

    PubMed Central

    Thanachartwet, Vipa; Wattanathum, Anan; Sahassananda, Duangjai; Wacharasint, Petch; Chamnanchanunt, Supat; Khine Kyaw, Ei; Jittmittraphap, Akanitt; Naksomphun, Mali; Surabotsophon, Manoon; Desakorn, Varunee

    2016-01-01

    Few previous studies have monitored hemodynamic parameters to determine the physiological process of dengue or examined inferior vena cava (IVC) parameters to assess cardiac preload during the clinical phase of dengue. From January 2013 to July 2015, we prospectively studied 162 hospitalized adults with confirmed dengue viral infection using non-invasive cardiac output monitoring and bedside ultrasonography to determine changes in hemodynamic and IVC parameters and identify the types of circulatory shock that occur in patients with dengue. Of 162 patients with dengue, 17 (10.5%) experienced dengue shock and 145 (89.5%) did not. In patients with shock, the mean arterial pressure was significantly lower on day 6 after fever onset (P = 0.045) and the pulse pressure was significantly lower between days 4 and 7 (P<0.05). The stroke volume index and cardiac index were significantly decreased between days 4 and 15 and between days 5 and 8 after fever onset (P<0.05), respectively. A significant proportion of patients with dengue shock had an IVC diameter <1.5 cm and IVC collapsibility index >50% between days 4 and 5 (P<0.05). Hypovolemic shock was observed in 9 (52.9%) patients and cardiogenic shock in 8 (47.1%), with a median (interquartile range) time to shock onset of 6.0 (5.0–6.5) days after fever onset, which was the median day of defervescence. Intravascular hypovolemia occurred before defervescence, whereas myocardial dysfunction occurred on the day of defervescence until 2 weeks after fever onset. Hypovolemic shock and cardiogenic shock each occurred in approximately half of the patients with dengue shock. Therefore, dynamic measures to estimate changes in hemodynamic parameters and preload should be monitored to ensure adequate fluid therapy among patients with dengue, particularly patients with dengue shock. PMID:27196051

  13. Conventional hemofiltration during cardiopulmonary bypass increases the serum lactate level in adult cardiac surgery

    PubMed Central

    Soliman, Rabie; Fouad, Eman; Belghith, Makhlouf; Abdelmageed, Tarek

    2016-01-01

    Objective: To evaluate the effect of hemofiltration during cardiopulmonary bypass on lactate level in adult patients who underwent cardiac surgery. Design: An observational study. Setting: Prince Sultan cardiac center, Riyadh, Saudi Arabia. Participants: The study included 283 patients classified into two groups: Hemofiltration group (n=138), hemofiltration was done during CPB. Control group (n = 145), patients without hemofiltration. Interventions: Hemofiltration during cardiopulmonary bypass. Measurements and Main Results: Monitors included hematocrit, lactate levels, mixed venous oxygen saturation, amount of fluid removal during hemofiltration and urine output. The lactate elevated in group H than group C (P < 0.05), and the PH showed metabolic acidosis in group H (P < 0.05). The mixed venous oxygen saturation decreased in group H than group C (P < 0.05). The number of transfused packed red blood cells was lower in group H than group C (P < 0.05). The hematocrit was higher in group H than group C (P < 0.05). The urine output was lower in group H than group C (P < 0.05). Conclusions: Hemofiltration during cardiopulmonary bypass leads to hemoconcentration, elevated lactate level and increased inotropic support. There are some recommendations for hemofiltration: First; Hemofiltration should be limited for patients with impaired renal function, positive fluid balance, reduced response to diuretics or prolonged bypass time more than 2 hours. Second; Minimal amount of fluids should be administered to maintain adequate cardiac output and reduction of priming volumes is preferable to maintain controlled hemodilution. Third; it should be done before weaning of or after cardiopulmonary bypass and not during the whole time of cardiopulmonary bypass. PMID:26750673

  14. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny.

    PubMed

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A; Chalifour, Lorraine E

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5-14.5. At 3months, male progeny were left sedentary or were swim trained for 4weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. PMID:23142472

  15. Ambiguous response of lung lamellar bodies to sauna-like heat stress in two age groups of adult male rats.

    PubMed

    Heino, M E

    1980-06-01

    Two groups of adult male rats, aged 2.5 and 5 months, were exposed daily for 12 min to 65 degrees C for five successive periods a week for 6 weeks. Both age groups, and in particular the young one, repeatedly suffered from exhausting heat stress. Lung specimens from cardiac lobes were prepared for light- and electron-microscopy. A significnat increase was noted in the lung lamellar body number in the old test rats, on comparison with old ones employed as controls (p < 0.05). The young group was unresponsive. Consequently, stress induced by increased sympathetic activity is not always a direct stimulus, as had been thought earlier. It seems, at least where heat stress is concerned, that it is the age, weight, and systemic reactions which exercise a great influence upon lamellar body production, and may even overrule the role of sympathetic activity. PMID:7417113

  16. Isolated rat cardiac myocytes as an experimental model to study calcium overload: the effect of calcium-entry blockers.

    PubMed

    Donck, L V; Pauwels, P J; Vandeplassche, G; Borgers, M

    1986-03-01

    Calcium overload and the effect of a series of calcium-entry blockers were studied in isolated adult cardiac myocytes from the rat challenged with veratrine. The isolation procedure resulted in a high yield of individual rod shaped, calcium tolerant myocytes. After incubation with veratrine, an alkaloid which induces both sodium and calcium influx, 93% of the myocytes became calcium intolerant: the quiescent rod shaped cells vigorously contracted after 30 sec of contact with veratrine and contracture (round cells) ensued within 1 min. Exposure for 30 min to various doses of calcium-entry blockers prior to veratrine addition resulted in the prevention of contracture, the degree of protection depending on the type and the concentration of calcium-entry blocker. Among the different calcium-entry blockers tested, the diarylalkylpiperazines lidoflazine, cinnarizine and flunarizine were protective from the 10(-7) M concentration onwards. Nicardipine was protective at the 10(-6) M and 10(-5) M concentrations, verapamil at 10(-5)M only while other blockers of the "slow channel" type (diltiazem and nifedipine) were not protective in the concentration range tested. This study shows that isolated myocytes represent a valid model for pharmacological investigations. The results with the calcium-entry blockers stress the heterogeneity of the different series of calcium-entry blockers. PMID:3951332

  17. Plasma Fatty Acid Binding Protein 4 and Risk of Sudden Cardiac Death in Older Adults

    PubMed Central

    Djoussé, Luc; Maziarz, Marlena; Biggs, Mary L.; Ix, Joachim H.; Zieman, Susan J.; Kizer, Jorge R.; Lemaitre, Rozenn N.; Mozaffarian, Dariush; Tracy, Russell P.; Mukamal, Kenneth J.; Siscovick, David S.; Sotoodehnia, Nona

    2013-01-01

    Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95–1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07–1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62–1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted. PMID:24455402

  18. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. PMID:16380640

  19. Effect of exercise training on cardiac oxytocin and natriuretic peptide systems in ovariectomized rats.

    PubMed

    Gutkowska, Jolanta; Paquette, Amélie; Wang, Donghao; Lavoie, Jean-Marc; Jankowski, Marek

    2007-07-01

    Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training. PMID:17475680

  20. [Effect of carvedilol in the combination with quercetine and tiotriazoline on the nucleus density and RNA concentration in the nucleus of cardiac myocytes of spontaneous hypertensive rats].

    PubMed

    Zahorodnyĭ, M I

    2010-01-01

    It was found out in the previous studies, that rats with spontaneous hypertension (SHR) developed the hypertrophy of myocardium, disorders of osmotic properties of erythrocytes membranes, morphological and ultrastructural changes in the cardiac hystiocytes of animals. Carvedilol in SHR rats has decreased blood pressure, and normalized physiological, biochemical and morphological indexes in the cardiac muscle. More expressed effect was observed during the use of carvedilol with metabolic medications--Quercetine and Tiotriazoline. Studies on SHR rats has shown increase of cardiac hystiocyte nuclei density and decrease in RNA concentration in a cardiac muscle. Carvedilol, Quercetine and Tiotriazoline have normalising effect on investigated parameters. The use of carvedilol with Tiotriazoline have more expressed normalising effect on nuclei density of cardiac hystiocytes, and also on RNA concentration PHK in nuclei of cardiac muscle. PMID:21265126

  1. Mesenteric lymph flow in adult and aged rats.

    PubMed

    Akl, Tony J; Nagai, Takashi; Coté, Gerard L; Gashev, Anatoliy A

    2011-11-01

    The objective of study was to evaluate the aging-associated changes, contractile characteristics of mesenteric lymphatic vessels (MLV), and lymph flow in vivo in male 9- and 24-mo-old Fischer-344 rats. Lymphatic diameter, contraction amplitude, contraction frequency, and fractional pump flow, lymph flow velocity, wall shear stress, and minute active wall shear stress load were determined in MLV in vivo before and after N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME) application at 100 μM. The active pumping of the aged rat MLV in vivo was found to be severely depleted, predominantly through the aging-associated decrease in lymphatic contractile frequency. Such changes correlate with enlargement of aged MLV, which experienced much lower minute active shear stress load than adult vessels. At the same time, pumping in aged MLV in vivo may be rapidly increased back to levels of adult vessels predominantly through the increase in contraction frequency induced by nitric oxide (NO) elimination. Findings support the idea that in aged tissues surrounding the aged MLV, the additional source of some yet unlinked lymphatic contraction-stimulatory metabolites is counterbalanced or blocked by NO release. The comparative analysis of the control data obtained from experiments with both adult and aged MLV in vivo and from isolated vessel-based studies clearly demonstrated that ex vivo isolated lymphatic vessels exhibit identical contractile characteristics to lymphatic vessels in vivo. PMID:21873496

  2. EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH ON INDICES OF CARDIAC, PULMONARY, AND THERMOREGULATORY FUNCTION IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory


    EFFECTS OF INSTILLED RESIDUAL OIL FLY ASH (ROFA) ON INDICES OF CARDIAC, PULMONARY, AND THERMOREGULATORY FUNCTION IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. LB Wichers1, JP Nolan2, UP Kodavanti2, MCJ Schladweiler2, R Hauser3, DW Winsett2, DL Costa2, and WP Watkinson2. 1UNC Sch...

  3. EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH (ROFA) ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS

    EPA Science Inventory


    EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH (ROFA) ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. LB Wichers1, JP Nolan2, DW Winsett2, AD Ledbetter2, UP Kodavanti2, MCJ Schladweiler2, R Hauser3, DC Christiani3, DL Costa2, ...

  4. EFFECTS OF INDUCED RESPIRATORY CHANGES ON CARDIAC, VENTILATORY, AND THERMOREGULATORY PARAMETERS IN HEALTHY SPRAGUE-DAWLEY RATS

    EPA Science Inventory


    EFFECTS OF INDUCED RESPIRATORY CHANGES ON CARDIAC, VENTILATORY, AND THERMOREGULATORY PARAMETERS IN HEALTHY SPRAGUE-DAWLEY RATS. LB Wichers1, WH Rowan2, DL Costa2, MJ Campen3 and WP Watkinson2 1UNC SPH, Chapel Hill, NC, USA; 2USEPA, ORD/NHEERL/ETD/PTB, RTP, NC, USA; 3LRRI, A...

  5. Prenatal Cu intake by rat dams is the principle determinant of cardiac cytochrome c oxidase activity in their offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preceding studies have shown that cardiac cytochrome c oxidase (CCO) deficiency occurs in the offspring of Cu-deficient rats on postnatal days (PND) 15 and 21. In order to determine if the CCO deficiency resulted from low prenatal Cu intake rather than from low postnatal Cu intake, pups from dams fe...

  6. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    SciTech Connect

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  7. Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry.

    PubMed

    Sancho Solis, Raquel; Ge, Ying; Walker, Jeffery W

    2008-01-01

    Heterotrimeric cardiac troponin (cTn) is a critical component of the thin filament regulatory complex in cardiac muscle. Two of the three subunits, cTnI and cTnT, are subject to post-translational modifications such as proteolysis and phosphorylation, but linking modification patterns to function remains a major challenge. To obtain a global view of the biochemical state of cTn in native tissue, we performed high resolution top-down mass spectrometry of cTn heterotrimers from healthy adult rat hearts. cTn heterotrimers were affinity purified, desalted and then directly subjected to mass spectrometry using a 7 Tesla Thermo LTQ-FT-ICR instrument equipped with an ESI source. Molecular ions for N-terminally processed and acetylated cTnI and cTnT were readily detected as were other post-translationally modified forms of these proteins. cTnI was phosphorylated with a distribution of un-, mono- and bisphosphorylated forms of 41 +/- 3%, 46 +/- 1%, 13 +/- 3%, respectively. cTnT was predominantly monophosphorylated and partially proteolyzed at the Glu(29)-Pro(30) peptide bond. Also observed in high resolution spectra were 'shadow' peaks of similar intensity to 'parent' peaks exhibiting masses of cTnI+16 Da and cTnT+128 Da, subsequently shown by tandem mass spectrometry (MS/MS) to be single amino acid polymorphisms. Intact and protease-digested cTn subunits were fragmented by electron capture dissociation or collision activated dissociation to localize an Ala/Ser polymorphism at residue 7 of cTnI. Similar analysis of cTnT localized an additional Gln within a three residue alternative splice site beginning at residue 192. Besides being able to provide unique insights into the global state of post-translational modification of cTn subunits, high resolution top-down mass spectrometry readily revealed naturally occurring single amino acid sequence variants including a genetic polymorphism at residue 7 in cTnI, and an alternative splice isoform that affects a putative hinge region

  8. Perinatal undernutrition programmes thyroid function in the adult rat offspring.

    PubMed

    Ayala-Moreno, Rosario; Racotta, Radu; Anguiano, Brenda; Aceves, Carmen; Quevedo, Lucía

    2013-12-01

    Increasing evidence suggests that alterations in early nutrition programme physiological changes in adulthood. In the present study, we determined the effects of undernutrition during gestation and lactation on the programming of thyroid function in adult rat offspring. Perinatal undernutrition was achieved by a 40% food restriction in female Wistar rats from the mating day to weaning. On postpartum day 21, the offspring of the control and food-restricted dams were weaned and given free access to a commercial diet until adulthood. The results showed that undernourished rats exhibited decreased 3,5,3'-triiodothyronine (T3) levels but had normal thyroxine (T4) and thyrotropin (TSH) levels at weaning; on day 90, these rats displayed a significant flip, exhibiting normalised T3 (total and free) and total T4 levels, but low free T4 and persistently higher TSH levels, which were maintained even on postnatal day 140. This profile was accompanied by a scarce fat depot, a lower RMR and an exacerbated sympathetic brown adipose tissue (BAT) tone (deiodinase type 2 expression) in basal conditions. Moreover, when a functional challenge (cold exposure) was applied, the restricted group exhibited partial changes in TSH (29 v. 100%) and T4 (non-response v. 17%) levels, a significant decrease in leptin levels (75 v. 32%) and the maintenance of a sympathetic BAT over-response (higher noradrenaline levels) in comparison with the control group. The findings of the present study suggest that undernutrition during the perinatal period produces permanent changes in the hypothalamus-pituitary-thyroid axis with consequent low body weight and decreased RMR and facultative thermogenesis. We hypothesise that these changes predispose individuals to exhibiting adult subclinical hypothyroidism. PMID:23800456

  9. Cardiac histopathological and immunohistochemical changes due to electric injury in rats.

    PubMed

    Ghandour, Nagwa M; Refaiy, Abeer E; Omran, Ghada Ali

    2014-03-01

    It has been a puzzling forensic task to determine the cause of death as a result of electric shock in the absence of recognizable skin marks or definite postmortem morphological findings. In forensic pathology, while classical macroscopic and microscopic morphology remain core procedures to investigate deaths, a variety of subsidiary measures has been developed and incorporated to detail that pathology. C-fos, one of a small group of genes called primary response genes and its protein product, fos, are crucial elements of complex signaling mechanisms believed to be responsible for cell response to stimulation. It has been found that c-fos plays a significant role in myocardial lesions, and has close relation to injury repair of the molecule. The aim of this study was to detect the histopathological findings in the myocardium after fatal and non-fatal electrical injury in rats and to investigate the potential role of c-fos expression using immunohistochemistry to distinguish antemortem from postmortem electrocution. Forty adult female rats were implemented and randomly divided into four groups (A, B, C and D). Group (A) rats were subjected to instantaneous antemortem electricity and their hearts were collected either immediately (A₁) or after an hour (A₂) before being subjected to cervical dislocation. Group (B) rats were electrically injured instantaneously postmortem, hearts were collected immediately (B₁) or an hour later (B₂) while Group (C) rats were electrified up to death, and their hearts were also gathered either immediately (C₁) or after an hour (C₂) from electrocution. Lastly, another group of rats served as a control group (Group D). Subgroup (D₁): rats were clamped but not electrified, before death and another group of rats were clamped but not electrified, after being killed by cervical dislocation. Sections from the hearts of all groups were fixed in formalin and routinely processed. The c-fos oncogene expression was evaluated in all

  10. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure–prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM2.5 concentration: 500 µg/m3) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants. PMID:23047911

  11. Estrogen Therapy, Independent of Timing, Improves Cardiac Structure and Function in Oophorectomized mRen2.Lewis Rats

    PubMed Central

    Jessup, Jewell A.; Wang, Hao; MacNamara, Lindsay M.; Presley, Tennille D.; Kim-Shapiro, Daniel B.; Zhang, Lili; Chen, Alex F.; Groban, Leanne

    2013-01-01

    Objective mRen2.Lewis Rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment following the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide (NO) release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing chronic 17 β-estradiol (E2) therapy on myocardial function, structure, and the cardiac NO system. Methods Oophrectomy (OVX; n=24) or sham-operation (Sham; n=13) was performed in 4-week-old, female mRen2.Lewis rats. Following randomization, OVX rats received E2 immediately (OVX + early E2; n=7), E2 at 11 weeks of age (OVX + late E2 N=8), or no E2 at all (OVX N=9). Results Early E2 was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared to OVX rats without E2 supplementation. Late E2 similarly attenuated the adverse effects of ovarian hormone loss on tissue-Doppler derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation, or mitral annular velocity (e′). Early and late exposure to E2 decreased dihydrobiopterin, but only late E2 yielded significant increases in cardiac nitrite concentrations. Conclusions Although there were some similarities between early and late E2 treatment on preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 was most consistent with late supplementation. The cardioprotective effects of late E2 were independent of blood pressure and may have occurred through regulation of cardiac biopterins and NO production. PMID:23481117

  12. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury.

    PubMed

    Omiyi, Didi; Brue, Richard J; Taormina, Philip; Harvey, Margaret; Atkinson, Norrell; Young, Lindon H

    2005-08-01

    Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. A cell-permeable protein kinase C (PKC) betaII peptide inhibitor was used to test the hypothesis that PKC betaII inhibition could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs and increase NO release from vascular endothelium. The effects of the PKC betaII peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts with PMNs. The PKC betaII inhibitor (10 microM; n = 7) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 9) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indices (p < 0.01). The PKC betaII inhibitor at 10 microM significantly increased endothelial NO release from a basal value of 1.85 +/- 0.18 pmol NO/mg tissue to 3.49 +/- 0.62 pmol NO/mg tissue from rat aorta. It also significantly inhibited superoxide release (i.e., absorbance) from N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated rat PMNs from 0.13 +/- 0.01 to 0.02 +/- 0.004 (p < 0.01) at 10 microM. Histological analysis of the left ventricle of representative rat hearts from each group showed that the PKC betaII peptide inhibitor-treated hearts experienced a marked reduction in PMN vascular adherence and infiltration into the postreperfused cardiac tissue compared with I/R + PMN hearts (p < 0.01). These results suggest that the PKC betaII peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs. PMID:15878997

  13. Protective Effect of Dl-3-n-Butylphthalide on Recovery from Cardiac Arrest and Resuscitation in Rats.

    PubMed

    Zhang, Le; Puchowicz, Michelle A; LaManna, Joseph C; Xu, Kui

    2016-01-01

    In this study we investigated the effect of Dl-3-n-butylphthalide (NBP), a clinically used drug for stroke patients in China, on the recovery following cardiac arrest and resuscitation in rats. Male Wistar rats (3-month old) underwent cardiac arrest (12 min) and resuscitation. Rats were randomly assigned to the following groups: sham non-arrested group, vehicle group (vehicle-treated, 7 days before cardiac arrest and 4 days post-resuscitation), NBP pre-treated group (NBP-treated, 7 days before cardiac arrest), and NBP post-treated group (NBP-treated, 4 days post-resuscitation). Overall survival rates and hippocampal neuronal counts were determined in each group at 4 days post-resuscitation. Results showed that NBP pre-treated group (80 %) and NBP post-treated group (86 %) had significantly higher survival rates compared to that of the vehicle group (50 %). At 4 days of recovery, only about 20 % of hippocampal neurons were preserved in the vehicle group compared to the sham non-arrested group. The hippocampal CA1 cell counts in the NBP pre-treated group and NBP post-treated group were significantly higher than the counts in the vehicle group, about 50-60 % of the counts of non-arrested rats. The data suggest that NBP has both preventive and therapeutic effect on improving outcome following cardiac arrest and resuscitation, and NBP might be a potential early phase treatment for patients recovered from cardiac arrest and resuscitation. PMID:27526121

  14. Cellular Mechanism of the Nonmonotonic Dose Response of Bisphenol A in Rat Cardiac Myocytes

    PubMed Central

    Liang, Qian; Gao, Xiaoqian; Chen, Yamei; Hong, Kui

    2014-01-01

    Background: The need for mechanistic understanding of nonmonotonic dose responses has been identified as one of the major data gaps in the study of bisphenol A (BPA). Previously we reported that acute exposure to BPA promotes arrhythmogenesis in female hearts through alteration of myocyte Ca2+ handling, and that the dose response of BPA was inverted U-shaped. Objective: We sought to define the cellular mechanism underlying the nonmonotonic dose response of BPA in the heart. Methods: We examined rapid effects of BPA in female rat ventricular myocytes using video-edge detection, confocal and conventional fluorescence imaging, and patch clamp. Results: The rapid effects of BPA in cardiac myocytes, as measured by multiple end points, including development of arrhythmic activities, myocyte mechanics, and Ca2+ transient, were characterized by nonmonotonic dose responses. Interestingly, the effects of BPA on individual processes of myocyte Ca2+ handling were monotonic. Over the concentration range of 10–12 to 10–6 M, BPA progressively increased sarcoplasmic reticulum (SR) Ca2+ release and Ca2+ reuptake and inhibited the L-type Ca2+ current (ICaL). These effects on myocyte Ca2+ handling were mediated by estrogen receptor (ER) β signaling. The nonmonotonic dose responses of BPA can be accounted for by the combined effects of progressively increased SR Ca2+ reuptake/release and decreased Ca2+ influx through ICaL. Conclusion: The rapid effects of BPA on female rat cardiac myocytes are characterized by nonmonotonic dose responses as measured by multiple end points. The nonmonotonic dose response was produced by ERβ-mediated monotonic effects on multiple cellular Ca2+ handling processes. This represents a distinct mechanism underlying the nonmonotonicity of BPA’s actions. Citation: Liang Q, Gao X, Chen Y, Hong K, Wang HS. 2014. Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac myocytes. Environ Health Perspect 122:601–608;

  15. Chronic Testosterone Replacement Exerts Cardioprotection against Cardiac Ischemia-Reperfusion Injury by Attenuating Mitochondrial Dysfunction in Testosterone-Deprived Rats

    PubMed Central

    Pongkan, Wanpitak; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2015-01-01

    Background Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R) periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV) function and heart rate variability (HRV), and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX) rats. Methodology ORX or sham-operated male Wistar rats (n = 24) were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered) or the vehicle for 8 weeks. The ejection fraction (EF) and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. Results Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats. Conclusions Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats. PMID:25822979

  16. PARM-1 Is an Endoplasmic Reticulum Molecule Involved in Endoplasmic Reticulum Stress-Induced Apoptosis in Rat Cardiac Myocytes

    PubMed Central

    Isodono, Koji; Takahashi, Tomosaburo; Imoto, Hiroko; Nakanishi, Naohiko; Ogata, Takehiro; Asada, Satoshi; Adachi, Atsuo; Ueyama, Tomomi; Oh, Hidemasa; Matsubara, Hiroaki

    2010-01-01

    To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1). While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER). In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease. PMID:20305782

  17. Milrinone enhances cytosolic calcium transient and contraction in rat cardiac myocytes during beta-adrenergic stimulation.

