Sample records for adult rat dorsal

  1. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    PubMed

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Adult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior.

    PubMed

    Ho, Y C; Wang, S

    2010-11-24

    Clinical and preclinical studies suggest that the hippocampus has a role in the pathophysiology of major depression. In the learned helplessness (LH) animal model of depression after inescapable shocks (ISs) animals that display LH behavior have reduced cell proliferation in the hippocampus; this effect can be reversed by antidepressant treatment. Using this model, we compared rats that displayed LH behavior and rats that did not show LH behavior (NoLH) after ISs to determine whether reduced hippocampal cell proliferation is associated with the manifestation of LH behavior or is a general response to stress. Specifically, we examined cell proliferation, neurogenesis, and synaptic function in dorsal and ventral hippocampus of LH and NoLH animals and control rats that were not shocked. The LH rats had showed reduced cell proliferation, neurogenesis, and synaptic transmission in the dorsal hippocampus, whereas no changes were seen in the ventral hippocampus. These changes were not observed in the NoLH animals. In a group of NoLH rats that received the same amount of electrical shock as the LH rats to control for the unequal shocks received in these two groups, we observed changes in Ki-67(+) cells associated with acute stress. We conclude that reduced hippocampal cell proliferation and neurogenesis are associated with the manifestation of LH behavior and that the dorsal hippocampus is the most affected area. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats.

    PubMed

    Solati, Jalal; Zarrindast, Mohammad-Reza; Salari, Ali-Akbar

    2010-12-01

    In the present study, we investigated the possible influence of the opioidergic system of the dorsal hippocampus on anxiety-like behaviors. Elevated plus-maze, which is one of the methods used for testing anxiety, was used in the present study. Rats were anesthetized with ketamine and xylazine and special cannulas were inserted stereotaxically into the CA1 region of the dorsal hippocampus. After 1 week of recovery, the effects of intra-CA1 administration of morphine (0.25, 0.5, 1 and 2 µg/rat; 1 µl/rat; 0.5 µl/in each side), naloxone (2, 4, 6 and 8 µg/rat), enkephalin (1, 2, 5 and 10 µg/rat) and naltrindole (0.25, 0.5, 1 and 2 µg/rat) on percentage open arm time (%OAT) and percentage open arm entries (%OAE) were determined. Bilateral administration of morphine into CA1 decreases %OAT and %OAE, indicating an anxiogenic-like effect. Intra-CA1 injection of naloxone, an opioid receptor antagonist, increased both %OAT and %OAE, parameters of anxiolytic-like behavior. Bilateral administration of δ-opioid receptor agonist, [D-Pen(2,5) ]-enkephalin acetate hydrate into the CA1, induced an anxiolytic-like effect. Furthermore, intra-CA1 injection of δ-opioid receptor antagonist, naltrindole hydrochloride, increased anxiety-related behaviors. The results of the present study demonstrate that activation of μ-opioid receptors in this area produce an anxiogenic response while activation of δ-opioid receptors produces an anxiolytic response. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  5. Effect of thyroxine on munc-18 and syntaxin-1 expression in dorsal hippocampus of adult-onset hypothyroid rats

    PubMed Central

    Zhu, Y.; Ning, D.; Wang, F.; Liu, C.; Xu, Y.; Jia, X.; Zhu, D.

    2012-01-01

    Adult-onset hypothyroidism induces a variety of impairments on hippocampus- dependent neurocognitive functioningin which many synaptic proteins in hippocampus neurons are involved. Here, we observed the effect of adult-onset hypothyroidism on the expression of syntaxin-1 and munc-18 in the dorsal hippocampus and whether the altered proteins could be restored by levothyroxine (T4) treatment. All rats were separated into 4 groups randomly: hypothyroid group, 5 µg T4 /100 g body weight (BW) treated group, 20 µg T4/100 g BW treated group and control group. The radioimmunoassay kits were applied to assay the levels of serum T3 and T4, and the levels of syntaxin-1 and munc-18 in hippocampus were assessed by immunohistochemistry and Western blot. Both analysis corroborated that syntaxin-1 in the hypothyroid group was significantly higher. Munc-18 was lower in four layers of CA3 and dentate gyrus by immunohistochemistry. After two weeks of treatment with 5 µg T4/100 g BW for hypothyroidism, syntaxin-1 levels were completely restored, whereas the recovery of munc-18 only located in two of the four impaired layers. Twenty µg T4/100 g BW treatment normalized munc-18 levels. These data suggested that adult-onset hypothyroidism induced increment of syntaxin-1 and decrement of munc-18 in the dorsal hippocampus, which could be restored by T4 treatment. Larger dosage of T4 caused more effective restorations. PMID:22688303

  6. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    PubMed

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  7. Actions of (-)-baclofen on rat dorsal horn neurons.

    PubMed

    Kangrga, I; Jiang, M C; Randić, M

    1991-10-25

    The actions of a gamma-aminobutyric acid B (GABAB) agonist, (-)-baclofen, on the electrophysiological properties of neurons and synaptic transmission in the spinal dorsal horn (laminae I-IV) were examined by using intracellular recordings in spinal cord slice from young rats. In addition, the effects of baclofen on the dorsal root stimulation-evoked outflow of glutamate and aspartate from the spinal dorsal horn were examined by using high performance liquid chromatography (HPLC) with flourimetric detection. Superfusion of baclofen (5 nM to 10 microM) hyperpolarized, in a stereoselective and bicuculline-insensitive manner, the majority (86%) of tested neurons. The hyperpolarization was associated with a decrease in membrane resistance and persisted in a nominally zero-Ca2+, 10 mM Mg(2+)- or a TTX-containing solution. Our findings indicate that the hyperpolarizing effect of baclofen is probably due to an increase in conductance to potassium ions. Baclofen decreased the direct excitability of dorsal horn neurons, enhanced accommodation of spike discharge, and reduced the duration of Ca(2+)-dependent action potentials. Baclofen depressed, or blocked, excitatory postsynaptic potentials evoked by electrical stimulation of the dorsal roots. Spontaneously occurring synaptic potentials were also reversibly depressed by baclofen. Whereas baclofen did not produce any consistent change in the rate of the basal outflow of glutamate and aspartate, the stimulation-evoked release of the amino acids was blocked. The present results suggest that baclofen, by activating GABAB receptors, may modulate spinal afferent processing in the superficial dorsal horn by at least two mechanisms: (1) baclofen depresses excitatory synaptic transmission primarily by a presynaptic mechanism involving a decrease in the release of excitatory amino acids, and (2) at higher concentrations, the hyperpolarization and increased membrane conductance may contribute to the depressant effect of baclofen on

  8. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  9. Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro.

    PubMed

    Doan, Lisa V; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas J J; Xu, Fang

    2014-01-01

    Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. The mean KCl-induced calcium transient was greater in P7 neurons (P < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (P < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly, cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses.

  10. Despite Differences in Cytosolic Calcium Regulation, Lidocaine Toxicity Is Similar in Adult and Neonatal Rat Dorsal Root Ganglia in Vitro

    PubMed Central

    Doan, Lisa V.; Eydlin, Olga; Piskoun, Boris; Kline, Richard P; Recio-Pinto, Esperanza; Rosenberg, Andrew D; Blanck, Thomas JJ; Xu, Fang

    2013-01-01

    Background Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action for local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, we examined whether there were differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons. Methods DRG neurons were cultured from postnatal day 7 (P7) and adult rats. Lidocaine-induced changes in cytosolic calcium were examined with the calcium indicator Fluo-4. Cells were incubated with varying concentrations of lidocaine and examined for viability using calcein AM and ethidium homodimer-1 staining. Live imaging of caspase-3/7 activation was performed after incubation with lidocaine. Results The mean KCl-induced calcium transient was greater in P7 neurons (p < 0.05), and lidocaine significantly inhibited KCl-induced calcium responses in both ages (p < 0.05). Frequency distribution histograms of KCl-evoked calcium increases were more heterogeneous in P7 than in adult neurons. With lidocaine, KCl-induced calcium transients in both ages became more homogeneous but remained different between the groups. Interestingly cell viability was decreased by lidocaine in a dose-dependent manner similarly in both ages. Lidocaine treatment also activated caspase-3/7 in a dose- and time-dependent manner similarly in both ages. Conclusions Despite physiological differences in P7 and adult DRG neurons, lidocaine cytotoxicity is similar in P7 and adult DRG neurons in vitro. Differences in lidocaine- and KCl-evoked calcium responses suggest the similarity in lidocaine cytotoxicity involves other actions in addition to lidocaine-evoked effects on cytosolic calcium responses. PMID:23851347

  11. Dorsal and ventral hippocampal adult-born neurons contribute to context fear memory.

    PubMed

    Huckleberry, Kylie A; Shue, Francis; Copeland, Taylor; Chitwood, Raymond A; Yin, Weiling; Drew, Michael R

    2018-06-02

    The hippocampus contains one of the few neurogenic niches within the adult brain-the subgranular zone of the dentate gyrus. The functional significance of adult-born neurons in this region has been characterized using context fear conditioning, a Pavlovian paradigm in which animals learn to associate a location with danger. Ablation or silencing of adult-born neurons impairs both acquisition and recall of contextual fear conditioning, suggesting that these neurons contribute importantly to hippocampal memory. Lesion studies indicate that CFC depends on neural activity in both the dorsal and ventral hippocampus, subregions with unique extrahippocampal connectivity and behavioral functions. Because most studies of adult neurogenesis have relied on methods that permanently ablate neurogenesis throughout the entire hippocampus, little is known about how the function of adult-born neurons varies along the dorsal-ventral axis. Using a Nestin-CreER T2 mouse line to target the optogenetic silencer Archaerhodopsin to adult-born neurons, we compared the contribution of dorsal and ventral adult-born neurons to acquisition, recall, and generalization of CFC. Acquisition of CFC was impaired when either dorsal or ventral adult-born neurons were silenced during training. Silencing dorsal or ventral adult-born neurons during test sessions decreased context-evoked freezing but did not impair freezing in a hippocampus-independent tone-shock freezing paradigm. Silencing adult-born neurons modestly reduced generalization of fear. Our data indicate that adult-born neurons in the dorsal and ventral hippocampus contribute to both memory acquisition and recall. The comparatively large behavioral effects of silencing a small number of adult-born neurons suggest that these neurons make a unique and powerful contribution to hippocampal function.

  12. Effects of proinflammatory cytokines on axonal outgrowth from adult rat lumbar dorsal root ganglia using a novel three-dimensional culture system.

    PubMed

    Kim, Hyunchul; W Caspar, Tyler; Shah, Sameer B; Hsieh, Adam H

    2015-08-01

    Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these

  13. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  14. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  15. Neonatal Colonic Inflammation Increases Spinal Transmission and Cystathionine β-Synthetase Expression in Spinal Dorsal Horn of Rats with Visceral Hypersensitivity

    PubMed Central

    Zhao, Liting; Xiao, Ying; Weng, Rui-Xia; Liu, Xuelian; Zhang, Ping-An; Hu, Chuang-Ying; Yu, Shan P.; Xu, Guang-Yin

    2017-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by chronic abdominal pain and alteration of bowel movements. The pathogenesis of visceral hypersensitivity in IBS patients remains largely unknown. Hydrogen sulfide (H2S) is reported to play an important role in development of visceral hyperalgesia. However, the role of H2S at spinal dorsal horn level remains elusive in visceral hypersensitivity. The aim of this study is designed to investigate how H2S takes part in visceral hypersensitivity of adult rats with neonatal colonic inflammation (NCI). Visceral hypersensitivity was induced by neonatal colonic injection of diluted acetic acid. Expression of an endogenous H2S synthesizing enzyme cystathionine β-synthetase (CBS) was determined by Western blot. Excitability and synaptic transmission of neurons in the substantia gelatinosa (SG) of spinal cord was recorded by patch clamping. Here, we showed that expression of CBS in the spinal dorsal horn was significantly upregulated in NCI rats. The frequency of glutamatergic synaptic activities in SG was markedly enhanced in NCI rats when compared with control rats. Application of NaHS increased the frequency of both spontaneous and miniature excitatory post-synaptic currents of SG neurons in control rats through a presynaptic mechanism. In contrast, application of AOAA, an inhibitor of CBS, dramatically suppressed the frequency of glutamatergic synaptic activities of SG neurons of NCI rats. Importantly, intrathecal injection of AOAA remarkably attenuated visceral hypersensitivity of NCI rats. These results suggest that H2S modulates pain signaling likely through a presynaptic mechanism in SG of spinal dorsal horn, thus providing a potential therapeutic strategy for treatment for chronic visceral pain in patients with IBS. PMID:29046639

  16. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus

    PubMed Central

    Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue

    2017-01-01

    Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323

  17. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis.

    PubMed

    Abboussi, Oualid; Tazi, Abdelouahhab; Paizanis, Eleni; El Ganouni, Soumaya

    2014-05-01

    Several epidemiological studies show an increase in cannabis use among adolescents, especially in Morocco for being one of the major producers in the world. The neurobiological consequences of chronic cannabis use are still poorly understood. In addition, brain plasticity linked to ontogeny portrays adolescence as a period of vulnerability to the deleterious effects of drugs. The aim of this study was to investigate the behavioral neurogenic effects of chronic exposure to the cannabinoid agonist WIN55,212-2 during adolescence, by evaluating the emotional and cognitive performances, and the consequences on neurogenesis along the dorso-ventral axis of the hippocampus in adult rats. WIN55,212 was administered intraperitoneally (i.p.) once daily for 20 days to adolescent (27-30 PND) and adult Wistar rats (54-57 PND) at the dose of 1mg/kg. Following a 20 day washout period, emotional and cognitive functions were assessed by the Morris water maze test and the two-way active avoidance test. Twelve hours after, brains were removed and hippocampal neurogenesis was assessed using the doublecortin (DCX) as a marker for cell proliferation. Our results showed that chronic WIN55,212-2 treatment significantly increased thigmotaxis early in the training process whatever the age of treatment, induced spatial learning and memory deficits in adolescent but not adult rats in the Morris water maze test, while it had no significant effect in the active avoidance test during multitrial training in the shuttle box. In addition, the cognitive deficits assessed in adolescent rats were positively correlated to a decrease in the number of newly generated neurons in dorsal hippocampus. These data suggest that long term exposure to cannabinoids may affect more potently spatial learning and memory in adolescent compared to adult rats via a negative action on hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum

    PubMed Central

    Clark, Peter J.; Amat, Jose; McConnell, Sara O.; Ghasem, Parsa R.; Greenwood, Benjamin N.; Maier, Steven F.; Fleshner, Monika

    2015-01-01

    Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress. PMID:26555633

  19. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    PubMed Central

    2012-01-01

    Introduction Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS). The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM). Levels of Cytochrome c (Cyt-C) was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM). The change of thiamine monophosphatase (TMP) levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated with PTSD. PMID

  20. Effects of Chronic Fluoxetine Treatment on Neurogenesis and Tryptophan Hydroxylase Expression in Adolescent and Adult Rats

    PubMed Central

    Meerhoff, Gideon F.

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population. PMID:24827731

  1. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    PubMed

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  2. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    PubMed

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat.

    PubMed

    Borges-Aguiar, Ana Cristina; Schauffer, Luana Zanoni; de Kloet, Edo Ronald; Schenberg, Luiz Carlos

    2018-05-15

    The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    PubMed

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  6. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  7. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    PubMed

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P < 0.05). Local administration of 50 nmol/L tetrodotoxin (TTX) on DRG neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P < 0.05). On the other side, local administration of 100 mmol/L KCl on DRG neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P < 0.05). The study suggests that the excitability of WDR neurons is influenced by spontaneous firings of DRG neurons after CCD.

  8. Low-intensity treadmill exercise promotes rat dorsal wound healing.

    PubMed

    Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan

    2016-02-01

    In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present

  9. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    PubMed

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  10. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats.

    PubMed

    Roschlau, Corinna; Hauber, Wolfgang

    2017-04-14

    Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. COGNITIVE IMPAIRMENT AND MORPHOLOGICAL CHANGES IN THE DORSAL HIPPOCAMPUS OF VERY OLD FEMALE RATS

    PubMed Central

    Morel, Gustavo R.; Andersen, Tomás; Pardo, Joaquín; Zuccolilli, Gustavo O.; Cambiaggi, Vanina L.; Hereñú, Claudia B.; Goya, Rodolfo G.

    2015-01-01

    The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory 4–6 months old (young), 26 months old (old) and 29–32 months old (senile) Sprague–Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. Age changes in spatial memory performance were assessed with a modified version of the Barnes maze test. We employed two probe trials (PT), one and five days after training, respectively, in order to evaluate learning ability as well as short-term and longer-term spatial memory retention. A set of relevant hippocampal cell markers was also quantitated in the animals by means of an unbiased stereological approach. The results revealed that old rats perform better than senile rats in acquisition trials and young rats perform better than both aging groups. However, during short-term PT both aging groups showed a preserved spatial memory while in longer-term PT, spatial memory showed deterioration in both aged groups. Morphological analysis showed a marked decrease (94–97%) in doublecortin neuron number in the dentate gyrus in both aged groups and a reduction in glial fibrillary acidic protein-positive cell number in the stratum radiatum of aging rats. Astroglial process length and branching complexity decreased in the aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats. PMID:26141841

  12. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    PubMed Central

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  13. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats.

    PubMed

    Solís, Karina H; Méndez, Laura I; García-López, Guadalupe; Díaz, Néstor F; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H 1 receptor (H 1 R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H 1 R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H 1 R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H 1 R expression by qRT-PCR and Western blot and, finally, we tested H 1 R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H 1 R have an important role in the increased neurogenesis within the dorsal telencephalon of

  14. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats

    PubMed Central

    Busse, Sebastian; Schwarting, Rainer K. W.

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat’s dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning. PMID:27375453

  15. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    PubMed

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P < 0.01). PWTs were obviously lower in the EA group than in the N group at 24 h post-injection (P < 0.01). It showed increasing tendency, markedly higher than those of the CFA group at 25 h and 3rd day post-injection (P < 0.01). Compared with the N group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats in the CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  16. Ontogeny of cocaine-induced behaviors and cocaine pharmacokinetics in male and female neonatal, preweanling, and adult rats.

    PubMed

    McDougall, Sanders A; Apodaca, Matthew G; Mohd-Yusof, Alena; Mendez, Adrian D; Katz, Caitlin G; Teran, Angie; Garcia-Carachure, Israel; Quiroz, Anthony T; Crawford, Cynthia A

    2018-04-18

    Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2 High receptors, receptor coupling, etc.). The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.

  17. Age differences in the impact of forced swimming test on serotonin transporter levels in lateral septum and dorsal raphe

    PubMed Central

    2014-01-01

    Background Forced swimming test (FST) is an animal model which evaluates behavioral despair and the effect of antidepressants such as the selective serotonin reuptake inhibitors; the FST modifies the expression of some receptors related to antidepressant response, but it is not known whether serotonin transporter (SERT), their main target, is affected by this test in animals of different ages. Antidepressant response has shown age-dependent variations which could be associated with SERT expression. The aim of the present study was to analyze changes in the SERT immunoreactivity (SERT-IR) in dorsal raphe and lateral septum of male rats from different age groups with or without behavioral despair induced by their exposure to the FST, since these two structures are related to the expression of this behavior. Methods Prepubertal (24 PN), pubertal (40 PN), young adult (3–5 months) and middle-aged (12 months) male rats were assigned to a control group (non-FST) or depressed group (FST, two sessions separated by 24 h). Changes in SERT-IR in dorsal raphe and lateral septum were determined with immunofluorescence. Results Pubertal and middle-aged rats showed higher levels of immobility behavior compared to prepubertal rats on the FST. SERT-IR showed an age-dependent increase followed by a moderate decrease in middle-aged rats in both structures; a decreased in SERT-IR in lateral septum and dorsal raphe of pubertal rats was observed after the FST. Conclusions Age differences were observed in the SERT-IR of structures related to behavioral despair; SERT expression was modified by the FST in lateral septum and dorsal raphe of pubertal rats. PMID:24490994

  18. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    PubMed Central

    Solís, Karina H.; Méndez, Laura I.; García-López, Guadalupe; Díaz, Néstor F.; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from

  19. fMRI Evidence for Dorsal Stream Processing Abnormality in Adults Born Preterm

    ERIC Educational Resources Information Center

    Chaminade, Thierry; Leutcher, Russia Ha-Vinh; Millet, Veronique; Deruelle, Christine

    2013-01-01

    We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20…

  20. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G

    2014-12-01

    Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.

  1. Acute Depletion of D2 Receptors from the Rat Substantia Nigra Alters Dopamine Kinetics in the Dorsal Striatum and Drug Responsivity

    PubMed Central

    Budygin, Evgeny A.; Oleson, Erik B.; Lee, Yun Beom; Blume, Lawrence C.; Bruno, Michael J.; Howlett, Allyn C.; Thompson, Alexis C.; Bass, Caroline E.

    2017-01-01

    Recent studies have used conditional knockout mice to selectively delete the D2 autoreceptor; however, these approaches result in global deletion of D2 autoreceptors early in development. The present study takes a different approach using RNA interference (RNAi) to knockdown the expression of the D2 receptors (D2R) in the substantia nigra (SN), including dopaminergic neurons, which project primarily to the dorsal striatum (dStr) in adult rats. This approach restricts the knockdown primarily to nigrostriatal pathways, leaving mesolimbic D2 autoreceptors intact. Analyses of dopamine (DA) kinetics in the dStr reveal a decrease in DA transporter (DAT) function in the knockdown rats, an effect not observed in D2 autoreceptor knockout mouse models. SN D2 knockdown rats exhibit a behavioral phenotype characterized by persistent enhancement of locomotor activity in a familiar open field, reduced locomotor responsiveness to high doses of cocaine and the ability to overcome haloperidol-induced immobility on the bar test. Together these results demonstrate that presynaptic D2R can be depleted from specific neuronal populations and implicates nigrostriatal D2R in different behavioral responses to psychotropic drugs. PMID:28154530

  2. Effect of topically applied minoxidil on the survival of rat dorsal skin flap.

    PubMed

    Gümüş, Nazım; Odemiş, Yusuf; Yılmaz, Sarper; Tuncer, Ersin

    2012-12-01

    Flap necrosis still is a challenging problem in reconstructive surgery that results in irreversible tissue loss. This study evaluated the effect of topically applied minoxidil on angiogenesis and survival of a caudally based dorsal rat skin flap. For this study, 24 male Wistar rats were randomly divided into three groups of eight each. A caudally based dorsal skin flap with the dimensions of 9 × 3 cm was raised. After elevation of the flaps, they were sutured back into their initial positions. In group 1 (control group), 1 ml of isotonic saline was applied topically to the flaps of all the animals for 14 days. In group 2, minoxidil solution was spread uniformly over the flap surface for 7 days after the flap elevation. In group 3, minoxidil solution was applied topically to the flap surface during a 14-day period. On day 7 after the flap elevation, the rats were killed. The average area of flap survival was determined for each rat. Subdermal vascular architecture and angiogenesis were evaluated under a light microscope after two full-thickness skin biopsy specimens had been obtained from the midline of the flaps. The lowest flap survival rate was observed in group 1, and no difference was observed between groups 1 and 2. Compared with groups 1 and 2, group 3 had a significantly increased percentage of flap survival (P < 0.05). Intense and moderate angiogenesis also was observed respectively at the proximal and distal areas of the flaps in group 3. The results of this experiment seem to show that the early effect of minoxidil is vasodilation and that prolonged use before flap elevation leads to angiogenesis, increasing flap viability. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  3. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  4. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  5. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles

    PubMed Central

    Busey, Hannah A.; Linz, David M.; Tomoyasu, Yoshinori; Moczek, Armin P.

    2016-01-01

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium. We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. PMID:27412276

  6. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving.

    PubMed

    Li, Xuan; Carreria, Maria B; Witonsky, Kailyn R; Zeric, Tamara; Lofaro, Olivia M; Bossert, Jennifer M; Zhang, Jianjun; Surjono, Felicia; Richie, Christopher T; Harvey, Brandon K; Son, Hyeon; Cowan, Christopher W; Nestler, Eric J; Shaham, Yavin

    2017-12-29

    Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation. Published by Elsevier Inc.

  7. Epigenetic Modification of Hippocampal Bdnf DNA in Adult Rats in an Animal Model of Post-Traumatic Stress Disorder

    PubMed Central

    Roth, Tania L.; Zoladz, Phillip R.; Sweatt, J. David; Diamond, David M.

    2011-01-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and BdnfDNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed BdnfDNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased BdnfDNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in BdnfDNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of BdnfmRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnfgene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal BdnfDNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD. PMID:21306736

  8. Right dorsal colon ultrasonography in normal adult ponies and miniature horses.

    PubMed

    Siwinska, Natalia; Zak, Agnieszka; Baron, Monika; Cylna, Marta; Borowicz, Hieronim

    2017-01-01

    The aim of this study was to determine the normal location, wall thickness and motility of the right dorsal colon in adult ponies and miniature horses. The abdominal ultrasonography examination was performed in a study group consisting of 23 ponies and miniature horses and in a control group comprising ten Thoroughbred horses. The procedure was performed in unsedated standing animals. The location and the thickness of the right dorsal colonic wall was examined on the right side of the abdomen between the 10th and the 14th intercostal space. The contractility was recorded in the 12th intercostal space. A comparative analysis between the study group and control group was carried out using the Student's t-test. Pearson's linear correlation coefficient was used to calculate the correlation between the thickness of the colonic wall as well as the number of peristaltic movements and age, wither height and body mass of the animals. The right dorsal colon was identified in all the horses in the 12th intercostal space. In all the intercostal spaces the mean ± standard deviation (SD) wall thickness of the right dorsal colon was 0.27 ± 0.03 cm in the horses from the study group and 0.37 ± 0.03 cm in the control horses. The mean number of peristaltic contractions was 4.05 ± 1.07 per minute in the animals from the study group and 1.7 ± 0.46 contractions per minute in the control group. The values of the ultrasonographic wall thickness and peristaltic motility in small breed horses in the present study were different from the values obtained for large breed horses. The study also found that the right dorsal colon in small breed horses is physiologically located in the 12th intercostal space. This suggests that different reference values should be used in small horse breeds when performing an ultrasound examination.

  9. Right dorsal colon ultrasonography in normal adult ponies and miniature horses

    PubMed Central

    Zak, Agnieszka; Baron, Monika; Cylna, Marta; Borowicz, Hieronim

    2017-01-01

    The aim of this study was to determine the normal location, wall thickness and motility of the right dorsal colon in adult ponies and miniature horses. The abdominal ultrasonography examination was performed in a study group consisting of 23 ponies and miniature horses and in a control group comprising ten Thoroughbred horses. The procedure was performed in unsedated standing animals. The location and the thickness of the right dorsal colonic wall was examined on the right side of the abdomen between the 10th and the 14th intercostal space. The contractility was recorded in the 12th intercostal space. A comparative analysis between the study group and control group was carried out using the Student’s t-test. Pearson’s linear correlation coefficient was used to calculate the correlation between the thickness of the colonic wall as well as the number of peristaltic movements and age, wither height and body mass of the animals. The right dorsal colon was identified in all the horses in the 12th intercostal space. In all the intercostal spaces the mean ± standard deviation (SD) wall thickness of the right dorsal colon was 0.27 ± 0.03 cm in the horses from the study group and 0.37 ± 0.03 cm in the control horses. The mean number of peristaltic contractions was 4.05 ± 1.07 per minute in the animals from the study group and 1.7 ± 0.46 contractions per minute in the control group. The values of the ultrasonographic wall thickness and peristaltic motility in small breed horses in the present study were different from the values obtained for large breed horses. The study also found that the right dorsal colon in small breed horses is physiologically located in the 12th intercostal space. This suggests that different reference values should be used in small horse breeds when performing an ultrasound examination. PMID:29065146

  10. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  11. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    PubMed

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI (PTWL was 6.5 +/- 1.1, PMWT was 22.6 +/- 5.1), and the expression of CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (P<0.05), and PMWT were higher than those in CCI group on 10 and 14 post-operative day (P<0.05). The administration of curcumin could significantly attenuate the activation of CX3CR1 induced by CCI. The study suggests that curcumin ameliorates the CCI-induced neuropathic pain, probably by attenuating the expression of CX3CR1 in spinal cord dorsal horn and dorsal root ganglia.

  12. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    PubMed

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  13. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    PubMed

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  14. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles.

    PubMed

    Zattara, Eduardo E; Busey, Hannah A; Linz, David M; Tomoyasu, Yoshinori; Moczek, Armin P

    2016-07-13

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. © 2016 The Author(s).

  15. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats

    PubMed Central

    Duarte-Guterman, Paula; Lieblich, Stephanie E.; Chow, Carmen; Galea, Liisa A. M.

    2015-01-01

    Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus. PMID:26075609

  16. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats.

    PubMed

    Duarte-Guterman, Paula; Lieblich, Stephanie E; Chow, Carmen; Galea, Liisa A M

    2015-01-01

    Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol's effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.

  17. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    PubMed Central

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  18. Dorsal hippocampus is necessary for visual categorization in rats.

    PubMed

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for

  19. IN VITRO DERMAL ABSORPTION OF PYRETHROID PESTICIDES IN RAT AND HUMAN SKIN

    EPA Science Inventory

    Pyrethriods are a class of neurotoxic pesticides and their use may lead to dermal exposure. This study examined the in vitro dermal absorption of pyrethroids in rat and human skin. Dorsal skin removed from adult male LD rats (hair clipped 24 h previously) was dermatomed and mou...

  20. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  1. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic range neuronal activity in nerve-injured rats

    PubMed Central

    Yang, Fei; Zhang, Tong; Tiwari, Vinod; Shu, Bin; Zhang, Chen; Wang, Yun; Vera-Portocarrero, Louis P.; Raja, Srinivasa N.; Guan, Yun

    2015-01-01

    Objectives Electrical stimulation at the dorsal column (DC) and dorsal root (DR) may inhibit spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. The objective of this study was to determine if applying electrical conditioning stimulation (CS) at both sites provides additive or synergistic benefits. Materials and Methods By conducting in vivo extracellular recordings of WDR neurons in rats that had undergone L5 spinal nerve ligation, we tested whether combining 50 Hz CS at the two sites in either a concurrent (2.5 minutes) or alternate (5 minutes) pattern inhibits WDR neuronal activity better than CS at DC alone (5 minutes). The intensities of CS were determined by recording antidromic compound action potentials to graded stimulation at the DC and DR. We measured the current thresholds that resulted in the first detectable Aα/β waveform (Ab0) and the peak Aα/β waveform (Ab1) to select CS intensity at each site. The same number of electrical pulses and amount of current were delivered in different patterns to allow comparison. Results At a moderate intensity of 50%(Ab0+Ab1), different patterns of CS all attenuated the C-component of WDR neurons in response to graded intracutaneous electrical stimuli (0.1-10 mA, 2 ms), and inhibited windup in response to repetitive noxious stimuli (0.5 Hz). However, the inhibitory effects did not differ significantly between different patterns. At the lower intensity (Ab0), no CS inhibited WDR neurons. Conclusions These findings suggest that combined stimulation of DC and DR may not be superior to DC stimulation alone for inhibition of WDR neurons. PMID:26307526

  2. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  3. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus

    NASA Technical Reports Server (NTRS)

    Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2001-01-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.

  4. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  5. Adult rats are more sensitive to the vascular effects induced by hyperhomocysteinemia than young rats.

    PubMed

    de Andrade, Claudia Roberta; de Campos, Glenda Andréa Déstro; Tirapelli, Carlos Renato; Laurindo, Francisco R M; Haddad, Renato; Eberlin, Marcos N; de Oliveira, Ana Maria

    2010-01-01

    We aimed to investigate the vascular effects of hyperhomocysteinemia (HHcy) on carotid arteries from young and adult rats. With this purpose young and adult rats received a solution of DL-homocysteine-thiolactone (1 g/kg body weight/day) in the drinking water for 7, 14 and 28 days. Increase on plasma homocysteine occurred in young and adult rats treated with DL-homocysteine-thiolactone in all periods. Vascular reactivity experiments using standard muscle bath procedures showed that HHcy enhanced the contractile response of endothelium-intact, carotid rings to phenylephrine in both young and adult rats. However, in young rats, the increased phenylephrine-induced contraction was observed after hyperhomocysteinemia for 14 and 28 days, whereas in adult rats this response was already apparent after 7 day treatment. HHcy impaired acetylcholine-induced relaxation in arteries from adult but not young rats. The contraction induced by phenylephrine in carotid arteries in the presence of Y-27632 was reversed to control values in arteries from young but not adult rats with hyperhomocysteinemia. HHcy did not alter the contraction induced by CaCl(2) in carotid arteries from young rats, but enhanced CaCl(2)-induced contraction in the arteries from adult rats. HHcy increased the basal levels of superoxide anion in arteries from both groups. Finally, HHcy decreased the basal levels of nitrite in arteries from adult but not young rats. The major new finding of the present work is that arteries from young rats are more resistant to vascular changes evoked by HHcy than arteries from adult rats. Also, we verified that the enhanced vascular response to phenylephrine observed in carotid arteries of DL-homocysteine thiolactone-treated rats is mediated by different mechanisms in young and adult rats. Copyright 2010. Published by Elsevier Inc.

  6. [Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats].

    PubMed

    Wang, Jin-Rong; Wang, Yong-Zhi; Dong, Fu-Hui; Zhong, Hong-Gang; Wang, De-Long; Wang, Xuan

    2010-09-01

    To study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife. Sustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software. SP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P < 0.01). The integrated optical density of SP like immunoreactivity of the DRG in the experiment group were significantly reduced compared with the control group (P < 0.05). However, the release of SP from spinal cord in experiment group was lower than that in the control group at the 1st day and the 3rd day (P < 0.01), with the opposite result of the 2nd day. Based on the fact that SP is a nociceptive neurotransmitter, the present study suggests that tension relaxation by small needle knife reduces expression of SP in the DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).

  7. Low Dose Prenatal Alcohol Exposure Does Not Impair Spatial Learning and Memory in Two Tests in Adult and Aged Rats

    PubMed Central

    Cullen, Carlie L.; Burne, Thomas H. J.; Lavidis, Nickolas A.; Moritz, Karen M.

    2014-01-01

    Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance. PMID:24978807

  8. Role of medio-dorsal frontal and posterior parietal neurons during auditory detection performance in rats.

    PubMed

    Bohon, Kaitlin S; Wiest, Michael C

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.

  9. Polidocanol injection for chemical delay and its effect on the survival of rat dorsal skin flaps.

    PubMed

    Menevşe, Gülsüm Tetik; TeomanTellioglu, Ali; Altuntas, Nurgül; Cömert, Ayhan; Tekdemir, Ibrahim

    2014-06-01

    Surgical delay is an invasive method requiring a two-stage surgical procedure. Hence, methods that may serve as an alternative to surgical delay have become the focus of interest of research studies. From a conceptual view, any technique that interrupts the blood flow along the edges of a proposed flap will render the flap ischemic and induce a delay phenomenon. Polidocanol (Aethoxysklerol(®)-Kreussler) was initially used as a local anesthetic. Nowadays, it has been used as a sclerosing agent to treat telangiectasias and varicose veins. The aim of this experimental study was to investigate the effects of polidocanol injected around the periphery of a random flap as a sclerosing agent on flap delay and survival in a random flap model. A preliminary histopathologic study was performed on two rats to evaluate the sclerosing effect and distribution of polidocanol injection. After the preliminary study, the main study was carried out with three groups: group 1: dorsal flap (n = 10); group 2: dorsal flap + surgical delay (n = 10), group 3: dorsal flap + chemical delay (n = 10). Tissue samples obtained from the flap and injection area revealed destruction of intradermal vessels. The area affected with sclerosis was limited to 0.1 cm beyond the injection site. Mean viable flap areas were 52.1 ± 4.38% (44.0-58.2) in group 1, 64.8 ± 8.92% (57.2-89.2) in group 2, and 71.8 ± 5.18% (64.0-84.0) in group 3. A statistically highly significant difference was found between the surgical delay and chemical delay groups versus the group without delay (p < 0.001 and p < 0.001, respectively). The difference between the mean viable flap areas was not statistically significant in the surgical and chemical delay groups (p = 0.056). In conclusion, this study has shown that polidocanol injection around the dorsal flap in the rat is a safe and easy method for nonsurgical delay. The results have shown a flap survival benefit that is superior to controls and equivalent to surgical delay. The

  10. Effect of sex steroid hormones on the number of serotonergic neurons in rat dorsal raphe nucleus.

    PubMed

    Kunimura, Yuyu; Iwata, Kinuyo; Iijima, Norio; Kobayashi, Makito; Ozawa, Hitoshi

    2015-05-06

    Disorders caused by the malfunction of the serotonergic system in the central nervous system show sex-specific prevalence. Many studies have reported a relationship between sex steroid hormones and the brain serotonergic system; however, the interaction between sex steroid hormones and the number of brain neurons expressing serotonin has not yet been elucidated. In the present study, we determined whether sex steroid hormones altered the number of serotonergic neurons in the dorsal raphe nucleus (DR) of adult rat brains. Animals were divided into five groups: ovariectomized (OVX), OVX+low estradiol (E2), OVX+high E2, castrated males, and intact males. Antibodies against 5-hydroxytryptamine (5-HT, serotonin) and tryptophan hydroxylase (Tph), an enzyme for 5-HT synthesis, were used as markers of 5-HT neurons, and the number of 5-HT-immunoreactive (ir) or Tph-ir cells was counted. We detected no significant differences in the number of 5-HT-ir or Tph-ir cells in the DR among the five groups. By contrast, the intensity of 5-HT-ir showed significant sex differences in specific subregions of the DR independent of sex steroid levels, suggesting that the manipulation of sex steroid hormones after maturation does not affect the number and intensive immunostaining of serotonergic neurons in rat brain. Our results suggest that, the sexual dimorphism observed in the serotonergic system is due to factors such as 5-HT synthesis, transportation, and degradation but not to the number of serotonergic neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. [The administration of interleukin-1beta during early postnatal develop ment impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats].

    PubMed

    Trofimov, A N; Zubareva, O E; Shvarts, A P; Ishchenko, A M; Klimenko, V M

    2014-09-01

    According to the Neurodevelopmental hypothesis, the long-lasting cognitive deficit in schizophrenia and other types of neuropathology may occur by injurious factors, such as hypoxia, traumas, infections that take place during pre- and postnatal development, at least at early stages. These pathological conditions are often associated with the high production of pro-inflammatory cytokine interleukin-1B (IL-1B) by the cells of immune and nervous systems. We investigated the expression of genes involved in the neuroplastic regulation (Fgf2 and Timp2) in medial prefrontal cortex and dorsal and ventral regions of hippocampus of adult rats that were treated with IL-1beta between P15 and P21. The learning impairment in IL-1beta-treated rats is accompanied by lower FGF-2 mRNA levels in medial prefrontal cortex and ventral (not dorsal) hippocampus, but TIMP-1 was not affected. No differences in TIMP-1 and FGF-2 mRNA expressions were observed in untrained IL-1beta-treated when compared to control rats.

