Science.gov

Sample records for adult rat cardiac

  1. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  2. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  3. Cyclophosphamide-induced immunosuppression protects cardiac noradrenergic nerve terminals from damage by Trypanosoma cruzi infection in adult rats.

    PubMed

    Guerra, L B; Andrade, L O; Galvão, L M; Macedo, A M; Machado, C R

    2001-01-01

    Trypanosoma cruzi-infected juvenile rats develop severe cardiac sympathetic denervation in parallel with acute myocarditis. This aspect has not been studied in adult rats, thought to be resistant to this infection. The mechanism involved in T. cruzi-induced neuronal damage remains to be completely elucidated. In juvenile rats, the mortality during the acute phase depends on T. cruzi populations, ranging from 30% to 100%. Therefore, studies of mechanisms through hazardous procedures such as immunosuppression are restricted. The current paper shows that adult rats infected with T. cruzi (Y strain) develop severe acute myocarditis and cardiac sympathetic denervation, despite null mortality and virtual absence of patent parasitaemia followed by negative haemoculture. Recovery from the myocarditis and denervation occurred but PCR studies showed persistence of parasite DNA at least until day 111 post inoculation. Immunosuppression by cyclophosphamide treatment increased the parasitaemia, prevented the acute myocarditis and the sympathetic denervation without significant alteration of the myocardial parasitism. These results argue against a direct role for parasite-derived products and implicate the inflammatory cells in the denervation process. As previous studies in juvenile animals have discarded an essential role for radiosensitive cells, the macrophages remain as the possible effectors for the T. cruzi-induced neuronal damage.

  4. Na(+)-K+ pump cycle during beta-adrenergic stimulation of adult rat cardiac myocytes.

    PubMed

    Dobretsov, M; Hastings, S L; Stimers, J R

    1998-03-01

    1. The mechanisms underlying the increase in Na(+)-K+ pump current (Ip) caused by adrenergic stimulation were investigated in cultured adult rat cardiac myocytes using the whole-cell patch-clamp technique at 31-33 degrees C. 2. In myocytes perfused internally with 50 mM Na+ (0 K+i, 20 nM Ca2+, caesium aspartate solution) and externally with 5.4 mM K+o, noradrenaline (NA) and isoprenaline (Iso) (1-50 microM) stimulated Ip by 40-45%. 3. Na(+)-dependent transient Ip measurements with 0 mM K+i and 0 mM K+o revealed no change in the total charge transferred by the Na(+)-K+ pump during the conformational change, suggesting that the pump site density was not changed by adrenergic stimulation (2630 +/- 370 pumps micron-2 in control and 2540 +/- 190 pumps micron-2 in the presence of 10 microM NA). 4. With saturating Na+i or K+o (150 and 15-20 mM, respectively), Ip was still stimulated by NA and Iso. Thus, there was no indication that adrenergic activation of the Na(+)-K+ pump was mediated by accumulation of Na+i and K+o or changes in the Na(+)-K+ pump affinity for Na+i and K+o. 5. Both Ip and its increase under adrenergic stimulation were found to depend on [K+]i. While steady-state Ip decreased from 2.2 +/- 0.1 to 1.2 +/- 0.1 pA pF-1 (P < 0.05), the stimulation of Ip by 10 microM Iso increased from 0.38 +/- 0.04 to 0.67 +/- 0.06 pA pF-1 (P < 0.05) with an increase in [K+]i from 0 to 100 mM. 6. Under conditions that cause the Ip-Vm (membrane potential) relationship to express a positive slope ([Na+]o, 150 mM; [K+]o, 5.4 mM) or a negative slope ([Na+]o, 0; [K+]o, 0.3 mM) Iso stimulated Ip with no change in the shape of Ip-Vm curves. Thus, adrenergic stimulation of the Na(+)-K+ pump was not due to an alteration of voltage-dependent steps of the pump cycle. 7. Simulation of these data with a six-step model of the Na(+)-K+ pump cycle suggested that in rat ventricular myocytes a signal from adrenergic receptors increased the Na(+)-K+ pump rate by modulating the rate of K+ de

  5. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.

    PubMed Central

    Di Lisa, F; Blank, P S; Colonna, R; Gambassi, G; Silverman, H S; Stern, M D; Hansford, R G

    1995-01-01

    1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two emission peaks (539 and 597 nm with excitation at 490 nm) corresponding to monomer and aggregate forms of the dye. 2. De-energizing conditions applied to mitochondria, cell suspensions or single cells decreased the aggregate emission and increased the monomer emission. This latter result cannot be explained by changes of JC-1 concentration in the aqueous mitochondrial matrix phase indicating that hydrophobic interaction of the probe with membranes has to be taken into account to explain JC-1 fluorescence properties in isolated mitochondria or intact cells. 3. A different sensitivity of the two JC-1 forms to delta psi m changes was shown in isolated mitochondria by the effects of ADP and FCCP and the calibration with K+ diffusion potentials. The monomer emission was responsive to values of delta psi m below 140 mV, which hardly modified the aggregate emission. Thus JC-1 represents a unique double sensor which can provide semi-quantitative information in both low and high potential ranges. 4. At the onset of glucose-free anoxia the epifluorescence of individual myocytes studied in the single excitation (490 nm)-double emission (530 and 590 nm) mode showed a gradual decline of the aggregate emission, which reached a plateau while electrically stimulated (0.2 Hz) contraction was still retained. The subsequent failure of contraction was followed by the rise of the emission at 530 nm, corresponding to the monomer form of the dye, concomitantly with the development of rigor contracture. 5. The onset of the rigor was preceded by the increase in intracellular Mg2+ concentration ([Mg2+]i) monitored by mag-indo-1 epifluorescence

  6. Cardiac Rehabilitation in Older Adults.

    PubMed

    Schopfer, David W; Forman, Daniel E

    2016-09-01

    The biology of aging and the pathophysiology of cardiovascular disease (CVD) overlap, with the effect that CVD is endemic in the growing population of older adults. Moreover, CVD in older adults is usually complicated by age-related complexities, including multimorbidity, polypharmacy, frailty, and other intricacies that add to the risks of ambiguous symptoms, deconditioning, iatrogenesis, falls, disability, and other challenges. Cardiac rehabilitation (CR) is a comprehensive lifestyle program that can have particular benefit for older patients with cardiovascular conditions. Although CR was originally designed primarily as an exercise training program for younger adults after a myocardial infarction or coronary artery bypass surgery, it has evolved as a comprehensive lifestyle program (promoting physical activity as well as education, diet, risk reduction, and adherence) for a broader range of CVD (coronary heart disease, heart failure, and valvular heart disease). It provides a valuable opportunity to address and moderate many of the challenges pertinent for the large and growing population of older adults with CVD. Cardiac rehabilitation promotes physical function (cardiorespiratory fitness as well as strength and balance) that helps overcome disease and deconditioning as well as related vulnerabilities such as disability, frailty, and falls. Similarly, CR facilitates education, monitoring, and guidance to reduce iatrogenesis and promote adherence. Furthermore, CR fosters cognition, socialization, and independence in older patients. Yet despite all its conceptual benefits, CR is significantly underused in older populations. This review discusses benefits and the paradoxical underuse of CR, as well as evolving models of care that may achieve greater application and efficacy. PMID:27297002

  7. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle

    PubMed Central

    1986-01-01

    The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37 degrees C over a range of stimulation frequencies and bathing [Ca2+]o (Cao). In both rabbit myocytes and intact muscles bathed in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Cao up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in less than 15 mM Cao. Further increases in Cao caused the appearance of spontaneous asynchronous contractile waves in myocytes and in intact muscles caused scattered light intensity fluctuations (SLIF), which were previously demonstrated to be caused by Ca2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Cao. Two populations of rat myocytes were observed in 1 mM Cao: approximately 85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Cao, the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had a flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Cao in both intact rat muscles and in the myocytes with spontaneous waves. We

  8. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle

    PubMed Central

    1981-01-01

    Intact cardiac cells from the adult rat or rabbit ventricle were isolated by enzymatic digestion with a progressive increase of the [free Ca2+] in the solution. These cells were electrically stimulated in the presence of 2.50 mM free Ca2+, and a twitch of maximum amplitude was elicited by the positive inotropic interventions that were found to be optimum. Then the cells were chemically skinned, and the maximum tension induced by a saturating [free Ca2+] was used as a reference to express the tension developed during the twitch of the intact cells. The myoplasmic [free Ca2+] reached during the twitch was inferred from the tension-pCa curve. In mechanically skinned cells of the same animal species, the myoplasmic [free Ca2+] reached during Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum (SR) was inferred by two methods using (a) the tension-pCa curve and (b) a direct calibration of the transients of aequorin bioluminescence. The induction of a maximum Ca2+ release from the SR required a larger Ca2+ preload of the SR and a higher [free Ca2+] trigger in the rabbit than in the rat skinned cells. However, the results obtained with the two methods of inference of the myoplasmic [free Ca2+] suggest that in both animal species a maximum myoplasmic [free Ca2+] of pCa approximately 5.40 was reached during both the optimum Ca2+-induced release of Ca2+ from the SR of the skinned cells and the optimum twitch of the intact cells. This was much lower than the [free Ca2+] necessary for the full activation of the myofilaments (pCa approximately 4.90). PMID:6796647

  9. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats

    PubMed Central

    Gu, Ye; Zou, Wusong; Zhang, Mingjing; Zhu, Pengfei; Hu, Shao

    2015-01-01

    Background Aortocaval fistula (AV) in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX) rats. Methods Adult male Sprague-Dawley (SD) rats were divided into Sham (n = 10), UNX (right kidney remove, n = 10), AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18) and UNX+AV (AV at one week after UNX, n = 22), respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS) incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements. Results UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats. Conclusions Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals. PMID:26252578

  10. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  11. Molecular cloning of rat cardiac troponin I and analysis of troponin I isoform expression in developing rat heart.

    PubMed

    Murphy, A M; Jones, L; Sims, H F; Strauss, A W

    1991-01-22

    We have isolated and sequenced a cDNA encoding rat cardiac troponin I. The predicted amino acid sequence was highly identical with previously reported chemically derived amino acid sequences for rabbit and bovine cardiac troponin I. Clones for slow skeletal muscle troponin I were also obtained from neonatal rat cardiac ventricle by the polymerase chain reaction. The nucleotide sequences of these clones were determined to be more than 99% identical with a previously reported rat slow skeletal troponin I cDNA [Koppe et al. (1989) J. Biol. Chem. 264, 14327-14333]. The troponin I clones hybridized to RNA from the appropriate muscle from adult animals. However, RNA from fetal and neonatal rat heart also hybridized with the slow skeletal troponin I cDNA, demonstrating its expression in fetal and neonatal rat heart. Slow skeletal troponin I steady-state mRNA levels decreased with increasing age, but cardiac troponin I mRNA levels increased through fetal and early neonatal cardiac development. Thus, during fetal and neonatal development, slow skeletal and cardiac troponin I isoforms are coexpressed in the rat heart and regulated in opposite directions. The degree of primary sequence differences in these isoforms, especially at phosphorylation sites, may result in important functional differences in the neonatal myocardium.

  12. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    EPA Science Inventory

    The Brown Norway (BN) rat is a popular strain for aging studies. There is little information on effects of age on baseline cardiac and thermoregulatory parameters in undisturbed BN rats even though cardiac and thermal homeostasis is linked to many pathological deficits in the age...

  13. Sudden cardiac death in adults: causes, incidence and interventions.

    PubMed

    Walker, Wendy Marina

    Many nurses will be familiar with the unexpected death of an adult patient following a sudden, life-threatening cardiac event. It is a situation that demands sensitive nursing care and skilled interventions to provide a foundation for recovery and promote healthy bereavement. This article examines the causes and incidence of sudden cardiac death in adults. Possible reactions of those who are suddenly bereaved are described and immediate care interventions aimed at dealing with the grief process are discussed. The article concludes by identifying ways in which the incidence of sudden cardiac death may be reduced.

  14. In utero dimethadione exposure causes postnatal disruption in cardiac structure and function in the rat.

    PubMed

    Aasa, Kristiina L; Purssell, Elizabeth; Adams, Michael A; Ozolinš, Terence R S

    2014-12-01

    In utero exposure of rat embryos to dimethadione (DMO), the N-demethylated teratogenic metabolite of the anticonvulsant trimethadione, induces a high incidence of cardiac heart defects including ventricular septal defects (VSDs). The same exposure regimen also leads to in utero cardiac functional deficits, including bradycardia, dysrhythmia, and a reduction in cardiac output (CO) and ejection fraction that persist until parturition (10 days after the final dose). Despite a high rate of spontaneous postnatal VSD closure, we hypothesize that functional sequelae will persist into adulthood. Pregnant Sprague Dawley rats were administered six 300 mg/kg doses of DMO, one every 12 h in mid-pregnancy beginning on the evening of gestation day 8. Postnatal cardiac function was assessed in control (CTL) and DMO-exposed offspring using radiotelemetry and ultrasound at 3 and 11 months of age, respectively. Adult rats exposed to DMO in utero had an increased incidence of arrhythmia, elevated blood pressure and CO, greater left ventricular volume and elevated locomotor activity versus CTL. The mean arterial pressure of DMO-exposed rats was more sensitive to changes in dietary salt load compared with CTL. Importantly, most treated rats had functional deficits in the absence of a persistent structural defect. It was concluded that in utero DMO exposure causes cardiovascular deficits that persist into postnatal life in the rat, despite absence of visible structural anomalies. We speculate this is not unique to DMO, suggesting possible health implications for infants with unrecognized gestational chemical exposures.

  15. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure

    PubMed Central

    Wang, Han-Jun; Wang, Wei; Cornish, Kurtis G.; Rozanski, George J.; Zucker, Irving H.

    2014-01-01

    The enhanced cardiac sympathetic afferent reflex (CSAR) contributes to the exaggerated sympatho-excitation in chronic heart failure (CHF). Increased sympatho-excitation is positively related to mortality in CHF patients. However, the potential beneficial effects of chronic CSAR deletion on cardiac and autonomic function in CHF have not been previously explored. Here we determined the effects of chronic CSAR deletion on cardiac remodeling and autonomic dysfunction in CHF. In order to selectively delete the transient receptor potential vanilloid 1 receptor (TRPV1) -expressing CSAR afferents, epicardial application of resiniferatoxin (RTX, 50 μg/ml), an ultrapotent analogue of capsaicin, was performed during myocardium infarction (MI) surgery in rats. This procedure largely abolished the enhanced CSAR, prevented the exaggerated renal and cardiac sympathetic nerve activity and improved baroreflex sensitivity in CHF rats. Most importantly, we found that epicardial application of RTX largely prevented the elevated LVEDP, lung edema and cardiac hypertrophy, partially reduced left ventricular dimensions in the failing heart and increased cardiac contractile reserve in response to β-adrenergic receptor stimulation with isoproterenol in CHF rats. Molecular evidence showed that RTX attenuated cardiac fibrosis and apoptosis and reduced expression of fibrotic markers and TGF β-receptor I in CHF rats. Pressure - volume loop analysis showed that RTX reduced the end diastolic pressure volume relations in CHF rats indicating improved cardiac compliance. In summary, cardiac sympathetic afferent deletion exhibits protective effects against deleterious cardiac remodeling and autonomic dysfunction in CHF. These data suggest a potential new paradigm and therapeutic potential in the management of CHF. PMID:24980663

  16. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    PubMed

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions.

  17. NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE.

    PubMed

    ESSNER, E; NOVIKOFF, A B; QUINTANA, N

    1965-05-01

    Localizations of aldehyde-resistant nucleoside phosphatase activities in frozen sections of rat cardiac muscle have been studied by electron microscopy. Activities are higher after fixation with formaldehyde than with glutaraldehyde. After incubation with adenosine triphosphate or inosine diphosphate at pH 7.2, reaction product is found in the "terminal cisternae" or "transverse sacs" of the sarcoplasmic reticulum, which, together with the "intermediary vesicles" (T system), constitute the "dyads" or "triads". Reaction product is also present at the membranes of micropinocytotic vacuoles which apparently form from the plasma membrane of capillary endothelial cells and from the sarcolemma. In certain regions of the intercalated discs, reaction product is found within the narrow spaces between sarcolemmas of adjacent cells and within micropinocytotic vacuoles that seem to form from the sarcolemma. With inosine diphosphate, reaction product is also found in other parts of the sarcoplasmic reticulum. After incubation with cytidine monophosphate at pH 5, reaction product is present in the transverse sacs of sarcoplasmic reticulum, in micropinocytotic vacuoles in capillary endothelium, and in lysosomes of muscle fibers and capillaries. The possible significance of the sarcoplasmic reticulum phosphatases is discussed in relation to the role the reticulum probably plays in moving calcium ions and thereby controlling contraction and relaxation of the muscle fiber.

  18. IN VITRO EFFECTS OF CHLORPYRIFOS, PARATHION, METHYL PARATHION AND THEIR OXONS ON CARDIAC MUSCARINIC RECEPTOR BINDING IN NEONATAL AND ADULT RATS. (R825811)

    EPA Science Inventory

    Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular...

  19. Testosterone deprivation accelerates cardiac dysfunction in obese male rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Sivasinprasasn, Sivaporn; Jaiwongkam, Thidarat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-06-01

    Low testosterone level is associated with increased risks of cardiovascular diseases. As obese-insulin-resistant condition could impair cardiac function and that the incidence of obesity is increased in aging men, a condition of testosterone deprivation could aggravate the cardiac dysfunction in obese-insulin-resistant subjects. However, the mechanism underlying this adverse effect is unclear. This study investigated the effects of obesity on metabolic parameters, heart rate variability (HRV), left ventricular (LV) function, and cardiac mitochondrial function in testosterone-deprived rats. Orchiectomized or sham-operated male Wistar rats (n=36per group) were randomly divided into groups and were given either a normal diet (ND, 19.77% of energy fat) or a high-fat diet (HFD, 57.60% of energy fat) for 12weeks. Metabolic parameters, HRV, LV function, and cardiac mitochondrial function were determined at 4, 8, and 12weeks after starting each feeding program. We found that insulin resistance was observed after 8weeks of the consumption of a HFD in both sham (HFS) and orchiectomized (HFO) rats. Neither the ND sham (NDS) group nor ND orchiectomized (NDO) rats developed insulin resistance. The development of depressed HRV, LV contractile dysfunction, and increased cardiac mitochondrial reactive oxygen species production was observed earlier in orchiectomized (NDO and HFO) rats at week 4, whereas HFS rats exhibited these impairments later at week 8. These findings suggest that testosterone deprivation accelerates the impairment of cardiac autonomic regulation and LV function via increased oxidative stress and impaired cardiac mitochondrial function in obese-orchiectomized male rats. PMID:27000685

  20. Variability in the Cardiac Venous System of Wistar Rats

    PubMed Central

    Krešáková, Lenka; Purzyc, Halina; Schusterová, Ingrid; Fulton, Benjamin; Maloveská, Marcela; Vdoviaková, Katarina; Kravcová, Zuzanna; Boldižár, Martin

    2015-01-01

    Rats are often used as animal models in experimental cardiology for studying myocardial infarctions and various cardiologic procedures. Currently the cardiac venous system is a target for the delivery of drugs, gene vectors, angiogenetic growth factors, stem cells, and cardioprotective reagents. The purpose of this study was to describe the anatomic configuration and variability of the cardiac venous system in Wistar rats, by using the corrosion cast method and perfusion of colored latex. The distribution of veins in the rat heart disagrees with prior descriptions for other mammals, except mice, which have a similar pattern. Coronary venous drainage in the 36 rats examined consistently involved the left cardiac, left conal, major caudal, right cardiac, and right conal veins. Other veins involved inconsistently included the cranial cardiac vein (58.3% of cases), minor caudal veins (16.7%), conoanastomotic vein (66.7%), and left atrial vein (75%). In 4 cases (11.1%), the collateral veins were located between the left conal and left cardiac veins. In this study, high morphologic variability between cases was manifested by differences in the arrangement, size, mode of opening, and formation of the common root and affected all regions of the heart but primarily the right ventricle. PMID:25651085

  1. Raf-mediated cardiac hypertrophy in adult Drosophila

    PubMed Central

    Yu, Lin; Daniels, Joseph; Glaser, Alex E.; Wolf, Matthew J.

    2013-01-01

    SUMMARY In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  2. Biological determinants of aldosterone-induced cardiac fibrosis in rats.

    PubMed

    Robert, V; Silvestre, J S; Charlemagne, D; Sabri, A; Trouvé, P; Wassef, M; Swynghedauw, B; Delcayre, C

    1995-12-01

    To determine the events leading to cardiac fibrosis in aldosterone-salt hypertensive rats, we studied protein and mRNA accumulation of procollagens I and III for 60 days. After 3 and 7 days of treatment systolic pressure was normal, and no histological or biochemical changes were seen in rat hearts. At day 15 arterial pressure was raised (+40%) and left ventricular hypertrophy was +15%. Cardiac examination after hemalun-eosin staining and immunolabeling with anticollagen I and III antibodies showed no structural alterations, but an 83% increase in right ventricular type III procollagen mRNA levels was found. At 30 and 60 days we found progressive cardiac fibrosis, with inflammatory cells, myocyte necrosis, and elevation of both types I and III procollagen mRNA levels in both ventricles. To determine whether aldosterone had effects on Na,K-ATPase that might lead to ionic disturbances and induce myocyte necrosis, we studied the major cardiac Na,K-ATPase isoform genes. Although Na,K-ATPase alpha 1- and beta 1-subunit mRNA levels were elevated in kidney at day 1, neither of these cardiac transcripts nor the specific alpha 2 isoform was altered between 1 and 15 days. These results show that accumulation of procollagen mRNAs occurs before collagen deposition. Cardiac alterations are late and not preceded by changes in Na,K-ATPase cardiac gene expression, precluding a direct modulation of cardiac collagen synthesis and Na,K-ATPase by aldosterone. PMID:7490157

  3. Effect of Fetal Hypothyroidism on Cardiac Myosin Heavy Chain Expression in Male Rats

    PubMed Central

    Yousefzadeh, Nasibeh; Jeddi, Sajad; Alipour, Mohammad Reza

    2016-01-01

    Background: Thyroid hormone deficiency during fetal life could affect the cardiac function in later life. The mechanism underlying this action in fetal hypothyroidism (FH) in rats has not been elucidated thus far. Objective: The aim of this study is to evaluation the effect of FH on cardiac function in male rats and to determine the contribution of α-myosin heavy chain (MHC) and β-MHC isoforms. Methods: Six pregnant female rats were randomly divided into two groups: The hypothyroid group received water containing 6-propyl-2-thiouracil during gestation and the controls consumed tap water. The offspring of the rats were tested in adulthood. Hearts from the FH and control rats were isolated and perfused with langendroff setup for measuring hemodynamic parameters; also, the heart mRNA expressions of α- MHC and β-MHC were measured by qPCR. Results: Baseline LVDP (74.0 ± 3.1 vs. 92.5 ± 3.2 mmHg, p < 0.05) and heart rate (217 ± 11 vs. 273 ± 6 beat/min, p < 0.05) were lower in the FH rats than controls. Also, these results showed the same significance in ±dp/dt. In the FH rats, β-MHC expression was higher (201%) and α- MHC expression was lower (47%) than control. Conclusion: Thyroid hormone deficiency during fetal life could attenuate normal cardiac functions in adult rats, an effect at least in part due to the increased expression of β-MHC to α- MHC ratio in the heart. PMID:27411095

  4. Multiple Antioxidants Improve Cardiac Complications and Inhibit Cardiac Cell Death in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kumar, Santosh; Prasad, Sahdeo; Sitasawad, Sandhya L.

    2013-01-01

    Diabetic cardiomyopathy, a disorder of the heart muscle in diabetic patients, is one of the major causes of heart failure. Since diabetic cardiomyopathy is now known to have a high prevalence in the asymptomatic diabetic patient, prevention at the earliest stage of development by existing molecules would be appropriate in order to prevent the progression of heart failure. In this study, we investigated the protective role of multiple antioxidants (MA), on cardiac dysfunction and cardiac cell apoptosis in streptozotocin (STZ)-induced diabetic rat. Diabetic cardiomyopathy in STZ-treated animals was characterized by declined systolic, diastolic myocardial performance, oxidative stress and apoptosis in cardiac cells. Diabetic rats on supplementation with MA showed decreased oxidative stress evaluated by the content of reduced levels of lipid per-oxidation and decreased activity of catalase with down-regulation of heme-oxygenase-1 mRNA. Supplementation with MA also resulted in a normalized lipid profile and decreased levels of pro-inflammatory transcription factor NF-kappaB as well as cytokines such as TNF-α, IFN-γ, TGF-β, and IL-10. MA was found to decrease the expression of ROS-generating enzymes like xanthine oxidase, monoamine oxidase-A along with 5-Lipoxygenase mRNA and/or protein expression. Further, left ventricular function, measured by a microtip pressure transducer, was re-established as evidenced by increase in ±dp/dtmax, heart rate, decreased blood pressure, systolic and diastolic pressure as well as decrease in the TUNEL positive cardiac cells with increased Bcl-2/Bax ratio. In addition, MA supplementation decreased cell death and activation of NF-kappaB in cardiac H9c2 cells. Based on our results, we conclude that MA supplementation significantly attenuated cardiac dysfunction in diabetic rats; hence MA supplementation may have important clinical implications in terms of prevention and management of diabetic cardiomyopathy. PMID:23843977

  5. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  6. Cardiac response to doxorubicin and dexrazoxane in intact and ovariectomized young female rats at rest and after swim training.

    PubMed

    Calvé, Annie; Haddad, Rami; Barama, Sarah-Neiel; Meilleur, Melissa; Sebag, Igal A; Chalifour, Lorraine E

    2012-05-15

    The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.

  7. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: a sub-acute toxicity study.

    PubMed

    Nurulain, Syed M; Shafiullah, Mohamed; Yasin, Javed; Adem, Abdu; Kaabi, Juma Al; Tariq, Saeed; Adeghate, Ernest; Ojha, Shreesh

    2016-06-01

    Organophosphorus compounds (OPCs) have a wide range of applications, from agriculture to warfare. Exposure to these brings forward a varied kind of health issues globally. Terbufos is one of the leading OPCs used worldwide. The present study investigates the cardiac effect of no observable dose of a metabolite of terbufos, terbufos-sulfone (TS), under non-diabetic and streptozotocin-induced diabetic condition. One hundred nanomoles per rat (1/20 of LD50) was administered intraperitoneally to adult male Wister rats daily for fifteen days. The left ventricle was collected for ultrastructural changes by transmission electron microscopy. The blood samples were collected for biochemical tests including RBC acetylcholinesterase, creatinine kinase (CK), lactate dehydrogenase (LDH), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, ALT, AST, and GGT. The study revealed about 10 % inhibition of RBC-AChE in two weeks of TS treatment in non-diabetic rats whereas RBC-AChE activity was significantly decreased in diabetic TS treated rats. CK, LDH, and triglycerides were significantly higher in diabetic TS treated rats. Electron microscopy of the heart showed derangement and lesions of the mitochondria of cardiomyocytes in the TS treated groups. The present study concludes that a non-lethal dose of TS causes cardiac lesions which exacerbate under diabetic condition. Biochemical tests confirmed the ultrastructural changes. It is concluded that a non-lethal dose of TS may be a risk factor for a cardiovascular disease, which may be fatal under diabetic condition. PMID:27331300

  8. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats.

    PubMed

    Jankowski, Marek; Wang, Donghao; Danalache, Bogdan; Gangal, Marius; Gutkowska, Jolanta

    2010-08-01

    An increasing amount of evidence demonstrates the beneficial role of oxytocin (OT) in the cardiovascular system. Similar actions are attributed to genistein, an isoflavonic phytoestrogen. The treatment with genistein activates the OT system in the aorta of ovariectomized (OVX) Sprague-Dawley (SD) rats. The objective of this study was to determine the effects of low doses of genistein on the OT-induced effects in rat hypertension. The hypothesis tested was that treatment of OVX spontaneously hypertensive rats (SHRs) with genistein improves heart structure and heart work through a mechanism involving the specific OT receptor (OTR). OVX SHRs or SD rats were treated with genistein (in microg/g body wt sc, 10 days) in the presence or absence of an OT antagonist (OTA) [d(CH(2))(5), Tyr(Me)(2), Orn(8)]-vasotocin or a nonspecific estrogen receptor antagonist (ICI-182780). Vehicle-treated OVX rats served as controls. RT-PCR and Western blot analysis demonstrated that left ventricular (LV) OTR, downregulated by ovariectomy, increased in response to genistein. In SHRs or SD rats, this effect was blocked by OTA or ICI-182780 administration. The OTR was mainly localized in microvessels expressing the CD31 marker and colocalized with endothelial nitric oxide synthase. In SHRs, the genistein-stimulated OTR increases were associated with improved fractional shortening, decreased blood pressure (12 mmHg), decreased heart weight-to-body weight ratio, decreased fibrosis, and lowered brain natriuretic peptide in the LV. The prominent finding of the study is the detrimental effect of OTA treatment on the LV of SHRs. OTA treatment of OVX SHRs resulted in a dramatic worsening of ejection fractions and an augmented fibrosis. In conclusion, these results demonstrate that cardiac OTRs are involved in the regulation of cardiac function of OVX SHRs. The decreases of OTRs may contribute to cardiac pathology following menopause.

  9. Adolescents and adults differ in the immediate and long-term impact of nicotine administration and withdrawal on cardiac norepinephrine.

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Seidler, Frederic J

    2016-04-01

    Cardiovascular responses to smoking cessation may differ in adolescents compared to adults. We administered nicotine by osmotic minipump infusion for 17 days to adolescent and adult rats (30 and 90 days of age, respectively) and examined cardiac norepinephrine levels during treatment, after withdrawal, and for months after cessation. In adults, nicotine evoked a significant elevation of cardiac norepinephrine and a distinct spike upon withdrawal, after which the levels returned to normal; the effect was specific to males. In contrast, adolescents did not show significant changes during nicotine treatment or in the immediate post-withdrawal period. However, beginning in young adulthood, males exposed to adolescent nicotine showed sustained elevations of cardiac norepinephrine, followed by later-emerging deficits that persisted through six months of age. We then conducted adolescent exposure using twice-daily injections, a regimen that augments stress associated with inter-dose withdrawal episodes. With the injection route, adolescents showed an enhanced cardiac norepinephrine response, reinforcing the relationship between withdrawal stress and a surge in cardiac norepinephrine levels. The relative resistance of adolescents to the acute nicotine withdrawal response is likely to make episodic nicotine exposure less stressful or aversive than in adults. Equally important, the long-term changes after adolescent nicotine exposure resemble those known to be associated with risk of hypertension in young adulthood (elevated norepinephrine) or subsequent congestive heart disease (norepinephrine deficits). Our findings reinforce the unique responses and consequences of nicotine exposure in adolescence, the period in which most smokers commence tobacco use. PMID:26993795

  10. Cardiac effect of vitamin D receptor modulators in uremic rats.

    PubMed

    Mizobuchi, Masahide; Ogata, Hiroaki; Yamazaki-Nakazawa, Ai; Hosaka, Nozomu; Kondo, Fumiko; Koiwa, Fumihiko; Kinugasa, Eriko; Shibata, Takanori

    2016-10-01

    Vitamin D receptor (VDR) modulators (VDRMs) are commonly used to control secondary hyperparathyroidism (SHPT) associated with chronic kidney disease, and are associated with beneficial outcomes in cardiovascular disease. In this study, we compared the cardiac effect of VS-105, a novel VDRM, with that of paricalcitol in 5/6 nephrectomized uremic rats. Male Sprague-Dawley rats were 5/6 nephrectomized, fed a standard diet for 4 weeks to establish uremia, and then treated (intraperitoneally, 3 times/week) with vehicle (propylene glycol), paricalcitol (0.025 and 0.15μg/kg), or VS-105 (0.05 and 0.3μg/kg) for 4 weeks. In uremic rats, neither VDRM (low and high doses) altered serum creatinine and phosphorus levels. Serum calcium was significantly higher with high dose paricalcitol compared to sham rats. PTH levels were significantly decreased with low dose paricalcitol and VS-105, and were further reduced in the high dose groups. Interestingly, serum FGF23 was significantly higher with high dose paricalcitol compared to sham rats, whereas VS-105 had no significant effect on FGF23 levels. Left ventricle (LV) weight and LV mass index determined by echocardiography were significantly suppressed in both high dose VDRM groups. This suppression was more evident with VS-105. Western blotting showed significant decreases in a fibrosis marker TGF-β1 in both high dose VDRM groups (vs. vehicle) and Masson trichrome staining showed significant decreases in cardiac fibrosis in these groups. These results suggest that VS-105 is less hypercalcemic than paricalcitol and has favorable effects on SHPT and cardiac parameters that are similar to those of paricalcitol in uremic rats. The cardioprotective effect is a noteworthy characteristic of VS-105.

  11. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies

    PubMed Central

    Schwartz, Thomas; Diederichsen, Louise Pyndt; Lundberg, Ingrid E; Sanner, Helga

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) include the main subgroups polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and juvenile DM (JDM). The mentioned subgroups are characterised by inflammation of skeletal muscles leading to muscle weakness and other organs can also be affected as well. Even though clinically significant heart involvement is uncommon, heart disease is one of the major causes of death in IIM. Recent studies show an increased prevalence of traditional cardiovascular risk factors in JDM and DM/PM, which need attention. The risk of developing atherosclerotic coronary artery disease is increased twofold to fourfold in DM/PM. New and improved diagnostic methods have in recent studies in PM/DM and JDM demonstrated a high prevalence of subclinical cardiac involvement, especially diastolic dysfunction. Interactions between proinflammatory cytokines and traditional risk factors might contribute to the pathogenesis of cardiac dysfunction. Heart involvement could also be related to myocarditis and/or myocardial fibrosis, leading to arrhythmias and congestive heart failure, demonstrated both in adult and juvenile IIM. Also, reduced heart rate variability (a known risk factor for cardiac morbidity and mortality) has been shown in long-standing JDM. Until more information is available, patients with IIM should follow the same recommendations for cardiovascular risk stratification and prevention as for the corresponding general population, but be aware that statins might worsen muscle symptoms mimicking myositis relapse. On the basis of recent studies, we recommend a low threshold for cardiac workup and follow-up in patients with IIM. PMID:27752355

  12. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  13. Genistein prevents isoproterenol-induced cardiac hypertrophy in rats.

    PubMed

    Maulik, Subir Kumar; Prabhakar, Pankaj; Dinda, Amit Kumar; Seth, Sandeep

    2012-08-01

    Genistein, an isoflavone and a rich constituent of soy, possesses important regulatory effects on nitric oxide (NO) synthesis and oxidative stress. Transient and low release of NO by endothelial nitric oxide synthase (eNOS) has been shown to be beneficial, while high and sustained release by inducible nitric oxide synthase (iNOS) may be detrimental in pathological cardiac hypertrophy. The present study was designed to evaluate whether genistein could prevent isoproterenol-induced cardiac hypertrophy in male Wistar rats (150-200 g, 10-12 weeks old) rats. Isoproterenol (5 mg·(kg body weight)(-1)) was injected subcutaneously once daily for 14 days to induced cardiac hypertrophy. Genistein (0.1 and 0.2 mg·kg(-1), subcutaneous injection once daily) was administered along with isoproterenol. Heart tissue was studied for myocyte size and fibrosis. Myocardial thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase levels, and 1-OH proline (collagen content) were also estimated. Genistein significantly prevented any isoproterenol-induced increase in heart weight to body weight ratio, left ventricular mass (echocardiographic), myocardial 1-OH proline, fibrosis, myocyte size and myocardial oxidative stress. These beneficial effects of genistein were blocked by a nonselective NOS inhibitor (L-NAME), but not by a selective iNOS inhibitor (aminoguanidine). Thus, the present study suggests that the salutary effects of genistein on isoproterenol-induced cardiac hypertrophy may be mediated through inhibition of iNOS and potentiation of eNOS activities. PMID:22808991

  14. Cardiac and thermal homeostasis in the aging Brown Norway rat.

    PubMed

    Gordon, Christopher J

    2008-12-01

    The cardiovascular and thermoregulatory systems are considered to be susceptible in the aged population, but little is known about baseline cardiac and thermoregulatory homeostasis in rodent models of aging. Radiotransmitters were implanted in male, Brown Norway rats obtained at 4, 12, and 24 months to monitor the electrocardiogram (ECG), interbeat interval (IBI), heart rate (HR), core temperature (Tc), and motor activity (MA). There was no significant effect of age on resting HR and MA. Daytime Tc of the 24-month-old rats was significantly elevated above those of the 4- and 12-month-old groups. Variability of the IBI was highest in the 24-month-old rats. The elevation in daytime Tc beginning around 8 months of age may be a physiological biomarker of aging and may be an important factor to consider in studies using caloric restriction-induced hypothermia to increase longevity. PMID:19126843

  15. Effect of Actual and Simulated Microgravity on Cardiac Mass and Function in the Rat

    NASA Technical Reports Server (NTRS)

    Ray, Chester H.; Vasques, Marilyn; Miller, Todd H.; Wilkerson, M. Keith; Delp, Michael D.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to actual or simulated microgravity induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: Preflight (PF, n = 12); Flight (FL, n = 7); Flight Cage Simulation (SIM, n = 6), and Vivarium Control (VIV, n = 7). Animals in the FL group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the simulated microgravity study were subdivided into three groups: Control (CON, n = 20); 7 day hindlimb unloaded (7HU, n = 10); and 28 day unloaded (28HU, n = 19). In a subset of CON (n = 7) and 28HU (n = 6) rats, a catheter was advanced into the left ventricle to measure the rate of rise in ventricular pressure (+dP/dt) during standing as an estimate of cardiac contractility. After completion of their respective treatments, hearts were removed and weighed. Animals in the PF group were sacrificed 24 hr prior to launch while the FL group was sacrificed 11- 17 hr after landing. The SM and VIV groups were sacrificed 48 and 96 hr after the FL group, respectively. Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- .03 g; FL 1.32 +/- 0.02 g; SIM 1.28 +/- 0.04 g; VIV 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hinlimb unloading (CON 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on myocardial contractility (CON 8055 +/- 385 mmHg/sec; 28HU 8545 +/- 755 mmHg/sec). These data suggest that cardiac atrophy does not occur following short-term exposure to microgravity, and that neither short- nor long-term simulated microgravity alter cardiac mass or function.

  16. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  17. Cardiac surgery for adults with mental retardation. Dilemmas in management.

    PubMed

    Goldhaber, S Z; Reardon, F E; Goulart, D T; Rubin, I L

    1985-10-01

    In summary, cardiac surgery for adults with mental retardation raises a series of controversial legal, economic, ethical, medical, and nursing dilemmas. During the past 20 years, many improvements have taken place in the care of these patients. However, in the future, judicial and statutory mandates requiring high-quality medical care for persons with mental retardation may conflict increasingly with hospital cost-control legislation and thereby affect clinical decisions. For example, it is conceivable that elective repair of an ostium secundum atrial septal defect in an asymptomatic patient will expend the limited resources necessary to carry out emergency revascularization in a symptomatic patient with impending myocardial infarction. This issue becomes even more delicate when the asymptomatic patient is a mentally retarded ward of the state, and the symptomatic patient is a middle-aged man supporting a wife and several college-age children. There may be no easy solution to this problem, and it will provide the grist for many bioethicists. Fortunately, from a practical point of view, we do not currently have to choose between these patients to receive treatment. Our hope is that health care for mentally retarded patients will not be compromised. We believe that decisions about patient management should be based on enlightened clinical judgment rather than on preconceived notions about this population. In the quest for optimal health care delivery, the special needs of these patients should be considered when cardiac catheterization and possible cardiac surgery are contemplated. Although we have presented an approach to a patient with cardiac disease requiring cardiac surgery, we believe that this approach can be utilized for any retarded patient requiring acute medical care. Currently, because there has not been much training in this area, many physicians and nurses lack first-hand experience in caring for the mentally retarded. This inexperience may lead to

  18. Ketamine in adult cardiac surgery and the cardiac surgery Intensive Care Unit: An evidence-based clinical review

    PubMed Central

    Mazzeffi, Michael; Johnson, Kyle; Paciullo, Christopher

    2015-01-01

    Ketamine is a unique anesthetic drug that provides analgesia, hypnosis, and amnesia with minimal respiratory and cardiovascular depression. Because of its sympathomimetic properties it would seem to be an excellent choice for patients with depressed ventricular function in cardiac surgery. However, its use has not gained widespread acceptance in adult cardiac surgery patients, perhaps due to its perceived negative psychotropic effects. Despite this limitation, it is receiving renewed interest in the United States as a sedative and analgesic drug for critically ill-patients. In this manuscript, the authors provide an evidence-based clinical review of ketamine use in cardiac surgery patients for intensive care physicians, cardio-thoracic anesthesiologists, and cardio-thoracic surgeons. All MEDLINE indexed clinical trials performed during the last 20 years in adult cardiac surgery patients were included in the review. PMID:25849690

  19. Echocardiographic Evaluation of Cardiac Function in Ischemic Rats: Value of M-Mode Echocardiography

    PubMed Central

    Darbandi Azar, Amir; Tavakoli, Fatemeh; Moladoust, Hassan; Zare, Asghar; Sadeghpour, Anita

    2014-01-01

    Background: Echocardiography is a well-established diagnostic tool for a safe, reproducible and accurate evaluation of cardiac anatomy, hemodynamics and function in clinical practice. Objectives: We sought to demonstrate the efficacy and feasibility of M-mode echocardiography to evaluate cardiac structure and function in normal and MI-induced adult rats. Materials and Methods: All animal procedures were approved by the ethics committee of Tehran University of Medical Sciences and the investigation conformed to the “Guide for the Care and Use of Laboratory Animals” published by the United States National Institutes of Health. Forty-eight male Wistar rats weighing 280-300 grams were obtained from a single breeding colony. The statistical analyses were performed using SPSS 20.0. Results: Echocardiographic measurements were possible in all rats before and after the operation. In our survey, we studied echocardiographic alterations in rats after MI induction. Changes can be seen in all echocardiographic mean values after myocardial infarction (MI), but significant decrease (P < 0.01) of Fractional shortening and Ejection Fraction as well as significant increase (P < 0.05) of end systolic diameter and systolic volume after left anterior descending coronary artery (LAD) ligation can be good signs of MI induction. Conclusions: In light of our results, it can be concluded that we succeeded in establishing a precise echocardiographic method to confidently assess the success of LAD ligation surgery in rats. It is feasible to thoroughly monitor the functional efficiency of regional therapeutic interventions such as intra-myocardial stem cell injection. PMID:25785251

  20. Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion.

    PubMed Central

    Youker, K; Smith, C W; Anderson, D C; Miller, D; Michael, L H; Rossen, R D; Entman, M L

    1992-01-01

    Canine neutrophils can be induced to adhere in vitro to isolated adult cardiac myocytes by stimulation of the neutrophils with chemotactic factors such as zymosan-activated serum (ZAS) only if the myocytes have been previously exposed to cytokines such as interleukin 1 (IL-1) or tumor necrosis factor-alpha. These cytokines induce synthesis and surface expression of intercellular adhesion molecule-1 (ICAM-1) on the myocyte, and neutrophil adhesion is almost entirely CD18 and ICAM-1 dependent. The present study examines cardiac-specific lymph collected from awake dogs during 1-h coronary occlusion and 3 d of reperfusion for its ability to induce both ICAM-1 expression in cardiac myocytes, and neutrophil-myocyte adherence. Reperfusion lymph induced ICAM-1 expression in isolated myocytes, and myocyte adherence to ZAS-stimulated neutrophils that was completely inhibited by anti-CD18 and anti-ICAM-1 monoclonal antibodies. This activity peaked at 90 min of reperfusion and persisted for up to 72 h. Preischemic lymph was not stimulatory. IL-1 appeared not to be a stimulating factor in lymph in that dilutions of lymph were found to inhibit the stimulatory effects of recombinant IL-1 beta. However, investigation of interleukin 6 (IL-6) revealed that recombinant IL-6 stimulated myocyte adhesiveness for ZAS-stimulated neutrophils (ED50 = 0.002 U/ml) and expression of ICAM-1 by isolated myocytes. IL-6 neutralizing antibody markedly reduced the ability of reperfusion lymph to stimulate adhesion and ICAM-1 expression, and estimates of levels of IL-6 in reperfusion lymph ranged from 0.035 to 0.14 U/ml. These results indicate that cytokines capable of promoting neutrophil-myocyte adhesion occur in extracellular fluid during reperfusion of ischemic myocardium, and that one of these cytokines is IL-6. Neutrophil-myocyte adhesion may be of pathogenic significance because it may enhance the cytotoxic activity of the neutrophil. Images PMID:1346618

  1. Knowledge Management in Cardiac Surgery: The Second Tehran Heart Center Adult Cardiac Surgery Database Report

    PubMed Central

    Abbasi, Kyomars; Karimi, Abbasali; Abbasi, Seyed Hesameddin; Ahmadi, Seyed Hossein; Davoodi, Saeed; Babamahmoodi, Abdolreza; Movahedi, Namdar; Salehiomran, Abbas; Shirzad, Mahmood; Bina, Peyvand

    2012-01-01

    Background: The Adult Cardiac Surgery Databank (ACSD) of Tehran Heart Center was established in 2002 with a view to providing clinical prediction rules for outcomes of cardiac procedures, developing risk score systems, and devising clinical guidelines. This is a general analysis of the collected data. Methods: All the patients referred to Tehran Heart Center for any kind of heart surgery between 2002 and 2008 were included, and their demographic, medical, clinical, operative, and postoperative data were gathered. This report presents general information as well as in-hospital mortality rates regarding all the cardiac procedures performed in the above time period. Results: There were 24959 procedures performed: 19663 (78.8%) isolated coronary artery bypass grafting surgeries (CABGs); 1492 (6.0%) isolated valve surgeries; 1437 (5.8%) CABGs concomitant with other procedures; 832 (3.3%) CABGs combined with valve surgeries; 722 (2.9%) valve surgeries concomitant with other procedures; 545 (2.2%) surgeries other than CABG or valve surgery; and 267 (1.1%) CABGs concomitant with valve and other types of surgery. The overall mortality was 205 (1.04%), with the lowest mortality rate (0.47%) in the isolated CABGs and the highest (4.49%) in the CABGs concomitant with valve surgeries and other types of surgery. Meanwhile, the overall mortality rate was higher in the female patients than in the males (1.90% vs. 0.74%, respectively). Conclusion: Isolated CABG was the most prevalent procedure at our center with the lowest mortality rate. However, the overall mortality was more prevalent in our female patients. This database can serve as a platform for the participation of the other countries in the region in the creation of a regional ACSD. PMID:23304179

  2. Chronic cola drinking induces metabolic and cardiac alterations in rats

    PubMed Central

    Milei, José; Losada, Matilde Otero; Llambí, Hernán Gómez; Grana, Daniel R; Suárez, Daniel; Azzato, Francisco; Ambrosio, Giuseppe

    2011-01-01

    AIM: To investigate the effects of chronic drinking of cola beverages on metabolic and echocardiographic parameters in rats. METHODS: Forty-eight male Wistar rats were divided in 3 groups and allowed to drink regular cola (C), diet cola (L), or tap water (W) ad libitum during 6 mo. After this period, 50% of the animals in each group were euthanized. The remaining rats drank tap water ad libitum for an additional 6 mo and were then sacrificed. Rat weight, food, and beverage consumption were measured regularly. Biochemical, echocardiographic and systolic blood pressure data were obtained at baseline, and at 6 mo (treatment) and 12 mo (washout). A complete histopathology study was performed after sacrifice. RESULTS: After 6 mo, C rats had increased body weight (+7%, P < 0.01), increased liquid consumption (+69%, P < 0.001), and decreased food intake (-31%, P < 0.001). C rats showed mild hyperglycemia and hypertriglyceridemia. Normoglycemia (+69%, P < 0.01) and sustained hypertriglyceridemia (+69%, P < 0.01) were observed in C after washout. Both cola beverages induced an increase in left ventricular diastolic diameter (C: +9%, L: +7%, P < 0.05 vs W) and volumes (diastolic C: +26%, L: +22%, P < 0.01 vs W; systolic C: +24%, L: +24%, P < 0.05 vs W) and reduction of relative posterior wall thickness (C: -8%, L: -10%, P < 0.05 vs W). Cardiac output tended to increase (C: +25%, P < 0.05 vs W; L: +17%, not significant vs W). Heart rate was not affected. Pathology findings were scarce, related to aging rather than treatment. CONCLUSION: This experimental model may prove useful to investigate the consequences of high consumption of soft drinks. PMID:21526048

  3. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    PubMed

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  4. The cardiac effects of carbon nanotubes in rat

    PubMed Central

    Hosseinpour, Mina; Azimirad, Vahid; Alimohammadi, Maryam; Shahabi, Parviz; Sadighi, Mina; Ghamkhari Nejad, Ghazaleh

    2016-01-01

    Introduction: Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials’ biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. Methods: Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. Results: Results of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. Conclusion: Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate. PMID:27525224

  5. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease

    PubMed Central

    Velkoska, Elena; Patel, Sheila K.; Griggs, Karen

    2016-01-01

    Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1–7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1–7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined. PMID:27571511

  6. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease.