    PubMed

    Raffaeli, S; Ferroni, C; Spurgeon, H A; Capogrossi, M C

    1989-01-01

    We have investigated the mechanism that underlies the absence of a positive inotropic effect of milrinone on rat myocardium. The twitch characteristics of enzymatically dissociated left ventricular myocytes from the adult rat and guinea pig were assessed by edge tracking during field stimulation. In some rat myocytes loaded with the ester derivative of the Ca2+ probe Indo-1 we simultaneously measured changes in cell length and in the associated cytosolic Ca2+ (Cai) transient. Our results show that in guinea pig myocytes bathed in 0.5 mM [Ca2+] and field stimulated at 1 Hz, milrinone (10 microM) had a positive inotropic effect. In contrast milrinone had no effect on the contractile properties of rat myocytes studied under similar conditions and field stimulated at 0.2 Hz. In rat myocytes bathed in 0.5 mM [Ca2+] and stimulated at 0.2 Hz isoproterenol (1 nM) increased the amplitude and shortened the duration of the contraction and of the associated Cai transient; these effects of beta-adrenergic stimulation were further enhanced by the addition of milrinone (10 microM) in the presence of isoproterenol. Under conditions of higher cell Ca2+ loading achieved by raising bathing [Ca2+] to 1 mM and isoproterenol to 3 nM the positive inotropic effect of milrinone (10 microM) in rat myocytes saturated when spontaneous oscillatory Ca2+ release appeared in the diastolic intervals between electrically stimulated twitches. Our results suggest that an enhancement in the baseline beta-adrenergic stimulation is required for milrinone to exercise a positive inotropic action on rat myocardial tissue. PMID:2576017

  18. Alcohol exposure in utero perturbs retinoid homeostasis in adult rats

    PubMed Central

    Kim, Youn-Kyung; Zuccaro, Michael V.; Zhang, Changqing; Sarkar, Dipak

    2015-01-01

    Background Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified. Disruption of tissue retinoid homeostasis has been linked not only to abnormal embryonic development, but also to various adult pathological conditions, including cancer, metabolic disorders and abnormal lung function. We hypothesized that prenatal alcohol exposure may permanently perturb tissue retinoid metabolism, predisposing the offspring to adult chronic diseases. Methods Serum and tissues (liver, lung and prostate from males; liver and lung from females) were collected from 60-75 day-old sprague dawley rats born from dams that were: (I) fed a liquid diet containing 6.7% alcohol between gestational day 7 and 21; or (II) pair-fed with isocaloric liquid diet during the same gestational window; or (III) fed ad libitum with regular rat chow diet throughout pregnancy. Serum and tissue retinoid levels were analyzed by reverse-phase high-performance liquid chromatography (HPLC). Serum retinol-binding protein (RBP) levels were measured by western blot analysis, and liver, lung and prostate mRNA levels of lecithin-retinol acyltransferase (LRAT) were measured by qPCR. Results Retinyl ester levels were significantly reduced in the lung of both males and females, as well as in the liver and ventral prostate of males born from alcohol-fed dams. Tissue LRAT mRNA levels remained unchanged upon maternal alcohol treatment. Conclusions Prenatal alcohol exposure in rats affects retinoid metabolism in adult life, in a tissue- and sex

  19. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin

    PubMed Central

    2013-01-01

    Background To study the pathogenesis of diabetic cardiomyopathy, reliable animal models of type 2 diabetes are required. Physiologically relevant rodent models are needed, which not only replicate the human pathology but also mimic the disease process. Here we characterised cardiac metabolic abnormalities, and investigated the optimal experimental approach for inducing disease, in a new model of type 2 diabetes. Methods and results Male Wistar rats were fed a high-fat diet for three weeks, with a single intraperitoneal injection of low dose streptozotocin (STZ) after fourteen days at 15, 20, 25 or 30 mg/kg body weight. Compared with chow-fed or high-fat diet fed control rats, a high-fat diet in combination with doses of 15–25 mg/kg STZ did not change insulin concentrations and rats maintained body weight. In contrast, 30 mg/kg STZ induced hypoinsulinaemia, hyperketonaemia and weight loss. There was a dose-dependent increase in blood glucose and plasma lipids with increasing concentrations of STZ. Cardiac and hepatic triglycerides were increased by all doses of STZ, in contrast, cardiac glycogen concentrations increased in a dose-dependent manner with increasing STZ concentrations. Cardiac glucose transporter 4 protein levels were decreased, whereas fatty acid metabolism-regulated proteins, including uncoupling protein 3 and pyruvate dehydrogenase (PDH) kinase 4, were increased with increasing doses of STZ. Cardiac PDH activity displayed a dose-dependent relationship between enzyme activity and STZ concentration. Cardiac insulin-stimulated glycolytic rates were decreased by 17% in 15 mg/kg STZ high-fat fed diabetic rats compared with control rats, with no effect on cardiac contractile function. Conclusions High-fat feeding in combination with a low dose of STZ induced cardiac metabolic changes that mirror the decrease in glucose metabolism and increase in fat metabolism in diabetic patients. While low doses of 15–25 mg/kg STZ induced a type 2 diabetic

  20. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  1. Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system.

    PubMed

    Brown, L; Duce, B; Miric, G; Sernia, C

    1999-01-01

    Fibrosis impairs cardiac function. This project has determined the expression and deposition of collagens and fibronectin and cardiac function in the deoxycorticosterone acetate (DOCA)-salt hypertensive rat after inhibition of the renin-angiotensin system. DOCA-salt hypertension was induced in 8-wk-old male Wistar rats by uninephrectomy and administration of DOCA (25 mg every fourth day, subcutaneously) and 1% NaCl in the drinking water for 4 wk. Starting 2 wk after surgery, rats were given either oral captopril (100 mg/kg), oral candesartan cilexetil (2 mg/kg), or subcutaneous spironolactone (50 mg/kg) daily for 2 wk (reversal protocol). DOCA-salt rats failed to gain weight with markedly increased water intake and decreased food intake; drug treatment did not alter these parameters. Systolic BP increased from 116+/-5 mmHg in uninephrectomized rats to 179+/-7 mmHg in DOCA-salt rats and was not decreased by treatment (captopril 172+/-1 mmHg; candesartan 187+/-2 mmHg; spironolactone 178+/-3 mmHg). Captopril, candesartan, and spironolactone reversed the increased collagen I mRNA in DOCA-salt rats; only candesartan reversed the increased collagen III mRNA. Collagen IV mRNA was unchanged in DOCA-salt rats and following treatment. Total fibronectin mRNA increased without changing the proportion of fibronectin mRNA as the fetal isoforms EIIIA and EIIIB. Captopril, candesartan, and spironolactone reversed the increased deposition of perivascular and interstitial collagen in DOCA-salt rats; the increased cardiac fibronectin deposition was reversed by candesartan and spironolactone. Captopril, candesartan, and spironolactone also attenuated or reversed the increased diastolic stiffness and the increased dP/dt but not the increased rate-pressure products in DOCA-salt rat hearts. Thus, inhibition of the renin-angiotensin system reverses cardiac fibrosis in DOCA-salt rats and returns some indices of myocardial function to normal. PMID:9892155

  2. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  3. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  4. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  5. Implementation of near-infrared spectroscopy in a rat model of cardiac arrest and resuscitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan G.; Xiao, Feng; Ferrara, Davon; Ewing, Jennifer; Zhang, Shu; Alexander, Steven; Battarbee, Harold

    2002-07-01

    Transient global cerebral ischemia accompanying cardiac arrest (CA) often leads to permanent brain damage with poor neurological outcome. The precise chain of events underlying the cerebral damage after CA is still not fully understood. Progress in this area may profit from the development of new non-invasive tools that provide real-time information on the vascular and cellular processes preceding the damage. One way to assess these processes is through near-IR spectroscopy, which has demonstrated the ability to quantify changes in blood volume, hemoglobin oxygenation, cytochrome oxidase redox state, and tissue water content. Here we report on the successful implementation of this form of spectroscopy in a rat model of asphyxial CA and resuscitation, under hypothermic and normothermic conditions. Preliminary results are shown that provide a new temporal insight into the cerebral circulation during CA and post-resuscitation.

  6. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure.

    PubMed

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  7. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure

    PubMed Central

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  8. The cardiac effects of prolonged vitamin B12 and folate deficiency in rats.

    PubMed

    Taban-Shomal, Omid; Kilter, Heiko; Wagner, Alexandra; Schorr, Heike; Umanskaya, Natalia; Hübner, Ulrich; Böhm, Michael; Herrmann, Wolfgang; Herrmann, Markus

    2009-06-01

    In the recent past, hyperhomocysteinemia (HHCY) has been linked to chronic heart failure. Folate and vitamin B12 deficiencies are the common causes of HHCY. The impact of these vitamins on cardiac function and morphology has scarcely been investigated. The aim of this study was to conduct an analysis of the cardiac effect of folate and vitamin B12 deficiency in vivo. Two groups of rats, a control (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10), were fed for 12 weeks with a folate and vitamin B12-free diet or an equicaloric control diet. Plasma and tissue concentrations of HCY, S-adenosyl-homocysteine (SAH), S-adenosyl-methionine (SAM), and brain natriuretic peptide (BNP) were measured. Moreover, echocardiographic and histomorphometric analyses were performed. VitDef animals developed a significant HHCY (Co vs VitDef: 6.8 +/- 2.7 vs 61.1 +/- 12.8 micromol/l, P < 0.001). Fractional shortening, left ventricular dimension at end-diastole and end-systole, posterior wall thickness, perivascular collagen, mast cell number, and BNP tissue levels were comparable in VitDef and Co animals. Interstitial collagen (Co vs VitDef: 6.8 +/- 3.0 vs 4.5 +/- 2.1%, P < 0.05), plasma BNP (Co vs VitDef: 180 +/- 80 vs 70 +/- 60 ng/l, P < 0.05), and tissue HCY (Co vs VitDef: 0.13 +/- 0.07 vs 0.07 +/- 0.04 micromol/g protein, P < 0.05) were lower in VitDef animals. Folate and vitamin B12 deficiency do not affect cardiac function and morphology. PMID:19399644

  9. Variability in interbeat duration influences myocardial contractility in rat cardiac trabeculae.

    PubMed

    Torres, Carlos A A; Varian, Kenneth D; Janssen, Paul M L

    2008-01-01

    There is an intense search for positive inotropic strategies. It is well known that the interbeat duration is a critical determinant of cardiac contractility. Generally, when frequency increases, so does contractile strength. We hypothesize that the beat-to-beat variability at a given heart rate also modulates cardiac contractility. To test this hypothesis, thin, uniform rat cardiac trabeculae were isolated from the right ventricle and stimulated to isometrically contract, alternating between fixed steady state versus variable inter-beat intervals (same total number of beats in each period). Trabeculae were stimulated at 4 Hz with interbeat variation between 20 and 120% (n=17). In a second series of experiments trabeculae were stimulated at 3 different physiologic frequencies with a 40% interbeat variation. Fixed rate response was measured before and after each variable period and average force was calculated. In order to investigate the mechanism underlying the changes in contractility we used iontophoretically loaded bis-fura-2 salt to monitor intracellular calcium transients. We observed no significant change in force at 4 Hz (n=17), and 6 Hz (n=6) between fixed and variable pacing but observed a significant, 10% increase in contractile strength at 8 Hz (from 15.1 to 16.5 mN/mm(2), p<0.05, n=6). Our results show that under certain conditions, by simply introducing variation in the beat-to-beat duration without affecting the number of beats per minute, a positive inotropic effect with corresponding changes in the calcium transients can be generated. PMID:19440237

  10. TIN DISTRIBUTION IN ADULT RAT TISSUES AFTER EXPOSURE TO TRIMETHYLTIN AND TRIETHYLTIN

    EPA Science Inventory

    The time course of distribution of tin in the adult rat was determined in brain, liver kidney, heart, and blood following single ip administrations of trimethyltin hydroxide (TMT) and triethyltin bromide (TET). Adult Long-Evans rats were killed 1 hr, 4 hr, 12 hr, 24 hr, 5 days, 1...

  11. DERMAL PENETRATION OF [14C] CAPTAN IN YOUNG AND ADULT RATS

    EPA Science Inventory

    Dermal penetration of [14C] Captan was determined in young (33 day old) and adult (82 day old) female Fischer 344 rats by an in vivo method and two in vitro methods. ermal penetration in vivo at 72 hours was about 9% of the dose in both young and adult rats. o significant differe...

  12. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  13. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  14. Decline of taste sensitivity in protein deficient adult rats.

    PubMed

    Ohara, I; Tabuchi, R; Kimura, M; Itokawa, Y

    1995-05-01

    The influence of dietary protein levels on taste sensitivity was studied in adult rats. Low protein diets of 0.0, 2.5, or 5.0% purified egg protein (PEP) were fed to animals for 28 days. Two bottle choice preference tests between aqueous solutions of either 2, 9, 17, or 86 mM sodium chloride and deionized water were conducted in an ascending order on days 14, 16, 18, and 20. Urine samples were collected for zinc and creatinine analysis. Blood samples were also collected for measuring serum zinc and creatinine concentrations. Scanning electron microscopy was performed to observe rats' tongue epithelia. Protein free diet group showed significantly lower taste sensitivity and renal reabsorption rate than other protein containing diet groups, while serum zinc and creatinine concentrations, and creatinine clearance were not affected by dietary protein level. Degeneration of filiform papillae and imperforation of taste pore of fungiform papillae were observed in protein free diet group. This experiment implies at least 2.5% dietary protein is required to manifest normal taste function in the adult. PMID:7610145

  15. Age-associated changes in beta-adrenergic modulation on rat cardiac excitation-contraction coupling.

    PubMed Central

    Xiao, R P; Spurgeon, H A; O'Connor, F; Lakatta, E G

    1994-01-01

    Previous studies have demonstrated that the ability of beta-adrenergic receptor (beta AR) stimulation to increase cardiac contractility declines with aging. In the present study, the control mechanisms of excitation-contraction (EC) coupling, including calcium current (ICa), cytosolic Ca2+ (Cai2+) transient and contraction in response to beta AR stimulation were investigated in ventricular myocytes isolated from rat hearts of a broad age range (2, 6-8, and 24 mo). While the baseline contractile performance and the Cai2+ transient did not differ markedly among cells from hearts of all age groups, the responses of the Cai2+ transient and contraction to beta-adrenergic stimulation by norepinephrine (NE) diminished with aging: the threshold concentration and the ED50 increased in rank order with aging; the maximum responses of contraction and Cai2+ transient decreased with aging. Furthermore, the efficacy of beta AR stimulation to increase ICa was significantly reduced with aging, and the diminished responses of the contraction and Cai2+ transient amplitudes to NE were proportional to the reductions in the ICa response. These findings suggest that the observed age-associated reduction in beta AR modulation of the cardiac contraction is, in part at least, due to a deficit in modulation of Cai2+, particularly the activity of L-type calcium channels. PMID:7962551

  16. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis.

    PubMed

    Shiraishi, J; Tatsumi, T; Keira, N; Akashi, K; Mano, A; Yamanaka, S; Matoba, S; Asayama, J; Yaoi, T; Fushiki, S; Fliss, H; Nakagawa, M

    2001-10-01

    Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation. PMID:11557554

  17. Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats.

    PubMed

    Schreckenberg, Rolf; Weber, Pia; Cabrera-Fuentes, Hector A; Steinert, Isabel; Preissner, Klaus T; Bencsik, Péter; Sárközy, Márta; Csonka, Csaba; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter

    2015-03-01

    Cardiac ischaemia and reperfusion leads to irreversible injury and subsequent tissue remodelling. Initial reperfusion seems to shift arginine metabolism from nitric oxide (NO) to polyamine formation. This may limit functional recovery at reperfusion. The hypothesis was tested whether ischaemia/reperfusion translates such a shift in arginine metabolism in a tumour necrosis factor (TNF)-α-dependent way and renin-angiotensin system (RAS)-dependent way into a sustained effect. Both, the early post-ischaemic recovery and molecular adaptation to ischaemia/reperfusion were analysed in saline perfused rat hearts undergoing global no-flow ischaemia and reperfusion. Local TNF-α activation was blocked by inhibition of TNF-α sheddase ADAM17. To interfere with RAS captopril was administered. Arginase was inhibited by administration of Nor-NOHA. Long-term effects of ischemia/reperfusion on arginine metabolism were analysed in vivo in rats receiving an established ischaemia/reperfusion protocol in the closed chest mode. mRNA expression analysis indicated a shift in the arginine metabolism from NO formation to polyamine metabolism starting within 2 hours (h) of reperfusion and translated into protein expression within 24 h. Inhibition of the TNF-α pathway and captopril attenuated these delayed effects on post-ischaemic recovery. This shift in arginine metabolism was associated with functional impairment of hearts within 24 h. Inhibition of arginase but not that of TNF-α and RAS pathways improved functional recovery immediately. However, no benefit was observed after four months. In conclusion, this study identified TNF-α and RAS to be responsible for depressed cardiac function that occurred a few hours after reperfusion. PMID:25502809

  18. Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats

    PubMed Central

    Song, Su; Kertowidjojo, Elizabeth; Ojaimi, Caroline; Martin-Fernandez, Beatriz; Kandhi, Sharath; Wolin, Michael; Hintze, Thomas H

    2015-01-01

    Mild hyperhomocysteinemia (HHcy, clinically defined as less than 30 μmol/L) is an independent cardiovascular disease (CVD) risk factor, and is associated with many complications during pregnancy, such as preeclampsia (PE). The aim of this study was to assess the effect of long-term mild HHcy on cardiac metabolic function of multiparous rats. Female rats were mated 3 to 4 times and were fed with methionine in drinking water to increase plasma Hcy (2.9 ± 0.3 to 10.5 ± 2.3 μmol/L) until termination. This caused significant increase of heart weight/body weight (0.24 ± 0.01 to 0.27 ± 0.01 g/100 g) and left ventricle weight (0.69 ± 0.03 to 0.78 ± 0.01 g). Superoxide production was increased by 2.5-fold in HHcy hearts using lucigenin chemiluminescence. The ability of bradykinin and carbachol to regulate myocardial oxygen consumption (MVO2) in vitro was impaired by 59% and 66% in HHcy heart, and it was restored by ascorbic acid (AA), tempol, or apocynin (Apo). Protein expression of p22phox subunit of NAD(P)H oxidase was increased by 2.6-fold, but there were no changes in other NAD(P)H oxidase subunits, NOSs or SODs. Microarray revealed 1518 genes to be differentially regulated (P < 0.05). The mRNA level of NAD(P)H oxidase subunits, NOSs or SODs remained unchanged. In conclusion, long-term mild HHcy increases cardiac superoxide mainly through regulation of p22phox component of the NAD(P)H oxidase and impairs the ability of NO to regulate MVO2 in heart of multiparous mothers. PMID:26009634

  19. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats

    PubMed Central

    Pacagnelli, Francis Lopes; Sabela, Ana Karênina Dias de Almeida; Mariano, Thaoan Bruno; Ozaki, Guilherme Akio Tamura; Castoldi, Robson Chacon; do Carmo, Edna Maria; Carvalho, Robson Francisco; Tomasi, Loreta Casquel; Okoshi, Katashi; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Background Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction. PMID:27223643

  20. Sudden cardiac death in adults with congenitally corrected transposition of the great arteries

    PubMed Central

    McCombe, A; Touma, F; Jackson, D; Canniffe, C; Choudhary, P; Pressley, L; Tanous, D; Robinson, Peter J; Celermajer, D

    2016-01-01

    Background Congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital heart disease. There have been only few reports of sudden cardiac death (SCD) in patients with ccTGA and reasonable ventricular function. Methods A retrospective review of the medical records of all patients attending our adult congenital heart centre, with known ccTGA. Results From a database of over 3500 adult patients with congenital heart disease, we identified 39 (∼1%) with ccTGA and ‘two-ventricle’ circulations. 65% were male. The mean age at diagnosis was 12.4±11.4 years and the mean age at last time of review was 34.3±11.3 years. 24 patients (56%) had a history of surgical intervention. 8 (19%) had had pacemaker implantation and 2 had had a defibrillator implanted for non-sustained ventricular tachycardia (NSVT). In 544 years of patient follow-up, there had been five cases of SCD in our population; 1 death per 109 patient-years. Two of these patients had had previously documented supraventricular or NSVT. However, they were all classified as New York Heart Association (NYHA) class I or II, and systemic (right) ventricular function had been recorded as normal, mildly or mildly–moderately impaired, at most recent follow-up. Conclusions Our experience suggests the need for improved risk stratification and/or surveillance for malignant arrhythmia in adults with ccTGA, even in those with reasonable functional class on ventricular function. PMID:27493760

  1. Hospital Resource Utilization for Common Noncardiac Diagnoses in Adult Survivors of Single Cardiac Ventricle.

    PubMed

    Seckeler, Michael D; Moe, Tabitha G; Thomas, Ian D; Meziab, Omar; Andrews, Jennifer; Heller, Elissa; Klewer, Scott E

    2015-12-01

    Single ventricle congenital heart disease (SV CHD) has transformed from a nearly universally fatal condition to a chronic illness. As the number of adults living with SV CHD continues to increase, there needs to be an understanding of health care resource utilization (HCRU), particularly for noncardiac conditions, for this patient population. We performed a retrospective database review of the University HealthSystem Consortium Clinical Database/Resource Manager for adult patients with SV CHD hospitalized for noncardiac conditions from January 2011 to November 2014. Patients with SV CHD were identified using International Classification of Disease (ICD)-9 codes associated with SV CHD (hypoplastic left heart, tricuspid atresia, and SV) and stratified into 2 groups by age (18 to 29 years and 30 to 40 years). Direct cost, length of stay (LOS), intensive care unit (ICU) admission rate and mortality data were compared with age-matched patients without CHD. There were 2,083,651 non-CHD and 590 SV CHD admissions in Group 1 and 2,131,046 non-CHD and 297 SV CHD admissions in Group 2. There was no difference in LOS in Group 1, but there were higher costs for several diagnoses. LOS and costs were higher for several diagnoses in Group 2. ICU admission rate and in-hospital mortality were higher for several diagnoses for patients with SV CHD in both groups. In conclusion, adults with SV CHD admitted for noncardiac diagnoses have higher HCRU (longer LOS and higher ICU admission rates) compared with similarly aged patients without CHD. These findings stress the importance of good primary care in this population with complex, chronic cardiac disease to prevent hospitalizations and higher HCRU. PMID:26455384

  2. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. PMID:25533183

  3. Beta-cyfluthrin induced neurobehavioral impairments in adult rats.

    PubMed

    Syed, Farah; Chandravanshi, Lalit P; Khanna, Vinay K; Soni, Inderpal

    2016-01-01

    Beta-cyfluthrin (CYF) is a commonly used synthetic pyrethroid having both agricultural and domestic applications. The present study aimed to evaluate the neurobehavioural effects of beta-cyfluthrin in adult rats administered at doses 25 mg/kg body weight/day and 12.5 mg/kg body weight/day for a period of 30 days. Motor coordination and spatial memory were found to be impaired by beta-cyfluthrin. Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), epinephrine (EPN), and serotonin (5-HT) decreased in frontal cortex, corpus striatum and hippocampus of treated rats. At the same time, significantly elevated levels of homovanillic acid (HVA) and nor-epinephrine (NE) were measured. Beta-cyfluthrin inhibited the activity of acetylcholinesterase (AChE) in all the regions of the brain. Hippocampal choline acetyltransferase (ChAT) expression was reduced 3.1 and 4.7 fold by the two doses respectively. Impairment of the antioxidant defense system, evident by decrease in the levels of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) was seen in the treated rats. The neurochemical alterations manifested were more pronounced in the high dose group as the effects persisted even after withdrawal of exposure. PMID:26604153

  4. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain. PMID:24217015

  5. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes

    PubMed Central

    Wei, Hongguang

    2014-01-01

    Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser23/24 in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca2+ were not changed, Ca2+ resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart. PMID:25518962

  6. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats.