  12. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    PubMed

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  13. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  14. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    NASA Technical Reports Server (NTRS)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  15. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats.

    PubMed

    Cabaj, Anna M; Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F; Stecina, Katinka; Sławińska, Urszula; Jordan, Larry M

    2017-01-01

    Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT 7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT 7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT 7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT 7 ) receptor agonists and antagonists and 5-HT 7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT 7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT 7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT 7 antagonist SB269970 in adult intact rats suppressed locomotion by

  16. Post-stress facilitation of serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus prevents learned helplessness development in rats.

    PubMed

    Joca, Sâmia Regiane Lourenço; Zanelati, Tatiane; Guimarães, Francisco Silveira

    2006-05-04

    Recent pieces of evidence suggest that the dorsal hippocampus may mediate adaptation to severe and inescapable stress, possibly by the facilitation of serotonergic and/or noradrenergic neurotransmission. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin or noradrenaline levels in the dorsal hippocampus would attenuate the development of learned helplessness (LH), rats received inescapable foot shock (IS) and were tested in a shuttle box 24 h latter. Prestressed animals showed impairment of escape responses. This effect was prevented by bilateral intrahippocampal injections of zimelidine (100 nmol/0.5 microl), a serotonin reuptake blocker, immediately after IS. This effect was not observed when zimelidine was administered before or 2 h after IS. Bilateral intrahippocampal injections of desipramine (3 or 30 nmol/0.5 microl), a noradrenaline reuptake blocker, before IS or immediately after it did not prevent LH development. Desipramine (30 nmol) enhanced LH development when injected before IS. These data suggest that poststress facilitation of hippocampal serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus facilitates adaptation to severe inescapable stress. Antidepressant effects of noradrenaline-selective drugs seem to depend on other structures than the dorsal hippocampus.

  17. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei

    PubMed Central

    Donner, Nina C; Handa, Robert J

    2009-01-01

    Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077

  18. [Expressions of neuropathic pain-related proteins in the spinal cord dorsal horn in rats with bilateral chronic constriction injury].

    PubMed

    Shen, Le; Li, Xu; Wang, Hai-tang; Yu, Xue-rong; Huang, Yu-guang

    2013-12-01

    To evaluate the pain-related behavioral changes in rats with bilateral chronic constriction injury(bCCI)and identify the expressions of neuropathic pain-related proteins. The bCCI models were established by ligating the sciatic nerves in female Sprague Dawley rats. Both mechanical hyperalgesia and cold hyperalgesia were evaluated through electronic von Frey and acetone method. Liquid chromatography-mass spectrometry/mass spectrometry was applied to characterize the differentially expressed proteins. Both mechanical withdrawal threshold and cold hyperalgesia threshold decreased significantly on the postoperative day 7 and 14, when compared with na ve or sham rats(P <0.05). Twenty five differentially expressed proteins associated with bilateral CCI were discovered, with eighteen of them were upregulated and seven of them downregulated. The bCCT rats have remarkably decreased mechanical and cold hyperalgesia thresholds. Twenty five neuropathic pain-related proteins are found in the spinal cord dorsal horn.

  19. [Expressional change of nitric oxide synthases in dorsal root ganglia of cats after selective dorsal rhizotomy].

    PubMed

    Qin, Hua-li; Zhou, Xue; Zhang, Wei; Chen, Si-xiu

    2004-01-01

    To examine the expressional change of nitric oxide synthase (NOS) in the injured dorsal root ganglia (DRG) and the ipsilateral adjacent uninjured DRG after selective dorsal rhizotomy. Immunochemical ABC method was used to detect the distribution of immunoreaction complex of NOS isoforms--nNOS and eNOS, and quantitative analysis was conducted to get the number of nNOS-immunoreactivity (nNOS-IR) neurons in normal DRG, dorsal rhizotomized DRG and spared DRG from adult cats on the 6th day after operation. This operating model was made by rhizotomizing unilateral L1-L5 dorsal roots and leaving L6 as a spared root. nNOS-immunoreactants were mainly distributed in the small-sized neurons in the DRG of cat. The percentage of nNOS-expressing small-sized neurons increased in the deafferentated L5 DRG (29.74%) when compared with the contralateral DRG (19.35%), and it also increased in the spared DRG (24.22%), compared with the contralateral DRG (18.61%). eNOS-IR was not observed in the DRG of adult cats. nNOS/NO up-regulated in DRG neurons is involved in a wide variety of biological functions under physiological and lesion-induced pathophysiological conditions in nerve system.

  20. In vivo dermal absorption of pyrethroid pesticides in the rat.

    EPA Science Inventory

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  1. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats.

    PubMed

    Wang, K-C; Fan, L-W; Kaizaki, A; Pang, Y; Cai, Z; Tien, L-T

    2013-03-27

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LPS (1mg/kg) intracerebral (i.c.) injection in postnatal day 5 (P5) Sprague-Dawley female rat pups, neurobehavioral tests were carried out on P21 and P22, P49 and P50 or P70 and P71 and brain injury was examined at 66days after LPS injection (P71). Our data indicate that neonatal LPS exposure resulted in learning deficits in the passive avoidance task, less anxiety-like (anxiolytic-like) responses in the elevated plus-maze task, reductions in the hippocampal volume and the number of neuron-specific nuclear protein (NeuN)+ cells, as well as axonal injury in the CA1 region of the middle dorsal hippocampus in P71 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P71 rat hippocampus, as indicated by an increased number of activated microglia and elevation of interleukin-1β content in the rat hippocampus. This study reveals that neonatal LPS exposure causes persistent injuries to the hippocampus and results in long-lasting learning disabilities, and these effects are related to the chronic inflammation in the rat hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5‐HT7 receptors in adult rats

    PubMed Central

    Majczyński, Henryk; Couto, Erika; Gardiner, Phillip F.; Stecina, Katinka; Sławińska, Urszula

    2016-01-01

    Key points Experiments on neonatal rodent spinal cord showed that serotonin (5‐HT), acting via 5‐HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter‐ and intralimb coordination, but the importance of the 5‐HT system in adult locomotion is not clear.Blockade of spinal 5‐HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5‐HT neurons for production of locomotion.The direct control of coordinating interneurons by 5‐HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults.An understanding of the afferents controlled by 5‐HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. Abstract Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5‐HT7) receptor agonists and antagonists and 5‐HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5‐HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5‐HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5‐HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5‐HT7 antagonist SB269970 in adult

  3. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. Copyright © 2015 IBRO. Published by

  4. Age-related changes in dorsal root ganglia, circulating and vascular calcitonin gene-related peptide (CGRP) concentrations in female rats: Effect of female sex steroid hormones

    PubMed Central

    Gangula, Pandu R.R.; Chauhan, Madhu; Reed, Luckey; Yallampalli, Chandra

    2009-01-01

    The aim of the present study is to investigate whether immunoreactive (I) calcitonin gene-related peptide (CGRP) content is decreased in plasma and mesenteric arteries (resistance arteries) in middle-aged rats and if so, whether sex steroid hormones enhance I-CGRP in middle-aged female rats. We also examined whether vascular CGRP receptor components, calcitonin receptor like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) are elevated by sex steroid hormones treatment in middle-aged female rats. Young adult (3 months old) and middle-aged (10–12 months old) ovariectomized rats were treated subcutaneously with estradiol-17β (E2; 2 mg), progesterone (P4; 5 mg), E2 +P4 (2 mg + 20 mg) or placebo (control). Radioimmunoassay and Western blot analysis were performed to measure I-CGRP content and CGRP receptor components in dorsal root ganglia (DRG), in resistance arteries and in plasma. Immunofluorescent staining methods were employed to determine cellular localization of CRLR, RAMP1 in resistance arteries. Our data demonstrated that I-CGRP content was significantly (p < 0.05) lower in the plasma and resistance arteries of middle-aged female rats compared to young controls. Both RAMP1 and CRLR were concentrated in vascular endothelium and the underlying smooth muscle cells. RAMP1 but not CRLR appeared to be decreased in middle-aged rat vasculature. Chronic perfusion of sex steroid hormones to ovariectomized rats: (1) significantly (p < 0.05) elevated I-CGRP in the DRG and in the plasma, and (2) significantly elevated RAMP1 (p < 0.05) but did not alter CRLR in resistance arteries. These data suggest that female sex steroid treatment enhances I-CGRP and its receptors, and thus regulate the blood pressure in aged female rats. PMID:19429067

  5. Role of dorsal hippocampus κ opioid receptors in contextual aversive memory consolidation in rats.

    PubMed

    Vanz, Felipe; Bicca, Maíra Assunção; Linartevichi, Vagner Fagnani; Giachero, Marcelo; Bertoglio, Leandro José; Monteiro de Lima, Thereza C

    2018-06-01

    The main κ opioid receptors (κORs) subtypes already described (κ 1 ORs and κ 2 ORs) are expressed in brain regions involved in aversive memory consolidation, including the dorsal hippocampus (DH). However, the role of DH κORs in consolidation of aversive memories with varied intensity and specificity is still uncertain. The present study aimed to investigate this question using pharmacological agents in rats subjected to a weak, moderate or strong contextual aversive conditioning (CAC) protocol. Antagonizing DH κORs with nor-binaltorphimine (nor-BNI), immediately after, but not 6 h later, a moderate CAC leads to intensified freezing behavior in the re-exposure to the paired context. Thus, indicating that DH κORs have an inhibitory role in the consolidation of an aversive memory. Increased DH κORs expression 1 h and 3 h after the moderate CAC was also observed. This up-regulation was absent in animals only exposed to the shock or to the context, indicating that this phenomenon requires a shock-context pairing to occur. Intra-DH nor-BNI infusion induced no changes following a weak CAC, but it was able to potentiate the expression of freezing behavior in novel and unpaired context after a strong CAC, indicating that DH κORs also modulate the consolidation of a more intense and generalized memory. Moreover, infusing the κ 2 ORs agonist GR 89696, but not the κ 1 ORs agonist U-69593, into the DH reduced the conditioned freezing expression. Nor-BNI pretreatment in a sub-effective dose prevented the κ 2 ORs agonist effects. Altogether, the present findings provide convergent evidence that κORs activation negatively modulates contextual aversive memory consolidation in rat dorsal hippocampus. Copyright © 2018. Published by Elsevier Ltd.

  6. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons

    PubMed Central

    Staff, Nathan P.; Podratz, Jewel L.; Grassner, Lukas; Bader, Miranda; Paz, Justin; Knight, Andrew M.; Loprinzi, Charles L.; Trushina, Eugenia; Windebank, Anthony J.

    2013-01-01

    Bortezomib is part of a newer class of chemotherapeutic agents whose mechanism of action is inhibition of the proteasome-ubiquitination system. Primarily used in multiple myeloma, bortezomib causes a sensory-predominant axonal peripheral neuropathy in approximately 30% of patients. There are no established useful preventative agents for bortezomib-induced peripheral neuropathy (BIPN), and the molecular mechanisms of BIPN are unknown. We have developed an in vitro model of BIPN using rat dorsal root ganglia neuronal cultures. At clinically–relevant dosages, bortezomib produces a sensory axonopathy as evidenced by whole explant outgrowth and cell survival assays. This sensory axonopathy is associated with alterations in tubulin and results in accumulation of somatic tubulin without changes in microtubule ultrastructure. Furthermore, we observed an increased proportion of polymerized tubulin, but not total or acetylated tubulin, in bortezomib-treated DRG neurons. Similar findings are observed with lactacystin, an unrelated proteasome-inhibitor, which argues for a class effect of proteasome inhibition on dorsal root ganglion neurons. Finally, there is a change in axonal transport of mitochondria induced by bortezomib in a time-dependent fashion. In summary, we have developed an in vitro model of BIPN that recapitulates the clinical sensory axonopathy; this model demonstrates that bortezomib induces an alteration in microtubules and axonal transport. This robust model will be used in future mechanistic studies of BIPN and its prevention. PMID:24035926

  7. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity.

    PubMed

    Tacconi, S; Carletti, R; Bunnemann, B; Plumpton, C; Merlo Pich, E; Terstappen, G C

    2001-01-01

    Small conductance calcium-activated potassium channels are voltage independent potassium channels which modulate the firing patterns of neurons by activating the slow component of the afterhyperpolarization. The genes encoding a family of small conductance calcium-activated potassium channels have been cloned and up to now three known members have been described and named small conductance calcium-activated potassium channel type 1, small conductance calcium-activated potassium channel type 2 and small conductance calcium-activated potassium channel type 3; the distribution of their messenger RNA in the rat CNS has already been performed but only in a limited detail. The present study represents the first detailed analysis of small conductance calcium-activated potassium channel type 3 mRNA distribution in the adult rat brain and resulted in a strong to moderate expression of signal in medial habenular nucleus, substantia nigra compact part, suprachiasmatic nucleus, ventral tegmental area, lateral septum, dorsal raphe and locus coeruleus. Immunohistological experiments were also performed and confirmed the presence of small conductance calcium-activated potassium channel type 3 protein in medial habenular nucleus, locus coeruleus and dorsal raphe. Given the importance of dorsal raphe, locus coeruleus and substantia nigra/ventral tegmental area for serotonergic, noradrenergic and dopaminergic transmission respectively, our results pose the morphological basis for further studies on the action of small conductance calcium-activated potassium channel type 3 in serotonergic, noradrenergic and dopaminergic transmission.

  8. Effects of cholinergic system of dorsal hippocampus of rats on MK-801 induced anxiolytic-like behavior.

    PubMed

    Zarrindast, Mohammad Reza; Nasehi, Mohammad; Piri, Morteza; Heidari, Negar

    2011-11-14

    Some investigations have shown that the glutamate receptors play a critical role in cognitive processes such as learning and anxiety. The possible involvement of the cholinergic system of the dorsal hippocampus in the anxiolytic-like response induced by MK-801, NMDA receptor antagonist, was investigated in the present study. Male Wistar rats were used in the elevated plus maze apparatus to test the parameters: open arm time (%OAT), open arm entries (%OAE), close arm time (%CAT), close arm entries (%CAE) and other exploratory behaviors (locomotor activity, grooming, rearing and defecation) of anxiety-like response. The data indicated that intra-CA1 administration of MK-801 increased %OAT (2μg/rat) and %OAE (1 and 2μg/rat) while decreased %CAT and %CAE and did not alter other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, intra-hippocampal injections of mecamylamine, a cholinergic receptor antagonists (2μg/rat) and scopolamine (4μg/rat), by themselves, 5min before testing, increased %OAT and %OAE but decreased %CAT and %CAE and did not alter locomotor activity and other exploratory behaviors, suggesting an anxiolytic-like effect. On the other hand, intra-CA1 co-administration of an ineffective dose of scopolamine (3μg/rat), but not mecamylamine (1μg/rat), with an ineffective dose of MK-801 (0.5μg/rat) increased %OAT and %OAE and decreased %CAT and %CAE. The data may indicate the possible involvement of the cholinergic system of the CA1 in the anxiolytic-like response induced by MK-801. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Disinhibition by propranolol and chlordiazepoxide of nonrewarded lever-pressing in the rat is unaffected by dorsal noradrenergic bundle lesion.

    PubMed

    Salmon, P; Tsaltas, E; Gray, J A

    1989-03-01

    Ten male Sprague-Dawley rats received 6-hydroxydopamine-induced lesions of the dorsal noradrenergic bundle and 10 others underwent control operations. The lesion depleted levels of noradrenaline in the hippocampus to 2% of those in the controls. All rats were then trained for 16 sessions to lever-press in a Skinner box on a variable interval 18 sec schedule of food-reinforcement, then for 42 days on a successive discrimination between periods of variable interval (VI 18 sec) food-reinforcement and periods of extinction. This report describes the effects of chlordiazepoxide (CDP; 5 mg/kg) and propranolol (5 and 10 mg/kg) injected intraperitoneally in both groups on modified ABBA designs after this training. Both drugs increased the response rates in extinction periods. The effect of propranolol was similar at each dose and smaller than that of CDP. Although CDP and propranolol (5 mg/kg) increased variable interval response rates also, this could not account for the effect on extinction response rates. Responding did not differ between the lesioned and control animals and the effects of drugs were similar in each group. It is unlikely that CDP or propranolol release nonrewarded responding by disrupting transmission in the dorsal noradrenergic bundle.

  10. Re-thinking the role of the dorsal striatum in egocentric/response strategy.

    PubMed

    Botreau, Fanny; Gisquet-Verrier, Pascale

    2010-01-01

    Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS) in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water-maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  11. Impaired micturition reflex caused by acute selective dorsal or ventral root(s) rhizotomy in anesthetized rats.

    PubMed

    Liao, Jiuan-Miaw; Cheng, Chen-Li; Lee, Shin-Da; Chen, Gin-Den; Chen, Kuo-Jung; Yang, Chao-Hsun; Pan, Shwu-Fen; Chen, Mei-Jung; Huang, Pei-Chen; Lin, Tzer-Bin

    2006-01-01

    To clarify the contributions of parasympathetic inputs and outputs to the micturition reflex. Intra-vesical pressure (IVP), external urethral sphincter electromyogram (EMG), pelvic afferent nerve activities (PANA), and pelvic efferent nerve activities (PENA) as well as the time-derived IVP (dIVP, an index of bladder contractility) were evaluated in intact and acute dorsal or ventral root(s) rhizotomized (DRX and VRX, respectively) rats. In DRX rats, when compared with that in intact stage, the voiding frequency was decreased (75 +/- 15% of intact, P < 0.05, n = 8), while the threshold pressure to trigger voiding contractions was significantly increased (187 +/- 75% of intact, P < 0.05, n = 8). In addition, several insufficient contractions (5.3 +/- 3.5 contractions/voiding, P < 0.05, n = 8) occurred in ahead of each voiding contraction. On the other hand, in VRX rats, the peak and rebound IVP were significantly decreased (90 +/- 3.5% and 75 +/- 11.3% of intact, P < 0.01, n = 8), while the threshold pressure was not affected (102 +/- 11% of intact, P = NS, n = 8). The time-derived parameters were significantly decreased in VRX (peak dIVP, 78 +/- 10.2%, rebound dIVP, 75 +/- 15.6%, minimal dIVP, 68 +/- 14% of intact, P < 0.01, n = 8) but only peak dIVP was decreased (85 +/- 11% of intact, P < 0.01, n = 8) in DRX rats. Acute selective DRX and VRX rat can be an animal model to investigate peripheral neural control in micturition functions.

  12. High-Frequency Stimulation-Induced Synaptic Potentiation in Dorsal and Ventral CA1 Hippocampal Synapses: The Involvement of NMDA Receptors, mGluR5, and (L-Type) Voltage-Gated Calcium Channels

    ERIC Educational Resources Information Center

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-01-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for shortlasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that…

  13. Neurocircuitry of fear extinction in adult and juvenile rats.

    PubMed

    Ganella, Despina E; Nguyen, Ly Dao; Lee-Kardashyan, Luba; Kim, Leah E; Paolini, Antonio G; Kim, Jee Hyun

    2018-06-10

    In contrast to adult rodents, juvenile rodents fail to show relapse following extinction of conditioned fear. Using different retrograde tracers injected into the infralimbic cortex (IL) and the ventral hippocampus (vHPC) in conjunction with c-Fos and parvalbumin (PV) immunochemistry, we investigated the neurocircuitry of extinction in juvenile and adult rats. Regardless of fear extinction or retrieval, juvenile rats had more c-Fos+ neurons in the basolateral amygdala (BLA) compared to adults, and showed a higher proportion of c-Fos+ IL-projecting neurons. Adult rats had more activated vHPC-projecting BLA neurons following extinction compared to retrieval, a difference not observed in juvenile rats. The number of activated vHPC- or IL-projecting BLA neurons was significantly correlated with freezing levels in adult, but not juvenile, rats. We also identified neurons in the BLA that simultaneously project to the IL and vHPC activated in the retrieval groups at both ages. This study provides novel insight into the neural process underlying extinction, especially in the juvenile period. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.

  15. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  16. [Effects of Jinmaitong capsule on oxidative stress and cell apoptosis of dorsal root ganglion in diabetic rats].

    PubMed

    Liu, Wei; Liang, Xiao-chun; Sun, Qing; Wang, Pu-yan; Zhao, Li; Huang, Wen-zhi; Li, Bo-wu

    2013-12-01

    To study the effects of Jinmaitong capsule on oxidative stress and cell apoptosis of dorsal root ganglion (DRG) in rats with diabetic peripheral neuropathy. Sixty male SD rats were randomly divided into normal group and model groups. The diabetic rat models were established using Streptozotocin (STZ) method (60 mg/kg of intraperitoneal injection), and then randomly divided Jinmaitong low, middle, and high-dose groups and vitamin C group. All the experimental rats were sacrificed at 16-week and then the DRG was isolated. The morphological changes of DRG were observed using the Nissl's staining, and the NADPH oxidase subunit p22-phox, Cyt C, Bcl-2, and Caspase-3 of DRG in rats were detected by immunohistochemistry and quantitative reverse transcription PCR (qRT-PCR). Cell apoptosis was detected by TUNEL. Compared with the model group, the expressions of NADPH oxidase subunit p22-phox protein, Cyt expression of C protein, Caspase-3 protein, and mRNA cell apoptosis rate in each treatment group significantly decreased whereas the expressions of Bcl-2 mRNA and protein significantly increased (P<0.05 or P<0.01). The Jinmaitong high-dose group had the best effect and was significantly different from that of the vitamin C group (P<0.01). Jinmaitong capsule can prevent the nerve injury in rats with diabetic peripheral neuropathy by inhibiting oxidative stress and decreasing the apoptosis. The high-dose Jinmaitong capsule has the best effect and is superior to vitamin C.

  17. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    ERIC Educational Resources Information Center

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  18. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. © 2015 International Society for Neurochemistry.

  19. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K+-Cl- cotransporter-2 in the spinal dorsal horn in rats.

    PubMed

    Dai, Shuhong; Qi, Yu; Fu, Jie; Li, Na; Zhang, Xu; Zhang, Juan; Zhang, Wei; Xu, Haijun; Zhou, Hai; Ma, Zhengliang

    2018-01-01

    Dexmedetomidine (DEX) could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF). In addition, KCC2-induced shift in neuronal Cl- homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP). PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR). Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF/TrkB signal in the spinal dorsal horn in rats, which provides a new insight into the treatment of chronic pain in clinical postsurgical pain management.

  20. Proteomic analysis of the dorsal and ventral hippocampus of rats maintained on a high fat and refined sugar diet.

    PubMed

    Francis, Heather M; Mirzaei, Mehdi; Pardey, Margery C; Haynes, Paul A; Cornish, Jennifer L

    2013-10-01

    The typical Western diet, rich in high saturated fat and refined sugar (HFS), has been shown to increase cognitive decline with aging and Alzheimer's disease, and to affect cognitive functions that are dependent on the hippocampus, including memory processes and reversal learning. To investigate neurophysiological changes underlying these impairments, we employed a proteomic approach to identify differentially expressed proteins in the rat dorsal and ventral hippocampus following maintenance on an HFS diet. Rats maintained on the HFS diet for 8 weeks were impaired on a novel object recognition task that assesses memory and on a Morris Water Maze task assessing reversal learning. Quantitative label-free shotgun proteomic analysis was conducted on biological triplicates for each group. For the dorsal hippocampus, 59 proteins were upregulated and 36 downregulated in the HFS group compared to controls. Pathway ana-lysis revealed changes to proteins involved in molecular transport and cellular and molecular signaling, and changes to signaling pathways including calcium signaling, citrate cycle, and oxidative phosphorylation. For the ventral hippocampus, 25 proteins were upregulated and 27 downregulated in HFS fed rats. Differentially expressed proteins were involved in cell-to-cell signaling and interaction, and cellular and molecular function. Changes to signaling pathways included protein ubiquitination, ubiquinone biosynthesis, oxidative phosphorylation, and mitochondrial dysfunction. This is the first shotgun proteomics study to examine protein changes in the hippocampus following long-term consumption of a HFS diet, identifying changes to a large number of proteins including those involved in synaptic plasticity and energy metabolism. All MS data have been deposited in the ProteomeXchange with identifier PXD000028. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Muscarinic type 2 receptors in the lateral dorsal tegmental area modulate cocaine and food seeking behavior in rats.

    PubMed

    Shabani, S; Foster, R; Gubner, N; Phillips, T J; Mark, G P

    2010-10-13

    The cholinergic input from the lateral dorsal tegmental area (LDTg) modulates the dopamine cells of the ventral tegmental area (VTA) and plays an important role in cocaine taking. Specific pharmacological agents that block or stimulate muscarinic receptors in the LDTg change acetylcholine (ACh) levels in the VTA. Furthermore, manipulations of cholinergic input in the VTA can change cocaine taking. In the current study, the ACh output from the LDTg was attenuated by treatment with the selective muscarinic type 2 (M2) autoreceptor agonist oxotremorine.sesquifumarate (OxoSQ). We hypothesized that OxoSQ would reduce the motivation of rats to self-administer both natural and drug rewards. Animals were tested on progressive ratio (PR) schedules of reinforcement for food pellets and cocaine. On test days, animals on food and on cocaine schedules were bilaterally microinjected prior to the test. Rats received either LDTg OxoSQ infusions or LDTg artificial cerebrospinal fluid (aCSF) infusions in a within-subjects design. In addition, infusions were delivered into a dorsal brain area above the LDTg as an anatomical control region. OxoSQ microinjection in the LDTg, compared to aCSF, significantly reduced both the number of self-administered pellets and cocaine infusions during the initial half of the session; this reduction was dose-dependent. OxoSQ microinjections into the area just dorsal to the LDTg had no significant effect on self-administration of food pellets or cocaine. Animals were also tested in locomotor activity chambers for motor effects following the above microinjections. Locomotor activity was mildly increased by OxoSQ microinjection into the LDTg during the initial half of the session. Overall, these data suggest that LDTg cholinergic neurons play an important role in modifying the reinforcing value of natural and drug rewards. These effects cannot be attributed to significant alterations of locomotor behavior and are likely accomplished through LDTg

  2. The Different Dynamic Changes of Nerve Growth Factor in the Dorsal Horn and Dorsal Root Ganglion Leads to Hyperalgesia and Allodynia in Diabetic Neuropathic Pain.

    PubMed

    Gao, Zhifeng; Feng, Yi; Ju, Hui

    2017-05-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and more than half of the patients with DPN have self-reported symptoms referring to painful diabetic neuropathy (PDN). Nerve growth factor (NGF) is a key factor for the nervous system, but the role of it in the neuropathic pain of diabetic patients is unclear. This study aimed to investigate the relationship between the dynamic expression of NGF in dorsal horn and dorsal root ganglion (DRG) of diabetic rats and hyperalgesia and allodynia in diabetic neuropathic pain. It also aimed to explore the effects of exogenous mouse NGF (mNGF) on NGF expression in dorsal horn, DRG, and mechanical pain threshold. Animal research study. Experimental research laboratory. The model of diabetes was established by a single intraperitoneal injection of streptozocin (STZ 55 mg/kg). Firstly, the rats were randomly divided into 2 groups: control group (n = 10) and diabetes group (n = 40). The diabetes group contained 4 subgroups: diabetes week 1 group (DM1, n = 10), diabetes week 2 group (DM2, n = 10), diabetes week 4 group (DM4, n = 10), and diabetes week 8 group (DM8, n = 10). Then, the other rats were randomly divided into 2 groups: control group (n = 10) and treatment group (n = 30). The treatment group contained 3 subgroups: saline group (n = 10), low dose mNGF group (mNGF1, n = 10), and high dose mNGF group (mNGF2, n = 10). Mechanical pain threshold was assessed using Von Frey hairs, before the establishment of the diabetes model and 1, 2, 4, and 8 weeks after the establishment. The NGF expression in dorsal horn and DRG was measured by western blot. The mechanical pain threshold decreased one week after the establishment of the diabetes model, which continued for 8 weeks. The NGF expression in the dorsal horn was reduced 2 weeks after diabetes induction and the decreased NGF expression continued for 4 weeks. However, the NGF expression in DRG was reduced one week after diabetes induction and

  3. Electrophysiological evidence for the antinociceptive effect of transcutaneous electrical stimulation on mechanically evoked responsiveness of dorsal horn neurons in neuropathic rats.

    PubMed

    Leem, J W; Park, E S; Paik, K S

    1995-06-16

    Using a rat model of peripheral neuropathy induced by a tight ligation of L5-6 spinal nerves, the effects of transcutaneous electrical stimulation on the mechanical responses of wide dynamic range (WDR) dorsal horn neurons were investigated. The responses of the WDR neurons to both the brush and pinch stimuli were found to be enhanced in the neuropathic rats compared to those in the normal rats. These enhanced responses were depressed by low-frequency and high-intensity transcutaneous electrical stimulation (2 Hz, 4-5 mA) applied to the somatic receptive field. The durations of the depressive effects on the brush responses ranged between 30 and 45 min and those on the pinch responses were 60-90 min. These results imply that the transcutaneous electrical stimulation used here produces an antinociceptive effect via a depressive action on the enhanced mechanical responsiveness of the spinal neurons in this rat model of peripheral neuropathy.

  4. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    PubMed

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  5. Methylphenidate modulates dorsal raphe neuronal activity: Behavioral and neuronal recordings from adolescent rats.

    PubMed

    Kharas, Natasha; Whitt, Holly; Reyes-Vasquez, Cruz; Dafny, Nachum

    2017-01-01

    Methylphenidate (MPD) is a widely prescribed psychostimulants used for the treatment of attention deficit hyperactive disorder (ADHD). Unlike the psychostimulants cocaine and amphetamine, MPD does not exhibit direct actions on the serotonin transporter, however there is evidence suggesting that the therapeutic effects of MPD may be mediated in part by alterations in serotonin transmission. This study aimed to investigate the role of the dorsal raphe (DR) nucleus, one of the major sources of serotonergic innervation in the mammalian brain, in the response to MPD exposure. Freely behaving adolescent rats previously implanted bilaterally with permanent electrodes were used. An open field assay and a wireless neuronal recording system were used to concomitantly record behavioral and DR electrophysiological activity following acute and chronic MPD exposure. Four groups were used: one control (saline) and three experimental groups treated with 0.6, 2.5, and 10.0mg/kg MPD respectively. Animals received daily MPD or saline injections on experimental days 1-6, followed by 3 washout days and MPD rechallenge dose on experimental day (ED)10. The same chronic dose of MPD resulted in either behavioral sensitization or tolerance, and we found that neuronal activity recorded from the DR neuronal units of rats expressing behavioral sensitization to chronic MPD exposure responded significantly differently to MPD rechallenge on ED10 compared to the DR unit activity recorded from animals that expressed behavioral tolerance. This correlation between behavioral response and DR neuronal activity following chronic MPD exposure provides evidence that the DR is involved in the acute effects as well as the chronic effects of MPD in adolescent rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats.

    PubMed

    Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin

    2006-03-01

    Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.

  7. Intraganglionic AAV6 results in efficient and long-term gene transfer to peripheral sensory nervous system in adult rats.

    PubMed

    Yu, Hongwei; Fischer, Gregory; Ferhatovic, Lejla; Fan, Fan; Light, Alan R; Weihrauch, Dorothee; Sapunar, Damir; Nakai, Hiroyuki; Park, Frank; Hogan, Quinn H

    2013-01-01

    We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×10(9) viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.

  8. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats.

    PubMed

    Meyer, F; Peterschmitt, Y; Louilot, A

    2009-05-01

    Latent inhibition has been found to be disrupted in patients with acute schizophrenia. Striatal dopaminergic dysregulation is commonly acknowledged in schizophrenia. This disease may be consecutive to a functional disconnection between integrative regions, stemming from neurodevelopmental failures. Various anomalies suggesting early abnormal brain development have been described in the entorhinal cortex (ENT) and ventral subiculum (SUB) of patients. This study examines the consequences of a neonatal transitory blockade of the left ENT or left SUB for latent inhibition-related dopamine responses in the anterior part of the dorsal striatum using in-vivo voltammetry in freely moving adult rats. Reversible inactivation of both structures in different animals was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the functional neonatal disconnection of the ENT or SUB caused the behavioural latent inhibition expression in pre-exposed (PE)-TTX-conditioned adult rats to disappear. After postnatal inactivation of the SUB, PE-TTX-conditioned rats displayed a reversal of the latent inhibition-related striatal dopamine responses, whereas after neonatal blockade of the ENT, dopamine changes in PE-TTX-conditioned rats monitored in the anterior striatum were between those observed in PE-phosphate-buffered-saline-conditioned and non-PE-TTX-conditioned animals. These data suggest that neonatal functional inactivation of the SUB disrupts latent inhibition-related striatal dopamine responses in adult animals more than that of the ENT. They may help improve understanding of the pathophysiology of schizophrenia.

  9. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    PubMed

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  10. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia.

    PubMed

    Elliott, A A; Elliott, J R

    1993-04-01

    1. The whole-cell patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture. 2. Sodium currents were isolated pharmacologically. Internal Cs+ and external tetraethylammonium (TEA) ions were used to suppress potassium currents. A combination of internal EGTA, internal F-, a low (10 microM) concentration of external Ca2+ and a relatively high (5 mM) concentration of internal and external Mg2+ was used to block calcium channels. The remaining voltage-dependent currents reversed direction at the calculated sodium equilibrium potential. Both the reversal potential and magnitude of the currents exhibited the expected dependence on the external sodium concentration. 3. INa subtypes were characterized initially in terms of their sensitivity to tetrodotoxin (TTX). TTX-sensitive (TTXs) currents were at least 97% suppressed by 0.1 microM TTX. TTX-resistant (TTXr) INa were recorded in the presence of 0.3 microM TTX and appeared to be reduced in amplitude by less than 50% in 75 microM TTX (n = 1). 4. As in earlier studies, the peak of the current-voltage relationship, the mid-point of the normalized conductance curve and the potential (Vh) at which the steady-state inactivation parameter (h infinity) was 0.5 were found to be significantly more depolarized for the TTXr INa (by ca 10, 14 and 37 mV respectively). There was little difference in the slope at the mid-point of the normalized conductance curves (the mean slope factors were 5.1 mV for the TTXs INa and 4.9 mV for the TTXr current) but the h infinity curves for TTXr currents were significantly steeper than those for TTXs currents (mean slope factors of 3.8 and 11.5 mV respectively). Both the time to peak and the decay time constant of the peak current recorded from a holding potential of -67 mV were more than a factor of

  11. Effects of intermedin on dorsal root ganglia in the transmission of neuropathic pain in chronic constriction injury rats.

    PubMed

    Xiong, Wei; Qiu, Shu-yi; Xu, Ling-yun; Zhang, Chun-ping; Yi, Yun; Wu, Qin; Huang, Li-ping; Liu, Shuang-mei; Wu, Bing; Peng, Li-chao; Song, Miao-miao; Gao, Yun; Liang, Shang-dong

    2015-07-01

    Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. The P2X3 receptor plays a crucial role in facilitating pain transmission. Intermedin (IMD), which is also known as adrenomedullin 2 (AMD2) is a newly discovered hormone that is a member of the calcitonin/calcitonin gene-related peptide family. The present research investigates the effects of IMD on pain transmission in neuropathic pain states as mediated by P2X3 receptors in dorsal root ganglia (DRG). Chronic constriction injury (CCI) rats were used as the neuropathic pain model. Adult male Sprague-Dawley rats were randomly assigned to five groups as follows: blank control group (Control), sham operation group (Sham), CCI rats treated with saline group (CCI+NS), CCI rats treated with IMD1-53 group (CCI+IMD1-53 ), and CCI rats treated with IMD inhibitor IMD14-47 group (CCI+IMD14-47 ). The mechanical withdrawal threshold (MWT) was tested by the von Frey method, and the thermal withdrawal latency (TWL) was tested via automatic thermal stimulus instruments. Changes in the expression of P2X3 receptors and IMD in CCI rat L4/L5 DRG were detected using immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting. After treatment with intrathecal injection (i.t.), mechanical and thermal hyperalgesia in the CCI+IMD1-53 group was maintained, but MWT and TWL in the CCI+IMD14-47 groups increased. The expression levels of P2X3 receptors and IMD in L4/L5 DRG in the CCI+NS and CCI+IMD1-53 groups were significantly increased compared with those in the Control group or the Sham group. After application of IMD14-47 in CCI rats, there was a decrease in the expression levels of P2X3 receptors and IMD in L4/L5 DRG. The phosphorylation of p38 and ERK1/2 in L4/L5 DRG in the CCI+NS group and the CCI+IMD1-53 group was stronger than that in the Control group or the Sham group; however, the phosphorylation of p38 and ERK1/2 in the CCI+IMD14-47 group was much

  12. Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activity in rat

    PubMed Central

    Grudt, Timothy J; van den Pol, Anthony N; Perl, Edward R

    2002-01-01

    The hypothalamic peptides hypocretin-1 (orexin A) and hypocretin-2 (Hcrt-2; orexin B) are important in modulating behaviours demanding arousal, including sleep and appetite. Fibres containing hypocretin project from the hypothalamus to the superficial dorsal horn (SDH) of the spinal cord (laminae I and II); however, the effects produced by hypocretins on SDH neurones are unknown. To study the action of Hcrt-2 on individual SDH neurones, tight-seal, whole-cell recordings were made with biocytin-filled electrodes from rat lumbar spinal cord slices. In 19 of 63 neurones, Hcrt-2 (30 nm to 1 μm) evoked an inward (excitatory) current accompanied by an increase in baseline noise. The inward current and noise were unaffected by TTX but were blocked by the P2X purinergic receptor antagonist suramin (300–500 μm). Hcrt-2 (30 nm to 1 μm) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the majority of neurones. The sIPSC increase was blocked by strychnine (1 μm) and by TTX (1 μm), suggesting that the increased sIPSC frequency was glycine and action potential dependent. Hcrt-2 increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in a few neurones but had no effect on dorsal root-evoked EPSCs in these or in other neurones. Neurones located in outer lamina II, particularly radial and vertical cells, were most likely to respond to Hcrt-2. We conclude that Hcrt-2 has excitatory effects on certain SDH neurones, some of which exert inhibitory influences on other cells of the region, consistent with the perspective that hypocretin has a role in orchestrating reactions related to arousal, including nociception, pain and temperature sense. PMID:11790816

  13. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain

    PubMed Central

    Imlach, Wendy L.; Bhola, Rebecca F.; Mohammadi, Sarasa A.; Christie, Macdonald J.

    2016-01-01

    The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain. PMID:27841371

  14. The Antinociceptive and Antihyperalgesic Effects of Topical Propofol on Dorsal Horn Neurons in the Rat

    PubMed Central

    Takechi, Kenichi; Carstens, Mirela Iodi; Klein, Amanda H.; Carstens, E.