    PubMed

    Velkoska, Elena; Patel, Sheila K; Griggs, Karen; Burrell, Louise M

    2016-01-01

    Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1-7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1-7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined. PMID:27571511

  7. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    PubMed

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  8. Hypoxic-induced stress protein expression in rat cardiac myocytes

    SciTech Connect

    Howard, G.; Geoghegan, T.E.

    1986-05-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O/sub 2/ supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with (/sup 35/S)methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins.

  9. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin.

    PubMed

    Zhang, Shujuan; Zhang, Feng; Sun, Haijian; Zhou, Yebo; Han, Ying

    2012-11-01

    Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure. PMID:23554781

  10. pH regulation in adult cardiac myocytes

    SciTech Connect

    Wallert, M.A.

    1989-01-01

    The purpose of this study is to examine the pH{sub i} regulatory mechanisms of adult ventricular myocytes, the cells that perform the pumping work of the heart. The cell system for this study was the ventricular myocyte, isolated by enzymatic dissociation from adult rate heart. In agreement with the findings on other cardiac model cells, I demonstrated the existence of a Cl{sup {minus}}/HCO{sub 3}{sup {minus}} exchanger and a Na{sup +}/H{sup +} exchanger in ventricular myocytes. The existence of the anion exchanger was demonstrated in {sup 36}Cl{sup {minus}} flux experiments and as stilbene disulfonate-inhibitable and Cl{sup {minus}} gradient-dependent intracellular pH shifts in the presence of bicarbonate. The fluorescein derivative BCECF served as a fluorescent probe of intracellular pH in the these experiments. The existence of the Na{sup +}/H{sup +} exchanger was demonstrated in pH{sub i} experiments using BCECF. Further experiments characterized the kinetics of the Na{sup +}/H{sup +} exchanger and its regulation. The steady-state pH{sub i} of ventricular myocytes was 7.16 {+-} 0.11 at pH{sub 0} = 7.4. Several agonists caused a rise in steady-state pH{sub i}: the protein kinase stimulator phorbol myristate acetate (PMA), the {alpha}{sub 1}-adrenergic agonist 6-fluoro-norepinephrine (6F-NE) and the {beta}-agonist UK14304, and ATP.

  11. Effect of Vanadate on Elevated Blood Glucose and Depressed Cardiac Performance of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Heyliger, Clayton E.; Tahiliani, Arun G.; McNeill, John H.

    1985-03-01

    The trace element vanadium has an unclear biological function. Vanadate, an oxidized form of vanadium, appears to have an insulin-like action. The effect of vanadate on blood glucose and cardiac performance was assessed in female Wistar rats 6 weeks after they were made diabetic with streptozotocin. When vanadate was administered for a 4-week period to the diabetic rats, their blood glucose was not significantly different from that of nondiabetic controls despite a low serum insulin. In contrast, blood glucose was increased about threefold in the diabetic rats that were not treated with vanadate; these rats also had low insulin levels. Cardiac performance was depressed in the untreated diabetic animals, but the cardiac performance of the vanadate-treated diabetic animals was not significantly different from that of nondiabetic controls. Thus vanadate controlled the high blood glucose and prevented the decline in cardiac performance due to diabetes.

  12. Adult-Onset Still's Disease and Cardiac Tamponade: A Rare Association

    PubMed Central

    Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-01-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity. PMID:26175648

  13. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.

    PubMed

    Ferrario, Carlos M; VonCannon, Jessica; Jiao, Yan; Ahmad, Sarfaraz; Bader, Michael; Dell'Italia, Louis J; Groban, Leanne; Varagic, Jasmina

    2016-04-15

    Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function. PMID:26873967

  14. Effects of levosimendan on cardiac gene expression profile and post-infarct cardiac remodelling in diabetic Goto-Kakizaki rats.

    PubMed

    Vahtola, Erik; Storvik, Markus; Louhelainen, Marjut; Merasto, Saara; Lakkisto, Päivi; Lakkisto, Jarkko; Tikkanen, Ilkka; Kaheinen, Petri; Levijoki, Jouko; Mervaala, Eero

    2011-11-01

    The calcium sensitizer levosimendan has shown beneficial effects on cardiac remodelling in spontaneously diabetic Goto-Kakizaki (GK) rats 12 weeks after experimental myocardial infarction (MI). However, the short-term effects and the cellular mechanisms remain partially unresolved. The aim was to study the effects of oral levosimendan treatment on the myocardial gene expression profile in diabetic GK rats 4 weeks after MI/sham operation. MI was induced to diabetic GK rats. Twenty-four hours after surgery, rats were randomized into four groups: MI, MI +levosimendan (1 mg/kg/day), sham-operated and sham-operated +levosimendan. Cardiac function and histology were examined 1, 4 and 12 weeks after MI. The effects of levosimendan on cardiac gene expression profile were investigated by microarray analysis. Levosimendan ameliorated post-infarct heart failure and cardiac remodelling. Levosimendan altered the expression of 264 of MI and sham rats, respectively; these changes were associated with alterations in two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Levosimendan up-regulated 3 genes in the renin-angiotensin system pathway [angiotensin receptor 1 (Agtr1), chymase 1 (Cma1) and thimet oligopeptidase 1 (Thop1)] and down-regulated 3 genes in the glycerolipid metabolism pathway [diacylglycerol kinase gamma (Dgkg), carboxyl ester lipase (Cel) and Diacylglycerol kinase iota]. Levosimendan induced opposite effects on the gene expression of pleckstrin homology (PH) domain containing family f (Plekhf1), carboxymethylenebutenolidase homologue (Cmbl) (up-regulation) and hydroxyprostaglandin dehydrogenase 15 (Hpgd) (down-regulation) as compared with MI. MI versus sham affected 420 genes and was associated with alterations in 12 KEGG pathways. The beneficial effects of levosimendan on cardiac hypertrophy in sham-operated GK rats was associated with altered expression in 522 genes and associated with three KEGG pathways including purine metabolism, cell cycle pathway

  15. Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats.

    PubMed

    Bupha-Intr, Tepmanas; Laosiripisan, Jitanan; Wattanapermpool, Jonggonnee

    2009-10-01

    The impact of regular exercise in protecting cardiac deteriorating results of female sex hormone deprivation was evaluated by measuring changes in intracellular Ca2+ removal activity of sarcoplasmic reticulum (SR) in ovariectomized rats following 9-wk treadmill running exercise at moderate intensity. Despite induction of cardiac hypertrophy in exercised groups of both sham-operated and ovariectomized rats, exercise training had no effect on SR Ca2+ uptake and SR Ca(2+)-ATPase (SERCA) in hormone intact rat heart. However, exercise training normalized the suppressed maximum SR Ca2+ uptake and SERCA activity in ovariectomized rat heart. While exercise training normalized the leftward shift in pCa (-log[Ca2+])-SR Ca2+ uptake relation in ovariectomized rats, no effect was detected in exercised sham-operated rats. Similar phenomena were also observed on SERCA and on phospholamban (PLB) phosphorylation levels; exercise training in ovariectomized rats enhanced SERCA expression to reach the level as that in sham-operated rats, in which there were no differences in SERCA and phospho-PLB levels between sedentary and exercised groups. In addition, the reduction in phospho-Thr(17) PLB in myocardium of ovariectomized rats was abolished by exercise training. These results showed that regular exercise maintains the molecular activation of cardiac SR Ca2+ uptake under normal physiological conditions and is able to induce a protective impact on cardiac SR Ca2+ uptake in ovarian sex hormone-deprived status.

  16. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.

  17. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats

    PubMed Central

    Aravamuthan, Bhooma R.; Shoykhet, Michael

    2016-01-01

    BACKGROUND The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. METHODS We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. RESULTS Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P < 0.05). Cardiac arrest survivors also demonstrate greater coherence between EPN single neurons and MCx LFP (3—100 Hz; P < 0.001). CONCLUSIONS This increased coherence indicates abnormal synchrony in the neuronal motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders. PMID:26083760

  18. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: The Driving Force for Improvement in Cardiac Surgery.

    PubMed

    Winkley Shroyer, Annie Laurie; Bakaeen, Faisal; Shahian, David M; Carr, Brendan M; Prager, Richard L; Jacobs, Jeffrey P; Ferraris, Victor; Edwards, Fred; Grover, Frederick L

    2015-01-01

    Initiated in 1989, the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (ACSD) includes more than 1085 participating centers, representing 90%-95% of current US-based adult cardiac surgery hospitals. Since its inception, the primary goal of the STS ACSD has been to use clinical data to track and improve cardiac surgical outcomes. Patients' preoperative risk characteristics, procedure-related processes of care, and clinical outcomes data have been captured and analyzed, with timely risk-adjusted feedback reports to participating providers. In 2006, STS initiated an external audit process to evaluate STS ACSD completeness and accuracy. Given the extremely high inter-rater reliability and completeness rates of STS ACSD, it is widely regarded as the "gold standard" for benchmarking cardiac surgery risk-adjusted outcomes. Over time, STS ACSD has expanded its quality horizons beyond the traditional focus on isolated, risk-adjusted short-term outcomes such as perioperative morbidity and mortality. New quality indicators have evolved including composite measures of key processes of care and outcomes (risk-adjusted morbidity and risk-adjusted mortality), longer-term outcomes, and readmissions. Resource use and patient-reported outcomes would be added in the future. These additional metrics provide a more comprehensive perspective on quality as well as additional end points. Widespread acceptance and use of STS ACSD has led to a cultural transformation within cardiac surgery by providing nationally benchmarked data for internal quality assessment, aiding data-driven quality improvement activities, serving as the basis for a voluntary public reporting program, advancing cardiac surgery care through STS ACSD-based research, and facilitating data-driven informed consent dialogues and alternative treatment-related discussions.

  19. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  20. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.

  1. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  2. Optimizing Survival Outcomes For Adult Patients With Nontraumatic Cardiac Arrest.

    PubMed

    Jung, Julianna

    2016-10-01

    Patient survival after cardiac arrest can be improved significantly with prompt and effective resuscitative care. This systematic review analyzes the basic life support factors that improve survival outcome, including chest compression technique and rapid defibrillation of shockable rhythms. For patients who are successfully resuscitated, comprehensive postresuscitation care is essential. Targeted temperature management is recommended for all patients who remain comatose, in addition to careful monitoring of oxygenation, hemodynamics, and cardiac rhythm. Management of cardiac arrest in circumstances such as pregnancy, pulmonary embolism, opioid overdose and other toxicologic causes, hypothermia, and coronary ischemia are also reviewed.

  3. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.

    PubMed Central

    Kass-Eisler, A; Falck-Pedersen, E; Alvira, M; Rivera, J; Buttrick, P M; Wittenberg, B A; Cipriani, L; Leinwand, L A

    1993-01-01

    To optimize the use of modified adenoviruses as vectors for gene delivery to the myocardium, we have characterized infection of cultured fetal and adult rat cardiac myocytes in vitro and of adult cardiac myocytes in vivo by using a replication-defective adenovirus carrying the chloramphenicol acetyltransferase (CAT) reporter gene driven by the cytomegalovirus promoter (AdCMVCATgD). In vitro, virtually all fetal or adult cardiocytes express the CAT gene when infected with 1 plaque-forming unit of virus per cell. CAT enzymatic activity can be detected in these cells as early as 4 hr after infection, reaching near-maximal levels at 48 hr. In fetal cells, CAT expression was maintained without a loss in activity for at least 1 week. Using in vitro studies as a guide, we introduced the AdCMVCATgD virus directly into adult rat myocardium and compared the expression results obtained from virus injection with those obtained by direct injection of pAdCMVCATgD plasmid DNA. The amount of CAT activity resulting from adenovirus infection of the myocardium was orders of magnitude higher than that seen from DNA injection and was proportional to the amount of input virus. Immunostaining for CAT protein in cardiac tissue sections following adenovirus injection demonstrated large numbers of positive cells, reaching nearly 100% of the myocytes in many regions of the heart. Expression of genes introduced by adenovirus peaked at 5 days but was still detectable 55 days following infection. Adenoviruses are therefore a very useful tool for high-efficiency gene transfer into the cardiovascular system. Images Fig. 1 Fig. 5 PMID:8265580

  4. Volatile anaesthetic effects on Na+-Ca2+ exchange in rat cardiac myocytes

    PubMed Central

    Seckin, Inanc; Sieck, Gary C; Prakash, Y S

    2001-01-01

    We examined the influence of two clinically relevant concentrations (1 and 2 MAC (minimum alveolar concentration)) of halothane and sevoflurane on both efflux and reverse modes of Na+-Ca2+ exchange (NCX) in enzymatically dissociated adult rat cardiac myocytes. We hypothesised that a volatile anaesthetic-induced decrease in myocardial contractility is mediated by a reduction in intracellular calcium concentration ([Ca2+]i) via inhibition of NCX. Cells were exposed to cyclopiazonic acid and zero extracellular Na+ and Ca2+ to block sacroplasmic reticulum (SR) re-uptake and NCX efflux, respectively. As [Ca2+]i increased under these conditions, extracellular Na+ was rapidly (< 300 ms) reintroduced in the presence or absence of a volatile anaesthetic to selectively promote Ca2+ efflux via NCX. Other cells exposed to cyclopiazonic acid and ryanodine to inhibit SR Ca2+ re-uptake and release were Na+ loaded in zero extracellular Ca2+. The reintroduction of extracellular Ca2+ was used to selectively activate Ca2+ influx via NCX. Compared to controls, both 1 and 2 MAC halothane as well as sevoflurane reduced NCX-mediated efflux. The reduction in NCX-mediated influx was concentration dependent, but comparable between the two anaesthetics. Both anaesthetics at each concentration also shifted the relationship between extracellular Na+ (or extent of Na+ loading) and NCX-mediated efflux (or influx) to the right. These data indicate that despite inhibition of NCX-mediated Ca2+ efflux, volatile anaesthetics produce myocardial depression. However, the inhibition of NCX-mediated Ca2+ influx may contribute to decreased cardiac contractility. The overall effect of volatile anaesthetics on the [Ca2+]i profile is likely to be determined by the relative contributions of influx vs. efflux via NCX during each cardiac cycle. PMID:11283227

  5. Cardiac issues in adults with the mucopolysaccharidoses: current knowledge and emerging needs.

    PubMed

    Braunlin, Elizabeth; Wang, Raymond

    2016-08-15

    The growing availability of innovative treatments for rare genetic diseases with a cardiac component-such as the mucopolysaccharidoses (MPSs)-has changed these syndromes from 'back of the textbook' curiosities of childhood to chronic, but rare, adult cardiac conditions that require both centres of expertise and knowledgeable subspecialists. The MPSs are inherited progressive lysosomal storage diseases, occurring in about 1:25 000 births and resulting from absence of functional hydrolases responsible for the degradation of glycosaminoglycans, naturally occurring complex sugars ubiquitous throughout the body. In the heart, accumulation of glycosaminoglycans occurs within the cardiac valves, the epicardial coronary arteries, the myocytes and cardiac interstitium and the walls of the great vessels. As a consequence, cardiac valve regurgitation and stenosis, diffuse coronary artery stenosis, myocardial dysfunction and aortic root dilation often occur. Haematopoietic cell transplantation and enzyme replacement therapy have changed the previously lethal natural history of the MPSs to one of survival well into adulthood. Despite this improved lifespan, the left-sided cardiac valves continue to show progressive functional involvement and cardiac valve replacement is not uncommon, especially in adults. The risk of any intervention is increased in these patients because of the systemic effects of the disease on the respiratory system and cervical cord. Our current understanding of other cardiac issues in adults with the MPSs, especially with the coronary circulation and myocardium, is meagre and more needs to be known to effectively care for this emerging population of adults. Incorporation of the MPSs, as well as other now-treatable rare diseases, into the educational curriculum of current and future adult subspecialists is an important next step. PMID:27102649

  6. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats

    PubMed Central

    Wu, Jie; Cheng, Zhong; Zhang, Mingjing; Zhu, Pengfei; Gu, Ye

    2016-01-01

    We previously reported significantly enhanced cardiac remodeling post aortocaval fistula (AV) in unilateral nephrectomized (UNX) rats. However, the relationship between the size of the AV and the cardiorenal effects in UNX rats remains unknown. In the present study, AV was induced by 20, 18 and 16 gauge needles in UNX rats to see if larger shunt would definitely induce heavier cardiac and renal damage in UNX rats. Our results demonstrated that bigger shunt size is linked with proportional more significant cardiorenal remodeling and dysfunction in UNX rats. Expression of inflammatory biomarkers including CRP, TNF-α, IL-6, IL-1β, TGF-β and MCP-1 in left kidney and heart was significantly increased in all UNX + AV groups compared to Sham rats. Inflammation might thus participate in the worsening cardiorenal functions and remodeling processes in this model. PMID:27279232

  7. Provision of Transition Education and Referral Patterns from Pediatric Cardiology to Adult Cardiac Care.

    PubMed

    Harbison, Anna L; Grady, Stafford; Chi, Kevin; Fernandes, Susan M

    2016-02-01

    ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted. PMID:26385471

  8. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

    PubMed Central

    Coutu, Pierre; Metzger, Joseph M

    2002-01-01

    Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases. PMID:11964244

  9. Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling

    PubMed Central

    Dawes, Timothy J.W.; Corden, Ben; Cotter, Sorcha; de Marvao, Antonio; Walsh, Roddy; Ware, James S.; Cook, Stuart A.

    2016-01-01

    Background— Cardiac mass and volumes are often elevated in athletes, but it is not known whether moderate physical activity is also associated with cardiac dilatation and hypertrophy in a healthy adult population. Methods and Results— In total, 1096 adults (54% female, median age 39 years) without cardiovascular disease or cardiomyopathy-associated genetic variants underwent cardiac magnetic resonance imaging to determine biventricular volumes and function. Physical activity was assessed using a validated activity questionnaire. The relationship between cardiac parameters and activity was assessed using multiple linear regression adjusting for age, sex, race, and systolic blood pressure. Logistic regression was performed to determine the effect of activity on the likelihood of subjects having cardiac dilatation or hypertrophy according to standard cardiac magnetic resonance normal ranges. Increasing physical activity was associated with greater left ventricular (LV) mass (β=0.23; P<0.0001) and elevated LV and right ventricular volumes (LV: β=0.26, P<0.0001; right ventricular: β=0.26, P<0.0001). Physical activity had a larger effect on cardiac parameters than systolic blood pressure (0.06≤β≤0.21) and a similar effect to age (−0.20≤β≤−0.31). Increasing physical activity was a risk factor for meeting imaging criteria for LV hypertrophy (adjusted odds ratio 2.1; P<0.0001), LV dilatation (adjusted odds ratio 2.2; P<0.0001), and right ventricular dilatation (adjusted odds ratio 2.2; P<0.0001). Conclusions— Exercise-related cardiac remodeling is not confined to athletes, and there is a risk of overdiagnosing cardiac dilatation or hypertrophy in a proportion of active, healthy adults. PMID:27502059

  10. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure

    PubMed Central

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  11. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    PubMed

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  12. Interactions between respiratory oscillators in adult rats

    PubMed Central

    Huckstepp, Robert TR; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. DOI: http://dx.doi.org/10.7554/eLife.14203.001 PMID:27300271

  13. PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis.

    PubMed

    Zhang, Hao; Wang, Zheng; Feng, Shou-Jie; Xu, Lei; Shi, He-Xian; Chen, Li-Li; Yuan, Guang-Da; Yan, Wei; Zhuang, Wei; Zhang, Yi-Qian; Zhang, Zhong-Ming; Dong, Hong-Yan

    2015-03-11

    Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF's effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size.

  14. Protective effects of isorhynchophylline on cardiac arrhythmias in rats and guinea pigs.

    PubMed

    Gan, Runtao; Dong, Guo; Yu, Jiangbo; Wang, Xu; Fu, Songbin; Yang, Shusen

    2011-09-01

    As one important constituent extracted from a traditional Chinese medicine, Uncaria Rhynchophylla Miq Jacks, isorhynchophylline has been used to treat hypertension, epilepsy, headache, and other illnesses. Whether isorhynchophylline protects hearts against cardiac arrhythmias is still incompletely investigated. This study was therefore aimed to examine the preventive effects of isorhynchophylline on heart arrhythmias in guinea pigs and rats and then explore their electrophysiological mechanisms. In vivo, ouabain and calcium chloride were used to establish experimental arrhythmic models in guinea pigs and rats. In vitro, the whole-cell patch-lamp technique was used to study the effect of isorhynchophylline on action potential duration and calcium channels in acutely isolated guinea pig and rat cardiomyocytes. The dose of ouabain required to induce cardiac arrhythmias was much larger in guinea pigs administered with isorhynchophylline. Additionally, the onset time of cardiac arrhythmias induced by calcium chloride was prolonged, and the duration was shortened in rats pretreated with isorhynchophylline. The further study showed that isorhynchophylline could significantly decrease action potential duration and inhibit calcium currents in isolated guinea pig and rat cardiomyocytes in a dose-dependent manner. In summary, isorhynchophylline played a remarkably preventive role in cardiac arrhythmias through the inhibition of calcium currents in rats and guinea pigs.

  15. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-alpha-mediated transcription of fatty acid metabolic genes.

    PubMed

    Huang, Tom Hsun-Wei; Yang, Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-alpha plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-alpha activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-alpha mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-alpha-mediated FA metabolic gene transcription. PMID:16129467

  16. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-{alpha}-mediated transcription of fatty acid metabolic genes

    SciTech Connect

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-01-15

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-{alpha} plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-{alpha} activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-{alpha} mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-{alpha}-mediated FA metabolic gene transcription.

  17. Early life exposure to air pollution induces adult cardiac dysfunction.

    PubMed

    Gorr, Matthew W; Velten, Markus; Nelin, Timothy D; Youtz, Dane J; Sun, Qinghua; Wold, Loren E

    2014-11-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m(3) from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (-9,203 ± 235 μl/s FA, -7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  18. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. PMID:27543302

  19. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance.

  20. Cardiac Motion Analysis Using High-Speed Video Images in a Rat Model for Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Ishii, Idaku; Okuda, Toshikazu; Nie, Yuman; Takaki, Takeshi; Orito, Kensuke; Tanaka, Akane; Matsuda, Hiroshi

    In this study, we performed a cardiac motion analysis by using 1000-frames per second (fps) stereo images to capture the three-dimensional motion of small color markers in a rat heart. This method of recording cardiac motion could quantify the rate of change in the myocardial area, which indicated localized myocardial activity of rhythmic expansion and contraction. We analyzed the three-dimensional motion distributions in a rat model for myocardial infarction, in which the heart rate was 4 times/s or more. In the analysis, we spatiotemporally quantified the characteristic cardiac motion in ischemic heart diseases and found that infarction due to ischemia in the rat heart was spread around the left ventricle.

  1. Cardiac function of the naked mole-rat: ecophysiological responses to working underground.

    PubMed

    Grimes, Kelly M; Voorhees, Andrew; Chiao, Ying Ann; Han, Hai-Chao; Lindsey, Merry L; Buffenstein, Rochelle

    2014-03-01

    The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2-4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm(2)) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment. PMID:24363308

  2. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats.

    PubMed

    Tavares, J G P; Vasques, E R; Arida, R M; Cavalheiro, E A; Cabral, F R; Torres, L B; Menezes-Rodrigues, F S; Jurkiewicz, A; Caricati-Neto, A; Godoy, C M G; Gomes da Silva, S

    2015-02-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  3. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    PubMed Central

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode. PMID:25590352

  4. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1. PMID:27035649

  5. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake.

    PubMed

    Szeiffová Bačová, B; Egan Beňová, T; Viczenczová, C; Soukup, T; Rauchová, H; Pavelka, S; Knezl, V; Barančík, M; Tribulová, N

    2016-09-19

    Thyroid hormones are powerful modulators of heart function and susceptibility to arrhythmias via both genomic and non-genomic actions. We aimed to explore expression of electrical coupling protein connexin-43 (Cx43) in the heart of rats with altered thyroid status and impact of omega-3 polyunsaturated fatty acids (omega-3) supplementation. Adult male Lewis rats were divided into following six groups: euthyroid controls, hyperthyroid (treated with T(3)) and hypothyroid (treated with methimazol) with or without six-weeks lasting supplementation with omega-3 (20 mg/100 g/day). Left and right ventricles, septum and atria were used for immunoblotting of Cx43 and protein kinase C (PKC). Total expression of Cx43 and its phosphorylated forms were significantly increased in all heart regions of hypothyroid rats compared to euthyroid controls. In contrast, the total levels of Cx43 and its functional phosphorylated forms were decreased in atria and left ventricle of hyperthyroid rats. In parallel, the expression of PKC epsilon that phosphorylates Cx43, at serine 368, was increased in hypothyroid but decreased in hyperthyroid rat hearts. Omega-3 intake did not significantly affect either Cx43 or PKC epsilon alterations. In conclusion, there is an inverse relationship between expression of cardiac Cx43 and the levels of circulating thyroid hormones. It appears that increased propensity of hyperthyroid while decreased of hypothyroid individuals to malignant arrhythmias may be in part attributed to the changes in myocardial Cx43.

  6. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake.

    PubMed

    Szeiffová Bačová, B; Egan Beňová, T; Viczenczová, C; Soukup, T; Rauchová, H; Pavelka, S; Knezl, V; Barančík, M; Tribulová, N

    2016-09-19

    Thyroid hormones are powerful modulators of heart function and susceptibility to arrhythmias via both genomic and non-genomic actions. We aimed to explore expression of electrical coupling protein connexin-43 (Cx43) in the heart of rats with altered thyroid status and impact of omega-3 polyunsaturated fatty acids (omega-3) supplementation. Adult male Lewis rats were divided into following six groups: euthyroid controls, hyperthyroid (treated with T(3)) and hypothyroid (treated with methimazol) with or without six-weeks lasting supplementation with omega-3 (20 mg/100 g/day). Left and right ventricles, septum and atria were used for immunoblotting of Cx43 and protein kinase C (PKC). Total expression of Cx43 and its phosphorylated forms were significantly increased in all heart regions of hypothyroid rats compared to euthyroid controls. In contrast, the total levels of Cx43 and its functional phosphorylated forms were decreased in atria and left ventricle of hyperthyroid rats. In parallel, the expression of PKC epsilon that phosphorylates Cx43, at serine 368, was increased in hypothyroid but decreased in hyperthyroid rat hearts. Omega-3 intake did not significantly affect either Cx43 or PKC epsilon alterations. In conclusion, there is an inverse relationship between expression of cardiac Cx43 and the levels of circulating thyroid hormones. It appears that increased propensity of hyperthyroid while decreased of hypothyroid individuals to malignant arrhythmias may be in part attributed to the changes in myocardial Cx43. PMID:27643942

  7. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation.

    PubMed

    Pinkham, Maximilian I; Barrett, Carolyn J

    2015-06-01

    The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.

  8. Differences between brainstem gliomas in juvenile and adult rats

    PubMed Central

    WANG, YU; TIAN, YONGJI; WAN, HONG; LI, DEZHI; WU, WENHAO; YIN, LUXIN; JIANG, JIAN; WAN, WEIQING; ZHANG, LIWEI

    2013-01-01

    Clinical studies have shown that gliomas of the brainstem behave differently in children and adults. The aim of the present study was to compare and analyze the differences between these gliomas in juvenile and adult rats with regard to tumor growth, survival, pathology and magnetic resonance imaging (MRI). A total of 25 juvenile and 25 adult Wistar rats were divided into groups A (15 juvenile rats), B (10 juvenile rats), C (15 adult rats) and D (10 adult rats). The rats of groups A and C (experimental) were injected with glioma cells, while groups B and D (control) were injected with a physiological saline solution. Rat neurological signs, survival time, tumor size, hematoxylin and eosin (HE) staining and immunohistochemical staining for MMP-2, MMP-9 and β-catenin were compared. The survival time of group A was 19.47±2.232 days, whereas that of group C was 21.47±2.232 days (P<0.05). The tumor sizes were 4.55 and 4.62 mm (P>0.05) in groups A and C, respectively. HE and immunohistochemical staining revealed no differences between the groups. The results suggest that the growth patterns and invasiveness of brainstem gliomas may vary in children compared with adults due to the varied biological behaviors of the tumor cells. PMID:23946812

  9. Radionuclide angiocardiography in the clinical evaluation of cardiac malpositions in situs solitus in adults.

    PubMed

    Guit, G L; Kroon, H M; Chin, J G; Pauwels, E K; van Voorthuisen, A E

    1986-04-01

    A right-sided position of the heart in the chest in situs solitus is an abnormal feature easily discernible from a plain chest radiograph. This cardiac malposition may be due to cardiac displacement (dextroposition), which is usually a feature of lung disease, or a structural abnormality of the heart (dextrocardia). Because each condition has different clinical pathologic implications, it is important to distinguish them. Chest films, however, often provide no conclusive information. We performed radionuclide angiocardiography (RNA) in six adults with a cardiac malposition in situs solitus. It was found that morphologic data obtained from the serial images may distinguish dextroposition from dextrocardia. In addition, these images permitted us to diagnose congenitally corrected transposition, a cardiac anomaly which occurs with increased frequency in situs solitus with dextrocardia. Quantitative shunt detection performed during this procedure is helpful in the differential diagnosis of dextroposition and able to distinguish uncomplicated dextrocardia from dextrocardia associated with other cardiac abnormalities. RNA therefore is a valuable and easily performed method in the analysis of cardiac malpositions in adults.

  10. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension.

    PubMed

    Mehrotra, Aanchal; Joe, Bina; de la Serna, Ivana L

    2013-12-01

    Pathological cardiac hypertrophy is characterized by a sustained increase in cardiomyocyte size and re-activation of the fetal cardiac gene program. Previous studies implicated SWI/SNF chromatin remodeling enzymes as regulators of the fetal cardiac gene program in surgical models of cardiac hypertrophy. Although hypertension is a common risk factor for developing cardiac hypertrophy, there has not yet been any investigation into the role of SWI/SNF enzymes in cardiac hypertrophy using genetic models of hypertension. In this study, we tested the hypothesis that components of the SWI/SNF complex are activated and recruited to promoters that regulate the fetal cardiac gene program in hearts that become hypertrophic as a result of salt induced hypertension. Utilizing the Dahl salt-sensitive (S) rat model, we found that the protein levels of several SWI/SNF subunits required for heart development, Brg1, Baf180, and Baf60c, are elevated in hypertrophic hearts from S rats fed a high salt diet compared with normotensive hearts from Dahl salt-resistant (R) rats fed the same diet. Furthermore, we detected significantly higher levels of SWI/SNF subunit enrichment as well as evidence of more accessible chromatin structure on two fetal cardiac gene promoters in hearts from S rats compared with R rats. Our data implicate SWI/SNF chromatin remodeling enzymes as regulators of gene expression in cardiac hypertrophy resulting from salt induced hypertension. Thus we provide novel insights into the epigenetic mechanisms by which salt induced hypertension leads to cardiac hypertrophy.

  11. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  12. Endothermic force generation in skinned cardiac muscle from rat.

    PubMed

    Ranatunga, K W

    1999-08-01

    Isometric tension responses to rapid temperature jumps (T-jumps) of 2-6 degrees C were examined in skinned muscle fibre bundles isolated from papillary muscles of the rat heart. T-jumps were induced by an infra-red laser pulse (wave length 1.32 microm, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fibres and bathing buffer solution in a 50 microl trough; the increased temperature by laser pulse was clamped at the high temperature by a Peltier system (see Ranatunga, 1996). In maximally Ca2+ -activated (pCa ca. 4.5) fibres, the relationship between tension and temperature was non-linear, the increase of active tension with temperature being more pronounced at lower temperatures (below ca. 20 degrees C). A T-jump at any temperature (range 3-35 degrees C) induced an initial step decrease of tension of variable amplitude (Phase 1), probably due to thermal expansion, and it was followed by a tension transient which resulted in a net rise of tension above the pre-T-jump level. The rate of net rise of tension (Phase 2b or endothermic force generation) was 7-10/s at ca. 12 degrees C and its Q10 was 6.3 (below 25 degrees C). In cases where the step decrease of tension in Phase 1 was prominent, an initial quick tension recovery phase (Phase 2a, 70-100/s at 12 degrees C) that did not contribute to a rise of tension above the pre-T-jump level, was also seen. This phase (Phase 2a) appeared to be similar to the quick tension recovery induced by a small length release and its rate increased with temperature with a Q10 of 1.8. In some cases where Phase 2a was present, a slower tension rise (Phase 3) was seen; its rate (ca. 5/s) was temperature-insensitive. The results show that the rate of endothermic force generation in cardiac fibres is clearly different from that of either fast-twitch or slow-twitch mammalian skeletal muscle fibres; implication of such fibre type-specific differences is discussed in relation to the difficulty in identifying the

  13. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  14. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  15. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  16. Maternal hyperglycemia leads to fetal cardiac hyperplasia and dysfunction in a rat model.

    PubMed

    Lehtoranta, Lara; Vuolteenaho, Olli; Laine, V Jukka; Koskinen, Anna; Soukka, Hanna; Kytö, Ville; Määttä, Jorma; Haapsamo, Mervi; Ekholm, Eeva; Räsänen, Juha

    2013-09-01

    Accelerated fetal myocardial growth with altered cardiac function is a well-documented complication of human diabetic pregnancy, but its pathophysiology is still largely unknown. Our aim was to explore the mechanisms of fetal cardiac remodeling and cardiovascular hemodynamics in a rat model of maternal pregestational streptozotocin-induced hyperglycemia. The hyperglycemic group comprised 107 fetuses (10 dams) and the control group 219 fetuses (20 dams). Fetal cardiac function was assessed serially by Doppler ultrasonography. Fetal cardiac to thoracic area ratio, newborn heart weight, myocardial cell proliferative and apoptotic activities, and cardiac gene expression patterns were determined. Maternal hyperglycemia was associated with increased cardiac size, proliferative, apoptotic and mitotic activities, upregulation of genes encoding A- and B-type natriuretic peptides, myosin heavy chain types 2 and 3, uncoupling proteins 2 and 3, and the angiogenetic tumor necrosis factor receptor superfamily member 12A. The genes encoding Kv channel-interacting protein 2, a regulator of electrical cardiac phenotype, and the insulin-regulated glucose transporter 4 were downregulated. The heart rate was lower in fetuses of hyperglycemic dams. At 13-14 gestational days, 98% of fetuses of hyperglycemic dams had holosystolic atrioventricular valve regurgitation and decreased outflow mean velocity, indicating diminished cardiac output. Maternal hyperglycemia may lead to accelerated fetal myocardial growth by cardiomyocyte hyperplasia. In fetuses of hyperglycemic dams, expression of key genes that control and regulate cardiomyocyte electrophysiological properties, contractility, and metabolism are altered and may lead to major functional and clinical implications on the fetal heart. PMID:23839525

  17. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair.

    PubMed

    Ellison, Georgina M; Vicinanza, Carla; Smith, Andrew J; Aquila, Iolanda; Leone, Angelo; Waring, Cheryl D; Henning, Beverley J; Stirparo, Giuliano Giuseppe; Papait, Roberto; Scarfò, Marzia; Agosti, Valter; Viglietto, Giuseppe; Condorelli, Gianluigi; Indolfi, Ciro; Ottolenghi, Sergio; Torella, Daniele; Nadal-Ginard, Bernardo

    2013-08-15

    The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage. PMID:23953114

  18. Reference Values for Cardiac and Aortic Magnetic Resonance Imaging in Healthy, Young Caucasian Adults

    PubMed Central

    Eikendal, Anouk L. M.; Bots, Michiel L.; Haaring, Cees; Saam, Tobias; van der Geest, Rob J.; Westenberg, Jos J. M.; den Ruijter, Hester M.; Hoefer, Imo E.; Leiner, Tim

    2016-01-01

    Background Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. Materials and Methods In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25–30 and 30–35 years) and both sexes were tested. Results Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. Conclusion This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing. PMID:27732640

  19. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.

    PubMed

    Epelman, Slava; Lavine, Kory J; Beaudin, Anna E; Sojka, Dorothy K; Carrero, Javier A; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L; Ivanov, Stoyan; Satpathy, Ansuman T; Schilling, Joel D; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E Camilla; Yokoyama, Wayne M; Unanue, Emil R; Colonna, Marco; Randolph, Gwendalyn J; Mann, Douglas L

    2014-01-16

    Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size.

  20. PULMONARY AND CARDIAC GENE EXPRESSION FOLLOWING ACUTE ULTRAFINE CARBON PARTICLE INHALATION IN HYPERTENSIVE RATS

    EPA Science Inventory

    Inhalation of ultrafine carbon particles (ufCP) causes cardiac physiological changes without marked pulmonary injury or inflammation. We hypothesized that acute ufCP exposure of 13 months old Spontaneously Hypertensive (SH) rats will cause differential effects on the lung and hea...

  1. SYSTEMIC BIOMARKERS AND CARDIAC GENE EXPRESSION PROFILES OF RAT DISEASE MODELS EMPLOYED IN AIR POLLUTION STUDIES

    EPA Science Inventory

    Cardiovascular disease (CVD) models are used for identification of mechanisms of susceptibility to air pollution. We hypothesized that baseline systemic biomarkers and cardiac gene expression in CVD rat models will have influence on their ozone-induced lung inflammation. Male 12-...

  2. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats.

    PubMed

    Liu, Zhen-Fang; Zhang, Xiao; Qiao, Yan-Xiang; Xu, Wan-Qun; Ma, Cheng-Tai; Gu, Hua-Li; Zhou, Xiu-Mei; Shi, Lei; Cui, Chang-Xing; Xia, Di; Chen, Yu-Guo

    2015-01-01

    Neuroglobin (Ngb) is well known as a physiological role in oxygen homeostasis of neurons and perhaps a protective role against hypoxia and oxidative stress. In this study, we found that Ngb is expressed in rat heart tissues and it is related to isoproterenol induced cardiac hypertrophy. Moreover, overexpression or knock-down of Ngb influences the expression of hypertrophic markers ANP and BNP and the ratio of hypertrophic cells in rat H9c2 myoblasts when isoproterenol treatment. The Annexin V-FITC/PI Staining, Western blot and qPCR analysis showed that the involvement in p53-mediated apoptosis of cardiomyocytes of Ngb is might be the mechanism. This protein could prevent the cells against ROS and POS-induced apoptosis not only in nervous systems but also in cardiomyocytes. From the results, it is concluded that Ngb is a promising protectant in the cardiac hypertrophy, it may be a candidate target to cardiac hypertrophy for clinic treatment. PMID:26131111

  3. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9

    PubMed Central

    Carroll, Kelli J.; Makarewich, Catherine A.; McAnally, John; Anderson, Douglas M.; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  4. Lung ultrasound in adult and paediatric cardiac surgery: is it time for routine use?

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Volpicelli, Giovanni; Kutty, Shelby; Murzi, Bruno; Assanta, Nadia; Gargani, Luna

    2016-02-01

    Respiratory complications are common causes of morbidity and the need of repeated X-ray examinations after cardiac surgery. Ultrasound of the chest, including the lung parenchyma, has been recently introduced as a new tool to detect many pulmonary abnormalities. Despite this, the use of lung ultrasound (LUS) in adult and congenital cardiac surgery remains limited. In particular, lung ultrasound has been mainly used in the evaluation of pleural effusion (PLE), but no consensus exists on methods to quantify the volume of the effusion. Usefulness of LUS for the assessment of diaphragmatic motion in children has also been highlighted, but no clear recommendation exists regarding its routine use. Accuracy of LUS in detecting pulmonary congestion after adult cardiac surgery has been demonstrated, whereas studies in children are still scarce, and data on pneumothorax and lung consolidations are limited in the paediatric population. There are methodological and practicality issues regarding diagnostic protocols (i.e. image views and their sequential order) and instrumentation (transducers and their setting) used in different studies. It also remains unclear which practitioner-the cardiologist, intensivist, pulmonologist or the radiologist, should perform the examination. Cost analysis pertaining to extensive clinical application of lung ultrasound in cardiac surgery has never been performed. Guidelines and recommendations are warranted for a systematic and extensive use of this technique in cardiac surgery at different ages, as it could serve as a useful, versatile tool that could potentially decrease time, radiation exposure and costs. PMID:26586677

  5. Anti-Ro/SSA antibodies and cardiac arrhythmias in the adult: facts and hypotheses.

    PubMed

    Lazzerini, P E; Capecchi, P L; Laghi-Pasini, F

    2010-09-01

    It is well established that the passive trans-placental passage of anti-Ro/SSA antibodies from mother to foetus is associated with the risk to develop an uncommon syndrome named neonatal lupus (NLE), where the congenital heart block represents the most severe clinical feature. Recent evidence demonstrated that also adult heart, classically considered invulnerable to the anti-Ro/SSA antibodies, may represent a target of the arrhythmogenicity of these autoantibodies. In particular, the prolongation of the QTc interval appears the most frequent abnormality observed in adults with circulating anti-Ro/SSA antibodies, with some data suggesting an association with an increased risk of ventricular arrhythmias, also life threatening. Moreover, even though the association between anti-Ro/SSA antibodies and conduction disturbances is undoubtedly less evident in adults than in infants, from the accurate dissection of the literature data the possibility arises that sometimes also the adult cardiac conduction tissue may be affected by such antibodies. The exact arrhythmogenic mechanisms involved in foetus/newborns and adults, respectively, have not been completely clarified as yet. However, increasing evidence suggests that anti-Ro/SSA antibodies may trigger rhythm disturbances through an inhibiting cross-reaction with several cardiac ionic channels, particularly the calcium channels (L-type and T-type), but also the potassium channel hERG, whose different expression and involvement in the cardiac electrophysiology during lifespan might account for the occurrence of age-related differences.

  6. Anti-Ro/SSA antibodies and cardiac arrhythmias in the adult: facts and hypotheses.

    PubMed

    Lazzerini, P E; Capecchi, P L; Laghi-Pasini, F

    2010-09-01

    It is well established that the passive trans-placental passage of anti-Ro/SSA antibodies from mother to foetus is associated with the risk to develop an uncommon syndrome named neonatal lupus (NLE), where the congenital heart block represents the most severe clinical feature. Recent evidence demonstrated that also adult heart, classically considered invulnerable to the anti-Ro/SSA antibodies, may represent a target of the arrhythmogenicity of these autoantibodies. In particular, the prolongation of the QTc interval appears the most frequent abnormality observed in adults with circulating anti-Ro/SSA antibodies, with some data suggesting an association with an increased risk of ventricular arrhythmias, also life threatening. Moreover, even though the association between anti-Ro/SSA antibodies and conduction disturbances is undoubtedly less evident in adults than in infants, from the accurate dissection of the literature data the possibility arises that sometimes also the adult cardiac conduction tissue may be affected by such antibodies. The exact arrhythmogenic mechanisms involved in foetus/newborns and adults, respectively, have not been completely clarified as yet. However, increasing evidence suggests that anti-Ro/SSA antibodies may trigger rhythm disturbances through an inhibiting cross-reaction with several cardiac ionic channels, particularly the calcium channels (L-type and T-type), but also the potassium channel hERG, whose different expression and involvement in the cardiac electrophysiology during lifespan might account for the occurrence of age-related differences. PMID:20696018

  7. Immunohistochemical evaluation of cardiac connexin43 in rats exposed to low-frequency noise

    PubMed Central

    Antunes, Eduardo; Borrecho, Gonçalo; Oliveira, Pedro; Brito, José; Águas, Artur; Martins dos Santos, José

    2013-01-01

    Introduction: Low-frequency noise (LFN) leads to an abnormal proliferation of collagen and development of tissue fibrosis. It has been shown that myocardial fibrosis in association with gap junction remodeling occurs in several cardiac diseases and can be implicated in the development of ventricular tachyarrhythmias. We previously reported a strong development of myocardial fibrosis induced by LFN in rats but it is not known whether LFN induces any modification on cardiac connexin43 (Cx43). Objectives: The aim of this study was to evaluate modifications on cardiac Cx43 induced by LFN in Wistar rats. Methods: Two groups of rats were considered: A LFN-exposed group with 10 rats submitted continuously to LFN during 3 months and a control group with 8 rats. The hearts were sectioned from the ventricular apex to the atria and the mid-ventricular fragment was selected. The immunohistochemical evaluation of Cx43 was performed using the polyclonal antibody connexin-43m diluted 1:1000 overnight at 4°C. Quantifications of Cx43 and muscle were performed with the image J software and the ratio Cx43/muscle was analyzed in the left ventricle, interventricular septum and right ventricle. Results: The ratio Cx43/muscle was significantly reduced in LFN-exposed rats (p=0.001). The mean value decreased 46.2%, 22.2% and 55.6% respectively in the left ventricle (p=0.008), interventricular septum (p=0.301) and right ventricle (p=0.004). Conclusions: LFN induces modifications on cardiac Cx43 in rats. The Cx43 reduction observed in our study suggests that LFN may induce an arrhythmogenic substrate and opens a new investigational area concerning the effects of LFN on the heart. PMID:24040453

  8. Simultaneous Characterization of Metabolic, Cardiac, Vascular and Renal Phenotypes of Lean and Obese SHHF Rats

    PubMed Central

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821

  9. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection.

    PubMed

    Wang, Yuwen; Shi, Sa; Dong, Shiyun; Wu, Jichao; Song, Mowei; Zhong, Xin; Liu, Yanhong

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 μmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.

  10. Leucocyte responses to fighting in the adult male bandicoot rat.

    PubMed

    Ghosh, P R; Sahu, A; Maiti, B R

    1983-01-01

    The effect of fighting stress on blood leucocyte count was studied in the adult male bandicoot rat. Exposure to fighting stress for 3 h induced neutrophilia, eosinopenia, lymphopenia and monocytopenia. The changes were more significant in the subordinate rat than in the dominant animal. It is suggested that leucocyte responses to fighting are perhaps mediated by the adrenal gland in these animals.

  11. Exercise training reduces cardiac dysfunction and remodeling in ovariectomized rats submitted to myocardial infarction.

    PubMed

    Almeida, Simone Alves de; Claudio, Erick Roberto Gonçalves; Mengal, Vinícius; Mengal, Vinícius Franskoviaky; Oliveira, Suelen Guedes de; Merlo, Eduardo; Podratz, Priscila Lang; Gouvêa, Sônia Alves; Graceli, Jones Bernardes; de Abreu, Gláucia Rodrigues

    2014-01-01

    The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI. PMID:25551214

  12. Severe Obesity in Adolescents and Young Adults Is Associated With Subclinical Cardiac and Vascular Changes

    PubMed Central

    Dolan, Lawrence M.; Khoury, Philip R.; Gao, Zhiqan; Kimball, Thomas R.; Urbina, Elaine M.

    2015-01-01

    Context: Severe obesity is the fastest growing subgroup of obesity in youth. Objective: We sought to explore the association between severe obesity and subclinical measures of cardiac and vascular structure and function in adolescents and young adults. Design, Setting, and Participants: This was a cross-sectional comparison of 265 adolescents and young adults with severe obesity (defined as body mass index [BMI] ≥120% of the 95th percentile) to 182 adolescents and young adults with obesity (defined as BMI ≥100–119th of the 95th percentile) at tertiary medical center. Main Outcomes: Noninvasive measures of cardiac and vascular structure and function were assessed. Results: Participants were a mean age of 17.9 years, 62% were non-Caucasian, and 68% were female. Systolic blood pressure, fasting insulin, C-reactive protein, IL-6, and frequency of type 2 diabetes were higher in participants with severe obesity (all P < .05). Arterial thickness and stiffness, cardiac structure, and diastolic function were also significantly worse in youth with severe obesity as measured by higher left ventricular mass index, worse diastolic function, higher carotid intima media thickness, and pulse wave velocity and lower brachial distensibility (all P < .05). Regression modeling showed that severe obesity (compared with obesity) was independently associated with each of the above outcomes after adjustment for age, race, sex, blood pressure, lipids, and inflammatory markers (P < .05). Conclusions: Adolescents and young adults with severe obesity have a more adverse cardiovascular risk profile and worse cardiac and vascular structure and function. More importantly, severe obesity is independently associated with these subclinical cardiac and vascular changes. PMID:25974736

  13. Changes of cardiac and respiratory rhythm in non- and tracheostomized rats exposed to nitrogen dioxide

    SciTech Connect

    Tsubone, H.; Suzuki, A.K.; Sagai, M.; Sugano, S.

    1984-10-01

    Cardiac and respiratory changes in non- and tracheostomized rats were examined during exposure to 20 ppm of NO/sub 2/ for 150 min. The abnormal respiratory pattern consisted of rapid shallow breathing, deep breathing, and apnea, and the bradyarrhythmias were observed in the tracheostomized rats during exposure. Also, similar changes were seen in the nontracheostomized rats. The decrease in HR was depressed by atropine injection, and the abnormal respiratory patterns were almost abolished by this drug. It was suggested, from these results, that the cardiac and respiratory abnormalities could be induced without the irritation to upper respiratory tracts, and that the vagal efferent pathway had an important role in the appearance of the abnormalities during exposure.