    PubMed

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2016-08-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  7. Increased cardiac distribution of mono-PEGylated Radix Ophiopogonis polysaccharide in both myocardial infarction and ischemia/reperfusion rats

    PubMed Central

    Yao, ChunXia; Shi, XiaoLi; Lin, Xiao; Shen, Lan; Xu, DeSheng; Feng, Yi

    2015-01-01

    Although PEGylation plays an important role in drug delivery, knowledge about the distribution behavior of PEGylated drugs in ischemic myocardia is rather limited compared to nanoparticles. This work therefore aims to characterize the targeting behavior of the anti-myocardial ischemic mono-PEGylated conjugates of Radix Ophiopogonis polysaccharide (ROP) in two clinically relevant animal models, ie, the myocardial infarction (MI) model and the ischemia/reperfusion (IR) model. To determine the effect of the molecular size of conjugates, two representative conjugates (20- and 40-kDa polyethylene glycol mono-modified ROPs), with hydrodynamic size being approximately and somewhat beyond 10 nm, respectively, were studied in parallel at three time points postdose after a method for determining them quantitatively in biosamples was established. The results showed that the cardiac distribution of the two conjugates was significantly enhanced in both MI and IR rats due to the enhanced permeability and retention effect induced by ischemia. In general, the cardiac targeting efficacy of the conjugates in MI and IR rats was approximately 2; however, different changing in targeting efficacy with time was observed between MI and IR rats and also between the conjugates. Although the enhanced permeability and retention effect-based targeting efficacy for mono-PEGylated ROPs was not high, they, as dissolved macromolecules, are prone to diffusion in the cardiac interstitium space, and thus, facilitate the drug to reach perfusion-deficient and nonperfused areas. These findings are helpful in choosing the cardiac targeting strategy. PMID:25609953

  8. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice.

    PubMed

    Arechederra, María; Carmona, Rita; González-Nuñez, María; Gutiérrez-Uzquiza, Alvaro; Bragado, Paloma; Cruz-González, Ignacio; Cano, Elena; Guerrero, Carmen; Sánchez, Aránzazu; López-Novoa, José Miguel; Schneider, Michael D; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras, Almudena

    2013-12-01

    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control. PMID:23994610

  9. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences. PMID:23054177

  10. Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPAR-γ activation

    PubMed Central

    Meng, Zhe; Yu, Xin-hui; Chen, Jun; Li, Ling; Li, Sheng

    2014-01-01

    Aim: To investigate the effects of curcumin (Cur) on cardiac fibrosis in spontaneously hypertensive rats (SHRs) and the mechanisms underlying the anti-fibrotic effect of Cur in rat cardiac fibroblasts (CFs) in vitro. Methods: SHRs were orally treated with Cur (100 mg·kg−1·d−1) or Cur (100 mg·kg−1·d−1) plus the PPAR-γ antagonist GW9662 (1 mg·kg−1·d−1) for 12 weeks. Cultured CFs were treated with angiotensin II (Ang II, 0.1 μmol/L) in vitro. The expression of relevant proteins and mRNAs was analyzed using Western blotting and real-time PCR, respectively. The expression and activity of peroxisome proliferator-activated receptor-γ (PPAR-γ) were detected using Western blotting and a DNA-binding assay, respectively. Results: Treatment of SHRs with Cur significantly decreased systolic blood pressure, blood Ang II concentration, heart weight/body weight ratio and left ventricle weight/body weight ratio, with concurrently decreased expression of connective tissue growth factor (CTGF), plasminogen activator inhibitor (PAI)-1, collagen III (Col III) and fibronectin (FN), and increased expression and activity of PPAR-γ in the left ventricle. Co-treatment with GW9662 partially abrogated the anti-fibrotic effects of Cur in SHRs. Pretreatment of CFs with Cur (5, 10, 20 μmol/L) dose-dependently inhibited Ang II-induced expression of CTGF, PAI-1, Col III and FN, and increased the expression and binding activity of PPAR-γ. Pretreatment with GW9662 partially reversed anti-fibrotic effects of Cur in vitro. Furthermore, pretreatment of CFs with Cur inhibited Ang II-induced expression of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3, which were reversed by GW9662. Conclusion: Cur attenuates cardiac fibrosis in SHRs and inhibits Ang II-induced production of CTGF, PAI-1 and ECM in CFs in vitro. The crosstalk between PPAR-γ and TGF-β1/Smad2/3 signaling is involved in the anti-fibrotic and anti-proliferative effects of Cur. PMID:25132338

  11. Interaction between castanospermine an immunosuppressant and cyclosporin A in rat cardiac transplantation

    PubMed Central

    Hibberd, Adrian D; Clark, David A; Trevillian, Paul R; Mcelduff, Patrick

    2016-01-01

    AIM: To investigate the interaction between castanospermine and cyclosporin A (CsA) and to provide an explanation for it. METHODS: The alkaloid castanospermine was prepared from the seeds of Castanospermum austral consistently achieving purity. Rat heterotopic cardiac transplantation and mixed lymphocyte reactivity were done using genetically inbred strains of PVG (donor) and DA (recipient). For the mixed lymphocyte reaction stimulator cells were irradiated with 3000 rads using a linear accelerator. Cyclosporin A was administered by gavage and venous blood collected 2 h later (C2). The blood levels of CsA (Neoral) were measured by immunoassay which consisted of a homogeneous enzyme assay (EMIT) on Cobas Mira. Statistical analyses of interactions were done by an accelerated failure time model with Weibull distribution for allograft survival and logistic regression for the mixed lymphocyte reactivity. RESULTS: Castanospermine prolonged transplant survival times as a function of dose even at relatively low doses. Cyclosporin A also prolonged transplant survival times as a function of dose particularly at doses above 2 mg/kg. There were synergistic interactions between castanospermine and CsA in the prolongation of cardiac allograft survival for dose ranges of CsA by castanospermine of (0 to 2) mg/kg by (0 to 200) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) and (0 to 3) mg/kg by (0 to 100) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) respectively. The addition of castanospermine did not significantly increase the levels of cyclosporin A on day 3 or day 6 for all doses of CsA. On the contrary, cessation of castanospermine in the presence of CsA at 2 mg/kg significantly increased the CsA level (P = 0.002). Castanospermine inhibited mixed lymphocyte reactivity in a dose dependent manner but without synergistic interaction. CONCLUSION: There is synergistic interaction between castanospermine and CsA in rat cardiac transplantation. Neither the mixed lymphocyte

  12. Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins.

    PubMed

    Fernandes, Rafael Oliveira; De Castro, Alexandre Luz; Bonetto, Jéssica Hellen Poletto; Ortiz, Vanessa Duarte; Müller, Dalvana Daneliza; Campos-Carraro, Cristina; Barbosa, Silvia; Neves, Laura Tartari; Xavier, Léder Leal; Schenkel, Paulo Cavalheiro; Singal, Pawan; Khaper, Neelam; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane

    2016-08-01

    This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction. PMID:27288935

  13. Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats.

    PubMed

    Wang, Hao; da Silva, Jaqueline; Alencar, Allan; Zapata-Sudo, Gisele; Lin, Marina R; Sun, Xuming; Ahmad, Sarfaraz; Ferrario, Carlos M; Groban, Leanne

    2016-07-01

    The incidence of left ventricular diastolic dysfunction (LVDD) increases in women after menopause, yet the mechanisms are unclear. Because mast cells participate in the pathological processes of various cardiac diseases, we hypothesized that mast cell inhibition would protect against estrogen loss-induced LVDD. The mast cell stabilizer, cromolyn sodium (30 mg·kg·d), or vehicle was administered subcutaneously by osmotic minipump to ovariectomized (OVX) female Fischer 344 × Brown Norway (F344BN) rats starting at 4 weeks after surgery. Eight weeks after OVX, systolic blood pressure increased by 20% in OVX versus sham rats, and this effect was attenuated after 4 weeks of cromolyn treatment. Also, cromolyn mitigated the adverse reductions in myocardial relaxation (e') and increases in left ventricle (LV) filling pressures (E/e'), LV mass, wall thicknesses, and interstitial fibrosis from OVX. Although cardiac mast cell number was increased after OVX, cardiac chymase activity was not overtly altered by estrogen status and tended to decrease by cromolyn. Contrariwise, Ang II content was greater in hearts of OVX versus sham rats, and cromolyn attenuated this effect. Taken together, mast cell inhibition with cromolyn attenuates LV remodeling and LVDD in OVX-Fischer 344 × Brown Norway rats possibly through actions on the heart level and/or through vasodilatory effects at the vascular level. PMID:26981683

  14. Determinants of HIV-related cardiac disease among adults in north central Nigeria

    PubMed Central

    Isiguzo, Godsent; Okeahialam, Basil; Danbauchi, Solomon; Odili, Augustin; Iroezindu, Michael

    2013-01-01

    Objective The aim of the present study was to evaluate the determinants of HIV-related cardiac disease (HRCD) among adults in north central Nigeria. This was a hospital-based cross-sectional study recruiting patients who were HIV positive attending the HIV clinic at Jos University teaching Hospital, Nigeria. Methods A total of 200 adults who were HIV positive and aged ≥18 years were consecutively recruited. All patients were administered a questionnaire and underwent clinical examination, laboratory investigation for haemoglobin estimation, CD4 cell count, viral load, serum lipid profile, hepatitis B surface antigen, anti-hepatitis C virus antibody, electrocardiogram and two-dimensional echocardiography Doppler studies. The outcome measure was echocardiography-defined cardiac disease, such as systolic dysfunction, diastolic dysfunction, isolated left ventricular dilatation, right ventricular dysfunction or pulmonary hypertension. Results The mean age of the study population was 38±9 years. The majority (71%) were women and were on average younger than the men (36±8 years vs 47±9 years, p<0.0002). Highly active anti-retroviral therapy (HAART) use was seen in 84.4% of subjects. The median CD4 cell count for the study population was 358 cells/µL; the count was 459 (95% CI 321 to 550) cells/µL for subjects without HRCD and 193 (95% CI 126 to 357) cells/µL for subjects with HRCD (p<0.001). HAART-naive subjects with HRCD had a mean CD4 cell count of 121 cells/µL vs 200 cells/µL for those on HAART (p<0.01). CD4 cell count (OR = 0.25, 95% CI 0.15 to 0.45) and duration of diagnosis (OR=3.88, 95% CI 1.20 to 13.71) were the significant determinants of HRCD on multivariate analysis. Conclusions Duration of HIV diagnosis and degree of immunosuppression were the significant determinants of HRCD. There is therefore a need to reduce cardiovascular morbidity in patients infected with HIV through early diagnosis/sustained use of HAART, early screening for HRCD

  15. Does Parsonnet scoring model predict mortality following adult cardiac surgery in India?

    PubMed Central

    Srilata, Moningi; Padhy, Narmada; Padmaja, Durga; Gopinath, Ramachandran

    2015-01-01

    Aims and Objectives: To validate the Parsonnet scoring model to predict mortality following adult cardiac surgery in Indian scenario. Materials and Methods: A total of 889 consecutive patients undergoing adult cardiac surgery between January 2010 and April 2011 were included in the study. The Parsonnet score was determined for each patient and its predictive ability for in-hospital mortality was evaluated. The validation of Parsonnet score was performed for the total data and separately for the sub-groups coronary artery bypass grafting (CABG), valve surgery and combined procedures (CABG with valve surgery). The model calibration was performed using Hosmer–Lemeshow goodness of fit test and receiver operating characteristics (ROC) analysis for discrimination. Independent predictors of mortality were assessed from the variables used in the Parsonnet score by multivariate regression analysis. Results: The overall mortality was 6.3% (56 patients), 7.1% (34 patients) for CABG, 4.3% (16 patients) for valve surgery and 16.2% (6 patients) for combined procedures. The Hosmer–Lemeshow statistic was <0.05 for the total data and also within the sub-groups suggesting that the predicted outcome using Parsonnet score did not match the observed outcome. The area under the ROC curve for the total data was 0.699 (95% confidence interval 0.62–0.77) and when tested separately, it was 0.73 (0.64–0.81) for CABG, 0.79 (0.63–0.92) for valve surgery (good discriminatory ability) and only 0.55 (0.26–0.83) for combined procedures. The independent predictors of mortality determined for the total data were low ejection fraction (odds ratio [OR] - 1.7), preoperative intra-aortic balloon pump (OR - 10.7), combined procedures (OR - 5.1), dialysis dependency (OR - 23.4), and re-operation (OR - 9.4). Conclusions: The Parsonnet score yielded a good predictive value for valve surgeries, moderate predictive value for the total data and for CABG and poor predictive value for combined

  16. The effect of enalapril on the cardiac remodelling in ovariectomized spontaneously hypertensive rats.

    PubMed

    Santos, Wellington V; Pereira, Leila M M; Mandarim-de-Lacerda, Carlos A

    2004-10-01

    Angiotensin-converting enzyme inhibitors reduce the blood pressure (BP) and inhibit the generation of the angiotensin II from the inactive angiotensin I. Ten 28-week-old spontaneously hypertensive rats (SHRs) had their ovaries bilaterally removed and five rats were left intact and studied for 7 additional weeks: intact group, ovariectomized group (ovx SHRs) and ovariectomized + enalapril group (ovx + en). BP was higher in ovx SHRs and lower in treated ovx SHRs. Left ventricular (LV) mass index was greater in untreated ovx SHRs and smaller in ovx + en group. The LV cardiomyocyte (cmy) mean cross-sectional area, measured by stereology, was greater in ovx SHRs and smaller in both intact and ovx + en SHRs. Ovx significantly decreased the density of intramyocardial blood vessels (ive), but administration of enalapril was able to restore the density of the ive to that seen in intact group. The worst ive:cmy ratio was found in untreated ovx SHRs, the intact group showed a 90% greater ratio, and the treated ovx group showed a 150% greater ratio than the untreated ovx group. In conclusion, ovariectomy, in SHRs, causes cardiac hypertrophy and an unfavourable myocardial remodelling. Of the spectrum of changes seen, the major effect of enalapril appears to be mediated via an increase in the density of ive. PMID:15379961

  17. [Application of a Fotonic Sensor for measurement of chronotropy and contractility in cultured rat cardiac myocytes].

    PubMed

    Kawana, S; Kimura, H; Miyamoto, A; Ohshika, H; Namiki, A

    1993-10-01

    We used a Fotonic Sensor, a fiber optic displacement measurement instrument, to measure the chronotropy and the contractility of cultured neonatal rat cardiac myocytes. The principle of the measurement is to detect changes in the distance between the probe and myocytes vertically extruded by the contraction. A fiber optic probe consists of adjacent pairs of light-transmitting and light-receiving fibers. The ratio of reflected light to transmitted light changes proportionally to the distance between the probe and an object at a certain range shown in a calibration curve. The analogue output from the sensor was transferred to a personal computer through an analogue/digital converter and analyzed. The sensor was able to detect the rate of myocyte beating, i.e., chronotropy, with a high correlation to the frequency of electrically stimulated beating and agreed well with the beating rate counted visually under a microscope. The contractility was evaluated by the maximum contraction velocity (Vm) by the first derivatives of the contraction curves obtained by the sensor. Norepinephrine (NE) and isoproterenol (ISO) increased the contractility in cultured myocytes in a dose-dependent fashion. In the preparation of rat ventricular papillary muscle, NE- and ISO-induced increase in the Vm in the radial direction significantly correlated with the increase in tension measured with a force-displacement transducer. These results indicate that the Fotonic Sensor is an appropriate instrument for evaluating the chronotropy and the contractility of cultured myocytes. PMID:8253432

  18. Cardiac hypertrophy and telemetered blood pressure 6 wk after baroreceptor denervation in normotensive rats.

    PubMed

    Van Vliet, B N; Hu, L; Scott, T; Chafe, L; Montani, J P

    1996-12-01

    We investigated cardiac morphometry 6 wk after sinoaortic baroreceptor denervation (SAD) in Long-Evans rats. SAD (n = 19) was associated with an 11% increase in the weight of the left ventricle (LV) plus septum (P < 0.001) and a 39% increase in that of the right ventricular (RV) free wall (P < 0.001), relative to sham-operated rats (n = 18). RV wall thickness was significantly increased in SAD animals, but there was no difference in the LV wall thickness and volumes of the RV and LV between groups. Constrictor responses to methoxamine and dilation responses to acetylcholine were assessed in an in vitro perfused mesenteric circulation preparation, but neither response was affected by SAD. Baroreceptor denervation was associated with marked and significant increases in the variability (2.8-fold) and daily peak (39 mmHg) levels of telemetered mean arterial pressure (MAP) and small (5%) but significant increases in the daily mean MAP level. Our results are consistent with an effect of increased MAP variability on ventricular weight but cannot rule out possible contributions from other mechanisms. PMID:8997380

  19. Autophagic Signaling and Proteolytic Enzyme Activity in Cardiac and Skeletal Muscle of Spontaneously Hypertensive Rats following Chronic Aerobic Exercise

    PubMed Central

    McMillan, Elliott M.; Paré, Marie-France; Baechler, Brittany L.; Graham, Drew A.; Rush, James W. E.; Quadrilatero, Joe

    2015-01-01

    Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats. PMID:25799101

  20. Salt-induced cardiac hypertrophy is independent of blood pressure and endothelin in obese, heart failure-prone SHHF rats.

    PubMed

    Radin, M Judith; Holycross, Bethany J; Hoepf, Toni M; McCune, Sylvia A

    2008-10-01

    The interaction of salt sensitivity and obesity in development of cardiac hypertrophy is incompletely understood. The SHHF/Mcc-fa(cp) (SHHF) rat model was used to examine the effect of high salt on cardiac hypertrophy and expression of endothelin (ET) and nitric oxide synthase (NOS) isoforms. Homozygous lean (+/+) and obese (fa(cp)/fa(cp)) SHHF were fed a low-salt diet (0.3% NaCl) for seven days followed by a high-salt diet (8.0% NaCl) for seven days. To assess the role of ET in mediating cardiac hypertrophy and gene expression with high salt, additional groups were treated with an ET(A)/ET(B) receptor antagonist (bosentan) while on high salt. Obese SHHF showed an increase in systolic blood pressure and cardiac hypertrophy in response to the high-salt diet. High salt resulted in decreased expression of preproET as well as all three NOS isoforms in the Obese, while cytokine induced NOS (iNOS) and neuronal NOS (nNOS) increased in Leans. Though the salt-sensitive component of the hypertension observed in the Obese was prevented by bosentan, cardiac hypertrophy still occurred and expression of all NOS isoforms remained lower in Obese compared to Lean. Endothelial NOS (eNOS) expression increased in the Lean with bosentan. These studies suggest that cardiac hypertrophy is independent of the level of hypertension and may be mediated by altered production of NOS isoforms in salt-sensitive, obese SHHF. PMID:18855258

  1. Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat

    PubMed Central

    2014-01-01

    Background Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated the relationship between myocardial oxidative stress and post-CA myocardial injury and dysfunction in a rat model of CA and cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced in 26 rats and was untreated for 6 min. CPR, including mechanical chest compression, ventilation, and epinephrine, was then initiated and continued for additional 6 min prior to defibrillations. Resuscitated animals were sacrificed at two h (n = 9), 4 h (n = 6) and 72 h (n = 8) following resuscitation, and plasma collected for assessment of: high sensitivity cardiac troponin T (hs-cTnT), as marker of myocardial injury; isoprostanes (IsoP), as marker of lipid peroxidation; and 8-hydroxyguanosine (8-OHG), as marker of DNA oxidative damage. Hearts were also harvested for measurement of tissue IsoP and 8-OHG. Myocardial function was assessed by echocardiography at the corresponding time points. Additional 8 rats were not subjected to CA and served as baseline controls. Results Compared to baseline, left ventricular ejection fraction (LVEF) was reduced at 2 and 4 h following resuscitation (p < 0.01), while it was similar at 72 h. Inversely, plasma hs-cTnT increased, compared to baseline, at 2 and 4 h post-CA (p < 0.01), and then recovered at 72 h. Similarly, plasma and myocardial tissue IsoP and 8-OHG levels increased at 2 and 4 h post-resuscitation (p < 0.01 vs. baseline), while returned to baseline 72 h later. Myocardial IsoP were directly related to hs-cTnT levels (r = 0.760, p < 0.01) and inversely related to LVEF (r = -0.770, p < 0.01). Myocardial 8-OHG were also directly related to hs-cTnT levels (r = 0.409, p < 0.05) and

  2. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  3. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    PubMed Central

    Falk, Darin J; Soustek, Meghan S; Todd, Adrian Gary; Mah, Cathryn S; Cloutier, Denise A; Kelley, Jeffry S; Clement, Nathalie; Fuller, David D; Byrne, Barry J

    2015-01-01

    Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease. PMID:26029718

  4. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  5. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    PubMed Central

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-01-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis. PMID:26689945

  6. Effect of anti-interleukin 2 monoclonal antibody treatment on the survival of rat cardiac allograft

    SciTech Connect

    Sakagami, K.; Ohsaki, T.; Ohnishi, T.; Saito, S.; Matsuoka, J.; Orita, K.

    1989-03-01

    The effect of anti-interleukin 2 monoclonal antibody (anti-IL2 MoAb) and the accumulation of intravenously administered /sup 125/I-labeled anti-IL2 MoAb were examined in heterotopic rat cardiac allografts. Mouse anti-human recombinant IL2 MoAb was obtained by the hybridoma technique. The anti-IL2 MoAb, termed 8H-10, was an IgG2a which inhibited IL2-driven (/sup 3/H)TdR incorporation in cytolytic T lymphocyte line cells at a dilution of 2(6). 8H-10 was injected iv at a dose of 200 micrograms/day for 8 consecutive days, beginning on the day of transplantation. Hearts from F344 rats (RT11v1) were transplanted into ACI recipient rats (RT1av1). The mean survival time was 7.6 +/- 0.8 days in untreated controls, 9.0 +/- 1.2 days in additional controls treated with mouse anti-sheep red blood cell monoclonal antibody, and 25.3 +/- 18.4 days in the anti-IL2 MoAb (8H-10)-treated group (P less than 0.05). Furthermore, the accumulation of intravenously administered 125I-labeled anti-IL2 MoAb (8H-10) was specifically seen in the grafted heart. In conclusion, these results suggest that IL2 may play an important role in allograft rejection and that anti-IL2 MoAb may serve as a useful immunosuppressive agent in clinical transplantation.

  7. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys

    NASA Technical Reports Server (NTRS)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.