    2013-01-01

    Background Propofol (2,6-diisopropylphenol) is an IV anesthetic used for general anesthesia. Recent evidence suggests that propofol-anesthetized patients experience less postoperative pain, and that propofol has analgesic properties when applied topically. We presently investigated the antinociceptive effects of topical propofol using behavioral and single-unit electrophysiological methods in rats. Methods In behavioral experiments with rats, we assessed the effect of topical hindpaw application of propofol (1–25%) on heat and mechanically evoked paw withdrawals. In electrophysiology experiments we recorded from lumbar dorsal horn wide dynamic range (WDR)-type neurons in pentobarbital-anesthetized rats. We assessed the effect of topical application of propofol to the ipsilateral hindpaw on neuronal responses elicited by noxious heat, cold and mechanical stimuli. We additionally tested if propofol blocks heat sensitization of paw withdrawals and WDR neuronal responses induced by topical application of allyl isothiocyanate (AITC; mustard oil). Results Topical application of propofol (1–25%) significantly increased the mean latency of the thermally evoked hindpaw withdrawal reflex on the treated (but not opposite) side in a concentration-dependent manner, with no effect on mechanically evoked hindpaw withdrawal thresholds. Propofol also prevented shortening of paw withdrawal latency induced by AITC. In electrophysiological experiments, topical application of 10 and 25% propofol, but not 1% propofol or vehicle (10% intralipid), to the ipsilateral hindpaw significantly attenuated the magnitude of responses of WDR neurons to noxious heating of glabrous hindpaw skin with no significant change in thermal thresholds. Maximal suppression of noxious heat-evoked responses was achieved 15-min after application followed by recovery to the pre-propofol baseline by 30 min. Responses to skin cooling or graded mechanical stimuli were not significantly affected by any

  15. Participation of satellite glial cells of the dorsal root ganglia in acute nociception.

    PubMed

    Lemes, Júlia Borges Paes; de Campos Lima, Tais; Santos, Débora Oliveira; Neves, Amanda Ferreira; de Oliveira, Fernando Silva; Parada, Carlos Almicar; da Cruz Lotufo, Celina Monteiro

    2018-05-29

    At dorsal root ganglia, neurons and satellite glial cells (SGC) can communicate through ATP release and P2X7 receptor activation. SGCs are also interconnected by gap junctions and have been previously implicated in modulating inflammatory and chronic pain.We now present evidence that SGCs are also involved in processing acute nociception in rat dorsal root ganglia. Using primary dorsal root ganglia cultures we observed that calcium transients induced in neurons by capsaicin administration were followed by satellite glial cells activation. Only satellite glial cells response was reduced by administration of the P2X7 receptor antagonist A740003. In vivo, acute nociception induced by intraplantar injection of capsaicin in rats was inhibited by A740003 or by the gap junction blocker carbenoxolone administered at the dorsal root ganglia (L5 level). Both drugs also reduced the second phase of the formalin test. These results suggest that communication between neurons and satellite glial cells is not only involved in inflammatory or pathological pain, but also in the transmission of the nociceptive signal, possibly in situations involving C-fiber activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    PubMed

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  17. Frontotemporal lobar degeneration related proteins induce only subtle memory-related deficits when bilaterally overexpressed in the dorsal hippocampus

    PubMed Central

    Dayton, Robert D.; Wang, David B.; Cain, Cooper D.; Schrott, Lisa M.; Ramirez, Julio J.; King, Michael A.; Klein, Ronald L.

    2011-01-01

    Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disease that involves cognitive decline and dementia. To model the hippocampal neurodegeneration and memory-related behavioral impairment that occurs in FTLD and other tau and TDP-43 proteinopathy diseases, we used an adeno-associated virus serotype 9 (AAV9) vector to induce bilateral expression of either microtubule-associated protein tau or transactive response DNA binding protein 43 kDa (TDP-43) in adult rat dorsal hippocampus. Human wild-type forms of tau or TDP-43 were expressed. The vectors/doses were designed for moderate expression levels within neurons. Rats were evaluated for acquisition and retention in the Morris water task over 12 weeks after gene transfer. Neither vector altered acquisition performance compared to controls. In measurements of retention, there was impairment in the TDP-43 group. Histological examination revealed specific loss of dentate gyrus granule cells and concomitant gliosis proximal to the injection site in the TDP-43 group, with shrinkage of the dorsal hippocampus. Despite specific tau pathology, the tau gene transfer surprisingly did not cause obvious neuronal loss or behavioral impairment. The data demonstrate that TDP-43 produced mild behavioral impairment and hippocampal neurodegeneration in rats, whereas tau did not. The models could be of value for studying mechanisms of FTLD and other diseases with tau and TDP-43 pathology in the hippocampus including Alzheimer's disease, with relevance to early stage mild impairment. PMID:22177996

  18. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve

    PubMed Central

    Derbenev, Andrei V; Stuart, Thomas C; Smith, Bret N

    2004-01-01

    Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids. PMID:15272041

  19. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    PubMed

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; P<0.001). There were marked regional variations in the distribution of Fos-LI cells between picrotoxin- and strychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  20. Tachykinin actions on deep dorsal horn neurons in vitro: an electrophysiological and morphological study in the immature rat.

    PubMed

    King, A E; Slack, J R; Lopez-Garcia, J A; Ackley, M A

    1997-05-01

    To assess whether functional neurokinin receptors exist in the deep dorsal horn of the rat, the actions of the selective neurokinin-1 receptor (NK1R) agonist [Sar9,Met(O2)11]substance P ([Sar9,Met(O2)11]SP), the neurokinin-2 receptor (NK2R) agonists [beta-Ala8]NKA(4-10) and GR64349 and the neurokinin-3 receptor (NK3R) agonist senktide were examined intracellularly in vitro. [Sar9,Met(O2)11]SP (1-4 microM) and senktide (1-2 microM) elicited slow depolarizations (<10 mV) associated with increased synaptic activity and cell firing. [beta-Ala8]NKA(4-10) (10-20 microM) and GR64349 (0.25-10 microM) caused small depolarizations (<2.0 mV) and no firing. Neurons were categorized as either 'tonic' or 'phasic' depending on their firing response to direct current step depolarizations. Tonic neurons, which, unlike phasic neurons, display no spike firing accommodation, generated a significantly larger depolarization to the NK1R and NK3R agonists. The putative contribution of these receptors to primary afferent-mediated synaptic transmission was assessed by testing the NK1R antagonist GR82334 (1 microM), the NK2R antagonist MEN10,376 (1 microM) and the NK3R antagonist [Trp7,beta-Ala8]NKA(4-10) (1 microM) against the dorsal root-evoked excitatory postsynaptic potential (DR-EPSP). GR82334 and [Trp7,beta-Ala8]NKA(4-10) significantly reduced (P < or = 0.05) the duration but not the amplitude of the DR-EPSP. MEN10,376 (1 microM) had no effect on DR-EPSP amplitude or duration. Morphological detail was obtained for seven biocytin-filled deep dorsal horn neurons tested with [Sar9,Met(O2)11]SP. Five neurons responded to the NK1R agonist, and two of these had dorsally directed dendrites into the substantia gelatinosa. The other three [Sar9,Met(O2)11]SP-sensitive neurons had dendrites within deeper laminae. These data support the existence of functional NK1Rs and NK3Rs in the deep dorsal horn which may be involved in mediating sensory afferent inputs from nociceptors.

  1. Repeated aripiprazole treatment causes dopamine D2 receptor up-regulation and dopamine supersensitivity in young rats

    PubMed Central

    Varela, Fausto A.; Der-Ghazarian, Taleen; Lee, Ryan J.; Charntikov, Sergios; Crawford, Cynthia A.; McDougall, Sanders A.

    2017-01-01

    Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10–20. After one, four, or eight days (i.e., on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least eight days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side-effects, including extrapyramidal symptoms. PMID:24045880

  2. Sexual Dimorphism and Geographic Variation in Dorsal Fin Features of Australian Humpback Dolphins, Sousa sahulensis.

    PubMed

    Brown, Alexander M; Bejder, Lars; Parra, Guido J; Cagnazzi, Daniele; Hunt, Tim; Smith, Jennifer L; Allen, Simon J

    2016-01-01

    Determining the sex of free-ranging cetaceans can be challenging. Sexual dimorphism among external features may allow inferences on sex, but such patterns may be difficult to detect and are often confounded by age and geographic variation. Dorsal fin images of 107 female and 54 male Australian humpback dolphins, Sousa sahulensis, from Western Australia (WA) and Queensland (QLD) were used to investigate sex, age and geographic differences in colouration, height/length quotient and number of notches. Adult males exhibited more dorsal fin notches (p<0.001) and a significantly greater loss of pigmentation on the upper half of their dorsal fins (p<0.001) than did adult females. These differences likely reflect that males experience a higher frequency and/or intensity of intraspecific aggression than females. In QLD, heavily spotted dorsal fins were more frequent among females than males (p<0.001). Logistic regression analyses revealed that dorsal fin spotting and loss of pigmentation on the upper half of the dorsal fin provided the best model parameters for predicting the sex of sampled adults, with 97% accuracy. This technique offers a rapid, non-invasive method for predicting sex in Australian humpback dolphins, which could potentially be applied to populations throughout their range. In contrast to adults, presumed immature animals showed little or no loss of pigmentation or spotting; however, the rate of development of these features remains unknown. There were pronounced differences between QLD and WA in the intensity of spotting on dorsal fins and the extent of pigmentation loss around the posterior insertion and trailing edge of the dorsal fin. While based on a limited sample size, these geographic differences may have conservation implications in terms of population subdivision and should be investigated further. © 2016 Elsevier Ltd. All rights reserved.

  3. Evidence That the Periaqueductal Gray Matter Mediates the Facilitation of Panic-Like Reactions in Neonatally-Isolated Adult Rats

    PubMed Central

    Quintino-dos-Santos, Jeyce Willig; Müller, Cláudia Janaína Torres; Bernabé, Cristie Setúbal; Rosa, Caroline Azevedo; Tufik, Sérgio; Schenberg, Luiz Carlos

    2014-01-01

    Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate

  4. A novel rat model for chemotherapy-induced alopecia.

    PubMed

    Wikramanayake, T C; Amini, S; Simon, J; Mauro, L M; Elgart, G; Schachner, L A; Jimenez, J J

    2012-04-01

    More than half of all people diagnosed with cancer receive chemotherapy, and approximately 65% of these develop chemotherapy-induced alopecia (CIA), a side-effect that can have considerable negative psychological repercussions. Currently, there are very few animal models available to study the mechanism and prevention of CIA. To develop a clinically relevant adult rat model for CIA. We first tested whether neonatal pigmented Long-Evans (LE) rats developed alopecia in response to the chemotherapeutic agents etoposide and cyclophosphamide. We then determined whether the rats developed CIA as adults. In the latter experiment, rat dorsal hair was clipped during the early telogen stage to synchronize the hair cycle, and starting 15 days later, the rats were treated with etoposide for 3 days. Neonatal LE pups developed CIA in response to etoposide and cyclophosphamide, similar to other murine models for CIA. Clipping of the hair shaft during early telogen resulted in synchronized anagen induction and subsequent alopecia after etoposide treatment in the clipped areas only. Hair follicles in the clipped areas had the typical chemotherapy-induced follicular dystrophy (dystrophic catagen). When the hair in the pigmented alopecic areas regrew, it had normal pigmentation. A novel, pigmented adult rat model has been established for CIA. By hair-shaft clipping during early telogen, synchronized anagen entry was induced, which resulted in alopecia in response to chemotherapy. This is the first clinically relevant adult rat model for CIA, and will be a useful tool to test agents for the prevention and treatment of CIA. © The Author(s). CED © 2012 British Association of Dermatologists.

  5. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    PubMed Central

    Palm, Sara; Momeni, Shima; Lundberg, Stina; Nylander, Ingrid; Roman, Erika

    2014-01-01

    Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction. PMID:25076877

  6. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  7. Effect of monensin on the levels of tachykinins and their processing enzyme activity in rat dorsal root ganglia.

    PubMed

    Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi

    2002-06-28

    Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.

  8. Chronic Nicotine Treatment Impacts the Regulation of Opioid and Non-opioid Peptides in the Rat Dorsal Striatum*

    PubMed Central

    Petruzziello, Filomena; Falasca, Sara; Andren, Per E.; Rainer, Gregor; Zhang, Xiaozhe

    2013-01-01

    The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence. PMID:23436905

  9. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    PubMed

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    PubMed

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  11. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  12. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats.

    PubMed

    Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna

    2018-06-01

    The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure

  13. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.

    PubMed

    Schmidt, Brandy; Hinman, James R; Jacobson, Tara K; Szkudlarek, Emily; Argraves, Melissa; Escabí, Monty A; Markus, Etan J

    2013-04-03

    Hippocampal theta oscillations are postulated to support mnemonic processes in humans and rodents. Theta oscillations facilitate encoding and spatial navigation, but to date, it has been difficult to dissociate the effects of volitional movement from the cognitive demands of a task. Therefore, we examined whether volitional movement or cognitive demands exerted a greater modulating factor over theta oscillations during decision-making. Given the anatomical, electrophysiological, and functional dissociations along the dorsal-ventral axis, theta oscillations were simultaneously recorded in the dorsal and ventral hippocampus in rats trained to switch between place and motor-response strategies. Stark differences in theta characteristics were found between the dorsal and ventral hippocampus in frequency, power, and coherence. Theta power increased in the dorsal, but decreased in the ventral hippocampus, during the decision-making epoch. Interestingly, the relationship between running speed and theta power was uncoupled during the decision-making epoch, a phenomenon limited to the dorsal hippocampus. Theta frequency increased in both the dorsal and ventral hippocampus during the decision epoch, although this effect was greater in the dorsal hippocampus. Despite these differences, ventral hippocampal theta was responsive to the navigation task; theta frequency, power, and coherence were all affected by cognitive demands. Theta coherence increased within the dorsal hippocampus during the decision-making epoch on all three tasks. However, coherence selectively increased throughout the hippocampus (dorsal to ventral) on the task with new hippocampal learning. Interestingly, most results were consistent across tasks, regardless of hippocampal-dependent learning. These data indicate increased integration and cooperation throughout the hippocampus during information processing.

  14. [Botulinum toxin type A does not affect spontaneous discharge but blocks sympathetic-sensory coupling in chronically compressed rat dorsal root ganglion neurons].

    PubMed

    Yang, Hong-jun; Peng, Kai-run; Hu, San-jue; Duan, Jian-hong

    2007-11-01

    To study the effect of botulinum toxin type A (BTXA) on spontaneous discharge and sympathetic- sensory coupling in chronically compressed dorsal root ganglion (DRG) neurons in rats. In chronically compressed rat DRG, spontaneous activities of the single fibers from DRG neurons were recorded and their changes observed after BTAX application on the damaged DGR. Sympathetic modulation of the spontaneous discharge from the compressed DRG neurons was observed by electric stimulation of the lumbar sympathetic trunk, and the changes in this effect were evaluated after intravenous BTXA injection in the rats. Active spontaneous discharges were recorded in the injured DRG neurons, and 47 injured DRG neurons responded to Ca2+-free artificial cerebrospinal fluid but not to BTXA treatment. Sixty-four percent of the neurons in the injured DRG responded to sympathetic stimulation, and this response was blocked by intravenously injection of BTXA. BTXA does not affect spontaneous activities of injured DRG neurons, but blocks sympathetic-sensory coupling in these neurons.

  15. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our

  16. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung

    2014-08-01

    Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism. Copyright © 2014 American Pain

  17. Estradiol Valerate and Remifemin ameliorate ovariectomy-induced decrease in a serotonin dorsal raphe-preoptic hypothalamus pathway in rats.

    PubMed

    Wang, Wenjuan; Cui, Guangxia; Jin, Biao; Wang, Ke; Chen, Xing; Sun, Yu; Qin, Lihua; Bai, Wenpei

    2016-11-01

    Perimenopausal syndromes begin as ovarian function ceases and the most common symptoms are hot flushes. Data indicate that the projections of serotonin to hypothalamus may be involved in the mechanism of hot flushes. Therefore, the aim of this study is to investigate the potential role of the serotonin dorsal raphe-preoptic hypothalamus pathway for hot flushes in an animal model of menopause. We determined the changes in serotonin expression in the dorsal raphe (DR) and preoptic anterior hypothalamus (POAH) in ovariectomized rats. We also explored the therapeutical effects of estradiol valerate and Remifemin in this model. Eighty female Sprague-Dawley rats were randomly assigned to sham-operated (SHAM) group, ovariectomy (OVX) group with vehicle, ovariectomy with estradiol valerate treatment (OVX+E) group and ovariectomy with Remifemin (OVX+ICR) group. Serotonin expression was evaluated in the DR and POAH using immunofluorescence and quantified in the DR using an enzyme-linked immunosorbent assay (ELISA). Apoptosis was analyzed in the DR by TUNEL assay. The number of serotonin immunoreactive neurons and the level of serotonin expression in the DR decreased significantly following OVX compared to the SHAM group. No TUNEL-positive cells were detected in the DR in any group. In addition, following OVX, the number of serotonin-positive fibers decreased significantly in the ventromedial preoptic nucleus (VMPO), especially in the ventrolateral preoptic nucleus (VLPO). Treatment with either estradiol or Remifemin for 4 weeks countered the OVX-induced decreases in serotonin levels in both the DR and the hypothalamus, with levels in the treated rats similar to those in the SHAM group. A fluorescently labeled retrograde tracer was injected into the VLPO at the 4-week time point. A significantly lower percentage of serotonin with CTB double-labeled neurons in CTB-labeled neurons was demonstrated after ovariectomy, and both estradiol and Remifemin countered this OVX

  18. Profile of neuronal excitation following selective activation of the neurokinin-1 receptor in rat deep dorsal horn in vitro.

    PubMed

    King, A E; Ackley, M A; Slack, J R

    1997-08-29

    The excitatory actions of the selective neurokinin-1 receptor (NK1R) agonist [Sar9,Met(O2)11]substance P (SP) were tested on a sample (n = 50) of deep dorsal horn neurones in the isolated and hemisected young rat spinal cord. Superfusion of the NK1R agonist (2 microM) elicited a prolonged membrane depolarisation (6.6 +/- 0.5 mV) and an increase in action potential firing in 41/50 (82%) neurones. These [Sar9,Met(O2)11]SP-induced depolarisations were attenuated by the selective NK1R antagonist GR82334 (1 microM). An increased neuronal excitability after [Sar9,Met(O2)11]SP application was indicated by an augmented spike frequency generated in response to long duration, step depolarisations. In order to assess whether a direct excitatory action existed, [Sar9,Met(O2)11]SP was re-tested on a sample of TTX-treated neurones (n = 14). The majority (9/14) retained agonist sensitivity although the amplitude of the depolarisation was reduced to 48% of the control value. A sample of neurones (n = 7) that responded to the NK1R agonist were morphologically characterised after filling with the intracellular dye, biocytin. Dorsal dendrites that clearly penetrated lamina II and that could receive a direct C-afferent input, were identified in only 2/7 neurones. These electrophysiological and neuroanatomical data demonstrate that deep dorsal horn neurones possess functional NK1Rs. The implications of the existence of these NK1Rs in the context of spinal somatosensory systems and SP is considered.

  19. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    PubMed

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  20. [The neurotrophic effect of endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons].

    PubMed

    Zhang, Wei; Zhou, Xue; Wang, Ting-hua; Wang, Te-wei; Liu, Su; Chen, Si-xiu; Ou, Ke-qun

    2004-01-01

    To investigate the neurotrophic effect of endogenous NT-3 from adult cat dorsal root ganglion (DRG) on ganglionic neurons. Rhizotomy of bilateral L1, L3, L5 and L7 dorsal roots of cats was performed, leaving L2, L4 and L6 DRG as spared DRGs. The separate neurons of normal (control) DRG, spared DRG and anti-NT-3 antibody blocking DRG were cultured in vitro respectively. The number of survival neurons and the length of neurites were measured and used for comparison in the control, spared DRG, and block groups. There were survival neurons and cell clusters in every group. The number of survival neurons and cell clusters of spared DRG group were much larger than those of the control and block groups. The neurite length of neurons, the neurite number and the length of cell clusters of spared DRG group were much greater than those of control and block groups. Endogenous NT-3 from spared DRG may act on ganglionic neurons to maintain survival of neuron and stimulate growth of neurite.

  1. Dorsal raphe nucleus of brain in the rats flown in space inflight and postflight alteration of structure

    NASA Astrophysics Data System (ADS)

    Krasnov, I.

    The structure of brain dorsal raphe nucleus (DRN) was studied in the rats flown in space aboard Space Shuttle "Columbia" (STS-58, SLS-2 program) and dissected on day 13 of the mission ("inflight" rats) and in 5-6 hours after finishing 14-day flight ("postflight" rats). The brain of "inflight" rats were excised after decapitation, sectioned sagitally halves of brain were fixed by immersion in 2,5 % glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 at 4°C and kept in the flight at 4°C. After landing the brain frontal 0.5 mm sections from DRN area were osmificated and embedded in araldite at NASA ARC. The brains of "postflight": and control rats were underwent to the same procedure. Electronmicroscopical analysis, computer morphometry and glial cell count were performed at Moscow. In DRN neuropil of "inflight" rats the most part of axo-dendritic synapses were surrounded by glia cell processes and had decreased electron density of pre- and postsynaptic membrane and pronounced diminution of synaptic vesicle amount while dendrites were characterized by decrease in matrix electron density and microtubule quantity that in total indicates the decline of afferent flow reaching DRN neurons in microgravity. In DRN neurons of "inflight" rats all mitochondria were characterized by evenly increased dimensions, decreased matrix electron density, small amount of short and far- between located cristae and enlarged intermembrane and intercristae spaces, that in total points out low level of coupling of oxidation to phosphorilation, decrease in energy supply of neuron. Amount of ribosome in cytoplasm was significantly decreased indicating lower lever of biosynthetic processes. The last is supported by diminished dimensions of neuronal body, nucleus and nucleolus (place of r RNA synthesis), cross section area of that were reduced in DRN neurons of "inflight" rats by 18.8 % (p < 0.01), 11.1 % and 26.6 % (p <0,005) correspondingly. Ultrastructure and dimensions of intracellular

  2. High-frequency transcutaneous electrical nerve stimulation attenuates postsurgical pain and inhibits excess substance P in rat dorsal root ganglion.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Hsieh, Pei-Ling; Wang, Jhi-Joung

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a common therapeutic modality for pain management, but its effectiveness in skin/muscle incision and retraction (SMIR)-evoked pain is unknown. We aimed to examine the effects of TENS on postoperative pain and the levels of substance P (SP), N-methyl-D-aspartate receptor 1 (NR1), and interleukin 1β (IL-1β) in rat dorsal root ganglion (DRG). High-frequency (100 Hz) TENS was administered daily beginning on postoperative day 1 (POD1) and continued until animal subjects were killed for tissues. Mechanical sensitivity to von Frey stimuli (6g and 15g) and the levels of NR1, SP, and IL-1β in DRG were assessed in the sham-operated, SMIR-operated, TENS after SMIR surgery, and placebo-TENS after SMIR surgery groups. Skin/muscle incision and retraction rats exhibited a significant hypersensitivity to von Frey stimuli on POD3. In contrast with SMIR rats, SMIR-operated rats receiving TENS therapy demonstrated a rapid recovery of mechanical hypersensitivity. The SMIR-operated rats showed an up-regulation of NR1, SP, and IL-1β in DRG on PODs 14 and 28, whereas the SMIR-operated rats after TENS administration reversed this up-regulation. By contrast, the placebo-TENS after SMIR operation did not alter postsurgical pain nor the levels of NR1, SP, and IL-1β. Our data demonstrated that TENS intervention reduced persistent postoperative pain caused by SMIR operation. Up-regulation of NR1, SP, and IL-1β in DRG, activated after SMIR surgery, is important in the development of prolonged postincisional pain. The TENS pain relief may be related to the suppression of NR1, SP, and IL-1β in DRG of SMIR rats.

  3. Substance P in the dorsal vagal complex inhibits medullary TRH-induced gastric acid secretion in rats.

    PubMed

    Yang, H; Taché, Y

    1997-05-01

    Neurons that contain substance P (SP) and thyrotropin-releasing hormone (TRH) in medullary midline raphe nuclei project to the dorsal vagal complex (DVC). The modulatory role of SP on basal gastric acid secretion (GAS) and TRH on DVC-induced stimulation of GAS was studied in urethan-anesthetized rats. The stable SP agonist, DiMe-C7 ([pGlu5, MePhe8, MeGly9]SP5-11, 50 and 100 pmol), injected unilaterally into the DVC reduced the GAS response (47 +/- 12 mumol/60 min) to coinjected TRH analog, RX 77368 (25 pmol), by 53% and 85%, respectively, whereas DiMe-C7 (100 pmol) alone had no effect on basal and pentagastrin-stimulated GAS. DiMe-C7 (100 pmol/site) inhibited the GAS response to kainic acid injected into the raphe pallidus (Rpa) when it was injected bilaterally into the DVC but not the hypoglossal nuclei. The SP nourokinin-1-receptor antagonist, CP-96,345, injected bilaterally into the DVC (1 nmol/ site) increased basal GAS (33 +/- 8 mumol/90 min) and potentiated the GAS response to kainic acid injected into the Rpa by 40%. These results suggest that SP acts on neurokinin-1 receptors in the DVC to reduce medullary TRH-induced stimulation of GAS in rats.

  4. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  5. [In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model].

    PubMed

    Liu, Zhi-sheng; Wang, Ye; Li, Qiang; Zhang, Sheng-lin; Shi, Yu-rong

    2012-04-01

    To establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer. Human pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry. Neurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001). An in vitro co-culture model of rat

  6. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  7. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly

  8. Effect of voluntary alcohol consumption on Maoa expression in the mesocorticolimbic brain of adult male rats previously exposed to prolonged maternal separation.

    PubMed

    Bendre, M; Comasco, E; Nylander, I; Nilsson, K W

    2015-12-08

    Discordant associations between monoamine oxidase A (MAOA) genotype and high alcohol drinking have been reported in human and non-human primates. Environmental influences likely moderate genetic susceptibility. The biological basis for this interplay remains elusive, and inconsistencies call for translational studies in which conditions can be controlled and brain tissue is accessible. The present study investigated whether early life stress and subsequent adult episodic alcohol consumption affect Maoa expression in stress- and reward-related brain regions in the rat. Outbred Wistar rats were exposed to rearing conditions associated with stress (prolonged maternal separation) or no stress during early life, and given free choice between alcohol and/or water in adulthood. Transcript levels of Maoa were assessed in the ventral tegmental area, nucleus accumbens (NAc), medial prefrontal cortex, cingulate cortex, amygdala and dorsal striatum (DS). Blood was collected to assess corticosterone levels. After alcohol consumption, lower blood corticosterone and Maoa expression in the NAc and DS were found in rats exposed to early life stress compared with control rats. An interaction between early life stress and voluntary alcohol intake was found in the NAc. Alcohol intake before death correlated negatively with Maoa expression in DS in high alcohol-drinking rats exposed to early life stress. Maoa expression is sensitive to adulthood voluntary alcohol consumption in the presence of early life stress in outbred rats. These findings add knowledge of the molecular basis of the previously reported associations between early life stress, MAOA and susceptibility to alcohol misuse.

  9. Effects of Hindlimb Unweighting on MBP and GDNF Expression and Morphology in Rat Dorsal Root Ganglia Neurons.

    PubMed

    Zhang, Heng; Ren, Ning-Tao; Zhou, Fang-Qiang; Li, Jie; Lei, Wei; Liu, Ning; Bi, Long; Wu, Zi-Xiang; Zhang, Ran; Zhang, Yong-Gang; Cui, Geng

    2016-09-01

    With the development of technology and space exploration, studies on long-duration space flights have shown that microgravity induces damage to multiple organs, including the dorsal root ganglia (DRG). However, very little is known about the effects of long-term microgravity on DRG neurons. This study investigated the effects of microgravity on lumbar 5 (L5) DRG neurons in rats using the hindlimb unweighting (HU) model. Male (M) and female (F) Sprague-Dawley rats were randomly divided into M- and F-control (CON) groups and M- and F-HU groups, respectively (n = 10). At the end of HU treatment for 4 weeks, morphological changes were detected. Myelin basic protein (MBP) and degenerated myelin basic protein (dgen-MBP) expressions were analyzed by immunofluorescence and western blot assays. Glial cell line-derived neurotrophic factor (GDNF) protein and mRNA expressions were also analyzed by immunohistochemistry, western blot, and RT-PCR analysis, respectively. Compared with the corresponding CON groups, the HU groups exhibited slightly loose junctions between DRG neurons, some separated ganglion cells and satellite cells, and lightly stained Nissl bodies that were of smaller size and had a scattered distribution. High levels of dgen-MBP and low MBP expressions were appeared and GDNF expressions were significantly decreased in both HU groups. Changes were more pronounced in the F-HU group than in the M-HU group. In conclusion, HU treatment induced damage of L5 DRG neurons, which was correlated with decreased total MBP protein expression, increased dgen-MBP expression, and reduced GDNF protein and mRNA expression. Importantly, these changes were more severe in F-HU rats compared with M-HU rats.

  10. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor

    PubMed Central

    Polgár, Erika; Thomson, Suzanne; Maxwell, David J; Al-Khater, Khulood; Todd, Andrew J

    2007-01-01

    The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology. PMID:17880393

  11. Dorsal hippocampus contributes to model-based planning.

    PubMed

    Miller, Kevin J; Botvinick, Matthew M; Brody, Carlos D

    2017-09-01

    Planning can be defined as action selection that leverages an internal model of the outcomes likely to follow each possible action. Its neural mechanisms remain poorly understood. Here we adapt recent advances from human research for rats, presenting for the first time an animal task that produces many trials of planned behavior per session, making multitrial rodent experimental tools available to study planning. We use part of this toolkit to address a perennially controversial issue in planning: the role of the dorsal hippocampus. Although prospective hippocampal representations have been proposed to support planning, intact planning in animals with damaged hippocampi has been repeatedly observed. Combining formal algorithmic behavioral analysis with muscimol inactivation, we provide causal evidence directly linking dorsal hippocampus with planning behavior. Our results and methods open the door to new and more detailed investigations of the neural mechanisms of planning in the hippocampus and throughout the brain.

  12. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain: comparison to human networks using resting state-fMRI.

    PubMed

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.

  13. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  14. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats.

    PubMed

    Ertilav, Kemal; Uslusoy, Fuat; Ataizi, Serdar; Nazıroğlu, Mustafa

    2018-06-01

    Mobile phone providers use electromagnetic radiation (EMR) with frequencies ranging from 900 to 1800 MHz. The increasing use of mobile phones has been accompanied by several potentially pathological consequences, such as neurological diseases related to hippocampal (HIPPON) and dorsal root ganglion neuron (DRGN). The TRPV1 channel is activated different stimuli, including CapN, high temperature and oxidative stress. We investigated the contribution TRPV1 to mitochondrial oxidative stress and apoptosis in HIPPON and DRGN following long term exposure to 900 and 1800 MHz in a rat model. Twenty-four adult rats were equally divided into the following groups: (1) control, (2) 900 MHz, and (3) 1800 MHz exposure. Each experimental group was exposed to EMR for 60 min/ 5 days of the week during the one year. The 900 and 1800 MHz EMR exposure induced increases in TRPV1 currents, intracellular free calcium influx (Ca 2+ ), reactive oxygen species (ROS) production, mitochondrial membrane depolarization (JC-1), apoptosis, and caspase 3 and 9 activities in the HIPPON and DRGN. These deleterious processes were further increased in the 1800 MHz experimental group compared to the 900 MHz exposure group. In conclusion, mitochondrial oxidative stress, programmed cell death and Ca 2+ entry pathway through TRPV1 activation in the HIPPON and DRGN of rats were increased in the rat model following exposure to 900 and 1800 MHz cell frequencies. Our results suggest that exposure to 900 and 1800 MHz EMR may induce a dose-associated, TRPV1-mediated stress response.

  15. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    EPA Science Inventory

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  16. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.

    PubMed

    Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina

    2012-03-01

    Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    PubMed Central

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  18. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  19. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    PubMed

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  1. Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    PubMed Central

    Homberg, Judith R.; Olivier, Jocelien D. A.; Blom, Tom; Arentsen, Tim; van Brunschot, Chantal; Schipper, Pieter; Korte-Bouws, Gerdien; van Luijtelaar, Gilles; Reneman, Liesbeth

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine

  2. nNOS-positive minor-branches of the dorsal penile nerves is associated with erectile function in the bilateral cavernous injury model of rats.

    PubMed

    Chen, Yen-Lin; Chao, Ting-Ting; Wu, Yi-No; Chen, Meng-Chuan; Lin, Ying-Hung; Liao, Chun-Hou; Wu, Chien-Chih; Chen, Kuo-Chiang; Chou, Shang-Shing P; Chiang, Han-Sun

    2018-01-17

    The changes in neuronal nitric oxide synthases (nNOS) in the dorsal penile nerves (DPNs) are consistent with cavernous nerve (CN) injury in rat models. However, the anatomical relationship and morphological changes between the minor branches of the DPNs and the CNs after injury have never been clearly explored. There were forty 12 week old male Sprague-Dawley rats receiving bilateral cavernous nerve injury (BCNI). Erectile function of intracavernous pressure and mean arterial pressure were measured. The histology and ultrastructure with H&E stain, Masson's trichrome stain and immunohistochemical stains were applied on the examination of CNs and DPNs. We demonstrated communicating nerve branches between the DPNs and the CNs in rats. The greatest damage and lowest erectile function were seen in the 14 th day and partially recovered in the 28 th day after BCNI. The nNOS positive DPN minor branches' number was significantly correlated with erectile function. The sub-analysis of the number of nNOS positive DPN minor branches also matched with the time course of the erectile function after BCNI. We suggest the regeneration of the DPNs minor branches would ameliorate the erectile function in BCNI rats.

  3. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  4. Anatomy of the dorsal default-mode network in conduct disorder: Association with callous-unemotional traits.

    PubMed

    Sethi, Arjun; Sarkar, Sagari; Dell'Acqua, Flavio; Viding, Essi; Catani, Marco; Murphy, Declan G M; Craig, Michael C

    2018-04-01

    We recently reported that emotional detachment in adult psychopathy was associated with structural abnormalities in the dorsal 'default-mode' network (DMN). However, it is unclear whether these differences are present in young people at risk of psychopathy. The most widely recognised group at risk for psychopathy are children/adolescents with conduct disorder (CD) and callous-unemotional (CU) traits. We therefore examined the microstructure of the dorsal DMN in 27 CD youths (14-with/13-without CU traits) compared to 16 typically developing controls using DTI tractography. Both CD groups had significantly (p < 0.025) reduced dorsal DMN radial diffusivity compared to controls. In those with diagnostically significant CU traits, exploratory analyses (uncorrected for multiple comparisons) suggested that radial diffusivity was negatively correlated with CU severity (Left: rho = -0.68, p = 0.015). These results suggest that CD youths have microstructural abnormalities in the same network as adults with psychopathy. Further, the association with childhood/adolescent measures of emotional detachment (CU traits) resembles the relationship between emotional detachment and network microstructure in adult psychopaths. However, these changes appear to occur in opposite directions - with increased myelination in adolescent CD but reduced integrity in adult psychopathy. Collectively, these findings suggest that developmental abnormalities in dorsal DMN may play a role in the emergence of psychopathy. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  6. Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.

    PubMed

    Lu, Qi; Jiang, Cuiping; Zhang, Jiping

    2016-02-01

    Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerge, Daniel R., E-mail: daniel.doerge@fda.hhs.go; Twaddle, Nathan C.; Vanlandingham, Michelle

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, butmore » not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.« less

  8. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain

    PubMed Central

    2012-01-01

    Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In

  9. BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons

    PubMed Central

    Zhang, Xiu-Lin; Mok, Lee-Peng; Katz, Elizabeth J; Gold, Michael S.

    2010-01-01

    The biophysical properties and distribution of voltage-dependent, Ca2+-modulated K+ (BKCa) currents among subpopulations of acutely dissociated DiI labeled cutaneous sensory neurons from the adult rat were characterized with whole cell patch clamp techniques. BKCa currents were isolated from total K+ current with iberiotoxin, charybdotoxin, or paxilline. There was considerable variability in biophysical properties of BKCa currents. There was also variability in the distribution of BKCa current among subpopulations of cutaneous DRG neurons. While present in each of the subpopulations defined by cell body size, IB4 binding or capsaicin sensitivity, BKCa current was present in vast majority (>90%) of small diameter IB4+ neurons but was present in only a minority of neurons in subpopulations defined by other criteria (i.e., small diameter IB4−). Current clamp analysis indicated that in IB4+ neurons, BKCa currents contribute to the repolarization of the action potential and adaptation in response to sustained membrane depolarization, while playing little role in the determination of action potential threshold. RT-PCR analysis of mRNA collected from whole DRG revealed the presence of multiple splice variants of the BKCa channel α-subunit, rslo and all 4 of the accessory β subunits, suggesting that heterogeneity in the biophysical and pharmacological properties of BKCa current in cutaneous neurons, reflects, at least in part, the differential distribution of splice variants and/or β subunits. Because even a small decrease in BKCa current appears to have a dramatic influence on excitability, modulation of this current may contribute to sensitization of nociceptive afferents observed following tissue injury. PMID:20105244

  10. Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain

    PubMed Central

    Maratou, Klio; Wallace, Victoria C.J.; Hasnie, Fauzia S.; Okuse, Kenji; Hosseini, Ramine; Jina, Nipurna; Blackbeard, Julie; Pheby, Timothy; Orengo, Christine; Dickenson, Anthony H.; McMahon, Stephen B.; Rice, Andrew S.C.

    2009-01-01

    To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis. PMID:18606552

  11. Effect of voluntary alcohol consumption on Maoa expression in the mesocorticolimbic brain of adult male rats previously exposed to prolonged maternal separation

    PubMed Central

    Bendre, M; Comasco, E; Nylander, I; Nilsson, K W

    2015-01-01

    Discordant associations between monoamine oxidase A (MAOA) genotype and high alcohol drinking have been reported in human and non-human primates. Environmental influences likely moderate genetic susceptibility. The biological basis for this interplay remains elusive, and inconsistencies call for translational studies in which conditions can be controlled and brain tissue is accessible. The present study investigated whether early life stress and subsequent adult episodic alcohol consumption affect Maoa expression in stress- and reward-related brain regions in the rat. Outbred Wistar rats were exposed to rearing conditions associated with stress (prolonged maternal separation) or no stress during early life, and given free choice between alcohol and/or water in adulthood. Transcript levels of Maoa were assessed in the ventral tegmental area, nucleus accumbens (NAc), medial prefrontal cortex, cingulate cortex, amygdala and dorsal striatum (DS). Blood was collected to assess corticosterone levels. After alcohol consumption, lower blood corticosterone and Maoa expression in the NAc and DS were found in rats exposed to early life stress compared with control rats. An interaction between early life stress and voluntary alcohol intake was found in the NAc. Alcohol intake before death correlated negatively with Maoa expression in DS in high alcohol-drinking rats exposed to early life stress. Maoa expression is sensitive to adulthood voluntary alcohol consumption in the presence of early life stress in outbred rats. These findings add knowledge of the molecular basis of the previously reported associations between early life stress, MAOA and susceptibility to alcohol misuse. PMID:26645625

  12. Alteration of synaptic plasticity in rat dorsal striatum induced by chronic ethanol intake and withdrawal via ERK pathway.