  14. Effects of chronic delta-9-THC treatment on cardiac beta-adrenoceptors in rats

    SciTech Connect

    Evans, E.B.; Seifen, E.; Kennedy, R.H.; Kafiluddi, R.; Paule, M.G.; Scallet, A.C.; Ali, S.F.; Slikker, W. Jr.

    1987-10-01

    This study was designed to determine if chronic treatment with delta-9-tetrahydrocannabinol (THC) alters cardiac beta-adrenoceptors in the rat. Following daily oral administration of 10 or 20 mg/kg THC or an equivalent volume of control solvent for 90 days, rats were sacrificed, and sarcolemmal membranes were prepared from ventricular myocardium. Beta-adrenoceptor density and binding affinity estimated with (-)(/sup 3/H)dihydroalprenolol; a beta-adrenergic antagonist, were not significantly affected by treatment with THC when compared to vehicle controls. These results suggest that the tolerance to cardiovascular effects of THC which develops during chronic exposure in the rat is not associated with alterations in cardiac beta-adrenoceptors as monitored by radiolabeled antagonist binding.

  15. Cardiac content of brain natriuretic peptide in DOCA-salt hypertensive rats

    SciTech Connect

    Yokota, Naoto; Aburaya, Masahito; Yamamoto, Yoshitaka; Kato, Johji; Kitamura, Kazuo; Kida, Osamu; Eto, Tanenao; Kangawa, Kenji; Tanaka, Kenjiro ); Minamino, Naoto; Matsuo, Hisayuki )

    1991-01-01

    The cardiac content of immunoreactive rat brain natriuretic peptide (ir-rBNP) in deoxycorticosterone acetate (DOCA)-salt hypertensive rats was measured by radioimmunoassay (RIA). The atrial content of ir-rBNP was significantly lower in the DOCA-salt group than in the control group. However, the ventricular content of ir-rBNP was markedly increased in the DOCA-salt group as compared to the other groups. Ir-rBNP level in the atria was negatively correlated with blood pressure, while that in the ventricle was positively correlated with blood pressure. A significant correlation was observed between tissue levels of ir-rBNP and ir-rat atrial natriuretic peptide (rANP) both in atrium and ventricle. These results raise the possibility that rBNP as well as rANP functions as a cardiac hormone, the production of which probably changes in response to increased of body fluid and blood pressure.

  16. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    SciTech Connect

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei; Zhang, Meng; Chen, Wensheng; Yuan, Zu-Yi; Guo, Jing; Li, Hui-Hua; Zhu, Guo-Qing; Liu, Hao; Kang, Yu-Ming

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  17. G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts.

    PubMed

    D'Souza, Karen M; Malhotra, Ricky; Philip, Jennifer L; Staron, Michelle L; Theccanat, Tiju; Jeevanandam, Valluvan; Akhter, Shahab A

    2011-04-29

    Cardiac fibroblasts (CF) make up 60-70% of the total cell number in the heart and play a critical role in regulating normal myocardial function and in adverse remodeling following myocardial infarction and the transition to heart failure. Recent studies have shown that increased intracellular cAMP can inhibit CF transformation and collagen synthesis in adult rat CF; however, mechanisms by which cAMP production is regulated in CF have not been elucidated. We investigated the potential role of G protein-coupled receptor kinase-2 (GRK2) in modulating collagen synthesis by adult human CF isolated from normal and failing left ventricles. Baseline collagen synthesis was elevated in failing CF and was not inhibited by β-agonist stimulation in contrast to normal controls. β-adrenergic receptor (β-AR) signaling was markedly uncoupled in the failing CF, and expression and activity of GRK2 were increased 3-fold. Overexpression of GRK2 in normal CF recapitulated a heart failure phenotype with minimal inhibition of collagen synthesis following β-agonist stimulation. In contrast, knockdown of GRK2 expression in normal CF enhanced cAMP production and led to greater β-agonist-mediated inhibition of basal and TGFβ-stimulated collagen synthesis versus control. Inhibition of GRK2 activity in failing CF by expression of the GRK2 inhibitor, GRK2ct, or siRNA-mediated knockdown restored β-agonist-stimulated inhibition of collagen synthesis and decreased collagen synthesis in response to TGFβ stimulation. GRK2 appears to play a significant role in regulating collagen synthesis in adult human CF, and increased activity of this kinase may be an important mechanism of maladaptive ventricular remodeling as mediated by cardiac fibroblasts.

  18. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    PubMed Central

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  19. Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts.

    PubMed

    Zausig, York A; Geilfus, Diana; Missler, Goetz; Sinner, Barbara; Graf, Bernhard M; Zink, Wolfgang

    2010-09-01

    In septic patients, myocardial depression-the so-called septic cardiomyopathy-needing inotropic support is common. The aim of this study was to compare the dose-responsive electrophysiological and mechanical properties concerning metabolic effects of clinically available inotropic agents in an isolated septic rat heart model. After 20 h of incubation, both sham-operated and septic (cecal ligation and single puncture) hearts from male Wistar rats (n = 64) were isolated and received dobutamine, dopamine, epinephrine, or levosimendan at concentrations of 10 to 10 M. Electrophysiological, mechanical, and metabolic properties were measured, and the myocardial oxygen supply-demand ratio and cardiac efficiency were calculated. With the exception of levosimendan, all of the drugs tested showed dose-dependent, significantly positive changes in chronotropy, inotropy, and lusitropy in all hearts. Maximum increases in septic hearts were dose-dependent and were ordered as follows: epinephrine > dopamine > dobutamine > levosimendan. These increases in cardiac performance were accompanied by a decrease in the myocardial oxygen supply-demand ratio. However, cardiac efficiency was significantly improved in the epinephrine-treated septic hearts. With the drug-induced increase in cardiac performance, the myocardial oxygen supply-demand ratio decreased proportionally in the epinephrine-, dobutamine-, and dopamine-treated septic hearts. However, epinephrine showed the most favorable results with regard to cardiac efficiency, and levosimendan showed no beneficial effect in septic hearts with regard to efficiency in this study.

  20. Cardiopulmonary reflex, cardiac cytokines, and nandrolone decanoate: response to resistance training in rats.

    PubMed

    Lima, Ewelyne Miranda; Nascimento, Andrews Marques; Brasil, Girlandia Alexandre; Kalil, Ieda Carneiro; Lenz, Dominik; Endringer, Denise Coutinho; Andrade, Tadeu Uggere; Bissoli, Nazaré Souza

    2015-11-01

    This study evaluated the effects of nandrolone associated with resistance training (RT) on cardiac cytokines, angiotensin-converting enzyme activity (ACEA), and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were divided into 3 groups: CONT (received vehicle, no training); EXERC (RT: after one week of water adaptation, rats were exercised by jumping into water twice a week for 4 weeks), and ND+EXERC (received nandrolone decanoate 10 mg/kg, twice/week, i.m, associated with RT). The BJR was analysed by measuring bradycardic and hypotensive responses elicited by serotonin administration. Myocyte hypertrophy and matrix collagen deposition were determined by morphometric analysis of H&E and picrosirius red-stained samples, respectively. TNF-α and ACEA were also studied. RT promoted physiological myocyte hyrpertrophy but did not cause changes in the other parameters. The association of ND with RT increased myocyte hypertrophy, deposition of matrix type I collagen, TNF-α and ACEA; decreased IL-10, and impairment in the BJR were observed in ND+EXERC compared with CONT and EXERC. ND is associated with alterations in cardiac structure and function as a result of the development of pathological cardiac hypertrophy (cardiac cytokine imbalance, elevation of ACEA) and cardiac injury, even when combined with resistance training.

  1. Cardiopulmonary reflex, cardiac cytokines, and nandrolone decanoate: response to resistance training in rats.

    PubMed

    Lima, Ewelyne Miranda; Nascimento, Andrews Marques; Brasil, Girlandia Alexandre; Kalil, Ieda Carneiro; Lenz, Dominik; Endringer, Denise Coutinho; Andrade, Tadeu Uggere; Bissoli, Nazaré Souza

    2015-11-01

    This study evaluated the effects of nandrolone associated with resistance training (RT) on cardiac cytokines, angiotensin-converting enzyme activity (ACEA), and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were divided into 3 groups: CONT (received vehicle, no training); EXERC (RT: after one week of water adaptation, rats were exercised by jumping into water twice a week for 4 weeks), and ND+EXERC (received nandrolone decanoate 10 mg/kg, twice/week, i.m, associated with RT). The BJR was analysed by measuring bradycardic and hypotensive responses elicited by serotonin administration. Myocyte hypertrophy and matrix collagen deposition were determined by morphometric analysis of H&E and picrosirius red-stained samples, respectively. TNF-α and ACEA were also studied. RT promoted physiological myocyte hyrpertrophy but did not cause changes in the other parameters. The association of ND with RT increased myocyte hypertrophy, deposition of matrix type I collagen, TNF-α and ACEA; decreased IL-10, and impairment in the BJR were observed in ND+EXERC compared with CONT and EXERC. ND is associated with alterations in cardiac structure and function as a result of the development of pathological cardiac hypertrophy (cardiac cytokine imbalance, elevation of ACEA) and cardiac injury, even when combined with resistance training. PMID:26335603

  2. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    PubMed Central

    Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.

    2015-01-01

    Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486

  3. Effect of short-term microgravity and long-term hindlimb unloading on rat cardiac mass and function

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Vasques, M.; Miller, T. A.; Wilkerson, M. K.; Delp, M. D.

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to short-term microgravity or long-term hindlimb unloading induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: preflight (PF, n = 12); flight (Fl, n = 7); flight cage simulation (Sim, n = 6), and vivarium control (Viv, n = 7). Animals in the Fl group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the hindlimb-unloading study were subdivided into three groups: control (Con, n = 20), 7-day hindlimb-unloaded (7HU, n = 10), and 28-day hindlimb-unloaded (28HU, n = 19). Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- 0.03 g; Fl 1.32 +/- 0.02 g; Sim 1.28 +/- 0.04 g; Viv 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hindlimb unloading (Con 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on the peak rate of rise in left ventricular pressure, an estimate of myocardial contractility (Con 8,055 +/- 385 mmHg/s; 28HU 8,545 +/- 755 mmHg/s). These data suggest that cardiac atrophy does not occur after short-term exposure to microgravity and that neither short- nor long-term simulated microgravity alters cardiac mass or function.

  4. The Impact of Moderate Intensity Physical Activity on Cardiac Structure and Performance in Older Sedentary Adults

    PubMed Central

    Suboc, Tisha B.; Strath, Scott J.; Dharmashankar, Kodlipet; Harmann, Leanne; Couillard, Allison; Malik, Mobin; Haak, Kristoph; Knabel, Daniel; Widlansky, Michael E.

    2014-01-01

    Background Sedentary aging leads to adverse changes in vascular function and cardiac performance. We published improvements in vascular function with moderate intensity physical activity (PA) in continuous bouts. Whether moderate intensity PA also impacts cardiac structure and cardiovascular performance of the aging left ventricle (LV) is unknown. Methods We recruited and analyzed results from 102 sedentary older adults ages ≥ 50 from a randomized controlled trial with 3 study groups: control (group 1), a pedometer-only intervention (group 2), or a pedometer with an interactive website employing strategies to increase habitual physical activity (PA, group 3) for 12 weeks. Transthoracic echocardiograms were performed prior to and following the 12 week intervention period to assess cardiac morphology, left ventricular (LV) systolic performance, LV diastolic function, arterial and LV ventricular elastance. Step count and PA intensity/distribution were measured by pedometer and accelerometer. Results We found no significant changes in cardiac morphology. Further, we found no improvement in the aforementioned cardiac functional parameters. Comparing those who achieved the following benchmarks to those who did not showed no significant changes in cardiac structure or performance: 1)10,000 steps/day, 2) ≥ 30 minutes/day of moderate intensity physical activity, or 3) moderate intensity PA in bouts ≥ 10 minutes for ≥ 20 minutes/day Conclusions In sedentary older adults, increasing moderate intensity PA to currently recommend levels does not result in favorable changes in LV morphology or performance over 12 weeks. More prolonged exposure, higher PA intensity, or earlier initiation of PA may be necessary to see benefits. PMID:25530947

  5. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat.

    PubMed

    York, Malcolm; Scudamore, Cheryl; Brady, Sally; Chen, Christabelle; Wilson, Sharon; Curtis, Mark; Evans, Gareth; Griffiths, William; Whayman, Matthew; Williams, Thomas; Turton, John

    2007-06-01

    The investigations aimed to evaluate the usefulness of cardiac troponins as biomarkers of acute myocardial injury in the rat. Serum from female Hanover Wistar rats treated with a single intraperitoneal (IP) injection of isoproterenol (ISO) was assayed for cardiac troponin I (cTnI) (ACS: 180SE, Bayer), cTnI (Immulite 2000, Diagnostic Products Corporation) and cardiac troponin T (cTnT) (Elecsys 2010, Roche). In a time-course study (50.0 mg/kg ISO), serum cTnI (ACS:180SE) and cTnT increased above control levels at 1 hour postdosing, peaking at 2 hours (cTnI, 4.30 microg/L; cTnT, 1.79 microg/L), and declined to baseline by 48 hours, with histologic cardiac lesions first seen at 4 hours postdosing. The Immulite 2000 assay gave minimal cTnI signals, indicating poor immunoreactivity towards rat cTnI. In a dose-response study (0.25 to 20.0 mg/kg ISO), there was a trend for increasing cTnI (ACS:180SE) values with increasing ISO dose levels at 2 hours postdosing. By 24 hours, cTnI levels returned to baseline although chronic cardiac myodegeneration was present. We conclude that serum cTnI and cTnT levels are sensitive and specific biomarkers for detecting ISO induced myocardial injury in the rat. Serum troponin values reflect the development of histopathologic lesions; however peak troponin levels precede maximal lesion severity.

  6. Aging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats.

    PubMed

    Jazbutyte, Virginija; Hu, Kai; Kruchten, Patricia; Bey, Emmanuel; Maier, Sebastian K G; Fritzemeier, Karl-Heinrich; Prelle, Katja; Hegele-Hartung, Christa; Hartmann, Rolf W; Neyses, Ludwig; Ertl, Georg; Pelzer, Theo

    2006-10-01

    Clinical trials failed to show a beneficial effect of postmenopausal hormone replacement therapy, whereas experimental studies in young animals reported a protective function of estrogen replacement in cardiovascular disease. Because these diverging results could in part be explained by aging effects, we compared the efficacy of estrogen substitution to modulate cardiac hypertrophy and cardiac gene expression among young (age 3 months) and senescent (age 24 months) spontaneously hypertensive rats (SHRs), which were sham operated or ovariectomized and injected with placebo or identical doses of 17beta-estradiol (E2; 2 microg/kg body weight per day) for 6 weeks (n=10/group). Blood pressure was comparable among sham-operated senescent and young SHRs and not altered by ovariectomy or E2 treatment among young or among senescent rats. Estrogen substitution inhibited uterus atrophy and gain of body weight in young and senescent ovariectomized SHRs, but cardiac hypertrophy was attenuated only in young rats. Cardiac estrogen receptor-alpha expression was lower in intact and in ovariectomized senescent compared with young SHRs and increased with estradiol substitution in aged rats. Plasma estradiol and estrone levels were lower not only in sham-operated but surprisingly also in E2-substituted senescent SHRs and associated with a reduction of hepatic 17beta-hydroxysteroid dehydrogenase type 1 enzyme activity, which converts weak (ie, estrone) into potent estrogens, such as E2. Aging attenuates the antihypertrophic effect of estradiol in female SHRs and is associated with profound alterations in cardiac estrogen receptor-alpha expression and estradiol metabolism. These observations contribute to explain the lower efficiency of estrogen substitution in senescent SHRs.

  7. The effects of quinapril and atorvastatin on artery structure and function in adult spontaneously hypertensive rats.

    PubMed

    Yang, Lufang; Gao, Yu-Jing; Lee, Robert M K W

    2005-08-22

    We studied the combined treatment effects of quinapril and atorvastatin on blood pressure and structure and function of resistance arteries from adult spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY rats). Apoptotic cells were identified by in situ end labeling using the terminal deoxynucleotide transferase-mediated dUTP nick end labeling method. Vascular structure was measured using a morphometric protocol and confocal microscopy and a pressurized artery system was used to study vascular functions. We found that a combined treatment with quinapril and atorvastatin lowered systolic blood pressure in both adult SHR and WKY rats and decreased medial thickness and volume and the number of smooth muscle cell layers in mesenteric arteries, as well as media-to-lumen ratio in the interlobular arteries from SHR but not in those from WKY rats. The number of apoptotic smooth muscle cells was higher in the mesenteric arteries from control WKY rats than control SHR and treatment increased the number of apoptotic smooth muscle cells in the arteries from both SHR and WKY rats. Treatment with quinapril and atorvastatin reduced ventricular weight in SHR and normalized the augmented contractile responses to norepinephrine but did not alter the contraction to electric field stimulation. Relaxation responses to acetylcholine and sodium nitroprusside were not affected by the treatment. We conclude that a combined treatment with quinapril and atorvastatin lowered blood pressure and improved cardiac and vessel hypertrophy and vessel function. An increase in apoptotic smooth muscle cells may be one of the mechanisms underlying the structural improvement.

  8. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  9. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  10. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations.

  11. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  12. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  13. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  14. Electrocardiogram and cardiac function in a longitudinal study of copper deficiency in the Long-Evans rat

    SciTech Connect

    Zhiming Liao, Hamlin, R.; Medeiros, D.M. )

    1991-03-11

    Weanling Long-Evans rats were fed either copper-adequate or -restricted diets for varying periods of time up to 6 wk. Beginning at 2 wk after weaning, and weekly thereafter, 5 rats from each diet were evaluated for cardiac function and ECG activity and sacrificed. ECG traces revealed indications of cardiac failure at week 3 in rats fed the copper-restricted diet at which time concentric cardiac hypertrophy was evident. Prolonged P-R and Q-T intervals and greater QRS height and higher voltages were observed in copper-restricted rats. However, + and {minus} dP/dt max did not differ by diet copper treatment for any of the time intervals studied, nor was any notable difference in total left developed ventricular pressure apparent. These results suggest that the onset of cardiac dysfunction in copper deficiency is rapid, with both dysfunction and hypertrophy apparent within 3 weeks after copper restriction.

  15. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism.

    PubMed

    Souza, N S; Dos-Santos, R C; Silveira, Anderson Luiz Bezerra da; R, Sonoda-Côrtes; Gantus, Michel Alexandre Villani; Fortes, F S; Olivares, Emerson Lopes

    2016-04-01

    Premenopausal women are known to show lower incidence of cardiovascular disease than men. During myocardial infarction (MI), homeostatic responses are activated, including the sympathetic autonomic nervous system and the rennin-angiotensin-aldosterone system, which is related to the fluid and electrolyte balance, both aiming to maintain cardiac output. This study sought to perform a serial evaluation of sexual dimorphism in cardiac autonomic control and fluid and electrolyte balance during the development of MI-induced heart failure in rats. Experimental MI was induced in male (M) and female (F) adult (7-9 weeks of age) Wistar rats. The animals were placed in metabolic cages to assess fluid intake and urine volume 1 and 4 weeks after inducing MI (male myocardial infarction (MMI) and female myocardial infarction (FMI) groups). They subsequently underwent echocardiographic evaluation and spectral analysis of heart rate variability. After completing each protocol, the animals were killed for postmortem evaluation and histology. The MMI group showed earlier and more intense cardiac morphological and functional changes than the FMI group, although the extent of MI did not differ between groups (P > 0.05). The MMI group showed higher sympathetic modulation and sodium and water retention than the FMI group (P < 0.05), which may partly explain both the echocardiographic and pathological findings. Females subjected to infarction seem to show attenuation of sympathetic modulation, more favourable fluid and electrolyte balances, and better preserved cardiac function compared to males subjected to the same infarction model. PMID:26748814

  16. Nuclear Compartmentalization of α1-Adrenergic Receptor Signaling in Adult Cardiac Myocytes

    PubMed Central

    Wu, Steven C.

    2015-01-01

    Abstract: Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes. Although α1-ARs signal through Gαq, unlike other Gq-coupled receptors, α1-ARs mediate important cardioprotective functions including adaptive/physiologic hypertrophy, protection from cell death (survival signaling), positive inotropy, and preconditioning. Also unlike other Gq-coupled receptors, most, if not all, functional α1-ARs localize to the nuclei in adult cardiac myocytes, as opposed to the sarcolemma. Together, α1-AR nuclear localization and cardioprotection might suggest a novel model for compartmentalization of Gq-coupled receptor signaling in which nuclear Gq-coupled receptor signaling is cardioprotective. PMID:25264754

  17. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  18. Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats.

    PubMed

    Kuwahara, Mieko; Bannai, Kenji; Segawa, Hiroko; Miyamoto, Ken-ichi; Yamato, Hideyuki

    2014-09-01

    Chronic kidney disease (CKD) is associated with increased risks of cardiovascular morbidity and mortality. Cardiac remodeling including myocardial fibrosis and hypertrophy is frequently observed in CKD patients. In this study, we investigate the mechanism involved in cardiac hypertrophy associated with CKD using a rat model, by morphological and chemical component changes of the hypertrophic and non-hypertrophic hearts. Sprague-Dawley rats were 4/5 nephrectomized (Nx) at 11 weeks of age and assigned to no treatment and treatment with AST-120, which was reported to affect the cardiac damage, at 18 weeks of age. At 26 weeks of age, the rats were euthanized under anesthesia, and biochemical tests as well as analysis of cardiac condition were performed by histological and spectrophotometric methods. Cardiac hypertrophy and CKD were observed in 4/5 Nx rats even though vascular calcification and myocardial fibrosis were not detected. The increasing myocardial protein was confirmed in hypertrophic hearts by infrared spectroscopy. The absorption of amide I and other protein bands in hypertrophic hearts increased at the same position as in normal cardiac absorption. Infrared spectra also showed that lipid accumulation was also detected in hypertrophic heart. Conversely, the absorptions of protein were obviously reduced in the myocardium of non-hypertrophic heart with CKD compared to that of hypertrophic heart. The lipid associated absorption was also decreased in non-hypertrophic heart. Our results suggest that cardiac remodeling associated with relatively early-stage CKD may be suppressed by reducing increased myocardial protein and ameliorating cardiac lipid load.

  19. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis123

    PubMed Central

    Grigereit, Laura; Pickel, James

    2016-01-01

    Abstract The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis. PMID:27257630

  20. Interventional and surgical treatment of cardiac arrhythmias in adults with congenital heart disease.

    PubMed

    Koyak, Zeliha; de Groot, Joris R; Mulder, Barbara J M

    2010-12-01

    Arrhythmias are a major cause of morbidity, mortality and hospital admission in adults with congenital heart disease (CHD). The etiology of arrhythmias in this population is often multifactorial and includes electrical disturbances as part of the underlying defect, surgical intervention or hemodynamic abnormalities. Despite the numerous existing arrhythmia management tools including drug therapy, pacing and ablation, management of arrhythmias in adults with CHD remains difficult and challenging. Owing to improvement in mapping and ablation techniques, ablation and arrhythmia surgery are being performed more frequently in adults with CHD. However, there is little information on the long-term results of these treatment strategies. The purpose of this article is therefore to review the available data on nonpharmacological treatment of cardiac arrhythmias in adult patients with CHD and to give an overview of the available data on the early and late outcomes of these treatment strategies.

  1. Effect of restraint and copper deficiency on blood pressure and mortality of adult rats

    SciTech Connect

    Klevay, L.M.; Halas, E.S. )

    1989-02-01

    The etiology of most hypertension is unknown; stress is thought to elevate blood pressure. Male, weanling Sprague-Dawley rats were fed a purified diet plus a drinking solution containing 10{mu}g Zn and 2{mu}g Cu/ml (acetate sulfate, respectively). Systolic blood pressure was measured without anesthesia. After being matched by mean weight (280g) and blood pressure into 4 groups of 15, groups 1 and 2 received a drinking solution without copper. After 24 days rats in groups 2 and 4 were restrained for 45 min. daily (A.M.) for 23 days in a small plastic cage (19{times}6{times}6 cm). Final pressures were affected both by stress and dietary Cu: group 1, 119; group 2, 131; group 3, 114; group 4, 123 mm Hg. One rat in each of groups 1, 3, 4 and 10 rats in group 2, died. Among these latter hemorrhage was prominent, blood being found in bladder (2), gut (2), peritoneum (2) and scrotum (1). Copper deficiency decreased cooper in both adrenal gland and liver by 58% and in heart by 29% restraint was without effect. Cardiac sodium was increased 6% only by deficiency. Results confirm the hypertensive effect of copper deficiency in adult rats and reveal that the stress of restraint increases blood pressure. Copper deficiency plus stress is harmful.

  2. Instrumental conditioning of the rat cardiac control systems.

    PubMed

    Fields, C

    1970-02-01

    The PR, PP, and RR intervals of the rat EKG were instrumentally conditioned using a variety of reinforcement schedules under computer control. The PR and PP intervals could be conditioned independently. Individual rats demonstrated either a steady shift of their response distribution or an abrupt change of an all-or-none variety. Some response distributions shifted continuously; others, through the growth of new response patterns in a manner reminiscent of hypothesis-testing behavior of human subjects. A study of the effects of single reinforcements showed that each reinforcement contributed to the learning behavior of the subject, in a well-defined but nonlinear fashion.

  3. Renal and cardiac neuropeptide Y and NPY receptors in a rat model of congestive heart failure.

    PubMed

    Callanan, Ean Y; Lee, Edward W; Tilan, Jason U; Winaver, Joseph; Haramati, Aviad; Mulroney, Susan E; Zukowska, Zofia

    2007-12-01

    Neuropeptide Y (NPY) is coreleased with norepinephrine and stimulates vasoconstriction, vascular and cardiomyocyte hypertrophy via Y1 receptors (R) and angiogenesis via Y2R. Although circulating NPY is elevated in heart failure, NPY's role remains unclear. Activation of the NPY system was determined in Wistar rats with the aortocaval (A-V) fistula model of high-output heart failure. Plasma NPY levels were elevated in A-V fistula animals (115.7 +/- 15.3 vs. 63.1 +/- 17.4 pM in sham, P < 0.04). Animals either compensated [urinary Na(+) excretion returning to normal with moderate disease (COMP)] or remained decompensated with severe cardiac and renal failure (urinary Na(+) excretion <0.5 meq/day), increased heart weight, decreased mean arterial pressure and renal blood flow (RBF), and death within 5-7 days (DECOMP). Cardiac and renal tissue NPY decreased with heart failure, proportionate to the severity of renal complications. Cardiac and renal Y1R mRNA expression also decreased (1.5-fold, P < 0.005) in rats with heart failure. In contrast, Y2R expression increased up to 72-fold in the heart and 5.7-fold in the kidney (P < 0.001) proportionate to severity of heart failure and cardiac hypertrophy. Changes in receptor expression were confirmed since the Y1R agonist, [Leu31, Pro34]-NPY, had no effect on RBF, whereas the Y2R agonist (13-36)-NPY increased RBF to compensate for disease. Thus, in this model of heart failure, cardiac and renal NPY Y1 receptors decrease and Y2 receptors increase, suggesting an increased effect of NPY on the receptors involved in cardiac remodeling and angiogenesis, and highlighting an important regulatory role of NPY in congestive heart failure.

  4. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  5. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria.

    PubMed

    Banerjee, Partha S; Ma, Junfeng; Hart, Gerald W

    2015-05-12

    Elevated mitochondrial O-GlcNAcylation caused by hyperglycemia, as occurs in diabetes, significantly contributes to mitochondrial dysfunction and to diabetic cardiomyopathy. However, little is known about the enzymology of mitochondrial O-GlcNAcylation. Herein, we investigated the enzymes responsible for cycling O-GlcNAc on mitochondrial proteins and studied the mitochondrial transport of UDP-GlcNAc. Analyses of purified rat heart mitochondria from normal and streptozocin-treated diabetic rats show increased mitochondrial O-GlcNAc transferase (OGT) and a concomitant decrease in the mito-specific O-GlcNAcase (OGA). Strikingly, OGT is mislocalized in cardiac mitochondria from diabetic rats. Interaction of OGT and complex IV observed in normal rat heart mitochondria is visibly reduced in diabetic samples, where OGT is mislocalized to the matrix. Live cell OGA activity assays establish the presence of O-GlcNAcase within the mitochondria. Furthermore, we establish that the inner mitochondrial membrane transporter, pyrimidine nucleotide carrier, transports UDP-GlcNAc from the cytosol to the inside of the mitochondria. Knockdown of this transporter substantially lowers mitochondrial O-GlcNAcylation. Inhibition of OGT or OGA activity within neonatal rat cardiomyocytes significantly affects energy production, mitochondrial membrane potential, and mitochondrial oxygen consumption. These data suggest that cardiac mitochondria not only have robust O-GlcNAc cycling, but also that dysregulation of O-GlcNAcylation likely plays a key role in mitochondrial dysfunction associated with diabetes. PMID:25918408

  6. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria

    PubMed Central

    Banerjee, Partha S.; Ma, Junfeng; Hart, Gerald W.

    2015-01-01

    Elevated mitochondrial O-GlcNAcylation caused by hyperglycemia, as occurs in diabetes, significantly contributes to mitochondrial dysfunction and to diabetic cardiomyopathy. However, little is known about the enzymology of mitochondrial O-GlcNAcylation. Herein, we investigated the enzymes responsible for cycling O-GlcNAc on mitochondrial proteins and studied the mitochondrial transport of UDP-GlcNAc. Analyses of purified rat heart mitochondria from normal and streptozocin-treated diabetic rats show increased mitochondrial O-GlcNAc transferase (OGT) and a concomitant decrease in the mito-specific O-GlcNAcase (OGA). Strikingly, OGT is mislocalized in cardiac mitochondria from diabetic rats. Interaction of OGT and complex IV observed in normal rat heart mitochondria is visibly reduced in diabetic samples, where OGT is mislocalized to the matrix. Live cell OGA activity assays establish the presence of O-GlcNAcase within the mitochondria. Furthermore, we establish that the inner mitochondrial membrane transporter, pyrimidine nucleotide carrier, transports UDP-GlcNAc from the cytosol to the inside of the mitochondria. Knockdown of this transporter substantially lowers mitochondrial O-GlcNAcylation. Inhibition of OGT or OGA activity within neonatal rat cardiomyocytes significantly affects energy production, mitochondrial membrane potential, and mitochondrial oxygen consumption. These data suggest that cardiac mitochondria not only have robust O-GlcNAc cycling, but also that dysregulation of O-GlcNAcylation likely plays a key role in mitochondrial dysfunction associated with diabetes. PMID:25918408

  7. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  8. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    SciTech Connect

    Scholfield, D.J.; Fields, M.; Beal, T.; Lewis, C.G.; Behall, K.M. )

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D) to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.

  9. Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation

    SciTech Connect

    Kamei, T.; Callery, M.P.; Flye, M.W. )

    1990-05-01

    Pretransplant portal venous (pv) administration of donor antigen induces allospecific partial tolerance. Although the involved mechanism has not been defined, antigen presentation by Kupffer cells (KC) in the liver is considered to be critical. We evaluated the effect of KC blockade on this pv tolerance induction in Buffalo (RT1b) rats receiving Lewis (RT1(1)) cardiac heterotopic allografts. Control rats received no treatment, while experimental animals received 25 X 10(6) ultraviolet B-irradiated (12,000 J/m2) donor spleen cells via either the iv (systemic intravenous) or the pv routes 7 days before transplantation. Gadolinium chloride (GdCl3), a rare earth metal known to inhibit KC phagocytosis, was given (7 mg/kg) 1 and 2 days before pv preimmunization. Cardiac graft prolongation was obtained by pv (MST = 13.3 +/- 1.9 days, n = 6, vs control = 7.3 +/- 0.5 days, n = 6; P less than 0.001) but not by iv preimmunization (7.7 +/- 0.7 days, n = 6, NS vs control). KC blockade abolished the pv tolerance, as indicated by abrogation of graft prolongation (PV + GdCl3 = 8.0 +/- 0.8 days, n = 6, NS vs control). These findings suggest that effective alloantigen uptake by KC in the liver is essential for the induction of pv tolerance in rat cardiac transplantation.

  10. Effects of cardiac pulsation in diffusion tensor imaging of the rat brain

    PubMed Central

    Kim, Sungheon; Pickup, Stephen; Poptani, Harish

    2010-01-01

    The purpose of this study was to investigate the effects of cardiac pulsation in diffusion tensor imaging (DTI) of the rat brain. DTI data were acquired either with or without different cardiac gating delays. For each case, two sets of identical DTI data were acquired for a bootstrap analysis to measure the uncertainty in estimating mean diffusivity (MD), fractional anisotropy (FA) and the primary eigenvector direction. The 95% confidence interval of the primary eigenvectors was substantially reduced (21 ~ 25 %) when cardiac gating with triggering delay of 70 ms (~ half of R-R peak duration) was used in comparison to studies without gating or when gating with a triggering delay of 0 ms was used. Standard deviations of MD and FA estimates were also reduced by 12 – 26 % and 13 – 24 %, respectively. For voxels with mean FA values larger than 0.15 and smaller than 0.95, the decrease in CI and standard deviations of MD and FA by cardiac gating with triggering delay of 70 ms were significant (p < 0.05). These results demonstrate the importance of cardiac gating in acquisition of in vivo high resolution DTI data. PMID:20951164

  11. Cardiac phenylethanolamine N-methyltransferase: localization and regulation of gene expression in the spontaneously hypertensive rat.

    PubMed

    Peltsch, Heather; Khurana, Sandhya; Byrne, Collin J; Nguyen, Phong; Khaper, Neelam; Kumar, Aseem; Tai, T C

    2016-04-01

    Phenylethanolamine N-methyltransferase (PNMT) is the terminal enzyme in the catecholamine biosynthetic pathway responsible for adrenaline biosynthesis. Adrenaline is involved in the sympathetic control of blood pressure; it augments cardiac function by increasing stroke volume and cardiac output. Genetic mapping studies have linked the PNMT gene to hypertension. This study examined the expression of cardiac PNMT and changes in its transcriptional regulators in the spontaneously hypertensive (SHR) and wild type Wistar-Kyoto (WKY) rats. SHR exhibit elevated levels of corticosterone, and lower levels of the cytokine IL-1β, revealing systemic differences between SHR and WKY. PNMT mRNA was significantly increased in all chambers of the heart in the SHR, with the greatest increase in the right atrium. Transcriptional regulators of the PNMT promoter show elevated expression of Egr-1, Sp1, AP-2, and GR mRNA in all chambers of the SHR heart, while protein levels of Sp1, Egr-1, and GR were elevated only in the right atrium. Interestingly, only AP-2 protein-DNA binding was increased, suggesting it may be a key regulator of cardiac PNMT in SHR. This study provides the first insights into the molecular mechanisms involved in the dysregulation of cardiac PNMT in a genetic model of hypertension. PMID:26761434

  12. [Implementation of post-resuscitation care in adult cardiac arrest patients - Experts' opinion].

    PubMed

    Pellis, Tommaso; Ristagno, Giuseppe; Semeraro, Federico; Grieco, Niccolò; Fabbri, Andrea; Balzanelli, Mario; Berruto, Elisa; Scapigliati, Andrea; Sciretti, Massimiliano; Cerchiari, Erga

    2015-01-01

    Current evidence on post-resuscitation care suffers from important knowledge gaps on new treatments and prognostication, mainly because of the lack of large multicenter randomized trials. However, optimization of post-resuscitation care is crucial, and the establishment of a treatment easy to be accepted and implemented locally, based on currently available evidence, is advisable. The present article is a multisociety experts' opinion on post-cardiac arrest that aims (i) to provide schematic and clear suggestions on therapeutic interventions to be delivered following resuscitation from cardiac arrest, so as to implement local protocols with a standardized post-resuscitation care; (ii) to suggest post-resuscitation therapeutic interventions that may result in improved survival with good neurological recovery, intended as a Cerebral Performance Category (CPC) score of 1-2; and finally (iii) to propose a pragmatic and schematic approach to post-resuscitation care for rapid initiation of intensive treatments (i.e. temperature management). The suggestions reported in this document are intended for adult patients resuscitated from both out-of-hospital and in-hospital cardiac arrest. They should be considered solely as an experts' opinion aimed to improve post-cardiac arrest care and they do not represent an official national guideline.

  13. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  14. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats

    PubMed Central

    Wang, Peng; Yao, Lan; Zhou, Li-li; Liu, Yuan-shan; Chen, Ming-di; Wu, Hai-dong; Chang, Rui-ming; Li, Yi; Zhou, Ming-gen; Fang, Xiang-shao; Yu, Tao; Jiang, Long-yuan; Huang, Zi-tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis. PMID:27489503

  15. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats.

    PubMed

    Wang, Peng; Yao, Lan; Zhou, Li-Li; Liu, Yuan-Shan; Chen, Ming-di; Wu, Hai-Dong; Chang, Rui-Ming; Li, Yi; Zhou, Ming-Gen; Fang, Xiang-Shao; Yu, Tao; Jiang, Long-Yuan; Huang, Zi-Tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis.

  16. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats.

    PubMed

    Wang, Peng; Yao, Lan; Zhou, Li-Li; Liu, Yuan-Shan; Chen, Ming-di; Wu, Hai-Dong; Chang, Rui-Ming; Li, Yi; Zhou, Ming-Gen; Fang, Xiang-Shao; Yu, Tao; Jiang, Long-Yuan; Huang, Zi-Tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis. PMID:27489503

  17. Methylprednisolone Protects Cardiac Pumping Mechanics from Deteriorating in Lipopolysaccharide-Treated Rats

    PubMed Central

    Ko, Ya-Hui; Tsai, Ming-Shian; Chang, Ru-Wen; Chang, Chun-Yi; Wang, Chih-Hsien; Wu, Ming-Shiou; Liang, Jin-Tung; Chang, Kuo-Chu

    2015-01-01

    It has been shown that a prolonged low-dose corticosteroid treatment attenuates the severity of inflammation and the intensity and duration of organ system failure. In the present study, we determined whether low-dose methylprednisolone (a synthetic glucocorticoid) can protect male Wistar rats against cardiac pumping defects caused by lipopolysaccharide-induced chronic inflammation. For the induction of chronic inflammation, a slow-release ALZET osmotic pump was subcutaneously implanted to infuse lipopolysaccharide (1 mg kg−1 d−1) for 2 weeks. The lipopolysaccharide-challenged rats were treated on a daily basis with intraperitoneal injection of methylprednisolone (5 mg kg−1 d−1) for 2 weeks. Under conditions of anesthesia and open chest, we recorded left ventricular (LV) pressure and ascending aortic flow signals to calculate the maximal systolic elastance (Emax) and the theoretical maximum flow (Qmax), using the elastance-resistance model. Physically, Emax reflects the contractility of the myocardium as an intact heart, whereas Qmax has an inverse relationship with the LV internal resistance. Compared with the sham rats, the cardiodynamic condition was characterized by a decline in Emax associated with the increased Qmax in the lipopolysaccharide-treated rats. Methylprednisolone therapy increased Emax, which suggests that the drug may have protected the contractile status from deteriorating in the inflamed heart. By contrast, methylprednisolone therapy considerably reduced Qmax, indicating that the drug may have normalized the LV internal resistance. In parallel, the benefits of methylprednisolone on the LV systolic pumping mechanics were associated with the reduced cardiac levels of negative inotropic molecules such as peroxynitrite, malondialdehyde, and high-mobility group box 1 protein. Based on these data, we suggested that low-dose methylprednisolone might prevent lipopolysaccharide-induced decline in cardiac intrinsic contractility and LV internal

  18. The Role of Particulate Matter-Associated Zinc in Cardiac Injury in Rats

    PubMed Central

    Kodavanti, Urmila P.; Schladweiler, Mette C.; Gilmour, Peter S.; Wallenborn, J. Grace; Mandavilli, Bhaskar S.; Ledbetter, Allen D.; Christiani, David C.; Runge, Marschall S.; Karoly, Edward D.; Costa, Daniel L.; Peddada, Shyamal; Jaskot, Richard; Richards, Judy H.; Thomas, Ronald; Madamanchi, Nageswara R.; Nyska, Abraham

    2008-01-01

    Background Exposure to particulate matter (PM) has been associated with increased cardiovascular morbidity; however, causative components are unknown. Zinc is a major element detected at high levels in urban air. Objective We investigated the role of PM-associated zinc in cardiac injury. Methods We repeatedly exposed 12- to 14-week-old male Wistar Kyoto rats intratracheally (1×/week for 8 or16 weeks) to a) saline (control); b) PM having no soluble zinc (Mount St. Helens ash, MSH); or c) whole-combustion PM suspension containing 14.5 μg/mg of water-soluble zinc at high dose (PM-HD) and d ) low dose (PM-LD), e) the aqueous fraction of this suspension (14.5 μg/mg of soluble zinc) (PM-L), or f ) zinc sulfate (rats exposed for 8 weeks received double the concentration of all PM components of rats exposed for 16 weeks). Results Pulmonary inflammation was apparent in all exposure groups when compared with saline (8 weeks > 16 weeks). PM with or without zinc, or with zinc alone caused small increases in focal subepicardial inflammation, degeneration, and fibrosis. Lesions were not detected in controls at 8 weeks but were noted at 16 weeks. We analyzed mitochondrial DNA damage using quantitative polymerase chain reaction and found that all groups except MSH caused varying degrees of damage relative to control. Total cardiac aconitase activity was inhibited in rats receiving soluble zinc. Expression array analysis of heart tissue revealed modest changes in mRNA for genes involved in signaling, ion channels function, oxidative stress, mitochondrial fatty acid metabolism, and cell cycle regulation in zinc but not in MSH-exposed rats. Conclusion These results suggest that water-soluble PM-associated zinc may be one of the causal components involved in PM cardiac effects. PMID:18197293

  19. Significant role of female sex hormones in cardiac myofilament activation in angiotensin II-mediated hypertensive rats.

    PubMed

    Pandit, Sulaksana; Woranush, Warunya; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2014-07-01

    Ovariectomy leads to suppression of cardiac myofilament activation in healthy rats implicating the physiological essence of female sex hormones on myocardial contraction. However, the possible function of these hormones during pathologically induced myofilament adaptation is not known. In this study, sham-operated and ovariectomized female rats were chronically exposed to angiotensin II (AII), which has been shown to cause myocardial adaptation. In the shams, AII induced cardiac adaptation by increasing myofilament Ca(2+) sensitivity. Interestingly, this hypersensitivity was further enhanced in AII-infused ovariectomized rats. Ovariectomy increased the phosphorylation levels of cardiac tropomyosin, which may underlie the mechanism of hypersensitivity. On the other hand, AII infusion did not alter maximal tension that was suppressed after ovariectomy. This finding coincided with a comparable increase in β-isoform of myosin heavy chains in both ovariectomized groups. Together, it is conceivable that female sex hormones serve as predominant factors that regulate cardiac myofilament activation. Furthermore, they may prevent stress-induced myofilament maladaptation.

  20. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  1. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  2. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    PubMed

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone.

  3. Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats

    SciTech Connect

    Wallenborn, J. Grace Evansky, Paul; Shannahan, Jonathan H.; Vallanat, Beena; Ledbetter, Allen D.; Schladweiler, Mette C.; Richards, Judy H.; Gottipolu, Reddy R.; Nyska, Abraham; Kodavanti, Urmila P.

    2008-10-01

    Zinc is a common metal in most ambient particulate matter (PM), and has been proposed to be a causative component in PM-induced adverse cardiovascular health effects. Zinc is also an essential metal and has the potential to induce many physiological and nonphysiological changes. Most toxicological studies employ high levels of zinc. We hypothesized that subchronic inhalation of environmentally relevant levels of zinc would cause cardiac changes in healthy rats. To address this, healthy male WKY rats (12 weeks age) were exposed via nose only inhalation to filtered air or 10, 30 or 100 {mu}g/m{sup 3} of aerosolized zinc sulfate (ZnSO{sub 4}), 5 h/day, 3 days/week for 16 weeks. Necropsies occurred 48 h after the last exposure to ensure effects were due to chronic exposure rather than the last exposure. No significant changes were observed in neutrophil or macrophage count, total lavageable cells, or enzyme activity levels (lactate dehydrogenase, n-acetyl {beta}-D-glucosaminidase, {gamma}-glutamyl transferase) in bronchoalveolar lavage fluid, indicating minimal pulmonary effect. In the heart, cytosolic glutathione peroxidase activity decreased, while mitochondrial ferritin levels increased and succinate dehydrogenase activity decreased, suggesting a mitochondria-specific effect. Although no cardiac pathology was seen, cardiac gene array analysis indicated small changes in genes involved in cell signaling, a pattern concordant with known zinc effects. These data indicate that inhalation of zinc at environmentally relevant levels induces cardiac effects. While changes are small in healthy rats, these may be especially relevant in individuals with pre-existent cardiovascular disease.

  4. Fast, transient cardiac accelerations and decelerations during fear conditioning in rats.

    PubMed

    Knippenberg, J M J; Barry, R J; Kuniecki, M J; van Luijtelaar, G

    2012-02-01

    The current study reports on a number of heart rate responses observed in rats subjected to a discriminatory Pavlovian fear conditioning procedure. Rats learned that a series of six auditory pips was followed by a footshock when presented alone, but not when the pip series was preceded by a visual safety signal. Each auditory pip in the series evoked a fast transient (<1s) cardiac deceleration. This was the case on both trials followed by shock and on trials not followed by shock. The onset of the safety light evoked a similar fast deceleration. We propose that these transient decelerations are similar to the human Evoked Cardiac Response 1 (ECR1), a brief modest deceleration evoked by simple sensory stimuli that is thought to reflect an early process of stimulus registration. Immediately following these pip-evoked decelerations, modest fast accelerations were observed. These accelerations were larger when the pip series was followed by shock than when it was not followed by shock. We propose a potential linkage between these accelerations and the human acceleratory ECR2 component, which is associated with more elaborate processing following stimulus registration; something likely to take place when the pip series predicts an aversive event. Both the ECR1- and ECR2-like responses were embedded within a slow, gradual heart rate increase across the entire pip series. This tonic increase was significantly larger on trials with footshock and is therefore probably associated with anticipatory fear of the upcoming shock. An additional special type of cardiac response was found to the first pip in the series not preceded by the safety signal; here, a much larger and more sustained deceleration was apparent. This response appears relatable to the prolonged deceleration reported in humans in response to aversive picture content. We discuss the cardiac responses found in rats in the current study in the context of heart rate responses known in the human literature.

  5. Post-Acute Care Services Received by Older Adults Following a Cardiac Event: A Population-Based Analysis

    PubMed Central

    Xu, Fang; Zullo, Melissa; Shishehbor, Mehdi; Moore, Shirley M.; Rimm, Alfred A.

    2010-01-01

    Background Post-acute care (PAC) is available for older adults who need additional services after hospitalization for acute cardiac events. With the aging population and an increase in the prevalence of cardiac disease, it is important to determine current PAC use for cardiac patients to assist health care workers to meet the needs of older cardiac patients. The purpose of this study was to determine the current PAC use and factors associated with PAC use for older adults following hospitalization for a cardiac event that includes coronary artery bypass graph (CABG) and valve surgeries, myocardial infarction (MI), percutaneous coronary intervention (PCI), and heart failure (HF). Methods and Results A cross-sectional design and the 2003 Medicare Part A database were used for this study. The sample (n=1,493,521) consisted of patients aged 65 years and older discharged after their first cardiac event. Multinomial logistic regression was used to examine factors associated with PAC use. Overall, PAC use was 55% for cardiac valve surgery, 50% for MI, 45% for HF, 44% for CABG, and 5% for PCI. Medical patients use more skilled nursing facility care and surgical patients use more home health care. Only 0.1–3.4% of the cardiac patients use intermediate rehabilitation facilities. Compared to those who do not use PAC, those who use home health care and skilled nursing facility care are older, female, have a longer hospital length of stay, and more comorbidity. Asians, Hispanics and Native Americans were less likely to use PAC after hospitalization for an MI or HF. Conclusions The current rate of PAC use indicates that almost half of non-disabled Medicare patients discharged from the hospital following a cardiac event use one of these services. Healthcare professionals can increase PAC use for Asians, Hispanics and Native Americans by including culturally targeted communication. Optimizing recovery for cardiac patients who use PAC may require focused cardiac rehabilitation

  6. Dietary Salt Restriction Improves Cardiac and Adipose Tissue Pathology Independently of Obesity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-01-01

    Background Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. Methods and Results We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z‐Leprfa/Leprfa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal‐salt (0.36% NaCl in chow) or low‐salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z‐Lepr+/Lepr+, or DS/lean rats). DS/obese rats fed the normal‐salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin–angiotensin–aldosterone system genes were increased in DS/obese rats fed the normal‐salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Conclusions Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. PMID:25468654

  7. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study.