    1995-01-01

    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  8. Bioreactance Is Not Interchangeable with Thermodilution for Measuring Cardiac Output during Adult Liver Transplantation

    PubMed Central

    Han, Sangbin; Lee, Jong Hwan; Kim, Gaabsoo; Ko, Justin Sangwook; Choi, Soo Joo; Kwon, Ji Hae; Heo, Burn Young; Gwak, Mi Sook

    2015-01-01

    Background Thermodilution technique using a pulmonary artery catheter is widely used for the assessment of cardiac output (CO) in patients undergoing liver transplantation. However, the unclearness of the risk-benefit ratio of this method has led to an interest in less invasive modalities. Thus, we evaluated whether noninvasive bioreactance CO monitoring is interchangeable with thermodilution technique. Methods Nineteen recipients undergoing adult-to-adult living donor liver transplantation were enrolled in this prospective observational study. COs were recorded automatically by the two devices and compared simultaneously at 3-minute intervals. The Bland–Altman plot was used to evaluate the agreement between bioreactance and thermodilution. Clinically acceptable agreement was defined as a percentage error of limits of agreement <30%. The four quadrant plot was used to evaluate concordance between bioreactance and thermodilution. Clinically acceptable concordance was defined as a concordance rate >92%. Results A total of 2640 datasets were collected. The mean CO difference between the two techniques was 0.9 l/min, and the 95% limits of agreement were -3.5 l/min and 5.4 l/min with a percentage error of 53.9%. The percentage errors in the dissection, anhepatic, and reperfusion phase were 50.6%, 56.1%, and 53.5%, respectively. The concordance rate between the two techniques was 54.8%. Conclusion Bioreactance and thermodilution failed to show acceptable interchangeability in terms of both estimating CO and tracking CO changes in patients undergoing liver transplantation. Thus, the use of bioreactance as an alternative CO monitoring to thermodilution, in spite of its noninvasiveness, would be hard to recommend in these surgical patients. PMID:26017364

  9. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult.

    PubMed

    Nadal-Ginard, Bernardo; Ellison, Georgina M; Torella, Daniele

    2014-11-01

    Resident cardiac stem cells in embryonic, neonatal and adult mammalian heart have been identified by different membrane markers and transcription factors. However, despite a flurry of publications no consensus has been reached on the identity and actual regenerative effects of the adult cardiac stem cells. Intensive research on the adult mammalian heart's capacity for self-renewal of its muscle cell mass has led to a consensus that new cardiomyocytes (CMs) are indeed formed throughout adult mammalian life albeit at a disputed frequency. The physiological significance of this renewal, the origin of the new CMs, and the rate of adult CM turnover are still highly debated. Myocyte replacement, particularly after injury, was originally attributed to differentiation of a stem cell compartment. More recently, it has been reported that CMs are mainly replaced by the division of pre-existing post-mitotic CMs. These latter results, if confirmed, would shift the target of regenerative therapy toward boosting mature CM cell-cycle re-entry. Despite this controversy, it is documented that the adult endogenous c-kit(pos) cardiac stem cells (c-kit(pos) eCSCs) participate in adaptations to myocardial stress, and, when transplanted into the myocardium, regenerate most cardiomyocytes and microvasculature lost in an infarct. Nevertheless, the in situ myogenic potential of adult c-kit(pos) cardiac cells has been questioned. To revisit the regenerative potential of c-kit(pos) eCSCs, we have recently employed experimental protocols of severe diffuse myocardial damage in combination with several genetic murine models and cell transplantation approaches showing that eCSCs are necessary and sufficient for CM regeneration, leading to complete cellular, anatomical, and functional myocardial recovery. Here we will review the available data on adult eCSC biology and their regenerative potential placing it in the context of the different claimed mechanisms of CM replacement. These data are in

  10. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  11. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: Complex congenital cardiac lesions

    PubMed Central

    Silversides, Candice K; Oechslin, Erwin; Schwerzmann, Markus; Muhll, Isabelle Vonder; Khairy, Paul; Horlick, Eric; Landzberg, Mike; Meijboom, Folkert; Warnes, Carole; Therrien, Judith

    2010-01-01

    With advances in pediatric cardiology and cardiac surgery, the population of adults with congenital heart disease (CHD) has increased. In the current era, there are more adults with CHD than children. This population has many unique issues and needs. They have distinctive forms of heart failure and their cardiac disease can be associated with pulmonary hypertension, thromboemboli, complex arrhythmias and sudden death. Medical aspects that need to be considered relate to the long-term and multisystemic effects of single ventricle physiology, cyanosis, systemic right ventricles, complex intracardiac baffles and failing subpulmonary right ventricles. Since the 2001 Canadian Cardiovascular Society Consensus Conference report on the management of adults with CHD, there have been significant advances in the field of adult CHD. Therefore, new clinical guidelines have been written by Canadian adult CHD physicians in collaboration with an international panel of experts in the field. Part III of the guidelines includes recommendations for the care of patients with complete transposition of the great arteries, congenitally corrected transposition of the great arteries, Fontan operations and single ventricles, Eisenmenger’s syndrome, and cyanotic heart disease. Topics addressed include genetics, clinical outcomes, recommended diagnostic workup, surgical and interventional options, treatment of arrhythmias, assessment of pregnancy risk and follow-up requirements. The complete document consists of four manuscripts, which are published online in the present issue of The Canadian Journal of Cardiology. The complete document and references can also be found at www.ccs.ca or www.cachnet.org. PMID:20352139

  12. A combination of methylprednisolone and quercetin is effective for the treatment of cardiac contusion following blunt chest trauma in rats

    PubMed Central

    Demir, F.; Güzel, A.; Katı, C.; Karadeniz, C.; Akdemir, U.; Okuyucu, A.; Gacar, A.; Özdemir, S.; Güvenç, T.

    2014-01-01

    Cardiac contusion is a potentially fatal complication of blunt chest trauma. The effects of a combination of quercetin and methylprednisolone against trauma-induced cardiac contusion were studied. Thirty-five female Sprague-Dawley rats were divided into five groups (n=7) as follows: sham, cardiac contusion with no therapy, treated with methylprednisolone (30 mg/kg on the first day, and 3 mg/kg on the following days), treated with quercetin (50 mg·kg−1·day−1), and treated with a combination of methylprednisolone and quercetin. Serum troponin I (Tn-I) and tumor necrosis factor-alpha (TNF-α) levels and cardiac histopathological findings were evaluated. Tn-I and TNF-α levels were elevated after contusion (P=0.001 and P=0.001). Seven days later, Tn-I and TNF-α levels decreased in the rats treated with methylprednisolone, quercetin, and the combination of methylprednisolone and quercetin compared to the rats without therapy, but a statistical significance was found only with the combination therapy (P=0.001 and P=0.011, respectively). Histopathological degeneration and necrosis scores were statistically lower in the methylprednisolone and quercetin combination group compared to the group treated only with methylprednisolone (P=0.017 and P=0.007, respectively). However, only degeneration scores were lower in the combination therapy group compared to the group treated only with quercetin (P=0.017). Inducible nitric oxide synthase positivity scores were decreased in all treatment groups compared to the untreated groups (P=0.097, P=0.026, and P=0.004, respectively). We conclude that a combination of quercetin and methylprednisolone can be used for the specific treatment of cardiac contusion. PMID:25098616

  13. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  14. Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats.

    PubMed

    Krause, A; Nowak, Z; Srbu, R; Bell, H J

    2016-10-01

    In the present study we investigated the pattern and efficacy of respiratory autoresuscitation in spontaneously breathing adult male rats across three separate anesthetic backgrounds. Each animal was administered one of three injectable anesthetics to achieve a surgical plane of anesthesia: ketamine-xylazine (KET, n=10), pentobarbital (PEN, n=10), or urethane (URE, n=10). Animals were tracheostomized and equipped with a femoral artery catheter to record airflow and arterial pressures. In response to a bout of breathing anoxic air, none of the 10 URE animals were able to mount a successful autoresuscitation response. In contrast, all KET and PEN animals survived all four consecutive anoxic exposures, restoring eupneic breathing in all cases. Moreover, only 4/10 URE animals expressed gasping breaths following the onset of respiratory arrest, and these were temporally delayed (p<0.001) and much smaller in volume (P≤0.012) compared to KET and PEN animals. URE animals showed no clear aberrations in their cardiovascular responses to anoxia, with the exception of lower arterial pulse pressures compared to either KET or PEN animals at specific points following RA. Ketamine-xylazine and pentobarbital anesthesia can be reliably and effectively used to create models for the study of autoresuscitation in adult rats. In contrast, urethane causes catastrophic failure of respiratory autoresuscitation, by delaying or outright preventing the elaboration of gasping breaths following anoxia-induced respiratory arrest. The neuronal and synaptic alterations accompanying urethane anesthesia may therefore provide a means of understanding potential pathological alterations in rhythm generation that can predispose the respiratory control system to failed autoresuscitation following an episode of acute severe hypoxemia. PMID:27378495

  15. Efficient Differentiation of Human Induced Pluripotent Stem Cells Generates Cardiac Cells That Provide Protection Following Myocardial Infarction in the Rat

    PubMed Central

    Carr, Carolyn; Yang, Cheng Tao; Stuckey, Daniel J.; Clarke, Kieran; Watt, Suzanne M.

    2012-01-01

    Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage. PMID:22182484

  16. Donepezil markedly potentiates memantine neurotoxicity in the adult rat brain.

    PubMed

    Creeley, Catherine E; Wozniak, David F; Nardi, Anthony; Farber, Nuri B; Olney, John W

    2008-02-01

    The NMDA antagonist, memantine (Namenda), and the cholinesterase inhibitor, donepezil (Aricept), are currently being used widely, either individually or in combination, for treatment of Alzheimer's disease (AD). NMDA antagonists have both neuroprotective and neurotoxic properties; the latter is augmented by drugs, such as pilocarpine, that increase cholinergic activity. Whether donepezil, by increasing cholinergic activity, might augment memantine's neurotoxic potential has not been investigated. In the present study, we determined that a dose of memantine (20mg/kg, i.p.), considered to be in the therapeutic (neuroprotective) range for rats, causes a mild neurotoxic reaction in the adult rat brain. Co-administration of memantine (20 or 30 mg/kg) with donepezil (2.5-10mg/kg) markedly potentiated this neurotoxic reaction, causing neuronal injury at lower doses of memantine, and causing the toxic reaction to become disseminated and lethal to neurons throughout many brain regions. These findings raise questions about using this drug combination in AD, especially in the absence of evidence that the combination is beneficial, or that either drug arrests or reverses the disease process. PMID:17112636

  17. Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6

    PubMed Central

    Zhou, Jingmin; Jiang, Kun; Ding, Xuefeng; Fu, Mingqiang; Wang, Shijun; Zhu, Lingti; He, Tao; Wang, Jingfeng; Sun, Aijun; Hu, Kai; Chen, Li; Zou, Yunzeng; Ge, Junbo

    2015-01-01

    Qiliqiangxin (QL), a traditional Chinese medicine, had long been used to treat chronic heart failure. Recent studies revealed that differentiation of cardiac fibroblasts (CFs) into myofibroblasts played an important role in cardiac remodelling and development of heart failure, however, little was known about the underlying mechanism and whether QL treatment being involved. This study aimed to investigate the effects of QL on angiotensin II (AngII)-induced CFs transdifferentiation. Study was performed on in vitro cultured CFs from Sprague–Dawley rats. CFs differentiation was induced by AngII, which was attenuated by QL through reducing transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA). Our data showed that AngII-induced IL-6 mRNA as well as typeI and typeIII collagens were reduced by QL. IL-6 deficiency could suppress TGF-β1 and α-SMA, and both IL-6 siRNA and QL-mediated such effect was reversed by foresed expression of recombined IL-6. Increase in actin stress fibres reflected the process of CFs differentiation, we found stress fibres were enhanced after AngII stimulation, which was attenuated by pre-treating CFs with QL or IL-6 siRNA, and re-enhanced after rIL-6 treatment. Importantly, we showed that calcineurin-dependent NFAT3 nuclear translocation was essential to AngII-mediated IL-6 transcription, QL mimicked the effect of FK506, the calcineurin inhibitor, on suppression of IL-6 expression and stress fibres formation. Collectively, our data demonstrated the negative regulation of CFs differentiation by QL through an IL-6 transcriptional mechanism that depends on inhibition of calcineurin/NFAT3 signalling. PMID:25752645

  18. Hysteresis and the length dependence of calcium sensitivity in chemically skinned rat cardiac muscle.

    PubMed Central

    Harrison, S M; Lamont, C; Miller, D J

    1988-01-01

    1. The relationship between pCa (-log10[Ca2+]) and steady-state isometric tension has been investigated in saponin- or Triton-treated (chemically 'skinned') cardiac muscle of rat. 2. Hysteresis exists in the relationship such that the muscle is less sensitive to Ca2+ during increasing activation (as [Ca2+] is stepped upward) than during reducing activation (as [Ca2+] is stepped downward). 3. The extent of the hysteresis is insensitive to interventions that increase overall calcium sensitivity by chemical means, such as caffeine, carnosine or increased pH. 4. The extent of the hysteresis is sensitive to sarcomere length. The phenomenon is virtually absent above sarcomere lengths of about 2.2-2.3 microns but becomes progressively greater at shorter sarcomere lengths. 5. The effect of sarcomere length on calcium sensitivity is restricted to the upward-going (increasing activation) part of the pCa-tension loop below 2.2 microns. The downward-going (decreasing activation) part of the hysteretic relationship is virtually unaffected by sarcomere length up to 2.2 microns. 6. Significant alterations in sarcomere length do not occur during tension development in the experiments described here: the phenomenon is not attributable to experimental artifacts of this kind. 7. Hysteresis develops sufficiently rapidly to be consistent with a physiological relevance during the normal heart beat. 8. The effects of sarcomere length show that the phenomenon is not due to force per se since, for example, greater peak force produces less hysteresis as sarcomere length is increased towards 2.2 microns. 9. Tonicity increase (by high-molecular-weight dextran), which shrinks the myofilament lattice, increases calcium sensitivity but reduces the effect of sarcomere length on calcium sensitivity. 10. The results suggest that lattice shrinkage is the mechanism which accounts for hysteresis in, and the sarcomere length dependence of, calcium sensitivity in cardiac muscle. Images Fig. 1 Fig. 11

  19. Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols

    PubMed Central

    Lemos, Miriam; Diaz, Edgar A.; Gupta, Tarun; Kang, Choong-Min; Ruiz, Pablo; Coull, Brent A.; Godleski, John J.; Gonzalez-Flecha, Beatriz

    2013-01-01

    In vivo chemiluminescence (CL) is a measure of reactive oxygen species in tissues. CL was used to assess pulmonary and cardiac responses to inhaled aerosols derived from aged emissions of three coal-fired power plants in the USA. Sprague–Dawley rats were exposed to either filtered air or: (1) primary emissions (P); (2) ozone oxidized emissions (PO); (3) oxidized emissions + secondary organic aerosol (SOA) (POS); (4) neutralized oxidized emissions + SOA (PONS); and (5) control scenarios: oxidized emissions + SOA in the absence of primary particles (OS), oxidized emissions alone (O), and SOA alone (S). Immediately after 6 hours of exposure, CL in the lung and heart was measured. Tissues were also assayed for thiobarbituric acid reactive substances (TBARS). Exposure to P or PO aerosols led to no changes compared to filtered air in lung or heart CL at any individual plant or when all data were combined. POS caused significant increases in lung CL and TBARS at only one plant, and not in combined data from all plants; PONS resulted in increased lung CL only when data from all plants were combined. Heart CL was also significantly increased with exposure to POS only when data from all plants were combined. PONS increased heart CL significantly in one plant with TBARS accumulation, but not in combined data. Exposure to O, OS, and S had no CL effects. Univariate analyses of individual measured components of the exposure atmospheres did not identify any component associated with increased CL. These data suggest that coal-fired power plant emissions combined with other atmospheric constituents produce limited pulmonary and cardiac oxidative stress. PMID:21913821

  20. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    PubMed

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. PMID:26475678

  1. Unraveling the Expression Profiles of Long Noncoding RNAs in Rat Cardiac Hypertrophy and Functions of lncRNA BC088254 in Cardiac Hypertrophy Induced by Transverse Aortic Constriction.

    PubMed

    Li, Xiaoying; Zhang, Lei; Liang, Jiangjiu

    2016-01-01

    Long noncoding RNAs (lncRNAs), although initially considered as genomic transcription noise, have been demonstrated to play pivotal roles in multiple biological processes and are increasingly recognized as contributors to the pathology of cancer, neurodegenerative diseases, diabetes, heart diseases, and inflammation. However, studies on the roles of lncRNAs in angiocardiopathy, particularly in cardiac hypertrophy, are still preliminary. In our study, differentially expressed lncRNAs in rat cardiac hypertrophy induced by transverse aortic constriction (TAC) were identified by microarray analysis and validated using quantitative real-time polymerase chain reaction (RT-PCR). Briefly, we identified 6,969 lncRNAs, among which 80 lncRNAs were significantly upregulated and 172 lncRNAs were significantly downregulated. Quantitative RT-PCR was used to validate the differential expression of 5 lncRNAs in myocardial tissue RNA. Further, pathway analysis indicated that 25 pathways corresponded to upregulated transcripts and 20 pathways corresponded to downregulated transcripts. Third, by coexpression network analysis, we found a correlation between BC088254 and phb2 (prohibitin 2) and verified this expression by RT-PCR and Western blot. This is the first study to reveal differentially expressed lncRNAs in rat cardiac hypertrophy induced by TAC, indicating potential lncRNA mechanisms of action in myocardial hypertrophy. We also found that lncRNA BC088254 may have a certain role in myocardial hypertrophy induced by TAC and functional relevance between lncRNA BCO88254 and phb2, but the relationship between these two factors is unclear. PMID:26919297

  2. Effects of nifedipine and moxonidine on cardiac structure in spontaneously hypertensive rats. Stereological studies on myocytes, capillaries, arteries, and cardiac interstitium.

    PubMed

    Amann, K; Greber, D; Gharehbaghi, H; Wiest, G; Lange, B; Ganten, U; Mattfeldt, T; Mall, G

    1992-02-01

    Light and electron microscopic stereological studies were performed on the myocardium of spontaneously hypertensive rats (SHR-SP) before and after treatment with nifedipine (27 mg/kg body weight/day) and the antisympathotonic agent moxonidine (8 mg/kg body weight/day). The treated groups were compared with nontreated SHR-SP and normotensive WKY (n = 10 in each group). At the beginning of therapy (when the male SHR-SP were 6 months old), blood pressure was increased and left ventricular hypertrophy had developed whereas pathologic changes of myocardial structure were not observed. After 3 months, the nontreated hypertensive rats showed cardiac fibrosis, activation and proliferation of interstitial cells, wall thickening of intramyocardial arteries, reduced capillarization as well as focal degeneration of myocytes at the ultrastructural level. Both treatments showed similar effects on blood pressure, degree of hypertrophy, and cardiac structure. Blood pressure as well as the degree of hypertrophy were significantly reduced. As far as myocardial fibrosis, capillarization, and regressive changes of myocytes are concerned a complete normalization was observed. Furthermore, nifedipine enhanced capillary supply beyond the normal level by induction of capillary neoformation. Microarteriopathy and activation of nonvascular interstitial cells (first step in development of interstitial myocardial fibrosis) were significantly suppressed by therapy, but the level of the normotensive control could not be maintained. Additional experiments with a low dose combination therapy of nifedipine and moxonidine that did not reduce blood pressure provided evidence that hypertension is an important determinant of the alterations of intramyocardial arteries, but not of cardiac interstitial fibrosis. PMID:1550668

  3. Effects of quinapril on myocardial function, ventricular remodeling and cardiac cytokine expression in congestive heart failure in the rat.

    PubMed

    We, Ge Cheng; Siroi, Martin G; Qu, Rong; Liu, Peter; Roulea, Jean L

    2002-01-01

    Inflammatory cytokines have been shown to be activated in congestive heart failure (CHF). This activation is likely the result of the convergence of a number of factors, several of which could be attenuated with the use of an Angiotensin converting enzyme (ACE) inhibitor. In order to assess this, rats had a myocardial infarction (MI) created by coronary artery ligation and were followed for 28 days without treatment to permit the development of CHF. At that time, the ACE inhibitor quinapril was started, or rats remained untreated and were followed a further 56 days for a total of 84 days. Half of the untreated rats had quinapril started 3 days prior to sacrifice, on day 81. Starting quinapril at either 28 or 81 days had little effect on cardiac hemodynamics, or ventricular remodeling. Quinapril did however attenuate the MI-induced rise in cardiac cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin-1beta, -5 and -6). Thus, in CHF, ACE inhibitors attenuate the rise in cardiac cytokine expression. This study helps to identify a new mechanism by which ACE inhibitors may exert their beneficial effects in CHF. PMID:12085975

  4. Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats

    PubMed Central

    Fujimoto, Yoshitaka; Urashima, Takashi; Shimura, Daisuke; Ito, Reiji; Kawachi, Sadataka; Kajimura, Ichige; Akaike, Toru; Kusakari, Yoichiro; Fujiwara, Masako; Ogawa, Kiyoshi; Goda, Nobuhito; Ida, Hiroyuki; Minamisawa, Susumu

    2016-01-01

    Background Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis. Methods and Results Five-week-old Sprague-Dawley rats divided into the PAB and sham-operated control groups. After 4 weeks from operation, we measured CO by echocardiography, and hepatic fibrosis ratio by pathological examination using a color analyzer. In the PAB group, CO was significantly lower by 48% than that in the control group (78.2±27.6 and 150.1±31.2 ml/min, P<0.01). Hepatic fibrosis ratio and serum hyaluronic acid, an index of hepatic fibrosis, were significantly increased in the PAB group than those in the control group (7.8±1.7 and 1.0±0.2%, P<0.01, 76.2±27.5 and 32.7±7.5 ng/ml, P<0.01). Notably, the degree of hepatic fibrosis significantly correlated a decrease in CO. Immunohistological analysis revealed that hepatic stellate cells were markedly activated in hypoxic areas, and HIF-1α positive hepatic cells were increased in the PAB group. Furthermore, by real-time PCR analyses, transcripts of profibrotic and fibrotic factors (TGF-β1, CTGF, procollargen I, procollargen III, MMP 2, MMP 9, TIMP 1, TIMP 2) were significantly increased in the PAB group. In addition, western blot analyses revealed that the protein level of HIF-1α was significantly increased in the PAB group than that in the control group (2.31±0.84 and 1.0±0.18 arbitrary units, P<0.05). Conclusions Our study demonstrated that low CO and tissue hypoxia were responsible for hepatic fibrosis in right failure heart model rats. PMID:26863419

  5. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  6. Fenofibrate inhibits aldosterone-induced apoptosis in adult rat ventricular myocytes via stress-activated kinase-dependent mechanisms

    PubMed Central

    De Silva, Deepa S.; Wilson, Richard M.; Hutchinson, Christoph; Ip, Peter C.; Garcia, Anthony G.; Lancel, Steve; Ito, Masa; Pimentel, David R.; Sam, Flora

    2009-01-01

    Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases. PMID:19395558

  7. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    PubMed

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases. PMID:24806307

  8. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  9. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes.

    PubMed

    Liu, Yan; Wang, Zhiqian; Xiao, Wenliang

    2016-09-01

    Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (P<0.05). The TAAC-induced rat model exhibited a higher HW/BW ratio, a larger CM area, and higher expression levels of ANF and β‑MHC. CMs, upon Ang II treatment, also demonstrated a larger CM area, higher levels of ANF and β‑MHC, as well as accelerated protein synthesis. miR‑26a was not able to regulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies. PMID:27485101

  10. ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats.