    PubMed

    Cui, Sheng-zhong; Wang, Shen-jun; Li, Jing; Xie, Gui-qin; Zhou, Rong; Chen, Ling; Yuan, Xiao-ru

    2011-02-01

    The dorsal striatum has been proposed to contribute to the formation of drug-seeking behaviors, leading to excessive and compulsive drug usage, such as addiction. The current study aimed to investigate the involvement of extracellular signal-regulated kinase (ERK) pathway in the modification of striatal synaptic plasticity. Ethanol was administered to rats in drinking water at concentration of 6% (v/v) for 30 days. Rats were sacrificed on day 10, 20, or 30 during ethanol intake or on withdrawal day 1, 3, or 7 following 30-d ethanol intake. The striata were removed either for electrophysiological recording or for protein immuno-blot analysis. Extracellular recording technique was used to record population spikes (PS) induced by high-frequency stimulation (HFS) in the dorsolateral striatum (DLS). Corticostriatal long-term depression (LTD) was determined to be dependent upon ERK signaling. Chronic ethanol intake (CEI) attenuated ERK phosphorylation and LTD induction, whereas withdrawal for one day (W1D) potentiated ERK phosphorylation and LTD induction. These results showed that the impact of chronic ethanol intake and withdrawal on corticostriatal synaptic plasticity was associated with ethanol's effect on ERK phosphorylation. In particular, pharmacological inhibition of ERK hyper-phosphorylation by U0126 prevented LTD induction in the DLS and attenuated ethanol withdrawal syndrome as well. In rat DLS, chronic ethanol intake and withdrawal altered LTD induction via ERK signaling pathway. Ethanol withdrawal syndrome is mediated, at least partly, by ERK hyper-phosphorylation in the DLS.

  13. Cholera toxin B subunit labeling in lamina II of spinal cord dorsal horn following chronic inflammation in rats.

    PubMed

    Ma, Qing Ping; Tian, Li

    2002-07-26

    We have investigated the effect of inflammation on the labeling pattern of cholera toxin B subunit (CTB)-conjugated horseradish peroxidase, an A-fiber marker, by an intra-sciatic nerve injection of the tracer. Following chronic inflammation in one hind paw in rats, there was substantial CTB labeling in lamina II of the spinal dorsal horn, which is normally absent. However, there was no change in the labeling pattern of wheat germ agglutinin or fluoride resistant acid phosphatase/thiamine monophosphatase, two C-fiber markers. The CTB labeling in lamina II after peripheral nerve injury has been interpreted as central sprouting of A-fibers or uptake of the tracer by injured C-fibers. Our results suggest that chronic inflammation and nerve injury may share some common mechanisms in generating allodynia and hyperalgesia.

  14. Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: differences between striatal region and brain hemisphere, but not sex.

    PubMed

    Meitzen, John; Pflepsen, Kelsey R; Stern, Christopher M; Meisel, Robert L; Mermelstein, Paul G

    2011-01-07

    Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Blockade of Nogo Receptor Ligands Promotes Functional Regeneration of Sensory Axons After Dorsal Root Crush

    PubMed Central

    Harvey, Pamela A.; Lee, Daniel H.S.; Qian, Fang; Weinreb, Paul H.; Frank, Eric

    2010-01-01

    A major impediment for regeneration of axons within the central nervous system is the presence of multiple inhibitory factors associated with myelin. Three of these factors bind to the Nogo receptor, NgR, which is expressed on axons. Administration of exogenous blockers of NgR or NgR ligands promotes the regeneration of descending axonal projections after spinal cord hemisection. A more detailed analysis of CNS regeneration can be made by examining the growth of specific classes of sensory axons into the spinal cord after dorsal root crush injury . In this study, we assessed whether administration of a soluble peptide fragment of the NgR that binds to and blocks all three NgR ligands can promote regeneration after brachial dorsal root crush in adult rats. Intraventricular infusion of sNgR for one month results in extensive regrowth of myelinated sensory axons into the white and gray matter of the dorsal spinal cord, but unmyelinated sensory afferents do not regenerate. In concert with the anatomical growth of sensory axons into the cord, there is a gradual restoration of synaptic function in the denervated region, as revealed by extracellular microelectrode recordings from the spinal gray matter in response to stimulation of peripheral nerves. These positive synaptic responses are correlated with substantial improvements in use of the forelimb, as assessed by paw preference, paw withdrawal to tactile stimuli and the ability to grasp. These results suggest that sNgR may be a potential therapy for restoring sensory function following injuries to sensory roots. PMID:19439606

  16. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn

    PubMed Central

    2011-01-01

    Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations. PMID:21958458

  17. The incidence of bent dorsal fins in free-ranging cetaceans.

    PubMed

    Alves, F; Towers, J R; Baird, R W; Bearzi, G; Bonizzoni, S; Ferreira, R; Halicka, Z; Alessandrini, A; Kopelman, A H; Yzoard, C; Rasmussen, M H; Bertulli, C G; Jourdain, E; Gullan, A; Rocha, D; Hupman, K; Mrusczok, M-T; Samarra, F I P; Magalhães, S; Weir, C R; Ford, J K B; Dinis, A

    2018-02-01

    Laterally bent dorsal fins are rarely observed in free-ranging populations of cetaceans, contrary to captivity, where most killer whale Orcinus orca adult males have laterally collapsed fins. This topic has been poorly explored, and data/information on its occurrence and possible causes are limited. The present study: (i) undertakes a review of the available information on bent dorsal fins in free-ranging cetaceans, and updates it with new records, (ii) reports on the proportion of bent fins in different study populations, and (iii) discusses possible causes. An empirical approach based on bibliographic research and compilation of 52 new records collected worldwide resulted in a total of 17 species of cetaceans displaying bent dorsal fins. The species with the highest number of records (64%) and from most locations was O. orca. On average, individuals with bent dorsal fins represent < 1% of their populations, with the exception of false killer whales Pseudorca crassidens and O. orca. While line injuries associated with fisheries interactions may be the main cause for P. crassidens, and the vulnerability to health issues caused by the evolutionary enlargement of the fin may be the cause for O. orca adult males, factors contributing to this abnormality for other species are still unclear. The occurrence of bent dorsals could be influenced by a set of variables rather than by a single factor but, irrespective of the cause, it is suggested that it does not directly affect the animals' survivorship. While still rare in nature, this incident is more common (at least 101 known cases) and widespread (geographically and in species diversity) than hypothesized, and is not confined only to animals in captive environments. Investigation into the occurrence of bent fins may be an interesting avenue of research. © 2017 Anatomical Society.

  18. Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lin, Jiarui; Lan, Tonghan

    2006-01-01

    Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.

  19. Rats Depend on Habit Memory for Discrimination Learning and Retention

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.

    2007-01-01

    We explored the circumstances in which rats engage either declarative memory (and the hippocampus) or habit memory (and the dorsal striatum). Rats with damage to the hippocampus or dorsal striatum were given three different two-choice discrimination tasks (odor, object, and pattern). These tasks differed in the number of trials required for…

  20. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    PubMed

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  1. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

    PubMed

    Brumovsky, P; Watanabe, M; Hökfelt, T

    2007-06-29

    The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and

  2. Individual Differences in Adult Reading Are Associated with Left Temporo-parietal to Dorsal Striatal Functional Connectivity

    PubMed Central

    Achal, Sanjay; Hoeft, Fumiko; Bray, Signe

    2016-01-01

    Reading skills vary widely in both children and adults, with a number of factors contributing to this variability. The most prominent factor may be related to efficiency of storage, representation, or retrieval of speech sounds. This phonological hypothesis is supported by findings of reduced activation in poor readers in left hemisphere ventro-lateral prefrontal and temporo-parietal phonological processing regions. Less well explained by phonological theories are reported hyperactivation in prefrontal, striatal, and insular regions. This study investigated functional connectivity of a core phonological processing region, the temporo-parietal junction (TPJ), in relation to reading skill in an adult community sample. We hypothesized that connectivity between TPJ and regions implicated in meta-analyses of reading disorder would correlate with individual differences in reading. Forty-four adults aged 30–54, ranging in reading ability, underwent resting fMRI scans. Data-driven connectivity clustering was used to identify TPJ subregions for seed-based connectivity analyses. Correlations were assessed between TPJ connectivity and timed-pseudoword reading (decoding) ability. We found a significant correlation wherein greater left supramarginal gyrus to anterior caudate connectivity was associated with weaker decoding. This suggests that hyperactivation of the dorsal striatum, reported in poor readers during reading tasks, may reflect compensatory or inefficient overintegration into attention networks. PMID:26400921

  3. Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles).

    PubMed

    Sáenz, Aránzazu; Ortiz, Natalia; Lomonte, Bruno; Rucavado, Alexandra; Díaz, Cecilia

    2017-10-01

    Pterois volitans/miles lionfish (adult and juvenile) dorsal spines and caudal fin extracts were compared in their general composition, enzymatic activities and hemolytic and cytotoxic effects on bovine aortic endothelial cells and murine myoblasts, to distinguish between the activities present in the venom and epidermal mucus. Intradermal and intramuscular injections were also administered in mice to determine in vivo effects. This work shows that crude venom of Caribbean species of lionfish, present in dorsal spines, induces several in vitro effects including hemolysis, weak cytotoxicity, proteolytic and hyaluronidase activities, whereas in vivo, it is not hemorrhagic nor myotoxic, but causes edema, plasma extravasation and a thrombotic-associated lesion on the skin. Some small differences were observed between adult and juvenile venomous secretions. Gelatinolytic activity of the epidermal mucus, the only activity found in caudal fin extracts, could contribute to the in vivo toxicity of the venom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bladder volume-dependent excitatory and inhibitory influence of lumbosacral dorsal and ventral roots on bladder activity in rats

    PubMed Central

    Sugaya, Kimio; de Groat, William C.

    2011-01-01

    This study was undertaken to examine the role of the afferent and efferent pathways of the lumbosacral spinal nerve roots in the tonic control of bladder activity. Changes of isovolumetric bladder activity were recorded in 21 sympathectomized female rats under urethane anesthesia following transection of the dorsal (DRT) and ventral (VRT) lumbosacral spinal roots, and after intraperitoneal administration of hexamethonium. DRT altered the baseline intravesical pressure in a bladder volume-dependent manner in each animal. The percent change of baseline pressure after VRT following DRT was also dependent upon bladder volume. The percent change of baseline pressure after VRT alone was similarly dependent on bladder volume, but not after VRT followed by DRT. The percent change of baseline intravesical pressure (y)(−9 to +8 cm H2O, −56 to +46%) after DRT and VRT depended upon bladder volume (x)(y = 44.7 x −40.4) in all rats. Hexamethonium increased the amplitude of small myogenic bladder contractions after DRT and VRT. In conclusion, the bladder is tonically excited or inhibited by a local reflex pathway and by a parasympathetic reflex pathway that depends on connections with the lumbosacral spinal cord and the pelvic nerves. Both reflex mechanisms are influenced by bladder volume. PMID:17878597

  5. Comparative toxicity and tissue distribution of lead acetate in weanling and adult rats.

    PubMed Central

    Rader, J I; Peeler, J T; Mahaffey, K R

    1981-01-01

    The relative toxicity of low doses of lead acetate provided steadily in drinking water or by mouth once per week was studied in weanling and adult rats. Free erythrocyte protoporphyrin and urinary delta-aminolevulinic acid levels were measured, as well as lead levels in blood and kidney. The accumulation of lead in brain tissue and in bone (femur) was measured to determine the effect of age and schedule of administration on tissue distribution and retention of lead. Total intakes of lead during the 60-week experimental period were: weanling and adult rats exposed to drinking water supplemented with 200 microgram of lead acetate/ml: 127 +/- 10 mg and 160 +/- 16 mg, respectively; weanling and adult rats dosed with lead acetate orally once per week: 132 mg and 161 mg, respectively. Increased toxic effects of lead in the weanling animals were apparent in most of the parameters measured (urinary delta-aminolevulinic acid and blood, brain, femur and kidney lead levels). This pattern was observed in weanling rats exposed to lead steadily through drinking water or dosed orally with an equivalent quantity of lead once per week. Lead levels in blood were highly correlated with the accumulation of lead in brain, femur, and kidney tissue in both groups of weanling rats. In adult rats, significant correlations between blood lead and kidney lead and between blood lead and femur lead were found only in the rats receiving lead steadily in drinking water. PMID:7333253

  6. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord.

    PubMed

    Zhu, Guiqin; Dong, Yanbin; He, Xueming; Zhao, Ping; Yang, Aixing; Zhou, Rubing; Ma, Jianhua; Xie, Zhong; Song, Xue-Jun

    2016-01-01

    Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI) in rat tibia (TCI cancer pain model). Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy). Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG) was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  7. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation.

    PubMed

    Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong

    2014-04-01

    Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.

  9. In a rat model of panic, corticotropin responses to dorsal periaqueductal gray stimulation depend on physical exertion.

    PubMed

    de Souza Armini, Rubia; Bernabé, Cristian Setúbal; Rosa, Caroline Azevedo; Siller, Carlos Antônio; Schimitel, Fagna Giacomin; Tufik, Sérgio; Klein, Donald Franklin; Schenberg, Luiz Carlos

    2015-03-01

    Panic disorder patients are exquisitely and specifically sensitive to hypercapnia. The demonstration that carbon dioxide provokes panic in fear-unresponsive amygdala-calcified Urbach-Wiethe patients emphasizes that panic is not fear nor does it require the activation of the amygdala. This is consonant with increasing evidence suggesting that panic is mediated caudally at midbrain's dorsal periaqueductal gray matter (DPAG). Another startling feature of the apparently spontaneous clinical panic is the counterintuitive lack of increments in corticotropin, cortisol and prolactin, generally considered 'stress hormones'. Here we show that the stress hormones are not changed during DPAG-evoked panic when escape is prevented by stimulating the rat in a small compartment. Neither did the corticotropin increase when physical exertion was statistically adjusted to the same degree as non-stimulated controls, as measured by lactate plasma levels. Conversely, neuroendocrine responses to foot-shocks were independent from muscular effort. Data are consonant with DPAG mediation of panic attacks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.

    PubMed

    Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong

    2018-06-01

    Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Role of glutamate receptors in the dorsal reticular nucleus in formalin-induced secondary allodynia.

    PubMed

    Ambriz-Tututi, Mónica; Palomero-Rivero, Marcela; Ramirez-López, Fernanda; Millán-Aldaco, Diana; Drucker-Colín, And René

    2013-10-01

    The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Effects of 4-Vinylcyclohexene Diepoxide on Peripubertal and Adult Sprague–Dawley Rats: Ovarian, Clinical, and Pathologic Outcomes

    PubMed Central

    Muhammad, F Salih; Goode, Amanda K; Kock, Nancy D; Arifin, Esther A; Cline, J Mark; Adams, Michael R; Hoyer, Patricia B; Christian, Patricia J; Isom, Scott; Kaplan, Jay R; Appt, Susan E

    2009-01-01

    Young rats treated daily with intraperitoneal 4-vinylcyclohexene diepoxide (VCD) undergo selective destruction of primordial follicles, resulting in gradual ovarian failure resembling the menopausal transition in women. To determine whether VCD has similar effects on ovaries of older rats, adult and peripubertal Sprague–Dawley rats were injected intraperitoneally daily for 30 d with vehicle or VCD at 40 or 80 mg/kg. Body weight, food intake, complete blood counts, and markers of liver injury and renal function were measured during VCD treatment. Complete gross necropsy and microscopic observations were performed on day 31, and ovarian follicles were counted. At 80 mg/kg, VCD destroyed primordial and primary follicles to a similar extent in both adult and peripubertal animals, although adult rats likely started with fewer follicles and therefore approached follicle depletion. Treatment with VCD did not affect body weight, but food intake was reduced in both adult and peripubertal rats treated with 80 mg/kg VCD. Adult rats treated with 80 mg/kg VCD had neutrophilia and increased BUN and creatinine; in addition, 4 of these rats were euthanized on days 25 or 26 due to peritonitis. VCD treatment did not increase alanine aminotransferase levels, a marker of liver injury, although the 80-mg/kg dose increased liver weights. In conclusion, VCD effectively destroys small preantral follicles in adult Sprague–Dawley rats, making them a suitable model of the menopausal transition of women. However, because adult rats were more sensitive to the irritant properties of VCD, the use of a lower dose should be considered. PMID:19295054

  13. [Regional anatomy of the dorsal penile nerve and its clinical significance].

    PubMed

    Zhang, Chun-Ying; Li, Xing-Hua; Yuan, Tan; Zhang, Hai-Feng; Liu, Ji-Hong; Ye, Zhang-Qun

    2009-02-01

    To investigate the number, course and distribution of normal dorsal penile nerves and their clinical significance for selective neurectomy of the dorsal penile nerve in the treatment of primary premature ejaculation. We dissected 38 cadaveric adult penises and recorded the number, course and distribution of the dorsal penile nerves. A total of 314 cases of primary premature ejaculation underwent selective neurectomy of the dorsal penile nerve. The patients ranged between 20 and 45 years in age and from 1 to 22 years in disease course. The dorsal penile nerves were distributed in parallel bilaterally in all the cadaveric penises and branched into the ventral side in 4 of them. The total number of dorsal penile nerves was (3.6 +/- 1.2) in the 38 cadaveric penises, 7 in 1 case, 6 in 1 case, 5 in 6 cases, 4 in 9 cases, 3 in 14 cases and 2 in 7 cases, while that of the 314 patients with primary premature ejaculation was (7.0 +/- 1.9), 5 in 64 cases, 6 in 56 cases, 7 in 52 cases, 8 in 40 cases, 9 in 33 cases, 10 in 28 cases, 11 in 25 cases, 12 in 11 cases and 13 in 5 cases. Selective neurectomy of the dorsal penile nerve achieved an intravaginal ejaculation latency of (4.31 +/- 1.87) minutes and sexual satisfaction rate of (61 +/- 17) %, significantly different from those before the operation ([1.24 +/- 0.32] min, [23 +/- 6] %; all P < 0.01). The abnormal increase of dorsal penile nerves possibly lies at the bottom of the pathogenesis of primary premature ejaculation. Selective neurectomy of the dorsal penile nerve is safe and effective for the treatment of primary premature ejaculation.

  14. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.

    PubMed

    Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian

    2018-06-01

    Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.

  15. Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human

    PubMed Central

    2012-01-01

    Background Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. Results We found Scgn mRNA expressed in mouse and human DRGs and in mouse ventral spinal cord. Our immunohistochemical data showed a complementary distribution of Scgn and the three CaBPs in mouse DRG neurons and spinal cord. Scgn was expressed in ~7% of all mouse DRG neuron profiles, mainly small ones and almost exclusively co-localized with calcitonin gene-related peptide (CGRP). This co-localization was also seen in human, but not in rat DRGs. Scgn could be detected in the mouse sciatic nerve and accumulated proximal to its constriction. In mouse spinal cord, Scgn-positive neuronal cell bodies and fibers were found in gray matter, especially in the dorsal horn, with particularly high concentrations of fibers in the superficial laminae, as well as in cell bodies in inner lamina II and in some other laminae. A dense Scgn-positive fiber network and some small cell bodies were also found in the superficial dorsal horn of humans. In the ventral horn, a small number of neurons were Scgn-positive in mouse but not rat, confirming mRNA distribution. Both in mouse and rat, a subset of TG neurons contained Scgn. Dorsal rhizotomy strongly reduced Scgn fiber staining in the dorsal horn. Peripheral axotomy did not clearly affect Scgn expression in DRGs, dorsal horn or ventral horn neurons in mouse. Conclusions Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the

  16. Dietary modulation of parathion-induced neurotoxicity in adult and juvenile rats.

    PubMed

    Liu, Jing; Karanth, Subramanya; Pope, Carey

    2005-06-01

    Previous studies indicated that dietary glucose (15% in drinking water) could markedly exacerbate the toxicity of parathion in adult rats. The present study evaluated the effect of consumption of the commonly used sweetener, high fructose corn syrup (HFCS), on parathion toxicity in adult and juvenile rats. Animals were given free access to either water or 15% HFCS in drinking water for a total of 10 days and challenged with parathion (6 or 18 mg/kg, s.c., for juveniles or adults, respectively) on the 4th day. Signs of cholinergic toxicity, body weight and chow/fluid intake were recorded daily. Acetylcholinesterase (AChE) activity and immunoreactivity (AChE-IR) in frontal cortex and diaphragm were measured at 2, 4, and 7 days after parathion. As HFCS was associated with significant reduction in chow intake, adult rats were also pair-fed to evaluate the effect of similar reduced chow intake alone on parathion toxicity. The results indicated that the cholinergic toxicity of parathion was significantly increased by HFCS feeding in both age groups. The excess sugar consumption, however, did not significantly affect parathion-induced AChE inhibition in either tissue or either age group. Enzyme immunoreactivity in frontal cortex was generally not affected in either age group while diaphragm AChE-IR was significantly reduced by parathion and HFCS alone in adult animals at 2 and 4 days timepoints, and more so by the combination of sugar feeding and parathion exposure in both age groups. Food restriction alone did not exacerbate parathion toxicity. While the mechanism(s) remains unclear, we conclude that voluntary consumption of the common sweetener HFCS can markedly amplify parathion acute toxicity in both juvenile and adult rats.

  17. [Effect of tail-suspension on the reproduction of adult male rats].

    PubMed

    Zhou, Dang-xia; Qiu, Shu-dong; Wang, Zhi-yong; Zhang, Jie

    2006-04-01

    To study the effects on the male reproduction in adult male rats and its mechanisms through simulated weightlessness using tail-suspension, in order to do a basic works of exploring the effects on human being's reproduction in outer space. Forty Spraque-Dawley adult male rats were randomly divided into four groups, two experimental groups and two control groups. Rats in the two experimental groups were tail-suspended for 14 d and 28 d respectively, then we examined the weight and morphology of testis, the quality and amount of sperm, also tested the serum hormone by radioimmunoassay and analyzed apoptosis rate of testicular cells by TUNEL in the experimental rats and control rats. After tail-suspension, the weight of testis, the sperm count and sperm motility significantly decreased (P <0.05), while the apoptosis rate of testicular cells and the amount of abnormal sperm markedly increased (P <0.05). The content of testosterone significantly decreased (P <0.05), but the contents of FSH and LH mildly increased (P > 0.05). These changes were not significant between two experimental groups (P > 0.05). In addition, the seminiferous tubules became atrophy with the reduction of the layers of seminiferous epithelium, and sperm amount in lumens of seminiferous tubules decreased in experimental groups. The above were more remarkable in the 28 d experimental group. Simulating weightlessness has a harmful effect on reproduction of adult male rats. These may be caused by inducing apoptosis. The blocking apoptosis of testicular cells may be useful in improving the harmful effect.

  18. Dorsal arachnoid web.

    PubMed

    McCormick, Paul C

    2014-09-01

    Dorsal thoracic arachnoid web is a rare but often overlooked cause of progressive myelopathy. Syringomyelia, either above or below the compressive arachnoid band, may also be present. Dorsal arachnoid cyst and ventral spinal cord herniation may be mistaken for this condition. This video demonstrates the microsurgical identification and techniques of resection of a dorsal arachnoid band producing a progressive myelopathy in a 63-year-old man. The video can be found here: http://youtu.be/KDNTqiyW6yo.

  19. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  20. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  1. PPAR alpha and PPAR gamma coactivation rapidly induces Egr-1 in the nuclei of the dorsal and ventral urinary bladder and kidney pelvis urothelium of rats.

    PubMed

    Egerod, Frederikke Lihme; Svendsen, Jette Eldrup; Hinley, Jennifer; Southgate, Jennifer; Bartels, Annette; Brünner, Nils; Oleksiewicz, Martin B

    2009-12-01

    To facilitate studies of the rat bladder carcinogenicity of dual-acting PPAR alpha+gamma agonists, we previously identified the Egr-1 transcription factor as a candidate carcinogenicity biomarker and developed rat models based on coadministration of commercially available specific PPAR alpha and PPAR gamma agonists. Immunohistochemistry for Egr-1 with a rabbit monoclonal antibody demonstrated that male vehicle-treated rats exhibited minimal urothelial expression and specifically, no nuclear signal. In contrast, Egr-1 was induced in the nuclei of bladder, as well as kidney pelvis, urothelia within one day (2 doses) of oral dosing of rats with a combination of 8 mg/kg rosiglitazone and 200 mg/kg fenofibrate (specific PPAR gamma and PPAR alpha agonists, respectively). These findings were confirmed by Western blotting using a different Egr-1 antibody. Egr-1 was induced to similar levels in the dorsal and ventral bladder urothelium, arguing against involvement of urinary solids. Egr-1 induction sometimes occurred in a localized fashion, indicating physiological microheterogeneity in the urothelium. The rapid kinetics supported that Egr-1 induction occurred as a result of pharmacological activation of PPAR alpha and PPAR gamma, which are coexpressed at high levels in the rat urothelium. Finally, our demonstration of a nuclear localization supports that the Egr-1 induced by PPAR alpha and PPAR gamma coactivation in the rat urothelium may be biologically active.

  2. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Role of hydrogen sulfide within the dorsal motor nucleus of the vagus in the control of gastric function in rats.

    PubMed

    Sun, H-Z; Yu, K-H; Ai, H-B

    2015-05-01

    Hydrogen sulfide (H2 S) is a gaseous messenger and serves as an important neuromodulator in the central nervous system. This study aimed to clarify the role of H2 S within the dorsal motor nucleus of the vagus (DMV) in the control of gastric function in rats. Cystathionine β-synthetase (CBS) is an important generator of endogenous H2 S in the brain. We investigated the distribution of CBS in the DMV using immunohistochemical method, and the effects of H2 S on gastric motility and on gastric acid secretion. CBS-immunoreactive (IR) neurons were detected in the rostral, intermediate and caudal DMV, with the highest number of CBS-IR neurons in the caudal DMV, and the lowest in the intermediate DMV. We also found that microinjection of the exogenous H2 S donor NaHS (0.04 and 0.08 mol/L; 0.1 μL; n = 6; p < 0.05) into the DMV significantly inhibited gastric motility with a dose-dependent trend, and promoted gastric acid secretion in Wistar rats. Microinjection of the same volume of physiological saline (PS; 0.1 μL, n = 6, p > 0.05) at the same location did not noticeably change gastric motility and acid secretion. The data from these experiments suggest that the CBS that produces H2 S is present in the DMV, and microinjection of NaHS into the DMV inhibited gastric motility and enhanced gastric acid secretion in rats. © 2015 John Wiley & Sons Ltd.

  5. Comparison of the spatial distribution of endopeptidase-24.11 with substance P, substance P receptor (NK-1r) and gastric efferent neurons in the dorsal vagal complex of the rat.

    PubMed

    Ladic, L; Buchan, A

    1997-01-24

    The spatial location of neutral endopeptidase 24.11 (NEP) immunoreactivity was compared to that of substance P (SP), SP receptor (NK-1r) and identified gastric efferent neurons in the dorsal vagal complex in rat brainstem. The majority of NEP labeling was observed caudal to the obex. Neutral endopeptidase-immunoreactivity was associated with the central canal, ependyma and blood vessels, and surrounded the area postrema. A comparison of the results of immunocytochemical and retrograde tracing experiments demonstrated the absence of co-labeling of neurons or their process with NEP and either substance P or NK-1r. Furthermore, no NEP-immunoreactivity was observed in the vicinity of identified gastric efferents in the dorsal motor nucleus of the vagus. These results would suggest that NEP does not degrade SP in the vicinity of gastric efferent neurons.

  6. Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats

    PubMed Central

    Glenn, Melissa J.; Gibson, Erin M.; Kirby, Elizabeth D.; Mellott, Tiffany J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Increased dietary intake of choline early in life improves performance of adult rats on memory tasks and prevents their age-related memory decline. Because neurogenesis in the adult hippocampus also declines with age, we investigated whether prenatal choline availability affects hippocampal neurogenesis in adult Sprague–Dawley rats and modifies their neurogenic response to environmental stimulation. On embryonic days (ED) 12−17, pregnant rats ate a choline-supplemented (SUP-5 g/kg), choline sufficient (SFF-1.1 g/kg), or choline-free (DEF) semisynthetic diet. Adult offspring either remained in standard housing or were given 21 daily visits to explore a maze. On the last ten exploration days, all rats received daily injections of 5-bromo-2-deoxyuridine (BrdU, 100 mg/kg). The number of BrdU+ cells was significantly greater in the dentate gyrus in SUP rats compared to SFF or DEF rats. While maze experience increased the number of BrdU+ cells in SFF rats to the level seen in the SUP rats, this enriching experience did not alter cell proliferation in DEF rats. Similar patterns of cell proliferation were obtained with immunohistochemical staining for neuronal marker doublecortin, confirming that diet and exploration affected hippocampal neurogenesis. Moreover, hippocampal levels of the brain-derived neurotrophic factor (BDNF) were increased in SUP rats as compared to SFF and DEF animals. We conclude that prenatal choline intake has enduring effects on adult hippocampal neurogenesis, possibly via up-regulation of BDNF levels, and suggest that these alterations of neurogenesis may contribute to the mechanism of life-long changes in cognitive function governed by the availability of choline during gestation. PMID:17445242

  7. Dorsal bundle lesions do not affect latent inhibition of conditioned suppression.

    PubMed

    Tsaltas, E; Preston, G C; Rawlins, J N; Winocur, G; Gray, J A

    1984-01-01

    Three experiments are reported which examine the effects of lesions of the dorsal ascending noradrenergic bundle (DB) on latent inhibition using a conditioned suppression procedure in rats. In none of the experiments did the DB lesion have any effect, despite changes in the extent of latent inhibition and in the control procedures used to assess it. The results are discussed in relation to the attentional theory of DB function.

  8. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  9. Acute pancreatitis decreases the sensitivity of pancreas-projecting dorsal motor nucleus of the vagus neurones to group II metabotropic glutamate receptor agonists in rats

    PubMed Central

    Babic, Tanja; Travagli, R Alberto

    2014-01-01

    Recent studies have shown that pancreatic exocrine secretions (PES) are modulated by dorsal motor nucleus of the vagus (DMV) neurones, whose activity is finely tuned by GABAergic and glutamatergic synaptic inputs. Group II metabotropic glutamate receptors (mGluR) decrease synaptic transmission to pancreas-projecting DMV neurones and increase PES. In the present study, we used a combination of in vivo and in vitro approaches aimed at characterising the effects of caerulein-induced acute pancreatitis (AP) on the vagal neurocircuitry modulating pancreatic functions. In control rats, microinjection of bicuculline into the DMV increased PES, whereas microinjections of kynurenic acid had no effect. Conversely, in AP rats, microinjection of bicuculline had no effect, whereas kynurenic acid decreased PES. DMV microinjections of the group II mGluR agonist APDC and whole cell recordings of excitatory currents in identified pancreas-projecting DMV neurones showed a reduced functional response in AP rats compared to controls. Moreover, these changes persisted up to 3 weeks following the induction of AP. These data demonstrate that AP increases the excitatory input to pancreas-projecting DMV neurones by decreasing the response of excitatory synaptic terminals to group II mGluR agonist. PMID:24445314

  10. Glucoregulatory responses of adult and aged rats after exposure to chronic stress.

    PubMed

    Odio, M R; Brodish, A

    1990-01-01

    Stress has been implicated as an environmental factor that may accelerate the process of biological aging. However, this proposal has remained largely anecdotal due to relatively few studies that directly tested this hypothesis. In the present experiments groups of 6-month-old and 20-month-old male F-344 rats were chronically stressed for a six-month period. After the last stress session, when the animals were 12 months of age (adult) and 26 months of age (old), control and chronically stressed rats were tested for their ability to: (a) elicit glucose and insulin responses to an acute, novel stressor; (b) remove a circulatory glucose load elicited either by acute stress exposure or by injection of d-glucose; and (c) raise insulin levels after a glucose challenge. In control rats, we observed a deficit in each of these parameters in old compared to adult rats. Exposure to chronic stress did not exacerbate deterioration of these response mechanisms in either adult or old rats. In fact, the data showed a modest improvement in glucose tolerance in chronically stressed compared to age-matched control rats. We conclude that chronic stress did not exacerbate age-dependent decline of glucoregulatory capacity. From these results and from our earlier work, we speculate that the decline during aging of the functional integrity of systems involved in the response to stress may be sustained by periodic challenges from the organism's external environment.

  11. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    PubMed

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  12. Therapeutic potential of Mucuna pruriens (Linn.) on ageing induced damage in dorsal nerve of the penis and its implication on erectile function: an experimental study using albino rats.

    PubMed

    Seppan, Prakash; Muhammed, Ibrahim; Mohanraj, Karthik Ganesh; Lakshmanan, Ganesh; Premavathy, Dinesh; Muthu, Sakthi Jothi; Wungmarong Shimray, Khayinmi; Sathyanathan, Sathya Bharathy

    2018-02-15

    To study the effect of ethanolic seed extract of Mucuna pruriens on damaged dorsal nerve of the penis (DNP) in aged rat in relation to penile erection. The rats were divided into four groups Young (3 months), Aged (24 - 28 months), Aged + M. pruriens, and Young + M. pruriens (200 mg/kg b.w/60 days) and were subjected to the hypophysial - gonadal axis, nerve conduction velocity (NCV), and penile reflex. DNP sections were stained with nitric oxide synthase (nNOS), nicotinamide adenine dinucleotide phosphate (NaDPH) diaphorase, androgen receptor (AR), and osmium tetroxide. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining, electron microscopy(EM) and histometric analyses were done. Significant disturbance in hypophysial - gonadal axis was noted in aged rat. With reduced number of myelinated fibers, diameter, vacuolization, indentation of the myelin sheath, and degeneration. nNOS and its cofactor (NaDPH diaphorase) were reduced in aged rat DNP. NCV was slow in aged rats and concomitant poor penile reflex was also noted. AR showed reduced expression in aged rat DNP when compared to young and control groups. TUNEL positive cells were increased in aged rat DNP. These pathological changes were remarkably reduced or recovered in M. pruriens treated aged rats. The results indicate a multi-factorial therapeutic activity in penile innervations towards sustaining the penile erection in the presence of the extract in aged rats and justifying the claim of traditional usage.

  13. Observation of a system of linear loops formed by re-growing hairs on rat skin.

    PubMed

    Liu, Li-Yuan; Guo, Dong-Sheng; Xin, Xiu-Yu; Fang, Jin

    2008-07-01

    This paper details linear hair re-growth patterns observed in rats. Adult rats were shaved and observed. The first wave of hair re-growth did not distribute everywhere, but along specific craniocaudally-oriented lines. The hair-lines were 2-15 mm wide and ran from the head, through the torso to the limbs, and were symmetrical along the left and right sides of the body. The symmetric hair-lines from both sides of the body converged around the mouth, nose, and at the pubic region or ventral midline to form a system of hair-loop-lines (HLLs). The loops can be differentiated into four main patterns. The Dorsal Loop and the Lateral Dorsal Loop run along the dorsum and hindlimb. The Ventral Loop and Lateral Ventral Loop travel along the thorax, abdomen, and forelimb. These hair-lines coincide with our previously observed sympathetic-substance lines (SSLs) in the rat's skin. Histological observation indicates that rat hair follicles along the hair-lines were at anagen phase. The catecholamine histofluorescent check showed abundant sympathetic nerve fibers beneath the hair-lines. After the rats' hairs were dyed, and selected portions shaved, re-growth was only observed on the shaved portions, indicating that the linear hair growth closely correlated with the shaving. Lastly we examine the cause of the preferential re-growth and briefly discuss the purpose and physiological role of the HLL. (c) 2008 Wiley-Liss, Inc.

  14. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.

    PubMed

    Ou, Shan; Zhao, Yan-Dong; Xiao, Zhi; Wen, Hui-Zhong; Cui, Jian; Ruan, Huai-Zhen

    2011-04-01

    ATP facilitates initiation and transmission of the neuropathic pain at the dorsal root ganglion (DRG) level via the P2X receptors, especially the subtype P2X(3). Lappaconitine (LA) is an active principle isolated from Chinese herbal medicine and possesses analgesic effect. The aim of this study was to investigate the effect of LA on chronic constriction injury (CCI)-induced neuropathic pain mediated by P2X(3) receptor in the DRG neurons. In the presence of CCI and/or LA, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured and P2X(3) receptor expression in the DRG neurons was evaluated by immunohistochemistry and Western blotting. Following intrathecal administration of P2X(3) receptor oligonucleotide, the effect of LA on pain thresholds was assessed. Furthermore, the effect of LA on the P2X(3) receptor agonists ATP- and α,β-meATP-induced inward currents (I(ATP) and I(α,β-meATP)) in the acutely dissociated rat DRG neurons was investigated by whole cell patch-clamp. The results included: (1) There showed reduction of pain thresholds, enhancement of I(ATP) and I(α,β-meATP) and up-regulation of P2X(3) receptor expression in rat DRG neurons when neuropathic pain occurred. (2) In the presence of LA, the decreased pain thresholds, the up-regulated P2X(3) receptor expression and the enhanced I(ATP) and I(α,β-meATP) were reversible in the CCI rats. (3) The down-regulated P2X(3) receptor expression with pretreatment of P2X(3) receptor antisense oligonucleotide significantly attenuated the analgesic effect of LA. These results indicate that the analgesic effect of LA involves decrease of expression and sensitization of the P2X(3) receptors of the rat DRG neurons following CCI. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Distribution of AMPA receptor subunits GluR1-4 in the dorsal vagal complex of the rat: a light and electron microscope immunocytochemical study.

    PubMed

    Kessler, J P; Baude, A

    1999-10-01

    The dorsal vagal complex, localized in the dorsomedial medulla, includes the nucleus tractus solitarii (NTS), the dorsal motor nucleus of the vagus nerve (DMN) and the area postrema (AP). The distribution of AMPA-preferring glutamate receptors (AMPA receptors) within this region was investigated using immunohistochemistry and antibodies recognizing either one (GluR1 or GluR4) or two (GluR2 and GluR3) AMPA receptors subunits. The distribution of GluR1 immunoreactivity showed high contrast of staining between strongly and lightly labeled areas. Labeling was intense in the AP and weak in the NTS, except for its medial and dorsalmost parts which exhibited moderate staining. Almost no GluR1 immunoreactivity was found in the DMN. GluR2/3 immunolabeling was present in the entire dorsal vagal complex. This labeling was strong in the AP, the DMN and the medial half of the NTS and moderate in the lateral half of the NTS, except for the interstitial subdivision which exhibited intense staining. Labeling induced by the GluR4 antibody was very weak throughout the dorsal vagal complex. Ultrastructural examination showed that GluR1 and GluR2/3 immunoreactivity was localized in neuronal cell bodies and dendrites. No labeled axon terminal or glial cell body was found. Immunoperoxidase staining in labeled cell bodies and dendrites was associated with intracellular organelles (microtubules, mitochondria, cisternae of the endoplasmic reticulum,.) and/or parts of the plasma membrane. Plasma membrane labeling was often associated with asymmetrical synaptic differentiations. No labeled symmetrical synapse was found using either GluR1 or GluR2/3 antibody. The present results show that AMPA receptors have a widespread distribution in neuronal perikarya and dendrites of the rat dorsal vagal complex. They suggest differences in subunit composition between AMPA receptors localized in the NTS, the DMN and the AP. Ultrastructural data are consistent with the fact that AMPA receptors associated

  16. Lumbar dorsal ramus syndrome.

    PubMed

    Bogduk, N

    1980-11-15

    Low back pain, referred pain in the lower limbs, and spasm of the back, gluteal, and hamstring muscles are clinical features which can be induced in normal volunteers by stimulating structures which are innervated by the lumbar dorsal rami. Conversely, they can be relieved in certain patients by selective interruption of conduction along dorsal rami. These facts permit the definition of a lumbar dorsal ramus syndrome, which can be distinguished from the intervertebral disc syndrome and other forms of low back pain. The distinguishing feature is that, in lumbar dorsal ramus syndrome, all the clinical features are exclusively mediated by dorsal rami and do not arise from nerve-root compression. The pathophysiology, pathology, and treatment of this syndrome are described. Recognition of this syndrome, and its treatment with relatively minor procedures, can obviate the need for major surgery which might otherwise be undertaken.