    PubMed

    Nurzynska, Daria; Di Meglio, Franca; Romano, Veronica; Miraglia, Rita; Sacco, Anna Maria; Latino, Francesca; Bancone, Ciro; Della Corte, Alessandro; Maiello, Ciro; Amarelli, Cristiano; Montagnani, Stefania; Castaldo, Clotilde

    2013-01-01

    Adult human heart hosts a population of cardiac primitive CD117-positive cells (CPCs), which are responsible for physiological tissue homeostasis and regeneration. While the bona fide stem cells express telomerase, their progenies are no longer able to preserve telomeric DNA; hence the balance between their proliferation and differentiation has to be tightly controlled in order to prevent cellular senescence and apoptosis of CPCs before their maturation can be accomplished. We have examined at cellular and molecular level the proliferation, apoptosis and commitment of CPCs isolated from normal (CPC-N) and age-matched pathological adult human hearts (CPC-P) with ischemic heart disease. In the CPC-P, genes related to early stages of developmental processes, nervous system development and neurogenesis, skeletal development, bone and cartilage development were downregulated, while those involved in mesenchymal cell differentiation and heart development were upregulated, together with the transcriptional activation of TGFβ/BMP signaling pathway. In the pathological heart, asymmetric division was the prevalent type of cardiac stem cell division. The population of CPC-P consisted mainly of progenitors of cardiac cell lineages and less precursors; these cells proliferated more, but were also more susceptible to apoptosis with respect to CPC-N. These results indicate that CPCs fail to reach terminal differentiation and functional competence in pathological conditions. Adverse effects of underlying pathology, which disrupts cardiac tissue structure and composition, and cellular senescence, resulting from cardiac stem cell activation in telomere dysfunctional environment, can be responsible for such outcome.

  8. Sleep Disruption is Associated with Increased Ventricular Ectopy and Cardiac Arrest in Hospitalized Adults

    PubMed Central

    Miner, Steven Edward Stuart; Pahal, Dev; Nichols, Laurel; Darwood, Amanda; Nield, Lynne Elizabeth; Wulffhart, Zaev

    2016-01-01

    Study Objectives: To determine whether sleep disruption increases ventricular ectopy and the risk of cardiac arrest in hospitalized patients. Methods: Hospital emergency codes (HEC) trigger multiple hospital-wide overhead announcements. In 2014 an electronic “code white” program was instituted to protect staff from violent patients. This resulted in an increase in nocturnal HEC. Telemetry data was examined between September 14 and October 2, 2014. The frequency of nocturnal announcements was correlated with changes in frequency of premature ventricular complexes per hour (PVC/h). Cardiac arrest data were examined over a 3-y period. All HEC were assumed to have triggered announcements. The relationship between nocturnal HEC and the incidence of subsequent cardiac arrest was examined. Results: 2,603 hours of telemetry were analyzed in 87 patients. During nights with two or fewer announcements, PVC/h decreased 33% and remained 30% lower the next day. On nights with four or more announcements, PVC/h increased 23% (P < 0.001) and further increased 85% the next day (P = 0.001). In 2014, following the introduction of the code white program, the frequency of all HEC increased from 1.1/day to 6.2/day (P < 0.05). The frequency of cardiac arrest/24 h rose from 0.46/day in 2012–2013 to 0.62/day in 2014 (P = 0.001). During daytime hours (06:00–22:00), from 2012 through 2014, the frequency of cardiac arrest following zero, one or at least two nocturnal HEC were 0.331 ± 0.03, 0.396 ± 0.04 and 0.471 ± 0.09 respectively (R2 = 0.99, P = 0.03). Conclusions: Sleep disruption is associated with increased ventricular ectopy and increased frequency of cardiac arrest. Citation: Miner SE, Pahal D, Nichols L, Darwood A, Nield LE, Wulffart Z. Sleep disruption is associated with increased ventricular ectopy and cardiac arrest in hospitalized adults. SLEEP 2016;39(4):927–935. PMID:26715226

  9. Pretreatment with a combination of ligustrazine and berberine improves cardiac function in rats with coronary microembolization

    PubMed Central

    Zhang, Ying; Ma, Xiao-juan; Guo, Chun-yu; Wang, Ming-ming; Kou, Na; Qu, Hua; Mao, Hui-min; Shi, Da-zhuo

    2016-01-01

    Aim: We have shown that a combination of ligustrazine and berberine produces more effective inhibition on platelet activation and inflammatory reactions in rat acute myocardial infarction compared with either agent alone. In this study we evaluated the beneficial effects of a combination of ligustrazine and berberine in a rat model of coronary microembolization (CME). Methods: SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses. Results: Pretreatment with the combination of ligustrazine (27 mg·kg−1·d−1) and berberine (90 mg·kg−1·d−1) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg−1·d−1). Conclusion: The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects. PMID:26924290

  10. Adipose-derived stromal cell therapy improves cardiac function after coronary occlusion in rats.

    PubMed

    Bagno, Luiza L S; Werneck-de-Castro, João Pedro S; Oliveira, Patrícia F; Cunha-Abreu, Márcia S; Rocha, Nazareth N; Kasai-Brunswick, Taís H; Lago, Vivian M; Goldenberg, Regina C S; Campos-de-Carvalho, Antonio C

    2012-01-01

    Recent studies have identified adipose tissue as a new source of mesenchymal stem cells for therapy. The purpose of this study was to investigate the therapy with adipose-derived stromal cells (ASCs) in a rat model of healed myocardial infarction (MI). ASCs from inguinal subcutaneous adipose tissue of male Wistar rats were isolated by enzymatic digestion and filtration. Cells were then cultured until passage 3. Four weeks after ligation of the left coronary artery of female rats, a suspension of either 100 µl with phosphate-buffered saline (PBS) + Matrigel + 2 × 10(6) ASCs labeled with Hoechst (n = 11) or 100 µl of PBS + Matrigel (n = 10) was injected along the borders of the ventricular wall scar tissue. A sham-operated group (n = 5) was submitted to the same surgical procedure except permanent ligation of left coronary artery. Cardiac performance was assessed by electro- and echocardiogram. Echo was performed prior to injections (baseline, BL) and 6 weeks after injections (follow-up, FU), and values after treatment were normalized by values obtained before treatment. Hemodynamic measurements were performed 6 weeks after injections. All infarcted animals exhibited cardiac function impairment. Ejection fraction (EF), shortening fractional area (SFA), and left ventricular akinesia (LVA) were similar between infarcted groups before treatment. Six weeks after therapy, ASC group showed significant improvement in all three ECHO indices in comparison to vehicle group. In anesthetized animals dp/dt(+) was also significantly higher in ASCs when compared to vehicle. In agreement with functional improvement, scar area was diminished in the ASC group. We conclude that ASCs improve cardiac function in infarcted rats when administered directly to the myocardium. PMID:22472303

  11. An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance. PMID:23872579

  12. Maternal Hyperglycemia Directly and Rapidly Induces Cardiac Septal Overgrowth in Fetal Rats

    PubMed Central

    Gordon, Erin E.; Reinking, Benjamin E.; Hu, Shanming; Yao, Jianrong; Kua, Kok L.; Younes, Areej K.; Wang, Chunlin; Segar, Jeffrey L.; Norris, Andrew W.

    2015-01-01

    Cardiac septal overgrowth complicates 10–40% of births from diabetic mothers, but perplexingly hyperglycemia markers during pregnancy are not reliably predictive. We thus tested whether fetal exposure to hyperglycemia is sufficient to induce fetal cardiac septal overgrowth even in the absence of systemic maternal diabetes. To isolate the effects of hyperglycemia, we infused glucose into the blood supply of the left but not right uterine horn in nondiabetic pregnant rats starting on gestational day 19. After 24 h infusion, right-sided fetuses and dams remained euglycemic while left-sided fetuses were moderately hyperglycemic. Echocardiograms in utero demonstrated a thickened cardiac septum among left-sided (glucose-exposed, 0.592 ± 0.016 mm) compared to right-sided (control, 0.482 ± 0.016 mm) fetuses. Myocardial proliferation was increased 1.5 ± 0.2-fold among left-sided compared to right-sided fetuses. Transcriptional markers of glucose-derived anabolism were not different between sides. However, left-sided fetuses exhibited higher serum insulin and greater JNK phosphorylation compared to controls. These results show that hyperglycemic exposure is sufficient to rapidly induce septal overgrowth even in the absence of the myriad other factors of maternal diabetes. This suggests that even transient spikes in glucose may incite cardiac overgrowth, perhaps explaining the poor clinical correlation of septal hypertrophy with chronic hyperglycemia. PMID:26064981

  13. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats.

    PubMed

    David Gomez, Arnold; Bull, David A; Hsu, Edward W

    2015-10-01

    Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle.

  14. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion.

    PubMed

    Senthamizhselvan, Oomaidurai; Manivannan, Jeganathan; Silambarasan, Thangarasu; Raja, Boobalan

    2014-08-01

    Reperfusion of ischemic tissue leads to the generation of oxygen derived free radicals which plays an important role in cellular damage. Objective of the current study is to evaluate the cardio-protective and antioxidant effect of diosmin on ischemia-reperfusion related cardiac dysfunction, oxidative stress and apoptosis. Diosmin (50 and 100 mg/kg body weight (bw)) was given every day to the rats orally throughout the experimental period. Ischemia/reperfusion protocol was carried out ex vivo using langendorff perfusion method and the cardiac functional recovery was assessed in terms of percentage rate pressure product. Coronary effluents of LDH and CK-MB activities, antioxidant enzyme activities, lipid peroxidation products, activity of TCA cycle enzymes were evaluated. Moreover, in vitro superoxide anion and hydroxyl radical scavenging potential of diosmin was also quantified. Finally, quantitative real-time PCR was used for assessing Bcl-2 mRNA expression in heart. Cardiac functional recovery was impaired after reperfusion compared with continuously perfused heart. It was significantly prevented by diosmin treatment. Impaired antioxidant enzyme activities and elevated lipid peroxidation products level were also significantly suppressed. The activity of TCA cycle enzymes was protected against reperfusion stress. Down regulated Bcl-2 was also significantly increased. This study concluded that diosmin pretreatment prevents all the impaired patterns including cardiac function, oxidative stress and apoptosis associated with reperfusion in control heart by its antioxidant role.

  15. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Tica, Andrei A.; Rabinowitz, Joseph E.; Tilley, Douglas G.; Benamar, Khalid; Koch, Walter J.; Brailoiu, Eugen

    2013-01-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. Since we have previously demonstrated that nesfatin-1 elicits Ca2+ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca2+ in cardiac preganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca2+ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca2+ rise is critically dependent on Ca2+ influx via P/Q-type voltage-activated Ca2+ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Further, nesfatin produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. PMID:23795642

  16. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats

    PubMed Central

    David Gomez, Arnold; Bull, David A.; Hsu, Edward W.

    2015-01-01

    Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle. PMID:26299478

  17. Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats

    PubMed Central

    2013-01-01

    Background Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome. Methods Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR. Results Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin

  18. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  19. Applying the Gender Lens to Risk Factors and Outcome after Adult Cardiac Surgery

    PubMed Central

    Eifert, Sandra; Guethoff, Sonja; Kaczmarek, Ingo; Beiras-Fernandez, Andres; Seeland, Ute; Gulbins, Helmut; Seeburger, Jörg; Deutsch, Oliver; Jungwirth, Bettina; Katsari, Elpiniki; Dohmen, Pascal; Pfannmueller, Bettina; Hultgren, Rebecka; Schade, Ina; Kublickiene, Karolina; Mohr, Friedrich W.; Gansera, Brigitte

    2014-01-01

    Summary Background Applying the gender lens to risk factors and outcome after adult cardiac surgery is of major clinical interest, as the inclusion of sex and gender in research design and analysis may guarantee more comprehensive cardiovascular science and may consecutively result in a more effective surgical treatment as well as cost savings in cardiac surgery. Methods We have reviewed classical cardiovascular risk factors (diabetes, arterial hypertension, hyperlipidemia, smoking) according to a gender-based approach. Furthermore, we have examined comorbidities such as depression, renal insufficiency, and hormonal influences in regard to gender. Gender-sensitive economic aspects have been evaluated, surgical outcome has been analyzed, and cardiovascular research has been considered from a gender perspective. Results The influence of typical risk factors and outcome after cardiac surgery has been evaluated from a gender perspective, and the gender-specific distribution of these risk factors is reported on. The named comorbidities are listed. Economic aspects demonstrated a gender gap. Outcome after coronary and valvular surgeries as well as after heart transplantation are displayed in this regard. Results after postoperative use of intra-aortic balloon pump are shown. Gender-related aspects of clinical and biomedical cardiosurgical research are reported. Conclusions Female gender has become an independent risk factor of survival after the majority of cardiosurgical procedures. Severely impaired left ventricular ejection fraction independently predicts survival in men, whereas age does in females. PMID:26288584

  20. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  1. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  2. Analysis and neuronal modeling of the nonlinear characteristics of a local cardiac reflex in the rat.

    PubMed

    Vadigepalli, R; Doyle, F J; Schwaber, J S

    2001-10-01

    Previous experimental results have suggested the existence of a local cardiac reflex in the rat. In this study, the putative role of such a local reflex in cardiovascular regulation is quantitatively analyzed. A model for the local reflex is developed from anatomical experimental results and physiological data in the literature. Using this model, a systems-level analysis is conducted. Simulation results indicate that the neuromodulatory mechanism of the local reflex attenuates the nonlinearity of the relationship between cardiac vagal drive and arterial pressure. This behavior is characterized through coherence analysis. Furthermore, the modulation of phase-related characteristics of the cardiovascular system is suggested as a plausible mechanism for the nonlinear attenuation. Based on these results, it is plausible that the functional role of the local reflex is highly robust nonlinear compensation at the heart, which results in less complex dynamics in other parts of the reflex. PMID:11570998

  3. Exercise Attenuates Intermittent Hypoxia-Induced Cardiac Fibrosis Associated with Sodium-Hydrogen Exchanger-1 in Rats

    PubMed Central

    Chen, Tsung-I; Tu, Wei-Chia

    2016-01-01

    Purpose: To investigate the role of sodium–hydrogen exchanger-1 (NHE-1) and exercise training on intermittent hypoxia-induced cardiac fibrosis in obstructive sleep apnea (OSA), using an animal model mimicking the intermittent hypoxia of OSA. Methods: Eight-week-old male Sprague–Dawley rats were randomly assigned to control (CON), intermittent hypoxia (IH), exercise (EXE), or IH combined with exercise (IHEXE) groups. These groups were randomly assigned to subgroups receiving either a vehicle or the NHE-1 inhibitor cariporide. The EXE and IHEXE rats underwent exercise training on an animal treadmill for 10 weeks (5 days/week, 60 min/day, 24–30 m/min, 2–10% grade). The IH and IHEXE rats were exposed to 14 days of IH (30 s of hypoxia—nadir of 2–6% O2—followed by 45 s of normoxia) for 8 h/day. At the end of 10 weeks, rats were sacrificed and then hearts were removed to determine the myocardial levels of fibrosis index, oxidative stress, antioxidant capacity, and NHE-1 activation. Results: Compared to the CON rats, IH induced higher cardiac fibrosis, lower myocardial catalase, and superoxidative dismutase activities, higher myocardial lipid and protein peroxidation and higher NHE-1 activation (p < 0.05 for each), which were all abolished by cariporide. Compared to the IH rats, lower cardiac fibrosis, higher myocardial antioxidant capacity, lower myocardial lipid, and protein peroxidation and lower NHE-1 activation were found in the IHEXE rats (p < 0.05 for each). Conclusion: IH-induced cardiac fibrosis was associated with NHE-1 hyperactivity. However, exercise training and cariporide exerted an inhibitory effect to prevent myocardial NHE-1 hyperactivity, which contributed to reduced IH-induced cardiac fibrosis. Therefore, NHE-1 plays a critical role in the effect of exercise on IH-induced increased cardiac fibrosis. PMID:27790155

  4. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  5. Effect of dietary fats on the lipid composition and enzyme activities of rat cardiac sarcolemma.

    PubMed

    Awad, T B; Chattopadhyay, J P

    1983-09-01

    The effect of dietary lipids on the lipid composition and the activities of some enzymes of cardiac sarcolemma were studied. Feeding rats coconut oil--rich diet for 4 weeks resulted in a significant decrease in 5'-nucleotidase, phosphodiesterase I and p-nitrophenylphosphatase activity of cardiac sarcolemma as compared with feeding rats safflower oil. Sarcolemma from animals fed coconut oil diet contained a significantly lower concentration of total polyunsaturated fatty acids and a higher concentration of total monounsaturated fatty acids than that from rats fed safflower oil. Most of the alterations in polyunsaturated fatty acids were found in 20:4, whereas those of the monounsaturates were found in 18:1. Among all the phosphoglycerides, the fatty acid composition of the phosphatidylcholine exhibited the largest alterations as a result of coconut oil feeding. No dietary effect was observed in the sarcolemma content of cholesterol and phospholipid. These studies clearly indicate that manipulation of dietary lipids influences both the fatty acid composition and some functional properties of the sarcolemma membranes.

  6. Effects of renal sympathetic denervation on cardiac systolic function after myocardial infarction in rats

    PubMed Central

    Guo, Jiqun; Zhou, Zhongxia; Li, Zhenzhen; Liu, Qian; Zhu, Guoqing; Shan, Qijun

    2016-01-01

    Abstract This study investigated the therapeutic effects of renal denervation on cardiac systolic function after myocardial infarction (MI) in rats and the mechanism involved. Fifty male SD rats were randomly assigned to the sham group (n = 15), the MI group (n = 20), and the MI plus renal denervation group (n = 15). MI was established through thoracotomic ligation of the anterior descending artery. Renal denervation was achieved by laparotomic stripping of the renal arterial adventitial sympathetic nerve, approximately 3 mm from the abdominal aorta. Left ventricular function and hemodynamics were measured several weeks following MI. The left ventricular systolic function of the MI group was significantly reduced and the systolic blood pressure (SBP) remarkably declined. In rats with MI treated with renal denervation, the left ventricular ejection fraction (EF), fractional shortening (FS) and SBP markedly improved compared with the MI group. However, heart rate and fibrosis decreased significantly. These findings suggest that renal denervation has therapeutic effects on post-MI cardiac dysfunction. These effects are associated with increased left ventricular ejection fraction (LVEF) and SBP, as well as reduced heart rate and fibrosis. This may represent a new approach to the treatment of post-MI remodeling and subsequent heart failure.

  7. The effects of immunosuppression and anticoagulation on fibrin deposition and swelling in rat cardiac allografts.

    PubMed

    Christmas, S E; Jasani, M K; Jayson, M I

    1987-01-01

    Rat cardiac allograft recipients were injected with radiolabeled human fibrinogen at intervals after transplantation. There was a progressive increase in tracer accumulation within graft ventricles, peaking at the time of rejection at about 30-fold that within syngeneic grafts. Protein extraction experiments indicated that ca. 90% of tracer was present as cross-linked fibrin at the time of rejection. Exudation within rejecting allografts was nearly threefold that in syngeneic grafts. The weight of allografts at different times after transplantation increased in close concordance with fibrin deposition. Pharmacologically immunosuppressed recipients showed negligible fibrin deposition and swelling whereas "B" rats and thoracic-duct-lymph-drained recipients showed moderate allograft swelling in the absence of significant fibrin deposition or rejection. The decreased fibrin deposition was not a result of depressed plasma clotting factor levels. B rats reconstituted with thoracic duct lymphocytes still had reduced allograft fibrin deposition in the presence of normal amounts of swelling and exudation. The anticoagulants warfarin and heparin greatly decreased allograft fibrin but were almost without effect on allograft swelling, exudation, and rejection. The possible participation of infiltrating macrophages in allograft fibrin deposition is discussed. Unlike cutaneous delayed hypersensitivity reactions, normal amounts of fibrin deposition appear not to be essential for full cardiac allograft rejection.

  8. Nano-titanium dioxide induced cardiac injury in rat under oxidative stress.

    PubMed

    Sha, BaoYong; Gao, Wei; Wang, ShuQi; Li, Wei; Liang, Xuan; Xu, Feng; Lu, Tian Jian

    2013-08-01

    Heart diseases, which are related to oxidative stress (OS), negatively affect millions of people from kids to the elderly. Titanium dioxide (TiO2) has widespread applications in our daily life, especially nanoscale TiO2. Compared to the high risk of particulate matter (≤2.5μm) in air to heart disease patients, related research of TiO2 on diseased body is still unknown, which suggest us to explore the potential effects of nanoscale and microscale TiO2 to heart under OS conditions. Here, we used alloxan to induce OS conditions in rat, and investigated the response of heart tissue to TiO2 in healthy and alloxan treated rats. Compared with NMs treatment only, the synergistic interaction between OS conditions and nano-TiO2 significantly reduced the heart-related function indexes, inducing pathological changes of myocardium with significantly increased levels of cardiac troponin I and creatine kinase-MB. In contrast with the void response of micro-TiO2 to heart functions in alloxan treated rats, aggravation of OS conditions might play an important role in cardiac injury after alloxan and nano-TiO2 dual exposure. Our results demonstrated that OS conditions enhanced the adverse effects of nano-TiO2 to heart, suggesting that the use of NMs in stressed conditions (e.g., drug delivery) needs to be carefully monitored. PMID:23665316

  9. Minimally invasive cardiac surgery in the adult: surgical instruments, equipment, and techniques.

    PubMed

    Kitamura, M; Uwabe, K; Hirota, J; Kawai, A; Endo, M; Koyanagi, H

    1998-09-01

    To clarify the special instruments and equipment used for minimally invasive cardiac surgery (MICS), we examined the initial experiences with MICS operations with ministernotomy or minithoracotomy at our institution. Fifty adult patients with congenital, valvular, and/or ischemic heart diseases underwent MICS operations, and all surgical procedures were completed without conversion to full sternotomy. The length of the skin incision was about 10 cm or less in all patients. Postoperative recovery was favorable, and the majority of the patients were discharged from the hospital around the end of the second postoperative week. In this series of patients, an oscillating bone saw, lifting type retractor, 2 blade spreader, cannula with a balloon, and right-angled aortic clamp among other items, were very useful for successfully performing various operations with MICS approaches and techniques. The associated results suggest that MICS with ministernotomy or minithoracotomy was feasible using special instruments and equipment and could be encouraged for adult patients with various cardiovascular diseases.

  10. [THE ENERGY FUNCTION OF RAT CARDIAC MITOCHONDRIA UNDER ARTIFICIAL HYPOBIOSIS].

    PubMed

    Melnytchuk, S D; Khyzhnyak, S V; Morozova, V S; Stepanova, L I; Umanskaya, A A; Voitsitsky, V M

    2015-01-01

    We investigated the energy activity of mitochondria from rat cardiomyocytes under the artificial carbon dioxide hypobiosis, which led to physiological changes in the organism (the decrease of body temperature, the reduction of heart rate, etc.). The respiratory and phosphorylation activities in mitochondria of cardiomyocytes is reduced when using two oxidation substrates (succinate and malate), which characterize the rate of the oxygen consumption by the mitochondria. The partial uncoupling of the oxidation and phosphorylation processes when using the malate unlike succinate was established. The activity of NADH-KoQ-oxidoreductase (complex I of the respiratory chain) is inhibited, but the activities of succinate dehydrogenase and cytochrome oxidase don't change. Probably, the priority of the succinate use under the artificial hypobiosis provides the support of the mitochondria functional activity on a sufficient energy level. It is evidenced by the ATP-synthetase activity. The modifications of the structural and functional state of the inner mitochondria membrane of the cardiomyocytes are directed to the adaptation under the artificial carbon dioxide hypobiosis. PMID:26387156

  11. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    PubMed

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction.

  12. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    PubMed Central

    Junqueira, Adriana; Cicogna, Antônio Carlos; Engel, Letícia Estevam; Aldá, Maiara Almeida; de Tomasi, Loreta Casquel; Giuffrida, Rogério; Giometti, Inês Cristina; Freire, Ana Paula Coelho Figueira; Aguiar, Andreo Fernando; Pacagnelli, Francis Lopes

    2016-01-01

    Background Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport. PMID:26647722

  13. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells.

    PubMed

    Sreejit, P; Verma, R S

    2013-04-01

    Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for

  14. Cardiac energy metabolism and oxidative stress biomarkers in diabetic rat treated with resveratrol.

    PubMed

    Carolo dos Santos, Klinsmann; Pereira Braga, Camila; Octavio Barbanera, Pedro; Seiva, Fábio Rodrigues Ferreira; Fernandes Junior, Ary; Fernandes, Ana Angélica Henrique

    2014-01-01

    Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg(-1) body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS's ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers' level of oxidative stress under

  15. Cardiac Energy Metabolism and Oxidative Stress Biomarkers in Diabetic Rat Treated with Resveratrol

    PubMed Central

    Carolo dos Santos, Klinsmann; Pereira Braga, Camila; Octavio Barbanera, Pedro; Rodrigues Ferreira Seiva, Fábio; Fernandes Junior, Ary; Fernandes, Ana Angélica Henrique

    2014-01-01

    Resveratrol (RSV), polyphenol from grape, was studied to evaluate its effects on calorimetric parameters, energy metabolism, and antioxidants in the myocardium of diabetic rats. The animals were randomly divided into four groups (n = 8): C (control group): normal rats; C-RSV: normal rats receiving RSV; DM: diabetic rats; and DM-RSV: diabetics rats receiving RSV. Type 1 diabetes mellitus was induced with administration of streptozotocin (STZ; 60 mg−1 body weight, single dose, i.p.). After 48 hours of STZ administration, the animals received RSV (1.0 mg/kg/day) for gavage for 30 days. Food, water, and energy intake were higher in the DM group, while administration of RSV caused decreases (p<0.05) in these parameters. The glycemia decreased and higher final body weight increased in DM-RSV when compared with the DM group. The diabetic rats showed higher serum-free fatty acid, which was normalized with RSV. Oxygen consumption (VO2) and carbon dioxide production (VCO2) decreased (p<0.05) in the DM group. This was accompanied by reductions in RQ. The C-RSV group showed higher VO2 and VCO2 values. Pyruvate dehydrogenase activity was lower in the DM group and normalizes with RSV. The DM group exhibited higher myocardial β-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase activity, and RSV decreased the activity of these enzymes. The DM group had higher cardiac lactate dehydrogenase compared to the DM-RSV group. Myocardial protein carbonyl was increased in the DM group. RSV increased reduced glutathione in the cardiac tissue of diabetic animals. The glutathione reductase activity was higher in the DM-RSV group compared to the DM group. In conclusion, diabetes is accompanied by cardiac energy metabolism dysfunction and change in the biomarkers of oxidative stress. The cardioprotective effect may be mediated through RVS's ability to normalize free fatty acid oxidation, enhance utilization glucose, and control the biomarkers' level of oxidative stress under

  16. Spontaneous and propagated contractions in rat cardiac trabeculae

    PubMed Central

    1989-01-01

    Sarcomere length measurement by microscopic and laser diffraction techniques in trabeculae of rat heart, superfused with Krebs-Henseleit solution at 21 degrees C, showed spontaneous local sarcomere shortening after electrically stimulated twitches. The contractions originated in a region of several hundred micrometers throughout the width of the muscle close to the end of the preparation that was damaged by dissection. The contractions propagated at a constant velocity along the trabeculae. The velocity of propagation increased from 0 to 10 mm/s in proportion to the number of stimuli (3-30) in a train of electrically evoked twitches at 2 Hz and at an external calcium ion concentration ([Ca++]o) of 1.5 mM. At a constant number of stimuli (n), the velocity of propagation increased from 0 to 15 mm/s with [Ca++]o increasing from 1 to 7 mM. In addition, increase of n and [Ca++]o led to an increase of the extent of local sarcomere shortening during the spontaneous contractions, and the occurrence of multiple contractions. Spontaneous contractions with much internal shortening and a high velocity of propagation frequently induced spontaneous synchronized contractions and eventually arrhythmias. Propagation of spontaneous contractions at low and variable velocity is consistent with the hypothesis that calcium leakage into damaged cells causes spontaneous calcium release from the overloaded sarcoplasmic reticulum in the damaged cells. This process propagates as a result of diffusion of calcium into adjacent cells, which triggers calcium release from their sarcoplasmic reticulum. We postulate that the propagation velocity depends on the intracellular calcium ion concentration, with increases with n and [Ca++]o. PMID:2738576

  17. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    PubMed

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair.

  18. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  19. H2O2 alters rat cardiac sarcomere function and protein phosphorylation through redox signaling.

    PubMed

    Avner, Benjamin S; Hinken, Aaron C; Yuan, Chao; Solaro, R John

    2010-09-01

    ROS, such as H(2)O(2), are a component of pathological conditions in many organ systems and have been reported to be elevated in cardiac pathophysiology. The experiments presented here test the hypothesis that H(2)O(2) induces alterations in cardiac myofilament function by the posttranslational modification of sarcomeric proteins indirectly through PKC signaling. In vitro assessment of actomyosin Mg(2+)-ATPase activity of myofibrillar fractions showed blunted relative ATP consumption in the relaxed state (pCa 8.0) in response to treatment with 0.5 mM H(2)O(2) before myofilament isolation. The effect was attributable to downstream "redox signaling," inasmuch as the direct application of H(2)O(2) to isolated myofibrils did not alter Mg(2+)-ATPase activity. Ca(2+)-ATPase activity, which was used as a measure of myofibrillar myosin function, was unaffected by H(2)O(2). Functional experiments using rat cardiac trabeculae treated with 0.5 or 5 mM H(2)O(2) followed by detergent extraction of membranes demonstrated increased Ca(2+) sensitivity of force production, a faster rate of force redevelopment, and (for 5 mM) decreased maximum tension. Biochemical analysis of myocardial samples treated with 0.5 mM H(2)O(2) demonstrated increased phosphorylation of two sarcomeric proteins: cardiac troponin I and myosin-binding protein-C. These changes were eliminated by a general PKC inhibitor. However, H(2)O(2) and the general PKC activator PMA induced different phosphorylation patterns in cardiomyocytes in which PKC-delta was elevated by viral infection. These data provide evidence that PKC-dependent redox signaling affects the function of cardiac myofilaments and indicate modification of specific proteins through this signaling mechanism.

  20. Mitochondrial and Energetic Cardiac Phenotype in Hypothyroid Rat. Relevance to Heart Failure

    PubMed Central

    Athéa, Yoni; Garnier, Anne; Fortin, Dominique; Bahi, Lahoucine; Veksler, Vladimir; Ventura-Clapier, Renée

    2007-01-01

    Changes in thyroid status are associated with profound alterations in biochemical and physiological functioning of cardiac muscle, although its impact on cardiac energy metabolism is still debated. Similarities between the changes in cardiac gene expression in pathological hypertrophy leading to heart failure, and hypothyroidism prompted scientists to suggest a role for thyroid hormone status in the development of metabolic and functional alterations in this disease. We thus investigated the effects of hypothyroidism on cardiac energy metabolism. Hypothyroid state (HYPO) was induced by thyroidectomy and propyl-thio-uracyl in male rats for three weeks. We examined the effects of hypothyroid state on oxidative capacity and mitochondrial substrate utilization by measuring oxygen consumption of saponin permeabilized cardiac fibers, mitochondrial biogenesis by RT-PCR and energy metabolism and energy transfer enzymes by spectrophotometry. The results show that maximal oxidative capacity of the myocardium was decreased from 24.9±0.9 in control (CT) to 19.3±0.7 μmole O2/min/g dw in HYPO. However, protein content and mRNA of PGC-1α and mRNA of its transcription cascade that is thought to control mitochondrial content in normal myocardium and heart failure, were unchanged in HYPO. Mitochondrial utilization of glycerol-3P (−70%), malate (−45%) and octanoate (−24%) but not pyruvate was decreased in HYPO. Moreover, the creatine kinase system and energy transfer were hardly affected in HYPO. Besides, hypothyroidism decreased the activation of other signaling pathways like p38 MAPK, AMPK and calcineurin. These results show that cellular hypothyroidism can hardly account for the specific energetic alterations of HF. PMID:17638011

  1. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  2. Estrogen receptor agonists alleviate cardiac and renal oxidative injury in rats with renovascular hypertension.

    PubMed

    Özdemir Kumral, Zarife Nigâr; Kolgazi, Meltem; Üstünova, Savaş; Kasımay Çakır, Özgür; Çevik, Özge Dağdeviren; Şener, Göksel; Yeğen, Berrak Ç

    2016-01-01

    Although endogenous estrogen is known to offer cardiac and vascular protection, the involvement of estrogen receptors in mediating the protective effect of estrogen on hypertension-induced cardiovascular and renal injury is not fully explained. We aimed to investigate the effects of estrogen receptor (ER) agonists on oxidative injury, cardiovascular and renal functions of rats with renovascular hypertension (RVH). Female Sprague-Dawley rats were randomly divided as control and RVH groups, and RVH groups had either ovariectomy (OVX) or sham-OVX. Sham-OVX-RVH and OVX-RVH groups received either ERβ agonist diarylpropiolnitrile (1 mg/kg/day) or ERα agonist propyl pyrazole triol (1 mg/kg/day) for 6 weeks starting at the third week following the surgery. At the end of the 9(th) week, systolic blood pressures were recorded, cardiac functions were determined, and the contraction/relaxation responses of aortic rings were obtained. Serum creatinine levels, tissue malondialdehyde, glutathione, superoxide dismutase, catalase levels, and myeloperoxidase activity in heart and kidney samples were analyzed, and Na(+), K(+)-ATPase activity was measured in kidney samples. In both sham-OVX and OVX rats, both agonists reduced blood pressure and reversed the impaired contractile performance of the heart, while ERβ agonist improved renal functions in both the OVX and non-OVX rats. Both agonists reduced neutrophil infiltration, lipid peroxidation, and elevated antioxidant levels in the heart, but a more ERβ-mediated protective effect was observed in the kidney. Our data suggest that activation of ERβ might play a role in preserving the function of the stenotic kidney and delaying the progression of renal injury, while both receptors mediate similar cardioprotective effects. PMID:27399230

  3. Renal, vascular and cardiac fibrosis in rats exposed to passive smoking and industrial dust fibre amosite

    PubMed Central

    Boor, Peter; Casper, Sandra; Celec, Peter; Hurbánková, Marta; Beňo, Milan; Heidland, August; Amann, Kerstin; Šebeková, Katarína

    2009-01-01

    Passive smoking is an independent risk factor for cardiovascular diseases. Industrial fibrous dust, e.g. the asbestos group member, amosite, causes lung cancer and fibrosis. No data are available on renal involvement after inhalational exposure to these environmental pollutants or of their combination, or on cardiovascular and renal toxicity after exposure to amosite. Male Wistar rats were randomized into four groups (n= 6): control and amosite group received initially two intratracheal instillations of saline and amosite solution, respectively. Smoking group was subjected to standardized daily exposure to tobacco smoke for 2 hrs in a concentration resembling human passive smoking. Combined group was exposed to both amosite and cigarette smoke. All rats were killed after 6 months. Rats exposed to either amosite or passive smoking developed significant glomerulosclerosis and tubulointerstitial fibrosis. Combination of both exposures had additive effects. Histomorphological changes preceded the clinical manifestation of kidney damage. In both groups with single exposures, marked perivascular and interstitial cardiac fibrosis was detected. The additive effect in the heart was less pronounced than in the kidney, apparent particularly in changes of vascular structure. Advanced oxidation protein products, the plasma marker of the myeloperoxidase reaction in activated monocytes/macrophages, were increased in all exposed groups, whereas the inflammatory cytokines did not differ between the groups. In rats, passive smoking or amosite instillation leads to renal, vascular and cardiac fibrosis potentially mediated via increased myeloperoxidase reaction. Combination of both pollutants shows additive effects. Our data should be confirmed in subjects exposed to these environmental pollutants, in particular if combined. PMID:19292733

  4. Lead-induced cardiac and hematological alterations in aging Wistar male rats: alleviating effects of nutrient metal mixture.

    PubMed

    Basha, D Chand; Basha, S Sadak; Reddy, G Rajarami

    2012-08-01

    Age related mitochondrial impairments are considered to be contributors of cardiovascular disease. This study was designed to examine whether early life exposure to lead (Pb) would lead to the Pb induced age related hematological and cardiac mitochondrial changes in rats, and to further examine the protective effect of nutrient metal mixture containing zinc, iron and calcium. Male albino rats were lactationally exposed to 0.2 % Pb-acetate or 0.2 % Pb-acetate together nutrient metal mixture (0.02 %) in drinking water of the mother from postnatal day 1 (PND1) to PND 21. The hemoglobin level, the activities of serum ceruloplasmin oxidase, cardiac mitochondrial enzymes catalase, manganese superoxide dismutase, copper zinc superoxide dismutase, glutathione peroxidase, succinate dehydrogenase, lipid peroxidation and Pb levels were analyzed at PND 45, 12 and 24 months age. The hematological parameters, and the cardiac TCA cycle and antioxidant enzyme markers and lipid peroxidation levels were significantly altered following Pb exposure in young rats (PND 45). These Pb induced changes persisted, though at much lower level in the aged rats. The Pb levels in blood and heart were also significantly higher in PND 45 and remained at detectable levels in older rats. The nutrient metal mixture containing iron, calcium and zinc significantly reversed these changes in all the chosen markers except lipid peroxidation in which the reversal effect was not significant. These data are supportive of age-related cardiac mitochondrial impairments and further provide evidence for the protective efficacy of nutrient metal mixture against Pb-toxicity.

  5. Reproductive toxicity of DDT in adult male rats.

    PubMed

    Ben Rhouma, K; Tébourbi, O; Krichah, R; Sakly, M

    2001-08-01

    The reproductive toxicity of DDT was investigated in adult male rats exposed to 50 and 100 mg/kg body weight (b.wt) day(-1) for 10 successive days. Compared with control animals, administration of DDT led to a dose-dependent reduction of testicular weight and the number as well as the percentage of motile spermatozoa in the epididymis. Testicular histological observations revealed also a marked loss of gametes in the lumen of seminiferous tubules. In DDT-treated rats, the seminal vesicles weights dropped significantly, resulting from a decrease of testosterone production by testes, whereas serum LH and FSH increased after pesticide exposure. This increase of gonadotrophin levels may be related to an impairment of the negative feedback exerted by the steroid on the hypothalamic--pituitary axis. It is concluded that DDT induced adverse effects on male rat fertility by acting directly on the testes and altering the neuroendocrine function.

  6. Toxicity of zinc oxide nanoparticles on adult male Wistar rats.

    PubMed

    Abbasalipourkabir, Roghayeh; Moradi, Hemen; Zarei, Sadegh; Asadi, Soheila; Salehzadeh, Aref; Ghafourikhosroshahi, Abolfazl; Mortazavi, Motahareh; Ziamajidi, Nasrin

    2015-10-01

    The purpose of this study was to investigate the effects of zinc oxide nanoparticles (nZnO) on adult male Wistar rats. Thirty male Wistar rats divided into five groups of six animals each were used for this study. For ten days, Groups one to four continuously received 50, 100, 150 and 200 mg/kg nZnO, respectively. Group five served as the control group. At the end of the study, the rats were sacrificed and histopathological study of the liver and renal tissue, sperm analysis, serum oxidative stress parameters and some liver enzymes were done. The results of this study showed that nZnO at concentration more than 50 mg/kg lead to significant changes in liver enzymes, oxidative stress, liver and renal tissue and sperm quality and quantity. In conclusion, the toxicity of nZnO is more significant when the concentration is increased; however, the use of low doses requires further investigation.

  7. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations.

    PubMed

    Monette, Jeffrey S; Gómez, Luis A; Moreau, Régis F; Bemer, Brett A; Taylor, Alan W; Hagen, Tory M

    2010-07-23

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other.

  8. Characteristics of the Rat Cardiac Sphingolipid Pool in Two Mitochondrial Subpopulations

    PubMed Central

    Monette, Jeffrey S.; Gómez, Luis A.; Moreau, Régis F.; Bemer, Brett A.; Taylor, Alan W.; Hagen, Tory M.

    2010-01-01

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary (IFM) and subsarcolemmal (SSM) mitochondria were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (~10,000 pmols/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (~70 pmols/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16 to 24 carbon units in their acyl side-chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmols/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other. PMID:20599536

  9. The protective role of neocuproine against cardiac damage in isolated perfused rat hearts.

    PubMed

    Applebaum, Y J; Kuvin, J; Borman, J B; Uretzky, G; Chevion, M

    1990-01-01

    The effect of neocuproine on cardiac injury was studied using retrogradely perfused isolated rat hearts in two experimental systems. In the first system, where hydrogen peroxide-induced damage was studied, neocuproine at the range of 40-175 microM provided protection at the level of 70-85%, as demonstrated by the reduced loss in the peak systolic pressure (P), in +dP/dt and in -dP/dt. In the second system, where ischemia/reperfusion-induced arrhythmias were studied, neocuproine (42 microM) provided a marked protection against cardiac injury as demonstrated by the lowering of the incidence in irreversible ventricular fibrillation, by decreasing the duration of ventricular fibrillation and by the concomitant increase of the duration of normal sinus rhythm, and by improving the post-ischemic recovery of P, +dP/dt and -dP/dt. Free radicals have already been implicated as causative agents in cardiac injury resulting from either hydrogen peroxide or ischemia followed by reperfusion. Additionally, iron and copper have already been shown to drastically exacerbate the injurious effects of free radicals. Thus, the results reported here with neocuproine, a highly effective chelator for both iron and copper, as well as with adventitious copper and with the combination of neocuproine and copper, are in accord with the mediatory role of transition metals in enhancing the deleterious effects induced by free radicals.

  10. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging.

    PubMed

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A B; Maguire, Mahon L; Whittington, Hannah J; Lygate, Craig A; Kohl, Peter; Schneider, Jürgen E

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  11. Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

    PubMed Central

    Teh, Irvin; McClymont, Darryl; Burton, Rebecca A. B.; Maguire, Mahon L.; Whittington, Hannah J.; Lygate, Craig A.; Kohl, Peter; Schneider, Jürgen E.

    2016-01-01

    Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans. Together, these methods enhanced SNR and spatial resolution, minimised orientation bias in diffusion-weighting, and reduced temperature variation, enabling detection of tissue structures such as cell alignment in atria, valves and vessels at an unprecedented level of detail. Improved confidence in eigenvector reproducibility enabled tracking of myolaminar structures as a basis for segmentation of functional groups of cardiomyocytes. Ex vivo DTI facilitates acquisition of high quality structural data that complements readily available in vivo cardiac functional and anatomical MRI. The improvements presented here will facilitate next generation virtual models integrating micro-structural and electro-mechanical properties of the heart. PMID:27466029

  12. Evening primrose oil ameliorates platelet aggregation and improves cardiac recovery in myocardial-infarct hypercholesterolemic rats.

    PubMed

    Abo-Gresha, Noha M; Abel-Aziz, Eman Z; Greish, Sahar M

    2014-01-01

    Omega-6 polyunsaturated fatty acids (n-6 PUFA) are well known for their role in cardiovascular disease (CVD). We proposed that Evening prime rose oil (EPO) can improve the outcome of a heart with myocardial infarction (MI) in the presence of diet-induced hyperaggregability. This study was designed to examine its cholesterol lowering, antithrombotic and anti-inflammatory effects. High fat diet was administered for 4 weeks then MI was induced by isoproterenol (85 mg/kg/s.c./24 h). Treatment with EPO (5 or 10 gm/kg/day) for 6 weeks improved the electrocardiographic pattern, serum lipid profile, cardiac biomarkers as well as Platelet aggregation percent. We reported decreased serum level of TNF-α, IL-6 and COX-2 with attenuation of TNF-α and TGF-β in the cardiac homogenate. Moreover, histopathology revealed marked amelioration. Finally, we provide evidence that EPO improve cardiac recovery in hypercholesterolemic myocardial infarct rats. These effects are attributed to direct hypocholesterolemic effect and indirect effect on the synthesis of eicosanoids (prostaglandins, cytokines).

  13. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations.

    PubMed

    Monette, Jeffrey S; Gómez, Luis A; Moreau, Régis F; Bemer, Brett A; Taylor, Alan W; Hagen, Tory M

    2010-07-23

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other. PMID:20599536

  14. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  15. Induction of tolerance to cardiac allografts in lethally irradiated rats reconstituted with syngeneic bone marrow

    SciTech Connect

    Hartnett, L.C.

    1983-01-01

    Generally, organ grafts from one individual animal to another are rejected in one-two weeks. However, if the recipients are given Total Body Irradiation (TBI) just prior to grafting, followed by reconstitution of hemopoietic function with syngeneic (recipient-type) bone marrow cells, then vascularized organ grafts are permanently accepted. Initially after irradiation, it is possible to induce tolerance to many strain combinations in rats. This thesis examines the system of TBI as applied to the induction of tolerance in LEW recipients of WF cardiac allografts. These two rat strains are mismatched across the entire major histocompatibility complex. When the LEW recipient are given 860 rads, a WF cardiac allograft and LEW bone marrow on the same day, 60% of the grafts are accepted. Methods employed to improve the rate of graft acceptance include: treating either donor or recipient with small amounts of methotrexate, or waiting until two days after irradiation to repopulate with bone marrow. It seems from these investigations of some of the early events in the induction of tolerance to allografts following TBI and syngeneic marrow reconstitution that an immature cell population in the bone marrow interacts with a radioresistant cell population in the spleen to produce tolerance to completely MHC-mismatched allografts.

  16. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    SciTech Connect

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; Cabo, Rafael de; Ingram, Donald K.; Mattison, Julie A.

    2010-03-15

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  17. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    PubMed Central

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; de Cabo, Rafael; Ingram, Donald K.; Mattison, Julie A.

    2009-01-01

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound. PMID:20026095

  18. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    PubMed

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  19. Dynamic Measurement of Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study

    PubMed Central

    Thanachartwet, Vipa; Wattanathum, Anan; Sahassananda, Duangjai; Wacharasint, Petch; Chamnanchanunt, Supat; Khine Kyaw, Ei; Jittmittraphap, Akanitt; Naksomphun, Mali; Surabotsophon, Manoon; Desakorn, Varunee

    2016-01-01

    Few previous studies have monitored hemodynamic parameters to determine the physiological process of dengue or examined inferior vena cava (IVC) parameters to assess cardiac preload during the clinical phase of dengue. From January 2013 to July 2015, we prospectively studied 162 hospitalized adults with confirmed dengue viral infection using non-invasive cardiac output monitoring and bedside ultrasonography to determine changes in hemodynamic and IVC parameters and identify the types of circulatory shock that occur in patients with dengue. Of 162 patients with dengue, 17 (10.5%) experienced dengue shock and 145 (89.5%) did not. In patients with shock, the mean arterial pressure was significantly lower on day 6 after fever onset (P = 0.045) and the pulse pressure was significantly lower between days 4 and 7 (P<0.05). The stroke volume index and cardiac index were significantly decreased between days 4 and 15 and between days 5 and 8 after fever onset (P<0.05), respectively. A significant proportion of patients with dengue shock had an IVC diameter <1.5 cm and IVC collapsibility index >50% between days 4 and 5 (P<0.05). Hypovolemic shock was observed in 9 (52.9%) patients and cardiogenic shock in 8 (47.1%), with a median (interquartile range) time to shock onset of 6.0 (5.0–6.5) days after fever onset, which was the median day of defervescence. Intravascular hypovolemia occurred before defervescence, whereas myocardial dysfunction occurred on the day of defervescence until 2 weeks after fever onset. Hypovolemic shock and cardiogenic shock each occurred in approximately half of the patients with dengue shock. Therefore, dynamic measures to estimate changes in hemodynamic parameters and preload should be monitored to ensure adequate fluid therapy among patients with dengue, particularly patients with dengue shock. PMID:27196051

  20. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell.

    PubMed

    Chepeleva, E V; Pavlova, S V; Malakhova, A A; Milevskaya, E A; Rusakova, Ya L; Podkhvatilina, N A; Sergeevichev, D S; Pokushalov, E A; Karaskov, A M; Sukhikh, G T; Zakiyan, S M

    2015-11-01

    We developed a protocol for preparing cardiac cell culture from rat heart enriched with regional stem cells based on clonogenic properties and proliferation in culture in a medium with low serum content. Experiments on WAG rats with experimental ischemic myocardial damage showed that implantation of autologous regional stem cells into the left ventricle reduced the volume of cicatricial tissue, promoted angiogenesis in the damaged zone, and prevented the risk of heart failure development.

  1. Enhanced cardiac inflammation and fibrosis in ovariectomized hypertensive rats: a possible mechanism of diastolic dysfunction in postmenopausal women.