    PubMed

    Farraj, Aimen K; Hazari, Mehdi S; Haykal-Coates, Najwa; Lamb, Christina; Winsett, Darrell W; Ge, Yue; Ledbetter, Allen D; Carll, Alex P; Bruno, Maribel; Ghio, Andy; Costa, Daniel L

    2011-02-01

    Recently, investigators demonstrated associations between fine particulate matter (PM)-associated metals and adverse health effects. Residual oil fly ash (ROFA), a waste product of fossil fuel combustion from boilers, is rich in the transition metals Fe, Ni, and V, and when released as a fugitive particle, is an important contributor to ambient fine particulate air pollution. We hypothesized that a single-inhalation exposure to transition metal-rich PM will cause concentration-dependent cardiovascular toxicity in spontaneously hypertensive (SH) rats. Rats implanted with telemeters to monitor heart rate and electrocardiogram were exposed once by nose-only inhalation for 4 hours to 3.5 mg/m(3), 1.0 mg/m(3), or 0.45 mg/m(3) of a synthetic PM (dried salt solution), similar in composition to a well-studied ROFA sample consisting of Fe, Ni, and V. Exposure to the highest concentration of PM decreased T-wave amplitude and area, caused ST depression, reduced heart rate (HR), and increased nonconducted P-wave arrhythmias. These changes were accompanied by increased pulmonary inflammation, lung resistance, and vagal tone, as indicated by changes in markers of HR variability (increased root of the mean of squared differences of adjacent RR intervals [RMSSD], low frequency [LF], high frequency [HF], and decreased LF/HF), and attenuated myocardial micro-RNA (RNA segments that suppress translation by targeting messenger RNA) expression. The low and intermediate concentrations of PM had less effect on the inflammatory, HR variability, and micro-RNA endpoints, but still caused significant reductions in HR. In addition, the intermediate concentration caused ST depression and increased QRS area, whereas the low concentration increased the T-wave parameters. Thus, PM-induced cardiac dysfunction is mediated by multiple mechanisms that may be dependent on PM concentration and myocardial vulnerability (this abstract does not reflect the policy of the United States Environmental

  11. Metabolic and cardiac autonomic effects of high-intensity resistance training protocol in Wistar rats.

    PubMed

    de Deus, Ana Paula; de Oliveira, Claudio Ricardo; Simões, Rodrigo Polaquini; Baldissera, Vilmar; da Silva, Carlos Alberto; Rossi, Bruno Rafael Orsini; de Sousa, Hugo Celso Dutra; Parizotto, Nivaldo Antonio; Arena, Ross; Borghi-Silva, Audrey

    2012-03-01

    The aim of this study was to assess the effects of metabolic and autonomic nervous control on high-intensity resistance training (HRT) as determined by pancreatic glucose sensitivity (GS), insulin sensitivity (IS), blood lactate ([La]), and heart rate variability (HRV) in rats. Thirty male, albino Wistar rats (292 ± 20 g) were divided into 3 groups: sedentary control (SC), low-resistance training (LRT), and HRT. The animals in the HRT group were submitted to a high-resistance protocol with a progressively increasing load relative to body weight until exhaustion, whereas the LRT group performed the same exercise regimen with no load progression. The program was conducted 3 times per week for 8 weeks. The [La], parameters related to the functionality of pancreatic tissue, and HRV were measured. There was a significant increase in peak [La] only in the HRT group, but there was a reduction in [La] when corrected to the maximal load in both trained groups (LRT and HRT, p < 0.05). Both trained groups exhibited an increase in IS; however, compared with SC and LRT, HRT demonstrated a significantly higher GS posttraining (p < 0.05). With respect to HRV, the low-frequency (LF) band, in milliseconds squared, reduced in both trained groups, but the high-frequency band, in milliseconds squared and nu, increased, and the LF in nu, decreased only in the HRT group (p < 0.05). The HRT protocol produced significant and beneficial metabolic and cardiac autonomic adaptations. These results provide evidence for the positive benefits of HRT in counteracting metabolic and cardiovascular dysfunction. PMID:22067239

  12. Blockers of sulfonylureas receptor 1 subunits may lead to cardiac protection against isoprenaline-induced injury in obese rats.

    PubMed

    Bao, Yige; Sun, Xiaodong; Yerong, Yu; Shuyuan, Lu; Yang, Wu

    2012-09-01

    Recent studies have found that blockers of sulfonylureas receptor 1(SUR1) might have cardiac ischemic protective effects. We evaluated the effects of a selective SUR1 blocker gliclazide on cardiac function and arrhythmia after isoprenaline-induced myocardial injury in obese rats. Diet-induced obese rats received isoprenaline or saline shots subcutaneously. Gliclazide or saline was given q12 h for 48 h to rats received isoprenaline. We measured ECG and hemodynamic parameters and collected blood samples for CK-MB, glucose and lipid profile determination, and then harvested hearts for water content, histological and immunohistochemical analysis and infarct size measurements. The obese rats' hearts receiving isoprenaline-induced myocardial injury showed up-regulated SUR-1 expression in the peri-microvascular area. Obese rats receiving gliclazide lavage had less severe arrhythmia (ASI: 4.00 ± 0.61 vs. 2.14 ± 0.39, P<0.05) and myocardial edema (water percentage: 85.16 ± 0.46% vs. 81.56 ± 0.57%, P<0.05). Less infarct size (47.6 ± 12.8% vs. 32.7 ± 9.1%, P<0.05) and improved diastolic function (LVEDP: 6.86 ± 0.85% vs. 2.51 ± 1.09%, P<0.05;-(dp/dt)(max): -1663.6 ± 387.91 mmHg/s vs. -2834.8 ± 290.76 mmHg/s, P<0.05) were also observed in rats receiving gliclazide lavage. Blocking of the SUR1 thus exerts a protective effect on the isoprenaline-induced myocardial injury in obese rats. That SUR1 blocker leads to ischemic protection suggesting a critical biological role of SUR1 in regulating the function of the cardiovascular system than previously recognized under pathophysiological conditions. PMID:22766067

  13. Geophysical variables and behavior: CIII. Days with sudden infant deaths and cardiac arrhythmias in adults share a factor with PC1 geomagnetic pulsations: implications for pursuing mechanism.

    PubMed

    Persinger, M A; O'Connor, R P

    2001-06-01

    If geomagnetic-mediated stimuli trigger many sudden infant deaths, then the days in which they and hospital admissions for cardiac arrhythmias for adults occur should share a similar source of variance. Factor analyses of the days in which a sudden infant death occurred in Ontario or adults were admitted for one of eight categories of cardiac crisis in the Sudbury (Ontario) Region for the year 1984 supported the hypothesis. This factor, with which infant deaths and adult cardiac arrhythmias each shared about 40% of their variance, also shared about 40% of the variance with a factor with which about 35% of the variance in daily occurrence of geomagnetic pulsations (0.2 Hz to 5 Hz) was associated. These results are consistent with the important role of geomagnetic variables in the occurrence of transient electrical anomalies in brain function rather than cardiac blood flow. PMID:11453188

  14. SYSTEMIC IMBALANCE OF ESSENTIAL METALS AND CARDIAC GENE EXPRESSION IN RATS FOLLOWING ACUTE PULMONARY ZINC EXPOSURE

    EPA Science Inventory

    We have recently demonstrated that PM containing water-soluble zinc may cause cardiac injury following pulmonary exposure. To investigate if pulmonary zinc exposure causes systemic metal imbalance and direct cardiac effects, we intratracheally (IT) instilled male Wistar Kyoto (WK...

  15. Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway.

    PubMed

    Nazimabashir; Manoharan, Vaihundam; Miltonprabu, Selvaraj

    2015-12-01

    Cadmium (Cd) is one of the toxic heavy metals in the environment, which induces oxidative stress, dyslipidemia and membrane disturbances in heart. The present study was designed to evaluate the role of grape seed proanthocyanidins (GSP) against Cd induced oxidative stress mediated cardio-toxicity in rats. In this study, male Wistar rats were treated with Cd as cadmium chloride (CdCl2, 5 mg/ kg bw, PO) and pre-administered with GSP (100 mg/kg bw, PO) 90 min before the Cd intoxication for 4 weeks. Our results demonstrate a significant increase in the levels of cardiac troponins T and I (cTnT & I), cardiac serum markers, lipid peroxidative markers and plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL) and free fatty acids (FFA). Cd induced oxidative stress decreased the levels of mitochondrial Krebs cycle enzymes as well as the respiratory chain enzyme activities and altered the levels of cardiac enzymatic and non-enzymatic antioxidants. The inflammatory (NF-kB, NO, TNF-α, IL-6), apoptotic markers (caspase 3, cytochrome C, Bax, Bcl-2), membrane bound ATPases and antioxidant Nrf2 (HO-1, keap1) markers were also measured in the control and experimental rats. All these alterations caused by Cd could be lessened by the pre-supplementation of GSP. The pre-administration of GSP significantly increased the activities of mitochondrial and respiratory chain enzymes, reduced the levels of cardio-oxidative stress markers in Cd-treated rats, which examines the stress stabilizing action of GSP. GSP also prevented the cytochrome C release, inhibited the caspase activation and maintained the ratio of Bcl-2/Bax by its free radical scavenging ability. Nrf2 expression was transiently increased while the impaired cardiac markers were restored near to their basal levels by the pre-treatment with GSP in Cd intoxicated rats. The cardioprotective nature of the GSP was further fortified by our light microscopic and ultra structural findings. Overall, our results suggest

  16. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults?

    PubMed

    Ideker, Raymond E; Dosdall, Derek J

    2007-09-01

    There is only a small amount of experimental data about whether the TASER X26, a nonlethal weapon that delivers a series of brief electrical pulses to cause involuntary muscular contraction to temporarily incapacitate an individual, can initiate ventricular fibrillation to cause sudden cardiac arrest either immediately or sometime after its use. Therefore, this paper uses the fundamental law of electrostimulation and experimental data from the literature to estimate the likelihood of such events. Because of the short duration of the TASER pulses, the large duration of the cardiac cell membrane time constant, the small fraction of current from electrodes on the body surface that passes through the heart, and the resultant high pacing threshold from the body surface, the fundamental law of electrostimulation predicts that the TASER pulses will not stimulate an ectopic beat in the large majority of normal adults. Since the immediate initiation of ventricular fibrillation in a normal heart requires a very premature stimulated ectopic beat and the threshold for such premature beats is higher than less premature beats, it is unlikely that TASER pulses can immediately initiate ventricular fibrillation in such individuals through the direct effect of the electric field generated through the heart by the TASER. In the absence of preexisting heart disease, the delayed development of ventricular fibrillation requires the electrical stimuli to cause electroporation or myocardial necrosis. However, the electrical thresholds for electroporation and necrosis are many times higher than that required to stimulate an ectopic beat. Therefore, it is highly unlikely that the TASER X26 can cause ventricular fibrillation minutes to hours after its use through direct cardiac effects of the electric field generated by the TASER. PMID:17721165

  17. [ATRIAL AND BRAIN NATRIURETIC PEPTIDES OF CARDIAC MUSCLE CELLS IN POSTREPERFUSION PERIOD IN RATS].

    PubMed

    Bugrova, M L

    2016-01-01

    Accumulation and release of atrial and brain natriuretic peptides (ANP and BNP) in right atrial cardiac muscle cells has been investigated in rats after 60 minutes and 60 days after the reperfusion start. The total ischemia was simulated by the method of V. G. Korpachev. Immunocytochemical localization of peptides in cardiomyocytes was performed in ultrathin sections using polyclonal antibodies. The intensity of accumulation/excretion of ANP and BNP were analyzed by the method of counting the number of granules (A- and B-types) with immunoreactive labels in 38 x 38 mkm2 visual fields in transmission electron microscope Morgagni 268D (FEI). The results were assessed using Mann-Whitney U-test (p < 0.05). After 60 minutes and 60 days post-reperfusion period, we detected an increase in the synthesis and release of ANP and BNP. The reaction of BNP was more pronounced than ANP. This is due to the fact that ANP is the main hormone of the natriuretic peptide system involved in the regulation of blood pressure in normal conditions, while BNP is the principal regulator of pressure in cardiovascular pathology. PMID:27228659

  18. Effect of anemia on cardiac function, microvascular structure, and capillary hematocrit in rat hearts.

    PubMed

    Rakusan, K; Cicutti, N; Kolar, F

    2001-03-01

    The effect of anemia on the coronary microcirculation was studied in young male rats. Chronic anemia resulted in increased left ventricular end-diastolic pressure and decreased functional reserve. Cardiac mass in anemic animals increased by 25%. Capillary and arteriolar densities in these hearts remained unchanged, indicating angiogenesis in this experimental situation (estimated aggregate capillary length in the left ventricle of anemic hearts was 3.06 km compared with 2.35 km in control hearts). Capillary hematocrit was decreased in chronic anemia less than systemic hematocrit: from 25 to 18% in anemia versus 45 to 28% in controls. Capillary hematocrit and red blood cell spacing were also studied after acute blood withdrawal. Here, capillary hematocrit was preserved even more: 22 versus 24% in systemic hematocrit. Finally, the same was studied in isolated hearts perfused with solutions of various hematocrits. After perfusion with low-hematocrit solution (14%), the capillary hematocrit (24%) was even higher than the perfusate hematocrit! In conclusion, we found evidence of angiogenesis in cardiomegaly induced by chronic anemia. Microvascular growth was accompanied by advantageous regulation of red blood cell spacing within these vessels. This was even more pronounced during acute hemodilution and in isolated perfused hearts. PMID:11179091

  19. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats

    PubMed Central

    Pacher, Pál; Nagayama, Takahiro; Mukhopadhyay, Partha; Bátkai, Sándor; Kass, David A

    2008-01-01

    Ventricular pressure–volume relationships have become well established as the most rigorous and comprehensive ways to assess intact heart function. Thanks to advances in miniature sensor technology, this approach has been successfully translated to small rodents, allowing for detailed characterization of cardiovascular function in genetically engineered mice, testing effects of pharmacotherapies and studying disease conditions. This method is unique for providing measures of left ventricular (LV) performance that are more specific to the heart and less affected by vascular loading conditions. Here we present descriptions and movies for procedures employing this method (anesthesia, intubation and surgical techniques, calibrations). We also provide examples of hemodynamics measurements obtained from normal mice/rats, and from animals with cardiac hypertrophy/heart failure, and describe values for various useful load-dependent and load-independent indexes of LV function obtained using different types of anesthesia. The completion of the protocol takes 1–4 h (depending on the experimental design/end points). PMID:18772869

  20. Effect of olive leaf extract treatment on doxorubicin-induced cardiac, hepatic and renal toxicity in rats.

    PubMed

    Kumral, Alkın; Giriş, Murat; Soluk-Tekkeşin, Merva; Olgaç, Vakur; Doğru-Abbasoğlu, Semra; Türkoğlu, Ümit; Uysal, Müjdat

    2015-06-01

    Doxorubicin (DOX) is known to increase in oxidative stress in several organs. Olive leaf extract (OLE) has potent antioxidant effects; therefore, we evaluated the ability of OLE to reduce DOX-induced toxicity in the heart, liver, and kidneys of rats. DOX (30mg/kg; i.p.) was administered to rats, which were sacrificed 4 days after DOX. The rats received OLE (6 and 12mL/L in drinking water) for 12 days. Serum cardiac troponin I (cTnI) levels, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, urea and creatinine levels, as well as prooxidant and antioxidant status in organs were measured. DOX was found to increase serum markers that indicate tissue injury, malondialdehyde (MDA), diene conjugate (DC), and protein carbonyl (PC) levels, and to decrease glutathione (GSH) levels in organs. Histopathologic changes were also evaluated. OLE, especially OLE 1000, led to decreases in serum cTnI and urea levels, ALT and AST activities, and amelioration in histopathologic findings. Decreases in MDA, DC, and PC, and increases in GSH levels were observed in organs of DOX-treated rats due to OLE. We conclude that OLE treatment may be effective in decreasing DOX-induced cardiac, hepatic and renal oxidative stress and injury. PMID:26002558

  1. GONADAL STEROIDS REGULATED THE EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN THE ADULT MALE RAT HIPPOCAMPUS

    EPA Science Inventory

    This study demonstrates that gonadal steroids (estradiol, testosterone, dihydrotestosterone) can inhibit the expression of glial fibrillary acidic protein and it MRNA in the adult male rat brain. esticular hormones may influence the activity of astrocytes in the intact and lesion...

  2. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling.

    PubMed

    Rose, R A; Hatano, N; Ohya, S; Imaizumi, Y; Giles, W R

    2007-04-01

    In the heart, fibroblasts play an essential role in the deposition of the extracellular matrix and they also secrete a number of hormonal factors. Although natriuretic peptides, including C-type natriuretic peptide (CNP) and brain natriuretic peptide, have antifibrotic effects on cardiac fibroblasts, the effects of CNP on fibroblast electrophysiology have not been examined. In this study, acutely isolated ventricular fibroblasts from the adult rat were used to measure the effects of CNP (2 x 10(-8) M) under whole-cell voltage-clamp conditions. CNP, as well as the natriuretic peptide C receptor (NPR-C) agonist cANF (2 x 10(-8) M), significantly increased an outwardly rectifying non-selective cation current (NSCC). This current has a reversal potential near 0 mV. Activation of this NSCC by cANF was abolished by pre-treating fibroblasts with pertussis toxin, indicating the involvement of G(i) proteins. The cANF-activated NSCC was inhibited by the compounds Gd(3+), SKF 96365 and 2-aminoethoxydiphenyl borate. Quantitative RT-PCR analysis of mRNA from rat ventricular fibroblasts revealed the expression of several transient receptor potential (TRP) channel transcripts. Additional electrophysiological analysis showed that U73122, a phospholipase C antagonist, inhibited the cANF-activated NSCC. Furthermore, the effects of CNP and cANF were mimicked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG), independently of protein kinase C activity. These are defining characteristics of specific TRPC channels. More detailed molecular analysis confirmed the expression of full-length TRPC2, TRPC3 and TRPC5 transcripts. These data indicate that CNP, acting via the NPR-C receptor, activates a NSCC that is at least partially carried by TRPC channels in cardiac fibroblasts. PMID:17204501

  3. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    PubMed

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  4. Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts.

    PubMed

    Chimenti, Isotta; Gaetani, Roberto; Barile, Lucio; Forte, Elvira; Ionta, Vittoria; Angelini, Francesco; Frati, Giacomo; Messina, Elisa; Giacomello, Alessandro

    2012-01-01

    The successful isolation and ex vivo expansion of resident cardiac stem/progenitor cells from human heart biopsies has allowed us to study their biological characteristics and their applications in therapeutic approaches for the repair of ischemic/infarcted heart, the preparation of tissue-engineered cardiac grafts and, possibly, the design of cellular kits for drug screening applications. From the first publication of the original method in 2004, several adjustments and slight changes have been introduced to optimize and adjust the procedure to the evolving experimental and translational needs. Moreover, due to the wide applicability of such a method (which is based on the exploitation of intrinsic functional properties of cells with regenerative properties that are present in most tissues), the key steps of this procedure have been used to derive several kinds of tissue-specific adult stem cells for preclinical or clinical purposes.In order to define the original procedure, complete with the up-to-date modifications introduced through the years, an exhaustive description of the current protocol is performed in this chapter, with particular attention in highlighting critical steps and troubleshoots. The procedure described here consists of modular steps, that could be employed to derive cells from any kind of tissue biopsy, and needs to be considered the gold standard of all the so-called "explant methods" or "cardiosphere methods," and it represents a milestone in the clinical translation of autologous cell therapy. PMID:22610568

  5. Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI.

    PubMed

    Drabek, Tomas; Foley, Lesley M; Janata, Andreas; Stezoski, Jason; Hitchens, T Kevin; Manole, Mioara D; Kochanek, Patrick M

    2014-07-01

    Both ventricular fibrillation cardiac arrest (VFCA) and asphyxial cardiac arrest (ACA) are frequent causes of CA. However, only isolated reports compared cerebral blood flow (CBF) reperfusion patterns after different types of CA, and even fewer reports used methods that allow serial and regional assessment of CBF. We hypothesized that the reperfusion patterns of CBF will differ between individual types of experimental CA. In a prospective block-randomized study, fentanyl-anesthetized adult rats were subjected to 8min VFCA or ACA. Rats were then resuscitated with epinephrine, bicarbonate, manual chest compressions and mechanical ventilation. After the return of spontaneous circulation, CBF was then serially assessed via arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cortex, thalamus, hippocampus and amygdala/piriform complex over 1h resuscitation time (RT). Both ACA and VFCA produced significant temporal and regional differences in CBF. All regions in both models showed significant changes over time (p<0.01), with early hyperperfusion and delayed hypoperfusion. ACA resulted in early hyperperfusion in cortex and thalamus (both p<0.05 vs. amygdala/piriform complex). In contrast, VFCA induced early hyperperfusion only in cortex (p<0.05 vs. other regions). Hyperperfusion was prolonged after ACA, peaking at 7min RT (RT7; 199% vs. BL, Baseline, in cortex and 201% in thalamus, p<0.05), then returning close to BL at ∼RT15. In contrast, VFCA model induced mild hyperemia, peaking at RT7 (141% vs. BL in cortex). Both ACA and VFCA showed delayed hypoperfusion (ACA, ∼30% below BL in hippocampus and amygdala/piriform complex, p<0.05; VFCA, 34-41% below BL in hippocampus and amygdala/piriform complex, p<0.05). In conclusion, both ACA and VFCA in adult rats produced significant regional and temporal differences in CBF. In ACA, hyperperfusion was most pronounced in cortex and thalamus. In VFCA, the changes were more modest, with hyperperfusion seen only in cortex

  6. Does short preoperative statin therapy prevent infectious complications in adults undergoing cardiac or non-cardiac surgery?

    PubMed Central

    Li, Hua; Lin, Yuan-Long; Diao, Shu-Ling; Ma, Bao-Xin; Liu, Xian-Liang

    2016-01-01

    Objectives: To evaluate the effect of preoperative statin therapy on the incidence of postoperative infection. Methods: This systematic review of the literature was carried out in August 2015. Studies were retrieved via PubMed, Embase, and the Cochrane Library (1980 to 2015), and the reference files were limited to English-language articles. We used a standardized protocol, and a meta-analysis was performed for data abstraction. Results: Five studies comprising 1,362 patients qualified for the analysis. The incidence of postoperative infections in the statin group (1.1%) was not significantly lower than that in the placebo group (2.4%), with a risk ratio (RR) of 0.56 (95% confidence interval [CI] 0.24-1.33, p=0.19). Patients of 3 studies underwent cardiac surgery. The aggregated results of these studies failed to show significant differences in postoperative infection when a fixed effects model was used (RR: 0.39; 95% CI: 0.08-1.97, p=0.26]. Conclusions: We failed to find sufficient evidence to support the association between statin use and postoperative infectious complications. The absence of any evidence for a beneficial effect in available randomized trials reduces the likelihood of a causal effect as reported in observational studies. PMID:27146610

  7. Acute and long-lasting cardiac changes following a single whole-body exposure to sarin vapor in rats.

    PubMed

    Allon, N; Rabinovitz, I; Manistersky, E; Weissman, B A; Grauer, E

    2005-10-01

    Epinephrine-induced arrhythmias (EPIA) are known to be associated with local cardiac cholinergic activation. The present study examined the development of QT prolongation and the effect on EPIA of whole-body exposure of animals to a potent acetylcholine esterase inhibitor. Freely moving rats were exposed to sarin vapor (34.2 +/- 0.8 microg/liter) for 10 min. The electrocardiograms (ECG) of exposed and control animals were monitored every 2 weeks for 6 months. One and six months post exposure, rats were challenged with epinephrine under anesthesia, and the threshold for arrhythmias was determined. Approximately 35% of the intoxicated rats died within 24 h of sarin exposure. Additional occasional deaths were recorded for up to 6 months (final mortality rate of 48%). Surviving rats showed, agitation, aggression, and weight loss compared to non-exposed rats, and about 20% of them experienced sporadic convulsions. Sarin-challenged rats with severe symptoms demonstrated QT segment prolongation during the first 2-3 weeks after exposure. The EPIA that appeared at a significantly lower blood pressure in the treated group in the first month after intoxication lasted for up to 6 months. This decrease in EPIA threshold was blocked by atropine and methyl-atropine. Three months post exposure no significant changes were detected in either k(D) or B(max) values of (3)H-N-methyl scopolamine binding to heart homogenates, or in the affinity of carbamylcholine to cardiac muscarinic receptors. The increase in the vulnerability to develop arrhythmias long after accidental or terror-related organophosphate (OP) intoxication, especially under challenging conditions such as stress or intensive physical exercise, may explain the delayed mortality observed following OP exposure. PMID:16033992

  8. IMMUNOTOXICITY OF TRIBUTYLTIN OXIDE IN RATS EXPOSED AS ADULTS OR PRE-WEANLINGS

    EPA Science Inventory

    A comparison was made between adult and pre-weanling rats of the immunotoxic effects of acute dosing with bis(tri-n-butyltin) oxide (TBT0). dult (9 week old) male Fischer rats were dosed by oral gavage with TBT0 for 10 consecutive days at 2.5 to 10 mg/kg/dose or three times per w...