  17. Interactions of Stress and CRF in Ethanol-Withdrawal Induced Anxiety in Adolescent and Adult Rats

    PubMed Central

    Wills, Tiffany A.; Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. Methods Male adult and adolescent Sprague–Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5-days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. Results Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. Conclusions In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased

  18. Spinal Interneurons and Forelimb Plasticity after Incomplete Cervical Spinal Cord Injury in Adult Rats

    PubMed Central

    Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.

    2015-01-01

    Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912

  19. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  20. Role of hippocampus in polymodal-cue guided tasks in rats.

    PubMed

    Miniaci, Maria Concetta; Lippiello, Pellegrino; Monda, Marcellino; Scotto, Pietro

    2016-09-01

    To examine how signals from different sensory modalities are integrated to generate an appropriate goal-oriented behavior, we trained rats in an eight-arm radial maze to visit a cue arm provided with intramaze cues from different sensory modalities, i.e. visual, tactile and auditory, in order to obtain a reward. When the same rats were then examined on test trials in which the cue arm contained one of the stimuli that the animals were trained with (i.e. light, sound or rough sheet), they showed a significant impairment with respect to the performance on the polymodal-cue task. The contribution of the dorsal hippocampus to the acquisition and retention of polymodal-cue guided task was also examined. We found that rats with dorsal hippocampal lesions before training showed a significant deficit in the acquisition of polymodal-cue oriented task that improved with overtraining. The selective lesion of the dorsal hippocampus after training disrupted memory retention, but the animals' performance improved following retraining of the polymodal task. All hippocampal lesioned rats displayed an impaired performance on the unimodal test. These findings suggest that the dorsal hippocampus contributes to the processing of multimodal sensory information for the associative memory formation and consolidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Temporary inhibition of dorsal or ventral hippocampus by muscimol: distinct effects on measures of innate anxiety on the elevated plus maze, but similar disruption of contextual fear conditioning.

    PubMed

    Zhang, Wei-Ning; Bast, Tobias; Xu, Yan; Feldon, Joram

    2014-04-01

    Studies in rats, involving hippocampal lesions and hippocampal drug infusions, have implicated the hippocampus in the modulation of anxiety-related behaviors and conditioned fear. The ventral hippocampus is considered to be more important for anxiety- and fear-related behaviors than the dorsal hippocampus. In the present study, we compared the role of dorsal and ventral hippocampus in innate anxiety and classical fear conditioning in Wistar rats, examining the effects of temporary pharmacological inhibition by the GABA-A agonist muscimol (0.5 ug/0.5 ul/side) in the elevated plus maze and on fear conditioning to a tone and the conditioning context. In the elevated plus maze, dorsal and ventral hippocampal muscimol caused distinct behavioral changes. The effects of ventral hippocampal muscimol were consistent with suppression of locomotion, possibly accompanied by anxiolytic effects, whereas the pattern of changes caused by dorsal hippocampal muscimol was consistent with anxiogenic effects. In contrast, dorsal and ventral hippocampal muscimol caused similar effects in the fear conditioning experiments, disrupting contextual, but not tone, fear conditioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making.

    PubMed

    Schumacher, Anett; Vlassov, Ekaterina; Ito, Rutsuko

    2016-04-01

    The resolution of an approach-avoidance conflict induced by ambivalent information involves the appraisal of the incentive value of the outcomes and associated stimuli to orchestrate an appropriate behavioral response. Much research has been directed at delineating the neural circuitry underlying approach motivation and avoidance motivation separately. Very little research, however, has examined the neural substrates engaged at the point of decision making when opposing incentive motivations are experienced simultaneously. We hereby examine the role of the dorsal and ventral hippocampus (HPC) in a novel approach-avoidance decision making paradigm, revisiting a once popular theory of HPC function, which posited the HPC to be the driving force of a behavioral inhibition system that is activated in situations of imminent threat. Rats received pre-training excitotoxic lesions of the dorsal or ventral HPC, and were trained to associate different non-spatial cues with appetitive, aversive and neutral outcomes in three separate arms of the radial maze. On the final day of testing, a state of approach-avoidance conflict was induced by simultaneously presenting two cues of opposite valences, and comparing the time the rats spent interacting with the superimposed 'conflict' cue, and the neutral cue. The ventral HPC-lesioned group showed significant preference for the conflict cue over the neutral cue, compared to the dorsal HPC-lesioned, and control groups. Thus, we provide evidence that the ventral, but not dorsal HPC, is a crucial component of the neural circuitry concerned with exerting inhibitory control over approach tendencies under circumstances in which motivational conflict is experienced. © 2015 Wiley Periodicals, Inc.

  3. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  4. Age related optic nerve axonal loss in adult Brown Norway rats.

    PubMed

    Cepurna, William O; Kayton, Robert J; Johnson, Elaine C; Morrison, John C

    2005-06-01

    The effect of age on the number and morphology of optic nerve axons in adult Brown Norway rats (5-31 months old) (n=29) was examined using transmission electron microscopy (TEM). By manually counting every axon in areas representing 60% of the optic nerve cross-section, we found a significant negative correlation between age and axon count (R(2)=0.18, P<0.05). However, when the oldest animals were omitted, the relationship was no longer statistically significant. Simultaneously, the proportion of spontaneously degenerating axons increased at an exponential rate (R(2)=0.79, P<0.05), with significantly more degeneration in the 31-month group than in 5-month-old animals (ANOVA, P<0.05). This study demonstrates, using quantitative TEM methods, that optic nerve axonal numbers are relatively constant throughout the majority of the adult life of the Brown Norway rat, an increasingly popular strain for glaucoma research. Total axonal loss with aging is substantially less than that reported for other strains. The reduction in axonal numbers and the rate of axonal degeneration do not appear significantly altered until the last few months of life, failing to support some studies that have concluded that optic nerve axon loss in adult rats is linear. However, they do agree with other studies in the rat, and a similar study performed in non-human primate eyes, that concluded that aging changes in the optic nerve and retina follow a complex pattern. Therefore, the impact of animal age must be considered when modeling the course and pathophysiology of experimental glaucomatous optic nerve damage in rats.

  5. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation.

    PubMed

    Rafiei, Arash; Hakky, Tariq S; Martinez, Daniel; Parker, Justin; Carrion, Rafael

    2014-12-01

    Conditions mimicking penile fracture are extremely rare and have been seldom described. To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. A 33-year-old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, he was emergently taken to the operating room for exploration and required only dorsal venous ligation. Postoperatively, patient's Sexual Health Inventory for Men score was 23, and he had no issues with erections or sexual intercourse. Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation.

  6. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.

    PubMed

    Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun

    2017-09-01

    Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of general anesthetics on substance P release and c-Fos expression in the spinal dorsal horn

    PubMed Central

    Takasusuki, Toshifumi; Yamaguchi, Shigeki; Hamaguchi, Shinsuke; Yaksh, Tony L.

    2013-01-01

    Background We examined in vivo the effects of general anesthetics on evoked substance P release (primary afferent excitability) and c-Fos expression (neuronal activation) in superficial dorsal horn. Methods Rats received saline, propofol (100mg/kg), pentobarbital (50mg/kg), isoflurane (2 minimum alveolar concentration), nitrous oxide (66%) or fentanyl (30μg/kg). During anesthesia, rats received intraplantar 5% formalin (50μl) to left hindpaw. Ten min later, rats underwent transcardial perfusion with 4% paraformaldehyde. Substance P release from small primary afferents was assessed by incidence of Neurokinin 1 receptor (NK1r) internalization in the superficial dorsal horn. In separate studies, rats were sacrificed after 2 hrs and c-Fos expression measured. Results Intraplantar formalin induced robust NK1r internalization in ipsilateral dorsal horn (ipsilateral: 54±6% [mean±SEM], contralateral: 12±2%, P<0.05, n=4). Fentanyl, but not propofol, pentobarbital, isoflurane nor nitrous oxide alone inhibited NK1r internalization. However, 2 minimum alveolar concentration isoflurane + nitrous oxide reduced NK1r internalization (27±3%, P<0.05, n=5). All agents reduced c-Fos expression (control: 34±4, fentanyl: 8±2, isoflurane: 12±3, nitrous oxide: 11±2, isoflurane + nitrous oxide: 12±1, pentobarbital: 11±2, propofol: 13±3, P<0.05, n=3). Conclusion General anesthetics at anesthetic concentrations block spinal neuron activation through a mechanism which is independent of an effect upon small primary afferent peptide release. The effect of fentanyl alone and the synergistic effect of isoflurane and nitrous oxide on substance P release suggests a correlative rationale for the therapeutic use of these anesthetic protocol by blocking nociceptive afferent transmitter release and preventing the initiation of cascade which are immediately postsynaptic to the primary afferent. PMID:23708866

  8. Intercellular communication within the rat anterior pituitary: XIV electron microscopic and immunohistochemical study on the relationship between the agranular cells and GnRH neurons in the dorsal pars tuberalis of the pituitary gland.

    PubMed

    Shirasawa, Nobuyuki; Sakuma, Eisuke; Wada, Ikuo; Naito, Akira; Horiuchi, Osamu; Mabuchi, Yoshio; Kanai, Miharu; Herbert, Damon C; Soji, Tsuyoshi

    2007-11-01

    Although numerous investigators in 1970s to 1980s have reported the distribution of LH-RH nerve fibers in the median eminence, a few LH-RH fibers have been shown to be present in the pars tuberalis. The significance of the finding remains to be elucidated, and there are few studies on the distribution of LH-RH neurons in the pars tuberalis, especially in the dorsal pars tuberalis (DPT). Adult male Wistar-Imamichi rats were separated into two groups: one for electron microscopy and the other for immunohistochemistry to observe LH-RH and neurofilaments. Pituitary glands attached to the brain were fixed by perfusion, and the sections were prepared parallel to the sagittal plane. The typical glandular structure of the pars tuberalis was evident beneath the bottom floor of the third ventricle, and the thick glandular structure was present in the foremost region. Closer to the anterior lobe, the glandular structure changed to be a thin layer, and it was again observed at the posterior portion. Then the pituitary stalk was surrounded with the dorsal, lateral, and ventral pars tuberalis. LH-RH and neurofilaments fibers were noted in the bottom floor, and some of them vertically descended to the gland. Adjacent to the glandular folliculostellate cells in the pars tuberalis, Herring bodies with numerous dense granules invading into the gland were present between the pituitary stalk and DPT. It was postulated that the "message" carried by LH-RH might have been transmitted to the cells in the DPT to aid in the modulation of LH release. Copyright 2007 Wiley-Liss, Inc.

  9. Immunotoxicity of clonazepam in adult albino rats.

    PubMed

    Rabei, Hanan Mostafa

    2013-01-01

    Clonazepam as an addictive drug is studied to elucidate its destructive effects on rats' immune system. The aim of the current work was to study the immunologic changes induced by sub-chronic administration of clonazepam for three weeks followed by a withdrawal period in adult male albino rats. Seventy-two Sprague Dawley rats were divided into three equal groups. The first group was used as control; the second and third groups were treated with clonazepam. Six rats from each group were sacrificed weekly. Data showed that clonazepam induced a significant suppression in the level of IFN-gamma cortisol production, total splenocytes count and lymphocytes transformation induced by PHA mitogen along the experimental period especially in the third group. However, subchronic doses of clonazepam increased the production of IL-10 in both treated groups. Moreover, significant DNA damage in the peripheral blood lymphocytes of both treated groups was observed along the duration of the study. In conclusion, the immune system responses can be adversely affected to a greater extent by sub-chronic administration of clonazepam and should be prescribed cautiously as patients may turn addict to it.

  10. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    PubMed

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  11. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    PubMed

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  12. Analysis of testosterone effects on sonic hedgehog signaling in juvenile, adolescent and adult sprague dawley rat penis.

    PubMed

    Bond, Christopher W; Angeloni, Nicholas L; Podlasek, Carol A

    2010-03-01

    Smooth muscle apoptosis is a major contributing factor to erectile dysfunction (ED) development in prostatectomy and diabetic patients and animal models. A critical regulator of penile smooth muscle and apoptosis is Sonic hedgehog (SHH). The SHH protein is decreased in ED models and SHH treatment of cavernous nerve (CN) injured rats prevents smooth muscle apoptosis. A close association between androgen deficiency and ED has been suggested in the literature, but few studies have examined the molecular effects on penile smooth muscle and on known signaling mechanisms that regulate morphology. Aim. Examine testosterone and SHH interaction in eugonadal adult, adolescent and juvenile rats by performing castration studies and treatment with supraphysiological testosterone. The eugonadal adult Sprague Dawley rats were either treated with testosterone for 7 or 14 days (N = 14) or were castrated for 4 or 7 days (N = 12). The juvenile rats were treated with testosterone for 8 days (N = 7). The adolescent rats were castrated and sacrificed at P88 (N = 8). The control rats had empty vehicle (N = 22) or sham surgery (N = 20). The active form of SHH protein and mRNA were quantified by semi-quantitative immunohistochemical analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR). Testosterone treatment did not alter SHH signaling in juvenile rats. Shh mRNA increased 3.2-fold and SHH protein increased 1.2-fold in rats castrated during puberty. In adult rats, castration decreased Shh mRNA 3.2-fold but did not alter SHH protein. Testosterone supplement in adult rats increased Shh mRNA 2.3-fold and decreased SHH protein 1.3-fold. SHH signaling is independent of testosterone in normal juvenile rats and is sensitive to testosterone during adolescence, while testosterone supplement in the adult adversely impacts SHH signaling in a very similar manner to that observed with CN injury.

  13. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    NASA Astrophysics Data System (ADS)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  14. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats

    PubMed Central

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-01-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522

  15. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-04-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.

  16. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    PubMed

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  17. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    PubMed Central

    Loughridge, Alice B.; Greenwood, Benjamin N.; Day, Heidi E. W.; McQueen, Matthew B.; Fleshner, Monika

    2013-01-01

    Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms. PMID:23717271

  18. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats.

    PubMed

    Mohamed, M; Sulaiman, S A; Jaafar, H; Sirajudeen, K N S

    2012-05-01

    The aim of this study was to evaluate the effect of different doses of Malaysian honey on male reproductive parameters in adult rats. Thirty-two healthy adult male Sprague-Dawley rats were randomly divided into four groups (eight rats per group). Group 1 (control group) was given 0.5 ml of distilled water. Groups 2, 3 and 4 were given 0.2, 1.2 and 2.4 g kg(-1) body weight of honey respectively. The rats were treated orally by gavage once daily for 4 weeks. Honey did not significantly alter body and male reproductive organs weights. The rats in Group 3 which received honey at 1.2 g kg(-1) had significantly higher epididymal sperm count than those in Groups 1, 2 and 4. No significant differences were found for the percentage of abnormal sperm, elongated spermatid count, reproductive hormonal levels as well as the histology of the testis among the groups. In conclusion, Malaysian honey at a dose of 1.2 g kg(-1) daily significantly increased epididymal sperm count without affecting spermatid count and reproductive hormones. These findings might suggest that oral administration of honey at this dose for 4 weeks may enhance spermiogenesis in adult rats. © 2011 Blackwell Verlag GmbH.

  19. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats.

    PubMed

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-09-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague-Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement.

  20. Early treatment with metformin induces resistance against tumor growth in adult rats

    PubMed Central

    Trombini, Amanda B; Franco, Claudinéia CS; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane AS; Fabricio, Gabriel S; de Sant’Anna, Juliane R; Castro-Prado, Marialba AA; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo CF

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer. PMID:26024008

  1. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    PubMed

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood.

    PubMed

    Pollano, Antonella; Zalosnik, María I; Durando, Patricia E; Suárez, Marta M

    2016-11-01

    Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.

  3. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  4. Superficial Dorsal Vein Injury/Thrombosis Presenting as False Penile Fracture Requiring Dorsal Venous Ligation

    PubMed Central

    Rafiei, Arash; Hakky, Tariq S; Martinez, Daniel; Parker, Justin; Carrion, Rafael

    2014-01-01

    Introduction Conditions mimicking penile fracture are extremely rare and have been seldom described. Aim To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. Methods A 33-year-old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, he was emergently taken to the operating room for exploration and required only dorsal venous ligation. Results Postoperatively, patient's Sexual Health Inventory for Men score was 23, and he had no issues with erections or sexual intercourse. Conclusion Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation. PMID:25548650

  5. Fertilizability of Superovulated Eggs by Estrous Stage-independent PMSG/hCG Treatment in Adult Wistar-Imamichi Rats

    PubMed Central

    Kon, Hiroe; Hokao, Ryoji; Shinoda, Motoo

    2014-01-01

    We investigated the fertilization and developmental ability of superovulated eggs obtained from adult Wistar-Imamichi (WI) rats, by using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) treatment. Female WI rats, 11–13 weeks of age, were divided into four groups by estrous stage (metestrus [ME], diestrus [DE], proestrus [PE], or estrus [E]). PMSG (150 IU/kg) and hCG (75 IU/kg) were injected at an interval of 48 or 55 h and the female rats were mated with mature male rats. The ovulated eggs were collected 20, 24, and 27 h after hCG injection. Regardless of the estrous stage at the time of PMSG injection, the treated rats mated and ovulated similar to the untreated spontaneously ovulated rats (S group). Although the proportion of fertilized eggs in the E- and PE-treated groups was less than the S group 20 h after hCG injection, the proportion was not different among all treated and S groups 24 h after hCG injection. The proportion of fertilized eggs using in vitro fertilization and the proportion of offspring obtained from 2-cell stage embryo transfer did not differ among the treated and S groups. In comparison with PMSG/hCG-treated immature rats, mating and ovulation rate of adult rats were significantly higher. The proportion of fertilized eggs obtained from mated rats did not differ between immature and adult rats. These results demonstrate that adult WI rats are good egg donors for reproductive biotechnological studies using unfertilized or fertilized eggs. PMID:24770643

  6. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats

    PubMed Central

    Carroll, Marilyn E.

    2010-01-01

    Rationale In human and animal studies, adolescence marks a period of increased vulnerability to the initiation and subsequent abuse of drugs. Adolescents may be especially vulnerable to relapse, and a critical aspect of drug abuse is that it is a chronically relapsing disorder. However, little is known of how vulnerability factors such as adolescence are related to conditions that induce relapse, triggered by the drug itself, drug-associated cues, or stress. Objective The purpose of this study was to compare adolescent and adult rats on drug-, cue-, and stress-induced reinstatement of cocaine-seeking behavior. Methods On postnatal days 23 (adolescents) and 90 (adults), rats were implanted with intravenous catheters and trained to lever press for i.v. infusions of cocaine (0.4 mg/kg) during two daily 2-h sessions. The rats then self-administered i.v. cocaine for ten additional sessions. Subsequently, visual and auditory stimuli that signaled drug delivery were unplugged, and rats were allowed to extinguish lever pressing for 20 sessions. Rats were then tested on cocaine-, cue-, and yohimbine (stress)-induced cocaine seeking using a within-subject multicomponent reinstatement procedure. Results Results indicated that adolescents had heightened cocaine seeking during maintenance and extinction compared to adults. During reinstatement, adolescents (vs adults) responded more following cocaine- and yohimbine injections, while adults (vs adolescents) showed greater responding following presentations of drug-associated cues. Conclusion These results demonstrated that adolescents and adults differed across several measures of drug-seeking behavior, and adolescents may be especially vulnerable to relapse precipitated by drugs and stress. PMID:19953228

  7. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    PubMed

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  8. Behavioral and neurochemical effects of repeated MDMA administration during late adolescence in the rat

    PubMed Central

    Cox, Brittney M.; Shah, Mrudang M.; Cichon, Teri; Tancer, Manuel E.; Galloway, Matthew P.; Thomas, David M.; Perrine, Shane A.

    2015-01-01

    Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10 mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light–dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light–dark box test at the same dose. Additionally, 10 mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10 mg/kg), but not low (5 mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior. PMID:24121061

  9. Behavioral and neurochemical effects of repeated MDMA administration during late adolescence in the rat.

    PubMed

    Cox, Brittney M; Shah, Mrudang M; Cichon, Teri; Tancer, Manuel E; Galloway, Matthew P; Thomas, David M; Perrine, Shane A

    2014-01-03

    Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy'); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light-dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light-dark box test at the same dose. Additionally, 10mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10mg/kg), but not low (5mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior. © 2013.

  10. [Substance P and/or calcitonin gene-related peptide immunoreactive neurons in dorsal root ganglia possibly involved in the transmission of nociception in rat penile frenulum].

    PubMed

    Wu, Zhong-Min; Ni, Jing-Jing; Ling, Shu-Cai

    2007-12-01

    To study the relationship between substance P (SP) and/or calcitonin gene-related peptide (CGRP) immunoreactive neurons in dorsal root ganglia (DRG) and the transmission of nociception in the penile frenulum of rats. The fluoro-gold (FG) retrograde tracing method was used to trace the origin of nerve terminals in the penile frenulum of rats. And SP and/or CGRP immunofluorescence labeling was employed to detect the distribution of SP and/or CGRP immunoreactive neurons in DRG. FG retrograde tracing showed that the FG retrolabeled neurons were localized in L6-DRG and S1-DRG. SP and/or CGRP immunofluorescence labeling indicated that a large number of DRG neurons were SP- and CGRP-immunoreactive, different in size, bright red and bright green respectively in color, and arranged in rows or spots among nerve bundles. All the FG/SP and FG/CGRP double-labeled neurons were medium or small-sized. One third of the FG-labeled neurons were SP-immunoreactive, and a half of them CGRP-immunoreactive in L6-DRG and S1-DRG respectively. The FG/SP/CGRP-labeled neurons accounted for one fifth of the FG retro labeled neurons. SP- and CGRP-immunoreactive neurons in L6-DRG and SI-DRG of rats may be involved in the transmission of nociception in rat penile frenulum.

  11. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  12. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  13. Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats.

    PubMed

    Lukas, Michael; Bredewold, Remco; Landgraf, Rainer; Neumann, Inga D; Veenema, Alexa H

    2011-07-01

    Early life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat. Juvenile control and MS rats demonstrated successful social recognition at inter-exposure intervals of 30 and 60 min. However, unlike adult control rats, adult MS rats failed to discriminate between a previously encountered and a novel rat after 60 min. The social recognition impairment of adult MS rats was accompanied by a lack of a rise in arginine vasopressin (AVP) release within the lateral septum seen during social memory acquisition in adult control rats. This blunted response of septal AVP release was social stimulus-specific because forced swimming induced a rise in septal AVP release in both control and MS rats. Retrodialysis of AVP (1 μg/ml, 3.3 μl/min, 30 min) into the lateral septum during social memory acquisition restored social recognition in adult MS rats at the 60-min interval. These studies demonstrate that MS impairs social recognition performance in adult rats, which is likely caused by blunted septal AVP activation. Impaired social recognition may be linked to MS-induced changes in other social behaviors like aggression as shown previously. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.

    PubMed

    Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier

    2010-09-10

    Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn. 2010. Published by Elsevier B.V.

  15. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats.

    PubMed

    Glenn, Melissa J; Adams, Raven S; McClurg, Lauren

    2012-03-14

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Prenatal Opiate Exposure Attenuates LPS-Induced Fever in Adult Rats: Role of Interleukin-1β

    PubMed Central

    Hamilton, Kathryn L.; Franklin, La’Tonyia M.; Roy, Sabita; Schrott, Lisa M.

    2009-01-01

    Much is known about the immunomodulatory effects of opiate exposure and withdrawal in adult rats. However, little research has delved into understanding the immunological consequences of prenatal opiate exposure and postnatal withdrawal. The purpose of the current study was to measure changes in responding to immune stimulation in adult rats following prenatal opiate exposure. Further, we sought to characterize the role of interleukin (IL)-1β in these changes. Following prenatal exposure to the long-acting opiate l-alpha-acetylmethadol (LAAM), adult male and female rats were assessed for their fever response to lipopolysaccharide (LPS). Blood and tissue samples were collected to measure circulating IL-1β and IL-1β protein in the hypothalamus and spleen. Prenatal LAAM exposure resulted in a blunted fever response to LPS injection without any changes in basal body temperature or in response to saline injection. Circulating IL-1β was not affected by prenatal LAAM exposure, nor was IL-1β protein in the spleen. Interestingly, mature IL-1β protein was elevated in the hypothalamus of prenatally LAAM-treated rats. These results indicate that prenatal opiate exposure blunts the fever response of adult offspring. Direct action of IL-1β is likely not the cause of the dysfunction reported here. However, alterations in signaling mechanisms downstream from IL-1β may play a role in the altered fever response in adult rats treated prenatally with opiates. PMID:17196563

  17. Muscular Basis of Whisker Torsion in Mice and Rats.

    PubMed

    Haidarliu, Sebastian; Bagdasarian, Knarik; Shinde, Namrata; Ahissar, Ehud

    2017-09-01

    Whisking mammals move their whiskers in the rostrocaudal and dorsoventral directions with simultaneous rolling about their long axes (torsion). Whereas muscular control of the first two types of whisker movement was already established, the anatomic muscular substrate of the whisker torsion remains unclear. Specifically, it was not clear whether torsion is induced by asymmetrical operation of known muscles or by other largely unknown muscles. Here, we report that mystacial pads of newborn and adult rats and mice contain oblique intrinsic muscles (OMs) that connect diagonally adjacent vibrissa follicles. Each of the OMs is supplied by a cluster of motor end plates. In rows A and B, OMs connect the ventral part of the rostral follicle with the dorsal part of the caudal follicle. In rows C-E, in contrast, OMs connect the dorsal part of the rostral follicle to the ventral part of the caudal follicle. This inverse architecture is consistent with previous behavioral observations [Knutsen et al.: Neuron 59 (2008) 35-42]. In newborn mice, torsion occurred in irregular single twitches. In adult anesthetized rats, microelectrode mediated electrical stimulation of an individual OM that is coupled with two adjacent whiskers was sufficient to induce a unidirectional torsion of both whiskers. Torsional movement was associated with protracting movement, indicating that in the vibrissal system, like in the ocular system, torsional movement is mechanically coupled to horizontal and vertical movements. This study shows that torsional whisker rotation is mediated by specific OMs whose morphology and attachment sites determine rotation direction and mechanical coupling, and motor innervation determines rotation dynamics. Anat Rec, 300:1643-1653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury.

    PubMed

    Li, Xin; Li, Yao-hua; Yu, Shun; Liu, Yaobo

    2008-10-22

    To study changes of Ryk expression in dorsal root ganglia (DRG) after peripheral nerve injury, we set up an animal model of unilateral sciatic nerve lesioned rats. Changes of Ryk protein expression in DRG neurons after unilateral sciatic nerve injury were investigated by immunostaining. Changes of Ryk mRNA were also tested by semi-quantitative PCR concurrently. We found, both at the level of protein and mRNA, that Ryk could be induced in cells of ipsilateral DRG after unilateral sciatic nerve lesion. Further investigation by co-immunostaining confirmed that the Ryk-immunoreactive (Ryk-IR) cells were NeuN-immunoreactive (NeuN-IR) neurons of DRG. We also showed the pattern of Ryk induction in DRG neurons after sciatic nerve injury: the number of Ryk IR neurons peaked at 2 weeks post-lesion and decreased gradually by 3 weeks post-lesion. The proportions of different sized Ryk IR neurons were also observed and counted at various stages after nerve lesion. Analysis of Ryk mRNA by RT-PCR showed the same induction pattern as by immunostaining. Ryk mRNA was not expressed in normal or contralateral DRG, but was expressed 1, 2 and 3 weeks post-lesion in the ipsilateral DRG. Ryk mRNA levels increased slightly from 1 to 2 weeks, decreased then by 3 weeks post-lesion. These results indicate that Ryk might be involved in peripheral nerve plasticity after injury. This is a novel function apart from its well-known fundamental activity as a receptor mediating axon guidance and outgrowth.

  19. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.

    PubMed

    Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P

    1991-12-01

    The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat

  20. Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.

    PubMed

    Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L

    2014-07-01

    Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.

  1. Regulation of Peripheral Catecholamine Responses to Acute Stress in Young Adult and Aged F-344 Rats.

    PubMed

    McCarty; Pacak; Goldstein; Eisenhofer

    1997-12-01

    Young adult (3-month-old) and aged (24-month-old) Fischer-344 male rats received i.v. infusions of 3H-labeled norepinephrine (NE) and epinephrine (EPI) to examine the effects of aging on the neuronal uptake of NE and sympathoadrenal release of NE and EPI. Spillovers of NE and EPI into plasma and their clearance from the circulation were estimated from plasma concentrations of endogenous and 3H-labeled NE and EPI. The efficiency of neuronal uptake was assessed from changes in plasma clearance of NE and concentrations of its intraneuronal metabolite, dihydroxyphenylglycol (DHPG), during immobilization stress or neuronal uptake blockade with desipramine. Stress-induced increases in plasma NE and higher plasma NE concentrations in aged compared to young adult rats were due to both decreases in NE clearance and increases in NE spillover. EPI spillover and clearance were reduced in aged compared to young adult rats, so that plasma EPI levels did not differ between groups. Young adult and aged rats had similar desipramine-induced decreases in NE clearance, whereas desipramine-sensitive decreases and stress-induced increases in plasma DHPG were larger in aged rats. This indicates that neuronal uptake is intact and that increased NE spillover at rest and during stress in aged rats reflects increased NE release from sympathetic nerves. The results show that aging is associated with divergent decreases in EPI release from the adrenal medulla and increases in NE release from sympathetic nerves. Increased plasma concentrations of NE in aged compared to young adult rats also result from decreased circulatory clearance of NE, but this does not reflect any age-related impairment of NE reuptake.

  2. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  3. Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome.

    PubMed

    Tinaz, Sule; Malone, Patrick; Hallett, Mark; Horovitz, Silvina G

    2015-08-01

    The mid-posterior part of the insula is involved in processing bodily sensations and urges and is activated during tic generation in Tourette syndrome. The dorsal anterior part of the insula, however, integrates sensory and emotional information with cognitive valuation and is implicated in interoception. The right dorsal anterior insula also participates in urge suppression in healthy subjects. This study examined the role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Resting-state functional magnetic resonance imaging was performed in 13 adult Tourette patients and 13 matched controls. The role of the right dorsal anterior insula within the urge-tic network was investigated using graph theory-based neural network analysis. The functional connectivity of the right dorsal anterior insula was also correlated with urge and tic severity. Even though the patients did not exhibit any overt tics, the right dorsal anterior insula demonstrated higher connectivity, especially with the frontostriatal nodes of the urge-tic network in patients compared with controls. The functional connectivity between the right dorsal anterior insula and bilateral supplementary motor area also correlated positively with urge severity in patients. These results suggest that the right dorsal anterior insula is part of the urge-tic network and could influence the urge- and tic-related cortico-striato-thalamic regions even during rest in Tourette syndrome. It might be responsible for heightened awareness of bodily sensations generating premonitory urges in Tourette syndrome. © 2015 International Parkinson and Movement Disorder Society.

  4. Oleamide restores sleep in adult rats that were subjected to maternal separation.

    PubMed

    Reyes Prieto, Nidia M; Romano López, Antonio; Pérez Morales, Marcel; Pech, Olivia; Méndez-Díaz, Mónica; Ruiz Contreras, Alejandra E; Prospéro-García, Oscar

    2012-12-01

    Maternal separation (MS) induces a series of changes in rats' behavior; among them a reduction in spontaneous sleep. One potentially impaired system is the endocannabinoid system (eCBs), since it contributes to generate sleep. To investigate if there are situations early in life that affect the eCBs, which would contribute to make rats vulnerable to suffering insomnia, we studied the rodent model of MS. Rats were separated from their mothers for 3h-periods daily, from postnatal day (PND) 2 to PND 16. Once they gained 250g of body weight (adult rats), they were implanted with electrodes to record the sleep-waking cycle (SWC). MS rats and non-MS (NMS) siblings were assigned to one of the following groups: vehicle, oleamide (OLE, an agonist of the cannabinoid receptor 1, CB1R), OLE+AM251 (an antagonist of the CB1R) and AM251 alone. Expression of the CBR1 receptor was also analyzed in the frontal cortex (FCx) and in the hippocampus (HIP) of both NMS and MS rats. Results indicated that MS induced a reduction in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep with the consequent increase in waking (W) as compared to NMS siblings. OLE normalized the SWC, and AM251 blocked such an effect. CB1R expression was reduced in the FCx and in the HIP of MS rats. Our results indicate that MS reduces sleep and CB1R expression and OLE improves sleep in adult rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Plantar-to-dorsal compared to dorsal-to-plantar screw fixation for proximal chevron osteotomy: a biomechanical analysis.

    PubMed

    Sharma, Krishn M; Parks, Brent G; Nguyen, Augustine; Schon, Lew C

    2005-10-01

    A change in screw orientation in fixing the chevron proximal first metatarsal osteotomy was noted anecdotally to improve fixation strength. The authors hypothesized that plantar-to-dorsal screw orientation would be more stable than the conventional dorsal-to-plantar screw orientation for fixation of the chevron osteotomy. The purpose of this study was to determine if the load-to-failure and stiffness of the chevron type proximal first metatarsal osteotomy stabilized using plantar-to-dorsal screw fixation were greater than with the more conventional dorsal-to-plantar screw fixation method. One foot from each of eight matched cadaver pairs was randomly assigned to one of two groups: 1) fixation with a dorsal-to-plantar lag screw or 2) fixation with a plantar-to-dorsal lag screw. A proximal chevron osteotomy was then created using standard technique and the metatarsal was fixed according to previously established method. The bone was potted in polyester resin, and the construct was fitted into a materials testing system machine in which load was applied to the plantar aspect of the metatarsal until failure. The two groups were compared using a two-tailed Student t test. The average load-to-failure and stiffness of the chevron osteotomy fixed with the plantar-to-dorsal lag screw were significantly greater (p < 0.05) than the group fixed with more conventional dorsal-to-plantar lag screws. Plantar-to-dorsal screw orientation was more stable than the conventional dorsal-to-plantar screw orientation for fixation of the proximal chevron osteotomy. Plantar-to-dorsal screw orientation should be considered when using the chevron proximal first metatarsal osteotomy.

  6. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model.

    PubMed

    Ersel, Murat; Uyanikgil, Yigit; Karbek Akarca, Funda; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Oyku Cetin, Emel

    2016-04-01

    The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds.

  7. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model

    PubMed Central

    Ersel, Murat; Uyanikgil, Yigit; Akarca, Funda Karbek; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku

    2016-01-01

    Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876

  8. Event-Related Potential responses to the acute and chronic effects of alcohol in adolescent and adult Wistar rats

    PubMed Central

    Ehlers, Cindy L.; Desikan, Anita; Wills, Derek N.

    2014-01-01

    Background The present study explored the hypothesis that adolescent ethanol exposure may cause long lasting changes in ethanol sensitivity by exploring the age-related effects of acute alcohol on intoxication and on event-related potential (ERP) responses to acoustic stimuli in ethanol naïve adolescent and adult male Wistar rats and in adult rats that were exposed to chronic ethanol/control conditions during adolescence. Methods Ethanol naïve adolescent (postnatal day 32 (PD32)) and adult male rats (PD99) were included in the first study. In a second study, rats were exposed to 5 weeks of ethanol vapor (Blood ethanol concentrations @ 175 mg%) or air from PD24 to PD59 and allowed to mature until PD90. In both studies rats were implanted with cortical recording electrodes, and the effects of acute ethanol (0.0, 1.5, and 3.0 g/kg) on behavioral and ERP responses were assessed. Results Adolescents were found to have higher amplitude and longer latency P3a and P3b components at baseline as compared to adult rats, and ethanol was found to produce a robust dose-dependent increase in the latency of the P3a and P3b components of the auditory ERP recorded in cortical sites in both adolescents and adults. However, ethanol produced significantly larger delays in P3a and P3b latencies in adults as compared to adolescents. Acute ethanol administration was also found to produce a robust dose dependent increase in the latency of the P3a and P3b components in adult animals exposed to ethanol vapor as adolescents and air exposed controls; however, larger acute ethanol-induced increases in P3a and P3b latencies were seen in controls as compared to adolescent vapor exposed rats. Conclusions Adolescent rats have a less intense P3 latency response to acute ethanol administration when compared to adult rats. Exposure to chronic ethanol during adolescence can cause “retention” of the adolescent phenotype of reduced P3 latency sensitivity to ethanol. PMID:24483322

  9. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy

    PubMed Central

    Feng, Chengcheng; Xu, Lijuan; Guo, Shiyun; Chen, Qian; Shen, Yuguo; Zang, Deng

    2018-01-01

    WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC-β3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC-β3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC-β3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC-β3 mRNA and protein expression in the diabetic DRG of DPN rats. PMID:29599806

  10. WenTong HuoXue Cream Can Inhibit the Reduction of the Pain-Related Molecule PLC-β3 in the Dorsal Root Ganglion of a Rat Model of Diabetic Peripheral Neuropathy.

    PubMed

    Feng, Chengcheng; Xu, Lijuan; Guo, Shiyun; Chen, Qian; Shen, Yuguo; Zang, Deng; Ma, Li

    2018-01-01

    WenTong HuoXue Cream (WTHX-Cream) has been shown to effectively alleviate clinical symptoms of diabetic peripheral neuropathy (DPN). This study investigated the gene and protein expression of the pain-related molecule PLC- β 3 in the dorsal root ganglion (DRG) of DPN rats. 88 specific pathogen-free male Wistar rats were randomly divided into placebo (10 rats) and DPN model (78 rats) groups, and the 78 model rats were used to establish the DPN model by intraperitoneal injection of streptozotocin and were then fed a high-fat diet for 8 weeks. These rats were randomly divided into the model group, the high-, medium-, and low-dose WTHX-Cream + metformin groups, the metformin group, the capsaicin cream group, and the capsaicin cream + metformin group. After 4 weeks of continuous drug administration, the blood glucose, body weight, behavioral indexes, and sciatic nerve conduction velocity were measured. The pathological structure of the DRG and the sciatic nerve were observed. PLC- β 3 mRNA and protein levels in the DRG of rats were measured. Compared with the model group, the high-dose WTHX-Cream group showed increased sciatic nerve conduction velocity, improved sciatic nerve morphological changes, and increased expression of PLC- β 3 mRNA and protein in the DRG. This study showed that WTHX-Cream improves hyperalgesia symptoms of DPN by inhibiting the reduction of PLC- β 3 mRNA and protein expression in the diabetic DRG of DPN rats.