    PubMed

    Mori, Takahiro; Kai, Hisashi; Kajimoto, Hidemi; Koga, Mitsuhisa; Kudo, Hiroshi; Takayama, Narimasa; Yasuoka, Suguru; Anegawa, Takahiro; Kai, Mamiko; Imaizumi, Tsutomu

    2011-04-01

    Diastolic dysfunction is more prevalent in individuals with hypertension, particularly postmenopausal women; however, the pathogenesis of diastolic dysfunction remains unknown. Pressure overload activates cardiac inflammation, which induces myocardial fibrosis and diastolic dysfunction in rats with a suprarenal aortic constriction (AC). Therefore, we examined the effects of bilateral ovariectomy (OVX) on left ventricle (LV) remodeling, diastolic dysfunction and cardiac inflammation in hypertensive female rats. Rats were randomized to OVX+AC, OVX and AC groups as well as a Control group receiving sham operations for both the procedures. Rats underwent OVX at 6 weeks and AC at 10 weeks (Day 0). At Day 28, OVX did not appear to affect arterial pressure, cardiac hypertrophy or LV fractional shortening in AC rats. However, OVX increased myocardial fibrosis, elevated LV end-diastolic pressure and reduced the transmitral Doppler spectra early to late filling velocity ratio in AC rats. AC-induced transient myocardial monocyte chemoattractant protein-1 expression and macrophage infiltration, both of which peaked at Day 3 and were augmented and prolonged by OVX. At Day 28, dihydroethidium staining revealed superoxide generation in the intramyocardial arterioles in the OVX+AC group but not in the AC group. NOX1, a functional subunit of nicotinamide adenine dinucleotide phosphate oxidase, was upregulated only in the OVX+AC group at Day 28. Chronic 17β-estradiol replacement prevented the increases in macrophage infiltration, NOX1 upregulation, myocardial fibrosis and diastolic dysfunction in OVX+AC rats. In conclusion, we suggest that estrogen deficiency augments cardiac inflammation and oxidative stress and thereby aggravates myocardial fibrosis and diastolic dysfunction in hypertensive female rats. The findings provide insight into the mechanism underlying diastolic dysfunction in hypertensive postmenopausal women.

  2. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    SciTech Connect

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.

  3. Plasma Fatty Acid Binding Protein 4 and Risk of Sudden Cardiac Death in Older Adults

    PubMed Central

    Djoussé, Luc; Maziarz, Marlena; Biggs, Mary L.; Ix, Joachim H.; Zieman, Susan J.; Kizer, Jorge R.; Lemaitre, Rozenn N.; Mozaffarian, Dariush; Tracy, Russell P.; Mukamal, Kenneth J.; Siscovick, David S.; Sotoodehnia, Nona

    2013-01-01

    Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95–1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07–1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62–1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted. PMID:24455402

  4. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  5. Contextual fear conditioning differs for infant, adolescent, and adult rats.

    PubMed

    Esmorís-Arranz, Francisco J; Méndez, Cástor; Spear, Norman E

    2008-07-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian-conditioned suppression. When a discrete auditory-conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness, but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role.

  6. Intestinal absorption of aspartame decomposition products in adult rats.

    PubMed

    Lipton, W E; Li, Y N; Younoszai, M K; Stegink, L D

    1991-12-01

    The dipeptide sweetener aspartame (N-L-alpha-aspartyl-L-phenylalanine, 1-methyl ester; alpha-APM) is relatively stable in dry powder form. However, when exposed to elevated temperature, extremes of pH and/or moisture, alpha-APM is converted into a variety of products. In aqueous solution alpha-APM decomposes to yield methanol, two isomeric forms of L-aspartyl-L-phenylalanine (Asp-Phe) [alpha-Asp-Phe and beta-Asp-Phe], and APM's diketopiperazine cyclo-Asp-Phe. Depending on beverage storage conditions, individuals drinking alpha-APM-sweetened beverages may consume small quantities of these three compounds. Relatively little has been published about the metabolism of beta-Asp-Phe and cyclo-Asp-Phe. We compared the absorption and metabolism of alpha-Asp-Phe, beta-Asp-Phe, and cyclo-Asp-Phe with that of L-phenylalanine (Phe) in adult rats. Steady-state perfusion studies of rat jejunum indicated rapid carrier-assisted uptake of Phe and alpha-Asp-Phe, but only slow passive diffusion of beta-Asp-Phe and cyclo-Asp-Phe from the lumen. Homogenates of rat intestinal mucosa, liver, and cecal contents, as well as homogenates of pure cultures of Escherichia coli B, catalyzed the hydrolysis of alpha-Asp-Phe, but not cyclo-Asp-Phe. Homogenates of E coli and rat cecal contents, but not homogenates of rat liver or intestinal mucosa catalyzed the hydrolysis of beta-Asp-Phe.

  7. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.

  8. High affinity ( sup 3 H)glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    SciTech Connect

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D. )

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea (3H) glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of (3H) glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer (3H)glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of (3H)glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats.

  9. Adult Rats Treated with Risperidone during Development Are Hyperactive

    PubMed Central

    Bardgett, Mark E.; Franks-Henry, Julie M.; Colemire, Kristin R.; Juneau, Kathleen R.; Stevens, Rachel M.; Marczinski, Cecile A.; Griffith, Molly S.

    2014-01-01

    Risperidone is an antipsychotic drug approved for use in children, but little is known about the long-term effects of early-life risperidone treatment. In animals, prolonged risperidone administration during development increases forebrain dopamine receptor expression immediately upon the cessation of treatment. A series of experiments was performed to ascertain whether early-life risperidone administration altered locomotor activity, a behavior sensitive to dopamine receptor function, in adult rats. One additional behavior modulated by forebrain dopamine function, spatial reversal learning, was also measured during adulthood. In each study, Long-Evans rats received daily subcutaneous injections of vehicle or one of two doses of risperidone (1.0 and 3.0 mg/kg per day) from postnatal days 14 – 42. Weight gain during development was slightly yet significantly reduced in risperidone-treated rats. In the first two experiments, early-life risperidone administration was associated with increased locomotor activity at one week post-administration through approximately nine months of age, independent of changes in weight gain. In a separate experiment, it was found that the enhancing effect of early-life risperidone on locomotor activity occurred in males and female rats. A final experiment indicated that spatial reversal learning was unaffected in adult rats administered risperidone early in life. These results indicate that locomotor activity during adulthood is permanently modified by early-life risperidone treatment. The findings suggest that chronic antipsychotic drug use in pediatric populations (e.g., treatment for the symptoms of autism) could modify brain development and alter neural set-points for specific behaviors during adulthood. PMID:23750695

  10. EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH ON INDICES OF CARDIAC, PULMONARY, AND THERMOREGULATORY FUNCTION IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory


    EFFECTS OF INSTILLED RESIDUAL OIL FLY ASH (ROFA) ON INDICES OF CARDIAC, PULMONARY, AND THERMOREGULATORY FUNCTION IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. LB Wichers1, JP Nolan2, UP Kodavanti2, MCJ Schladweiler2, R Hauser3, DW Winsett2, DL Costa2, and WP Watkinson2. 1UNC Sch...

  11. EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH (ROFA) ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS

    EPA Science Inventory


    EFFECTS OF INSTILLATION OF RESIDUAL OIL FLY ASH (ROFA) ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. LB Wichers1, JP Nolan2, DW Winsett2, AD Ledbetter2, UP Kodavanti2, MCJ Schladweiler2, R Hauser3, DC Christiani3, DL Costa2, ...

  12. EFFECTS OF INDUCED RESPIRATORY CHANGES ON CARDIAC, VENTILATORY, AND THERMOREGULATORY PARAMETERS IN HEALTHY SPRAGUE-DAWLEY RATS

    EPA Science Inventory


    EFFECTS OF INDUCED RESPIRATORY CHANGES ON CARDIAC, VENTILATORY, AND THERMOREGULATORY PARAMETERS IN HEALTHY SPRAGUE-DAWLEY RATS. LB Wichers1, WH Rowan2, DL Costa2, MJ Campen3 and WP Watkinson2 1UNC SPH, Chapel Hill, NC, USA; 2USEPA, ORD/NHEERL/ETD/PTB, RTP, NC, USA; 3LRRI, A...

  13. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    SciTech Connect

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  14. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome.

  15. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  16. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure.

    PubMed

    Cohen-Segev, Ravit; Francis, Bahaa; Abu-Saleh, Niroz; Awad, Hoda; Lazarovich, Aviva; Kabala, Aviva; Aronson, Doron; Abassi, Zaid

    2014-10-01

    Congestive heart failure is often associated with impaired kidney function. Over-activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt and water retention in heart failure. While the expression of angiotensin converting enzyme (ACE), a key enzyme in the synthesis of angiotensin II (Ang II), is well established, the expression of angiotensin converting enzyme-2 (ACE-2), an enzyme responsible for angiotensin 1-7 generation, is largely unknown. This issue is of a special interest since angiotensin 1-7 counteracts many of the proliferative and hypertensive effects of angiotensin II. Therefore, the present study was designed to investigate the expression of both enzymes in the kidney and heart of rats with heart failure. Heart failure (CHF) was induced in male Sprague Dawley rats (n=9) by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls (n=8). Two weeks after surgery, the animals were sacrificed and their hearts and kidneys were harvested for assessment of cardiac remodeling and ACE and ACE-2 immunoreactivity by immunohistochemical staining. ACE immunostaining was significantly increased in the kidneys (4.34 ± 0.39% vs. 2.96 ± 0.40%, P<0.05) and hearts (4.57 ± 0.54% vs. 2.19 ± 0.37%, P<0.01) of CHF rats as compared with their sham controls. In a similar manner, ACE-2 immunoreactivity was also elevated in the kidneys (4.65 ± 1.17% vs. 1.75 ± 0.29%, P<0.05) and hearts (5.48 ± 1.11% vs. 1.13 ± 0.26%, P<0.01) of CHF rats as compared with their healthy controls. This study showed that both ACE and ACE-2 are overexpressed in the cardiac and renal tissues of animals with heart failure as compared with their sham controls. The increased expression of the beneficial ACE-2 in heart failure may serve as a compensatory response to the over-activity of the deleterious isoform, namely, angiotensin converting enzyme 1(ACE-1).

  17. Diesel Exhaust Inhalation Increases Cardiac Output, Bradyarrhythmias, and Parasympathetic Tone in Aged Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2013-01-01

    Acute air pollutant inhalation is linked to adverse cardiac events and death, and hospitalizations for heart failure. Diesel engine exhaust (DE) is a major air pollutant suspected to exacerbate preexisting cardiac conditions, in part, through autonomic and electrophysiologic disturbance of normal cardiac function. To explore this putative mechanism, we examined cardiophysiologic responses to DE inhalation in a model of aged heart failure–prone rats without signs or symptoms of overt heart failure. We hypothesized that acute DE exposure would alter heart rhythm, cardiac electrophysiology, and ventricular performance and dimensions consistent with autonomic imbalance while increasing biochemical markers of toxicity. Spontaneously hypertensive heart failure rats (16 months) were exposed once to whole DE (4h, target PM2.5 concentration: 500 µg/m3) or filtered air. DE increased multiple heart rate variability (HRV) parameters during exposure. In the 4h after exposure, DE increased cardiac output, left ventricular volume (end diastolic and systolic), stroke volume, HRV, and atrioventricular block arrhythmias while increasing electrocardiographic measures of ventricular repolarization (i.e., ST and T amplitudes, ST area, T-peak to T-end duration). DE did not affect heart rate relative to air. Changes in HRV positively correlated with postexposure changes in bradyarrhythmia frequency, repolarization, and echocardiographic parameters. At 24h postexposure, DE-exposed rats had increased serum C-reactive protein and pulmonary eosinophils. This study demonstrates that cardiac effects of DE inhalation are likely to occur through changes in autonomic balance associated with modulation of cardiac electrophysiology and mechanical function and may offer insights into the adverse health effects of traffic-related air pollutants. PMID:23047911

  18. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury.

    PubMed

    Omiyi, Didi; Brue, Richard J; Taormina, Philip; Harvey, Margaret; Atkinson, Norrell; Young, Lindon H

    2005-08-01

    Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. A cell-permeable protein kinase C (PKC) betaII peptide inhibitor was used to test the hypothesis that PKC betaII inhibition could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs and increase NO release from vascular endothelium. The effects of the PKC betaII peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts with PMNs. The PKC betaII inhibitor (10 microM; n = 7) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 9) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indices (p < 0.01). The PKC betaII inhibitor at 10 microM significantly increased endothelial NO release from a basal value of 1.85 +/- 0.18 pmol NO/mg tissue to 3.49 +/- 0.62 pmol NO/mg tissue from rat aorta. It also significantly inhibited superoxide release (i.e., absorbance) from N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated rat PMNs from 0.13 +/- 0.01 to 0.02 +/- 0.004 (p < 0.01) at 10 microM. Histological analysis of the left ventricle of representative rat hearts from each group showed that the PKC betaII peptide inhibitor-treated hearts experienced a marked reduction in PMN vascular adherence and infiltration into the postreperfused cardiac tissue compared with I/R + PMN hearts (p < 0.01). These results suggest that the PKC betaII peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs. PMID:15878997

  19. Protective Effect of Dl-3-n-Butylphthalide on Recovery from Cardiac Arrest and Resuscitation in Rats.

    PubMed

    Zhang, Le; Puchowicz, Michelle A; LaManna, Joseph C; Xu, Kui

    2016-01-01

    In this study we investigated the effect of Dl-3-n-butylphthalide (NBP), a clinically used drug for stroke patients in China, on the recovery following cardiac arrest and resuscitation in rats. Male Wistar rats (3-month old) underwent cardiac arrest (12 min) and resuscitation. Rats were randomly assigned to the following groups: sham non-arrested group, vehicle group (vehicle-treated, 7 days before cardiac arrest and 4 days post-resuscitation), NBP pre-treated group (NBP-treated, 7 days before cardiac arrest), and NBP post-treated group (NBP-treated, 4 days post-resuscitation). Overall survival rates and hippocampal neuronal counts were determined in each group at 4 days post-resuscitation. Results showed that NBP pre-treated group (80 %) and NBP post-treated group (86 %) had significantly higher survival rates compared to that of the vehicle group (50 %). At 4 days of recovery, only about 20 % of hippocampal neurons were preserved in the vehicle group compared to the sham non-arrested group. The hippocampal CA1 cell counts in the NBP pre-treated group and NBP post-treated group were significantly higher than the counts in the vehicle group, about 50-60 % of the counts of non-arrested rats. The data suggest that NBP has both preventive and therapeutic effect on improving outcome following cardiac arrest and resuscitation, and NBP might be a potential early phase treatment for patients recovered from cardiac arrest and resuscitation. PMID:27526121

  20. Continuous angiotensin-(1-7) infusion improves myocardial calcium transient and calcium transient alternans in ischemia-induced cardiac dysfunction rats.

    PubMed

    Luo, Duan; Zhuang, Xiaodong; Luo, Chufan; Long, Ming; Deng, Chunyu; Liao, Xinxue; Wang, Lichun

    2015-11-27

    The aim of this study was to evaluate the impact of Ang-(1-7) on calcium transient (CaT) in cardiomyocytes during the pathogenesis of heart failure. Cardiac dysfunction was induced by ligation of left anterior descending coronary artery in adult SD rats. Randomly selected rats were ligated and continuously infused with Ang-(1-7) [HF + Ang-(1-7) group] or saline (HF + saline group) via osmotic minipumps. After 28 days, hemodynamic parameters, the CaT, and the heart rate threshold of CaT alternans (CaT-Alt) were measured. Continuous Ang-(1-7) treatment could attenuate the impairment of cardiac function following LAD ligation. The amplitudes (F/F0) and 50%/90% recovery time of CaT were significantly different among HF + saline, HF + Ang-(1-7) and Sham-operated group. Compared to the Sham-operated group, the HF + saline group showed decreased CaT amplitude, and a prolonged 50%/90% CaT recovery time; Ang-(1-7) significantly improved these abnormalities. Compared with Sham-operated group, heart rate thresholds of CaT-Alt significantly reduced in HF + saline group, and Ang-(1-7) partly restored it. These findings indicate that Ang-(1-7) attenuates the CaT disturbance and increases the heart rate threshold of CaT-Alt during the pathogenesis of ischemic heart failure.

  1. Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Wold, Loren E.; Ren, Jun; Murphy, Eric J.

    2013-01-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content is known to change in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43%, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total PUFA, in the n-3/n-6 ratio, and in the 22:6 n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of post-natal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats. PMID:23996454

  2. Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats

    PubMed Central

    Nordbeck, Peter; Bönhof, Leoni; Hiller, Karl-Heinz; Voll, Sabine; Arias-Loza, Paula; Seidlmayer, Lea; Williams, Tatjana; Ye, Yu-Xiang; Gensler, Daniel; Pelzer, Theo; Ertl, Georg; Jakob, Peter M.

    2013-01-01

    Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct

  3. Chronic Testosterone Replacement Exerts Cardioprotection against Cardiac Ischemia-Reperfusion Injury by Attenuating Mitochondrial Dysfunction in Testosterone-Deprived Rats

    PubMed Central

    Pongkan, Wanpitak; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2015-01-01

    Background Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R) periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV) function and heart rate variability (HRV), and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX) rats. Methodology ORX or sham-operated male Wistar rats (n = 24) were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered) or the vehicle for 8 weeks. The ejection fraction (EF) and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. Results Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats. Conclusions Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats. PMID:25822979

  4. Cardiac troponin I in isoproterenol-induced cardiac injury in the Hanover Wistar rat: studies on low dose levels and routes of administration.

    PubMed

    Brady, Sally; York, Malcolm; Scudamore, Cheryl; Williams, Thomas; Griffiths, William; Turton, John

    2010-02-01

    The current studies demonstrate the effect of low-dose intraperitoneal (IP) administration of isoprotenerol (ISO) and subcutaneous (SC) versus IP routes of administration of ISO on serum cardiac troponin I (cTnI) levels in female Hanover Wistar rats, providing additional evidence to support acceptance of cTnI as a cardiac biomarker. At 2 hr postdosing with 0-500 microg/kg ISO, mean serum cTnI levels were increased in a dose-related fashion at > or =10 microg/kg with no evidence of cardiac pathology. At 24 h, cTnI concentrations were generally at control levels, but histologic cardiomyocyte injury was evident in a proportion of the animals given > or =10 microg/kg. In a second experiment, rats given SC ISO at 5,000 microg/kg and necropsied at 0, 1, 2, and 4 hr postdosing had higher levels of serum cTnI than animals given the same dose IP.

  5. Effects of Adolescent Ethanol Exposure on Sleep in Adults Rats

    PubMed Central

    Criado, José R.; Wills, Derek N.; Walker, Brendan M.; Ehlers, Cindy L.

    2010-01-01

    Although adolescent ethanol (EtOH) exposure has been associated with long-lasting changes in brain function, little is known as to whether EtOH exposure during adolescence alters sleep and cortical arousal. This study examined protracted alterations in sleep in adult rats exposed to EtOH during adolescence. Adolescent male Wistar rats were exposed to EtOH vapor for 12 hr/day for five weeks. Cortical electroencephalograms (EEGs) were obtained during 4-hr recording sessions after five weeks of withdrawal from EtOH. Adolescent EtOH exposure significantly reduced the mean duration of slow-wave sleep (SWS) episodes and the total amount of time spent in SWS in EtOH-exposed rats, compared to controls. Spectral analysis revealed that adolescent EtOH exposure significantly increased cortical peak frequencies during SWS in the 2-4 Hz, 4-6 Hz and 6-8 Hz bands. Taken together, our findings suggest that chronic EtOH exposure in adolescent rats reduces measures of SWS, an effect also seen as part of normal aging. Although the cellular and molecular mechanisms mediating the consequences of EtOH exposure on the aging process are not known, the similarities between adolescent EtOH exposure and aging merits further investigation. PMID:18922666

  6. Preproglucagon mRNA expression in adult rat submandibular glands.

    PubMed

    Egéa, J C; Hirtz, C; Deville de Périère, D

    2003-04-01

    Salivary glands of various animal species have been reported to contain and suggested to produce glucagon or glucagon-like material, but the origin and the nature of this salivary peptide are still doubtful. The present study was undertaken to ascertain whether the glucagon gene is expressed in rat submandibular glands and in an immortalized murine cell line derived from salivary glands (SCA-9 cell line). For this purpose, total RNA was isolated from submandibular glands or cultured cells and submitted to reverse transcription. The cDNAs obtained were amplified by a nested polymerase chain reaction using preproglucagon primers. The results showed that the preproglucagon mRNA was expressed in adult rat submandibular glands but not in the SCA-9 cell line. Determination of cyclic DNA (cDNA) sequence established identity with the coding regions of rat pancreatic pre-proglucagon gene. In conclusion, these results strongly support the idea that rat submandibular glands could represent a source of extrapancreatic glucagon or of its precursor's peptide.

  7. Maternal hyperthyroidism in rats impairs stress coping of adult offspring.

    PubMed

    Zhang, Limei; Hernández, Vito S; Medina-Pizarro, Mauricio; Valle-Leija, Pablo; Vega-González, Arturo; Morales, Teresa

    2008-05-01

    Given the evidence that maternal hyperthyroidism (MH) compromises expression of neuronal cytoskeletal proteins in the late fetal brain by accelerated neuronal differentiation, we investigated possible consequences of MH for the emotional and cognitive functions of adult offspring during acute and subchronic stress coping. Experimental groups consisted of male rat offspring from mothers implanted with osmotic minipumps infusing either thyroxine (MH) or vehicle (Ctrl) during pregnancy. Body weight and T4 level were monitored during the first 3 postnatal months, and no differences were found with the controls. We analyzed hippocampal CA3 pyramidal neurons and dentate granular cell morphology during several postnatal stages and found increased dendritic arborization. On postnatal day 90 a modified subchronic mild stress (SCMS) protocol was applied to experimental subjects for 10 days. The Morris water maze was used before, during, and after application of the SCMS protocol to measure spatial learning. The tail suspension test (TST) and forced-swimming test (FST) were used to evaluate behavioral despair. The MH rats displayed normal locomotor activity and spatial memory prior to SCMS, but impaired spatial learning after acute and chronic stress. In both the FST and TST we found that MH rats spent significantly more time immobile than did controls. Serum corticosterone level was found to increase after 30 min of restraint stress, and corticotropin-releasing factor immunoreactivity was found to be increased in the central nucleus of the amygdala. Our results suggest that MH in rats leads to the offspring being more vulnerable to stress in adulthood.

  8. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  9. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  10. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  11. [Average values of electrocardiograph parameters in healthy, adult Wistar rats].

    PubMed

    Zaciragić, Asija; Nakas-ićindić, Emina; Hadzović, Almira; Avdagić, Nesina

    2004-01-01

    Average values of heart rate (HR) and the average duration of electrocardiograph parameters were investigated (RR interval, P wave, PQ interval, QRS complex and QT interval) in healthy, adult Wistar rats of both sexes (n=86). Electrocardiogram (ECG) was recorded by Shiller Resting ECG, and for analysis of recordings SEMA-200 Vet computer program was used. Prior to registration animals were exposed to light ether anesthesia. Mean value of HR was 203.03+/-3.09 beats/min in whole sample. Observed differences in mean values of heart rate and duration of followed ECG parameters between sexes were not statistically significant. Results gathered in our study could serve as standard values for electrocardiograph parameters in future research where will be used Wistar rats in conditions of registration and analysis of ECG that are described in our paper.

  12. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  13. Implementation of near-infrared spectroscopy in a rat model of cardiac arrest and resuscitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan G.; Xiao, Feng; Ferrara, Davon; Ewing, Jennifer; Zhang, Shu; Alexander, Steven; Battarbee, Harold

    2002-07-01

    Transient global cerebral ischemia accompanying cardiac arrest (CA) often leads to permanent brain damage with poor neurological outcome. The precise chain of events underlying the cerebral damage after CA is still not fully understood. Progress in this area may profit from the development of new non-invasive tools that provide real-time information on the vascular and cellular processes preceding the damage. One way to assess these processes is through near-IR spectroscopy, which has demonstrated the ability to quantify changes in blood volume, hemoglobin oxygenation, cytochrome oxidase redox state, and tissue water content. Here we report on the successful implementation of this form of spectroscopy in a rat model of asphyxial CA and resuscitation, under hypothermic and normothermic conditions. Preliminary results are shown that provide a new temporal insight into the cerebral circulation during CA and post-resuscitation.

  14. Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zucker rats.

    PubMed

    Li, Yuhao; Peng, Gang; Li, Qian; Wen, Suping; Huang, Tom Hsun-Wei; Roufogalis, Basil D; Yamahara, Johji

    2004-08-20

    Diabetes has a markedly greater incidence of cardiovascular disease than the non-diabetic population. The heart shows a slowly developing increase in fibrosis in diabetes. Extended cardiac fibrosis results in increased myocardial stiffness, causing ventricular dysfunction and, ultimately, heart failure. Reversal of fibrosis may improve organ function survival. Postprandial hyperglycemia plays an important role in the development of type 2 diabetes and cardiovascular complications, and has been proposed as an independent risk factor for cardiovascular diseases. Salacia oblonga (S.O.) is traditionally used in the prevention and treatment of diabetes. We investigated the effects of its water extract on cardiac fibrosis and hyperglycemia in a genetic model of type 2 diabetes, the obese Zucker rat (OZR). Chronic administration of the extract markedly improved interstitial and perivascular fibrosis in the hearts of the OZR. It also reduced plasma glucose levels in non-fasted OZR, whereas it had little effect in the fasted animals, suggesting inhibition of postprandial hyperglycemia in type 2 diabetic animals, which might play a role in improvement of the cardiac complications of OZR. Furthermore, S.O. markedly suppressed the overexpression of mRNAs encoding transforming growth factor betas 1 and 3 in the OZR heart, which may be an important part of the overall molecular mechanisms. S.O. dose-dependently inhibited the increase of plasma glucose in sucrose-, but not in glucose-loaded mice. S.O. demonstrated a strong inhibition of alpha-glucosidase activity in vitro, which is suggested to contribute to the improvement of postprandial hyperglycemia. PMID:15268973

  15. Myofibril ATPase activity of cardiac and skeletal muscle of exhaustively exercised rats.

    PubMed

    Belcastro, A N; Turcotte, R; Rossiter, M; Secord, D; Maybank, P E

    1984-01-01

    The activation characteristics of Mg-ATP and Ca2+ on cardiac and skeletal muscle myofibril ATPase activity were studied in rats following a run to exhaustion. In addition, the effect of varying ionic strength was determined on skeletal muscle from exhausted animals. The exhausted group (E) ran at a speed of 25 m min-1 with an 8% incline. Myofibril ATPase activities for control (C) and E were determined with 1, 3 and 5 mM Mg-ATP and 1 and 10 microM Ca2+ at pH 7.0 and 30 degrees C. For control skeletal muscle, at 1 and 10 microM Ca2+, there was an increase in ATPase activity from 1 to 5 mM Mg-ATP (P less than 0.05). For E animals the myofibril ATPase activities at 10 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ the activities at 3 and 5 mM Mg-ATP were greater for the E animals (P less than 0.05). Increasing KCl concentrations resulted in greater inhibition for E animals. With cardiac muscle, the myofibril ATPase activities at 1.0 microM free Ca2+ were lower for E at all Mg-ATP levels (P less than 0.05). In contrast, at 10 microM Ca2+, the E group exhibited an elevated myofibril ATPase activity. The results indicate that Mg-ATP and Ca2+ activation of cardiac and skeletal muscle myofibril ATPase is altered with exhaustive exercise. PMID:6230276

  16. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats.

    PubMed

    Zhao, Baoyin; Liao, Zhaofu; Chen, Shang; Yuan, Ziqiang; Yilin, Chen; Lee, Kenneth K H; Qi, Xufeng; Shen, Xiaotao; Zheng, Xin; Quinn, Thomas; Cai, Dongqing

    2014-05-01

    The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells.

  17. Sudden cardiac death in adults with congenitally corrected transposition of the great arteries

    PubMed Central

    McCombe, A; Touma, F; Jackson, D; Canniffe, C; Choudhary, P; Pressley, L; Tanous, D; Robinson, Peter J; Celermajer, D

    2016-01-01

    Background Congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital heart disease. There have been only few reports of sudden cardiac death (SCD) in patients with ccTGA and reasonable ventricular function. Methods A retrospective review of the medical records of all patients attending our adult congenital heart centre, with known ccTGA. Results From a database of over 3500 adult patients with congenital heart disease, we identified 39 (∼1%) with ccTGA and ‘two-ventricle’ circulations. 65% were male. The mean age at diagnosis was 12.4±11.4 years and the mean age at last time of review was 34.3±11.3 years. 24 patients (56%) had a history of surgical intervention. 8 (19%) had had pacemaker implantation and 2 had had a defibrillator implanted for non-sustained ventricular tachycardia (NSVT). In 544 years of patient follow-up, there had been five cases of SCD in our population; 1 death per 109 patient-years. Two of these patients had had previously documented supraventricular or NSVT. However, they were all classified as New York Heart Association (NYHA) class I or II, and systemic (right) ventricular function had been recorded as normal, mildly or mildly–moderately impaired, at most recent follow-up. Conclusions Our experience suggests the need for improved risk stratification and/or surveillance for malignant arrhythmia in adults with ccTGA, even in those with reasonable functional class on ventricular function. PMID:27493760

  18. Hospital Resource Utilization for Common Noncardiac Diagnoses in Adult Survivors of Single Cardiac Ventricle.

    PubMed

    Seckeler, Michael D; Moe, Tabitha G; Thomas, Ian D; Meziab, Omar; Andrews, Jennifer; Heller, Elissa; Klewer, Scott E

    2015-12-01

    Single ventricle congenital heart disease (SV CHD) has transformed from a nearly universally fatal condition to a chronic illness. As the number of adults living with SV CHD continues to increase, there needs to be an understanding of health care resource utilization (HCRU), particularly for noncardiac conditions, for this patient population. We performed a retrospective database review of the University HealthSystem Consortium Clinical Database/Resource Manager for adult patients with SV CHD hospitalized for noncardiac conditions from January 2011 to November 2014. Patients with SV CHD were identified using International Classification of Disease (ICD)-9 codes associated with SV CHD (hypoplastic left heart, tricuspid atresia, and SV) and stratified into 2 groups by age (18 to 29 years and 30 to 40 years). Direct cost, length of stay (LOS), intensive care unit (ICU) admission rate and mortality data were compared with age-matched patients without CHD. There were 2,083,651 non-CHD and 590 SV CHD admissions in Group 1 and 2,131,046 non-CHD and 297 SV CHD admissions in Group 2. There was no difference in LOS in Group 1, but there were higher costs for several diagnoses. LOS and costs were higher for several diagnoses in Group 2. ICU admission rate and in-hospital mortality were higher for several diagnoses for patients with SV CHD in both groups. In conclusion, adults with SV CHD admitted for noncardiac diagnoses have higher HCRU (longer LOS and higher ICU admission rates) compared with similarly aged patients without CHD. These findings stress the importance of good primary care in this population with complex, chronic cardiac disease to prevent hospitalizations and higher HCRU. PMID:26455384

  19. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  20. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis.

    PubMed

    Shiraishi, J; Tatsumi, T; Keira, N; Akashi, K; Mano, A; Yamanaka, S; Matoba, S; Asayama, J; Yaoi, T; Fushiki, S; Fliss, H; Nakagawa, M

    2001-10-01

    Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation. PMID:11557554

  1. Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats

    PubMed Central

    Song, Su; Kertowidjojo, Elizabeth; Ojaimi, Caroline; Martin-Fernandez, Beatriz; Kandhi, Sharath; Wolin, Michael; Hintze, Thomas H

    2015-01-01

    Mild hyperhomocysteinemia (HHcy, clinically defined as less than 30 μmol/L) is an independent cardiovascular disease (CVD) risk factor, and is associated with many complications during pregnancy, such as preeclampsia (PE). The aim of this study was to assess the effect of long-term mild HHcy on cardiac metabolic function of multiparous rats. Female rats were mated 3 to 4 times and were fed with methionine in drinking water to increase plasma Hcy (2.9 ± 0.3 to 10.5 ± 2.3 μmol/L) until termination. This caused significant increase of heart weight/body weight (0.24 ± 0.01 to 0.27 ± 0.01 g/100 g) and left ventricle weight (0.69 ± 0.03 to 0.78 ± 0.01 g). Superoxide production was increased by 2.5-fold in HHcy hearts using lucigenin chemiluminescence. The ability of bradykinin and carbachol to regulate myocardial oxygen consumption (MVO2) in vitro was impaired by 59% and 66% in HHcy heart, and it was restored by ascorbic acid (AA), tempol, or apocynin (Apo). Protein expression of p22phox subunit of NAD(P)H oxidase was increased by 2.6-fold, but there were no changes in other NAD(P)H oxidase subunits, NOSs or SODs. Microarray revealed 1518 genes to be differentially regulated (P < 0.05). The mRNA level of NAD(P)H oxidase subunits, NOSs or SODs remained unchanged. In conclusion, long-term mild HHcy increases cardiac superoxide mainly through regulation of p22phox component of the NAD(P)H oxidase and impairs the ability of NO to regulate MVO2 in heart of multiparous mothers. PMID:26009634

  2. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats

    PubMed Central

    Pacagnelli, Francis Lopes; Sabela, Ana Karênina Dias de Almeida; Mariano, Thaoan Bruno; Ozaki, Guilherme Akio Tamura; Castoldi, Robson Chacon; do Carmo, Edna Maria; Carvalho, Robson Francisco; Tomasi, Loreta Casquel; Okoshi, Katashi; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Background Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction. PMID:27223643

  3. Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats.

    PubMed

    Schreckenberg, Rolf; Weber, Pia; Cabrera-Fuentes, Hector A; Steinert, Isabel; Preissner, Klaus T; Bencsik, Péter; Sárközy, Márta; Csonka, Csaba; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter

    2015-03-01

    Cardiac ischaemia and reperfusion leads to irreversible injury and subsequent tissue remodelling. Initial reperfusion seems to shift arginine metabolism from nitric oxide (NO) to polyamine formation. This may limit functional recovery at reperfusion. The hypothesis was tested whether ischaemia/reperfusion translates such a shift in arginine metabolism in a tumour necrosis factor (TNF)-α-dependent way and renin-angiotensin system (RAS)-dependent way into a sustained effect. Both, the early post-ischaemic recovery and molecular adaptation to ischaemia/reperfusion were analysed in saline perfused rat hearts undergoing global no-flow ischaemia and reperfusion. Local TNF-α activation was blocked by inhibition of TNF-α sheddase ADAM17. To interfere with RAS captopril was administered. Arginase was inhibited by administration of Nor-NOHA. Long-term effects of ischemia/reperfusion on arginine metabolism were analysed in vivo in rats receiving an established ischaemia/reperfusion protocol in the closed chest mode. mRNA expression analysis indicated a shift in the arginine metabolism from NO formation to polyamine metabolism starting within 2 hours (h) of reperfusion and translated into protein expression within 24 h. Inhibition of the TNF-α pathway and captopril attenuated these delayed effects on post-ischaemic recovery. This shift in arginine metabolism was associated with functional impairment of hearts within 24 h. Inhibition of arginase but not that of TNF-α and RAS pathways improved functional recovery immediately. However, no benefit was observed after four months. In conclusion, this study identified TNF-α and RAS to be responsible for depressed cardiac function that occurred a few hours after reperfusion. PMID:25502809

  4. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.

    PubMed

    Tong, Wenni; Xue, Qin; Li, Yong; Zhang, Lubo

    2011-11-01

    Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.

  5. Epinephrine, but not vasopressin, improves survival rates in an adult rabbit model of asphyxia cardiac arrest.

    PubMed

    Chen, Meng-Hua; Xie, Lu; Liu, Tang-Wei; Song, Feng-Qing; He, Tao; Zeng, Zhi-yu; Mo, Shu-Rong

    2007-06-01

    Although vasopressin has been reported to be more effective than epinephrine for cardiopulmonary resuscitation in ventricular fibrillation animal models, its efficacy in asphyxia model remains controversy. The purpose of this study was to investigate the effectiveness of vasopressin vs epinephrine on restoration of spontaneous circulation (ROSC) in a rabbit model of asphyxia cardiac arrest. Cardiac arrest was induced by clamping endotracheal tube. After 5 minutes of basic life-support cardiopulmonary resuscitation, animals who had no ROSC were randomly assigned to receive either epinephrine alone (epinephrine group; 200 microg/kg) or vasopressin alone (vasopressin group; 0.8 U/kg). The coronary perfusion pressure (CPP) was calculated as the difference between the minimal diastolic aortic and simultaneously recorded right atrial pressure. Restoration of spontaneous circulation was defined as an unassisted pulse with a systolic arterial pressure of 60 mm Hg or higher for 5 minutes or longer. We induced arrest in 62 rabbits, 15 of whom had ROSC before drug administration and were excluded from analysis. The remaining 47 rabbits were randomized to epinephrine group (n = 24) and vasopressin group (n = 23). Before and after drug administration, CPP in epinephrine group increased significantly (from -4 +/- 4 to 36 +/- 9 mm Hg at peak value, P = .000), whereas CPP in vasopressin group increased only slightly (from 9 +/- 5 to 18 +/- 6 mm Hg at peak value, P = .20). After drug administration, 13 of 24 epinephrine rabbit had ROSC, and only 2 of 23 vasopressin rabbit had ROSC (P < .01). Consequently, we conclude that epinephrine, but not vasopressin, increases survival rates in this adult rabbit asphyxia model.

  6. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences. PMID:23054177

  7. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure.

    PubMed

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  8. Ranolazine attenuated heightened plasma norepinephrine and B-Type natriuretic peptide-45 in improving cardiac function in rats with chronic ischemic heart failure

    PubMed Central

    Feng, Guangqiu; Yang, Yu; Chen, Juan; Wu, Zhiyong; Zheng, Yin; Li, Wei; Dai, Wenxin; Guan, Pin; Zhong, Chunrong

    2016-01-01

    As a new anti-anginal agent, ranolazinehas been shown to play a cardioprotective role in regulating myocardial ischemic injury. Given that plasma norepinephrine (NE) and brain natriuretic peptide (BNP, also termed B-type natriuretic peptide-45 in rats) are considered neuron-hormones to indicate heart failure progression. This study aims to examine effects of ranolazine on plasma NE and BNP-45 of rats with chronic ischemic heart failure (CHF). CHF was induced by myocardial infarction following ligation of a left anterior descending artery in adult Sprague-Dawley rats. We hypothesized that ranolazine attenuates the elevated levels of NE and BNP-45 observed in CHF rats thereby leading to improvement of the left ventricular function. Results showed that levels of plasma NE and BNP-45 were increased in CHF rats 6-8 weeks after ligation of the coronary artery. Our data demonstrate for the first time that ranolazine significantly attenuated the augmented NE and BNP-45 induced by CHF (P<0.05 vs. saline control). In addition, a liner relation was observed between NE/BNP-45levels and left ventricular fractional shortening as indication of left ventricular function (r=0.91 and P<0.01 for NE; and r=0.93 and P<0.01 for BNP-45) after administration of ranolazine. In conclusion, CHF increases the expression of NE and BNP-45 in peripheral circulation and these changes are related to the left ventricular function. Ranolazine improves the left ventricular function likely by decreasing heightened NE and BNP-45 induced by CHF. Therefore, our data indicate the role played by ranolazine in improving cardiac function in rats with CHF. PMID:27158417

  9. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy.

    PubMed

    Thattaliyath, Bijoy D; Livi, Carolina B; Steinhelper, Mark E; Toney, Glenn M; Firulli, Anthony B

    2002-10-01

    The HAND basic Helix-Loop-Helix (bHLH) transcription factors are essential for normal cardiac and extraembryonic development. Although highly evolutionarily conserved genes, HAND cardiac expression patterns differ across species. Mouse expression of HAND1 and HAND2 was reported absent in the adult heart. Human HAND genes are expressed in the adult heart and HAND1 expression is downregulated in cardiomyopathies. As rodent and human expression profiles are inconsistent, we re-examined expression of HAND1 and HAND2 in adult-rodent hearts. HAND1 and HAND2 are expressed in adult-rodent hearts and HAND2 is expressed in the atria. Induction of cardiac hypertrophy shows modulation of HAND expression, corresponding with observations in human cardiomyopathy. The downregulation of HAND expression observed in rodent hypertrophy and human cardiomyopathy may reflect a permissive role allowing, cardiomyocytes to reinitiate the fetal gene program and initiate the adaptive physiological changes that allow the heart to compensate (hypertrophy) for the increase in afterload.

  10. Alcohol exposure in utero perturbs retinoid homeostasis in adult rats

    PubMed Central

    Kim, Youn-Kyung; Zuccaro, Michael V.; Zhang, Changqing; Sarkar, Dipak

    2015-01-01

    Background Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified. Disruption of tissue retinoid homeostasis has been linked not only to abnormal embryonic development, but also to various adult pathological conditions, including cancer, metabolic disorders and abnormal lung function. We hypothesized that prenatal alcohol exposure may permanently perturb tissue retinoid metabolism, predisposing the offspring to adult chronic diseases. Methods Serum and tissues (liver, lung and prostate from males; liver and lung from females) were collected from 60-75 day-old sprague dawley rats born from dams that were: (I) fed a liquid diet containing 6.7% alcohol between gestational day 7 and 21; or (II) pair-fed with isocaloric liquid diet during the same gestational window; or (III) fed ad libitum with regular rat chow diet throughout pregnancy. Serum and tissue retinoid levels were analyzed by reverse-phase high-performance liquid chromatography (HPLC). Serum retinol-binding protein (RBP) levels were measured by western blot analysis, and liver, lung and prostate mRNA levels of lecithin-retinol acyltransferase (LRAT) were measured by qPCR. Results Retinyl ester levels were significantly reduced in the lung of both males and females, as well as in the liver and ventral prostate of males born from alcohol-fed dams. Tissue LRAT mRNA levels remained unchanged upon maternal alcohol treatment. Conclusions Prenatal alcohol exposure in rats affects retinoid metabolism in adult life, in a tissue- and sex

  11. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    PubMed Central

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  12. Activation of Retinoid Receptor-Mediated Signaling Ameliorates Diabetes-Induced Cardiac Dysfunction in Zucker Diabetic Rats

    PubMed Central

    Guleria, Rakeshwar S.; Singh, Amar B.; Nizamutdinova, Irina T.; Souslova, Tatiana; Mohammad, Amin A.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2013-01-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid×receptor (RXR), have been linked to control of glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis. PMID:23395853

  13. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats.

    PubMed

    Guleria, Rakeshwar S; Singh, Amar B; Nizamutdinova, Irina T; Souslova, Tatiana; Mohammad, Amin A; Kendall, Jonathan A; Baker, Kenneth M; Pan, Jing

    2013-04-01

    Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid x receptor (RXR), have been linked to control glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis.

  14. Interaction between castanospermine an immunosuppressant and cyclosporin A in rat cardiac transplantation

    PubMed Central

    Hibberd, Adrian D; Clark, David A; Trevillian, Paul R; Mcelduff, Patrick

    2016-01-01

    AIM: To investigate the interaction between castanospermine and cyclosporin A (CsA) and to provide an explanation for it. METHODS: The alkaloid castanospermine was prepared from the seeds of Castanospermum austral consistently achieving purity. Rat heterotopic cardiac transplantation and mixed lymphocyte reactivity were done using genetically inbred strains of PVG (donor) and DA (recipient). For the mixed lymphocyte reaction stimulator cells were irradiated with 3000 rads using a linear accelerator. Cyclosporin A was administered by gavage and venous blood collected 2 h later (C2). The blood levels of CsA (Neoral) were measured by immunoassay which consisted of a homogeneous enzyme assay (EMIT) on Cobas Mira. Statistical analyses of interactions were done by an accelerated failure time model with Weibull distribution for allograft survival and logistic regression for the mixed lymphocyte reactivity. RESULTS: Castanospermine prolonged transplant survival times as a function of dose even at relatively low doses. Cyclosporin A also prolonged transplant survival times as a function of dose particularly at doses above 2 mg/kg. There were synergistic interactions between castanospermine and CsA in the prolongation of cardiac allograft survival for dose ranges of CsA by castanospermine of (0 to 2) mg/kg by (0 to 200) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) and (0 to 3) mg/kg by (0 to 100) mg/kg (HR = 0.986; 95%CI: 0.981-0.992; P < 0.001) respectively. The addition of castanospermine did not significantly increase the levels of cyclosporin A on day 3 or day 6 for all doses of CsA. On the contrary, cessation of castanospermine in the presence of CsA at 2 mg/kg significantly increased the CsA level (P = 0.002). Castanospermine inhibited mixed lymphocyte reactivity in a dose dependent manner but without synergistic interaction. CONCLUSION: There is synergistic interaction between castanospermine and CsA in rat cardiac transplantation. Neither the mixed lymphocyte

  15. Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio

    PubMed Central

    Sarnat, S E; Suh, H H; Coull, B A; Schwartz, J; Stone, P H; Gold, D R

    2006-01-01

    Objectives Ambient particulate air pollution has been associated with increased risk of cardiovascular morbidity and mortality. Pathways by which particles may act involve autonomic nervous system dysfunction or inflammation, which can affect cardiac rate and rhythm. The importance of these pathways may vary by particle component or source. In an eastern US location with significant regional pollution, the authors examined the association of air pollution and odds of cardiac arrhythmia in older adults. Methods Thirty two non‐smoking older adults were evaluated on a weekly basis for 24 weeks during the summer and autumn of 2000 with a standardised 30 minute protocol that included continuous electrocardiogram measurements. A central ambient monitoring station provided daily concentrations of fine particles (PM2.5, sulfate, elemental carbon) and gases. Sulfate was used as a marker of regional pollution. The authors used logistic mixed effects regression to examine the odds of having any supraventricular ectopy (SVE) or ventricular ectopy (VE) in association with increases in air pollution for moving average pollutant concentrations up to 10 days before the health assessment. Results Participant specific mean counts of arrhythmia over the protocol varied between 0.1–363 for SVE and 0–350 for VE. The authors observed odds ratios for having SVE over the length of the protocol of 1.42 (95% CI 0.99 to 2.04), 1.70 (95% CI 1.12 to 2.57), and 1.78 (95% CI 0.95 to 3.35) for 10.0 μg/m3, 4.2 μg/m3, and 14.9 ppb increases in five day moving average PM2.5, sulfate, and ozone concentrations respectively. The other pollutants, including elemental carbon, showed no effect on arrhythmia. Participants reporting cardiovascular conditions (for example, previous myocardial infarction or hypertension) were the most susceptible to pollution induced SVE. The authors found no association of pollution with VE. Conclusion Increased levels of ambient sulfate and ozone may increase

  16. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  17. The effect of enalapril on the cardiac remodelling in ovariectomized spontaneously hypertensive rats.

    PubMed

    Santos, Wellington V; Pereira, Leila M M; Mandarim-de-Lacerda, Carlos A

    2004-10-01

    Angiotensin-converting enzyme inhibitors reduce the blood pressure (BP) and inhibit the generation of the angiotensin II from the inactive angiotensin I. Ten 28-week-old spontaneously hypertensive rats (SHRs) had their ovaries bilaterally removed and five rats were left intact and studied for 7 additional weeks: intact group, ovariectomized group (ovx SHRs) and ovariectomized + enalapril group (ovx + en). BP was higher in ovx SHRs and lower in treated ovx SHRs. Left ventricular (LV) mass index was greater in untreated ovx SHRs and smaller in ovx + en group. The LV cardiomyocyte (cmy) mean cross-sectional area, measured by stereology, was greater in ovx SHRs and smaller in both intact and ovx + en SHRs. Ovx significantly decreased the density of intramyocardial blood vessels (ive), but administration of enalapril was able to restore the density of the ive to that seen in intact group. The worst ive:cmy ratio was found in untreated ovx SHRs, the intact group showed a 90% greater ratio, and the treated ovx group showed a 150% greater ratio than the untreated ovx group. In conclusion, ovariectomy, in SHRs, causes cardiac hypertrophy and an unfavourable myocardial remodelling. Of the spectrum of changes seen, the major effect of enalapril appears to be mediated via an increase in the density of ive.

  18. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  19. Decline of taste sensitivity in protein deficient adult rats.

    PubMed

    Ohara, I; Tabuchi, R; Kimura, M; Itokawa, Y

    1995-05-01

    The influence of dietary protein levels on taste sensitivity was studied in adult rats. Low protein diets of 0.0, 2.5, or 5.0% purified egg protein (PEP) were fed to animals for 28 days. Two bottle choice preference tests between aqueous solutions of either 2, 9, 17, or 86 mM sodium chloride and deionized water were conducted in an ascending order on days 14, 16, 18, and 20. Urine samples were collected for zinc and creatinine analysis. Blood samples were also collected for measuring serum zinc and creatinine concentrations. Scanning electron microscopy was performed to observe rats' tongue epithelia. Protein free diet group showed significantly lower taste sensitivity and renal reabsorption rate than other protein containing diet groups, while serum zinc and creatinine concentrations, and creatinine clearance were not affected by dietary protein level. Degeneration of filiform papillae and imperforation of taste pore of fungiform papillae were observed in protein free diet group. This experiment implies at least 2.5% dietary protein is required to manifest normal taste function in the adult. PMID:7610145

  20. Decline of taste sensitivity in protein deficient adult rats.

    PubMed

    Ohara, I; Tabuchi, R; Kimura, M; Itokawa, Y

    1995-05-01

    The influence of dietary protein levels on taste sensitivity was studied in adult rats. Low protein diets of 0.0, 2.5, or 5.0% purified egg protein (PEP) were fed to animals for 28 days. Two bottle choice preference tests between aqueous solutions of either 2, 9, 17, or 86 mM sodium chloride and deionized water were conducted in an ascending order on days 14, 16, 18, and 20. Urine samples were collected for zinc and creatinine analysis. Blood samples were also collected for measuring serum zinc and creatinine concentrations. Scanning electron microscopy was performed to observe rats' tongue epithelia. Protein free diet group showed significantly lower taste sensitivity and renal reabsorption rate than other protein containing diet groups, while serum zinc and creatinine concentrations, and creatinine clearance were not affected by dietary protein level. Degeneration of filiform papillae and imperforation of taste pore of fungiform papillae were observed in protein free diet group. This experiment implies at least 2.5% dietary protein is required to manifest normal taste function in the adult.