  9. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  10. IMMATURE RAT LEYDIG CELLS ARE INTRINSICALLY LESS SENSITIVE THAN ADULT LEYDIG CELLS TO ETHANE DIMETHANESULFONATE

    EPA Science Inventory

    Leydig cells from immature rat tests appear to be insensitive to doses of ethane-1,2-dimethanesulfonate (EDS) which eliminate Leydig cells from adult rat testes. e sought to determine whether this differential response to EDS is intrinsic to the Leydig cell or mediated by other i...

  11. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats.

    PubMed

    Bakker, J M; Kavelaars, A; Kamphuis, P J; Cobelens, P M; van Vugt, H H; van Bel, F; Heijnen, C J

    2000-11-15

    Major concern has emerged about the possible long term adverse effects of glucocorticoid treatment, which is frequently used for the prevention of chronic lung disease in preterm infants. Here we show that neonatal glucocorticoid treatment of rats increases the severity (p< or = 0.01) and incidence (p< or =0.01) of the inflammatory autoimmune disease experimental autoimmune encephalomyelitis in adult life. In search of possible mechanisms responsible for the increased susceptibility to experimental autoimmune encephalomyelitis, we investigated the reactivity of the hypothalamo-pituitary-adrenal axis and of immune cells in adult rats after neonatal glucocorticoid treatment. We observed that neonatal glucocorticoid treatment reduces the corticosterone response after an LPS challenge in adult rats (p< or =0.001). Interestingly, LPS-stimulated macrophages of glucocorticoid-treated rats produce less TNF-alpha and IL-1beta in adult life than control rats (p<0.05). In addition, splenocytes obtained from adult rats express increased mRNA levels of the proinflammatory cytokines IFN-gamma (p<0.01) and TNF-beta (p<0.05) after neonatal glucocorticoid treatment. Apparently, neonatal glucocorticoid treatment has permanent programming effects on endocrine as well as immune functioning in adult life. In view of the frequent clinical application of glucocorticoids to preterm infants, our data demonstrate that neonatal glucocorticoid treatment may be a risk factor for the development of (auto)immune disease in man. PMID:11067955

  12. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Fong, Ashley H; Romero-López, Mónica; Heylman, Christopher M; Keating, Mark; Tran, David; Sobrino, Agua; Tran, Anh Q; Pham, Hiep H; Fimbres, Cristhian; Gershon, Paul D; Botvinick, Elliot L; George, Steven C; Hughes, Christopher C W

    2016-08-01

    Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease. PMID:27392582

  13. Daily administration of atorvastatin and simvastatin for one week improves cardiac function in type 1 diabetic rats.

    PubMed

    Crespo, Maria J; Cruz, Nildris; Quidgley, Jose; Torres, Hector; Hernandez, Cesar; Casiano, Hector; Rivera, Karines

    2014-01-01

    Short-term administration of statins during the perioperative period has been suggested to improve cardiovascular (CV) outcomes in patients undergoing cardiac and vascular surgery. The effectiveness of this therapy, the optimal administration time and the statin best suited to improve cardiac performance under hyperglycemic conditions, however, are unknown. In this study, we compared the effects of 10 mg/kg/day simvastatin (SV), pravastatin (PV) and atorvastatin (AV), on the CV status of fully anesthetized streptozotocin-induced diabetic rats 4 weeks following diabetes induction. At this stage, cardiac function is compromised. The rats were anesthetized to mimic presurgical conditions. Cardiac status was evaluated twice by echocardiography, first 24 h after statin administration, and then after daily statin administration for 1 week. After 24 h of statin administration, CV parameters were not improved. Continued daily administration of SV and AV over a 1-week period, by contrast, significantly improved ejection fraction from 52.20 ± 2.33% before treatment to 64.89 ± 1.12% with AV and to 69.71 ± 2.30% with SV (n = 9, p < 0.05). The cardiac output index was also significantly improved from 51.13 ± 6.86 ml/min × 100 g body weight (BW) before treatment to 98.74 ± 13.78 ml/min × 100 g BW with AV and to 84.94 ± 8.64 ml/min × 100 g BW with SV. Only AV increased stroke volume from 0.50 ± 0.08 to 0.83 ± 0.13 ml (n = 9, p < 0.05). Unlike the other statins tested, PV provided no beneficial effects, regardless of the regimen of administration. Our results indicate that daily administration of AV and SV for 1 week enhances cardiac performance in fully anesthetized diabetic rats. This study of short-term statin administration may have strong clinical implications for improving perioperative outcomes in diabetic patients. PMID:24556594

  14. [Cardiac MRI in the follow-up of adult congenital cardiomyopathy patients].

    PubMed

    Monney, P; Stalder, N; Clair, M; Vogt, P; Schwitter, J; Meijboom, E J; Bouchardy, J

    2011-06-01

    Magnetic resonance imaging is a rapidly developing modality in cardiology. It offers an excellent image definition and a large field of view, allowing a more accurate morphological assessment of cardiac malformations. Due to its unique versatility and its ability to provide myocardial tissue characterization, cardiac magnetic resonance (CMR) is now recognized as a central imaging modality for a wide range of congenital heart diseases, including assessment of post-surgical cardiac anatomy, quantification of valvular disease and detection of myocardial ischemia. CMR provides useful diagnostic information without any radiation exposure, and improves the global management of patients with congenital heart disease. PMID:21717692

  15. Cytosolic calcium and myofilaments in single rat cardiac myocytes achieve a dynamic equilibrium during twitch relaxation.

    PubMed Central

    Spurgeon, H A; duBell, W H; Stern, M D; Sollott, S J; Ziman, B D; Silverman, H S; Capogrossi, M C; Talo, A; Lakatta, E G

    1992-01-01

    1. Single isolated rat cardiac myocytes were loaded with either the pentapotassium salt form or the acetoxymethyl ester (AM) form of the calcium-sensitive fluorescent probe, Indo-1. The relationship of the Indo-1 fluorescence transient, an index of the change in cytosolic calcium [Ca2+]i concentration, to the simultaneously measured cell length during the electrically stimulated twitch originating from slack length at 23 degrees C was evaluated. It was demonstrated that even if the Ca2+ dissociation rate from Indo-1 was assumed to be as slow as 10 s-1, the descending limb ('relaxation phase') of the Indo-1 fluorescence transient induced by excitation under these conditions is in equilibrium with the [Ca2+]i transient. Additionally, the extent of Indo-1 loading employed did not substantially alter the twitch characteristics. 2. A unique relationship between the fluorescence transient and cell length was observed during relaxation of contractions that varied in amplitude. This was manifest as a common trajectory in the cell length vs. [Ca2+]i phase-plane diagrams beginning at the time of cell relengthening. The common trajectory could also be demonstrated in Indo-1 AM-loaded cells. The Indo-1 fluorescence-length relation defined by this common trajectory is steeper than that described by the relation of peak contraction amplitude and peak fluorescence during the twitch contractions. 3. The trajectory of the [Ca2+]i-length relation elicited via an abrupt, rapid, brief (200 ms) pulse of caffeine directly onto the cell surface or by 'tetanization' of cells in the presence of ryanodine is identical to the common [Ca2+]i-length trajectory formed by electrically stimulated contractions of different magnitudes. As the [Ca2+]i and length transients induced by caffeine application or during tetanization in the presence of ryanodine develop with a much slower time course than those elicited by electrical stimulation, the common trajectory is not fortuitous, i.e. it cannot be

  16. Attenuation of the hypoxic ventilatory response in adult rats following one month of perinatal hyperoxia.

    PubMed Central

    Ling, L; Olson, E B; Vidruk, E H; Mitchell, G S

    1996-01-01

    1. This study was designed to test the hypothesis that perinatal suppression of peripheral arterial chemoreceptor inputs attenuates the hypoxic ventilatory response in adult rats. Perinatal suppression of peripheral chemoreceptor activity was achieved by exposing rats to hyperoxia throughout the first month of life. 2. Late-gestation pregnant rats were housed in a 60% O2 environment, exposing the pups to hyperoxia from several days prior to birth until they were returned to normoxia on postnatal day 28. These perinatally treated rats were then reared to adulthood (3-5 months old) in normoxia. In addition to the mother rats, adult male rats were also exposed to hyperoxia, creating an adult-treated control group. Two to four months after the hyperoxic exposure, treated rats were compared with untreated male rats of similar age. 3. A whole-body, flow-through plethysmograph was used to measure hypoxic and hypercapnic ventilatory responses of the unanaesthetized adult rats. In moderate hypoxia (arterial oxygen partial pressure, Pa,O2 approximately 48 mmHg). VE (minute ventilation) and the ratio VE/VCO2 (ventilation relative to CO2 production) increased by 16.7 +/- 4.0 and 35.4 +/- 3.4%, respectively, in perinatal-treated rats (means +/- S.E.M.), but increased more in untreated control rats (51.4 +/- 2.8 and 83.1 +/- 4.3%; both P < 10(-6)). 4. In contrast to the impaired hypoxic ventilatory response, ventilatory responses to hypercapnia (5% CO2) were similar between untreated control and perinatal-treated rats. 5. Impaired hypoxic responsiveness was unique to the perinatal-treated rats since hypoxic ventilatory responses were not attenuated in adult-treated rats. 6. The results indicate that ventilatory responses to hypoxaemia are greatly attenuated in adult rats that had experienced hyperoxia during their first month of life, and suggest that normal hypoxic ventilatory control mechanisms are susceptible to developmental plasticity. Images Figure 2 Figure 3 PMID:8887766

  17. Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus.

    PubMed

    Okada-Tsuchioka, Mami; Segawa, Masahiro; Kajitani, Naoto; Hisaoka-Nakashima, Kazue; Shibasaki, Chiyo; Morinobu, Shigeru; Takebayashi, Minoru

    2014-01-01

    Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated the effects of electroconvulsive seizure (ECS) on the expression of TSPs in the adult rat hippocampus. Single and repeated ECS significantly increased TSP-1 mRNA expression after 2h and returned to sham levels at 24h. Conversely, the TSP-2 and -4 mRNA levels did not change. Only repeated ECS induced TSP-1 proteins. ECS also induced glial fibrillary acidic protein (GFAP) expression. The GFAP expression occurred later than the TSP-1 mRNA expression following single ECS; however, it occurred earlier and was more persistent following repeated ECS. ECS had no effect on the α2δ-1 or neuroligin-1 expressions, both of which are TSP-1 receptors. Furthermore, chronic treatment with antidepressants did not induce the expression of TSP-1 or GFAP. These findings suggest that repeated ECS, but not chronic treatment with antidepressants, induces TSP-1 expression partially via the activation of astrocytes. Therefore, TSP-1 is possibly involved in the synaptogenic effects of ECS. PMID:24121060

  18. Adversity before conception will affect adult progeny in rats.

    PubMed

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress (PCS0) or 2 weeks after the stress ended (PCS2). Their offspring were raised undisturbed until tested in adulthood. PCS offspring showed reduced social interaction; in the acoustic startle test, PCS males were less fearful, whereas PCS females were more fearful; in the shuttle task, PCS0 males avoided shock better; and in the elevated maze, PCS0 females were more active and anxious. The 2-week interval between stress and mating assuaged the effects on offspring activity and shock avoidance but not the changes in social behavior and fear in male and female offspring. Hence, PCS to the dam, even well before pregnancy, influences affective and social behavior in her adult offspring, depending on how long before conception it occurred, the behavior tested, and sex. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19209986

  19. Plasma High Sensitivity Troponin T Levels in Adult Survivors of Childhood Leukaemias: Determinants and Associations with Cardiac Function

    PubMed Central

    Cheung, Yiu-fai; Yu, Wei; Cheuk, Daniel Ka-leung; Cheng, Frankie Wai-tsoi; Yang, Janet Yee-kwan; Yau, Jeffrey Ping-wa; Ho, Karin Ka-huen; Li, Chi-kong; Li, Rever Chak-ho; Yuen, Hui-leung; Ling, Alvin Siu-cheung; Li, Vivian Wing-yi; Wong, Wai-keung; Tsang, Kwong-cheong; Chan, Godfrey Chi-fung

    2013-01-01

    Background We sought to quantify plasma high sensitivity cardiac troponin (hs-cTnT) levels, their determinants, and their associations with left ventricular (LV) myocardial deformation in adult survivors of childhood acute leukaemias. Methods and Results One hundred adult survivors (57 males) of childhood acute leukaemias, aged 24.1±4.2 years, and 42 age-matched controls (26 males) were studied. Plasma cTnT was determined using a highly sensitive assay. Genotyping of NAD(P)H oxidase and multidrug resistance protein polymorphisms was performed. Left ventricular function was assessed by conventional, three-dimensional, and speckle tracking echocardiography. The medians (interquartile range) of hs-cTnT in male and female survivors were 4.9 (4.2 to 7.2) ng/L and 1.0 (1.0 to 3.5) ng/L, respectively. Nineteen survivors (13 males, 6 females) (19%) had elevated hs-cTnT (>95th centile of controls). Compared to those without elevated hs-TnT levels, these subjects had received larger cumulative anthracycline dose and were more likely to have leukaemic relapse, stem cell transplant, and cardiac irradiation. Their LV systolic and early diastolic myocardial velocities, isovolumic acceleration, and systolic longitudinal strain rate were significantly lower. Survivors having CT/TT at CYBA rs4673 had higher hs-cTnT levels than those with CC genotype. Functionally, increased hs-cTnT levels were associated with worse LV longitudinal systolic strain and systolic and diastolic strain rates. Conclusions Increased hs-cTnT levels occur in a significant proportion of adult survivors of childhood acute leukaemias and are associated with larger cumulative anthracycline dose received, history of leukaemic relapse, stem cell transplant, and cardiac irradiation, genetic variants in free radical metabolism, and worse LV myocardial deformation. PMID:24204736

  20. Aortocaval Fistula in Rat: A Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy

    PubMed Central

    Abassi, Zaid; Goltsman, Ilia; Karram, Tony; Winaver, Joseph; Hoffman, Aaron

    2011-01-01

    Despite continuous progress in our understanding of the pathogenesis of congestive heart failure (CHF) and its management, mortality remains high. Therefore, development of reliable experimental models of CHF and cardiac hypertrophy is essential to better understand disease progression and allow new therapy developement. The aortocaval fistula (ACF) model, first described in dogs almost a century ago, has been adopted in rodents by several groups including ours. Although considered to be a model of high-output heart failure, its long-term renal and cardiac manifestations are similar to those seen in patients with low-output CHF. These include Na+-retention, cardiac hypertrophy and increased activity of both vasoconstrictor/antinatriureticneurohormonal systems and compensatory vasodilating/natriuretic systems. Previous data from our group and others suggest that progression of cardiorenal pathophysiology in this model is largely determined by balance between opposing hormonal forces, as reflected in states of CHF decompensation that are characterized by overactivation of vasoconstrictive/Na+-retaining systems. Thus, ACF serves as a simple, cheap, and reproducible platform to investigate the pathogenesis of CHF and to examine efficacy of new therapeutic approaches. Hereby, we will focus on the neurohormonal, renal, and cardiac manifestations of the ACF model in rats, with special emphasis on our own experience. PMID:21274403

  1. Eucalyptus leaf extract suppresses the postprandial elevation of portal, cardiac and peripheral fructose concentrations after sucrose ingestion in rats.

    PubMed

    Sugimoto, Keiichiro; Hosotani, Tetsuro; Kawasaki, Takahiro; Nakagawa, Kazuya; Hayashi, Shuichi; Nakano, Yoshihisa; Inui, Hiroshi; Yamanouchi, Toshikazu

    2010-05-01

    Overintake of sucrose or fructose induces adiposity. Fructose undergoes a strong Maillard reaction, which worsens diabetic complications. To determine whether Eucalyptus globulus leaf extract (ELE) suppresses the postprandial elevation of serum fructose concentrations (SFCs) in the portal, cardiac, and peripheral blood after sucrose ingestion, we performed gas chromatography/mass spectrometry (GC/MS) and measured SFC without any interference by contaminating glucose in the samples. Fasting Wistar rats were orally administered water (control group) or ELE (ELE group) before sucrose ingestion. Blood was collected from the portal vein, heart, and tail. The increase in the SFCs in the portal and cardiac samples 30 min after sucrose ingestion was lower in the ELE group than in the control group. The coefficient of correlation between the SFCs in the portal and cardiac samples was 0.825. The peripheral SFC in the control group progressively increased and was 146 micromol/L at 60 min. This increase was significantly lower in the ELE group. In contrast, the serum glucose concentrations in the 2 groups were similar. ELE suppressed postprandial hyperfructosemia in the portal, cardiac, and peripheral circulations. ELE may counteract glycation caused by high blood fructose concentrations induced by the consumption of fructose-containing foods or drinks. PMID:20490315

  2. Activation of NADPH-diaphorase-positive projections to the rostral ventrolateral medulla following cardiac mechanoreceptor stimulation in the conscious rat.

    PubMed

    Kantzides, A; Badoer, E

    2006-06-01

    Stimulation of cardiac mechanoreceptors during volume expansion elicits reflex compensatory changes in sympathetic nerve activity (SNA). The hypothalamic paraventricular nucleus (PVN) and nucleus of the tractus solitarius (NTS) are autonomic regions known to contribute to this reflex. Both of these nuclei project to the rostral ventrolateral medulla (RVLM), critical in the tonic generation of SNA. Recent reports from our laboratory show that these pathways 1) are activated following cardiac mechanoreceptor stimulation, and 2) produce nitric oxide, known to influence SNA. The aims of the present study were to determine whether 1) the activated neurons within the PVN and NTS were nitrergic and 2) these neurons projected to the RVLM. Animals were prepared, under general anesthesia, by microinjection of a retrogradely transported tracer into the pressor region of the RVLM and the placement of a balloon at the right venoatrial junction. In conscious rats, the balloon was inflated to stimulate the cardiac mechanoreceptors or was left uninflated. Balloon inflation elicited a significant increase in Fos-positive neurons in the parvocellular PVN (sevenfold) and NTS (fivefold). In the PVN, 51% of nitrergic neurons and 61% of RVLM-projecting nitrergic neurons were activated. In the NTS, these proportions were 8 and 18%, respectively. The data suggest that nitrergic neurons within the PVN and, to a lesser extent, in the NTS, some of which project to the RVLM, may contribute to the central pathways influencing SNA elicited by cardiac mechanoreceptor stimulation. PMID:16682470

  3. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  4. Developmental changes in the role of a pertussis toxin sensitive guanine nucleotide binding protein in the rat cardiac alpha sub 1 -adrenergic system

    SciTech Connect

    Han, H.M.

    1989-01-01

    During development, the cardiac alpha{sub 1}-adrenergic chronotropic response changes from positive in the neonate to negative in the adult. This thesis examined the possibility of a developmental change in coupling of a PT-sensitive G-protein to the alpha{sub 1}-adrenergic receptor. Radioligand binding experiments performed with the iodinated alpha{sub 1}-selective radioligand ({sup 125}I)-I-2-({beta}-(4-hydroxphenyl)ethylaminomethyl)tetralone (({sup 125}I)-IBE 2254) demonstrated that the alpha{sub 1}-adrenergic receptor is coupled to a G-protein in both neonatal and adult rat hearts. However, in the neonate the alpha{sub 1}-adrenergic receptor is coupled to a PT-insensitive G-protein, whereas in the adult the alpha{sub 1}-adrenergic receptor is coupled to both a PT-insensitive and a PT-sensitive G-protein. Consistent with the results from binding experiments, PT did not have any effect on the alpha{sub 1}-mediated positive chronotropic response in the neonate, whereas in the adult the alpha{sub 1}-mediated negative chronotropic response was completely converted to a positive one after PT-treatment. This thesis also examined the possibility of an alteration in coupling of the alpha{sub 1}-adrenergic receptor to its effector under certain circumstances such as high potassium (K{sup +}) depolarization in nerve-muscle (NM) co-cultures, a system which has been previously shown to be a convenient in vitro model to study the mature inhibitory alpha{sub 1}-response.

  5. In-hospital resuscitation: recognising and responding to adults in cardiac arrest.

    PubMed

    Simpson, Elizabeth

    2016-08-17

    Survival rates following in-hospital cardiac arrest remain low. The majority of patients who survive a cardiac arrest will be in a monitored environment, have a witnessed cardiac arrest and present with a shockable rhythm, usually ventricular fibrillation. Nurses have a responsibility to preserve safety, which requires the ability to accurately assess patients for signs of deterioration in physical health, and to provide assistance when an emergency arises in practice. Nurses must work within the limits of their competence and be able to establish the urgency of a situation. Nurses in all areas of practice must be able to recognise the signs of cardiac arrest and know the prompt response sequence required to improve the patient's chances of survival. This article focuses on inpatient resuscitation in acute healthcare environments and is aimed at staff who may be the first to respond to an in-hospital cardiac arrest. This does not include specialist units such as neurosurgery, intensive therapy units and cardiac catheterisation laboratories, where medical experts are available and clinical priorities may differ. PMID:27533415

  6. Sufficient myocardial protection of del Nido cardioplegia regardless of ventricular mass and myocardial ischemic time in adult cardiac surgical patients

    PubMed Central

    Kim, Ji Seong; Jeong, Jin Hee; Moon, Sin Ju; Ahn, Hyuk

    2016-01-01

    Background Del Nido (DN) cardioplegic solution (CPS) has been widely used during pediatric cardiac surgery. However, its use in the field of adult cardiac surgery is not popular yet. We evaluated efficacy of DN cardioplegia in adult cardiac surgical patients. Methods Fifty-three adult patients (mean age, 54±16 years) who underwent cardiovascular surgery using DN cardioplegia were enrolled. Myocardial troponin I (TnI) level up to three days after surgery and early clinical outcomes were evaluated. Propensity score matching was performed to compare these results with those after surgery using blood cardioplegia (BC). Results DN cardioplegia was infused with an initial dose of 1,126±221 mL, and an additional 500 mL was reinfused in 15 patients 91 minutes after initial infusion. After release of aortic cross clamp (ACC), spontaneous defibrillation was achieved in 94.3% (50/53). The peak TnI level after surgery was 9.8 ng/mL (range, 2.0–90.2 ng/mL). Linear regression models demonstrated that neither left ventricular mass (LVM) nor ACC time was associated with increased level of peak TnI (P=0.928 and 0.595, respectively). Early mortality occurred in one patient (1.9%). Postoperative complications included atrial fibrillation (n=18, 34.0%), acute kidney injury (n=4, 7.5%), low cardiac output syndrome (n=1, 1.9%), and respiratory complications (n=1, 1.9%). Propensity score matching extracted 39 pairs. Spontaneous defibrillation was achieved more frequently in the DN than BC groups (37/39 vs. 12/39, P<0.001). Peak level and serial changes of TnI were not statistically different between the two groups (P=0.085 and 0.959, respectively). There were also no significant differences in early mortality and postoperative complication rates between the two groups. Conclusions DN cardioplegia is as effective as BC for adult patients in terms of myocardial protection and early clinical outcomes.