  11. Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the spared nerve injury model of neuropathic pain.

    PubMed

    Cachemaille, M; Laedermann, C J; Pertin, M; Abriel, H; Gosselin, R-D; Decosterd, I

    2012-12-27

    Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    PubMed

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  13. Copolymer-1 enhances cognitive performance in young adult rats

    PubMed Central

    Meneses, Alfredo; Cruz-Martínez, Yolanda; Anaya-Jiménez, Rosa María; Liy-Salmerón, Gustavo; Carvajal, Horacio Guillermo; Ponce-López, Maria Teresa

    2018-01-01

    Cognitive impairment is a dysfunction observed as a sequel of various neurodegenerative diseases, as well as a concomitant element in the elderly stages of life. In clinical settings, this malfunction is identified as mild cognitive impairment. Previous studies have suggested that cognitive impairment could be the result of a reduction in the expression of brain-derived neurotrophic factor (BDNF) and/or immune dysfunction. Copolymer-1 (Cop-1) is an FDA-approved synthetic peptide capable of inducing the activation of Th2/3 cells, which are able to release BDNF, as well as to migrate and accumulate in the brain. In this study, we evaluated the effect of Cop-1 immunization on improvement of cognition in adult rats. For this purpose, we performed four experiments. We evaluated the effect of Cop-1 immunization on learning/memory using the Morris water maze for spatial memory and autoshaping for associative memory in 3- or 6-month-old rats. BDNF concentrations at the hippocampus were determined by ELISA. Cop-1 immunization induced a significant improvement of spatial memory and associative memory in 6-month-old rats. Likewise, Cop-1 improved spatial memory and associative memory when animals were immunized at 3 months and evaluated at 6 months old. Additionally, Cop-1 induced a significant increase in BDNF levels at the hippocampus. To our knowledge, the present investigation reports the first instance of Cop-1 treatment enhancing cognitive function in normal young adult rats, suggesting that Cop-1 may be a practical therapeutic strategy potentially useful for age- or disease-related cognitive impairment. PMID:29494605

  14. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength

  15. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats

    PubMed Central

    Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren

    2012-01-01

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146

  16. Role of dorsal hippocampal orexin-1 receptors in memory restoration induced by morphine sensitization phenomenon.

    PubMed

    Alijanpour, S; Tirgar, F; Zarrindast, M-R

    2016-01-15

    The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Wogonin prevents rat dorsal root ganglion neurons death via inhibiting tunicamycin-induced ER stress in vitro.

    PubMed

    Xu, Shujuan; Zhao, Xin; Zhao, Quanlai; Zheng, Quan; Fang, Zhen; Yang, Xiaoming; Wang, Hong; Liu, Ping; Xu, Hongguang

    2015-04-01

    Wogonin is a natural flavonoid isolated from the root of Scutellaria baicalensis Georgi, which has been widely used in various research areas for its anti-oxidant, anti-inflammatory, and anti-cancer activities. It also presents a neuroprotective effect in the brain while encounters stress conditions, but the mechanisms controlling the neuroprotective effect of wogonin are not clear. In this study, we investigated the biomechanism underlying the neuroprotective effect of wogonin on rat dorsal root ganglion (DRG) neurons. Wogonin pre-treatment at 75 μM significantly increased the cell viability of DRG neurons and decreased the number of the propidium iodide-positive DRG neurons before the endoplasmic reticulum (ER) stress is being induced by tunicamycin (TUN) (0.75 μg/mL). In addition, Wogonin also inhibited the release of LDH and up-regulated the level of GSH. Furthermore, wogonin decreased the activation of ER stress-related molecules, including glucose-regulated protein 78 (GRP78), GRP94, C/EBP-homologous protein, active caspase12 and active caspase3, phosphorylation of pancreatic ER stress kinase, and eukaryotic initiation factor 2 alpha (eIF2α). In summary, our results indicated that wogonin could protect DRG neurons against TUN-induced ER stress.

  18. Sex and estrous cycle differences in immediate early gene activation in the hippocampus and the dorsal striatum after the cue competition task.

    PubMed

    Yagi, Shunya; Drewczynski, Dimka; Wainwright, Steven R; Barha, Cindy K; Hershorn, Olivia; Galea, Liisa A M

    2017-01-01

    The hippocampus and dorsal striatum are important structures involved in place and response learning strategies respectively. Both sex and estrous cycle phase differences in learning strategy preference exist following cue competition paradigms. Furthermore, significant effects of sex and learning strategy on hippocampal neural plasticity have been reported. However, associations between learning strategy and immediate early gene (IEG) expression in the hippocampus and dorsal striatum are not completely understood. In the current study we investigated the effects of sex and estrous cycle phase on strategy choice and IEG expression in the hippocampus and dorsal striatum of rats following cue competition training in the Morris water maze. We found that proestrous rats were more likely to choose a place strategy than non-proestrous or male rats. Although male cue strategy users travelled greater distances than the other groups on the first day of training, there were no other sex or strategy differences in the ability to reach a hidden or a visible platform. Female place strategy users exhibited greater zif268 expression and male place strategy users exhibited greater cFos expression compared to all other groups in CA3. Furthermore, cue strategy users had greater expression of cFos in the dorsal striatum than place strategy users. Shorter distances to reach a visible platform were associated with less activation of cFos in CA3 and CA1 of male place strategy users. Our findings indicate multiple differences in brain activation with sex and strategy use, despite limited behavioral differences between the sexes on this cue competition paradigm. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hyperforin alleviates mood deficits of adult rats suffered from early separation.

    PubMed

    Zhu, Minghui; Liu, Chunhua; Qin, Xuan; Yang, Zhuo

    2015-11-03

    In this study, we aimed to explore the effect of hyperforin (Hyp) on adult rats suffered from early separation. Wistar infant rats were randomly divided into three groups: control group (CON), early separation from parents group (ESP), and early separation from parents+treatment with 3mg/kg/day Hyp group (ESP+Hyp). Postnatal rats of ESP group and ESP+Hyp group were separated from their mothers for 6h every day on the 14th day after birth, and this separation lasted for 3 weeks, while rats of CON group had no separation. Hyperforin was intragastric administrated on the 21th day after birth, and lasted for 2 weeks in ESP+Hyp group. After separation, adult rats were evaluated by using the open field test (OFT), novelty suppressed feeding test (NSF) and forced swimming test (FST). In OFT, time spent in central grids was much shorter in ESP group compared with that of CON group. After treatment with hyperforin, time spent in central area was much longer compared with that of ESP group. In NSF, the feeding latency of ESP group was much longer than that of CON group. After treatment with hyperforin, the feeding latency was shorter compared with that of ESP group. In FST, score of ESP group was markedly higher than that of CON group. Interestingly, the score was obviously lower in ESP+Hyp group than that of ESP group. In conclusion, these results suggest that hyperforin is able to alleviate anxiety and remit depression in ESP rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Differential DNA damage in response to the neonatal and adult excitotoxic hippocampal lesion in rats.

    PubMed

    Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K

    2000-12-01

    We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.

  1. Di-n-butyl phthalate prompts interruption of spermatogenesis, steroidogenesis, and fertility associated with increased testicular oxidative stress in adult male rats.

    PubMed

    Nelli, Giribabu; Pamanji, Sreenivasula Reddy

    2017-08-01

    Di-n-butyl phthalate (DBP) is extensively used as plasticizer, and it was ubiquitary released into the environment. The present study was aimed to investigate the effect of DBP on reproductive competence in adult male rats. Adult male rats were received corn oil or DBP injection intraperitoneally (ip) at 100 and 500 mg/kg body weight on 90, 97, 104, and 111 days. Following completion of the experimental period, adult male rats were cohabitated with untreated proestrus female rats for determination of fertilization capacity. Then, adult male rats were sacrificed, and other reproductive endpoints were determined by histopathology and biochemical analysis. The results revealed significant reduction of fertilization potential by decrease mating, fertility indices with increase pre-implantation and post-implantation losses, and resorptions in normal female rat cohabitation with DBP-treated adult male rats. The testes, seminal vesicle tissue somatic indices, epididymal sperm count, motility, viability, and hypoosmotic swelling (HOS) sperm were significantly decreased with increased sperm morphological abnormalities in DBP-treated adult male rats. The disorientation of spermatogenic cells decreased the diameter and epithelial thickness of seminiferous tubule in the testicular histopathology of DBP-exposed rats. Significant reduction of testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase enzyme levels and serum testosterone with increased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were observed in DBP-treated groups. Higher testicular oxidative stress marker (lipid peroxidation product) with lower antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase levels in DBP-exposed groups was observed. From these results, it can be concluded that DBP increases oxidative stress; it leads to impairment of spermatogenesis, steroidogenesis, and fertility in adult male rats.

  2. Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?

    PubMed

    Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie

    2011-10-10

    Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    PubMed

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P < 0.01), while direct application of acetaminophen to the dorsal horn did not reduce these responses. Direct application of N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  4. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence.

    PubMed

    Miranda, A; Mickle, A; Schmidt, J; Zhang, Z; Shaker, R; Banerjee, B; Sengupta, J N

    2011-07-01

    The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms. Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days [(postnatal (PN) days 14-16)]. The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissues. CRD- or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-d-aspartic acid (NMDA)-NR1 subunit in the lumbo-sacral (L6-S1) spinal cord was examined using Western blot. The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan-treated rats was significantly higher than the saline-treated control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (P>0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared with saline-treated rats (P<0.05). Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does result in overexpression of spinal NR1 subunit in adult rats. © 2011 Blackwell Publishing Ltd.

  5. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effects of anticonvulsants on 4-aminopyridine-induced bursting: in vitro studies on rat peripheral nerve and dorsal roots.

    PubMed Central

    Lees, G.

    1996-01-01

    1. Aminopyridines have been used as beneficial symptomatic treatments in a variety of neurological conditions including multiple sclerosis but have been associated with considerable toxicity in the form of abdominal pain, paraesthesias and (rarely) convulsions. 2. Extracellular and intracellular recording was used to characterize action potentials in rat sciatic nerves and dorsal roots and the effects of 4-aminopyridine (4-AP). 3. In sciatic nerve trunks, 1 mM 4-AP produced pronounced after potentials at room temperature secondary to regenerative firing in affected axons (5-10 spikes per stimulus). At physiological temperatures, after potentials (2-3 spikes) were greatly attenuated in peripheral axons. 4. 4-AP evoked more pronounced and prolonged after discharges in isolated dorsal roots at 37 degrees C (3-5.5 mV and 80-100 ms succeeded by a smaller inhibitory/depolarizing voltage shift) which were used to assess the effects of anticonvulsants. 5. Phenytoin, carbamazepine and lamotrigine dose-dependently reduced the area of 4-AP-induced after potentials at 100 and 320 microM but the amplitude of compound action potentials (evoked at 0.5 Hz) was depressed in parallel. 6. The tonic block of sensory action potentials by all three drugs (at 320 microM) was enhanced by high frequency stimulation (5-500 Hz). 7. The lack of selectivity of these frequency-dependent Na+ channel blockers for burst firing compared to low-frequency spikes, is discussed in contrast to their effects on 4-AP-induced seizures and paroxysmal activity in CNS tissue (which is associated with large and sustained depolarizing plateau potentials). 8. In conclusion, these in vitro results confirm the marked sensitivity of sensory axons to 4-AP (the presumptive basis for paraesthesias). Burst firing was not preferentially impaired at relatively high concentrations suggesting that anticonvulsants will not overcome the toxic peripheral actions of 4-AP in neurological patients. PMID:8821551

  7. High Doses of Amphetamine Augment, Rather Than Disrupt, Exocytotic Dopamine Release in the Dorsal and Ventral Striatum of the Anesthetized Rat

    PubMed Central

    Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.

    2011-01-01

    High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614

  8. Dense TRPV2 immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat

    PubMed Central

    LeWinter, Robin D.; Scherrer, Grégory; Basbaum, Allan I.

    2008-01-01

    The transient receptor potential cation channel TRPV2 is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52°C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined. PMID:18063314

  9. Up-Regulation of the Biosynthesis and Release of Substance P through Wnt/β-Catenin Signaling Pathway in Rat Dorsal Root Ganglion Cells.

    PubMed

    Li, Yu-Sang; Xi, Yang; Li, Xiao-Jun; Leng, Chang-Long; Jia, Mei-Mei; Zhang, Wei Kevin; Tang, He-Bin

    2015-01-01

    To examine regulatory effects of β-catenin on the biosynthesis and release of substance P, a rat chronic constriction injury (CCI) model and a rat dorsal root ganglion (DRG) cell culture model were used in the present study. The CCI treatment significantly induced the overall expression of β-catenin (158 ± 6% of sham) in the ipsilateral L5 DRGs in comparison with the sham group (109 ± 4% of sham). The CCI-induced aberrant expression of β-catenin was significantly attenuated by oral administration of diclofenac (119 ± 6% of the sham value; 10 mg/kg). Importantly, aberrant nuclear accumulation of β-catenin in cultured DRG cells resulted in up-regulation of the PPT-A mRNA expression and the substance P release. The up-regulation of both the PPT-A mRNA expression and the substance P release by either a GSK-3β inhibitor TWS119 (10 μM) or a Wnt signaling agonist Wnt-3a (100 ng/ml) were significantly abolished by an inhibitor of cyclooxygenase-2 (COX-2; NS-398, 1 μM). Collectively, these data suggest that nociceptive input-activated β-catenin signaling plays an important role in regulating the biosynthesis and release of substance P, which may contribute to the inflammation responses related to chronic pain.

  10. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    PubMed Central

    van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.

    2015-01-01

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291

  11. Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model.

    PubMed

    Hsu, Shan-Hui; Hsieh, Pai-Shan

    2015-01-01

    Adult adipose-derived stem cells (ASCs) are a type of multipotent mesenchymal stem cells (MSCs) with easy availability and serve as a potential cell source for cell-based therapy. Three-dimensional MSC spheroids may be derived from the self-assembly of individual MSCs grown on certain polymer membranes. In this study, we demonstrated that the self-assembled ASC spheroids on chitosan-hyaluronan membranes expressed more cytokine genes (fibroblast growth factor 1, vascular endothelial growth factor, and chemokine [C-C motif] ligand 2) as well as migration-associated genes (chemokine [C-X-C motif] receptor type 4 and matrix metalloprotease 1) compared with ASC dispersed single cells grown on culture dish. To evaluate the in vivo effects of these spheroids, we applied ASC single cells and ASC spheroids in a designed rat skin repair model. Wounds of 15 × 15 mm were created on rat dorsal skin, where ASCs were administered and covered with hyaluronan gel/chitosan sponge to maintain a moist environment. Results showed that skin wounds treated with ASC spheroids had faster wound closure and a significantly higher ratio of angiogenesis. Tracking of fluorescently labeled ASCs showed close localization of ASC spheroids to microvessels, suggesting enhanced angiogenesis through paracrine effects. Based on the in vitro and in vivo results, the self-assembled ASC spheroids may be a promising cellular source for skin tissue engineering and wound regeneration. © 2014 by the Wound Healing Society.

  12. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    PubMed

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  13. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats.

    PubMed

    Alaa-Eldin, Eman Ahmad; El-Shafei, Dalia Abdallah; Abouhashem, Nehal S

    2017-01-01

    Commercial mixtures of chlorpyrifos and cypermethrin pesticides are widely used to enhance the toxic effects of cypermethrin on target insects. So, the purpose of the current study was to evaluate the individual and combined toxic effects of chlorpyrifos (CPF) and cypermethrin (CYP) on reproductive system of adult male albino rats. Forty adult male albino rats were randomized into main four groups: group I (control group) included 16 rats, subdivided into negative and positive control; group II (eight rats) received chlorpyrifos 6.75 mg/kg b.w./orally∕daily); group III (eight rats) (received cypermethrin 12.5 mg/kg b.w./orally∕daily); and group IV (eight rats) (received chlorpyrifos and cypermethrin at the same previously mentioned doses). All treatments were given by oral gavage for 12 weeks. We found that single CPF and CYP exposures significantly have adverse effects on reproductive function of adult male albino rats manifested by reduced testicular weight, decreased sperm count, motility and viability, significantly increased percent of morphologically abnormal spermatozoa, and significant increments in sperm DNA fragmentation index (DFI) with respect to control group. Furthermore, serum follicle stimulating hormone, luteinizing hormone, and testosterone levels were decreased significantly compared to control group. This was accompanied with histopathological changes in the testis of rats such as necrosis, degeneration, decreasing number of spermatogenic cells in some seminiferous tubules, edema, congested blood vessels, and exudate in interstitial tissue of the testis. Notably, all these changes were exaggerated in rats treated concomitantly with chlorpyrifos and cypermethrin rendering the mixture more toxic than the additive effects of each compound and causing greater damage on the reproductive system of male albino rats than the individual pesticides.

  14. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  15. Dorsally exophytic glioblastoma arising from the medulla oblongata in an adult presenting as 4th ventricular mass.

    PubMed

    Das, Kuntal Kanti; Bettaswamy, Guru Prasad; Mehrotra, Anant; Jaiswal, Sushila; Jaiswal, Awadhesh Kumar; Behari, Sanjay

    2017-01-01

    Brainstem gliomas are relatively rare in adults (<2% of all gliomas). Exophytic gliomas are focal brainstem lesions, which project into the 4 th ventricle or cerebellopontine angles. These exophytic lesions are usually of low-grade histology (pilocytic astrocytoma or ganglioglioma) and have a relatively better outcome compared with brainstem gliomas as a whole. Glioblastoma is the commonest primary glial cell neoplasm and mostly occurs in the supratentorial compartment. It is rather uncommon in the brainstem and seldom has been described as having an exophytic growth pattern. Here we describe an exophytic brainstem glioblastoma arising from the medulla oblongata in a 55-year-old lady who presented with a 4 th ventricular mass, and present a brief review of the literature. Till now, six cases of glioblastoma arising from the medulla oblongata have been reported. So, ours is the seventh such report. To the best of our knowledge, it also happens to be the sixth reported case of dorsally exophytic brainstem glioblastoma till date.

  16. Effects of acute exposure of permethrin in adult and developing Sprague-Dawley rats on acoustic startle response and brain and plasma concentrations.

    PubMed

    Williams, Michael T; Gutierrez, Arnold; Vorhees, Charles V

    2018-06-08

    Permethrin is a Type I (non-cyano) pyrethroid that induces tremors at high concentrations and increases acoustic startle responses (ASR) in adult rodents, however its effects in young rats have been investigated to a limited extent. ASR and tremor were assessed in adult and postnatal day (P)15 Sprague-Dawley rats at oral doses of 60, 90, or 120 mg/kg over an 8 h period. Permethrin increased ASR in adults, regardless of dose, and 20% of the high-dose rats showed tremor at later time points. For the P15 rats all doses induced tremor at all time points, and ASR was increased at 2 h in the 90 and 120 mg/kg groups with a trend in the 60 mg/kg group compared with controls. The 60 mg/kg group showed increased ASR at 4 and 6 h, whereas the 90 mg/kg group showed no differences from the controls at these times. The 120 mg/kg group showed decreased ASR from 4-8 h post-treatment. P15 and adult rats both showed plasma and brain cis- and trans-permethrin increases after dosing. After the same dose of permethrin, P15 rats had greater cis- and trans-permethrin in brain and plasma compared with adults. P15 rats had an increased tremor response compared with adults even at comparable brain permethrin concentrations. For ASR, P15 rats responded sooner and showed a biphasic pattern ranging from increased to decreased response as a function of dose and time, unlike adults that only showed increases. Overall, young rats showed greater effects from permethrin compared with adults.

  17. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Neonatal nociception elevated baseline blood pressure and attenuated cardiovascular responsiveness to noxious stress in adult rats.

    PubMed

    Chu, Ya-Chun; Yang, Cheryl C H; Lin, Ho-Tien; Chen, Pin-Tarng; Chang, Kuang-Yi; Yang, Shun-Chin; Kuo, Terry B J

    2012-10-01

    Neonatal nociception has significant long-term effects on sensory perception in adult animals. Although neonatal adverse experience affect future responsiveness to stressors is documented, little is known about the involvement of early nociceptive experiences in the susceptibility to subsequent nociceptive stress exposure during adulthood. The aim of this study is to explore the developmental change in cardiovascular regulating activity in adult rats that had been subjected to neonatal nociceptive insults. To address this question, we treated neonatal rats with an intraplantar injection of saline (control) or carrageenan at postnatal day 1. The carrageenan-treated rats exhibited generalized hypoalgesia at basal state, and localized hyperalgesia after re-nociceptive challenge induced by intraplantar injections of complete Freund's adjuvant (CFA) as adults. Then we recorded baseline cardiovascular variables and 24-h responsiveness to an injection of CFA in the free-moving adult rats with telemetric technique. The carrageenan-treated rats showed significantly higher basal blood pressures (110.3±3.16 vs. control 97.0±4.28 mmHg). In control animals, baroreceptor reflex sensitivity (BRS) decreased, sympathetic vasomotor activity increased, and parasympathetic activity was inhibited after CFA injection. Blood pressure elevation was evident (107.0±2.75 vs. pre-injection 97.0±4.28 mmHg). Comparatively, the carrageenan-treated rats showed a higher BRS (BrrLF 1.03±0.09 vs. control 0.70±0.06 ms/mmHg) and higher parasympathetic activity [0.93±0.17 vs. control 0.32±0.02 ln(ms²)] after CFA injection. The change in blood pressure is negligible (111.9±4.05 vs. pre-injection 110.3±3.16 mmHg). Our research has shown that neonatal nociception alters future pain sensation, raises basal blood pressure level, and attenuates cardiovascular responsiveness to nociceptive stress in adult rats. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray.

    PubMed

    Maraschin, Jhonatan Christian; Rangel, Marcel Pereira; Bonfim, Antonio Joaquim; Kitayama, Mariana; Graeff, Frederico Guilherme; Zangrossi, Hélio; Audi, Elisabeth Aparecida

    2016-02-01

    Reported evidence indicates that endogenous opioid peptides regulate the expression of escape behavior in rats, a panic-related defensive response, through μ-opioid receptors (MORs) in the dorsal periaqueductal gray (dPAG). These peptides are rapidly catabolized by degrading enzymes, including neutral endopeptidase (NEP) and aminopeptidase N (APN). Opiorphin is a peptide inhibitor of both NEP and APN and potentiates the action of endogenous enkephalins. This study evaluated the effects of intravenous and intra-dPAG administration of opiorphin on escape responses in the elevated T-maze and in a dPAG electrical stimulation test in rats. We also evaluated the involvement of MORs in the effects of opiorphin using the selective MOR antagonist CTOP. A dose of 2.0 mg/kg, i.v., of opiorphin impaired escape performance in both tests. Similar effects were observed with intra-dPAG administration of 5.0 nmol of opiorphin. Local pretreatment with 1.0 nmol CTOP antagonized the anti-escape effects of intra-dPAG opiorphin in both tests, as well as the effect of systemically administered opiorphin (2.0 mg/kg, i.v.) in the electrical stimulation test. These results indicate that opiorphin has an antipanic-like effect that is mediated by MORs in the dPAG. They may open new perspectives for the development of opiorphin analogues with greater bioavailability and physicochemical characteristics in the pursuit of new medications for the treatment of panic disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro.

    PubMed

    Badie-Mahdavi, H; Worsley, M A; Ackley, M A; Asghar, A U; Slack, J R; King, A E

    2001-08-01

    Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.

  1. [Dorsal capsular imbrication for dorsal instability of the distal radioulnar joint].

    PubMed

    Unglaub, F; Manz, S; Bruckner, T; Leclère, F M; Hahn, P; Wolf, M B

    2013-12-01

    To stabilize the distal radioulnar joint (DRUJ) by performing dorsal capsular imbrication in patients presenting with dorsal instability. The goal was to reduce pain and prevent the occurrence of posttraumatic arthrosis. Posttraumatic dorsal instability of the DRUJ with missing block while performing translational activities in the DRUJ or subluxation while actively rotating the forearm. Cases, in which other stabilizing techniques, such as, sutures of the triangular fibrocartilage complex failed. DRUJ arthrosis, previous surgical interventions to the capsule area of the DRUJ, instabilities due to osseous reasons (malposition or pseudarthrosis) should already have been treated. Dorsal approach and opening of the 5th extensor compartment to expose the dorsal joint capsule. A longitudinal division of the capsule was performed and sufficient tissue on the radial and ulnar border was retained to ensure a solid suture technique. Then 2 U-shaped sutures using FiberWire suture material were made. Correction of the malposition and repositioning the forearm into supination. Tightening of the prepared capsule sutures and closing of the retinaculum with a resorbable suture. Patients wore a long-arm cast with the forearm being in supination for a period of 4 weeks. Following cast removal, patients wore a forearm splint for a period of 4 weeks to limit forearm pronation/supination at 45°. Full load on the wrist was allowed after 12 weeks. The subjective and functional outcomes of 20 patients having received capsular imbrication using this technique were good and entailed no significant complications. The postoperative DASH was 15.8 points. Of the 20 patients, 17 patients (85%) had a reduction of pain. Symptoms of DRUJ instability could be reduced in 18 patients (90%). Pronation/supination of the wrist was not restricted postoperatively.

  2. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    PubMed Central

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5–5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5–8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5–10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. Results The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. Conclusions In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates. PMID:26558013

  3. Lessons from the first dorsal fin in atheriniforms—A new mode of dorsal fin development and its phylogenetic implications

    PubMed Central

    Richter, Philipp

    2017-01-01

    Abstract The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa. PMID:28370120

  4. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats.

    PubMed

    Counotte, Danielle S; Schiefer, Christopher; Shaham, Yavin; O'Donnell, Patricio

    2014-04-01

    There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.

  5. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury.

    PubMed

    Xiao, Yun; Wu, Yang; Zhao, Bo; Xia, Zhongyuan

    2016-01-20

    Voltage-gated potassium channels (KV) regulate pain transmission by controlling neuronal excitability. Changes in KV expression patterns may thus contribute toward hyperalgesia following nerve injury. The aim of this study was to characterize KV current density in dorsal root ganglion (DRG) neurons following chronic constriction injury (CCI) of the right sciatic nerve, a robust model of post-traumatic neuropathic pain. The study examined changes in small-diameter potassium ion currents (<30 µm) in neurons in the L4-L6 DRG following CCI by whole-cell patch-clamping and the association with post-CCI mechanical and thermal nociceptive thresholds. Compared with the control group, 7 days after CCI, the mechanical force and temperature required to elicit ipsilateral foot withdrawal decreased significantly, indicating tactile allodynia and thermal hyperalgesia. Post-CCI neurons had a significantly lower rheobase current and depolarized resting membrane potential than controls, suggesting KV current downregulation. Some ipsilateral DRG neurons also had spontaneous action potentials and repetitive firing. There was a 55% reduction in the total KV current density caused by a 55% decrease in the sustained delayed rectifier potassium ion current (IK) density and a 17% decrease in the transient A-type potassium ion current (IA) density. These results indicated that changes in DRG neuron IK and IA current density and concomitant afferent hyperexcitability may contribute toward neuropathic pain following injury. The rat CCI model may prove valuable for examining pathogenic mechanisms and potential therapies, such as KV channel modulators.

  6. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    PubMed

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  7. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    PubMed

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The central responsiveness of the acute cerveau isolé rat.

    PubMed

    User, P; Gottesmann, C

    1982-01-01

    The electrophysiological patterns of the frontal cortex and dorsal hippocampus were studied in the acute cerveau isolé rat. Central and peripheral stimulations were performed in order to modulate these patterns. The results showed that the permanent alternation of high amplitude spindle bursts and low voltage activity in the anterior neocortex of the acute cerveau isolé was influenced neither by olfactory nor by posterior hypothalamic stimulation. In contrast, these two kinds of stimulation easily modulated the continuous low frequency theta rhythm, recorded in the dorsal hippocampus, in terms of amplitude and in overall frequency. This modulation of the theta rhythm in the acute cerveau isolé rat mimics the changes observed when the normal rat comes from the intermediate stage of sleep (as characterized in the the acute intercollicular transected rat by high amplitude spindle bursts at frontal cortex level and low frequency theta activity in the dorsal hippocampus) to rapid sleep. These results further suggest that, during the intermediate stage (as in the cerveau isolé preparation), the hippocampus montonous theta activity appears through a brainstem disinhibitory process releasing the forebrain limbic pacemaker(s). During the following rapid sleep phase, the theta rhythm would be modulated by pontine activity influences acting on the theta generators.

  9. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats.

    PubMed

    Gellner, Candice A; Belluzzi, James D; Leslie, Frances M

    2016-10-01

    Although smoking initiation typically occurs during adolescence, most preclinical studies of tobacco use involve adult animals. Furthermore, their focus is largely on nicotine alone, even though cigarette smoke contains thousands of constituents. The present study therefore aimed to determine whether aqueous constituents in cigarette smoke affect acquisition of nicotine self-administration during adolescence in rats. Adolescent and adult male rats, aged postnatal day (P) 25 and 85, respectively, were food trained on a fixed ratio 1 (FR1) schedule, then allowed to self-administer one of 5 doses of nicotine (0, 3.75, 7.5, 15, or 30 μg/kg) or aqueous cigarette smoke extract (CSE) with equivalent nicotine content. Three progressively more difficult schedules of reinforcement, FR1, FR2, and FR5, were used. Both adolescent and adult rats acquired self-administration of nicotine and CSE. Nicotine and CSE similarly increased non-reinforced responding in adolescents, leading to enhanced overall drug intake as compared to adults. When data were corrected for age-dependent alterations in non-reinforced responding, adolescents responded more for low doses of nicotine and CSE than adults at the FR1 reinforcement schedule. No differences in adolescent responding for the two drugs were seen at this schedule, whereas adults had fewer responses for CSE than for nicotine. However, when the reinforcement schedule was increased to FR5, animals dose-dependently self-administered both nicotine and CSE, but no drug or age differences were observed. These data suggest that non-nicotine tobacco smoke constituents do not influence the reinforcing effect of nicotine in adolescents. Published by Elsevier Ltd.

  10. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Browning, Kirsteen N; Travagli, R Alberto

    2003-01-01

    Pancreatic polypeptides (PPs) such as neuropeptide Y (NPY) and peptide YY (PYY) exert profound, vagally mediated effects on gastrointestinal (GI) motility and secretion. Whole-cell patch clamp recordings were made from brainstem slices containing identified GI-projecting rat dorsal motor nucleus of the vagus (DMV) neurons to determine the mechanism of action of PPs. Electrical stimulation of nucleus tractus solitarii (NTS) induced excitatory postsynaptic currents (EPSCs) that were reduced in a concentration-dependent manner by NPY and PYY (both at 0.1–300 nm) in 65 % of the neurons. An increase in the paired-pulse ratio without changes in the postsynaptic membrane input resistance or EPSC rise and decay time suggested that the effects of PPs on EPSCs were due to actions at presynaptic receptors. The Y1 and Y2 receptor selective agonists [Leu31,Pro34]NPY and NPY(3–36) (both at 100 nm) mimicked the inhibition of NPY and PYY on the EPSC amplitude. The effects of 100 nm NPY, but not PYY, were antagonized partially by the Y1 receptor selective antagonist BIBP3226 (0.1 μm). In addition, the inhibition of the EPSC amplitude induced by NPY, but not PYY, was attenuated partially by pretreatment with the α2 adrenoceptor antagonist yohimbine (10 μm), and occluded partially by the α2 adrenoceptor agonist UK14,304 (10 μm) as well as by pretreatment with reserpine. Pretreatment with a combination of BIBP3226 and yohimbine almost completely antagonized the NPY-mediated effects on EPSCs. Contrary to the inhibition of EPSCs, perfusion with PPs had no effect on the amplitude of inhibitory postsynaptic currents (IPSCs) and a minimal effect on a minority of DMV neurons. Differences in the receptor subtypes utilized and in the mechanism of action of NPY and PYY may indicate functional differences in their roles within the circuitry of the dorsal vagal complex (DVC). PMID:12730340

  11. Radiographic Outcomes of Dorsal Distraction Distal Radius Plating for Fractures With Dorsal Marginal Impaction.

    PubMed

    Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A

    2017-04-01

    The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.

  12. Responses of dorsal spinal cord blood flow to noxious mechanical stimulation of the skin in anesthetized rats.

    PubMed

    Toda, Hiroko; Maruyama, Hitoshi; Budgell, Brian; Kurosawa, Mieko

    2008-08-01

    In urethane-anesthetized, artificially ventilated rats, alterations in dorsal spinal cord blood flow (SCBF) at the L4-6 level were measured with laser Doppler flowmetry in response to noxious mechanical cutaneous stimulation (pinching) of either a forepaw or a hindpaw. The stimulation was delivered ipsilaterally or contralaterally to the site of blood flow measurement. Pinching of the forepaw or the hindpaw on either side increased mean arterial pressure (MAP) to the same degree. However, the SCBF response to pinching of the ipsilateral hindpaw was significantly greater than that to other stimulations. These responses were not influenced by denervation of the baroreceptors. The responses of SCBF to pinching of the ipsilateral hindpaw persisted both after treatment with phenoxybenzamine and after spinalization at the C1-2 level, whereas the responses to pinching at other sites disappeared. The responses of MAP to stimulation at all four sites became negligible after treatment with phenoxybenzamine and after spinalization at the C1-2 level. These results indicate that noxious mechanical stimulation of the skin produces increases in SCBF via two mechanisms: one is via an elevation of systemic arterial pressure; the other is via a localized spinal mechanism evoked by ipsilateral, segmental inputs.

  13. Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lan, Tonghan; Lin, Jiarui

    2005-01-01

    Nano-Selenium, a novel Nano technology production, was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Selenium on tetrodotoxin-sensitive (TTX-S) voltage-dependent Na+channels in isolated rat dorsal root ganglion neurons, using whole-cell patch-clamp method. Nano-Selenium irreversibly decreased TTX-S Na+current (INa) in a concentration-dependent manner and shifted the maximum of the current/voltage relationship from -67mV to -52mV, without modifying the threshold potential of the current. Nano-Selenium shifted the steady-state activation and inactivation curves to the left. In the contrast of Na2SeO3, the inhibition effect of 1nM Nano-Se was much stronger. The cell treated with 1nM Na2SeO3firstly, still respond to futher addition of 1nM Nano-Selenium. These results prove Nano-Selenium to be a novel antiagonist, acted within the channel pore, not on or near the exterior surface of the channel protein where it would experience the membrane electric field, which possesses a distinct binding site from Na2SeO3.

  14. Salvia officinalis L. induces alveolar bud growing in adult female rat mammary glands

    PubMed Central

    Monsefi, Malihezaman; Abedian, Mehrnaz; Azarbahram, Zahra; Ashraf, Mohammad Javad

    2015-01-01

    Objectives: In traditional medicine Salvia officinalis (sage) has been used as menstrual cycle regulator. In the present study the effects of sage extract on breast tissue were examined. Materials and Methods: Fourteen female rats were divided into two groups: 1) Distilled water-treated rats (Con) that were gavaged with 1ml distilled water and 2) Saliva officinalis hydroalcoholic extract (SHE)-treated rats that were gavaged with 30mg/kg/body weight of sage extract for 30 days. The estrus cycle changes were monitored by daily examination of vaginal smear. Whole mounts of right pelvic breast were spread on the slide and stained by carmine. The number of alveolar buds (ABs) type 1 and 2 and lobules of mammary gland were scored. Tissue sections of left pelvic mammary gland were prepared and its histomorphometrical changes were measured. Blood samples were taken from dorsal aorta and estradiol and progesterone concentrations were measured using radioimmunoassay. Results: Estrous cycles decreased significantly in SHE-treated animals. The number of alveolar buds and lobules in mammary gland whole mount of SHE-treated group were higher than the Con group. The number and diameter of ducts in histological section of mammary gland in SHE-treated group increased as compared to the Con group. Conclusion: Sage promotes alveologenesis of mammary glands and it can be used as a lactiferous herb. PMID:26693413

  15. Activity of dorsal raphe cells across the sleep–waking cycle and during cataplexy in narcoleptic dogs

    PubMed Central

    Wu, M-F; John, J; Boehmer, L N; Yau, D; Nguyen, G B; Siegel, J M

    2004-01-01

    Cataplexy, a symptom associated with narcolepsy, represents a unique dissociation of behavioural states. During cataplectic attacks, awareness of the environment is maintained, as in waking, but muscle tone is lost, as in REM sleep. We have previously reported that, in the narcoleptic dog, noradrenergic cells of the locus coeruleus cease discharge during cataplexy. In the current study, we report on the activity of serotonergic cells of the dorsal raphe nucleus. The discharge patterns of serotonergic dorsal raphe cells across sleep–waking states did not differ from those of dorsal raphe and locus coeruleus cells recorded in normal rats, cats and monkeys, with tonic discharge in waking, reduced activity in non-REM sleep and cessation of activity in REM sleep. However, in contrast with locus coeruleus cells, dorsal raphe REM sleep-off neurones did not cease discharge during cataplexy. Instead, discharge continued at a level significantly higher than that seen in REM sleep and comparable to that seen in non-REM sleep. We also identified several cells in the dorsal raphe whose pattern of activity was the opposite of that of the presumed serotonergic cells. These cells were maximally active in REM sleep and minimally active in waking and increased activity during cataplexy. The difference between noradrenergic and serotonergic cell discharge profiles in cataplexy suggests different roles for these cell groups in the normal regulation of environmental awareness and muscle tone and in the pathophysiology of narcolepsy. PMID:14678502

  16. The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life

    PubMed Central

    Hathway, G J; Koch, S; Low, L; Fitzgerald, M

    2009-01-01

    Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624

  17. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  18. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  19. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum.

    PubMed

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2015-11-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. Copyright © 2015 the American Physiological Society.

  20. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum

    PubMed Central

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N.; Iijima, Toshio

    2015-01-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. PMID:26378201

  1. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  2. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning

    PubMed Central

    Harvey, Roxann C.; Dembro, Kimberly A.; Rajagopalan, Kiran; Mutebi, Michael M.; Kantak, Kathleen M.