  1. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats

    PubMed Central

    Dalpiaz, P. L. M.; Lamas, A. Z.; Caliman, I. F.; Ribeiro, R. F.; Abreu, G. R.; Moyses, M. R.; Andrade, T. U.; Gouvea, S. A.; Alves, M. F.; Carmona, A. K.; Bissoli, N. S.

    2015-01-01

    Background There is growing interest in sex differences and RAS components. However, whether gender influences cardiac angiotensin I-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity is still unknown. In the present work, we determined the relationship between ACE and ACE2 activity, left ventricular function and gender in spontaneously hypertensive rats (SHRs). Methodology / Principal Findings Twelve-week-old female (F) and male (M) SHRs were divided into 2 experimental groups (n = 7 in each group): sham (S) and gonadectomized (G). Fifty days after gonadectomy, we measured positive and negative first derivatives (dP/dt maximum left ventricle (LV) and dP/dt minimum LV, respectively), hypertrophy (morphometric analysis) and ACE and ACE2 catalytic activity (fluorimetrically). Expression of calcium handling proteins was measured by western blot. Male rats exhibited higher cardiac ACE and ACE2 activity as well as hypertrophy compared to female rats. Orchiectomy decreased the activity of these enzymes and hypertrophy, while ovariectomy increased hypertrophy and ACE2, but did not change ACE activity. For cardiac function, the male sham group had a lower +dP/dt than the female sham group. After gonadectomy, the +dP/dt increased in males and reduced in females. The male sham group had a lower -dP/dt than the female group. After gonadectomy, the -dP/dt increased in the male and decreased in the female groups when compared to the sham group. No difference was observed among the groups in SERCA2a protein expression. Gonadectomy increased protein expression of PLB (phospholamban) and the PLB to SERCA2a ratio in female rats, but did not change in male rats. Conclusion Ovariectomy leads to increased cardiac hypertrophy, ACE2 activity, PLB expression and PLB to SERCA2a ratio, and worsening of hemodynamic variables, whereas in males the removal of testosterone has the opposite effects on RAS components. PMID:26010093

  2. Bench-to-bedside review: Inotropic drug therapy after adult cardiac surgery – a systematic literature review

    PubMed Central

    Gillies, Michael; Bellomo, Rinaldo; Doolan, Laurie; Buxton, Brian

    2005-01-01

    Many adult patients require temporary inotropic support after cardiac surgery. We reviewed the literature systematically to establish, present and classify the evidence regarding choice of inotropic drugs. The available evidence, while limited in quality and scope, supports the following observations; although all β-agonists can increase cardiac output, the best studied β-agonist and the one with the most favourable side-effect profile appears to be dobutamine. Dobutamine and phosphodiesterase inhibitors (PDIs) are efficacious inotropic drugs for management of the low cardiac output syndrome. Dobutamine is associated with a greater incidence of tachycardia and tachyarrhythmias, whereas PDIs often require the administration of vasoconstrictors. Other catecholamines have no clear advantages over dobutamine. PDIs increase the likelihood of successful weaning from cardiopulmonary bypass as compared with placebo. There is insufficient evidence that inotropic drugs should be selected for their effects on regional perfusion. PDIs also increase flow through arterial grafts, reduce mean pulmonary artery pressure and improve right heart performance in pulmonary hypertension. Insufficient data exist to allow selection of a specific inotropic agent in preference over another in adult cardiac surgery patients. Multicentre randomized controlled trials focusing on clinical rather than physiological outcomes are needed. PMID:15987381

  3. Enrichment of vital adult cardiac muscle cells by continuous silica sol gradient centrifugation.

    PubMed

    Maisch, B

    1981-01-01

    A major improvement in the isolation of vital adult cardiocytes was achieved by isopycnic preformed continuous silica sol gradient centrifugation after perfusion of the heart with collagenase. Vital rat cardiocytes were enriched to 90-95% vital cells reproducibly and constantly by one- or two-step gradient centrifugations. The isolated cardiocytes were tolerant to calcium concentrations up to 0.03 mmol/l, to diluted human serum, and to human complement. Gentamycin (50 microgram/ml) exerted a cytotoxic effect on myocytes, whereas Penicillium and Streptomycin in concentrations of 50 IU/ml did not induce cytolysis of vital cells. Digoxin 15 ng/ml) decreased the natural decay of myocytes of 20% in 25 hours to 8%. Enriched of vital cardiocytes by silica sol gradient centrifugation following their isolation by perfusion with collagenase may be helpful for investigations depending on a high yield of vital myocardial cells. PMID:6277294

  4. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    PubMed Central

    Falk, Darin J; Soustek, Meghan S; Todd, Adrian Gary; Mah, Cathryn S; Cloutier, Denise A; Kelley, Jeffry S; Clement, Nathalie; Fuller, David D; Byrne, Barry J

    2015-01-01

    Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease. PMID:26029718

  5. Inhibition of ref-1 stimulates the production of reactive oxygen species and induces differentiation in adult cardiac stem cells.

    PubMed

    Gurusamy, Narasimman; Mukherjee, Subhendu; Lekli, Istvan; Bearzi, Claudia; Bardelli, Silvana; Das, Dipak K

    2009-03-01

    Redox effector protein-1 (Ref-1) plays an essential role in DNA repair and redox regulation of several transcription factors. In the present study, we examined the role of Ref-1 in maintaining the redox status and survivability of adult cardiac stem cells challenged with a subtoxic level of H2O2 under inhibition of Ref-1 by RNA interference. Treatment of cardiac stem cells with a low concentration of H2O2 induced Ref-1-mediated survival signaling through phosphorylation of Akt. However, Ref-1 inhibition followed by H2O2 treatment extensively induced the level of intracellular reactive oxygen species (ROS) through activation of the components of NADPH oxidase, like p22( phox ), p47( phox ), and Nox4. Cardiac differentiation markers (Nkx2.5, MEF2C, and GATA4), and cell death by apoptosis were significantly elevated in Ref-1 siRNA followed by H2O2-treated stem cells. Further, inhibition of Ref-1 increased the level of p53 but decreased the phosphorylation of Akt, a molecule involved in survival signaling. Treatment with ROS scavenger N-acetyl-L-cysteine attenuated Ref-1 siRNA-mediated activation of NADPH oxidase and cardiac differentiation. Taken together, these results indicate that Ref-1 plays an important role in maintaining the redox status of cardiac stem cells and protects them from oxidative injury-mediated cell death and differentiation.

  6. Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat

    PubMed Central

    2014-01-01

    Background Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated the relationship between myocardial oxidative stress and post-CA myocardial injury and dysfunction in a rat model of CA and cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced in 26 rats and was untreated for 6 min. CPR, including mechanical chest compression, ventilation, and epinephrine, was then initiated and continued for additional 6 min prior to defibrillations. Resuscitated animals were sacrificed at two h (n = 9), 4 h (n = 6) and 72 h (n = 8) following resuscitation, and plasma collected for assessment of: high sensitivity cardiac troponin T (hs-cTnT), as marker of myocardial injury; isoprostanes (IsoP), as marker of lipid peroxidation; and 8-hydroxyguanosine (8-OHG), as marker of DNA oxidative damage. Hearts were also harvested for measurement of tissue IsoP and 8-OHG. Myocardial function was assessed by echocardiography at the corresponding time points. Additional 8 rats were not subjected to CA and served as baseline controls. Results Compared to baseline, left ventricular ejection fraction (LVEF) was reduced at 2 and 4 h following resuscitation (p < 0.01), while it was similar at 72 h. Inversely, plasma hs-cTnT increased, compared to baseline, at 2 and 4 h post-CA (p < 0.01), and then recovered at 72 h. Similarly, plasma and myocardial tissue IsoP and 8-OHG levels increased at 2 and 4 h post-resuscitation (p < 0.01 vs. baseline), while returned to baseline 72 h later. Myocardial IsoP were directly related to hs-cTnT levels (r = 0.760, p < 0.01) and inversely related to LVEF (r = -0.770, p < 0.01). Myocardial 8-OHG were also directly related to hs-cTnT levels (r = 0.409, p < 0.05) and

  7. Acute behavioral toxicity of carbaryl and propoxur in adult rats.

    PubMed

    Ruppert, P H; Cook, L L; Dean, K F; Reiter, L W

    1983-04-01

    Motor activity and neuromotor function were examined in adult CD rats exposed to either carbaryl or propoxur, and behavioral effects were compared with the time course of cholinesterase inhibition. Rats received an IP injection of either 0, 2, 4, 6 or 8 mg/kg propoxur or 0, 4, 8, 16 or 28 mg/kg carbaryl in corn oil 20 min before testing. All doses of propoxur reduced 2 hr activity in a figure-eight maze, and crossovers and rears in an open field. For carbaryl, dosages of 8, 16 and 28 mg/kg decreased maze activity whereas 16 and 28 mg/kg reduced open field activity. In order to determine the time course of effects, rats received a single IP injection of either corn oil, 2 mg/kg propoxur or 16 mg/kg carbaryl, and were tested for 5 min in a figure-eight maze either 15, 30, 60, 120 or 240 min post-injection. Immediately after testing, animals were sacrificed and total cholinesterase was measured. Maximum effects of propoxur and carbaryl on blood and brain cholinesterase and motor activity were seen within 15 min. Maze activity had returned to control levels within 30 and 60 min whereas cholinesterase levels remained depressed for 120 and 240 min for propoxur and carbaryl, respectively. These results indicate that both carbamates decrease motor activity, but behavioral recovery occurs prior to that of cholinesterase following acute exposure.

  8. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain.

  9. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys

    NASA Technical Reports Server (NTRS)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.

    1995-01-01

    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  10. Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes.

    PubMed

    Kurz, T; Wolf, R A; Corr, P B

    1993-03-01

    The cellular content of phosphatidic acid can increase in response to several agonists either by phosphorylation of diacylglycerol after phospholipase C-catalyzed hydrolysis of phospholipids or directly through activation of phospholipase D. Although previous findings indicated that the generation of phosphatidic acid was exclusively a means of regulation of the cellular concentration of diacylglycerol, more recent studies have indicated that phosphatidic acid may also directly regulate several cellular functions. Accordingly, the present study was performed to assess whether phosphatidic acid could stimulate cardiac phospholipase C in intact adult rabbit ventricular myocytes. The mass of inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] was determined by a specific and sensitive binding protein assay and by direct mass measurement using anion exchange chromatography for separation of selected inositol phosphates and gas chromatography and mass spectrometry for quantification of inositol monophosphate (IP1), inositol bisphosphate (IP2), inositol trisphosphate (IP3), and inositol tetrakisphosphate (IP4). Phosphatidic acid (10(-9)-10(-6) M) elicited a rapid concentration-dependent increase in Ins (1,4,5)P3 accumulation, with the peak fourfold to fivefold increase at 30 seconds of stimulation; the concentration required for 50% of maximal stimulation was 4.4 x 10(-8) M. The time course of individual inositol phosphates indicated a successive increase in the mass of IP3, IP4, IP2, and IP1 in response to stimulation with phosphatidic acid. The production of Ins (1,4,5)P3 in response to phosphatidic acid was not altered in the absence of extracellular calcium or in the presence of extracellular EGTA (10(-3) M). Thus, these findings indicate that phosphatidic acid is a potent activator of inositol phosphate production in adult ventricular myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats.

    PubMed

    Di Petta, Antonio; Simas, Rafael; Ferreira, Clebson L; Capelozzi, Vera L; Salemi, Vera M C; Moreira, Luiz F P; Sannomiya, Paulina

    2015-10-01

    Chronic obstructive pulmonary disease is often associated with chronic comorbid conditions of cardiovascular disease, diabetes mellitus and hypertension. This study aimed to investigate the effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats. Wistar rats were divided into control non-diabetic instilled with saline (CS) or elastase (CE), diabetic instilled with saline (DS) or elastase (DE), DE treated with insulin (DEI) groups and echocardiographic measurements, morphometric analyses of the heart and lungs, and survival analysis conducted 50 days after instillation. Diabetes mellitus was induced [alloxan, 42 mg/kg, intravenously (iv)] 10 days before the induction of emphysema (elastase, 0.25 IU/100 g). Rats were treated with NPH insulin (4 IU before elastase plus 2 IU/day, 50 days). Both CE and DE exhibited similar increases in mean alveolar diameter, which are positively correlated with increases in right ventricular (RV) wall thickness (P = 0.0022), cavity area (P = 0.0001) and cardiomyocyte thickness (P = 0.0001). Diabetic saline group demonstrated a reduction in left ventricular (LV) wall, interventricular (IV) septum, cardiomyocyte thickness and an increase in cavity area, associated with a reduction in LV fractional shortening (P < 0.05), and an increase in LViv relaxation time (P < 0.05). Survival rate decreased from 80% in DS group to 40% in DE group. In conclusion, alloxan diabetes did not affect RV hypertrophy secondary to chronic emphysema, even in the presence of insulin. Diabetes per se induced left ventricular dysfunction, which was less evident in the presence of RV hypertrophy. Survival rate was substantially reduced as a consequence, at least in part, of the coexistence of RV hypertrophy and diabetic cardiomyopathy.

  12. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  13. Metabolic and cardiac signaling effects of inhaled hydrogen sulfide and low oxygen in male rats.

    PubMed

    Stein, Asaf; Mao, Zhengkuan; Morrison, Joanna P; Fanucchi, Michelle V; Postlethwait, Edward M; Patel, Rakesh P; Kraus, David W; Doeller, Jeannette E; Bailey, Shannon M

    2012-05-01

    Low concentrations of inhaled hydrogen sulfide (H(2)S) induce hypometabolism in mice. Biological effects of H(2)S in in vitro systems are augmented by lowering O(2) tension. Based on this, we hypothesized that reduced O(2) tension would increase H(2)S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H(2)S at 21% O(2) or 10.5% O(2) for 6 h followed by 1 h recovery at room air. Rats exposed to H(2)S in 10.5% O(2) had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H(2)S administered under both O(2) levels and did not return to preexposure levels after 1 h recovery. Inhaled H(2)S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H(2)S on prosurvival signaling was also measured in heart and liver. H(2)S in 21% O(2) increased Akt-P(Ser473) and GSK-3β-P(Ser9) in the heart whereas phosphorylation was decreased by H(2)S in 10.5% O(2), indicating O(2) dependence in regulating cardiac signaling pathways. Inhaled H(2)S and low O(2) had no effect on liver Akt. In summary, we found that lower O(2) was needed for H(2)S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H(2)S. Inhaled H(2)S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H(2)S. In conclusion, these findings demonstrate the importance of O(2) in influencing physiological and signaling effects of H(2)S in mammalian systems. PMID:22403348

  14. Effect of anti-interleukin 2 monoclonal antibody treatment on the survival of rat cardiac allograft

    SciTech Connect

    Sakagami, K.; Ohsaki, T.; Ohnishi, T.; Saito, S.; Matsuoka, J.; Orita, K.

    1989-03-01

    The effect of anti-interleukin 2 monoclonal antibody (anti-IL2 MoAb) and the accumulation of intravenously administered /sup 125/I-labeled anti-IL2 MoAb were examined in heterotopic rat cardiac allografts. Mouse anti-human recombinant IL2 MoAb was obtained by the hybridoma technique. The anti-IL2 MoAb, termed 8H-10, was an IgG2a which inhibited IL2-driven (/sup 3/H)TdR incorporation in cytolytic T lymphocyte line cells at a dilution of 2(6). 8H-10 was injected iv at a dose of 200 micrograms/day for 8 consecutive days, beginning on the day of transplantation. Hearts from F344 rats (RT11v1) were transplanted into ACI recipient rats (RT1av1). The mean survival time was 7.6 +/- 0.8 days in untreated controls, 9.0 +/- 1.2 days in additional controls treated with mouse anti-sheep red blood cell monoclonal antibody, and 25.3 +/- 18.4 days in the anti-IL2 MoAb (8H-10)-treated group (P less than 0.05). Furthermore, the accumulation of intravenously administered 125I-labeled anti-IL2 MoAb (8H-10) was specifically seen in the grafted heart. In conclusion, these results suggest that IL2 may play an important role in allograft rejection and that anti-IL2 MoAb may serve as a useful immunosuppressive agent in clinical transplantation.

  15. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    PubMed Central

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-01-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis. PMID:26689945

  16. Effect of MPEP in Morris water maze in adult and old rats.

    PubMed

    Car, Halina; Stefaniuk, Radosław; Wiśniewska, Róza J

    2007-01-01

    The present investigation assessed the effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on acquisition and reference memory in the Morris water maze in young adult rats aged 3-month and old rats aged 26-month. MPEP reduced the swim speed of the young adult rats during acquisition, shortened the distance they covered and reduced their swim speed in the probe trial. The untreated old rats had impaired acquisition of spatial learning, shortened distance and a lower swim speed in the probe trial in comparison with young rats. MPEP did not influence the activity of the old rats in the water maze. In summary, MPEP did not influence acquisition of spatial learning and reference memory in the young adult and old rats.

  17. Ligand specific variation in cardiac response to stimulation of peroxisome proliferator-activated receptor-alpha in spontaneously hypertensive rat.

    PubMed

    Ismael, Saifudeen; Purushothaman, Sreeja; Harikrishnan, V S; Nair, R Renuka

    2015-08-01

    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiac failure. Reduction of LVH has beneficial effects on the heart. LVH is associated with shift in energy substrate preference from fatty acid to glucose, mediated by down regulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). As long-term dependence on glucose can promote adverse cardiac remodeling, it was hypothesized that, prevention of metabolic shift by averting down regulation of PPAR-α can reduce cardiac remodeling in spontaneously hypertensive rat (SHR). Cardiac response to stimulation of PPAR-α presumably depends on the type of ligand used. Therefore, the study was carried out in SHR, using two different PPAR-α ligands. SHR were treated with either fenofibrate (100 mg/kg/day) or medium-chain triglyceride (MCT) Tricaprylin (5% of diet) for 4 months. Expression of PPAR-α and medium-chain acylCoA dehydrogenase served as markers, for stimulation of PPAR-α. Both ligands stimulated PPAR-α. Decrease of blood pressure was observed only with fenofibrate. LVH was assessed from heart-weight/body weight ratio, histology and brain natriuretic peptide expression. As oxidative stress is linked with hypertrophy, serum and cardiac malondialdehyde and cardiac 3-nitrotyrosine levels were determined. Compared to untreated SHR, LVH and oxidative stress were lower on supplementation with MCT, but higher on treatment with fenofibrate. The observations indicate that reduction of blood pressure is not essentially accompanied by reduction of LVH, and that, progressive cardiac remodeling can be prevented with decrease in oxidative stress. Contrary to the notion that reactivation of PPAR-α is detrimental; the study substantiates that cardiac response to stimulation of PPAR-α is ligand specific. PMID:25976666

  18. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Immature rat Leydig cells are intrinsically less sensitive than adult Leydig cells to ethane dimethanesulfonate.

    PubMed

    Kelce, W R; Zirkin, B R; Ewing, L L

    1991-11-01

    Leydig cells from immature rat testes appear to be insensitive to doses of ethane-1,2-dimethanesulfonate (EDS) which eliminate Leydig cells from adult rat testes. We sought to determine whether this differential response to EDS is intrinsic to the Leydig cell or mediated by other intra- or extratesticular differences between adult and immature rats. To differentiate among these possibilities, Leydig cells were exposed to EDS (1) in vivo, (2) through in vitro testicular perfusion, or (3) in highly purified Leydig cell primary cultures. Four days after ip injections of 85 mg EDS/kg body wt Leydig cells were eliminated from testes of adult, but not immature rats. Total androgen production by testes perfused in vitro with 94 micrograms EDS/ml was dramatically reduced in adult, but not immature rats. Highly purified adult, but not immature, rat Leydig cells were far more sensitive to the effects of EDS on luteinizing hormone-stimulated androgen production (functional effects; apparent EC50 = 94 for adult and 407 micrograms/ml for immature rat Leydig cells) and on [35S]methionine incorporation (cytotoxic effects; apparent EC50 = 140 for adult and 1000 micrograms/ml for immature rat Leydig cells). Finally, the in vitro effects of EDS were both cell type and chemical specific. Since the differential response of adult and immature rat Leydig cells to EDS was manifest in vivo, during in vitro testicular perfusion, and in highly purified Leydig cell primary cultures, we conclude that immature rat Leydig cells are intrinsically less sensitive to the specific cytotoxic effects of EDS than adult rat Leydig cells.

  20. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  1. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat.

    PubMed

    Mnafgui, Kais; Hajji, Raouf; Derbali, Fatma; Gammoudi, Anis; Khabbabi, Gaddour; Ellefi, Hedi; Allouche, Noureddine; Kadri, Adel; Gharsallah, Neji

    2016-10-01

    This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.

  2. Early Fluid Resuscitation by Lactated Ringer’s Solution Alleviate the Cardiac Apoptosis in Rats with Trauma-Hemorrhagic Shock

    PubMed Central

    Kuo, Wei-Wen; Paul, Catherine Reena; Chen, Wei-Kung; Wen, Su-Ying; Day, Cecilia Hsuan; Wu, Hsi-Chin; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-01-01

    Cardiac trauma has been recognized as a complication associated with blunt chest trauma involving coronary artery injury, myocardium contusion and myocardial rupture. Secondary cardiac injuries after trauma supposed to be a critical factor in trauma patients, but the mechanism is not fully explored. Overproduction of TNF-alpha had been reported in multiple trauma animals, this induces oxidative stress resulting in cardiac apoptosis. Apoptosis gradually increases after trauma and reaches to a maximum level in 12 h time. TNF-alpha increases the expression of NFkB, and induces the expression of caspase-3 and resulted in cell apoptosis. The effect can be attenuated by non-selective caspase inhibitor and IL10. Fas induced cardiac apoptosis and hypertrophy in ischemic heart disease. In this study, we demonstrated a trauma-hemorrhagic shock (THS) model in rats and resuscitated rats by lactated Ringer’s (L/R) solution after shock in different hours (0 hour, 4 hours, 8 hours). NFkB gradually increased after the first 8 hours of shock, and can be reduced by fluid resuscitation. NFkB is known as a downstream pathway of Fas related apoptosis, we found Fas ligand, caspase-8 levels elevate after shock, and can be reduced by resuscitation. In addition, resuscitation can activate insulin-like growth factor (IGF-1)/Akt pathway, at the same time. It can block mitochondrial damage by decrease the effect of tBid. In conclusion, THS can induce secondary cardiac injury. Fas showed to be an important element in caspase cascade induced myocardium apoptosis. By L/R fluid resuscitation, the suppression of caspase cascade and activation of IGF-I/Akt pathway showed antiapoptotic effects in traumatic heart of rats. PMID:27780234

  3. A combination of methylprednisolone and quercetin is effective for the treatment of cardiac contusion following blunt chest trauma in rats

    PubMed Central

    Demir, F.; Güzel, A.; Katı, C.; Karadeniz, C.; Akdemir, U.; Okuyucu, A.; Gacar, A.; Özdemir, S.; Güvenç, T.

    2014-01-01

    Cardiac contusion is a potentially fatal complication of blunt chest trauma. The effects of a combination of quercetin and methylprednisolone against trauma-induced cardiac contusion were studied. Thirty-five female Sprague-Dawley rats were divided into five groups (n=7) as follows: sham, cardiac contusion with no therapy, treated with methylprednisolone (30 mg/kg on the first day, and 3 mg/kg on the following days), treated with quercetin (50 mg·kg−1·day−1), and treated with a combination of methylprednisolone and quercetin. Serum troponin I (Tn-I) and tumor necrosis factor-alpha (TNF-α) levels and cardiac histopathological findings were evaluated. Tn-I and TNF-α levels were elevated after contusion (P=0.001 and P=0.001). Seven days later, Tn-I and TNF-α levels decreased in the rats treated with methylprednisolone, quercetin, and the combination of methylprednisolone and quercetin compared to the rats without therapy, but a statistical significance was found only with the combination therapy (P=0.001 and P=0.011, respectively). Histopathological degeneration and necrosis scores were statistically lower in the methylprednisolone and quercetin combination group compared to the group treated only with methylprednisolone (P=0.017 and P=0.007, respectively). However, only degeneration scores were lower in the combination therapy group compared to the group treated only with quercetin (P=0.017). Inducible nitric oxide synthase positivity scores were decreased in all treatment groups compared to the untreated groups (P=0.097, P=0.026, and P=0.004, respectively). We conclude that a combination of quercetin and methylprednisolone can be used for the specific treatment of cardiac contusion. PMID:25098616

  4. [The effect of a photo-developing solution on respiratory and cardiac activities in rats when orally administered].

    PubMed

    Peti, A; Domahidi, J

    1999-01-01

    The development of cinema art brought about the increase in the number of laboratories which prepare photosensitive materials. In case of laboratories not complying with rules regarding the preparation and handling of the solutions for processing photos, these solutions can penetrate in the organism trough the skin and be accidentally digested. The goal of the experiment is to study the effects of developing solution for white/black Azomureş photographic paper on respiratory and cardiac activity of the Wistar rat (weight = 180-200 g) through oral administration. Three experimental groups (lots) of animals were formed (8 animals/group). The control group was given 1 ml of distilled water; the first (I) group was given 1 ml of 1/10 diluted photo-processing solution and the second (II) group was given 1 ml of the same solution, but 1/4 diluted. The administration of it was made in a single dose with a gastric drill. The respiratory and cardiac (ECG) frequencies were monitored during a 4 hours period, from the onset of administration. When 1/10 diluted developing solution was administrated a decrease in the respiratory frequency was recorded after one hour, but the effect vanished at the end of the experiment (4 hours). Fifteen minutes after 1/4 diluted solution was administered, a decrease in respiratory frequency per minute was determined, this result also disappeared at the end of 4 hours. However, these differences failed to reach significance (p = 0, 54). The effect of developing solution on cardiac activity shows a decrease of cardiac frequency in both experimental (I, II) groups. However, there is a difference in the effect of the diluted solution on the rats. The 1/10 diluted solution decrease the cardiac frequency over an approximate period of 1 hour and a half, but the 1/4 diluted solution showed a decrease in cardiac frequency up until the end of the ECG reading.

  5. Cardiac transplantation.

    PubMed

    Shanewise, Jack

    2004-12-01

    Cardiac transplantation is a proven, accepted mode of therapy for selected patients with end-stage heart failure, but the inadequate number of suitable donor hearts available ultimately limits its application. This chapter reviews adult cardiac transplantation, with an emphasis on the anesthetic considerations of the heart transplant operation itself.

  6. Cardiac mitochondrial function and tissue remodelling are improved by a non-antihypertensive dose of enalapril in spontaneously hypertensive rats.

    PubMed

    Piotrkowski, Barbara; Koch, Osvaldo R; De Cavanagh, Elena M V; Fraga, César G

    2009-04-01

    Renal and cardiac benefits of renin-angiotensin system inhibition exceed blood pressure (BP) reduction and seem to involve mitochondrial function. It has been shown that RAS inhibition prevented mitochondrial dysfunction in spontaneously hypertensive rats (SHR) kidneys. Here, it is investigated whether a non-antihypertensive enalapril dose protects cardiac tissue and mitochondria function. Three-month-old SHR received water containing enalapril (10 mg/kg/day, SHR+Enal) or no additions (SHR-C) for 5 months. Wistar-Kyoto rats (WKY) were normotensive controls. At month 5, BP was similar in SHR+Enal and SHR-C. In SHR+Enal and WKY, heart weight and myocardial fibrosis were lower than in SHR-C. Matrix metalloprotease-2 activity was lower in SHR+Enal with respect to SHR-C and WKY. In SHR+Enal and WKY, NADH/cytochrome c oxidoreductase activity, eNOS protein and activity and mtNOS activity were higher and Mn-SOD activity was lower than in SHR-C. In summary, enalapril at a non-antihypertensive dose prevented cardiac hypertrophy and modifies parameters of cardiac mitochondrial dysfunction in SHR. PMID:19296328

  7. Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6

    PubMed Central

    Zhou, Jingmin; Jiang, Kun; Ding, Xuefeng; Fu, Mingqiang; Wang, Shijun; Zhu, Lingti; He, Tao; Wang, Jingfeng; Sun, Aijun; Hu, Kai; Chen, Li; Zou, Yunzeng; Ge, Junbo

    2015-01-01

    Qiliqiangxin (QL), a traditional Chinese medicine, had long been used to treat chronic heart failure. Recent studies revealed that differentiation of cardiac fibroblasts (CFs) into myofibroblasts played an important role in cardiac remodelling and development of heart failure, however, little was known about the underlying mechanism and whether QL treatment being involved. This study aimed to investigate the effects of QL on angiotensin II (AngII)-induced CFs transdifferentiation. Study was performed on in vitro cultured CFs from Sprague–Dawley rats. CFs differentiation was induced by AngII, which was attenuated by QL through reducing transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA). Our data showed that AngII-induced IL-6 mRNA as well as typeI and typeIII collagens were reduced by QL. IL-6 deficiency could suppress TGF-β1 and α-SMA, and both IL-6 siRNA and QL-mediated such effect was reversed by foresed expression of recombined IL-6. Increase in actin stress fibres reflected the process of CFs differentiation, we found stress fibres were enhanced after AngII stimulation, which was attenuated by pre-treating CFs with QL or IL-6 siRNA, and re-enhanced after rIL-6 treatment. Importantly, we showed that calcineurin-dependent NFAT3 nuclear translocation was essential to AngII-mediated IL-6 transcription, QL mimicked the effect of FK506, the calcineurin inhibitor, on suppression of IL-6 expression and stress fibres formation. Collectively, our data demonstrated the negative regulation of CFs differentiation by QL through an IL-6 transcriptional mechanism that depends on inhibition of calcineurin/NFAT3 signalling. PMID:25752645

  8. Cardiac and pulmonary oxidative stress in rats exposed to realistic emissions of source aerosols

    PubMed Central

    Lemos, Miriam; Diaz, Edgar A.; Gupta, Tarun; Kang, Choong-Min; Ruiz, Pablo; Coull, Brent A.; Godleski, John J.; Gonzalez-Flecha, Beatriz

    2013-01-01

    In vivo chemiluminescence (CL) is a measure of reactive oxygen species in tissues. CL was used to assess pulmonary and cardiac responses to inhaled aerosols derived from aged emissions of three coal-fired power plants in the USA. Sprague–Dawley rats were exposed to either filtered air or: (1) primary emissions (P); (2) ozone oxidized emissions (PO); (3) oxidized emissions + secondary organic aerosol (SOA) (POS); (4) neutralized oxidized emissions + SOA (PONS); and (5) control scenarios: oxidized emissions + SOA in the absence of primary particles (OS), oxidized emissions alone (O), and SOA alone (S). Immediately after 6 hours of exposure, CL in the lung and heart was measured. Tissues were also assayed for thiobarbituric acid reactive substances (TBARS). Exposure to P or PO aerosols led to no changes compared to filtered air in lung or heart CL at any individual plant or when all data were combined. POS caused significant increases in lung CL and TBARS at only one plant, and not in combined data from all plants; PONS resulted in increased lung CL only when data from all plants were combined. Heart CL was also significantly increased with exposure to POS only when data from all plants were combined. PONS increased heart CL significantly in one plant with TBARS accumulation, but not in combined data. Exposure to O, OS, and S had no CL effects. Univariate analyses of individual measured components of the exposure atmospheres did not identify any component associated with increased CL. These data suggest that coal-fired power plant emissions combined with other atmospheric constituents produce limited pulmonary and cardiac oxidative stress. PMID:21913821

  9. Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle.

    PubMed

    Silva, Marito A S C; de Oliveira, Thiago F; Almenara, Camila C P; Broseghini-Filho, Gilson B; Vassallo, Dalton V; Padilha, Alessandra S; Silveira, Edna A

    2015-10-01

    Lead exposure has been considered to be a risk factor for hypertension and cardiovascular disease. Our purpose was to evaluate the effects of low plasma lead concentration on cardiac contractility in isolated papillary muscles. Wistar rats were divided in control group or group treated with 100 ppm of lead acetate in the drinking water for 15 days. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anesthetized and euthanized, and parameters related to isolated papillary muscle contractility were recorded. The lead concentrations in the blood reached 12.3 ± 2 μg/dL. The BP was increased in the group treated with 100 ppm of lead acetate. Lead treatment did not alter force and time derivatives of the force of left ventricular papillary muscles. In addition, the inotropic response induced by an increase in the extracellular Ca(2+) concentration was reduced in the Pb(2+) group. However, the uptake of Ca(2+) by the sarcoplasmic reticulum and the protein expression of SERCA and phospholamban remained unchanged. Postrest contraction was similar in the both groups, and tetanic peak and plateau tension were reduced in lead group. These results demonstrated that the reduction in the inotropic response to calcium does not appear to be caused by changes in the trans-sarcolemmal calcium flux but suggest that an impairment of the contractile machinery might be taking place. Our results demonstrate that even at a concentration below the limit considered to be safe, lead exerts deleterious effects on the cardiac contractile machinery. PMID:25795172

  10. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  11. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    PubMed

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  12. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.

    PubMed

    Zeiders, J L; Seidler, F J; Slotkin, T A

    1997-02-01

    Fetal and neonatal tissues are resistant to catecholamine-induced desensitization of essential physiological responses. We examined the mechanisms underlying the ontogeny of desensitization in neonatal rat heart for the beta-adrenergic receptor/adenylyl cyclase signaling cascade. Animals of different ages received isoproterenol daily or 4 days and cardiac membrane preparations were evaluated on the 5th day (6, 15, 25 days old and adults). Measurements were made of basal activity, activity stimulated by two agonists (isoproterenol or glucagon) that operate at different receptors but that share Gs as the transduction intermediate, or by forskolin-Mn' to assess total catalytic capacity of the cyclase subunit; we also assessed inhibition of activity by carbachol which acts via muscarinic cholinergic receptors and G. Adult rats exhibited robust desensitization of the adenylyl cyclase response but the effect was heterologous in that equivalent loss of activity was seen for basal, isoproterenol- and glucagon-stimulated activity forskolin-Mn(2+)-stimulated activity was also decreased. Two factors contributed to desensitization; generalized reduction in membrane protein concentrations caused by cell enlargement (reduced surface-to-volume ratio), and specific interference with the G-protein component that couples receptors to the cyclase. Thus, after adjustment for changes in membrane protein, the desensitization of the forskolin-Mn2, response was no longer evident, but the effects on the other measures were still present. In addition, isoproterenol treatment produced crosstalk with the carbachol/Gi signaling pathway, with significant reductions in the ability of carbachol to inhibit adenylyl cyclase activity. Heterologous desensitization by isoproterenol was also present in 15 and 25 day old rats, but involved only selective components of the effects seen in adults. At 25 days, uncoupling of signals operating through Gs and Gi was obtained without a reduction in forskolin

  13. Cardiac phosphocreatine deficiency induced by GPA during postnatal development in rat.

    PubMed

    Pelouch, V; Kolár, F; Khuchua, Z A; Elizarova, G V; Milerová, M; Ost'ádal, B; Saks, V A

    1996-01-01

    The effect of chronic administration of beta-guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1-1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 +/- 5.3 mumoles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for

  14. Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats

    PubMed Central

    Fujimoto, Yoshitaka; Urashima, Takashi; Shimura, Daisuke; Ito, Reiji; Kawachi, Sadataka; Kajimura, Ichige; Akaike, Toru; Kusakari, Yoichiro; Fujiwara, Masako; Ogawa, Kiyoshi; Goda, Nobuhito; Ida, Hiroyuki; Minamisawa, Susumu

    2016-01-01

    Background Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis. Methods and Results Five-week-old Sprague-Dawley rats divided into the PAB and sham-operated control groups. After 4 weeks from operation, we measured CO by echocardiography, and hepatic fibrosis ratio by pathological examination using a color analyzer. In the PAB group, CO was significantly lower by 48% than that in the control group (78.2±27.6 and 150.1±31.2 ml/min, P<0.01). Hepatic fibrosis ratio and serum hyaluronic acid, an index of hepatic fibrosis, were significantly increased in the PAB group than those in the control group (7.8±1.7 and 1.0±0.2%, P<0.01, 76.2±27.5 and 32.7±7.5 ng/ml, P<0.01). Notably, the degree of hepatic fibrosis significantly correlated a decrease in CO. Immunohistological analysis revealed that hepatic stellate cells were markedly activated in hypoxic areas, and HIF-1α positive hepatic cells were increased in the PAB group. Furthermore, by real-time PCR analyses, transcripts of profibrotic and fibrotic factors (TGF-β1, CTGF, procollargen I, procollargen III, MMP 2, MMP 9, TIMP 1, TIMP 2) were significantly increased in the PAB group. In addition, western blot analyses revealed that the protein level of HIF-1α was significantly increased in the PAB group than that in the control group (2.31±0.84 and 1.0±0.18 arbitrary units, P<0.05). Conclusions Our study demonstrated that low CO and tissue hypoxia were responsible for hepatic fibrosis in right failure heart model rats. PMID:26863419

  15. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases. PMID:26855466

  16. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  17. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  18. Cysteamine reduces serum gonadotropin concentrations in adult male rats.

    PubMed

    Badger, T M; Sagar, S M; Millard, W J; Martin, J B; Rosenblum, P

    1982-01-18

    We have examined the effects of cysteamine on the hypothalamic-pituitary-gonadal axis of the adult male rat. A single subcutaneous injection of cysteamine (300 mg/kg) reduces significantly (p less than or equal to 0.05 serum concentrations of LH, FSH and T. Cysteamine blocked LH secretion induced by castration and administration of naloxone and LHRH. Neither acute nor chronic treatment (7 days) altered the hypothalamic LHRH content. These results suggest that cysteamine acts to reduce pituitary responsiveness to LHRH, resulting in lower mean serum gonadotropin and testosterone concentrations. It is possible, however, that cysteamine acts also at the hypothalamus to reduce LHRH secretion and/or at the testes to reduce testosterone release.

  19. Cardiac effects of long-term active immunization with the second extracellular loop of human β1- and/or β3-adrenoceptors in Lewis rats.

    PubMed

    Montaudon, E; Dubreil, L; Lalanne, V; Vermot Des Roches, M; Toumaniantz, G; Fusellier, M; Desfontis, J-C; Martignat, L; Mallem, M Y

    2015-10-01

    β1- and β3-adrenoceptor (AR) auto-antibodies were detected in patients with dilated cardiomyopathy. Many studies have shown that β1-AR auto-antibodies with partial agonist-like effect play an important role in the pathogenesis of this disease. Moreover, a recent study carried out in our laboratory has shown that β3-AR antibodies (β3-ABs), produced in rats, were able to reduce cardiomyocyte contractility via β3-AR activation. The aims of this study were (1) to investigate, in isolated cardiomyocytes from rabbit, the role of Gi proteins in the β3-ABs-induced cardiac negative inotropy, (2) to determine whether β3-ABs may exhibit β3-AR antagonistic property which is characteristic of partial agonists, and (3) to determine whether long-term active immunization producing both β1-ABs and/or β3-ABs leads to the development of cardiac dysfunction in Lewis rats. Lewis rats were immunized for 6 months with peptidic sequences corresponding to the second extracellular loop of human β3-AR and/or β1-AR. Agonistic effect of β3-ABs was evaluated on electrically field-stimulated isolated cardiomyocytes from adult rabbit by measuring the cell shortening. Echocardiography and ex vivo isolated perfused heart studies were conducted on immunized rats. Finally, β-AR expression was quantified by immunofluorescence and RT-qPCR. SR58611A (10 nM), a preferential β3-AR agonist, and purified β3-ABs (25 μg/ml) induced a decrease in cell shortening (-39.71±4.9% (n=10) and -17.06±3.9% (n=10) respectively). This effect was significantly inhibited when the cardiomyocytes were preincubated with pertussis toxin (0.3 μg/ml), a Gi protein inhibitor (p<0.05). In addition, SR58611A-mediated negative inotropic effect was decreased when cardiomyocytes were preincubated with β3-ABs (p<0.0001). Echocardiography revealed a decrease in the fractional shortening and ejection fraction in rats immunized against β1-AR and both β1- and β3-AR. However, the study on isolated heart showed a

  20. Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats.

    PubMed

    Krause, A; Nowak, Z; Srbu, R; Bell, H J

    2016-10-01

    In the present study we investigated the pattern and efficacy of respiratory autoresuscitation in spontaneously breathing adult male rats across three separate anesthetic backgrounds. Each animal was administered one of three injectable anesthetics to achieve a surgical plane of anesthesia: ketamine-xylazine (KET, n=10), pentobarbital (PEN, n=10), or urethane (URE, n=10). Animals were tracheostomized and equipped with a femoral artery catheter to record airflow and arterial pressures. In response to a bout of breathing anoxic air, none of the 10 URE animals were able to mount a successful autoresuscitation response. In contrast, all KET and PEN animals survived all four consecutive anoxic exposures, restoring eupneic breathing in all cases. Moreover, only 4/10 URE animals expressed gasping breaths following the onset of respiratory arrest, and these were temporally delayed (p<0.001) and much smaller in volume (P≤0.012) compared to KET and PEN animals. URE animals showed no clear aberrations in their cardiovascular responses to anoxia, with the exception of lower arterial pulse pressures compared to either KET or PEN animals at specific points following RA. Ketamine-xylazine and pentobarbital anesthesia can be reliably and effectively used to create models for the study of autoresuscitation in adult rats. In contrast, urethane causes catastrophic failure of respiratory autoresuscitation, by delaying or outright preventing the elaboration of gasping breaths following anoxia-induced respiratory arrest. The neuronal and synaptic alterations accompanying urethane anesthesia may therefore provide a means of understanding potential pathological alterations in rhythm generation that can predispose the respiratory control system to failed autoresuscitation following an episode of acute severe hypoxemia. PMID:27378495

  1. Exsanguination cardiac arrest in rats treated by 60 min, but not 75 min, emergency preservation and delayed resuscitation is associated with intact outcome.

    PubMed

    Drabek, Tomas; Stezoski, Jason; Garman, Robert H; Han, Fei; Henchir, Jeremy; Tisherman, Samuel A; Stezoski, S William; Kochanek, Patrick M

    2007-10-01

    Emergency preservation and resuscitation (EPR) is a new approach for resuscitation of exsanguination cardiac arrest (CA) victims to buy time for surgical hemostasis. EPR uses a cold aortic flush to induce deep hypothermic preservation, followed by resuscitation with cardiopulmonary bypass (CPB). We previously reported that 20 min of EPR was feasible with intact outcome. In this report, we tested the limits for EPR in rats. Adult male isoflurane-anesthetized rats were subjected to rapid hemorrhage (12.5 ml over 5 min), followed by esmolol/KCl-induced CA and 1 min of no-flow. EPR was then induced by perfusion with 270 ml of ice-cold Plasma-Lyte to decrease body temperature to 15 degrees C. After 60 min (n=7) or 75 min (n=7) of EPR, resuscitation was attempted with CPB over 60 min, blood transfusion, correction of acid-base balance and electrolyte disturbances, and mechanical ventilation for 2h. Survival, overall performance category (OPC: 1=normal, 5=death), neurological deficit score (NDS), and histological damage score (HDS) were assessed in survivors on day 3. While all rats after 60 min EPR survived, only two out of seven rats after 75 min EPR survived (p<0.05). All rats after 60 min EPR achieved OPC 1 and normal NDS by day 3. Survivors after 75 min EPR achieved best OPC 3 (p<0.05 vs. 60 min EPR). HDS of either brain or individual viscera was not statistically different after 60 versus 75 min EPR, except for kidneys (0+/-0 vs. 1.9+/-1.3, respectively; p<0.05), with a strong trend toward greater injury in all extracerebral organs in the 75-min EPR group (p<0.06). Histological findings were dominated by cardiac lesions observed in both groups and acute renal tubular and liver necrosis in the 75-min EPR group. In conclusion, we have shown that 60 min of EPR after exsanguination CA is associated with survival and favorable neurological outcome, while 75 min of EPR results in significant mortality and neurological damage in survivors. Surprisingly, extracerebral

  2. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes.

    PubMed

    Liu, Yan; Wang, Zhiqian; Xiao, Wenliang

    2016-09-01

    Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (P<0.05). The TAAC-induced rat model exhibited a higher HW/BW ratio, a larger CM area, and higher expression levels of ANF and β‑MHC. CMs, upon Ang II treatment, also demonstrated a larger CM area, higher levels of ANF and β‑MHC, as well as accelerated protein synthesis. miR‑26a was not able to regulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies. PMID:27485101

  3. SYSTEMIC IMBALANCE OF ESSENTIAL METALS AND CARDIAC GENE EXPRESSION IN RATS FOLLOWING ACUTE PULMONARY ZINC EXPOSURE

    EPA Science Inventory

    We have recently demonstrated that PM containing water-soluble zinc may cause cardiac injury following pulmonary exposure. To investigate if pulmonary zinc exposure causes systemic metal imbalance and direct cardiac effects, we intratracheally (IT) instilled male Wistar Kyoto (WK...

  4. Negative inotropic actions of nitric oxide require high doses in rat cardiac muscle.

    PubMed

    Wyeth, R P; Temma, K; Seifen, E; Kennedy, R H

    1996-08-01

    Initial experiments were designed to determine if vasoactive concentrations of nitric oxide (NO) alter contractility in rat heart. Contractile function was monitored in left atrial and papillary muscles (30 degrees C; paced at 0.5 Hz) during cumulative addition of 3-morpholino-sydnonimine-HCl(SIN-1), an agent that releases NO. At concentrations between 10(-7) and 10(-4) M (NO concentrations of approximately 10(-8)- 3 x 10(-7) M), SIN-1 did not affect contractility in either tissue. Similarly, 10(-4) M SIN-1 did not alter the positive inotropic responses to isoproterenol or increasing extracellular [Ca+2] ([Ca+2]o). To obtain higher concentrations of NO, additional studies were conducted using authentic NO. NO-saturated stock solutions and a corresponding control solvent were adjusted to pH 1.6 with HCl. Dose-dependent effects of NO were examined by adding aliquots of the stock solutions (or control solvent) to the bathing solution. At final concentrations of 1 x 10(-5)- 5 x 10(-4) M, NO produced transient, concentration-dependent decreases in contractility that were paralleled by reductions in buffer pH. Control solvent elicited similar reductions in pHo and transient decreases in contractility; however, the negative inotropic action elicited by the NO-containing solution was approximately 20% greater than that observed in control conditions. These data demonstrate that only high concentrations of NO depress contractility in isolated rat cardiac muscle, and suggest that this effect is mediated by both acidosis and a pHo-independent mechanism.

  5. The effect of ovariectomy on cardiac autonomic control in rats submitted to aerobic physical training.

    PubMed

    Tezini, Geisa C S V; Silveira, Larissa C R; Maida, Karina D; Blanco, João Henrique D; Souza, Hugo C D

    2008-12-01

    We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n=70) were divided into five groups: Sedentary Sham (SS); Trained Sham (TS); Trained Hypertensive Sham treated with N(G)-nitro-L-arginine methyl ester (L-NAME) (THS); Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. BRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS, THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability.

  6. Propagation of the cardiac impulse in the diabetic rat heart: reduced conduction reserve

    PubMed Central

    Nygren, A; Olson, M L; Chen, K Y; Emmett, T; Kargacin, G; Shimoni, Y

    2007-01-01

    Diabetes mellitus is a growing epidemic with severe cardiovascular complications. Although much is known about mechanical and electrical cardiac dysfunction in diabetes, few studies have investigated propagation of the electrical signal in the diabetic heart and the associated changes in intercellular gap junctions. This study was designed to investigate these issues, using hearts from control and diabetic rats. Diabetic conditions were induced by streptozotocin (STZ), given i.v. 7–14 days before experiments. Optical mapping with the voltage-sensitive dye di-4-ANEPPS, using hearts perfused on a Langendorff apparatus, showed little change in baseline conduction velocity in diabetic hearts, reflecting the large reserve of function. However, both the gap junction uncoupler heptanol (0.5–1 mm) and elevated potassium (9 mm, to reduce cell excitability) produced a significantly greater slowing of impulse propagation in diabetic hearts than in controls. The maximal action potential upstroke velocity (an index of the sodium current) and resting potential was similar in single ventricular myocytes from control and diabetic rats, suggesting similar electrical excitability. Immunoblotting of connexin 43 (Cx43), a major gap junction component, showed no change in total expression. However, immunofluorescence labelling of Cx43 showed a significant redistribution, apparent as enhanced Cx43 lateralization. This was quantified and found to be significantly larger than in control myocytes. Labelling of two other gap junction proteins, N-cadherin and β-catenin, showed a (partial) loss of co-localization with Cx43, indicating that enhancement of lateralized Cx43 is associated with non-functional gap junctions. In conclusion, conduction reserve is smaller in the diabetic heart, priming it for impaired conduction upon further challenges. This can desynchronize contraction and contribute to arrhythmogenesis. PMID:17185336

  7. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  8. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI.