  7. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart.

    PubMed

    Howard, Marcia D; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N

    2007-09-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that

  8. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  9. Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death.

    PubMed

    Brain, John G; Rostron, Anthony J; Dark, John H; Kirby, John A

    2008-05-15

    DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation. PMID:18475194

  10. Protection against cardiac anoxia--role and limitations of increased glycogen reserves in the isolated rat right ventricular strip.

    PubMed

    Towart, R; Schlossmann, K; Kazda, S

    1981-01-01

    The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with an increased susceptibility to anoxia. Several hours after administration, glycogen levels are found to be greatly (100-200%) increased, by a "supercompensation" mechanism, and a marked tolerance to anoxia can be simultaneously demonstrated. In contrast, large doses of corticosteroids (dexamethasone, 8 mg/kg i.m.) increase glycogen levels without initial stimulation and glycogen depletion; increased myocardial tolerance to anoxia parallels the increase in glycogen reserves in vivo. We conclude that the myocardial tolerance to anoxia in this model is related to increased glycogen reserves, which increase the rate and/or duration of anaerobic glycolysis during anoxia. PMID:7332516

  11. Comparison of the effects of xamoterol and isoprenaline on rat cardiac beta-adrenoceptors: studies of function and regulation.

    PubMed Central

    Kowalski, M. T.; Haworth, D.; Lu, X.; Thomson, D. S.; Barnett, D. B.

    1990-01-01

    1. The effects of the beta 1-selective partial agonist xamoterol and the full agonist isoprenaline on rat cardiac beta-adrenoceptors were compared in functional studies of heart rate response in vivo and in vitro. In addition, the ability of both agents to cause receptor down-regulation in the rat heart following chronic (6 days) subcutaneous infusions was assessed by radioligand binding with [125I]-pindolol. 2. In the functional studies, xamoterol produced a maximal effect equivalent to approximately 65% of that of isoprenaline and was overall less potent than the full agonist. 3. Compared to saline control, the density of beta-adrenoceptors was reduced approximately 39% in ventricular membranes prepared from animals after 6 days of isoprenaline infusion but was unaffected by xamoterol. The relative proportions of the beta-adrenoceptor subtypes were unchanged by either active treatment. 4. Plasma xamoterol level at the end of the infusion period was equivalent to that associated with maximum tachycardia in vivo and to the concentration producing maximal stimulation of the rat isolated atrium in vitro. Thus suggesting 100% beta-adrenoceptor occupancy during the period of xamoterol infusion. 5. These results indicate that in this animal model xamoterol does not induce cardiac beta-adrenoceptor down-regulation during chronic treatment, with doses that produce a maximal functional response both in vitro and in vivo. PMID:2158836

  12. Mammalian Fetal Cardiac Regeneration Following Myocardial Infarction is Associated with Differential Gene Expression Compared to the Adult

    PubMed Central

    Zgheib, Carlos; Allukian, Myron W.; Xu, Junwang; Morris, Michael W.; Caskey, Robert C.; Herdrich, Benjamin J.; Hu, Junyi; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2014-01-01

    Background In adults, MI results in a brisk inflammatory response, myocardium loss and scar formation. We have recently reported the first mammalian large animal model of cardiac regeneration following MI in fetal sheep. We hypothesize that the fetus ability to regenerate functional myocardium following MI is due to differential gene expression regulating the response to MI in the fetus compared to the adult. Methods MI was created in adult (n=4) or early gestation fetal (n=4) sheep. Tissue harvested after 3 or 30 days, RNA extracted for microarray, followed by PCA and global gene expression analysis for the gene ontology (GO) terms: “response to wounding”, “inflammatory response”, “extracellular matrix”, “cell cycle”, “cell migration”, “cell proliferation” and “apoptosis”. Results PCA demonstrated that the global gene expression pattern in adult infarcts was distinctly different from uninfarcted region at 3 days and remained different 30 days post-MI. In contrast, gene expression in the fetal infarct was different from the uninfarcted region at 3 days, but by 30 days it returned to a baseline expression pattern similar to the uninfarcted region. 3 days post-MI there was an increase in the expression of genes related to all GO terms in fetal and adult infarcts, but this increase was much more pronounced in adults. By 30 days, the fetal gene expression returned to baseline, whereas in the adult remained significantly elevated. Conclusions These data demonstrate that the global gene expression pattern is dramatically different in the fetal regenerative response to MI compared to the adult response and may partly be responsible for the regeneration. PMID:24792251

  13. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    PubMed Central

    Kodavanti, Urmila P.; Thomas, Ronald; Ledbetter, Allen D.; Schladweiler, Mette C.; Shannahan, Jonathan H.; Wallenborn, J. Grace; Lund, Amie K.; Campen, Matthew J.; Butler, Elizabeth O.; Gottipolu, Reddy R.; Nyska, Abraham; Richards, Judy E.; Andrews, Deborah; Jaskot, Richard H.; McKee, John; Kotha, Sainath R.; Patel, Rishi B.; Parinandi, Narasimham L.

    2011-01-01

    Background Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective We sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP. Methods and results Male Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta. Conclusions In animals exposed to ozone or DEP alone for 16

  14. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  15. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs.

    PubMed

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    BACKGROUND The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. MATERIAL AND METHODS MI and RSD were induced in Sprague-Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. RESULTS In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. CONCLUSIONS The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  16. Cardiac and aortic structural alterations due to surgically-induced menopause associated with renovascular hypertension in rats.

    PubMed

    Mendonça, Leonardo de Souza; Fernandes-Santos, Caroline; Mandarim-de-Lacerda, Carlos Alberto

    2007-08-01

    Menopause and hypertension independently alter cardiovascular remodelling, but little is known about their effect on left ventricular and aortic wall remodelling. Eight-weeks-old Wistar rats were divided into four groups of six animals each: Sham group, OVX group (ovariectomized rats), 2K1C (two-kidneys, one-clip rats) and OVX + 2K1C group and kept until 19 weeks. Blood pressure (BP) increased 12% in OVX group, 35% in 2K1C and OVX + 2K1C groups compared with sham group. Vaginal cytology showed Sham and 2K1C rats cycling normally, whereas OVX and OVX + 2K1C rats were persistently in dioestrus or proestrus. At euthanasia, left ventricle (LV) and thoracic aorta were removed and analysed (immunohistochemistry and stereology). LV mass/tibia length ratio and cross-sectional area of cardiomyocytes increased in all groups except Sham. The intramyocardial vascularization reduced 30% in comparison with Sham group, with no difference among OVX, 2K1C and OVX + 2K1C groups. The cardiac interstitium increased more than 45% in both 2K1C and OVX + 2K1C groups compared with Sham, but there was no significant difference between Sham and OVX groups. Nuclei number of LV cardiomyocyte diminished in OVX group, followed by 2K1C group and OVX + 2K1C group, with no difference between the 2K1C and the OVX + 2K1C groups. There was positive immunostaining for angiotensin II AT1 receptor in smooth muscle cell layer of aortic tunica media in all groups. These results show that both ovariectomy and renovascular hypertension enhance BP as a single stimulus and therefore produce adverse cardiac remodelling. However, renovascular hypertension exerts a far greater influence than surgically-induced menopause in this parameter. PMID:17696911

  17. Different sensitivity of PPARalpha gene expression to nutritional changes in liver of suckling and adult rats.

    PubMed

    Panadero, Maribel; Herrera, Emilio; Bocos, Carlos

    2005-01-14

    The amount of peroxisome proliferator-activated receptor-alpha (PPARalpha) protein was markedly augmented in the liver of suckling rats compared to adult rats. This different PPARalpha abundance was used to study the sensitivity to nutritional changes in the expression and activity of this receptor. Thus, 10-day-old and adult rats were orally given either glucose, Intralipid or a combination of both diets, and liver mRNA levels of PPARalpha and the PPAR related genes, acyl-CoA oxidase (ACO) and phosphoenolpyruvate carboxykinase (PEPCK), and plasma metabolites were measured. In neonates, the expression of PPARalpha and ACO was seen to increase when the level of FFA in plasma was also high, unless an elevated level of insulin was also present. However, this fatty acid-induced effect was not detected in adult rats. On the contrary, the hepatic expression of PEPCK was modulated by the nutritional changes similarly in both neonates and adult rats. Thus, it may be concluded that the expression of the PPARalpha gene in adult rats seems to be less sensitive to nutritional changes than in neonates. PMID:15607334

  18. Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle.

    PubMed

    Fukuda, Norio; Wu, Yiming; Farman, Gerrie; Irving, Thomas C; Granzier, Henk

    2005-02-01

    The effect of titin-based passive tension on Ca2+ sensitivity of active tension and interfilament lattice spacing was studied in skinned rat ventricular trabeculae by measuring the sarcomere length (SL)-dependent change in Ca2+ sensitivity and performing small angle X-ray diffraction studies. To vary passive tension, preparations were treated with trypsin at a low concentration (0.31 mug/ml) for a short period (13 min) at 20 degrees C, that resulted in approximately 40% degradation of the I-band region of titin, with a minimal effect on A-band titin. We found that the effect of trypsin on titin-based passive tension was significantly more pronounced immediately after stretch than at steady state, 30 min after stretch (i.e., trypsin has a greater effect on viscosity than on elasticity of passive cardiac muscle). Ca2+ sensitivity was decreased by trypsin treatment at SL 2.25 microm, but not at SL 1.9 microm, resulting in marked attenuation of the SL-dependent increase in Ca2+ sensitivity. The SL-dependent change in Ca2+ sensitivity was significantly correlated with titin-based passive tension. Small-angle X-ray diffraction experiments revealed that the lattice spacing expands after trypsin treatment, especially at SL 2.25 microm, providing an inverse linear relationship between the lattice spacing and Ca2+ sensitivity. These results support the view that titin-based passive tension promotes actomyosin interaction and that the mechanism includes interfilament lattice spacing modulation. PMID:15688246

  19. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  20. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    PubMed

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. PMID:26644274

  1. Targeted NGF siRNA Delivery Attenuates Sympathetic Nerve Sprouting and Deteriorates Cardiac Dysfunction in Rats with Myocardial Infarction

    PubMed Central

    Wang, Ye; Xue, Mei; Suo, Fei; Li, Xiaolu; Cheng, Wenjuan; Li, Xinran; Yin, Jie; Liu, Ju; Yan, Suhua

    2014-01-01

    Nerve growth factor (NGF) is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI). Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA) was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group), lentiviral solution containing empty vector (n = 18, MI-GFP group) or 0.9% NaCl solution (n = 18, MI-control group), or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group). At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH) and growth-associated protein 43-positive nerve fibers (GAP-43) at both the infarcted border and within the non-infarcted left ventricles (LV). NGF silencing also reduced the vascular endothelial growth factor (VEGF) expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting and

  2. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine

    PubMed Central

    Fried, Nathan T.; Moffat, Cynthia; Seifert, Erin L.

    2014-01-01

    Mitochondrial dysfunction has been implicated in many neurological disorders that only develop or are much more severe in adults, yet no methodology exists that allows for medium-throughput functional mitochondrial analysis of brain sections from adult animals. We developed a technique for quantifying mitochondrial respiration in acutely isolated adult rat brain sections with the Seahorse XF Analyzer. Evaluating a range of conditions made quantifying mitochondrial function from acutely derived adult brain sections from the cortex, cerebellum, and trigeminal nucleus caudalis possible. Optimization of this technique demonstrated that the ideal section size was 1 mm wide. We found that sectioning brains at physiological temperatures was necessary for consistent metabolic analysis of trigeminal nucleus caudalis sections. Oxygen consumption in these sections was highly coupled to ATP synthesis, had robust spare respiratory capacities, and had limited nonmitochondrial respiration, all indicative of healthy tissue. We demonstrate the effectiveness of this technique by identifying a decreased spare respiratory capacity in the trigeminal nucleus caudalis of a rat model of chronic migraine, a neurological disorder that has been associated with mitochondrial dysfunction. This technique allows for 24 acutely isolated sections from multiple brain regions of a single adult rat to be analyzed simultaneously with four sequential drug treatments, greatly advancing the ability to study mitochondrial physiology in adult neurological disorders. PMID:25252946

  3. Female rats are susceptible to cardiac hypertrophy induced by copper deficiency: The lack of influence of estrogen and testosterone

    SciTech Connect

    Farquharson, C.; Robins, S.P. )

    1988-07-01

    In contrast to a previous report female rats were shown to be susceptible to copper (Cu) deficiency giving rise to restriction of growth, cardiac hypertrophy, and anemia. The severity of these effects was, however, found to be less marked than in the male rats which had similar liver Cu levels. Castration or ovariectomy of Cu-deficient rats had little effect on CH or the other parameters associated with Cu deficiency, and supplementation of the neutered animals with estrogen or testosterone was similarly without effect. The ultrastructural appearance of the hypertrophied Cu-deficient female heart was similar to that previously found in males and was characterized by a large increase in mitochondrial area with disrupted cristae. The results also indicated that in contrast to Cu-deficient males iron (Fe) was not accumulated in the liver of the Cu-deficient female rats. It may be concluded that the limited protection of female rats to the effects of Cu deficiency observed in this study unconnected with the sex steroids.

  4. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.

    PubMed

    Rannou, F; Sainte-Beuve, C; Oliviero, P; Do, E; Trouvé, P; Charlemagne, D

    1995-05-01

    The number of dihydropyridine and ryanodine receptors (DHP-R and RyR) has been measured in control and hypertrophied ventricles from rats, guinea pigs and ferrets to determine whether these two channels contribute to the alterations in excitation-contraction coupling (ECC), and in Ca2+ transient during compensated cardiac hypertrophy. We found that ventricular hypertrophy did not change the density of DHP-R. Mild hypertrophy did not alter the density of RyR in the rat but decreased it in the guinea-pig and in the ferret (30% and 36%, respectively). Severe hypertrophy decreased the density of RyR by 20% in the rat and by 34% in the guinea-pig. Therefore, the decrease is greater in ferret and guinea-pig hearts than in rat heart. We conclude that the sarcoplasmic reticulum (SR) Ca2+ release channels but not the L-type Ca2+ channels could contribute to the slowing of intracellular Ca2+ movements and to the reduced velocity of shortening of the hypertrophied hearts. We suggest that, in the guinea pig and ferret hearts which express only the beta myosin heavy chain (MHC) isoform, the reduced velocity of shortening during hypertrophy is related to the decrease in RyR density, whereas in the rat, it is regulated primarily via a shift in the MHC isoform, except in severe hypertrophy in which the moderate decrease in RyR would also be involved. PMID:7473781

  5. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats.

    PubMed

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson's trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat. PMID:27158369

  6. Effect of in vivo heart irradiation on the development of antioxidant defenses and cardiac functions in the rat

    SciTech Connect

    Benderitter, M.; Assem, M.; Maupoil, V.

    1995-10-01

    During radiotherapy of thoracic tumors, the heart is often included in the primary treatment volume, and chronic impairment of myocardial function occurs. The cellular biomolecules are altered directly by radiation or damaged indirectly by free radical production. The purpose of this investigation was to evaluate the biochemical and functional response of the rat heart to a single high dose of radiation. The effect of 20 Gy local X irradiation was determined in the heart of Wistar rats under general anesthesia. Mechanical performances were measured in vitro using an isolated perfused working heart model, and cardiac antioxidant defenses were also evaluated. Hearts were studied at 1 and 4 months after irradiation. This single dose of radiation induced a marked drop in the mechanical activity of the rat heart: aortic output was significantly reduced (18% less than control values) at 1 month postirradiation and remained depressed for the rest of the experimental period (21% less than control 4 months after treatment). This suggests the development of myocardial failure after irradiation. The decline of functional parameters was associated with changes in antioxidant defenses. The decrease in cardiac levels of vitamin E (-30%) was associated with an increase in the levels of Mn-SOD and glustathione peroxidase (+45.5% and +32%, respectively, at 4 months postirradiation). However, cardiac vitamin C and catalase levels remained constant. Since these antioxidant defenses were activated relatively long after irradiation, it is suggested that this was probable due to the production of free radical species associated with the development of inflammation. 49 refs., 8 figs., 1 tab.

  7. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2

    PubMed Central

    Pan, Zhenwei; Zhao, Weiming; Zhang, Xiangying; Wang, Bing; Wang, Jinghao; Sun, Xuelin; Liu, Xuantong; Feng, Shuya; Yang, Baofeng; Lu, Yanjie

    2011-01-01

    BACKGROUND AND PURPOSE Interstitial fibrosis plays a causal role in the development of heart failure after chronic myocardial infarction (MI), and anti-fibrotic therapy represents a promising strategy to mitigate this pathological process. The purpose of this study was to investigate the effect of long-term administration of scutellarin (Scu) on cardiac interstitial fibrosis of myocardial infarct rats and the underlying mechanisms. EXPERIMENTAL APPROACH Scu was administered to rats that were subjected to coronary artery ligation. Eight weeks later, its effects on cardiac fibrosis were assessed by examining cardiac function and histology. The number and collagen content of cultured cardiac fibroblasts exposed to angiotensin II (Ang II) were determined after the administration of Scu in vitro. Protein expression was detected by Western blot technique, and mRNA levels by quantitative reverse transcription-PCR. KEY RESULTS The echocardiographic and haemodynamic measurements showed that Scu improved the impaired cardiac function of infarct rats and decreased interstitial fibrosis. Scu inhibited the expression of FN1 and TGFβ1, but produced no effects on inflammatory cytokines (TNFα, IL-1β and IL-6) in the 8 week infarct hearts. Scu inhibited the proliferation and collagen production of cardiac fibroblasts (CFs) and the up-regulation of FN1 and TGFβ1 induced by Ang II. The enhanced phosphorylation of p38-MAPK and ERK1/2 in both infarct cardiac tissue and cultured CFs challenged by Ang II were suppressed by Scu. CONCLUSIONS AND IMPLICATIONS Long-term administration of Scu improved the cardiac function of MI rats by inhibiting interstitial fibrosis, and the mechanisms may involve the suppression of pro-fibrotic cytokine TGFβ1 expression and inhibition of p38 MAPK and ERK1/2 phosphorylation. PMID:20942814

  8. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    PubMed Central

    Lv, Y.; Liu, B.; Wang, H.P.; Zhang, L.

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats. PMID:27254663

  9. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats.

    PubMed

    Lv, Y; Liu, B; Wang, H P; Zhang, L

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats. PMID:27254663

  10. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure

    PubMed Central

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-01-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression. PMID:27602067

  11. Effects of psychostimulants on social interaction in adult male rats.

    PubMed

    Šlamberová, Romana; Mikulecká, Anna; Macúchová, Eva; Hrebíčková, Ivana; Ševčíková, Mária; Nohejlová, Kateryna; Pometlová, Marie

    2015-12-01

    Psychostimulants are known to have a huge impact on different forms of social behaviour. The aim of the present study was to compare the effects of three different psychostimulants [amphetamine, cocaine and 3,4 methylenedimethoxyamphetamine (MDMA)] on social interaction (SI) in adult male rats. The SI test was performed in a familiar arena and under low-stress environmental conditions. Experimental animals received amphetamine (0.5, 1.0, 1.5 mg/kg), cocaine (0.5, 1.0, 1.5, 2.5, 5.0, 10.0 mg/kg) or MDMA (2.5, 5.0, 10 mg/kg) and control animals received saline (1 ml/kg) 45 min before the SI test. Time spent in SI (individual patterns of social behaviour) and nonsocial activities (locomotion and rearing) were video recorded and then analysed offline, with the following results: (a) all doses of amphetamine decreased SI. Specifically, all doses of amphetamine decreased mutual sniffing, and the higher doses also decreased allo-grooming and following behaviours. (b) The higher doses of cocaine decreased SI, especially mutual sniffing, allo-grooming and climbing over. Cocaine at the dose of 5.0 mg/kg increased genital investigation compared with lower doses. (c) All doses of MDMA decreased mutual sniffing and climbing over; the two higher doses decreased allo-grooming behaviour, and only the highest dose decreased following. The two higher doses of amphetamine and all the doses of MDMA increased locomotion and rearing; cocaine did not affect locomotion, but increased rearing at higher doses. In conclusion, the results confirm the well-known finding that psychostimulants suppress SI, but also show novel differences in the effects of psychostimulants on specific patterns of SI. PMID:26061354

  12. Safety of Intracerebroventricular Copper Histidine in Adult Rats

    PubMed Central

    Lem, Kristen E.; Brinster, Lauren R.; Tjurmina, Olga; Lizak, Martin; Lal, Simina; Centeno, Jose A.; Liu, Po-Ching; Godwin, Sarah C.; Kaler, Stephen G.

    2007-01-01

    Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in a P-type ATPase (ATP7A) that normally delivers copper to the developing central nervous system. Infants with large deletions, or other mutations in ATP7A that incapacitate copper transport to the brain, show poor clinical outcomes and subnormal brain copper despite early subcutaneous copper histidine (CuHis) injections. These findings suggest a need for direct central nervous system approaches in such patients. To begin to evaluate an aggressive but potentially useful new strategy for metabolic improvement of this disorder, we studied the acute and chronic effects of CuHis administered by intracerebroventricular (ICV) injection in healthy adult rats. Magnetic resonance imaging (MRI) after ICV CuHis showed diffuse T1-signal enhancement, indicating wide brain distribution of copper after ICV administration, and implying the utility of this paramagnetic metal as a MRI contrast agent. The maximum tolerated dose (MTD) of CuHis, defined as the highest dose that did not induce overt toxicity, growth retardation, or reduce lifespan, was 0.5 mcg. Animals receiving multiple infusions of this MTD showed increased brain copper concentrations, but no significant differences in activity, behavior, and somatic growth, or brain histology compared to saline-injected controls. Based on estimates of the brain copper deficit in Menkes disease patients, CuHis doses 10-fold lower than the MTD found in this study may restore proper brain copper concentration. Our results suggest that ICV CuHis administration have potential as a novel treatment approach in Menkes disease infants with severe mutations. Future trials of direct CNS copper administration in mouse models of Menkes disease will be informative. PMID:17336116

  13. Pro: early extubation in the operating room following cardiac surgery in adults.

    PubMed

    Singh, Karen E; Baum, Victor C

    2012-12-01

    There is growing evidence that the general current approach in many centers of continued mechanical ventilation following cardiac surgery has evolved through historical experience rather than having a strong physiological basis in current practice. There is evidence going back several decades supporting very early (in the operating room [OR]) extubation in pediatric cardiac anesthesia. The authors provide evidence from numerous sources showing that extubation in the OR or shortly after arrival in the ICU is safe and cost-effective and is not prevented by the type of cardiac surgery or the use of cardiopulmonary bypass. They query if the paradigm should not be reversed and very early extubation be the routine unless contraindicated. Like any anesthetic technique, appropriate patient selection is called for, but this technique is widely appropriate. PMID:22798230

  14. [The cardioprotective action of the anticonvulsant preparation sodium valproate in disorders of cardiac contractile function caused by acute myocardial infarct in rats].