    2010-01-01

    Rationale Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. Objectives To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. Materials and methods A yoked-triad design (n=8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37–P59 or P77–P99, and then underwent 18 drug-free days (P60–P77 vs. P100–P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78–P96 vs. P118–P136). Results Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. Conclusions Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience. PMID:19513699

  3. Percutaneous fixation with Kirschner wires versus volar locking plate fixation in adults with dorsally displaced fracture of distal radius: randomised controlled trial

    PubMed Central

    Achten, Juul; Parsons, Nick R; Rangan, Amar; Griffin, Damian; Tubeuf, Sandy; Lamb, Sarah E

    2014-01-01

    Objectives To compare the clinical effectiveness of Kirschner wire fixation with locking plate fixation for patients with a dorsally displaced fracture of the distal radius. Design A multicentre two arm parallel group assessor blind randomised controlled trial with 1:1 treatment allocation. Setting 18 trauma centres in the United Kingdom. Participants 461 adults with a dorsally displaced fracture of the distal radius within 3 cm of the radiocarpal joint that required surgical fixation. Patients were excluded if the surgeon thought that the surface of the wrist joint was so badly displaced it required open reduction. Interventions Kirschner wire fixation: wires are passed through the skin over the dorsal aspect of the distal radius and into the bone to hold the fracture in the correct anatomical position. Locking plate fixation: a locking plate is applied through an incision over the volar (palm) aspect of the wrist and secured to the bone with fixed angle locking screws. Main outcome measures Primary outcome measure: validated patient rated wrist evaluation (PRWE). This rates wrist function in two (equally weighted) sections concerning the patient’s experience of pain and disability to give a score out of 100. Secondary outcomes: disabilities of arm, shoulder, and hand (DASH) score, the EuroQol (EQ-5D), and complications related to the surgery. Results The baseline characteristics of the two groups were well balanced, and over 90% of patients completed follow-up. The wrist function of both groups of patients improved by 12 months. There was no clinically relevant difference in the patient rated wrist score at three, six, or 12 months (difference in favour of the plate group was −1.3, 95% confidence interval −4.5 to 1.8; P=0.40). Nor was there a clinically relevant difference in health related quality of life or the number of complications in each group. Conclusions Contrary to the existing literature, and against the rapidly increasing use of locking plate

  4. Percutaneous fixation with Kirschner wires versus volar locking plate fixation in adults with dorsally displaced fracture of distal radius: randomised controlled trial.

    PubMed

    Costa, Matthew L; Achten, Juul; Parsons, Nick R; Rangan, Amar; Griffin, Damian; Tubeuf, Sandy; Lamb, Sarah E

    2014-08-05

    To compare the clinical effectiveness of Kirschner wire fixation with locking plate fixation for patients with a dorsally displaced fracture of the distal radius. A multicentre two arm parallel group assessor blind randomised controlled trial with 1:1 treatment allocation. 18 trauma centres in the United Kingdom. 461 adults with a dorsally displaced fracture of the distal radius within 3 cm of the radiocarpal joint that required surgical fixation. Patients were excluded if the surgeon thought that the surface of the wrist joint was so badly displaced it required open reduction. Kirschner wire fixation: wires are passed through the skin over the dorsal aspect of the distal radius and into the bone to hold the fracture in the correct anatomical position. Locking plate fixation: a locking plate is applied through an incision over the volar (palm) aspect of the wrist and secured to the bone with fixed angle locking screws. validated patient rated wrist evaluation (PRWE). This rates wrist function in two (equally weighted) sections concerning the patient's experience of pain and disability to give a score out of 100. disabilities of arm, shoulder, and hand (DASH) score, the EuroQol (EQ-5D), and complications related to the surgery. The baseline characteristics of the two groups were well balanced, and over 90% of patients completed follow-up. The wrist function of both groups of patients improved by 12 months. There was no clinically relevant difference in the patient rated wrist score at three, six, or 12 months (difference in favour of the plate group was -1.3, 95% confidence interval -4.5 to 1.8; P=0.40). Nor was there a clinically relevant difference in health related quality of life or the number of complications in each group. Contrary to the existing literature, and against the rapidly increasing use of locking plate fixation, this trial found no difference in functional outcome in patients with dorsally displaced fractures of the distal radius treated with

  5. β-Arrestins Negatively Regulate the Toll Pathway in Shrimp by Preventing Dorsal Translocation and Inhibiting Dorsal Transcriptional Activity*

    PubMed Central

    Sun, Jie-Jie; Lan, Jiang-Feng; Shi, Xiu-Zhen; Yang, Ming-Chong; Niu, Guo-Juan; Ding, Ding; Zhao, Xiao-Fan; Yu, Xiao-Qiang; Wang, Jin-Xing

    2016-01-01

    The Toll signaling pathway plays an important role in the innate immunity of Drosophila melanogaster and mammals. The activation and termination of Toll signaling are finely regulated in these animals. Although the primary components of the Toll pathway were identified in shrimp, the functions and regulation of the pathway are seldom studied. We first demonstrated that the Toll signaling pathway plays a central role in host defense against Staphylococcus aureus by regulating expression of antimicrobial peptides in shrimp. We then found that β-arrestins negatively regulate Toll signaling in two different ways. β-Arrestins interact with the C-terminal PEST domain of Cactus through the arrestin-N domain, and Cactus interacts with the RHD domain of Dorsal via the ankyrin repeats domain, forming a heterotrimeric complex of β-arrestin·Cactus·Dorsal, with Cactus as the bridge. This complex prevents Cactus phosphorylation and degradation, as well as Dorsal translocation into the nucleus, thus inhibiting activation of the Toll signaling pathway. β-Arrestins also interact with non-phosphorylated ERK (extracellular signal-regulated protein kinase) through the arrestin-C domain to inhibit ERK phosphorylation, which affects Dorsal translocation into the nucleus and phosphorylation of Dorsal at Ser276 that impairs Dorsal transcriptional activity. Our study suggests that β-arrestins negatively regulate the Toll signaling pathway by preventing Dorsal translocation and inhibiting Dorsal phosphorylation and transcriptional activity. PMID:26846853

  6. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats

    PubMed Central

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  7. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats.

    PubMed

    Crescenzo, Raffaella; Cigliano, Luisa; Mazzoli, Arianna; Cancelliere, Rosa; Carotenuto, Rosa; Tussellino, Margherita; Liverini, Giovanna; Iossa, Susanna

    2018-01-01

    The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional

  8. Use of the light/dark test for anxiety in adult and adolescent male rats

    PubMed Central

    Arrant, Andrew E.; Schramm-Sapyta, Nicole L.; Kuhn, Cynthia M.

    2014-01-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28–34) and adult (PN67–74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α2 adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. PMID:23721963

  9. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    PubMed

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  10. Dorsal Arthroscopic Approach and Intra-Articular Anatomy of the Bovine Antebrachiocarpal and Middle Carpal Joints.

    PubMed

    Lardé, Hélène; Nichols, Sylvain; Babkine, Marie; Desrochers, André

    2016-07-01

    To determine arthroscopic approaches to the dorsal synovial compartments of the antebrachiocarpal and middle carpal joints in adult cattle, and to describe the arthroscopic intra-articular anatomy from each approach. Ex vivo study. Six fresh adult bovine cadavers. Two carpi were injected with latex and dissected to determine the ideal location for arthroscopic portals. Arthroscopy of the antebrachiocarpal and middle carpal joints of 10 carpi was then performed. The dorsolateral approach was made between the extensor carpi radialis and common digital extensor tendons. The dorsomedial approach was made medial to the extensor carpi radialis tendon, midway between the distal radius and proximal row of carpal bones (antebrachiocarpal joint) and midway between the two rows of carpal bones (middle carpal joint), with the joint in flexion. Arthroscopy of the antebrachiocarpal joint allowed visualization of the distal radius, proximal aspect of the radial, intermediate and ulnar carpal bones, and a palmar ligament located between the radius and the intermediate carpal bone. The approach to the middle carpal joint allowed visualization of the distal aspect of the radial, intermediate, and ulnar carpal bones, the proximal aspect of the fourth and fused second and third carpal bones and an interosseous ligament. The most lateral articular structures (lateral glenoid cavity of the distal radius, ulnar carpal and fourth carpal bones) were difficult to assess. Dorsal approaches to the antebrachiocarpal and middle carpal joints allowed visualization of most intra-articular dorsal structures in adult cattle. © Copyright 2016 by The American College of Veterinary Surgeons.

  11. Post-metamorphic development of skin glands in a true toad: Parotoids versus dorsal skin.

    PubMed

    Regueira, Eleonora; Dávila, Camila; Sassone, Alina G; O'Donohoe, María E Ailín; Hermida, Gladys N

    2017-05-01

    Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late-larval stages, many species, including Rhinella arenarum, have immature glands by the end of metamorphosis, and their post-metamorphic growth is unknown. Herein, we compared the post-metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum. Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults. © 2017 Wiley Periodicals, Inc.

  12. Up-Regulation of the Biosynthesis and Release of Substance P through Wnt/β-Catenin Signaling Pathway in Rat Dorsal Root Ganglion Cells

    PubMed Central

    Li, Yu-Sang; Xi, Yang; Li, Xiao-Jun; Leng, Chang-Long; Jia, Mei-Mei; Zhang, Wei Kevin; Tang, He-Bin

    2015-01-01

    To examine regulatory effects of β-catenin on the biosynthesis and release of substance P, a rat chronic constriction injury (CCI) model and a rat dorsal root ganglion (DRG) cell culture model were used in the present study. The CCI treatment significantly induced the overall expression of β-catenin (158 ± 6% of sham) in the ipsilateral L5 DRGs in comparison with the sham group (109 ± 4% of sham). The CCI-induced aberrant expression of β-catenin was significantly attenuated by oral administration of diclofenac (119 ± 6% of the sham value; 10 mg/kg). Importantly, aberrant nuclear accumulation of β-catenin in cultured DRG cells resulted in up-regulation of the PPT-A mRNA expression and the substance P release. The up-regulation of both the PPT-A mRNA expression and the substance P release by either a GSK-3β inhibitor TWS119 (10 μM) or a Wnt signaling agonist Wnt-3a (100 ng/ml) were significantly abolished by an inhibitor of cyclooxygenase-2 (COX-2; NS-398, 1 μM). Collectively, these data suggest that nociceptive input-activated β-catenin signaling plays an important role in regulating the biosynthesis and release of substance P, which may contribute to the inflammation responses related to chronic pain. PMID:26054011

  13. Dorsal onlay (Barbagli technique) versus dorsal inlay (Asopa technique) buccal mucosal graft urethroplasty for anterior urethral stricture: a prospective randomized study.

    PubMed

    Aldaqadossi, Hussein; El Gamal, Samir; El-Nadey, Mohamed; El Gamal, Osama; Radwan, Mohamed; Gaber, Mohamed

    2014-02-01

    To compare both the dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa for the management of long anterior urethral stricture. From January 2010 to May 2012, a total of 47 patients with long anterior urethral strictures were randomized into two groups. The first group included 25 patients who were managed by dorsal onlay buccal mucosal graft urethroplasty. The second group included 22 patients who were managed by dorsal inlay buccal mucosal graft urethroplasty. Different clinical parameters, postoperative complications and success rates were compared between both groups. The overall success rate in the dorsal onlay group was 88%, whereas in the dorsal inlay group the success rate was 86.4% during the follow-up period. The mean operative time was significantly longer in the dorsal onlay urethroplasty group (205 ± 19.63 min) than in the dorsal inlay urethroplasty group (128 ± 4.9 min, P-value <0.0001). The average blood loss was significantly higher in the dorsal onlay urethroplasty group (228 ± 5.32 mL) than in the dorsal inlay urethroplasty group (105 ± 12.05 mL, P-value <0.0001). The dorsal onlay technique of Barbagli and the dorsal inlay technique of Asopa buccal mucosal graft urethroplasty provide similar success rates. The Asopa technique is easy to carry out, provides shorter operative time and less blood loss, and it is associated with fewer complications for anterior urethral stricture repair. © 2013 The Japanese Urological Association.

  14. Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats.

    PubMed

    Zlebnik, Natalie E; Anker, Justin J; Carroll, Marilyn E

    2012-12-01

    Concurrent access to an exercise wheel decreases cocaine self-administration under short access (5 h/day for 5 days) conditions and suppresses cocaine-primed reinstatement in adult rats. The effect of exercise (wheel running) on the escalation of cocaine intake during long access (LgA, 6 h/day for 26 days) conditions was evaluated. Adolescent and adult female rats acquired wheel running, and behavior was allowed to stabilize for 3 days. They were then implanted with an iv catheter and allowed to self-administer cocaine (0.4 mg/kg, iv) during 6-h daily sessions for 16 days with concurrent access to either an unlocked or a locked running wheel. Subsequently, for ten additional sessions, wheel access conditions during cocaine self-administration sessions were reversed (i.e., locked wheels became unlocked and vice versa). In the adolescents, concurrent access to the unlocked exercise wheel decreased responding for cocaine and attenuated escalation of cocaine intake irrespective of whether the locked or unlocked condition came first. However, cocaine intake increased when the wheel was subsequently locked for the adolescents that had initial access to an unlocked wheel. Concurrent wheel access either before or after the locked wheel access did not reduce cocaine intake in adults. Wheel running reduced cocaine intake during LgA conditions in adolescent but not adult rats, and concurrent access to the running wheel was necessary. These results suggest that exercise prevents cocaine seeking and that this effect is more pronounced in adolescents than adults.

  15. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  16. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  17. Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats

    PubMed Central

    Kim, Eun Joo; Horovitz, Omer; Pellman, Blake A.; Tan, Lancy Mimi; Li, Qiuling; Richter-Levin, Gal; Kim, Jeansok J.

    2013-01-01

    The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum–BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context. PMID:23959880

  18. [Morphological signs of survival cultured adult rat cardiomyocytes].

    PubMed

    Chang, Hui; Zhang, Lin; Yu, Zhi-Bin

    2011-02-01

    To clarify the key morphological signs for the survival of adult rat cardiomyocytes in primary culture. The adult rat hearts were retrogradely superfused by Langendorff apparatus. Cardiomyocytes were digested by collagenase I and cultured in three groups: (1) Serum free medium + BA (Bongkrekic acid, apoptotic inhibitor), (2) 5% serum medium, and (3) 5% serum medium + BA. The morphological alterations were observed and the percentage of rod-shaped cardiomyocytes, the apoptotic rate of cells, the rate of pseudopodium formation and the nuclear distances of cardiomyocytes were detected during culture. (1) The percentage of rod-shaped cardiomyocytes decreased gradually in the first 3 days of cell culture. The percentage of rod-shaped cardiomyocytes cultured without fetal bovine serum (FBS) decreased more rapidly than those cultured with FBS. No differences were noticed between with and without the addition of apoptotic inhibitor BA. The apoptotic rate of cardiomyocytes increased in the first 3 days of cell culture, and the apoptotic rate of cells cultured without FBS increased more than that cultured with FBS. Also BA had no effect on apoptotic rate. (2) Cardiomyocytes cultured with FBS spread from the intercalated disk and extended pseudopodium on the second or third day of cell culture. Cardiomyocytes with thin membranous pseudopodium developed would survive and spread laterally at the 6th day of culture. Cells with the elongated morphology gradually spread extensively and took on a spheroidal shape. Myofibrils gradually lost their parallel. Cells cultured without FBS had no pseudopodium formation. The intercalated disk of cells gradually changed blunt. There was no effect on the rate of pseudopodium formation when added with apoptotic inhibitor BA. (3) Cytoskeletal remodeling occurred in survived cardiomyocytes. After 6 days of culture, cardiomyocytes exhibited characteristic of redifferentiation. (4) The distance between nuclei decreased in a single cardiomyocyte

  19. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose-Response Analysis.

    PubMed

    Prins, Gail S; Ye, Shu-Hua; Birch, Lynn; Zhang, Xiang; Cheong, Ana; Lin, Han; Calderon-Gierszal, Esther; Groen, Jacob; Hu, Wen-Yang; Ho, Shuk-Mei; van Breemen, Richard B

    2017-07-11

    Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. A complete BPA dose-response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes. Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000 μg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS). The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10–100 μg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses. Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at doses that yield undetectable serum free BPA. Dose

  20. Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose–Response Analysis

    PubMed Central

    Ye, Shu-Hua; Birch, Lynn; Zhang, Xiang; Cheong, Ana; Lin, Han; Calderon-Gierszal, Esther; Groen, Jacob; Hu, Wen-Yang; Ho, Shuk-Mei; van Breemen, Richard B.

    2017-01-01

    Background: Previous studies have uncovered heightened prostatic susceptibility to hormone-induced neoplasia from early-life exposure to low-dose bisphenol A (BPA). However, significant data gaps remain that are essential to address for biological relevance and necessary risk assessment. Objectives: A complete BPA dose–response analysis of prostate lesions across multiple prostatic lobes was conducted that included internal BPA dosimetry, progression to adenocarcinoma with aging and mechanistic connections to epigenetically reprogramed genes. Methods: Male neonatal Sprague-Dawley rats were briefly exposed to 0.1 to 5,000μg BPA/kg BW on postnatal days (PND) 1, 3, and 5. Individual prostate lobes plus periurethral prostatic ducts were evaluated at 7 mo or 1 y of age without or with adult testosterone plus estradiol (T+E) to promote carcinogenesis. DNA methylation of five genes was quantified by bisulfite genomic sequencing in d-200 dorsal prostates across BPA doses. Serum free-BPA and BPA-glucuronide were quantitated in sera of individual PND 3 pups collected 1 hr postexposure utilizing ultra-high-pressure tandem mass spectrometry (UHPLC-MS-MS). Results: The lowest BPA dose initiated maximal hormonal carcinogenesis in lateral prostates despite undetectable free BPA 1 hr postexposure. Further, prostatic intraepithelial neoplasia (PIN) progressed to carcinoma in rats given neonatal low-dose BPA with adult T+E but not in rats given adult T+E alone. The dorsal and ventral lobes and periurethral prostatic ducts exhibited a nonmonotonic dose response with peak PIN, proliferation and apoptotic values at 10–100μg/kg BW. This was paralleled by nonmonotonic and dose-specific DNA hypomethylation of genes that confer carcinogenic risk, with greatest hypomethylation at the lowest BPA doses. Conclusions: Developmental BPA exposures heighten prostate cancer susceptibility in a complex dose- and lobe-specific manner. Importantly, elevated carcinogenic risk is found at

  1. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  2. Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats.

    PubMed

    Gemba-Nishimura, A; Inoue, T; Nakamura, S; Nakayama, K; Mochizuki, A; Shintani, S; Yoshimura, S

    2010-03-31

    We previously reported that electrical stimulation of the reticular formation dorsal to the facial nucleus (RdVII) elicited excitatory masseter responses at short latencies and that RdVII neurons were antidromically activated by stimulation of the trigeminal motor nucleus (MoV), suggesting that excitatory premotor neurons targeting the MoV are likely located in the RdVII. We thus examined the properties of synaptic transmission from the RdVII to jaw-closing and jaw-opening motoneurons in horizontal brainstem preparations from developing rats using voltage-sensitive dye, patch-clamp recordings and laser photostimulation. Electrical stimulation of the RdVII evoked optical responses in the MoV. Combined bath application of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (APV) reduced these optical responses, and addition of the glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline further reduced the remaining responses. Electrical stimulation of the RdVII evoked postsynaptic currents (PSCs) in all 19 masseter motoneurons tested in postnatal day (P)1-4 rats, and application of CNQX and the NMDA receptor antagonist (+/-)-3(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) reduced the PSC amplitudes by more than 50%. In the presence of CNQX and CPP, the GABA(A) receptor antagonist SR95531 further reduced PSC amplitude, and addition of strychnine abolished the remaining PSCs. Photostimulation of the RdVII with caged glutamate also evoked PSCs in masseter motoneurons of P3-4 rats. In P8-11 rats, electrical stimulation of the RdVII also evoked PSCs in all 14 masseter motoneurons tested, and the effects of the antagonists on the PSCs were similar to those in P1-4 rats. On the other hand, RdVII stimulation evoked PSCs in only three of 16 digastric motoneurons tested. These results suggest that both neonatal and

  3. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression.

    PubMed

    Récamier-Carballo, Soledad; Estrada-Camarena, Erika; Reyes, Rebeca; Fernández-Guasti, Alonso

    2012-08-01

    The antidepressant effect of estrogens combined with antidepressants is controversial: some preclinical data showed that estrogens facilitate the effect of antidepressants in the forced swimming test (FST) in young adult rats, while others failed to find such effect in middle-aged rats in the chronic mild stress (CMS) model. In clinics similar differences were reported and may be due to the compounds, the depression model or type of depression, the experimental design, and the age of the subjects or the women's menopause stage. The objective of this study was to analyze the antidepressant-like effect of the combination of 17β-estradiol (E(2)) and fluoxetine (FLX) in young adults (2-4 months) and middle-aged (12-14 months) ovariectomized (OVX) rats in two experimental models: FST and CMS. E(2) (5 and 10 μg/rat) and FLX (2.5 and 10 mg/kg) per se dose-dependently reduced immobility in both age groups and, in young adults both compounds increased swimming, whereas in middle-aged rats they increased swimming and climbing. Analysis of the antidepressant-like effect of the combination of suboptimal doses of FLX (1.25 mg/kg) and E(2) (2.5 μg/rat) showed a decrease in immobility and an increase in swimming in both age groups. In the CMS, chronic E(2) (2.5 μg/rat) with FLX (1.25 mg/kg) augmented relative sucrose intake, but middle-aged rats responded 2 weeks earlier than young adults. These results show that the antidepressant-like effect of the combination of E(2) and FLX in young adult and middle-aged female rats is evidenced in the two animal models of depression: FST and CMS. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effects of chronic lead intoxication on rat serotoninergic system and anxiety behavior.

    PubMed

    Sansar, Wafa; Bouyatas, My Mustapha; Ahboucha, Samir; Gamrani, Halima

    2012-01-01

    Chronic lead exposure has been shown to produce behavioral disturbances in human and animal models. These disturbances are associated with alterations in monoaminergic neurotransmission in the central nervous system (CNS), some of which have been attributed to serotonin (5-HT). This study was undertaken to investigate the chronic effects of lead exposure on the serotoninergic system in the dorsal raphe nucleus (DRN) and the consequences of its toxicity on rat behavior. Adult male Wistar rats were chronically exposed for 3 months to 0.5% lead acetate in drinking water. The serotoninergic system was evaluated using immunohistochemistry and the anxiety behavior was assessed by the light/dark box test. The results show that chronic lead exposure induces a significant increase of blood and brain lead levels in treated rats compared with controls. The density of the immunoreactive serotoninergic cell bodies was significantly higher in treated rats in all parts of the DRN. Assessment of animal behavior using the light/dark box test showed that lead-treated rats spent significantly more time in the light chamber compared with controls (P=0.001). These findings suggest that lead exposure may possibly induce increased anxiety as a consequence of changes in neuronal 5-HT content in the DRN. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  6. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( Ih) in large-diameter dorsal root ganglion neurons.

    PubMed

    Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng

    2017-01-01

    Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.

  7. Surgical intestinal manipulation increases gene expression of TrkA, CGRP, and PAR-2 IN dorsal root ganglia in the rat.

    PubMed

    Berdún, S; Rychter, J; Vergara, P

    2016-06-01

    Surgical handling of the bowel evokes degranulation of peritoneal mast cells (PMC). Nonetheless, role of PMCs in postoperative ileus (POI) is somewhat controversial. We aimed to investigate if intestinal manipulation elicits changes in afferent mediators related to MC activation and alteration of gastrointestinal (GI) motility. Postoperative ileus was induced by intestinal manipulation in Sprague-Dawley rats. Additionally, compound 48/80 (C48/80) and ketotifen were used to modulate MC activity. Rat mast cell protease 6 (RMCP-6, ELISA) release was determined in peritoneal lavage 20 min after intestinal manipulation. At 24 h, GI transit was determined. Gene expression of calcitonin gene-related peptide (CGRP), protease-activated receptor-2 (PAR-2), nerve growth factor (NGF), and TrkA receptor was determined (PCR) in dorsal root ganglia (DRG). Ileal wall inflammation was assessed by myeloperoxidase (MPO) activity, interleukin-6 expression (IL-6). Intestinal manipulation and exposure to C48/80-induced degranulation of PMCs delayed GI transit and up-regulated IL-6 and MPO activity. Intestinal manipulation, but not C48/80, up-regulated CGRP, PAR-2, and NGF/TrkA in DRGs. Ketotifen only improved gastric emptying and fecal output. Up-regulation of CGRP and TrkA expression in DRG was not prevented by ketotifen. Postoperative ileus is accompanied by activation of CGRP, NGF-TrkA, and PAR-2 in DRGs. Our results suggest that these mediators could be a target in further POI studies in order to find new therapeutic targets for this medical condition. © 2016 John Wiley & Sons Ltd.

  8. Changes of cervical dorsal root ganglia induced by compression injury and decompression procedure: a novel rat model of cervical radiculoneuropathy.

    PubMed

    Tang, Zhan-Ying; Shu, Bing; Cui, Xue-Jun; Zhou, Chong-Jian; Shi, Qi; Holz, Jonathan; Wang, Yong-Jun

    2009-02-11

    Our study aimed to establish a model of compression injury of cervical dorsal root ganglia (DRG) in the rat and to investigate the pathological changes following compression injury and decompression procedures. Thirty rats were divided into three groups: control group receiving sham surgery, compression group undergoing surgery to place a micro-silica gel on C6 DRG, and decompression group with subsequent decompression procedure. The samples harvested from the different groups were examined with light microscopy, ultrastructural analysis, and horseradish peroxidase (HRP) retrograde tracing techniques. Apoptosis of DRG neurons was demonstrated with TUNEL staining. Changes in PGE2 and PLA2 in DRG neurons were detected with enzyme-linked immunosorbent assay (ELISA). Local expression of vascular endothelial growth factor (VEGF) was monitored with immunohistochemistry. DRG neurons in the compression group became swollen with vacuolar changes in cytoplasm. Decompression procedure partially ameliorated the resultant compression pathology. Ultrastructural examination showed a large number of swollen vacuoles, demyelinated nerve root fibers, absence of Schwann cells, and proliferation in the surrounding connective tissues in the compression group. Compared to the control group, the compression group showed a significant decrease in the number of the HRP-labeled cells and a significant increase in levels of PGE2 and PLA2, in the expression of VEGF protein, and in the number of apoptotic DRG neurons. These findings demonstrate that compression results in local inflammation, followed by increased apoptosis and upregulation of VEGF. We conclude that such a model provides a tool to study the pathogenesis and treatment of cervical radiculoneuropathy.

  9. [Effect of different number of bone marrow mesenchymal stem cells on growth of rat dorsal root ganglia in vitro].

    PubMed

    Xu, Wenjing; Zhao, Zhe; Zhao, Bin; Wang, Yu; Peng, Jiang; Zhang, Li; Chen, Jifeng; Lu, Shibi

    2011-10-01

    Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root ganglia (DRG). Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, which were cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 x 10(3)), group B (1 x 10(4)), group C (1 x 10(5)), and group D (0, blank control), and BMSCs were co-cultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P < 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P < 0.05), but there was no significant difference between group A and group C, and between group A and group B (P > 0.05). The axon area index in groups A and B was significantly greater than that in group D (P < 0.05), but there was no significant difference between group C and group D (P > 0.05); there was no significant difference in groups A, B, and C (P > 0.05). In vitro study on DRG culture experiments is an ideal objective

  10. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO

    PubMed Central

    Masurovsky, Edmund B.; Bunge, Mary Bartlett; Bunge, Richard P.

    1967-01-01

    Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo. PMID:10976234

  12. Weight bearing of the limb as a confounding factor in assessment of mechanical allodynia in the rat.

    PubMed

    Kauppila, T; Kontinen, V K; Pertovaara, A

    1998-01-01

    Effect of weight bearing of the hindlimbs on the assessment of mechanically-induced hindlimb withdrawal threshold was determined in intact rats and in rats with various pathophysiological conditions causing allodynia or hyperalgesia. Hindlimb withdrawal was elicited by applying a series of calibrated monofilaments to the plantar or the dorsal surface of the paw. During testing the rat was either in a restraint tube with hindlimbs hanging semi-extended without weight bearing or it was standing on a metal grid (bearing its own weight). In intact rats, the withdrawal thresholds were significantly lower when the stimulus site was the dorsal hairy skin rather than the plantar glabrous skin. Also, thresholds were significantly lower when the hindlimbs were not bearing weight. Following carrageenan-induced unilateral inflammation of the plantar paw or a tibial nerve cut there was a marked threshold decrease to test stimuli applied to plantar or dorsal paw, respectively, ipsilateral to the pathological condition in standing rats. However, when the hindlimbs were not weight bearing the unilateral threshold decrease was markedly attenuated (carrageenan-treated rats) or completely abolished (tibial cut). In contrast, in rats with a unilateral spinal nerve ligation the threshold decrease ipsilateral to the nerve lesion was highly significant independent of the weight bearing of the hindlimbs. The results indicate that weight bearing of hindlimbs is an important confounding factor in the assessment of tactile allodynia in rats.

  13. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters

    PubMed Central

    Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G

    2007-01-01

    Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354

  15. Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.

    PubMed

    McBride, Shawna M; Culver, Bruce; Flynn, Francis W

    2006-10-01

    Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.

  16. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake

    PubMed Central

    Perry, Jennifer L.; Anderson, Marissa M.; Nelson, Sarah E.; Carroll, Marilyn E.

    2009-01-01

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given noncontingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin intake was determined by comparing 24-h saccharin and water consumption in two-bottle tests. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin preference scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse compared with adulthood. PMID:17360010

  17. Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location

    PubMed Central

    Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene

    2017-01-01

    Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005

  18. The rat corticospinal system is functionally and anatomically segregated.

    PubMed

    Olivares-Moreno, Rafael; Moreno-Lopez, Yunuen; Concha, Luis; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo

    2017-12-01

    The descending corticospinal (CS) projection has been considered a key element for motor control, which results from direct and indirect modulation of spinal cord pre-motor interneurons in the intermediate gray matter of the spinal cord, which, in turn, influences motoneurons in the ventral horn. The CS tract (CST) is also involved in a selective and complex modulation of sensory information in the dorsal horn. However, little is known about the spinal network engaged by the CST and the organization of CS projections that may encode different cortical outputs to the spinal cord. This study addresses the issue of whether the CS system exerts parallel control on different spinal networks, which together participate in sensorimotor integration. Here, we show that in the adult rat, two different and partially intermingled CS neurons in the sensorimotor cortex activate, with different time latencies, distinct spinal cord neurons located in the dorsal horn and intermediate zone of the same segment. The fact that different populations of CS neurons project in a segregated manner suggests that CST is composed of subsystems controlling different spinal cord circuits that modulate motor outputs and sensory inputs in a coordinated manner.

  19. Dorsal hippocampal N-methyl-D-aspartate receptors underlie spatial working memory performance during non-matching to place testing on the T-maze.

    PubMed

    McHugh, Stephen B; Niewoehner, Burkhard; Rawlins, J N P; Bannerman, David M

    2008-01-10

    Previous lesion studies have suggested a functional dissociation along the septotemporal axis of the hippocampus. Whereas the dorsal hippocampus has been implicated in spatial memory processes, the ventral hippocampus may play a role in anxiety. However, these lesion studies are potentially confounded by demyelination of fibres passing through the lesion site, and the possibility of secondary, downstream changes in associated brain structures as a consequence of their chronic denervation following the lesion. In the present study, we have used the microinfusion of muscimol to temporarily inactivate either the dorsal or ventral hippocampus in order to re-examine the contribution of the hippocampal sub-regions to spatial memory. Microinfusion studies spare fibres of passage and offer fewer opportunities for compensatory changes because the effects are transient and short-lasting. Rats were infused prior to spatial working memory testing on a non-matching to place T-maze alternation task. Spatial working memory was impaired by dorsal but not ventral hippocampal inactivation. In a second experiment, infusion of the NMDAR antagonist, D-AP5, into dorsal hippocampus also impaired spatial working memory performance, suggesting that NMDAR function within the dorsal hippocampus makes an essential contribution to this aspect of hippocampal information processing.

  20. Decrease in Adult Neurogenesis and Neuroinflammation Are Involved in Spatial Memory Impairment in the Streptozotocin-Induced Model of Sporadic Alzheimer's Disease in Rats.

    PubMed

    Bassani, Taysa Bervian; Bonato, Jéssica M; Machado, Meira M F; Cóppola-Segovia, Valentín; Moura, Eric L R; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F

    2018-05-01

    Early impairments in cerebral glucose metabolism and insulin signaling pathways may participate in the pathogenesis of the sporadic form of Alzheimer's disease (sAD). Intracerebroventricular (ICV) injections of low doses of streptozotocin (STZ) are used to mimic sAD and study these alterations in rodents. Streptozotocin causes impairments in insulin signaling and has been reported to trigger several alterations in the brain, such as oxidative stress, neuroinflammation, and dysfunctions in adult neurogenesis, which may be involved in cognitive decline and are features of human AD. The aim of the present study was to assess the influence of neuroinflammation on the process of adult neurogenesis and consequent cognitive deficits in the STZ-ICV model of sAD in Wistar rats. Streptozotocin caused an acute and persistent neuroinflammatory response, reflected by reactive microgliosis and astrogliosis in periventricular areas and the dorsal hippocampus, accompanied by a marked reduction of the proliferation of neural stem cells in the dentate gyrus of the hippocampus and subventricular zone. Streptozotocin also reduced the survival, differentiation, and maturation of newborn neurons, resulting in impairments in short-term and long-term spatial memory. These results support the hypothesis that neuroinflammation has a detrimental effect on neurogenesis, and both neuroinflammation and impairments in neurogenesis contribute to cognitive deficits in the STZ-ICV model of sAD.

  1. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats.

    PubMed

    Shah, Ami B; Nivar, Isaac; Speelman, Diana L

    2018-01-01

    Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.

  2. Dorsal or Volar Plate Fixation of the Distal Radius: Does the Complication Rate Help Us to Choose?

    PubMed

    Disseldorp, D J G; Hannemann, P F W; Poeze, M; Brink, P R G

    2016-08-01

    Internal fixation with plates is a reliable fixation technique for the treatment of distal radius fractures. An ongoing discussion exists whether volar or dorsal plating is the appropriate technique. In clinical practice, volar plate fixation is usually preferred because of the assumed lower complication frequency. However, recent studies with the newer generation low-profile dorsal plates reported lower complication rates. The aim of our study was to evaluate the differences in complication rates between volar and dorsal plate for the treatment of distal radius fractures in adult patients. A total of 214 patients with acute distal radius fractures were included in this retrospective study with a minimum 2 years of follow-up. In total, 123 patients were treated with dorsal plate fixation and 91 patients with volar plate fixation. Our primary study outcome was complication rate. The overall risk for complications was 15.4% in the dorsal group and 14.3% in the volar group (p = 0.81). A total of 19 patients had implant removal due to complications: 11 patients in the dorsal group and 8 patients in the volar group (p = 0.97). There is no preferred plate fixation technique based on these study results. In our opinion, decision for type of plate fixation should be based on fracture type and surgeon's experience with the specific approach and plate types. Therapeutic level III.

  3. Environmental Enrichment Promotes Plasticity and Visual Acuity Recovery in Adult Monocular Amblyopic Rats

    PubMed Central

    Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto

    2012-01-01

    Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358

  4. Pbx3 is required for normal locomotion and dorsal horn development.

    PubMed

    Rottkamp, Catherine A; Lobur, Katherine J; Wladyka, Cynthia L; Lucky, Amy K; O'Gorman, Stephen

    2008-02-01

    The transcription cofactor Pbx3 is critical for the function of hindbrain circuits controlling respiration in mammals, but the perinatal lethality caused by constitutively null mutations has hampered investigation of other roles it may play in neural development and function. Here we report that the conditional loss of Pbx3 function in most tissues caudal to the hindbrain resulted in progressive deficits of posture, locomotion, and sensation that became apparent during adolescence. In adult mutants, the size of the dorsal horn of the spinal cord and the numbers of calbindin-, PKC-gamma, and calretinin-expressing neurons in laminae I-III were markedly reduced, but the ventral cord and peripheral nervous system appeared normal. In the embryonic dorsal horn, Pbx3 expression was restricted to a subset of glutamatergic neurons, but its absence did not affect the initial balance of excitatory and inhibitory interneuron phenotypes. By embryonic day 15 a subset of Meis(+) glutamatergic neurons assumed abnormally superficial positions and the number of calbindin(+) neurons was increased three-fold in the mutants. Loss of Pbx3 function thus leads to the incorrect specification of some glutamatergic neurons in the dorsal horn and alters the integration of peripheral sensation into the spinal circuitry regulating locomotion.

  5. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  6. Spatial Mechanisms within the Dorsal Visual Pathway Contribute to the Configural Processing of Faces.

    PubMed

    Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Gotts, Stephen J; Ungerleider, Leslie G

    2017-08-01

    Human face recognition is often attributed to configural processing; namely, processing the spatial relationships among the features of a face. If configural processing depends on fine-grained spatial information, do visuospatial mechanisms within the dorsal visual pathway contribute to this process? We explored this question in human adults using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS) in a same-different face detection task. Within localized, spatial-processing regions of the posterior parietal cortex, configural face differences led to significantly stronger activation compared to featural face differences, and the magnitude of this activation correlated with behavioral performance. In addition, detection of configural relative to featural face differences led to significantly stronger functional connectivity between the right FFA and the spatial processing regions of the dorsal stream, whereas detection of featural relative to configural face differences led to stronger functional connectivity between the right FFA and left FFA. Critically, TMS centered on these parietal regions impaired performance on configural but not featural face difference detections. We conclude that spatial mechanisms within the dorsal visual pathway contribute to the configural processing of facial features and, more broadly, that the dorsal stream may contribute to the veridical perception of faces. Published by Oxford University Press 2016.

  7. Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats

    PubMed Central

    Rizzo, Francesca; Boeckers, Tobias; Schulze, Ulrike

    2018-01-01

    Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype. PMID:29698507

  8. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  9. Developmental regulation of inhibitory synaptic currents in the dorsal motor nucleus of the vagus in the rat

    PubMed Central

    Anselmi, Laura; Travagli, R. Alberto

    2016-01-01

    Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. The purpose of the present study was to test the hypothesis that the loss of glycinergic inhibitory synapses occurs in the immediate postnatal period. Whole cell patch-clamp recordings were made from dorsal motor nucleus of the vagus (DMV) neurons from postnatal days 1–30, and the effects of the GABAA receptor antagonist bicuculline (1–10 μM) and the glycine receptor antagonist strychnine (1 μM) on miniature inhibitory postsynaptic current (mIPSC) properties were examined. While the baseline frequency of mIPSCs was not altered by maturation, perfusion with bicuculline either abolished mIPSCs altogether or decreased mIPSC frequency and decay constant in the majority of neurons at all time points. In contrast, while strychnine had no effect on mIPSC frequency, its actions to increase current decay time declined during postnatal maturation. These data suggest that in early postnatal development, DMV neurons receive both GABAergic and glycinergic synaptic inputs. Glycinergic neurotransmission appears to decline by the second postnatal week, and adult neurons receive principally GABAergic inhibitory inputs. Disruption of this developmental switch from GABA-glycine to purely GABAergic transmission in response to early life events may, therefore, lead to adverse consequences in vagal efferent control of visceral functions. PMID:27440241

  10. Effect of Norbinaltorphimine on Δ9-Tetrahydrocannabinol (THC)-Induced Taste Avoidance in Adolescent and Adult Sprague-Dawley Rats

    PubMed Central

    Flax, Shaun M.; Wakeford, Alison G.P.; Cheng, Kejun; Rice, Kenner C.; Riley, Anthony L.