    PubMed

    Huang, Bing S; Leenen, Frans H H

    2005-05-01

    In rats post-myocardial infarction (MI), sympathetic hyperactivity can be prevented by blockade of brain mineralocorticoid receptors (MR). Stimulatory responses to central infusion of aldosterone can be blocked by benzamil and therefore appear to be mediated via Na+ channels, presumably epithelial Na+ channels (ENaC), in the brain. To evaluate this concept of endogenous mineralocorticoids in Wistar rats post-MI, we examined effects of blockade of MR and Na+ channels in the brain. At 3 days after coronary artery ligation, intracerebroventricular infusions were started with spironolactone (400 ng.kg(-1).h(-1)) or its vehicle, or with benzamil (4 microg.kg(-1).h(-1)) or its vehicle, using osmotic minipumps. Rats with sham ligation served as control. After 4 wk, in conscious rats, mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded at rest and in response to air-jet stress, intracerebroventricular injection of the alpha2-adrenoceptor agonist guanabenz, and intravenous infusion of phenylephrine and nitroprusside for baroreflex function. MI size was similar among the four groups of rats (approximately 31%). In rats treated post-MI with vehicles, cardiac function was decreased, sympathetic reactivity was enhanced, and baroreflex function was impaired. Blockade of brain Na+ channels or brain MR similarly prevented sympathetic hyperactivity and impairment of baroreflex function and improved cardiac function. These findings suggest that in rats post-MI, increased binding of endogenous agonists to MR increases ENaC activity in the brain and thereby leads to sympathetic hyperactivity and progressive left ventricular dysfunction.

  9. Comparison of electroretinographic responses between two different age groups of adult Dark Agouti rats

    PubMed Central

    Fu, Lin; Lo, Amy Cheuk Yin; Lai, Jimmy Shiu Ming; Shih, Kendrick Co

    2015-01-01

    AIM To describe and compare the differences in electroretinographic responses between two different age groups of adult Dark Agouti (DA) rats and to better understand the effect of age on retinal histology and function. METHODS The electroretinographic responses of two different age groups of adult DA rats were compared. Animals were divided into younger adult DA rats 10-12wk (n=8) and older adult DA rats 17-19wk (n=8). Full field electroretinography (ERG) was recorded simultaneously from both eyes after dark adaption and light adaption and parameters including the positive scotopic threshold response (pSTR), negative scotopic threshold response (nSTR), scotopic a-wave, b-wave, photopic a-wave, b-wave and photopic negative response (PhNR) were compared between groups. RESULTS The older adult rats displayed lower stimulation thresholds of the STRs (pSTR and nSTR) and higher amplitudes of pSTR, scotopic a-wave and b-wave, photopic b-wave and PhNR amplitudes, with shorter implicit times. Photopic a-wave amplitudes were however higher in the younger adult rats. CONCLUSION In summary, for the rod system, photoreceptor, bipolar cell and RGC activity was enhanced in the older adult rats. For the cone system, RGC and bipolar cell activity was enhanced, while photoreceptor activity was depressed in the older adult rats. Such age-related selective modification of retinal cell function needs to be considered when conducting ophthalmic research in adult rats. PMID:26558198

  10. On the degradability and exocytosis of ceroid/lipofuscin in cultured rat cardiac myocytes.

    PubMed

    Terman, A; Brunk, U T

    1998-01-30

    The accumulation of lipofuscin (LF)--a polymeric, electron-dense, autofluorescent substance--within postmitotic cells is a characteristic manifestation of aging. It is generally believed that LF is undegradable and formed due to peroxidative alterations of various macromolecules under intralysosomal autophagic degradation. We report here that a short-term exposure of cultured neonatal rat cardiac myocytes to the thiol protease-inhibitor leupeptin, causes an accumulation of numerous electron-dense autophagic lysosomes within the cells. Although very similar to LF by ultrastructure, these inclusions do not display LF-specific, yellow-orange autofluorescence when excited with blue light. Moreover, they rapidly disappear from the cells upon re-establishment of normal culture conditions. In contrast, prolonged leupeptin treatment results in an accumulation of dense lysosomes that also show LF-typical autofluorescence. This autofluorescent material remains in the cells after the end of leupeptin action. The results suggest that: (i) a certain amount of time is needed for autophagocytosed material to become peroxidized, autofluorescent and undegradable, i.e. to acquire properties typical of LF; (ii) protease-inhibition by itself does not lead to LF-formation but rather allows the prolonged time needed for oxidative modification of autophagocytosed material; (iii) mature LF is probably not subjected to either degradation or exocytosis.

  11. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain.

    PubMed

    Xie, Y; Zacharias, E; Hoff, P; Tegtmeier, F

    1995-07-01

    Anoxic depolarization (AD) and failure of ion homeostasis play an important role in ischemia-induced neuronal injury. In the present study, different drugs with known ion-channel-modulating properties were examined for their ability to interfere with cardiac-arrest-elicited AD and with the changes in the extracellular ion activity in rat brain. Our results indicate that only drugs primarily blocking membrane Na+ permeability (NBQX, R56865, and flunarizine) delayed the occurrence of AD, while compounds affecting cellular Ca2+ load (MK-801 and nimodipine) did not influence the latency time. The ischemia-induced [Na+]e reduction was attenuated by R56865. Blockade of the ATP-sensitive K+ channels with glibenclamide reduced the [K+]e increase upon ischemia, indicating an involvement of the KATP channels in ischemia-induced K+ efflux. The KATP channel opener cromakalim did not affect the AD or the [K+]e concentration. The ischemia-induced rapid decline of extracellular calcium was attenuated by receptor-operated Ca2+ channel blockers MK-801 and NBQX, but not by the voltage-operated Ca2+ channel blocker nimodipine, R56865, and flunarizine. PMID:7540620

  12. Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats

    PubMed Central

    Pacher, Pál; Nagayama, Takahiro; Mukhopadhyay, Partha; Bátkai, Sándor; Kass, David A

    2008-01-01

    Ventricular pressure–volume relationships have become well established as the most rigorous and comprehensive ways to assess intact heart function. Thanks to advances in miniature sensor technology, this approach has been successfully translated to small rodents, allowing for detailed characterization of cardiovascular function in genetically engineered mice, testing effects of pharmacotherapies and studying disease conditions. This method is unique for providing measures of left ventricular (LV) performance that are more specific to the heart and less affected by vascular loading conditions. Here we present descriptions and movies for procedures employing this method (anesthesia, intubation and surgical techniques, calibrations). We also provide examples of hemodynamics measurements obtained from normal mice/rats, and from animals with cardiac hypertrophy/heart failure, and describe values for various useful load-dependent and load-independent indexes of LV function obtained using different types of anesthesia. The completion of the protocol takes 1–4 h (depending on the experimental design/end points). PMID:18772869

  13. [ATRIAL AND BRAIN NATRIURETIC PEPTIDES OF CARDIAC MUSCLE CELLS IN POSTREPERFUSION PERIOD IN RATS].

    PubMed

    Bugrova, M L

    2016-01-01

    Accumulation and release of atrial and brain natriuretic peptides (ANP and BNP) in right atrial cardiac muscle cells has been investigated in rats after 60 minutes and 60 days after the reperfusion start. The total ischemia was simulated by the method of V. G. Korpachev. Immunocytochemical localization of peptides in cardiomyocytes was performed in ultrathin sections using polyclonal antibodies. The intensity of accumulation/excretion of ANP and BNP were analyzed by the method of counting the number of granules (A- and B-types) with immunoreactive labels in 38 x 38 mkm2 visual fields in transmission electron microscope Morgagni 268D (FEI). The results were assessed using Mann-Whitney U-test (p < 0.05). After 60 minutes and 60 days post-reperfusion period, we detected an increase in the synthesis and release of ANP and BNP. The reaction of BNP was more pronounced than ANP. This is due to the fact that ANP is the main hormone of the natriuretic peptide system involved in the regulation of blood pressure in normal conditions, while BNP is the principal regulator of pressure in cardiovascular pathology. PMID:27228659

  14. Neonatal injections of methoxychlor decrease adult rat female reproductive behavior.

    PubMed

    Bertolasio, Jennifer; Fyfe, Susanne; Snyder, Ben W; Davis, Aline M

    2011-12-01

    Methoxychlor (MXC), a commonly used pesticide, has been labeled as an endocrine disruptor. To evaluate the impact of neonatal exposure to MXC on female reproduction, female Sprague-Dawley rats were given subcutaneous injections on postnatal days 1, 3, and 5. The injections contained 1.0mg MXC, 2.0mg MXC, 10 μg 17β-estradiol benzoate (positive control), or sesame oil (vehicle). The injections of MXC had no effect on anogenital distance or day of vaginal opening. Treatment with either 2.0mg MXC or estradiol significantly increased the total number of days with vaginal keratinization. Treatment with MXC had no effect on ability to exhibit a mating response as an adult female, although the high dose MXC (2.0) and the positive control (estradiol) animals demonstrated a decrease in degree of receptivity, a decrease in proceptive behavior and an increase in rejection behavior. These data suggest that higher doses of MXC given directly to pups during the neonatal period can act as an estrogen and alter aspects of the nervous system, impacting adult reproductive characteristics.

  15. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    PubMed Central

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Methods and Results Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm2; P<0.01) and canine hearts (767.80±18.37 versus 650.23±9.84 μm2; P<0.01) failing secondary to ischemia and neurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm2; P<0.01) failing secondary to hypertension reveal significant hypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Conclusions Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia. PMID:23959444

  16. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    PubMed

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  17. Reactive oxygen species modulate neuronal excitability in rat intrinsic cardiac ganglia

    PubMed Central

    Whyte, K.A.; Hogg, R.C.; Dyavanapalli, J.; Harper, A.A.; Adams, D.J.

    2009-01-01

    Reactive oxygen species (ROS) are produced as by-products of oxidative metabolism and occur in the heart during ischemia and coronary artery reperfusion. The effects of ROS on the electrophysiological properties of intracardiac neurons were investigated in the intracardiac ganglion (ICG) plexus in situ and in dissociated neurons from neonatal and adult rat hearts using the whole-cell patch clamp recording configuration. Bath application of ROS donors, hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) hyperpolarized, and increased the action potential duration of both neonatal and adult ICG neurons. This action was also recorded in ICG neurons in an adult in situ ganglion preparation. H2O2 and t-BHP also inhibited voltage-gated calcium channel (VGCC) currents and shifted the current–voltage (I–V) relationship to more hyperpolarized potentials. In contrast, H2O2 increased the amplitude of the delayed rectifier K+ current in neonatal ICG neurons. In neonatal ICG neurons, bath application of either superoxide dismutase (SOD) or catalase, scavengers of ROS, prior to H2O2 attenuated the hyperpolarizing shift but not the inhibition of VGCC by H2O2. In contrast, in adult ICG neurons, application of SOD alone had no effect upon either VGCC current amplitude or the I–V relationship, whereas application of SOD prior to H2O2 exposure abolished both the H2O2-mediated hyperpolarizing shift and inhibition. These data indicate that ROS alter depolarization-activated Ca2+ and K+ conductances which underlie neuronal excitability of ICG neurons. This affects action potential duration and therefore probably modifies autonomic control of the heart during ischemia/reperfusion. PMID:19442588

  18. Effect of MDMA (ecstasy) on activity and cocaine conditioned place preference in adult and adolescent rats.

    PubMed

    Aberg, Maria; Wade, Dean; Wall, Erin; Izenwasser, Sari

    2007-01-01

    MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for 7 days with MDMA (2 or 5 mg/kg/day or vehicle) and locomotor activity was measured. Five days later cocaine conditioned place preference (CPP) was begun. Rats were trained for 3 days, in the morning with saline and in the afternoon with 10 mg/kg cocaine in 30 min sessions, and tested on the fourth day. MDMA stimulated activity in both age groups, but with a greater effect in the adult rats. Sensitization to the locomotor-stimulant effects of the lower dose of MDMA occurred in adult rats and in both groups to the higher dose. Cocaine did not produce a CPP in vehicle-treated adolescent rats, but a significant CPP was observed subsequent to treatment with MDMA. In contrast, cocaine-induced CPP was diminished after MDMA in adult rats. These effects were still evident 2 weeks later upon retest. Thus, under the present conditions, MDMA increased cocaine conditioned reward in adolescent and decreased it in adult rats. These findings suggest that exposure to MDMA during this critical developmental period may carry a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of stimulant abuse after use of MDMA.

  19. Herbal supplement attenuation of cardiac fibrosis in rats with CCl₄-induced liver cirrhosis.

    PubMed

    Chang, Hsiao-Chuan; Chiu, Yung-Wei; Lin, Yueh-Min; Chen, Ray-Jade; Lin, James A; Tsai, Fuu-Jen; Tsai, Chang-Hai; Kuo, Yu-Chun; Liu, Jer-Yuh; Huang, Chih-Yang

    2014-02-28

    Previously we found carbon tetrachloride (CCl₄) induced cirrhosis associated cardiac hypertrophy and apoptosis. The purpose of this study is to determine whether further CCl₄ treatment would induce cardiac cell fibrosis. The cardiac tissues were analyzed by H&E. histological staining, Trichrome Masson staining and Western blotting. The results showed that the CCl₄-treated-only group exhibits more trichrome staining, meaning that more fibrosis is present. Moreover, CCl₄ could further induce cardiac-fibrosis via TGF-β-p-Smad2/3-CTGF pathway. However, our data showed that the CCl₄- indcued cardiac abnormalities were attenuated by Ocimum gratissimum extract (OGE) and silymarin co- treatments. In conclusion, our results indicated that the OGE and silymarin may be a potential traditional herb for the protection of cardiac tissues from the CCl4 induced cirrhosis associated cardiac fibrosis through modulating the TGF-β signaling pathway.

  20. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Fong, Ashley H; Romero-López, Mónica; Heylman, Christopher M; Keating, Mark; Tran, David; Sobrino, Agua; Tran, Anh Q; Pham, Hiep H; Fimbres, Cristhian; Gershon, Paul D; Botvinick, Elliot L; George, Steven C; Hughes, Christopher C W

    2016-08-01

    Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease. PMID:27392582

  1. Incidence of inferior vena cava thrombosis detected by transthoracic echocardiography in the immediate postoperative period after adult cardiac and general surgery.

    PubMed

    Saranteas, T; Kostopanagiotou, G; Tzoufi, M; Drachtidi, K; Knox, G M; Panou, F

    2013-11-01

    Venous thromboembolism is an important complication after general and cardiac surgery. Using transthoracic echocardiography, this study assessed the incidence of inferior vena cava (IVC) thrombosis among a total of 395 and 289 cardiac surgical and major surgical patients in the immediate postoperative period after cardiac and major surgery, respectively. All transthoracic echocardiography was performed by a specialist intensivist within 24 hours after surgery with special emphasis on using the subcostal view in the supine position to visualise the IVC. Of the 395 cardiac surgical patients studied, the IVC was successfully visualised using the subcostal view in 315 patients (79.8%) and eight of these patients (2.5%) had a partially obstructive thrombosis in the IVC. In 250 out of 289 (85%) general surgical patients, the IVC was also clearly visualised, but only one patient (0.4%) had an IVC thrombosis (2.5 vs 0.4%, P <0.05). In summary, visualisation of the IVC was feasible in most patients in the immediate postoperative period after both adult cardiac and major surgery. IVC thrombosis appeared to be more common after adult cardiac surgery than general surgery. A large prospective cohort study is needed to define the risk factors for IVC thrombus and whether early thromboprophylaxis can reduce the incidence of IVC thrombus after adult cardiac surgery.

  2. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  3. Efficacy of extracorporeal cardiopulmonary resuscitation compared to conventional cardiopulmonary resuscitation for adult cardiac arrest patients: a systematic review and meta-analysis

    PubMed Central

    Ahn, Chiwon; Kim, Wonhee; Cho, Youngsuk; Choi, Kyu-Sun; Jang, Bo-Hyoung; Lim, Tae Ho

    2016-01-01

    We performed a meta-analysis to compare the impact of extracorporeal cardiopulmonary resuscitation (ECPR) to that of conventional cardiopulmonary resuscitation (CCPR) in adult patients who experience cardiac arrest of cardiac origin. A literature search was performed using criteria set forth in a predefined protocol. Report inclusion criteria were that ECPR was compared to CCPR in adult patients with cardiac arrest of cardiac origin, and that survival and neurological outcome data were available. Exclusion criteria were reports describing non-cardiac origin arrest, review articles, editorials, and nonhuman studies. The efficacies of ECPR and CCPR were compared in terms of survival and neurological outcome. A total of 38,160 patients from 7 studies were ultimately included. ECPR showed similar survival (odds ratio [OR] 2.26, 95% confidence interval [CI] 0.45–11.20) and neurologic outcomes (OR 3.14, 95% CI 0.66–14.85) to CCPR in out-of-hospital cardiac arrest patients. For in-hospital cardiac arrest (IHCA) patients, however, ECPR was associated with significantly better survival (OR 2.40, 95% CI 1.44–3.98) and neurologic outcomes (OR 2.63, 95% CI 1.38–5.02) than CCPR. Hence, ECPR may be more effective than CCPR as an adjuvant therapy for survival and neurologic outcome in cardiac-origin IHCA patients. PMID:27659306

  4. Cardiac β-Adrenoceptor Expression Is Reduced in Zucker Diabetic Fatty Rats as Type-2 Diabetes Progresses

    PubMed Central

    Haley, James M.; Thackeray, James T.; Thorn, Stephanie L.; DaSilva, Jean N.

    2015-01-01

    Objectives Reduced cardiac β-adrenoceptor (β-AR) expression and cardiovascular dysfunction occur in models of hyperglycemia and hypoinsulinemia. Cardiac β-AR expression in type-2 diabetes models of hyperglycemia and hyperinsulinemia, remain less clear. This study investigates cardiac β-AR expression in type-2 diabetic Zucker diabetic fatty (ZDF) rats. Methods Ex vivo biodistribution experiments with [3H]CGP12177 were performed in Zucker lean (ZL) and ZDF rats at 10 and 16 weeks of age as diabetes develops. Blood glucose, body mass, and diet consumption were measured. Western blotting of β-AR subtypes was completed in parallel. Echocardiography was performed at 10 and 16 weeks to assess systolic and diastolic function. Fasted plasma insulin, free fatty acids (FFA), leptin and fed-state insulin were also measured. Results At 10 weeks, myocardial [3H]CGP12177 was normal in hyperglycemic ZDF (17±4.1mM) compared to ZL, but reduced 16-25% at 16 weeks of age as diabetes and hyperglycemia (22±2.4mM) progressed. Reduced β-AR expression not apparent at 10 weeks also developed by 16 weeks of age in ZDF brown adipose tissue. In the heart, Western blotting at 10 weeks indicated normal β1-AR (98±9%), reduced β2-AR (76±10%), and elevated β3-AR (108±6). At 16 weeks, β1-AR expression became reduced (69±16%), β2-AR expression decreased further (68±14%), and β3-AR remained elevated, similar to 10 weeks (112±9%). While HR was reduced at 10 and 16 weeks in ZDF rats, no significant changes were observed in diastolic or systolic function. Conclusions Cardiac β-AR are reduced over 6 weeks of sustained hyperglycemia in type-2 diabetic ZDF rats. This indicates cardiac [3H]CGP12177 retention and β1- and β2-AR expression are inversely correlated with the progression of type-2 diabetes. PMID:25996498

  5. Modulation of cardiac activity by tachykinins in the rat substantia nigra

    PubMed Central

    Lessard, Andrée; Couture, Réjean

    2001-01-01

    The effects of tachykinin NK1, NK2 and NK3 receptor agonists and antagonists were measured on blood pressure (MAP) and heart rate (HR) after bilateral microinjection into the substantia nigra (SN) of awake, unrestrained rats. Increasing doses (25 pmol – 1 nmol) of selective agonists at NK1 ([Sar9,Met(O2)11]SP), NK2 ([β-Ala8]NKA(4 – 10)) and NK3 (senktide) receptors into the SN produced tachycardia which was selectively and reversibly blocked by the prior injection of tachykinin antagonists at NK1 (RP67580, 250 pmol), NK2 (SR48968, 250 pmol) and NK3 (R-820, 500 pmol) receptor. A rapid fall in MAP followed by a pressor response was seen with 1 nmol of [Sar9,Met(O2)11]SP. Behavioural activity was elicited by 1 nmol of [Sar9,Met(O211]SP (sniffing>face washing=grooming) and senktide (sniffing>wet dog shake>rearing=locomotion). Tachykinin antagonists had no direct cardiovascular or behavioural effects. The tachycardia produced by 100 pmol of [β-Ala8]NKA(4 – 10) or senktide was abolished by an i.v. treatment with atenolol (β1-adrenoceptor antagonist, 5 mg kg−1) while that evoked by [Sar9,Met(O2)11]SP was reduced. A combination of atenolol (5 mg kg−1) and atropine (muscarinic antagonist, 1 mg kg−1) blocked the response evoked by [Sar9,Met(O2)11]SP. These data suggest that the SN is a potential site of modulation of cardiac activity by tachykinins. In addition to the withdrawal of the cardiovagal activity by NK1 receptor, the three tachykinin receptors appear to increase the sympatho/adrenal drive to the heart. This occurs independently of changes in MAP and behaviour. Hence, this study highlights a new central regulatory mechanism of cardiac autonomic activity. PMID:11739252

  6. In-hospital resuscitation: recognising and responding to adults in cardiac arrest.

    PubMed

    Simpson, Elizabeth

    2016-08-17

    Survival rates following in-hospital cardiac arrest remain low. The majority of patients who survive a cardiac arrest will be in a monitored environment, have a witnessed cardiac arrest and present with a shockable rhythm, usually ventricular fibrillation. Nurses have a responsibility to preserve safety, which requires the ability to accurately assess patients for signs of deterioration in physical health, and to provide assistance when an emergency arises in practice. Nurses must work within the limits of their competence and be able to establish the urgency of a situation. Nurses in all areas of practice must be able to recognise the signs of cardiac arrest and know the prompt response sequence required to improve the patient's chances of survival. This article focuses on inpatient resuscitation in acute healthcare environments and is aimed at staff who may be the first to respond to an in-hospital cardiac arrest. This does not include specialist units such as neurosurgery, intensive therapy units and cardiac catheterisation laboratories, where medical experts are available and clinical priorities may differ. PMID:27533415

  7. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat.

    PubMed

    Zhao, Baoyin; Chen, Shang; Liu, Juanjuan; Yuan, Ziqiang; Qi, Xufeng; Qin, Junwen; Zheng, Xin; Shen, Xiaotao; Yu, Yanhong; Qnin, Thomas J; Chan, John Yeuk-Hon; Cai, Dongqing

    2013-01-01

    Recently, cardiac telocytes were found in the myocardium. However, the functional role of cardiac telocytes and possible changes in the cardiac telocyte population during myocardial infarction in the myocardium are not known. In this study, the role of the recently identified cardiac telocytes in myocardial infarction (MI) was investigated. Cardiac telocytes were distributed longitudinally and within the cross network of the myocardium, which was impaired during MI. Cardiac telocytes in the infarction zone were undetectable from approximately 4 days to 4 weeks after an experimental coronary occlusion was used to induce MI. Although cardiac telocytes in the non-ischaemic area of the ischaemic heart experienced cell death, the cell density increased approximately 2 weeks after experimental coronary occlusion. The cell density was then maintained at a level similar to that observed 1-4 days after left anterior descending coronary artery (LAD)-ligation, but was still lower than normal after 2 weeks. We also found that simultaneous transplantation of cardiac telocytes in the infarcted and border zones of the heart decreased the infarction size and improved myocardial function. These data indicate that cardiac telocytes, their secreted factors and microvesicles, and the microenvironment may be structurally and functionally important for maintenance of the physiological integrity of the myocardium. Rebuilding the cardiac telocyte network in the infarcted zone following MI may be beneficial for functional regeneration of the infarcted myocardium.

  8. Sufficient myocardial protection of del Nido cardioplegia regardless of ventricular mass and myocardial ischemic time in adult cardiac surgical patients

    PubMed Central

    Kim, Ji Seong; Jeong, Jin Hee; Moon, Sin Ju; Ahn, Hyuk

    2016-01-01

    Background Del Nido (DN) cardioplegic solution (CPS) has been widely used during pediatric cardiac surgery. However, its use in the field of adult cardiac surgery is not popular yet. We evaluated efficacy of DN cardioplegia in adult cardiac surgical patients. Methods Fifty-three adult patients (mean age, 54±16 years) who underwent cardiovascular surgery using DN cardioplegia were enrolled. Myocardial troponin I (TnI) level up to three days after surgery and early clinical outcomes were evaluated. Propensity score matching was performed to compare these results with those after surgery using blood cardioplegia (BC). Results DN cardioplegia was infused with an initial dose of 1,126±221 mL, and an additional 500 mL was reinfused in 15 patients 91 minutes after initial infusion. After release of aortic cross clamp (ACC), spontaneous defibrillation was achieved in 94.3% (50/53). The peak TnI level after surgery was 9.8 ng/mL (range, 2.0–90.2 ng/mL). Linear regression models demonstrated that neither left ventricular mass (LVM) nor ACC time was associated with increased level of peak TnI (P=0.928 and 0.595, respectively). Early mortality occurred in one patient (1.9%). Postoperative complications included atrial fibrillation (n=18, 34.0%), acute kidney injury (n=4, 7.5%), low cardiac output syndrome (n=1, 1.9%), and respiratory complications (n=1, 1.9%). Propensity score matching extracted 39 pairs. Spontaneous defibrillation was achieved more frequently in the DN than BC groups (37/39 vs. 12/39, P<0.001). Peak level and serial changes of TnI were not statistically different between the two groups (P=0.085 and 0.959, respectively). There were also no significant differences in early mortality and postoperative complication rates between the two groups. Conclusions DN cardioplegia is as effective as BC for adult patients in terms of myocardial protection and early clinical outcomes.

  9. Acquisition of multiple nuclei and the activity of DNA polymerase alpha and reinitiation of DNA replication in terminally differentiated adult cardiac muscle cells in culture

    SciTech Connect

    Claycomb, W.C.; Bradshaw, H.D. Jr.

    1983-10-01

    Terminally differentiated ventricular cardiac muscle cells isolated from the adult rat and maintained in cell culture have been observed to acquire multiple nuclei. In one cultured myocyte as many as 10 nuclei have been counted. Apparently, these multiple nuclei are formed by DNA replication followed by karyokinesis; the cells must then fail to complete mitosis and divide. To investigate whether DNA synthesis was occurring, the cells were cultured in the presence of (3H)thymidine and then processed for autoradiography. Mononucleated, binucleated, and multinucleated cells incorporate (3H)thymidine into DNA as evidenced by the high concentration of silver grains over their nuclei. Peak periods of incorporation were observed to occur at 10- to 12-day intervals; at 11, 23, and 33 days after initially placing the cells in culture. When the cells were maintained in the presence of (3H)thymidine continuously from Day 7 to Day 17 of culture, 23% of the cells became labeled. If the cells were cultured continuously for 30 days in the presence of (3H)thymidine, from Day 10 to Day 40, 56% of the cells were labeled. Isopycnic gradient analysis indicates that this thymidine incorporation was into DNA that was being replicated semiconservatively; these experiments did not eliminate the possibility, however, that this incorporation was due to amplification of specific genes, such as those coding for the contractile proteins. The activity of DNA polymerase alpha also returns to these cells. These studies demonstrate that the terminally differentiated mammalian ventricular cardiac muscle cell, previously thought to have permanently lost the capacity to replicate DNA during early development, is able to reinitiate semiconservative DNA replication when grown in culture.

  10. Protective effect of morin on cardiac mitochondrial function during isoproterenol-induced myocardial infarction in male Wistar rats.

    PubMed

    Al Numair, Khalid S; Chandramohan, Govindasamy; Alsaif, Mohammed A; Baskar, Arul Albert

    2012-01-01

    Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.

  11. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  12. Velocity-curvature relationship of colliding spherical calcium waves in rat cardiac myocytes.

    PubMed Central

    Wussling, M H; Scheufler, K; Schmerling, S; Drygalla, V

    1997-01-01

    Colliding spherical calcium waves in enzymatically isolated rat cardiac myocytes develop new wavefronts propagating perpendicular to the original direction. When investigated by confocal laser scanning microscopy (CLSM), using the fluorescent Ca2+ indicator fluo-3 AM, "cusp"-like structures become visible that are favorably approximated by double parabolae. The time-dependent position of the vertices is used to determine propagation velocity and negative curvature of the wavefront in the region of collision. It is evident that negatively curved waves propagate faster than positively curved, single waves. Considering two perfectly equal expanding circular waves, we demonstrated that the collision of calcium waves is due to an autocatalytic process (calcium-induced calcium release), and not to a simple phenomenon of interference. Following the spatiotemporal organization in simpler chemical systems maintained under conditions far from the thermodynamic equilibrium (Belousov-Zhabotinskii reaction), the dependence of the normal velocity on the curvature of the spreading wavefront is given by a linear relation. The so-called velocity-curvature relationship makes clear that the velocity is enhanced by curvature toward the direction of forward propagation and decreased by curvature away from the direction of forward propagation (with an influence of the diffusion coefficient). Experimentally obtained velocity data of both negatively and positively curved calcium waves were approximated by orthogonal weighted regression. The negative slope of the straight line resulted in an effective diffusion coefficient of 1.2 x 10(-4) mm2/s. From the so-called critical radius, which must be exceeded to initiate a traveling calcium wave, a critical volume (with enhanced [Ca2+]i) of approximately 12 microm3 was calculated. This is almost identical to the volume that is occupied by a single calcium spark. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9284291

  13. Ion concentration-dependence of rat cardiac unitary L-type calcium channel conductance.

    PubMed Central

    Guia, A; Stern, M D; Lakatta, E G; Josephson, I R

    2001-01-01

    Little is known about the native properties of unitary cardiac L-type calcium currents (i(Ca)) measured with physiological calcium (Ca) ion concentration, and their role in excitation-contraction (E-C) coupling. Our goal was to chart the concentration-dependence of unitary conductance (gamma) to physiological Ca concentration and compare it to barium ion (Ba) conductance in the absence of agonists. In isolated, K-depolarized rat myocytes, i(Ca) amplitudes were measured using cell-attached patches with 2 to 70 mM Ca or 2 to 105 mM Ba in the pipette. At 0 mV, 2 mM of Ca produced 0.12 pA, and 2 mM of Ba produced 0.19 pA unitary currents. Unitary conductance was described by a Langmuir isotherm relationship with a maximum gammaCa of 5.3 +/- 0.2 pS (n = 15), and gammaBa of 15 +/- 1 pS (n = 27). The concentration producing half-maximal gamma, Kd(gamma), was not different between Ca (1.7 +/- 0.3 mM) and Ba (1.9 +/- 0.4 mM). We found that quasi-physiological concentrations of Ca produced currents that were as easily resolvable as those obtained with the traditionally used higher concentrations. This study leads to future work on the molecular basis of E-C coupling with a physiological concentration of Ca ions permeating the Ca channel. PMID:11371449

  14. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  15. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    PubMed

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet.

  16. A pharmacokinetic and pharmacodynamic evaluation of milrinone in adults undergoing cardiac surgery.

    PubMed

    Butterworth, J F; Hines, R L; Royster, R L; James, R L

    1995-10-01

    Milrinone can reverse acute postischemic myocardial dysfunction after cardiopulmonary bypass, although neither the appropriate bolus dose nor its pharmacokinetics has been established for cardiac surgical patients. Consenting patients undergoing cardiac surgery received milrinone (25, 50, or 75 micrograms/kg) in an open-label, dose-escalating study if their cardiac index was < 3 L.min-1.m-2 after separation from bypass. Heart rate, mean arterial blood pressure, pulmonary capillary wedge pressure, and cardiac index were determined before and after the administration of milrinone. Timed blood samples were obtained for measurement of milrinone plasma concentrations and pharmacokinetic analysis. Twenty-nine of 60 consenting patients had cardiac indices < 3 L.min-1.m-2 after separation from bypass, received milrinone, and completed the protocol. All three bolus doses of milrinone significantly increased cardiac index. The 50- and 75-micrograms/kg doses produced significantly larger increases in cardiac index than the 25-micrograms/kg dose; however, the 75-micrograms/kg dose did not produce a significantly larger increase in cardiac index than did the 50-micrograms/kg dose. Two of 10 patients receiving milrinone 25 micrograms/kg, but no patient receiving either 50 or 75 micrograms/kg, required early epinephrine rescue when the cardiac index failed to increase by > 15%. The 75-micrograms/kg dose was associated with a case of ventricular tachycardia. The three-compartment model better described milrinone drug disposition than the two-compartment model by both visual inspection and Schwartz-Bayesian criterion. There was only limited evidence of dose-dependence, so data from all three doses are reported together (and normalized to the 50-micrograms/kg dose). Data from one patient was discarded (samples mislabeled). Using mixed-effects nonlinear regression (for n = 28), the following volumes were determined for the three compartments: V1 = 11.1 L, V2 = 16.9 L, and V3 = 363 L

  17. Nocturnal food-related hyperdipsia in the adult spontaneously hypertensive rat.

    PubMed

    Kraly, F S; Moore, A F; Miller, L A; Drexler, A

    1982-05-01

    Male adult spontaneously hypertensive rats (SHR) ate the same but drank more and had a higher water to food ratio (W:F) than did Wistar-Kyoto (WKY) rats in 24-hr when they had continuous access to standard laboratory pellets and tap water. When rats ate in the day phase of a 12:12 light/dark cycle after 24-hr food deprivation, SHR rats ate and drank the same ad did WKY rats in a 60-min test. When the same rats ate at night after 24-hr food deprivation, however, SHR rats were hyperdipsic: They ate the same as did WKY rats, but SHR rats drank more and had a higher W:F. This relative hyperdipsia reflected the increased ability of ingestion of food to stimulate drinking in SHR, because when food was absent for a 60-min test at night SHR drank the same as did WKY rats. Three dipsogens which are candidate components for eating-elicited drinking in the rat, cellular dehydration, histamine and angiotensin II, elicited drinking differentially in SHR and WKY rats: SHR drank more than did WKY rats in response to (1) cellular dehydration produced by IP hypertonic saline, (2) large doses of SC histamine, and (3) SC angiotensin II. These results demonstrate that SHR exhibit a nocturnal food-related hyperdipsia which may reflect differential sensitivity to stimuli important for eating-elicited drinking such as increased osmolality and endogenous histamine or angiotensin.

  18. Differences in Response Initiation and Behavioral Flexibility Between Adolescent and Adult Rats

    PubMed Central

    Simon, Nicholas W.; Gregory, Timothy A.; Wood, Jesse; Moghaddam, Bita

    2014-01-01

    Adolescence is a period of increased vulnerability to psychiatric illnesses such as addiction, mood disorders, and schizophrenia. Rats provide a useful animal model for investigating the differences in behavior and biology between adults and adolescents that stem from ongoing brain development. We developed the Cued Response Inhibition Task, or CRIT, to assess response inhibition and initiation processes by measuring the ability of rodents to withhold a response during an inhibitory cue and then to respond promptly after cue termination. We found no difference between adult and adolescent rats in the ability to appropriately inhibit a response during cue presentation. Adolescents, however, were unable to initiate a response as quickly as adults after cue termination. Further, we observed that this difference in responding was abolished after adolescent rats aged to adulthood with no additional training. In a separate experiment, adult and adolescent rats were trained in CRIT and then trained in another protocol in which the response inhibitory cue from CRIT was used as a Pavlovian cue predictive of reward. Adolescents demonstrated more reward-seeking behavior during the previously inhibitory Pavlovian cue than adults, indicative of greater behavioral flexibility. Taken together, these data suggest that, compared with adults, adolescent rats (a) are less able to initiate a response after response inhibition, (b) equally inhibit behavioral responses, and (c) are more adept at flexibly switching behavioral patterns. Furthermore, this study characterizes a task that is well suited for future pharmacological and electrophysiological investigations for assessing neuronal processing differences between adolescents and adults. PMID:23398439

  19. Accumulation of glycogen in axotomized adult rat facial motoneurons.

    PubMed

    Takezawa, Yosuke; Baba, Otto; Kohsaka, Shinichi; Nakajima, Kazuyuki

    2015-06-01

    This study biochemically determined glycogen content in the axotomized facial nucleus of adult rats up to 35 days postinsult. The amounts of glycogen in the transected facial nucleus were significantly increased at 5 days postinsult, peaked at 7 days postinsult, and declined to the control levels at 21-35 days postinsult. Immunohistochemical analysis with antiglycogen antibody revealed that the quantity of glycogen granules in the axotomized facial nucleus was greater than that in the control nucleus at 7 days postinjury. Dual staining methods with antiglycogen antibody and a motoneuron marker clarified that the glycogen was localized mainly in motoneurons. Immunoblotting and quantification analysis revealed that the ratio of inactive glycogen synthase (GS) to total GS was significantly decreased in the injured nucleus at about 1-3 days postinsult and significantly increased from 7 to 14 days postinsult, suggesting that glycogen is actively synthesized in the early period postinjury but suppressed after 7 days postinsult. The enhanced glycogen at about 5-7 days postinsult is suggested to be responsible for the decrease in inactive GS levels, and the decrease of glycogen after 7 days postinsult is considered to be caused by increased inactive GS levels and possibly the increase in active glycogen phosphorylase.

  20. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.

    PubMed

    Rannou, F; Sainte-Beuve, C; Oliviero, P; Do, E; Trouvé, P; Charlemagne, D

    1995-05-01

    The number of dihydropyridine and ryanodine receptors (DHP-R and RyR) has been measured in control and hypertrophied ventricles from rats, guinea pigs and ferrets to determine whether these two channels contribute to the alterations in excitation-contraction coupling (ECC), and in Ca2+ transient during compensated cardiac hypertrophy. We found that ventricular hypertrophy did not change the density of DHP-R. Mild hypertrophy did not alter the density of RyR in the rat but decreased it in the guinea-pig and in the ferret (30% and 36%, respectively). Severe hypertrophy decreased the density of RyR by 20% in the rat and by 34% in the guinea-pig. Therefore, the decrease is greater in ferret and guinea-pig hearts than in rat heart. We conclude that the sarcoplasmic reticulum (SR) Ca2+ release channels but not the L-type Ca2+ channels could contribute to the slowing of intracellular Ca2+ movements and to the reduced velocity of shortening of the hypertrophied hearts. We suggest that, in the guinea pig and ferret hearts which express only the beta myosin heavy chain (MHC) isoform, the reduced velocity of shortening during hypertrophy is related to the decrease in RyR density, whereas in the rat, it is regulated primarily via a shift in the MHC isoform, except in severe hypertrophy in which the moderate decrease in RyR would also be involved. PMID:7473781

  1. Effect of in vivo heart irradiation on the development of antioxidant defenses and cardiac functions in the rat

    SciTech Connect

    Benderitter, M.; Assem, M.; Maupoil, V.

    1995-10-01

    During radiotherapy of thoracic tumors, the heart is often included in the primary treatment volume, and chronic impairment of myocardial function occurs. The cellular biomolecules are altered directly by radiation or damaged indirectly by free radical production. The purpose of this investigation was to evaluate the biochemical and functional response of the rat heart to a single high dose of radiation. The effect of 20 Gy local X irradiation was determined in the heart of Wistar rats under general anesthesia. Mechanical performances were measured in vitro using an isolated perfused working heart model, and cardiac antioxidant defenses were also evaluated. Hearts were studied at 1 and 4 months after irradiation. This single dose of radiation induced a marked drop in the mechanical activity of the rat heart: aortic output was significantly reduced (18% less than control values) at 1 month postirradiation and remained depressed for the rest of the experimental period (21% less than control 4 months after treatment). This suggests the development of myocardial failure after irradiation. The decline of functional parameters was associated with changes in antioxidant defenses. The decrease in cardiac levels of vitamin E (-30%) was associated with an increase in the levels of Mn-SOD and glustathione peroxidase (+45.5% and +32%, respectively, at 4 months postirradiation). However, cardiac vitamin C and catalase levels remained constant. Since these antioxidant defenses were activated relatively long after irradiation, it is suggested that this was probable due to the production of free radical species associated with the development of inflammation. 49 refs., 8 figs., 1 tab.

  2. Luteolin Limits Infarct Size and Improves Cardiac Function after Myocardium Ischemia/Reperfusion Injury in Diabetic Rats

    PubMed Central

    Gao, Haokao; Li, Jiayi; Shen, Min; Cao, Feng; Wang, Haichang

    2012-01-01

    Background The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury. Methodology/Principal Findings Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin. Conclusions/Significance This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2. PMID:22432030

  3. Pro: early extubation in the operating room following cardiac surgery in adults.

    PubMed

    Singh, Karen E; Baum, Victor C

    2012-12-01

    There is growing evidence that the general current approach in many centers of continued mechanical ventilation following cardiac surgery has evolved through historical experience rather than having a strong physiological basis in current practice. There is evidence going back several decades supporting very early (in the operating room [OR]) extubation in pediatric cardiac anesthesia. The authors provide evidence from numerous sources showing that extubation in the OR or shortly after arrival in the ICU is safe and cost-effective and is not prevented by the type of cardiac surgery or the use of cardiopulmonary bypass. They query if the paradigm should not be reversed and very early extubation be the routine unless contraindicated. Like any anesthetic technique, appropriate patient selection is called for, but this technique is widely appropriate. PMID:22798230

  4. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model.

    PubMed

    D'Amore, Antonio; Yoshizumi, Tomo; Luketich, Samuel K; Wolf, Matthew T; Gu, Xinzhu; Cammarata, Marcello; Hoff, Richard; Badylak, Stephen F; Wagner, William R

    2016-11-01

    As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components. PMID:27579776

  5. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats.

    PubMed

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson's trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat.

  6. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  7. 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology.

    PubMed

    Green, Martin S; Guerra, Peter G; Krahn, Andrew D

    2011-01-01

    The last guidelines on training for adult cardiac electrophysiology (EP) were published by the Canadian Cardiovascular Society in 1996. Since then, substantial changes in the knowledge and practice of EP have mandated a review of the previous guidelines by the Canadian Heart Rhythm Society, an affiliate of the Canadian Cardiovascular Society. Novel tools and techniques also now allow electrophysiologists to map and ablate increasingly complex arrhythmias previously managed with pharmacologic or device therapy. Furthermore, no formal attempt had previously been made to standardize EP training across the country. The 2010 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Training Standards and Maintenance of Competency in Adult Clinical Cardiac Electrophysiology represent a consensus arrived at by panel members from both societies, as well as EP program directors across Canada and other select contributors. In describing program requirements, the technical and cognitive skills that must be acquired to meet training standards, as well as the minimum number of procedures needed in order to acquire these skills, the new guidelines provide EP program directors and committee members with a template to develop an appropriate curriculum for EP training for cardiology fellows here in Canada.

  8. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure

    PubMed Central

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-01-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.

  9. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure

    PubMed Central

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-01-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression. PMID:27602067

  10. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    PubMed Central

    Lv, Y.; Liu, B.; Wang, H.P.; Zhang, L.

    2016-01-01

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats. PMID:27254663

  11. C60 Exposure Augments Cardiac Ischemia/Reperfusion Injury and Coronary Artery Contraction in Sprague Dawley Rats

    PubMed Central

    Holland, Nathan A.; Vidanapathirana, Achini K.; Pitzer, Joshua E.; Han, Li; Sumner, Susan J.; Lewin, Anita H.; Fennell, Timothy R.; Lust, Robert M.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    The potential uses of engineered C60 fullerene (C60) have expanded in recent decades to include industrial and biomedical applications. Based on clinical findings associated with particulate matter exposure and our data with multi-walled carbon nanotubes, we hypothesized that ischemia/reperfusion (I/R) injury and pharmacological responses in isolated coronary arteries would depend upon the route of exposure and gender in rats instilled with C60. Male and female Sprague Dawley rats were used to test this hypothesis by surgical induction of cardiac I/R injury in situ 24 h after intratracheal (IT) or intravenous (IV) instillation of 28 μg of C60 formulated in polyvinylpyrrolidone (PVP) or PVP vehicle. Serum was collected for quantification of various cytokines. Coronary artery segments were isolated for assessment of vasoactive pharmacology via wire myography. Both IV and IT exposure to C60 resulted in expansion of myocardial infarction in male and female rats following I/R injury. Serum-collected post-I/R showed elevated concentrations of interleukin-6 and monocyte chemotactic protein-1 in male rats exposed to IV C60. Coronary arteries isolated from male rats exposed to IT C60 demonstrated augmented vasocontraction in response to endothelin-1 that was attenuated with Indomethacin. IV C60 exposure resulted in impaired acetylcholine relaxation in male rats and IT C60 exposure resulted in depressed vasorelaxation in response to sodium nitroprusside in female rats. Based on these data, we conclude that IT and IV exposure to C60 results in unique cardiovascular consequences that may favor heightened coronary resistance and myocardial susceptibility to I/R injury. PMID:24431213

  12. Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin).

    PubMed

    Barron, Elyssa; Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2009-01-01

    Eight groups of male adolescent and adult spontaneous hyperactive rats (SHR) were used in a dose response (saline, 0.6, 2.5, and 10 mg/kg) experiment of methylphenidate (MPD). Four different locomotor indices were recorded for 2 hours postinjection using a computerized monitoring system. Acutely, the 0.6 mg/kg dose of MPD did not elicit an increase in locomotor activity in either the adolescent or in the adult male SHR. The 2.5 and the 10.0 mg/kg doses increased activity in the adolescent and the adult rats. Chronically, MPD treatment when comparing adolescent and adult gave the following results: the 0.6 mg/kg dose of MPD failed to cause sensitization in the adolescent group but caused sensitization in the adult group, while the 2.5 and 10 mg/kg both caused sensitization in the adolescent and adult groups.

  13. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  14. Lay Referral Patterns Involved in Cardiac Treatment Decision Making among Middle-Aged and Older Adults

    ERIC Educational Resources Information Center

    Schoenberg, Nancy E.; Amey, Cheryl H.; Stoller, Eleanor Palo; Muldoon, Susan B.

    2003-01-01

    Purpose: This study examined age and contextually related factors that are influential in lay referral patterns during cardiac treatment decision making. Design and Methods: A complementary design was used. The Myocardial Infarction (MI) Onset Study identified demographic correlates of who sought medical care for 1,388 MI (heart attack) survivors.…

  15. Past, present, and future of long-term mechanical cardiac support in adults.

    PubMed

    Christiansen, Stefan; Klocke, Anna; Autschbach, Rüdiger

    2008-01-01

    The growing number of heart failure patients and the scarcity of donor organs give rise to the development of mechanical circulatory support devices for a long-term support. After approximately 15 years of experience, these devices should be critically evaluated. The presented article gives an overview on the currently most often used mechanical circulatory support systems, describes the indications for implantation (bridge to cardiac transplantation, destination therapy, and bridge to recovery), the complications like bleeding, thromboembolic events, infections, and technical failures, and analyzes the costs of this therapy. Furthermore, alternative treatment options like cardiac transplantation, coronary artery bypass grafting, cardiac valve surgery, defibrillator implantation, multisite pacing, dynamic and passive cardiomyoplasty, partial left ventriculectomy (PLV), Myosplint implantation (Myocor, Maple Grove, MN, USA), stem cell therapy, and xenotransplantation are shortly presented, and the future of mechanical support devices is discussed. Despite a great number of patients benefitting from mechanical support devices, the treatment with these devices will only compete with other therapeutic strategies if the rates of complications and technical failures as well as the costs are significantly reduced. Furthermore, innovative therapies like biochemical influencing of the cardiac metabolism have a high potential and may play an important role in the future.

  16. Real-time Ca ion wave imaging in living rat cardiac muscle cells by a confocal multiphoton microscope with a microlens-pinhole array scanner

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa; Kaneko, Tomoyuki; Nakamura, Osamu; Oyamada, Masahito; Takamatsu, Tetsuro; Kawata, Satoshi

    2000-04-01

    A real-time confocal multiphoton fluorescence microscope was developed to observe Ca2+ dynamics in living rat- cardiac muscle cells. The real-time imaging was achieved by multifocus excitation of a specimen with a rotating microlens-array disk. A pinhole-array disk for confocal detection was introduced in the microscope to improve the spatial resolution and the contrast of fluorescence images. Ca2+ wave and Ca2+ transient in cultured rat- cardiac cells were successfully observed with the developed microscope.

  17. Activation of endothelial nitric oxide synthase by a vanadium compound ameliorates pressure overload-induced cardiac injury in ovariectomized rats.