    PubMed

    Belkina, L M; Korchazhkina, N B; Kamskova, Iu G; Fomin, N A

    1997-01-01

    The preventive and therapeutical effects of sodium valproate (SV), 200 mg/kg, on cardiac contractile disorders (developed pressure, rate-pressure products, dp/dt) were studied in rats having 2-day myocardial infarction (MI). The postinfarction rather than preinfarction use of SV substantially restricted the depressed resting left ventricular function. Given by two regimens, SV increased cardiac resistance to the maximum isometric load induced by 60-sec ligation of the ascending aorta. The cardioprotective effect of the drug was shown due to its positive chronotropic action rather than its inotropic one. Thus, SV may be used as an effective drug for the prevention and treatment of postinfarct cardiac dysfunctions. PMID:9235532

  15. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats

    PubMed Central

    Fernandes, S; Naumova, AV; Zhu, WZ; Laflamme, MA; Gold, J; Murry, CE

    2010-01-01

    Background Previous studies indicated that, in an acute myocardial infarction model, human embryonic stem cell-derived cardiomyocytes (hESC-CM) injected with a pro-survival cocktail (PSC) can preserve contractile function. Because patients with established heart failure may also benefit from cell transplantation, we evaluated the physiological effects of hESC-CM transplanted into a chronic model of myocardial infarction. Methods and Results Intramyocardial injection of hESC-CM with PSC was performed in nude rats at 1 month following ischemia-reperfusion. The left ventricular function of hESC-CM injected rats was evaluated at 1, 2 and 3 months after the cell injection procedure and was compared to 3 control groups (rats injected with serum-free media, PSC-only, or non-cardiac human cells in PSC). Histology at 3 months revealed that human cardiomyocytes survive, develop increased sarcomere organization and are still proliferating. Despite successful engraftment, both echocardiography and MRI analyses showed no significant difference in left ventricular structure or function between these 4 groups at any time point of the study, suggesting that human cardiomyocytes do not affect cardiac remodeling in a rat model of chronic myocardial infarction. Conclusion When injected into a chronic infarct model, hESC-CM can engraft, survive and form grafts with striated cardiomyocytes at least as well as was previously observed in an acute myocardial infarction model. However, although hESC-CM transplantation can attenuate the progression of heart failure in an acute model, the same hESC-CM injection protocol is insufficient to restore heart function or to alter adverse remodeling of a chronic myocardial infarction model. PMID:20854826

  16. Activation of endothelial nitric oxide synthase by a vanadium compound ameliorates pressure overload-induced cardiac injury in ovariectomized rats.

    PubMed

    Bhuiyan, Md Shenuarin; Shioda, Norifumi; Shibuya, Masatoshi; Iwabuchi, Yoshiharu; Fukunaga, Kohji

    2009-01-01

    We here investigated the effect of bis(1-oxy-2-pyridinethiolato) oxovanadium (IV), [VO(OPT)], against myocardial hypertrophy and cardiac functional recovery in pressure overload-induced hypertrophy in ovariectomized female rats and defined mechanisms underlying its cardioprotective action. Wistar rats subjected to bilateral ovariectomy were further treated with abdominal aortic stenosis. VO(OPT) (containing 1.25 and 2.50 mg of vanadium per kg) was administered orally once a day for 14 days starting from 2 weeks after aortic banding. Treatment with VO(OPT) significantly inhibited pressure overload-induced increase both in the heart weight:body weight ratio and the lung weight:body weight ratio. VO(OPT) also attenuated hypertrophy-induced impaired left ventricular end-diastolic pressure, left ventricular developed pressure, and left ventricular contractility (+/-dp/dt(max)). VO(OPT) treatment significantly restored pressure overload-induced impaired endothelial NO synthase activity with concomitant increased phosphorylation of endothelial NO synthase (Ser1179). Moreover, VO(OPT) treatment significantly restored pressure overload-induced reduced Akt activity, as indicated by increased phosphorylation at Ser473 and at Thr308. Treatment with VO(OPT) also secondarily inhibited calpastatin and dystrophin breakdown and decreased myosin light chain phosphorylation. Finally, VO(OPT) treatment significantly attenuated mortality after repeated isoproterenol administration in pressure overloaded-ovariectomized rats. Taken together, VO(OPT) attenuates cardiac myocytes hypertrophy in vivo in pressure overload-induced hypertrophy in ovariectomized rats and prevents the process from hypertrophy to heart failure. These effects are mediated by inhibition of calpastatin and dystrophin breakdown in addition to increased Akt and endothelial NO synthase activities. PMID:19029487

  17. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats

    PubMed Central

    Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin

    2016-01-01

    Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may

  18. Lay Referral Patterns Involved in Cardiac Treatment Decision Making among Middle-Aged and Older Adults

    ERIC Educational Resources Information Center

    Schoenberg, Nancy E.; Amey, Cheryl H.; Stoller, Eleanor Palo; Muldoon, Susan B.

    2003-01-01

    Purpose: This study examined age and contextually related factors that are influential in lay referral patterns during cardiac treatment decision making. Design and Methods: A complementary design was used. The Myocardial Infarction (MI) Onset Study identified demographic correlates of who sought medical care for 1,388 MI (heart attack) survivors.…

  19. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  20. Dual Delivery of Hepatocyte and Vascular Endothelial Growth Factors via a Protease-Degradable Hydrogel Improves Cardiac Function in Rats

    PubMed Central

    Boopathy, Archana V.; Che, Pao-lin; Brown, Milton; García, Andrés J.; Davis, Michael E.

    2012-01-01

    Acute myocardial infarction (MI) caused by ischemia and reperfusion (IR) is the most common cause of cardiac dysfunction due to local cell death and a temporally regulated inflammatory response. Current therapeutics are limited by delivery vehicles that do not address spatial and temporal aspects of healing. The aim of this study was to engineer biotherapeutic delivery materials to harness endogenous cell repair to enhance myocardial repair and function. We have previously engineered poly(ethylene glycol) (PEG)-based hydrogels to present cell adhesive motifs and deliver VEGF to promote vascularization in vivo. In the current study, bioactive hydrogels with a protease-degradable crosslinker were loaded with hepatocyte and vascular endothelial growth factors (HGF and VEGF, respectively) and delivered to the infarcted myocardium of rats. Release of both growth factors was accelerated in the presence of collagenase due to hydrogel degradation. When delivered to the border zones following ischemia-reperfusion injury, there was no acute effect on cardiac function as measured by echocardiography. Over time there was a significant increase in angiogenesis, stem cell recruitment, and a decrease in fibrosis in the dual growth factor delivery group that was significant compared with single growth factor therapy. This led to an improvement in chronic function as measured by both invasive hemodynamics and echocardiography. These data demonstrate that dual growth factor release of HGF and VEGF from a bioactive hydrogel has the capacity to significantly improve cardiac remodeling and function following IR injury. PMID:23226440

  1. PD98059 Protects Brain against Cells Death Resulting from ROS/ERK Activation in a Cardiac Arrest Rat Model

    PubMed Central

    Nguyen Thi, Phuong Anh; Chen, Meng-Hua; Li, Nuo; Zhuo, Xiao-Jun; Xie, Lu

    2016-01-01

    The clinical and experimental postcardiac arrest treatment has not reached therapeutic success. The present study investigated the effect of PD98059 (PD) in rats subjected to cardiac arrest (CA)/cardiopulmonary resuscitation (CPR). Experimental rats were divided randomly into 3 groups: sham, CA, and PD. The rats except for sham group were subjected to CA for 5 min followed by CPR operation. Once spontaneous circulation was restored, saline and PD were injected in CA and PD groups, respectively. The survival rates and neurologic deficit scores (NDS) were observed, and the following indices of brain tissue were evaluated: ROS, MDA, SOD, p-ERK1/2/ERK1/2, caspase-3, Bax, Bcl-2, TUNEL positive cells, and double fluorescent staining of p-ERK/TUNEL. Our results indicated that PD treatment significantly reduced apoptotic neurons and improved the survival rates and NDS. Moreover, PD markedly downregulated the ROS, MDA, p-ERK, and caspase-3, Bax and upregulated SOD and Bcl-2 levels. Double staining p-ERK/TUNEL in choroid plexus and cortex showed that cell death is dependent on ERK activation. The findings in present study demonstrated that PD provides neuroprotection via antioxidant activity and antiapoptosis in rats subjected to CA/CPR. PMID:27069530

  2. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats.

    PubMed

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2016-07-01

    Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking. PMID:25950618

  3. Effects of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults.

    PubMed

    Chang, Xiao-Rong; Yan, Jie; Shen, Jing; Liu, Mi; Wang, Xiao-Juan

    2010-09-01

    The effect of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults was studied. Specific regulation between meridian points and viscera was also investigated. An electrogastrogram (EGG), electrointestinogram (EIG), carotid pulse graph, phonocardiogram and electrocardiogram were obtained in 30 healthy adults before and after acupuncture at various acupoints of 12 meridians. The effects of acupuncture on the amplitude and frequency of the EGG, EIG, pre-ejection period and the left ventricular ejection time were then analyzed. Acupuncture revealed that LR3 decreased the amplitude of the EGG while LI11 (Quchi), SJ5 (Waiguan), ST36 (Zusanli), SP9 (Yinlingquan) and SI6 (Yanglao) increased the amplitude. Multiple comparisons among the latter five acupoints indicated that there were significant differences between SP9, LI11, SJ5 and ST36 (p < 0.01, p < 0.01, p < 0.05) and SI6, LI11 and SJ5 (p < 0.01, p < 0.05). SP9 effected EGG amplitude the most, followed by SI6, ST36, SJ5 and LI11. Four acupoints increased the amplitude of the EIG (p < 0.05), including HT5 (Tongli), GB34 (Yanglingquan), SP9 and SI6. No significant differences were observed between these acupoints, but SI6 showed the most obvious effect on EIG amplitude, followed by GB34, SP9 and HT5. No significant effects on the frequency of the gastrointestinal slow wave or on cardiac function indexes were observed. Effects were observed, however, on pre-ejection period and left ventricular ejection time. Routine acupuncture had no detrimental effects on the stomach, intestine and heart in healthy adults, but instead regulated physiological function within a normal range. These findings demonstrate the existence of specific connections between the meridian points and the viscera. The results suggest that multiple meridians control the same viscus, and the same meridian can regulate the functions of multiple viscera. PMID:20869017

  4. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia.

    PubMed Central

    Fieber, L A; Adams, D J

    1991-01-01

    1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels

  5. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with β-receptor blockade.

    PubMed

    Watanabe, Heitaro; Iwanaga, Yoshitaka; Miyaji, Yuki; Yamamoto, Hiromi; Miyazaki, Shunichi

    2016-04-01

    Chronic activation of the sympathetic nervous system (SNS) contributes to cardiac remodeling and the transition to heart failure (HF). Renal sympathetic denervation (RDN) may ameliorate this damage by improving renal function and sympathetic cardioregulation in hypertensive HF patients with renal injury. The efficacy may be comparable to that of chronic β-blocker treatment. Dahl salt-sensitive hypertensive rats were subjected to RDN in the hypertrophic stage. Another group of Dahl rats were subjected to sham operations and treated chronically with vehicle (CONT) or β-blocker bisoprolol (BISO). Neither RDN nor BISO altered the blood pressure; however, BISO significantly reduced the heart rate (HR). Both RDN and BISO significantly prolonged survival (22.2 and 22.4 weeks, respectively) compared with CONT (18.3 weeks). Echocardiography revealed reduced left ventricular (LV) hypertrophy and improved LV function, and histological analysis demonstrated the amelioration of LV myocyte hypertrophy and fibrosis in the RDN and BISO rats at the HF stage. Tyrosine hydroxylase and β1-adrenergic receptor (ADR) expression levels in the LV myocardium significantly increased only in the RDN rats, whereas the α1b-, α1d- and α2c-ADR expression levels increased only in the BISO rats. In both groups, renal damage and dysfunction were also reduced, and this reduction was accompanied by the suppression of endothelin-1, renin and angiotensin-converting enzyme mRNAs. RDN ameliorated the progression of both myocardial and renal damage in the hypertensive rats independent of blood pressure changes. The overall effects were similar to those of β-receptor blockade with favorable effects on HR and α-ADR expression. These findings may be associated with the restoration of the myocardial SNS and renal protection. PMID:26631854

  6. Stability and Autolysis of Cortical Neurons in Post-Mortem Adult Rat Brains

    PubMed Central

    Sheleg, Sergey V; LoBello, Janine R; Hixon, Hugh; Coons, Stephen W; Lowry, David; Nedzved, Mikhail K

    2008-01-01

    We investigated the dynamics of autolytic damage of the cortical neurons in adult brains for 24 hours at room temperature (+20°C) after cardiac arrest. The progressive histological and ultrastructural changes were documented using routine and immunohistochemical staining as well as electron microscopy. Our results demonstrated that there were no autolytic damages in the ultrastructure of cerebral neurons in the first 6 hours after warm cardiac arrest, in agreement with previous studies in other mammals. Interestingly, the activation of caspase-3 was observed in a significant number of neurons of the cerebellum and neocortex 9 hours following cardiac arrest. No significant changes related to autolysis were observed using amnio-cupric acid and Nissl (thionine) staining. PMID:18784829

  7. Sex Differences in the Beneficial Cardiac Effects of Chronic Treatment with Atrial Natriuretic Peptide In Spontaneously Hypertensive Rats

    PubMed Central

    Romero, Mariana; Caniffi, Carolina; Bouchet, Gonzalo; Elesgaray, Rosana; Laughlin, Myriam Mac; Tomat, Analía; Arranz, Cristina; Costa, Maria A.

    2013-01-01

    Introduction The aim of this study was to investigate both the effects of chronic treatment with atrial natriuretic peptide (ANP) on systolic blood pressure (SBP), cardiac nitric oxide (NO) system, oxidative stress, hypertrophy, fibrosis and apoptosis in spontaneously hypertensive rats (SHR), and sex-related differences in the response to the treatment. Methods 10 week-old male and female SHR were infused with ANP (100 ng/hr/rat) or saline (NaCl 0.9%) for 14 days (subcutaneous osmotic pumps). SBP was recorded and nitrites and nitrates excretion (NOx) were determined. After treatment, NO synthase (NOS) activity, eNOS expression, thiobarbituric acid-reactive substances (TBARS) and glutathione concentration were determined in left ventricle, as well as the activity of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). Morphological studies in left ventricle were performed in slices stained with hematoxylin-eosin or Sirius red to identify collagen as a fibrosis indicator; immunohistochemistry was employed for identification of transforming growth factor beta; and apoptosis was evaluated by Tunel assay. Results Female SHR showed lower SBP, higher NO-system activity and less oxidative stress, fibrosis and hypertrophy in left ventricle, as well as higher cardiac NOS activity, eNOS protein content and NOx excretion than male SHR. Although ANP treatment lowered blood pressure and increased NOS activity and eNOS expression in both sexes, cardiac NOS response to ANP was more marked in females. In left ventricle, ANP reduced TBARS and increased glutathione concentration and activity of CAT and SOD enzymes in both sexes, as well as GPx activity in males. ANP decreased fibrosis and apoptosis in hearts from male and female SHR but females showed less end-organ damage in heart. Chronic ANP treatment would ameliorate hypertension and end-organ damage in heart by reducing oxidative stress, increasing NO-system activity, and diminishing fibrosis and

  8. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  9. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  10. Mechanistic Insights from Vascular and Cardiac Impairments in Rats Inhaling Diesel Exhaust Particles and Ozone

    EPA Science Inventory

    Although the causality has been established between air pollution and cardiovascular impairments, the molecular mechanisms are unknown. Moreover, cardiovascular effects of ozone have not been studied until recently. We hypothesize that vasculature and cardiac tissues are targets ...

  11. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-exposure in Rats

    EPA Science Inventory

    BackgroundThe potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscio...

  12. Effect of a pharmacologically induced decrease in core temperature in rats resuscitated from cardiac arrest

    EPA Science Inventory

    Targeted temperature management is recommended to reduce brain damage after resuscitation from cardiac arrest in humans although the optimal target temperature remains controversial. 1 4 The American Heart Association (AHA) and the International Liaison Committee on Resuscitation...

  13. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol. PMID:23454116

  14. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  15. Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats

    PubMed Central

    Liao, Po-Hsiang; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Day, Cecilia-Hsuan; Chen, Ya-Hui; Chang, Sheng-Huang; Padma, V. Vijaya; Chen, Yi-Hsing; Huang, Chih-Yang

    2016-01-01

    High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats. PMID:27499689

  16. Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats.

    PubMed

    Liao, Po-Hsiang; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Day, Cecilia-Hsuan; Chen, Ya-Hui; Chang, Sheng-Huang; Padma, V Vijaya; Chen, Yi-Hsing; Huang, Chih-Yang

    2016-01-01

    High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats. PMID:27499689

  17. Thyroid hormones improve cardiac function and decrease expression of pro-apoptotic proteins in the heart of rats 14 days after infarction.

    PubMed

    de Castro, Alexandre Luz; Fernandes, Rafael Oliveira; Ortiz, Vanessa D; Campos, Cristina; Bonetto, Jéssica H P; Fernandes, Tânia R G; Conzatti, Adriana; Siqueira, Rafaela; Tavares, Angela Vicente; Schenkel, Paulo Cavalheiro; Belló-Klein, Adriane; da Rosa Araujo, Alex Sander

    2016-02-01

    Apoptosis is a key process associated with pathological cardiac remodelling in early-phase post-myocardial infarction. In this context, several studies have demonstrated an anti-apoptotic effect of thyroid hormones (TH). The aim of this study was to evaluate the effects of TH on the expression of proteins associated with the apoptotic process 14 days after infarction. Male Wistar rats (300-350 g) (n = 8/group) were divided into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT) and infarcted + TH (AMIT). For 12 days, the animals received T3 and T4 [2 and 8 µg/(100 g day)] by gavage. After this, the rats were submitted to haemodynamic and echocardiographic analysis, and then were sacrificed and the heart tissue was collected for molecular analysis. Statistical analyses included two-way ANOVA with Student-Newman-Keuls post test. Ethics Committee number: 23262. TH administration prevented the loss of ventricular wall thickness and improved cardiac function in the infarcted rats 14 days after the injury. AMI rats presented an increase in the pro-apoptotic proteins p53 and JNK. The hormonal treatment prevented this increase in AMIT rats. In addition, TH administration decreased the Bax:Bcl-2 ratio in the infarcted rats. TH administration improved cardiac functional parameters, and decreased the expression of pro-apoptotic proteins 14 days after myocardial infarction. PMID:26659365

  18. Care for the adult family members of victims of unexpected cardiac death.

    PubMed

    Zalenski, Robert; Gillum, Richard F; Quest, Tammie E; Griffith, James L

    2006-12-01

    More than 300,000 sudden coronary deaths occur annually in the United States, despite declining cardiovascular death rates. In 2000, deaths from heart disease left an estimated 190,156 new widows and 68,493 new widowers. A major unanswered question for emergency providers is whether the immediate care of the loved ones left behind by the deceased should be a therapeutic task for the staff of the emergency department in the aftermath of a fatal cardiac arrest. Based on a review of the literature, the authors suggest that more research is needed to answer this question, to assess the current immediate needs and care of survivors, and to find ways to improve care of the surviving family of unexpected cardiac death victims. This would include improving quality of death disclosure, improving care for relatives during cardiopulmonary resuscitation of their family member, and improved methods of referral for services for prevention of psychological and cardiovascular morbidity during bereavement. PMID:16946285

  19. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats.

    PubMed

    Mohamed, M; Sulaiman, S A; Jaafar, H; Sirajudeen, K N S

    2012-05-01

    The aim of this study was to evaluate the effect of different doses of Malaysian honey on male reproductive parameters in adult rats. Thirty-two healthy adult male Sprague-Dawley rats were randomly divided into four groups (eight rats per group). Group 1 (control group) was given 0.5 ml of distilled water. Groups 2, 3 and 4 were given 0.2, 1.2 and 2.4 g kg(-1) body weight of honey respectively. The rats were treated orally by gavage once daily for 4 weeks. Honey did not significantly alter body and male reproductive organs weights. The rats in Group 3 which received honey at 1.2 g kg(-1) had significantly higher epididymal sperm count than those in Groups 1, 2 and 4. No significant differences were found for the percentage of abnormal sperm, elongated spermatid count, reproductive hormonal levels as well as the histology of the testis among the groups. In conclusion, Malaysian honey at a dose of 1.2 g kg(-1) daily significantly increased epididymal sperm count without affecting spermatid count and reproductive hormones. These findings might suggest that oral administration of honey at this dose for 4 weeks may enhance spermiogenesis in adult rats. PMID:21592175

  20. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  1. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    PubMed

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  2. O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells.

    PubMed

    Zafir, Ayesha; Bradley, James A; Long, Bethany W; Muthusamy, Senthilkumar; Li, Qianhong; Hill, Bradford G; Wysoczynski, Marcin; Prabhu, Sumanth D; Bhatnagar, Aruni; Bolli, Roberto; Jones, Steven P

    2015-01-01

    In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase--the protein responsible for adding O-GlcNAc to proteins--is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be

  3. Testis structure and function in a nongenetic hyperadipose rat model at prepubertal and adult ages.

    PubMed

    França, L R; Suescun, M O; Miranda, J R; Giovambattista, A; Perello, M; Spinedi, E; Calandra, R S

    2006-03-01

    There are few data for hormonal levels and testis structure and function during postnatal development in rats neonatally treated with monosodium L-glutamate (MSG). In our study, newborn male pups were ip injected with MSG (4 mg/g body weight) every 2 d up to 10 d of age and investigated at prepubertal and adult ages. Plasma levels of leptin, LH, FSH, prolactin, testosterone (T), corticosterone, and free T4 (FT4) were measured. MSG rats displayed elevated circulating levels of corticosterone and hyperadiposity/hyperleptinemia, regardless of the age examined; conversely, circulating prolactin levels were not affected. Moreover, prepubertal MSG rats revealed a significant (P < 0.05) reduction in testis weight and the number of Sertoli (SC) and Leydig cells per testis. Leptin plasma levels were severalfold higher (2.41 vs. 8.07; P < 0.05) in prepubertal MSG rats, and these animals displayed plasma LH, FSH, T, and FT4 levels significantly decreased (P < 0.05). Taken together, these data indicate that testis development, as well as SC and Leydig cell proliferation, were disturbed in prepubertal MSG rats. Adult MSG rats also displayed significantly higher leptin plasma levels (7.26 vs. 27.04; P < 0.05) and lower (P < 0.05) LH and FSH plasma levels. However, T and FT4 plasma levels were normal, and no apparent alterations were observed in testis structure of MSG rats. Only the number of SCs per testis was significantly (P < 0.05) reduced in the adult MSG rats. In conclusion, although early installed hyperadipose/hyperleptinemia phenotype was probably responsible for the reproductive axis damages in MSG animals, it remains to be investigated whether this condition is the main factor for hypothalamus-pituitary-gonadal axis dysfunction in MSG rats. PMID:16339210

  4. Modeling binge-like ethanol drinking by peri-adolescent and adult P rats

    PubMed Central

    Bell, Richard L.; Rodd, Zachary A.; Smith, Rebecca J.; Toalston, Jamie E.; Franklin, Kelle M.; McBride, William J.

    2011-01-01

    Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30—72)] and adult (PNDs 90—132) alcohol-preferring (P) rats with a drinking-in-the-dark—multiple-scheduled-acces (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-hr sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6 g/kg of ethanol, respectively, during the 1st hr of access, whereas for male rats the values were 3.5 and 1.1 g/kg of ethanol, respectively. Adult intakes increased to ~2.0 g/kg/hr and adolescent intakes decreased to ~2.5 g/kg/hr across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥ 5g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hr of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100 mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P r