    PubMed

    Bhuiyan, Md Shenuarin; Shioda, Norifumi; Shibuya, Masatoshi; Iwabuchi, Yoshiharu; Fukunaga, Kohji

    2009-01-01

    We here investigated the effect of bis(1-oxy-2-pyridinethiolato) oxovanadium (IV), [VO(OPT)], against myocardial hypertrophy and cardiac functional recovery in pressure overload-induced hypertrophy in ovariectomized female rats and defined mechanisms underlying its cardioprotective action. Wistar rats subjected to bilateral ovariectomy were further treated with abdominal aortic stenosis. VO(OPT) (containing 1.25 and 2.50 mg of vanadium per kg) was administered orally once a day for 14 days starting from 2 weeks after aortic banding. Treatment with VO(OPT) significantly inhibited pressure overload-induced increase both in the heart weight:body weight ratio and the lung weight:body weight ratio. VO(OPT) also attenuated hypertrophy-induced impaired left ventricular end-diastolic pressure, left ventricular developed pressure, and left ventricular contractility (+/-dp/dt(max)). VO(OPT) treatment significantly restored pressure overload-induced impaired endothelial NO synthase activity with concomitant increased phosphorylation of endothelial NO synthase (Ser1179). Moreover, VO(OPT) treatment significantly restored pressure overload-induced reduced Akt activity, as indicated by increased phosphorylation at Ser473 and at Thr308. Treatment with VO(OPT) also secondarily inhibited calpastatin and dystrophin breakdown and decreased myosin light chain phosphorylation. Finally, VO(OPT) treatment significantly attenuated mortality after repeated isoproterenol administration in pressure overloaded-ovariectomized rats. Taken together, VO(OPT) attenuates cardiac myocytes hypertrophy in vivo in pressure overload-induced hypertrophy in ovariectomized rats and prevents the process from hypertrophy to heart failure. These effects are mediated by inhibition of calpastatin and dystrophin breakdown in addition to increased Akt and endothelial NO synthase activities.

  18. Effects of long-term methylphenidate treatment in adolescent and adult rats on hippocampal shape, functional connectivity and adult neurogenesis.

    PubMed

    van der Marel, K; Bouet, V; Meerhoff, G F; Freret, T; Boulouard, M; Dauphin, F; Klomp, A; Lucassen, P J; Homberg, J R; Dijkhuizen, R M; Reneman, L

    2015-11-19

    Methylphenidate (MPH) is a widely prescribed stimulant drug for the treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents. Its use in this age group raises concerns regarding the potential interference with ongoing neurodevelopmental processes. Particularly the hippocampus is a highly plastic brain region that continues to develop postnatally and is involved in cognition and emotional behavior, functions known to be affected by MPH. In this study, we assessed whether hippocampal structure and function were affected by chronic oral MPH treatment and whether its effects were different in adolescent or adult rats. Using behavioral testing, resting-state functional MRI, post-mortem structural magnetic resonance imaging (MRI), and immunohistochemistry, we assessed MPH's effects on recognition memory, depressive-like behavior, topological features of functional connectivity networks, hippocampal shape and markers for hippocampal neurogenesis and proliferation. Object recognition memory was transiently impaired in adolescent treated rats, while in animals treated during adulthood, increased depressive-like behavior was observed. Neurogenesis was increased in adolescent treated rats, whereas cell proliferation was decreased following adult treatment. Adolescent treated rats showed inward shape deformations adjacent to ventral parahippocampal regions known to be involved in recognition memory, whereas such deformations were not observed in adult treated animals. Irrespective of the age of treatment, MPH affected topological features of ventral hippocampal functional networks. Thus, chronic oral treatment with a therapeutically relevant dose of MPH preferentially affected the ventral part of the hippocampus and induced contrasting effects in adolescent and adult rats. The differences in behavior were paralleled by opposite effects on adult neurogenesis and granule cell proliferation.

  19. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats

    PubMed Central

    Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin

    2016-01-01

    Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may

  20. Interactions between cardiac, respiratory and EEG-δ oscillations in rats during anaesthesia

    PubMed Central

    Musizza, Bojan; Stefanovska, Aneta; McClintock, Peter V E; Paluš, Milan; Petrovčič, Janko; Ribarič, Samo; Bajrović, Fajko F

    2007-01-01

    We hypothesized that, associated with the state of anaesthesia, characteristic changes exist in both cardio-respiratory and cerebral oscillator parameters and couplings, perhaps varying with depth of anaesthesia. Electrocardiograms (ECGs), respiration and electroencephalograms (EEGs) were recorded from two groups of 10 rats during the entire course of anaesthesia following the administration of a single bolus of ketamine–xylazine (KX group) or pentobarbital (PB group). The phase dynamics approach was then used to extract the instantaneous frequencies of heart beat, respiration and slow δ-waves (within 0.5–3.5 Hz). The amplitudes of δ- and θ-waves were analysed by use of a time–frequency representation of the EEG signal within 0.5–7.5 Hz obtained by wavelet transformation, using the Morlet mother wavelet. For the KX group, where slow δ-waves constituted the dominant spectral component, the Hilbert transform was applied to obtain the instantaneous δ-frequency. The θ-activity was spread over too wide a spectral range for its phase to be meaningfully defined. For both agents, we observed two distinct phases of anaesthesia, with a marked increase in θ-wave activity occurring on passage from a deeper phase of anaesthesia to a shallower one. In other respects, the effects of the two anaesthetics were very different. For KX anaesthesia, the two phases were separated by a marked change in all three instantaneous frequencies: stable, deep, anaesthesia with small frequency variability was followed by a sharp transition to shallow anaesthesia with large frequency variability, lasting until the animal awoke. The transition occurred 16–76 min after injection of the anaesthetic, with simultaneous reduction in the δ-wave amplitude. For PB anaesthesia, the two epochs were separated by the return of a positive response to the pinch test at 53–94 min, following which it took a further period of 45–70 min for the animal to awaken. δ-Waves were not apparent at

  1. Changes in cardiac aldosterone and its synthase in rats with chronic heart failure: an intervention study of long-term treatment with recombinant human brain natriuretic peptide.

    PubMed

    Zhu, X Q; Hong, H S; Lin, X H; Chen, L L; Li, Y H

    2014-08-01

    The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.

  2. Increase in ( sup 3 H)PN 200-110 binding to cardiac muscle membrane in streptozocin-induced diabetic rats

    SciTech Connect

    Nishio, Y.; Kashiwagi, A.; Ogawa, T.; Asahina, T.; Ikebuchi, M.; Kodama, M.; Shigeta, Y. )

    1990-09-01

    Voltage-sensitive Ca2+ channels in cardiac left ventricular muscle membranes isolated from nondiabetic control and diabetic rats were measured with (3H)PN 200-110, a dihydropyridine derivative, as a ligand. The binding site (Bmax) of (3H)PN 200-110 in cardiac membranes isolated from streptozocin-induced diabetic (STZ-D) rats (128 +/- 10 fmol/mg protein) significantly (P less than 0.01) increased by 64% compared with that of control rats (78 +/- 4 fmol/mg protein) 10 wk after STZ administration without a significant change in Kd. However, the significant increase in Bmax of (3H)PN 200-110 binding in diabetic rats depended on the duration of diabetes such that the increase was not found until 6 wk after STZ injection. An 8-wk intensive insulin treatment, which was initiated 2 wk after STZ injection, normalized the increase in (3H)PN 200-110 binding in STZ-D rats to control levels (85 +/- 4 fmol/mg protein). Furthermore, (3H)PN 200-110 binding to control cardiac membranes was dose-dependently inhibited in the presence of verapamil, a phenylalkylamine Ca2+ antagonist, but that was not the case in cardiac membranes isolated from STZ-D rats. These results indicate that voltage-sensitive Ca2+ channels in cardiac muscle isolated from STZ-D rats are quantitatively and qualitatively altered, because the course of diabetes and the increase in the channels can be prevented by treatment with insulin.

  3. Differential Effects of Acute Alcohol on EEG and Sedative Responses in Adolescent and Adult Wistar Rats

    PubMed Central

    Pian, Jerry P.; Criado, Jose R.; Walker, Brendan M.; Ehlers, Cindy L.

    2008-01-01

    Age-related developmental differences in sensitivity to the acute effects of alcohol may play an important role in the development of alcoholism. The present study was designed to evaluate the acute effects of alcohol on cortical electroencephalogram (EEG) in adolescent (P36) and adult (P78) Wistar rats. Five minutes of EEG was recorded after administration of 0, 0.75 or 1.5 g/kg alcohol. The righting reflex was performed to measure the sedative effects of alcohol (3.5 g/kg) and total sleeping time for each rat. Our results showed that alcohol (1.5 g/kg) increased power in the 1–2 Hz band and decreased the power in the 32–50 Hz band in the parietal cortical region of adolescent rats. Alcohol (1.5 g/kg) also increased stability of the EEG power in the slow-wave frequency bands (2–4 Hz, 4–6 Hz, and 6–8 Hz) of adolescent rats. In the frontal cortex of adult rats, but not in adolescent rats, alcohol (1.5 or 0.75 g/kg) decreased the power in the 16–32 Hz frequency band. Alcohol (1.5 g/kg) differentially increased power in a multiple of slow-wave frequency bands (2–4 Hz and 4–6 Hz) in the parietal cortex of adult rats as compared to adolescent rats. Adolescent rats were shown significantly shorter sleeping time and higher blood alcohol levels after regaining reflex than adult rats. Our results provide additional evidence of age-related differences in the effects of acute alcohol on cortical EEG, sedation and tolerance. PMID:18191821

  4. Daily patterns of ethanol drinking in peri-adolescent and adult alcohol-preferring (P) rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Sable, Helen J K; Schultz, Jonathon A; Hsu, Cathleen C; Lumeng, Lawrence; Murphy, James M; McBride, William J

    2006-01-01

    Alcohol abuse among adolescents continues to be a major health problem for our society. Our laboratory has used the peri-adolescent alcohol-preferring, P, rat as an animal model of adolescent alcohol abuse. Even though peri-adolescent P rats consume more alcohol (g/kg/day) than their adult counterparts, it is uncertain whether their drinking is sufficiently aggregated to result in measurable blood ethanol concentrations (BECs). The objectives of this study were to examine daily alcohol drinking patterns of adolescent and adult, male and female P rats, and to determine whether alcohol drinking episodes were sufficiently aggregated to result in meaningful BECs. Male and female P rats were given 30 days of 24 h free-choice access to alcohol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a "lickometer" set-up. The results indicated that (a) peri-adolescent P rats consumed more water and total fluids than adult P rats, (b) female P rats consumed more water and total fluids than male P rats, (c) there were differences in alcohol, and water, licking patterns between peri-adolescent and adult and female and male P rats, (d) individual licking patterns revealed that alcohol was consumed in bouts often exceeding the amount required to self-administer 1 g/kg of alcohol, and (e) BECs at the end of the dark cycle, on the 30th day of alcohol access, averaged 50 mg%, with alcohol intakes during the last 1 to 2 h averaging 1.2 g/kg. Overall, these findings indicate that alcohol drinking patterns differ across the age and sex of P rats. This suggests that the effectiveness of treatments for reducing excessive alcohol intake may vary depending upon the age and/or sex of the subjects being tested.

  5. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed Central

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-01-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184

  6. Molecular changes in the early phase of renin-dependent cardiac hypertrophy in hypertensive cyp1a1ren-2 transgenic rats.

    PubMed

    Kunert-Keil, Christiane; Landsberger, Martin; Jantzen, Franziska; Niessner, Felix; Kroemer, Heyo K; Felix, Stephan B; Brinkmeier, Heinrich; Peters, Jörg

    2013-03-01

    An early response to high arterial pressure is the development of cardiac hypertrophy. Functional and transcriptional regulation of ion channels and Ca(2+) handling proteins are involved in this process but the relative contribution of each is unclear. In this study, we investigated the expression of genes involved in action potential generation and Ca(2+) homeostasis of cardiomyocytes in hypertensive cyp1a1ren-2 transgenic rats. In this model, the transgene prorenin was induced by indole-3-carbinol for 2 weeks allowing the induction of hypertension. Electrophysiological recordings from cardiomyocytes of hypertensive rats revealed a slight increase in membrane capacitance consistent with cellular hypertrophy. L-type calcium current density was reduced by 30%. Left ventricles of hypertensive rats showed a significant increase in transcript and protein levels of the cation channel TRPC6 and FK506-binding protein, whereas levels of SERCA2 and voltage-dependent potassium channels K(v)4.2 and K(v)4.3 were found to be decreased. Further, a marked nuclear localization of the transcription factors GATA4 and NFATC4 was observed in cardiac tissue of hypertensive rats. The cyp1a1ren-2 transgenic rat thus appears to be a valid model to investigate early changes in cardiac hypertrophy. This study points to roles for TRPC6, FK506BP, SERCA2, K(v)4.2, and K(v)4.3 in the development of cardiac hypertrophy. PMID:23060473

  7. Sex-related differences in intrinsic myocardial properties influence cardiac function in middle-aged rats during infarction-induced left ventricular remodeling.

    PubMed

    Dedkov, Eduard I; Bogatyryov, Yevgen; Pavliak, Kristina; Santos, Adora T; Chen, Yue-Feng; Zhang, Youhua; Pingitore, Alessandro

    2016-06-01

    We previously determined that residual left ventricular (LV) myocardium of middle-aged rats had sex-related differences in regional tissue properties 4 weeks after a large myocardial infarction (MI). However, the impact of such differences on cardiac performance remained unclear. Therefore, our current study aimed to elucidate whether sex-related changes in MI-induced myocardial remodeling can influence cardiac function. A similar-sized MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. The cardiac function was monitored for 2 months after MI and then various LV parameters were compared between sexes. We found that although two sex groups had a similar pattern of MI-induced decline in LV function, F-MI rats had greater cardiac performance compared to M-MI rats, considering the higher values of EF (39.9 ± 3.4% vs. 26.7 ± 7.7%, P < 0.05), SW index (40.4 ± 2.1 mmHg • mL/kg vs. 20.2 ± 3.3 mmHg • mL/kg, P < 0.001), and CI (139.2 ± 7.9 mL/min/kg vs. 74.9 ± 14.7 mL/min/kg, P < 0.01). The poorer pumping capacity in M-MI hearts was associated with markedly reduced LV compliance and prolonged relaxation. On the tissue level, F-MI rats revealed a higher, than in M-MI rats, density of cardiac myocytes in the LV free wall (2383.8 ± 242.6 cells/mm(2) vs. 1785.7 ± 55.9 cells/mm(2), P < 0.05). The latter finding correlated with a lower density of apoptotic cardiac myocytes in residual LV myocardium of F-MI rats (0.18 ± 0.08 cells/mm(2) vs. 0.91 ± 0.30 cells/mm(2) in males, P < 0.01). Thus, our data suggested that F-MI rats had markedly attenuated decline in cardiac performance compared to males due to ability of female rats to better retain functionally favorable intrinsic myocardial properties.

  8. Cardiac mechanics in patients with human immunodeficiency virus: a study of systolic myocardial deformation in children and young adults.

    PubMed

    Al-Naami, Ghassan; Kiblawi, Fuad; Kest, Helen; Hamdan, Ayman; Myridakis, Dorothy

    2014-08-01

    Human immunodeficiency virus (HIV) infection causes dysfunction of different organ systems. Myocardial diastolic dysfunction has been reported previously in an adult HIV population. Our aim was to study myocardial strain in children and young adults infected by HIV who have apparently normal ejection fraction. Forty HIV-infected patients (mean age 20.6 ± 1.5 years) with normal ejection fraction and 55 matched normal controls (mean age 17 ± 1.5 years) were studied by two-dimensional echocardiogram. The images were stored then exported to velocity vector imaging software for analysis. Measures considered were left-ventricular peak global systolic strain (LV S) and strain rate (LV SR) as well as right-ventricular peak global systolic strain (RV S) and strain rate (RV SR). Circumferential measures of the left ventricle included the following: LV circumferential peak global systolic strain (LV circ S), strain rate (LV circ SR), radial velocity (LV rad vel), and rotational velocity (LV rot vel) at the level of the mitral valve. Statistical significance was set at p < 0.05. The means of all longitudinal deformation parameters were significantly lower in HIV patients compared with normal controls: LV S (-14.15 vs. -19.31), LV SR (-0.88 vs. -1.30), RV S (-19.58 vs. -25.09), and RV SR (-1.34 vs. -2.13), respectively (p < 0.05). LV rot vel was lower in patients compared with controls (43.23 vs. 51.71, p = 0.025). LV circ S, LV circ SR, and LV rad vel showed no significant difference between the two groups (p ≥ 0.05). HIV infection affects longitudinal systolic cardiac strain and strain rate in children and young adults. Normal ejection fraction might be attributed to preserved circumferential myocardial deformation. Strain and strain rate may help identify HIV patients at high risk for cardiac dysfunction and allow early detection of silent myocardial depression.

  9. Effects of sildenafil on the gastrocnemius and cardiac muscles of rats in a model of prolonged moderate exercise training.

    PubMed

    Rinaldi, Barbara; Donniacuo, Maria; Sodano, Loredana; Gritti, Giulia; Signoriello, Simona; Parretta, Elisabetta; Berrino, Liberato; Urbanek, Konrad; Capuano, Annalisa; Rossi, Francesco

    2013-01-01

    Moderate exercise training improves energetic metabolism, tissue perfusion and induces cardiac and skeletal muscle remodeling. Sildenafil, a potent phosphodiesterase-5 inhibitor used to treat erectile dysfunction, reduces infarct size and increases tissue oxygenation in experimental models of cardiovascular disease. We have evaluated the effects of prolonged moderate exercise training and a repeat administration of sildenafil on the rat gastrocnemius and cardiac muscles. Animals were divided into two groups: sedentary and trained. Each group was subdivided into animals treated with vehicle or with two doses of sildenafil (10 or 15 mg/kg/day) during the last week of training. Physical exercise did not induce cardiac hypertrophy, whereas it increased mRNA levels of the PGC-1α, HIF-1α and VEGF genes, which are involved in mitochondrial biogenesis and angiogenesis, and reduced mRNA levels of FoxO3a, MuRF-1 and Atrogin-1. Sildenafil dose-dependently promoted both angiogenesis, as shown by increased capillary density, and muscle atrophy, as shown by muscle fibre size. These effects were more pronounced in trained animals. Our data confirm the beneficial effects of a moderate and prolonged training on cardiovascular and skeletal systems and document the positive and negative effects of sildenafil on these tissues at doses higher than those used in clinical practice. This report may impact on the use of sildenafil as a substance able to influence sports performance.

  10. PD98059 Protects Brain against Cells Death Resulting from ROS/ERK Activation in a Cardiac Arrest Rat Model

    PubMed Central

    Nguyen Thi, Phuong Anh; Chen, Meng-Hua; Li, Nuo; Zhuo, Xiao-Jun; Xie, Lu

    2016-01-01

    The clinical and experimental postcardiac arrest treatment has not reached therapeutic success. The present study investigated the effect of PD98059 (PD) in rats subjected to cardiac arrest (CA)/cardiopulmonary resuscitation (CPR). Experimental rats were divided randomly into 3 groups: sham, CA, and PD. The rats except for sham group were subjected to CA for 5 min followed by CPR operation. Once spontaneous circulation was restored, saline and PD were injected in CA and PD groups, respectively. The survival rates and neurologic deficit scores (NDS) were observed, and the following indices of brain tissue were evaluated: ROS, MDA, SOD, p-ERK1/2/ERK1/2, caspase-3, Bax, Bcl-2, TUNEL positive cells, and double fluorescent staining of p-ERK/TUNEL. Our results indicated that PD treatment significantly reduced apoptotic neurons and improved the survival rates and NDS. Moreover, PD markedly downregulated the ROS, MDA, p-ERK, and caspase-3, Bax and upregulated SOD and Bcl-2 levels. Double staining p-ERK/TUNEL in choroid plexus and cortex showed that cell death is dependent on ERK activation. The findings in present study demonstrated that PD provides neuroprotection via antioxidant activity and antiapoptosis in rats subjected to CA/CPR. PMID:27069530

  11. Mg2+-dependent ATPase activity in cardiac myofibrils from the insulin-resistant JCR:LA-cp rat.

    PubMed

    Misra, T; Russell, J C; Clark, T A; Pierce, G N

    2001-01-01

    There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+-dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.

  12. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia.

    PubMed Central

    Fieber, L A; Adams, D J

    1991-01-01

    1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels

  13. Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts.

    PubMed

    Certal, Mariana; Vinhas, Adriana; Pinheiro, Ana Rita; Ferreirinha, Fátima; Barros-Barbosa, Aurora Raquel; Silva, Isabel; Costa, Maria Adelina; Correia-de-Sá, Paulo

    2015-11-01

    During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

  14. Reduced Long-Term Relative Survival in Females and Younger Adults Undergoing Cardiac Surgery: A Prospective Cohort Study

    PubMed Central

    Enger, Tone Bull; Pleym, Hilde; Stenseth, Roar; Greiff, Guri; Wahba, Alexander; Videm, Vibeke

    2016-01-01

    Objectives To assess long-term survival and mortality in adult cardiac surgery patients. Methods 8,564 consecutive patients undergoing cardiac surgery in Trondheim, Norway from 2000 until censoring 31.12.2014 were prospectively followed. Observed long-term mortality following surgery was compared to the expected mortality in the Norwegian population, matched on gender, age and calendar year. This enabled assessment of relative survival (observed/expected survival rates) and relative mortality (observed/expected deaths). Long-term mortality was compared across gender, age and surgical procedure. Predictors of reduced survival were assessed with multivariate analyses of observed and relative mortality. Results During follow-up (median 6.4 years), 2,044 patients (23.9%) died. The observed 30-day, 1-, 3- and 5-year mortality rates were 2.2%, 4.4%, 8.2% and 13.8%, respectively, and remained constant throughout the study period. Comparing observed mortality to that expected in a matched sample from the general population, patients undergoing cardiac surgery showed excellent survival throughout the first seven years of follow-up (relative survival ≥ 1). Subsequently, survival decreased, which was more pronounced in females and patients undergoing other procedures than isolated coronary artery bypass grafting (CABG). Relative mortality was higher in younger age groups, females and patients undergoing aortic valve replacement (AVR). The female survival advantage in the general population was obliterated (relative mortality ratio (RMR) 1.35 (1.19–1.54), p<0.001). Increasing observed long-term mortality seen with ageing was due to population risk, and younger age was independently associated with increased relative mortality (RMR per 5 years 0.81 (0.79–0.84), p<0.001)). Conclusions Cardiac surgery patients showed comparable survival to that expected in the general Norwegian population, underlining the benefits of cardiac surgery in appropriately selected patients. The

  15. A single exposure to acrolein desensitizes baroreflex responsiveness and increases cardiac arrhythmias in normotensive and hypertensive rats.

    PubMed

    Hazari, Mehdi S; Griggs, Jennifer; Winsett, Darrell W; Haykal-Coates, Najwa; Ledbetter, Allen; Costa, Daniel L; Farraj, Aimen K

    2014-03-01

    Short-term exposure to air pollutants has been linked to acute cardiovascular morbidity and mortality. Even in the absence of overt signs or symptoms, pollutants can cause subtle disruptions to internal compensatory mechanisms, which maintain homeostatic balance in response to various environmental and physiological stressors. We hypothesized that a single exposure to acrolein, a ubiquitous gaseous air pollutant, would decrease the sensitivity of baroreflex (BRS), which maintains blood pressure by altering heart rate (HR), modify cardiac electrophysiological properties and increase arrhythmia in rats. Wistar-Kyoto normotensive (WKY) and spontaneously hypertensive (SH) rats implanted with radiotelemeters and a chronic jugular vein catheter were tested for BRS using phenylephrine and sodium nitroprusside 2 days before and 1 h after whole-body exposure to 3 ppm acrolein (3 h). HR and electrocardiogram (ECG) were continuously monitored for the detection of arrhythmia in the pre-exposure, exposure and post-exposure periods. Whole-body plethysmography was used to continuously monitor ventilation in conscious animals. SH rats had higher blood pressure, lower BRS and increased frequency of AV block as evidence by non-conducted p-waves when compared with WKY rats. A single exposure to acrolein caused a decrease in BRS and increased incidence of arrhythmia in both WKY and SH rats. There were minimal ECG differences between the strains, whereas only SH rats experienced irregular breathing during acrolein. These results demonstrate that acrolein causes immediate cardiovascular reflexive dysfunction and persistent arrhythmia in both normal and hypertensive animals. As such, homeostatic imbalance may be one mechanism by which air pollution increases risk 24 h after exposure, particularly in people with underlying cardiovascular disease.

  16. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    PubMed

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  17. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    PubMed

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.

  18. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts.

    PubMed

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2012-12-01

    Cardiovascular hypertrophy is a common feature of hypertension and an important risk factor for heart damage. The regression of cardiovascular hypertrophy is currently considered an important therapeutic target in reducing the omplications of hypertension. The aim of this study was to investigate the inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content in spontaneously hypertensive rat (SHR) hearts. Six-week-old male SHRs were separated randomly and equally into 4 experimental groups: sterile water, captopril and 2 PSPY groups with different doses (10 and 100%) for 8 weeks. The changes in myocardial architecture and key molecules of the hypertrophy-related pathway in the excised left ventricle from these rats were determined by histopathological analysis, hematoxylin and eosin staining and western blot analysis. Abnormal myocardial architecture and enlarged interstitial spaces observed in the SHRs were significantly decreased in the captopril and PSPY groups compared with the sterile water group. Moreover, the increases in atrial natriuretic peptide, B-type natriuretic peptide, phosphorilated protein kinase Cα and calmodulin-dependent protein kinase II levels in the left ventricle were accompanied by hypertension and increases in phosphorylated extracellular signal-regulated kinase 5 activities with enhanced cardiac hypertrophy. However, the protein levels of the hypertrophic-related pathways were completely reversed by the administration of PSPY. PSPY may repress the activation of ANP and BNP which subsequently inhibit the dephosphorylation of the nuclear factor of activated T-cells, cytoplasmic 3 and ultimately prevent the progression of cardiac hypertrophy.

  19. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  20. Mechanistic Insights from Vascular and Cardiac Impairments in Rats Inhaling Diesel Exhaust Particles and Ozone

    EPA Science Inventory

    Although the causality has been established between air pollution and cardiovascular impairments, the molecular mechanisms are unknown. Moreover, cardiovascular effects of ozone have not been studied until recently. We hypothesize that vasculature and cardiac tissues are targets ...

  1. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-exposure in Rats

    EPA Science Inventory

    BackgroundThe potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscio...

  2. Effect of a pharmacologically induced decrease in core temperature in rats resuscitated from cardiac arrest

    EPA Science Inventory

    Targeted temperature management is recommended to reduce brain damage after resuscitation from cardiac arrest in humans although the optimal target temperature remains controversial. 1 4 The American Heart Association (AHA) and the International Liaison Committee on Resuscitation...

  3. Care for the adult family members of victims of unexpected cardiac death.

    PubMed

    Zalenski, Robert; Gillum, Richard F; Quest, Tammie E; Griffith, James L

    2006-12-01

    More than 300,000 sudden coronary deaths occur annually in the United States, despite declining cardiovascular death rates. In 2000, deaths from heart disease left an estimated 190,156 new widows and 68,493 new widowers. A major unanswered question for emergency providers is whether the immediate care of the loved ones left behind by the deceased should be a therapeutic task for the staff of the emergency department in the aftermath of a fatal cardiac arrest. Based on a review of the literature, the authors suggest that more research is needed to answer this question, to assess the current immediate needs and care of survivors, and to find ways to improve care of the surviving family of unexpected cardiac death victims. This would include improving quality of death disclosure, improving care for relatives during cardiopulmonary resuscitation of their family member, and improved methods of referral for services for prevention of psychological and cardiovascular morbidity during bereavement. PMID:16946285

  4. O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Zafir, Ayesha; Bradley, James A.; Long, Bethany W.; Muthusamy, Senthilkumar; Li, Qianhong; Hill, Bradford G.; Wysoczynski, Marcin; Prabhu, Sumanth D.; Bhatnagar, Aruni; Bolli, Roberto; Jones, Steven P.

    2015-01-01

    In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase—the protein responsible for adding O-GlcNAc to proteins—is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be

  5. Testosterone differentially alters cocaine-induced ambulatory and rearing behavioral responses in adult and adolescent rats

    PubMed Central

    Minerly, AnaChristina E.; Wu, Hui Bing K.; Weierstall, Karen M.; Niyomchai, Tipyamol; Kemen, Lynne; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-01-01

    Little is known about the physiological and behavioral effects of testosterone when co-administered with cocaine during adolescence. The present study aimed to determine whether exogenous testosterone administration differentially alters psychomotor responses to cocaine in adolescent and adult male rats. To this end, intact adolescent (30-days-old) and adult (60-day-old) male Fisher rats were pretreated with vehicle (sesame oil) or testosterone (5 or 10 mg/kg) 45 minutes prior to saline or cocaine (20 mg/kg) administration. Behavioral responses were monitored 1 hour after drug treatment, and serum testosterone levels were determined. Serum testosterone levels were affected by age: saline- and cocaine-treated adults in the vehicle groups had higher serum testosterone levels than adolescents rats, but after co-administration of testosterone the adolescent rats had higher serum testosterone levels than the adults. Pretreatment with testosterone affected baseline activity in adolescent rats: 5 mg/kg of testosterone increased both rearing and ambulatory behaviors in saline-treated adolescent rats. After normalizing data to % saline, an interaction between hormone administration and cocaine-induced behavioral responses was observed; 5 mg/kg of testosterone decreased both ambulatory and rearing behaviors among adolescents whereas 10 mg/kg of testosterone decreased only rearing behaviors. Testosterone pretreatment did not alter cocaine-induced behavioral responses in adult rats. These findings suggest that adolescents are more sensitive than adults to an interaction between testosterone and cocaine, and, indirectly, suggest that androgen abuse may lessen cocaine-induced behavioral responses in younger cocaine users. PMID:19822170

  6. Unpredictable chronic stress in juvenile or adult rats has opposite effects, respectively, promoting and impairing resilience.

    PubMed

    Ricon, T; Toth, E; Leshem, M; Braun, K; Richter-Levin, G

    2012-01-01

    We evaluated the effects of early maternal deprivation (MD; age 7-14 days) alone or in combination with unpredictable chronic stress (UCS; MDUN; 28-84 days) on anxiety and learning in 90 days old adult rats. We hypothesized that exposure to both stressors (MDUN) would be more detrimental than exposure to one or neither. Unexpectedly, adult rats from the MDUN group did not differ from control animals, whereas adult MD animals exhibited impaired avoidance learning. We next investigated the effect of juvenile-onset (30-90 days) versus adult-onset (60-90 days) stress on avoidance learning in adulthood (90 days). We found that adult-onset chronic stress impaired avoidance learning and memory whereas juvenile-onset stress did not. Thus, the results again indicate that juvenile exposure to UCS induces resilience rather than impairment.

  7. Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery.

    PubMed

    Vretzakis, George; Kleitsaki, Athina; Aretha, Diamanto; Karanikolas, Menelaos

    2011-02-01

    Blood transfusions are associated with adverse physiologic effects and increased cost, and therefore reduction of blood product use during surgery is a desirable goal for all patients. Cardiac surgery is a major consumer of donor blood products, especially when cardiopulmonary bypass (CPB) is used, because hematocrit drops precipitously during CPB due to blood loss and blood cell dilution. Advanced age, low preoperative red blood cell volume (preoperative anemia or small body size), preoperative antiplatelet or antithrombotic drugs, complex or re-operative procedures or emergency operations, and patient comorbidities were identified as important transfusion risk indicators in a report recently published by the Society of Cardiovascular Anesthesiologists. This report also identified several pre- and intraoperative interventions that may help reduce blood transfusions, including off-pump procedures, preoperative autologous blood donation, normovolemic hemodilution, and routine cell saver use.A multimodal approach to blood conservation, with high-risk patients receiving all available interventions, may help preserve vital organ perfusion and reduce blood product utilization. In addition, because positive intravenous fluid balance is a significant factor affecting hemodilution during cardiac surgery, especially when CPB is used, strategies aimed at limiting intraoperative fluid balance positiveness may also lead to reduced blood product utilization.This review discusses currently available techniques that can be used intraoperatively in an attempt to avoid or minimize fluid balance positiveness, to preserve the patient's own red blood cells, and to decrease blood product utilization during cardiac surgery. PMID:21345774

  8. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  9. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  10. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  11. Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats.

    PubMed

    Liao, Po-Hsiang; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Day, Cecilia-Hsuan; Chen, Ya-Hui; Chang, Sheng-Huang; Padma, V Vijaya; Chen, Yi-Hsing; Huang, Chih-Yang

    2016-01-01

    High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats. PMID:27499689

  12. Heat-killed Lactobacillus Reuteri GMNL-263 Prevents Epididymal Fat Accumulation and Cardiac Injury in High-Calorie Diet-Fed Rats

    PubMed Central

    Liao, Po-Hsiang; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Day, Cecilia-Hsuan; Chen, Ya-Hui; Chang, Sheng-Huang; Padma, V. Vijaya; Chen, Yi-Hsing; Huang, Chih-Yang

    2016-01-01

    High-calorie diet-induced obesity leads to cardiomyocyte dysfunction and apoptosis. Impaired regulation of epididymal fat content in obese patients has been known to increase the risk of cardiac injury. In our study, a lactic acid bacteria, Lactobacillus reuteri GMNL-263, was evaluated for its potential to reduce body weight and body fat ratio and to prevent heart injury in rats with high-fat diet-induced obesity. Lactic acid bacteria supplementation restored the cardiac function and decreased the physiological changes in the heart of the obese rats. In addition, the Fas/Fas-associated protein pathway-induced caspase 3/e Poly polymerase mediated apoptosis in the cardiomyocytes of the obese rats was reversed in the Lr263-treated rats. These results reveal that fed with Lr-263 reduces body fat ratio, inhibits caspase 3-mediated apoptosis and restores cardiac function in obese rats through recovery of ejection fraction and fractional shortening. Our results indicated that the administration of Lr263 lactic acid bacteria can significantly down-regulate body fat and prevent cardiomyocyte injury in obese rats. PMID:27499689

  13. Puerarin accelerate scardiac angiogenesis and improves cardiac function of myocardial infarction by upregulating VEGFA, Ang-1 and Ang-2 in rats

    PubMed Central

    Ai, Fen; Chen, Manhua; Yu, Bo; Yang, Yang; Xu, Guizhong; Gui, Feng; Liu, Zhenxing; Bai, Xiangyan; Chen, Zhen

    2015-01-01

    Objective: The traditional Chinese medicinal puerarin, has long been used to treat cardiovascular diseases, however, the mechanism underlying its effects remain unclear. Here, this study would to investigate the role of puerarin on cardiac angiogenesis and myocardial function induced by myocardial infarction. Methods: Puerarin was treated in rats after left anterior descending coronary artery (LAD) ligation and maintained for 4 weeks (diets containing about 50 mg/kg/day or 100 mg/kg/day). After treatment, cardiac function was evaluated by echocardiography and markers of heart failure. Paraffin sections of the heart tissues were used for isolect in GS-IB4 staining. The Mrna and protein expression levels of VEGFA, Ang-1 and Ang-2 were detected by real-time polymerase chain reaction and western blot. Results: Significantly damaged angiogenesis and slightly increase of VEGFA, Ang-1 and Ang-2 were showed after LAD ligation. Impaired angiogenesis and cardiac function were remarkably improved in puerarin treatment rats with great increase of VEGFA, Ang-1 and Ang-2. Conclusion: The above results demonstrated that puerarin could accelerate cardiac angiogenesis and improve cardiac function of myocardial infarction rats by upregulating VEGFA, Ang-1 and Ang-2. PMID:26885006

  14. Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats.

    PubMed

    Ozturk, Nihal; Olgar, Yusuf; Aslan, Mutay; Ozdemir, Semir

    2016-08-01

    Hypertension is one of the major risk factors of cardiac hypertrophy and magnesium deficiency is suggested to be a contributing factor in the progression of this complication. In this study, we aimed to investigate the relationship between intracellular free Mg(2+) levels and electrophysiological changes developed in the myocardium of L-NAME induced hypertensive rats. Hypertension was induced by administration of 40 mg/kg of L-NAME for 6 weeks, while magnesium treated rats fed with a diet supplemented with 1 g/kg of MgO for the same period. L-NAME administration for 6 weeks elicited a significant increase in blood pressure which was corrected with MgO treatment; thereby cardiac hypertrophy developing secondary to hypertension was prevented. Cytosolic free magnesium levels of ventricular myocytes were significantly decreased with hypertension and magnesium administration restored these changes. Hypertension significantly decreased the fractional shortening with slowing of shortening kinetics in left ventricular myocytes whereas magnesium treatment was capable of restoring hypertension-induced contractile dysfunction. Long-term magnesium treatment significantly restored the hypertension-induced prolongation in action potentials of ventricular myocytes and suppressed Ito and Iss currents. In contrast, hypertension dependent decrement in intracellular Mg(2+) level did not cause a significant change in L-type Ca(2+) currents, SR Ca(2+) content and NCX activity. Nevertheless, hypertension mediated increase in superoxide anion, hydrogen peroxide and protein oxidation mitigated with magnesium treatment. In conclusion, magnesium administration improves mechanical abnormalities observed in hypertensive rat ventricular myocytes due to reduced oxidative stress. It is likely that, changes in intracellular magnesium balance may contribute to the pathophysiology of chronic heart diseases.

  15. Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats.

    PubMed

    Ozturk, Nihal; Olgar, Yusuf; Aslan, Mutay; Ozdemir, Semir

    2016-08-01

    Hypertension is one of the major risk factors of cardiac hypertrophy and magnesium deficiency is suggested to be a contributing factor in the progression of this complication. In this study, we aimed to investigate the relationship between intracellular free Mg(2+) levels and electrophysiological changes developed in the myocardium of L-NAME induced hypertensive rats. Hypertension was induced by administration of 40 mg/kg of L-NAME for 6 weeks, while magnesium treated rats fed with a diet supplemented with 1 g/kg of MgO for the same period. L-NAME administration for 6 weeks elicited a significant increase in blood pressure which was corrected with MgO treatment; thereby cardiac hypertrophy developing secondary to hypertension was prevented. Cytosolic free magnesium levels of ventricular myocytes were significantly decreased with hypertension and magnesium administration restored these changes. Hypertension significantly decreased the fractional shortening with slowing of shortening kinetics in left ventricular myocytes whereas magnesium treatment was capable of restoring hypertension-induced contractile dysfunction. Long-term magnesium treatment significantly restored the hypertension-induced prolongation in action potentials of ventricular myocytes and suppressed Ito and Iss currents. In contrast, hypertension dependent decrement in intracellular Mg(2+) level did not cause a significant change in L-type Ca(2+) currents, SR Ca(2+) content and NCX activity. Nevertheless, hypertension mediated increase in superoxide anion, hydrogen peroxide and protein oxidation mitigated with magnesium treatment. In conclusion, magnesium administration improves mechanical abnormalities observed in hypertensive rat ventricular myocytes due to reduced oxidative stress. It is likely that, changes in intracellular magnesium balance may contribute to the pathophysiology of chronic heart diseases. PMID:27193439

  16. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels

    PubMed Central

    Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels.

  17. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels.

    PubMed

    Wu, Haidong; Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali; Huang, Zitong

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels. PMID:27648441

  18. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels

    PubMed Central

    Wang, Peng; Li, Yi; Wu, Manhui; Lin, Jiali

    2016-01-01

    Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR) by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP) channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n = 10 per group) received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group), diazoxide (10 mg/kg; DZ group), or diazoxide (10 mg/kg) plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group) 30 min after CPR. The control group (sham group, n = 5) underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR) was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε) in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS) in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels. PMID:27648441

  19. Cardiac Conduction Safety during Coadministration of Artemether-Lumefantrine and Lopinavir/Ritonavir in HIV-Infected Ugandan Adults

    PubMed Central

    Byakika-Kibwika, Pauline; Lamorde, Mohammed; Lwabi, Peter; Nyakoojo, Wilson B.; Okaba-Kayom, Violet; Mayanja-Kizza, Harriet; Boffito, Marta; Katabira, Elly; Back, David; Khoo, Saye; Merry, Concepta

    2011-01-01

    Background. We aimed to assess cardiac conduction safety of coadministration of the CYP3A4 inhibitor lopinavir/ritonavir (LPV/r) and the CYP3A4 substrate artemether-lumefantrine (AL) in HIV-positive Ugandans. Methods. Open-label safety study of HIV-positive adults administered single-dose AL (80/400 mg) alone or with LPV/r (400/100 mg). Cardiac function was monitored using continuous electrocardiograph (ECG). Results. Thirty-two patients were enrolled; 16 taking LPV/r -based ART and 16 ART naïve. All took single dose AL. No serious adverse events were observed. ECG parameters in milliseconds remained within normal limits. QTc measurements did not change significantly over 72 hours although were higher in LPV/r arm at 24 (424 versus 406; P = .02) and 72 hours (424 versus 408; P = .004) after AL intake. Conclusion. Coadministration of single dose of AL with LPV/r was safe; however, safety of six-dose AL regimen with LPV/r should be investigated. PMID:22312553

  20. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish

    PubMed Central

    Hicken, Corinne E.; Linbo, Tiffany L.; Baldwin, David H.; Willis, Maryjean L.; Myers, Mark S.; Holland, Larry; Larsen, Marie; Stekoll, Michael S.; Rice, Stanley D.; Collier, Tracy K.; Scholz, Nathaniel L.; Incardona, John P.

    2011-01-01

    Exposure to high concentrations of crude oil produces a lethal syndrome of heart failure in fish embryos. Mortality is caused by cardiotoxic polycyclic aromatic hydrocarbons (PAHs), ubiquitous components of petroleum. Here, we show that transient embryonic exposure to very low concentrations of oil causes toxicity that is sublethal, delayed, and not counteracted by the protective effects of cytochrome P450 induction. Nearly a year after embryonic oil exposure, adult zebrafish showed subtle changes in heart shape and a significant reduction in swimming performance, indicative of reduced cardiac output. These delayed physiological impacts on cardiovascular performance at later life stages provide a potential mechanism linking reduced individual survival to population-level ecosystem responses of fish species to chronic, low-level oil pollution. PMID:21482755

  1. Extrinsic cardiac nerve segments in the domestic dog (Canis familiaris- Linnaeus, 1758). Comparative study in young and adult dogs.

    PubMed

    Brugnaro, M; De Souza, R R; Ribeiro, A A C M

    2003-08-01

    In this paper, important connections between the two main contingents of the autonomic nervous system, intrinsic and extrinsic visceral plexus were analysed. Concerning heart innervation, the territories of extrinsic innervation are very important in the treatment of congenital or acquired cardiopathy, thoracic neoplasia and aortic arch persistence, among others. This research compared young and adult extrinsic cardiac innervation and described the surgical anatomic nerve segments. Animals were perfused with a 10% formaldehyde solution in PBS (0.1 m) (pH 7.4) and submitted to macro- and meso-scopic dissection immersed in 60% acetic acid alcoholic solution and 20% hydrogen peroxide aqueous solution. The nerve segments were assigned as: right vagus nerve segment, left vagus nerve segment, right middle cervical ganglion segment, left middle cervical ganglion segment, right caudal laryngeal nerve segment, left caudal laryngeal nerve segment, right phrenic nerve segment and left phrenic nerve segment.

  2. Ethanol facilitation of short-term memory in adult rats with a disturbed circadian cycle.

    PubMed

    Mikolajczak, P; Okulicz-Kozaryn, I; Nowaczyk, M; Kaminska, E

    2001-01-01

    The aim of this study was to evaluate the effect of 3-month ethanol treatment on olfactory social memory test performance using two inter-exposure intervals [30 min: short-term recognition (STR); or 120 min: long-term recognition (LTR)] in adult rats with a disturbed circadian cycle (DCC). Ethanol treatment both in ethanol-preferring and -non-preferring groups improved the STR task compared to control rats. However, LTR procedure triggered the opposite tendency. Moreover, no differences between control rats with DCC and those with normal diurnal rhythm in STR and LTR paradigms were observed. Our results suggest that, under some conditions, alcohol facilitates short-term memory in adult rats. PMID:11468127

  3. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  4. Evaluation of the influence of pulmonary hypertension in ultra-fast-track anesthesia technique in adult patients undergoing cardiac surgery

    PubMed Central

    da Silva, Paulo Sérgio; Cartacho, Márcio Portugal Trindade; de Castro, Casimiro Cardoso; Salgado Filho, Marcello Fonseca; Brandão, Antônio Carlos Aguiar

    2015-01-01

    Objective To evaluate the influence of pulmonary hypertension in the ultra-fast-track anesthesia technique in adult cardiac surgery. Methods A retrospective study. They were included 40 patients divided into two groups: GI (without pulmonary hypertension) and GII (with pulmonary hypertension). Based on data obtained by transthoracic echocardiography. We considered as the absence of pulmonary hypertension: a pulmonary artery systolic pressure (sPAP) <36 mmHg, with tricuspid regurgitation velocity <2.8 m/s and no additional echocardiographic signs of PH, and PH as presence: a sPAP >40 mmHg associated with additional echocardiographic signs of PH. It was established as influence of pulmonary hypertension: the impossibility of extubation in the operating room, the increase in the time interval for extubation and reintubation the first 24 hours postoperatively. Univariate and multivariate analyzes were performed when necessary. Considered significant a P value <0.05. Results The GI was composed of 21 patients and GII for 19. All patients (100%) were extubated in the operating room in a medium time interval of 17.58±8.06 min with a median of 18 min in GII and 17 min in GI. PH did not increase the time interval for extubation (P=0.397). It required reintubation of 2 patients in GII (5% of the total), without statistically significant as compared to GI (P=0.488). Conclusion In this study, pulmonary hypertension did not influence on ultra-fast-track anesthesia in adult cardiac surgery. PMID:27163419

  5. Regeneration of central cholinergic neurones in the adult rat brain.

    PubMed

    Svendgaard, N A; Björklund, A; Stenevi, U

    1976-01-30

    The regrowth of lesioned central acetylcholinesterase (AChE)-positive axons in the adult rat was studied in irides implanted to two different brain sites: in the caudal diencephalon and hippocampus, and in the hippocampal fimbria. At both implantation sites the cholinergic septo-hippocampal pathways were transected. At 2-4 weeks after lesion, newly formed, probably sprouting fibres could be followed in abundance from the lesioned proximal axon stumps into the iris transplant. Growth of newly formed AChE-positive fibres into the transplant was also observed from lesioned axons in the anterior thalamus, and to a minor extent also from the dorsal and ventral tegmental AChE-positive pathways and the habenulo-interpeduncular tract. The regrowth process of the sprouting AChE-positive, presumed cholinergic fibres into the iris target was studied in further detail in whole-mount preparations of the transplants. For this purpose the irides were removed from the brain, unfolded, spread out on microscope slides, and then stained for AChE. During the first 2-4 weeks after transplantation the sprouting central fibres grew out over large areas of the iris. The new fibres branched profusely into a terminal plexus that covered maximally about half of the iris surface, and in some areas the patterning of the regenerated central fibres mimicked closely that of the normal autonomic cholinergic innervation of the iris. In one series of experiments the AChE-staining was combined with fluorescence histochemical visualization of regenerated adrenergic fibres in the same specimens. In many areas there was a striking congruence in the distributional patterns of the regenerated central cholinergic and adrenergic fibres in the transplant. This indicates that - as in the normal iris - the sprouting cholinergic axons (primarily originating in the lesioned septo-hippocampal pathways) and adrenergic axons (primarily originating in the lesioned axons of the locus neurones) regenerate together

  6. Dose related effects of nicotine on oxidative injury in young, adult and old rats.

    PubMed

    Jain, Anshu; Flora, S J S

    2012-03-01

    Nicotine affects a variety of cellular process ranging from induction of gene expression to secretion of hormones and modulation of enzymatic activities. The objective of the present study was to study the dose dependent toxicity of nicotine on the oxidative stress in young, adult and old rats which were administered 0.75, 3 and 6 mg kg(-1) nicotine as nicotine hydrogen tartarate intraperitoneally for a period of seven days. No changes were observed in blood catalase (CAT) activity and level of blood reactive oxygen species (ROS) in any of the age group at the lowest dose of nicotine. However, at the highest dose (6 mg kg(-1) nicotine) ROS level increased significantly from 1.17 to 1.41 microM ml(-1) in young rats and from 1.13 to 1.40 microM ml(-1) in old rats. However, no change was observed in blood ROS levels of adult rats. Administration of 3 mg kg(-1) nicotine resulted in an increase in level of reduced glutathione (GSH) in rats of all the age groups. The young animals were the most sensitive as a dose of 6 mg kg(-1) resulted in decline in the levels of reduced GSH to 0.89 mg ml(-1) as compared to normal control (1.03 mg ml(-1)). The antioxidant enzymes SOD and CAT were sensitive to a dose of 6 mg kg(-1) as it resulted in decline of the enzymatic activity in all age group animals. Also, administration of nicotine at a lower dose of 3 mg kg(-1)