    2017-01-01

    Rationale The aversive effects of Δ9-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. Objectives The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Methods Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8 and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague Dawley rats. Results The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. Conclusions That norBNI had no significant effect on THC-induced avoidance in adults and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague Dawley rats. PMID:26025420

  11. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    PubMed

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  12. Decreased Sensitivity in Adolescent versus Adult Rats to the Locomotor Activating Effects of Toluene

    PubMed Central

    Bowen, Scott E.; Charlesworth, Jonathan D.; Tokarz, Mary E.; Jerry Wright, M.; Wiley, Jenny L.

    2007-01-01

    Volatile organic solvent (inhalant) abuse continues to be a major health concern throughout the world. Of particular concern is the abuse of inhalants by adolescents because of its toxicity and link to illicit drug use. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. While studies have assessed outcomes of exposure to inhalants in adult male animals, there is little research on the neurobehavioral effects of inhalants in female or younger animals. In attempt to address these shortcomings, we exposed male and female Long-Evans rats to 20 min of 0, 2,000, 4,000, or 8,000 parts per million (ppm) inhaled toluene for 10 days in rats aged postnatal (PN) day 28-39 (adolescent), PN44-PN55, or >PN70 (adult). Animals were observed individually in 29-l transparent glass cylindrical jars equipped with standard photocells that were used to measure locomotor activity. Toluene significantly increased activity as compared to air exposure in all groups of male and female rats with the magnitude of locomotor stimulation produced by 4000 ppm toluene being significantly greater for female adults than during any age of adolescence. The results demonstrate that exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous locomotor behavior in rats and that the expression of these effects appears to depend upon the postnatal age of testing and sex of the animal. PMID:17869480

  13. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559

    PubMed Central

    2011-01-01

    Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain. PMID:21816108

  14. Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.

    2014-01-01

    The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134

  15. Juvenile Taiep rats have shorter dendritic trees in the dorsal field of the hippocampus without spatial learning disabilities.

    PubMed

    Silva-Gómez, Adriana B; Bravo-Duran, Dolores A; Eguibar, Jose R; Cortes, Carmen

    2018-06-01

    Myelin mutant taiep rats show a progressive demyelination in the central nervous system due to an abnormal accumulation of microtubules in the cytoplasm and the processes on their oligodendrocytes. Demyelination is associated with electrophysiological alterations and the mutant had a progressive astrocytosis. The illness is associated with change in cytokine levels and in the expression of different nitric oxide synthase and concomitantly lipoperoxidation in several areas of the brain. However, until now there has been no detailed anatomical analysis of neurons in this mutant. The aim of this study was to analyze the dendritic morphology in the hippocampus using Golgi-Cox staining and spatial memory through Morris water maze test in young adult (3 months old) taiep rats and compare them with normal Sprague-Dawley. Our results showed that taiep rats have altered dendritic tree morphology in pyramidal neurons in the CA1 field of the hippocampus, but not in the CA3 region. These morphological changes did not produce a concomitant deficit in spatial memory acquisition or recall at this early stage of the disease. Our results suggest that impairment of dendritic morphology in the CA1 field of the hippocampus is a landmark of the pathology of this progressive multiple sclerosis model. © 2018 Wiley Periodicals, Inc.

  16. Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia

    PubMed Central

    Alves, Cecília J.; Leitão, Luís; Sousa, Daniela M.; Alencastre, Inês S.; Conceição, Francisco; Lamghari, Meriem

    2017-01-01

    Limited knowledge from mechanistic studies on adult sensory neuronal activity was generated, to some extent, in recapitulated adult in vivo 3D microenvironment. To fill this gap there is a real need to better characterize the adult dorsal root ganglia (aDRG) organotypic cultures to make these in vitro systems exploitable for different approaches, ranging from basic neurobiology to regenerative therapies, to address the sensory nervous system in adult stage. We conducted a direct head-to-head comparison of aDRG and embryonic DRG (eDRG) organotypic culture focusing on axonal growth, neuropeptides expression and receptors tyrosine kinase (RTK) activation associated with neuronal survival, proliferation and differentiation. To identify alterations related to culture conditions, these parameters were also addressed in retrieved aDRG and eDRG and compared with organotypic cultures. Under similar neurotrophic stimulation, aDRG organotypic cultures displayed lower axonal outgrowth rate supported by reduced expression of growth associated protein-43 and high levels of RhoA and glycogen synthase kinase 3 beta mRNA transcripts. In addition, differential alteration in sensory neuropeptides expression, namely calcitonin gene-related peptide and substance P, was detected and was mainly pronounced at gene expression levels. Among 39 different RTK, five receptors from three RTK families were emphasized: tropomyosin receptor kinase A (TrkA), epidermal growth factor receptors (EGFR, ErbB2 and ErbB3) and platelet-derived growth factor receptor (PDGFR). Of note, except for EGFR, the phosphorylation of these receptors was dependent on DRG developmental stage and/or culture condition. In addition, EGFR and PDGFR displayed alterations in their cellular expression pattern in cultured DRG. Overall we provided valuable information particularly important when addressing in vitro the molecular mechanisms associated with development, maturation and regeneration of the sensory nervous system

  17. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  18. Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats

    PubMed Central

    Torres-Reveron, Annelyn; Gray, Jason D.; Melton, Jay T.; Punsoni, Michael; Tabori, Nora E.; Ward, Mary J.; Frys, Kelly; Iadecola, Costantino; Milner, Teresa A.

    2009-01-01

    To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, I.P.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7 to 35. Thirty-nine days after the last MPH administration (PND76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7–11/group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6 ± 1.2 to 126 ± 1.8 mmHg; p<0.05), assessed on PND130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6/group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. PMID:19100815

  19. Acquisition of i.v. cocaine self-administration in adolescent and adult male rats selectively bred for high and low saccharin intake.

    PubMed

    Perry, Jennifer L; Anderson, Marissa M; Nelson, Sarah E; Carroll, Marilyn E

    2007-05-16

    Adolescence and excessive intake of saccharin have each been previously associated with enhanced vulnerability to drug abuse. In the present study, we focused on the relationship between these two factors using male adolescent and adult rats selectively bred for high (HiS) and low (LoS) levels of saccharin intake. On postnatal day 25 (adolescents) or 150 (adults), rats were implanted with an intravenous catheter and trained to self-administer cocaine (0.4 mg/kg) using an autoshaping procedure that consisted of two 6-h sessions. In the first 6 h, rats were given non-contingent cocaine infusions at random intervals 10 times per hour, and during the second 6-h session, rats were allowed to self-administer cocaine under a fixed ratio 1 (FR 1) lever-response contingency. Acquisition was defined as a total of at least 250 infusions over 5 consecutive days, and rats were given 30 days to meet the acquisition criterion. Subsequently, saccharin phenotype scores were determined by comparing 24-h saccharin and water consumption in two-bottle tests to verify HiS/LoS status. Adolescent LoS rats had a faster rate of acquisition of cocaine self-administration than adult LoS rats; however, adolescent and adult HiS rats acquired at the same rate. Both HiS and LoS adolescents had significantly higher saccharin phenotype scores than HiS and LoS adults, respectively. Additionally, saccharin score was negatively correlated with the number of days to meet the acquisition criterion for cocaine self-administration, but this was mostly accounted for by the HiS adolescents. These results suggest that during adolescence, compared with adulthood, rats have both an increased avidity for sweets and vulnerability to initiate drug abuse.

  20. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe.

    PubMed

    Holschbach, M Allie; Lonstein, Joseph S

    2017-02-01

    The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is

  1. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  2. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    PubMed Central

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  3. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Stoops, Thorne S; D'Souza, Manoranjan S

    2017-01-01

    We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  4. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  5. Glutamate and CO2 production from glutamine in incubated enterocytes of adult and very old rats.

    PubMed

    Meynial-Denis, Dominique; Bielicki, Guy; Beaufrère, Anne-Marie; Mignon, Michelle; Mirand, Philippe Patureau; Renou, Jean-Pierre

    2013-04-01

    Glutamine is the major fuel for enterocytes and promotes the growth of intestinal mucosa. Although oral glutamine exerts a positive effect on intestinal villus height in very old rats, how glutamine is used by enterocytes is unclear. Adult (8 months) and very old (27 months) female rats were exposed to intermittent glutamine supplementation for 50% of their age lifetime. Treated rats received glutamine added to their drinking water, and control rats received water alone. Jejunal epithelial cells (~300×10(6) cells) were incubated in oxygenated Krebs-Henseleit buffer for 30 min containing [1-(13)C] glutamine (~17 M) for analysis of glutamine metabolites by (13)C nuclear magnetic resonance ((13)C NMR). An aliquot fraction was incubated in the presence of [U-(14)C] glutamine to measure produced CO2. Glutamine pretreatment increased glutamate production and decreased CO2 production in very old rats. The ratio CO2/glutamate, which was very high in control very old rats, was similar at both ages after glutamine pretreatment, as if enterocytes from very old rats recovered the metabolic abilities of enterocytes from adult rats. Our results suggest that long-term treatment with glutamine started before advanced age (a) prevented the loss of rat body weight without limiting sarcopenia and (b) had a beneficial effect on enterocytes from very old rats probably by favoring the role of glutamate as a precursor for glutathione, arginine and proline biosynthesis, which was not detected in (13)C NMR spectra in our experimental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The effects of dorsal bundle lesions on serial and trace conditioning.

    PubMed

    Tsaltas, E; Preston, G C; Gray, J A

    1983-12-01

    The performance of rats with neurotoxic lesions of the dorsal ascending noradrenergic bundle (DB) was compared with that of sham-operated control animals under two behavioural conditions. Animals with DB lesions were slower than controls to acquire a classically-conditioned emotional response (conditioned suppression) with a trace interval interposed between the clicker conditioned stimulus (CS) and the shock reinforcer. However, if the latter half of the trace interval was filled by a second stimulus, a light, the DB-lesioned animals acquired conditioned suppression to the clicker faster than did controls under the same conditions. These results are discussed in terms of the attentional theory of DB function.

  7. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking.

    PubMed

    Schramm-Sapyta, Nicole L; DiFeliceantonio, Alexandra G; Foscue, Ethan; Glowacz, Susan; Haseeb, Naadeyah; Wang, Nancy; Zhou, Cathy; Kuhn, Cynthia M

    2010-12-01

    Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol. Copyright © 2010 by the Research Society on Alcoholism.

  8. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    PubMed

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. A comparison of obsidian and surgical steel scalpel wound healing in rats.

    PubMed

    Disa, J J; Vossoughi, J; Goldberg, N H

    1993-10-01

    There are several anecdotal clinical articles claiming wound healing and scar superiority using obsidian (volcanic glass) scalpels. In order to determine if skin incisions made with obsidian were superior to those made with standard surgical steel, wound tensile strength, scar width, and histology were assessed in 40 adult male Sprague-Dawley rats. Each rat received two parallel 8-cm dorsal skin incisions, one with an obsidian scalpel and the other with a surgical steel scalpel (no. 15 blade). Data were analyzed by ANOVA. Tensile strength of the two wound types was not different at 7, 14, 21, and 42 days. Scar width, however, was significantly less in the obsidian wounds at 7, 10, and 14 days (p < 0.005). At 21 days, scar width was not different in the two groups. At 42 days, all wounds were barely detectable, thus precluding scar width analysis. A blinded histologic review suggested that obsidian wounds contained fewer inflammatory cells and less granulation tissue at 7 days.

  10. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach.

    PubMed

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D K; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6-24 months). Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique.

  11. A Comparative Study of Dorsal Buccal Mucosa Graft Substitution Urethroplasty by Dorsal Urethrotomy Approach versus Ventral Sagittal Urethrotomy Approach

    PubMed Central

    Pahwa, Mrinal; Gupta, Sanjeev; Pahwa, Mayank; Jain, Brig D. K.; Gupta, Manu

    2013-01-01

    Objectives. To compare the outcome of dorsal buccal mucosal graft (BMG) substitution urethroplasty by dorsal urethrotomy approach with ventral urethrotomy approach in management of stricture urethra. Methods and Materials. A total of 40 patients who underwent dorsal BMG substitution urethroplasty were randomized into two groups. 20 patients underwent dorsal onlay BMG urethroplasty as described by Barbagli, and the other 20 patients underwent dorsal BMG urethroplasty by ventral urethrotomy as described by Asopa. Operative time, success rate, satisfaction rate, and complications were compared between the two groups. Mean follow-up was 12 months (6–24 months). Results. Ventral urethrotomy group had considerably lesser operative time although the difference was not statistically significant. Patients in dorsal group had mean maximum flow rate of 19.6 mL/min and mean residual urine of 27 mL, whereas ventral group had a mean maximum flow rate of 18.8 and residual urine of 32 mL. Eighteen out of twenty patients voided well in each group, and postoperative imaging study in these patients showed a good lumen with no evidence of leak or extravasation. Conclusion. Though ventral sagittal urethrotomy preserves the blood supply of urethra and intraoperative time was less than dorsal urethrotomy technique, there was no statistically significant difference in final outcome using either technique. PMID:24194754

  12. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways.

    PubMed

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs-RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs-RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N -acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1.

  13. Morphine history sensitizes postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    PubMed

    Staub, D R; Lunden, J W; Cathel, A M; Dolben, E L; Kirby, L G

    2012-06-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Previous work has shown that the dorsal raphe nucleus (DR)-5-HT system is inhibited by swim stress via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor (CRF). Additionally, the DR 5-HT system is regulated by opioids. The present study tests the hypothesis that the DR 5-HT system regulates stress-induced opioid relapse. In the first experiment, electrophysiological recordings of GABA synaptic activity in 5-HT DR neurons were conducted in brain slices from Sprague-Dawley rats that were exposed to swim stress-induced reinstatement of previously extinguished morphine conditioned place preference (CPP). Behavioral data indicate that swim stress triggers reinstatement of morphine CPP. Electrophysiology data indicate that 5-HT neurons in the morphine-conditioned group exposed to stress had increased amplitude of inhibitory postsynaptic currents (IPSCs), which would indicate greater postsynaptic GABA receptor density and/or sensitivity, compared to saline controls exposed to stress. In the second experiment, rats were exposed to either morphine or saline CPP and extinction, and then 5-HT DR neurons from both groups were examined for sensitivity to CRF in vitro. CRF induced a greater inward current in 5-HT neurons from morphine-conditioned subjects compared to saline-conditioned subjects. These data indicate that morphine history sensitizes 5-HT DR neurons to the GABAergic inhibitory effects of stress as well as to some of the effects of CRF. These mechanisms may sensitize subjects with a morphine history to the dysphoric effects of stressors and ultimately confer an enhanced vulnerability to stress-induced opioid relapse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Expression of the transcription factor FOXP2 in brainstem respiratory circuits of adult rat is restricted to upper-airway pre-motor areas.

    PubMed

    Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias

    2018-04-01

    Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats

    PubMed Central

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158

  16. Effects of infrasound on cell proliferation in the dentate gyrus of adult rats.

    PubMed

    Liu, Juanfang; Lin, Tian; Yan, Xiaodong; Jiang, Wen; Shi, Ming; Ye, Ruidong; Rao, Zhiren; Zhao, Gang

    2010-06-02

    Adult rats were used to identify the effects of infrasound on neurogenesis in the hippocampal dentate gyrus. After 7 consecutive days' exposure to infrasound of 16 Hz at 130 dB, immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) was preformed. Compared with those in normal groups, the numbers of BrdU+ and DCX+/BrdU+ cells in the subgranular zone in infrasound groups were significantly decreased at 3, 6, 10 and 14 days and returned to normal at 18 days. The percentage of BrdU+ cells that were co-labeled with DCX showed no significant differences between the infrasound and normal groups. These data suggest that infrasound inhibits the cell proliferation in adult rat dentate gyrus but has no effects on early migration and differentiation of these newborn cells.

  17. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  18. [Partial dorsal root rhizotomy increases the anterograde transportation of neunotrophic factors in primary sensory neuron].

    PubMed

    Long, Shuang-lian; Li, Yong-mei; Yuan, Yuan; Wang, Ting-hua; Wu, Lin-yan

    2005-05-01

    To investigate whether partial dorsal root rhizotomy promotes the anterograde Five adult cats were transportation of BDNF, NT-3 and GDNF in the primary sensory neuron. Subjected to unilateral spared root rhizotomy (the DRGs of L1-L5 and L7-S2 were removed, but L6 DRG was spared) and bilateral dorsal roots of L6 were ligated at the same time. Three days after operation, dorsal roots were taken out and made into frozen sections 20 microm in thickness. The sections were stained using specific BDNF, NT-3, GDNF antibody (1:1500) by ABC method. The immunoreactive density was observed in a site near DRG and a site near spinal cord. In the control group (with spared L6 DRG), there were no marked differences in NT-3 and GDNF immunoreactivity between the site near DRG and the site near spinal cord, while BDNF immunoreactivity was more intense in the site near DRG than that in the site near spinal cord. In the operation group, the immunoreactivity of each neurotrophin in the site near DRG was stronger than that in the site near spinal cord, and the immunoreactivities of BDNF, NT-3, GDNF in the site near DRG of the operation were stronger than those of the control group respectively. The increasing of immunoreactivities of neurotrophins near DRG following partial dorsal root rhizotomy suggests that partial dorsal root rhizotomy can promote their anterograde transportation from spared DRG to the spinal cord.

  19. The thalidomide analgesic effect is associated with differential TNF-α receptor expression in the dorsal horn of the spinal cord as studied in a rat model of neuropathic pain.

    PubMed

    Andrade, Pablo; Visser-Vandewalle, Veerle; Del Rosario, John S; Daemen, Marc A; Buurman, Wim A; Steinbusch, Harry W; Hoogland, Govert

    2012-04-23

    The proinflammatory cytokine tumor necrosis factor-α (TNF-α) is well recognized as a key player in nociceptive signaling. Yet, therapeutic capitalization of this knowledge requires a better understanding of how TNF receptors (TNFR) contribute to pain. To address this question, we studied TNFR expression in the chronic sciatic nerve constriction (CCI) model of neuropathic pain. CCI and sham operated rats received two subcutaneous injections (one immediately after surgery, the other on postoperative day 5) containing either saline, GABA-reuptake inhibitor (NO-711), insulin-like growth factor-1 (IGF-1), ZVAD or thalidomide. Mechanical (using von Frey filaments) and thermal hypersensitivity (Hargreaves test) were assessed preoperatively and weekly during the first four postoperative weeks. Spinal cord dorsal horn samples were collected from animals that were sacrificed at 2 weeks and 4 weeks after surgery, and analyzed for TNFR1 and TNFR2 mRNA levels by qPCR and protein levels by Western blot. Compared to saline, all applied drug treatments resulted in a faster recovery from mechanical and thermal hypersensitivity, yet in a potency order of thalidomide>ZVAD=IGF-1>NO-711. CCI resulted in increased TNFR1 and TNFR2 mRNA and protein levels in the ipsilateral dorsal horn. Thalidomide was the only treatment that attenuated these increases. Finally, animals that showed a poor behavioral recovery were characterized by a significantly higher TNFR1/TNFR2 mRNA ratio. These data show that differential expression of TNFR in the dorsal horn is associated with recovery from pain in this model and suggest that the analgesic effects of thalidomide may act via this mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Objects, Numbers, Fingers, Space: Clustering of Ventral and Dorsal Functions in Young Children and Adults

    ERIC Educational Resources Information Center

    Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela

    2013-01-01

    In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…

  1. Voluntary ethanol consumption differs in adolescent and adult male rats using a modified sucrose-fading paradigm.

    PubMed

    Maldonado, Antoniette M; Finkbeiner, Lauren M; Alipour, Kent K; Kirstein, Cheryl L

    2008-09-01

    Initiation of alcohol consumption during adolescence is high, which usually begins with consumption of highly concentrated sweetened alcoholic beverages in adolescent humans. Enhanced voluntary ethanol (EtOH) intake has been observed previously in adolescent relative to adult rats under continuous access conditions using sweetened EtOH solutions. The present set of experiments investigated patterns of voluntary EtOH intake in adolescent and adult rats using sweetened EtOH solutions in a limited access paradigm. Rats were trained with modified sucrose-substitution protocols that ended at either 5% sucrose-20% EtOH (5S/20E) (Exp. 1) or 5% sucrose-10% EtOH (5S/10E) (Exp. 2). Voluntary EtOH consumption differences between the 2 age groups were apparent at higher (i.e., 10 and 20%), but not lower (i.e., 2 and 5%) EtOH concentrations. Adolescent rats consumed more EtOH on a g/kg basis only at 20% EtOH (Exp. 1). Adolescent rats voluntarily consumed more EtOH than adults when maintained at 5S/10E (Exp. 2). To assess whether these age-related differences in voluntary EtOH intake were concentration dependent, rats were trained with 5S/20E and subsequently trained with decreasing EtOH concentrations (i.e., 5S/10E and 5S/5E). Adolescents consumed more EtOH when initially presented with the 5S/10E and 5S/20E EtOH concentrations, and subsequently at the lower 5S/5E EtOH concentration (Exp. 3). There were no differences in preference for the sucrose-only solution, however adolescents tended to consume more sucrose at the 5S sucrose concentration (Exp. 4). Given that adolescents consumed more EtOH at the 5S/10E and 5S/20E, but not at the 5S/5E EtOH concentrations, preference for sucrose does not solely explain the age differences in voluntary EtOH intake observed. Overall, results replicate previous work, demonstrating adolescent rats consume more EtOH relative to adults. However, the present results were observed using sweetened EtOH solutions in a limited access paradigm. The

  2. Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool, and Early Neurogenesis in Adult Rats.

    PubMed

    Soares, Rita; Ribeiro, Filipa F; Xapelli, Sara; Genebra, Tânia; Ribeiro, Maria F; Sebastião, Ana M; Rodrigues, Cecília M P; Solá, Susana

    2018-05-01

    Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.

  3. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    PubMed

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  5. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    PubMed Central

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  6. A biomechanical comparison of four fixed-angle dorsal plates in a finite element model of dorsally-unstable radius fracture.

    PubMed

    Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen

    2017-11-01

    To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.

  7. Oxaliplatin regulates chemotherapy induced peripheral neuropathic pain in the dorsal horn and dorsal root ganglion via the Calcineurin/NFAT pathway.

    PubMed

    Huang, Wan; Huang, Jingxiu; Jiang, Yu; Huang, Xuanwei; Xing, Wei; He, Yaoxuan; Ouyang, Handong

    2018-05-24

    The aim of this study was to investigate the mechanism of oxaliplatin in the induction of neuropathic pain as a symptom of chemotherapy-induced peripheral neuropathy (CIPN). The CIPN rat model was induced with a one-time injection of oxaliplatin, and the paw withdrawal response was determined using von Frey filaments. The paw withdrawal threshold (PWT) value was recorded and the dorsal horn (DH) and dorsal root ganglion (DRG) tissues were collected. The mRNA and protein levels of calcineurin (CaN), nuclear factor of activated T cells (NFAT), and other relevant cytokines were determined. CaN and NFAT inhibition reagents, FK506 and 11R-VIVIT, were applied in order to investigate the functions of the CaN/NFAT pathway in the neuropathic pain processes. The levels of the downstream inflammatory cytokines, TNF-α and IL-1β, were assessed by ELISA. The application of oxaliplatin reduced the value of PWT by 4 times on days 7(4±1.33)and 14(5.13±3.07)compared with the control group(14±0.91; 13.67±0.76). After treatment, the CaN mRNA level decreased and that of NFAT increased in DH and DRG tissues (P<0.05). However, treatment with FK506 and 11R-VIVIT decreased the value of PWT that had increased after oxaliplatin treatment. The expression of downstream cytokines related to the CaN/NFAT pathway increased, including CCR2, COX2, p-ERK, and p-P38 (all p<0.05). In addition, when the CaN/NFAT pathway was activated, the concentration of TNFα increased to 40pg/mg in DH tissues and 60pg/mg in DRG tissues compared with the control group, while the concentration of IL-1β increased to over 60pg/mg in DH and DRG tissues. It was the first time to prove that oxaliplatin-induced neuropathic pain was correlated to the activation of the CaN/NFAT pathway in our rat model. This finding can provide a new direction for explore the mechanism of oxaliplatin-induced neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    PubMed

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  9. Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test?

    PubMed

    Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R

    2012-01-01

    Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.

  10. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats.

    PubMed

    Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio

    2005-06-28

    Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.

  11. Interaction between the basolateral amygdala and dorsal hippocampus is critical for cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior in rats

    PubMed Central

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats were trained to lever press for cocaine reinforcement in a distinct environmental context followed by extinction training in a different context. Rats were then briefly re-exposed to the cocaine-paired context to destabilize cocaine-related memories, or they were exposed to an unpaired context. Immediately thereafter, the rats received unilateral microinfusions of anisomycin (ANI) into the BLA plus baclofen/muscimol (B/M) into the contralateral (BLA/DH disconnection) or ipsilateral DH, or they received contralateral or ipsilateral microinfusions of vehicle. They then remained in their home cages overnight or for 21 d, followed by additional extinction training and a test of cocaine-seeking behavior (nonreinforced active lever responding). BLA/DH disconnection following re-exposure to the cocaine-paired context, but not the unpaired context, impaired subsequent drug context-induced cocaine-seeking behavior relative to vehicle or ipsilateral ANI + B/M treatment. Prolonged home cage stay elicited a time-dependent increase, or incubation, of drug-context-induced cocaine-seeking behavior, and BLA/DH disconnection inhibited this incubation effect despite some recovery of cocaine-seeking behavior. Thus, the BLA and DH interact to regulate the reconsolidation of cocaine-related associative memories, thereby facilitating the ability of drug-paired contexts to trigger cocaine-seeking behavior and contributing to the incubation of cocaine-seeking behavior. PMID:22005750

  12. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    PubMed

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  13. Personal authentication through dorsal hand vein patterns

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  14. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  15. Effects of long-term construction noise on health of adult female Wistar rats.

    PubMed

    Zymantiene, J; Zelvyte, R; Pampariene, I; Aniuliene, A; Juodziukyniene, N; Kantautaite, J; Oberauskas, V

    2017-03-28

    The aim of this study was to investigate the influence of long-term building construction noise from refurbishment, which including vibration, on some physiological parameters and histopathological changes of organs of Wistar rats. Twenty 12 month old female rats were divided into two groups: rats group I (n = 10) were exposed to long-term construction noise and rats group II (n = 10) were kept under normal noise level. Study results revealed that long-term construction noise from building refurbishment has an influence on body weight, haematological and some serum biochemical parameters affects caecal microbiota, and causes histopathological changes in the organs of adult female Wistar rats. It was noticed that rats in group I exihibited significantly higher mean values for total protein, albumin and lower values for glucose, AST, ALT, blood urea nitrogen, haematological and caecal microbiota parameters than rats in group II. The most common pathologies were determined in the kidney, liver and lungs. Other observed pathologies were lymphadenopathy, catarrhal inflammation of the intestines, spleen hyperplasia and mammary gland adenofibroma. Single cases were subcutaneous fibroma in the thoracic region, abortus with uterine inflammation and thymus hyperplasia with formation of cysts were found.

  16. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons.

    PubMed

    Qin, Ning; Neeper, Michael P; Liu, Yi; Hutchinson, Tasha L; Lubin, Mary Lou; Flores, Christopher M

    2008-06-11

    Transient receptor potential V2 (TRPV2) has been proposed to be a high-threshold thermosensor. However, further elucidation of the channel properties and physiological role of TRPV2 have been hindered by the lack of selective pharmacological tools as well as by the species-dependent differences in the activation of this channel. In the present study, we have used cell-based calcium mobilization and electrophysiological assays to identify and characterize several novel cannabinoid TRPV2 agonists. Among these, cannabidiol was found to be the most robust and potent (EC(50) = 3.7 microM), followed by Delta(9)-tetrahydrocannabinol (EC(50) = 14 microM) and cannabinol (EC(50) = 77.7 microM). We also demonstrated that cannabidiol evoked a concentration-dependent release of calcitonin gene-related peptide (CGRP) from cultured rat dorsal root ganglion neurons in a cannabinoid receptor- and TRPV1-independent manner. Moreover, the cannabidiol-evoked CGRP release depended on extracellular calcium and was blocked by the nonselective TRP channel blocker, ruthenium red. We further provide evidence through the use of small interfering RNA knockdown and repetitive stimulation studies, to show that cannabidiol-evoked CGRP release is mediated, at least in part, by TRPV2. Together, these data suggest not only that TRPV2 may comprise a mechanism whereby cannabidiol exerts its clinically beneficial effects in vivo, but also that TRPV2 may constitute a viable, new drug target.

  17. The Locus Coeruleus–Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats

    PubMed Central

    Lü, Yun-Fei; Yang, Yan; Li, Chun-Li; Wang, Yan; Li, Zhen; Chen, Jun

    2017-01-01

    Empathy for pain (vicariously felt pain), an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD) in pain to a naïve cagemate observer (CO) after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia) and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC) abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO) after dyadic social interaction with a non-cagemate demonstrator (NCD) in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE) and increased neuronal activity in the locus coeruleus (LC) in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG). Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous results

  18. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  19. Analgesia for early-life pain prevents deficits in adult anxiety and stress in rats.

    PubMed

    Victoria, Nicole C; Karom, Mary C; Murphy, Anne Z

    2015-01-01

    Previous studies in rats have established that inflammatory pain experienced on the day of birth (P0) decreases sensitivity to acute noxious, anxiety- and stress-provoking stimuli. However, to date, the impact of early-life pain on adult responses to chronic stress is not known. Further, the ability of morphine, administered at the time of injury, to mitigate changes in adult behavioral and hormonal responses to acute or chronic stressors has not been examined. P0 male and female Sprague-Dawley rat pups were given an intraplantar injection of 1% carrageenan or handled in an identical manner in the presence or absence of morphine. As adults, rats that experienced early-life pain displayed decreased sensitivity to acute stressors, as indicated by increased time in the inner area of the Open Field, and increased latency to immobility and decreased time immobile in the Forced Swim Test (FST). An accelerated return of corticosterone to baseline was also observed. Morphine administration at the time of injury completely reversed this 'hyporesponsive' phenotype. By contrast, following 7 days of chronic variable stress, injured animals displayed a 'hyperresponsive' phenotype in that they initiated immobility and spent significantly more time immobile in the FST than controls. Responses to chronic stress were also rescued in animals that received morphine at the time of injury. These data suggest that analgesia for early-life pain prevents adult hyposensitivity to acute anxiety- and stress-provoking stimuli and increased vulnerability to chronic stress, and have important clinical implications for the management of pain in infants. © 2014 S. Karger AG, Basel.

  20. Neurokinin-1 receptor blocker CP-99 994 improved emesis induced by cisplatin via regulating the activity of gastric distention responsive neurons in the dorsal motor nucleus of vagus and enhancing gastric motility in rats.

    PubMed

    Sun, X; Xu, L; Guo, F; Luo, W; Gao, S; Luan, X

    2017-10-01

    Nowadays, chemotherapy induced nausea and vomiting (CINV) is still common in patients with cancer. It was reported that substance P mediated CINV via neurokinin-1 (NK 1 ) receptor and antagonists of NK 1 receptor has been proved useful for treating CINV but the mechanism are not fully understood. This study aimed to examine the role of NK 1 receptor blocker, CP-99 994, when administrated into dorsal motor nucleus of vagus (DMNV), on the cisplatin-induced emesis in rats and the possible mechanism. Rats' kaolin intake, food intake, and bodyweight were recorded every day; gastric contraction activity was recorded in conscious rats through a force transducer implanted into the stomach; gastric emptying was monitored using the phenol red method; single unit extracellular firing in the DMNV were recorded. DMNV microinjection of CP-99 994 reduced the changes of increased kaolin consumption and suppressed food intake in cisplatin-treated rats; enhanced the gastric contraction activity dose-dependently in control and cisplatin-treated rats but enhanced gastric emptying only in cisplatin-treated rats; reduced the firing rate of gastric distention inhibited (GD-I) neurons but increased the firing rate of GD excited (GD-E) neurons in the DMNV. The effects of CP-99 994 on gastric motility and neuronal activity were stronger in cisplatin-treated rats than those of control rats. Our results suggested that CP-99 994 could improve emesis induced by cisplatin by regulating gastric motility and gastric related neuronal activity in the DMNV. © 2017 John Wiley & Sons Ltd.

  1. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats

    PubMed Central

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang

    2018-01-01

    BACKGROUND: Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. METHODS: Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1–7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. RESULTS: Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1–4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression

  2. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    PubMed

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  3. The first metatarsal web space: its applied anatomy and usage in tracing the first dorsal metatarsal artery in thumb reconstruction.

    PubMed

    Xu, Yong-Qing; Li, Jun; Zhong, Shi-Zhen; Xu, Da-Chuan; Xu, Xiao-Shan; Guo, Yuan-Fa; Wang, Xin-Min; Li, Zhu-Yi; Zhu, Yue-Liang

    2004-12-01

    To clarify the anatomical relationship of the structures in the first toe webbing space for better dissection of toes in thumb reconstruction. The first dorsal metatarsal artery, the first deep transverse metatarsal ligament and the extensor expansion were observed on 42 adult cadaveric lower extremities. Clinically the method of tracing the first dorsal metatarsal artery around the space of the extensor expansion was used in 36 cases of thumb reconstruction. The distal segments of the first dorsal metatarsal artery of Gilbert types I and II were located superficially to the extensor expansion. The harvesting time of a toe was shortened from 90 minutes to 50 minutes with 100% survival of reconstructed fingers. The distal segment of the first dorsal metatarsal artery lies constantly at the superficial layer of the extensor expansion. Most of the first metatarsal arteries of Gilbert types I and II can be easily located via the combined sequential and reverse dissection around the space of the extensor expansion.

  4. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    PubMed

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  5. Comparative anatomy of the dorsal hump in mature Pacific salmon.

    PubMed

    Susuki, Kenta; Ban, Masatoshi; Ichimura, Masaki; Kudo, Hideaki

    2017-07-01

    Mature male Pacific salmon (Genus Oncorhynchus) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka) and pink (O. gorbuscha) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou), sockeye, chum (O. keta), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less-pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue. © 2017 Wiley Periodicals, Inc.

  6. Upregulation of nuclear factor‑κB and acid sensing ion channel 3 in dorsal root ganglion following application of nucleus pulposus onto the nerve root in rats.

    PubMed

    Wang, Dong; Pan, Hao; Zhu, Hang; Zhu, Li; He, Yong-Jiang; Wang, Jian; Jia, Gao-Yong

    2017-10-01

    The nucleus pulposus (NP) is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. To determine the mechanisms by which intervertebral disc degeneration is caused by the nucleus pulposus, the expression and regulation of nuclear factor (NF)‑κB and acid sensing ion channel 3 (ASIC3) were examined. For the intervertebral disc degeneration model, NP was harvested from the tail of rats and applied to the L5 dorsal root ganglion (DRG). The mechanical pain withdrawal threshold (PWT) in NP model rats was assessed. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to examine NF‑κB and ASIC3 expression levels in DRG. Finally, the effect of the NF‑κB inhibitor pyrrolidine dithiocarbamate (PDTC) and the ASIC3 signaling pathway blocker amiloride were examined. Rats exposed to NP exhibited decreased PWT for 12 days, and NF‑κB and ASIC3 was upregulated in DRG induced by NP 14 days after surgery. After administration of amiloride and PDTC to DRG affected by NP, the levels of nitric oxide (NO), tumor necrosis factor‑α (TNF‑α), interleukin‑6 (IL‑6), NF‑κB and ASIC3 were downregulated, and the levels of aquaporin (AQP) 1 and AQP3 were significantly increased for 14 days. In conclusion, these results suggested that NF‑κB and ASIC3 may serve an important role in intervertebral disc degeneration caused by NP.

  7. The effects of intracranial administration of hallucinogens on operant behavior in the rat. I. Lysergic acid diethylamide.

    PubMed

    Mokler, D J; Stoudt, K W; Sherman, L C; Rech, R H

    1986-10-01

    Lysergic acid diethylamide (LSD) was infused in one microliter volumes into discrete brain regions of rats trained to press a bar for food reinforcement. The sites were chosen as major areas of the brain 5-hydroxytryptamine (5HT) system: the dorsal and median raphe nuclei, dorsal hippocampus, lateral habenular nuclei, and the prefrontal cortex. Following training in a fixed ratio-40 (FR-40) operant behavior rats were implanted for the lateral habenular nuclei, dorsal hippocampus and the prefrontal cortex. Following recovery from surgery, LSD (8.6 to 86 micrograms) or vehicle was infused immediately before a daily operant session. Infusion of vehicle was inactive. LSD produced a dose-dependent decrease in reinforcements and an increase in 10-sec periods of non-responding (pause intervals). LSD was significantly more potent when infused into the dorsal raphe nucleus than following intracerebroventricular (ICV) administration, whereas LSD was less potent when infused into the median raphe, lateral habenula or dorsal hippocampus. ED50s for increases in pause intervals were 9, 13, 23, 25, and 54 micrograms for infusion into the dorsal raphe, prefrontal cortex, dorsal hippocampus, median raphe, and lateral habenular nuclei, respectively. The ED50 for ICV administration in a previous study was 15 micrograms. The ED50 of LSD placed into the prefrontal cortex did not differ significantly from that of the ICV infusion.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Dendritic GIRK Channels Gate the Integration Window, Plateau Potentials, and Induction of Synaptic Plasticity in Dorsal But Not Ventral CA1 Neurons

    PubMed Central

    2017-01-01

    Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1

  10. Evaluation of Five Tests for Sensitivity to Functional Deficits following Cervical or Thoracic Dorsal Column Transection in the Rat

    PubMed Central

    Eggers, Ruben; Tuinenbreijer, Lizz; Kouwenhoven, Dorette; Verhaagen, Joost; Mason, Matthew R. J.

    2016-01-01

    The dorsal column lesion model of spinal cord injury targets sensory fibres which originate from the dorsal root ganglia and ascend in the dorsal funiculus. It has the advantages that fibres can be specifically traced from the sciatic nerve, verifiably complete lesions can be performed of the labelled fibres, and it can be used to study sprouting in the central nervous system from the conditioning lesion effect. However, functional deficits from this type of lesion are mild, making assessment of experimental treatment-induced functional recovery difficult. Here, five functional tests were compared for their sensitivity to functional deficits, and hence their suitability to reliably measure recovery of function after dorsal column injury. We assessed the tape removal test, the rope crossing test, CatWalk gait analysis, and the horizontal ladder, and introduce a new test, the inclined rolling ladder. Animals with dorsal column injuries at C4 or T7 level were compared to sham-operated animals for a duration of eight weeks. As well as comparing groups at individual timepoints we also compared the longitudinal data over the whole time course with linear mixed models (LMMs), and for tests where steps are scored as success/error, using generalized LMMs for binomial data. Although, generally, function recovered to sham levels within 2–6 weeks, in most tests we were able to detect significant deficits with whole time-course comparisons. On the horizontal ladder deficits were detected until 5–6 weeks. With the new inclined rolling ladder functional deficits were somewhat more consistent over the testing period and appeared to last for 6–7 weeks. Of the CatWalk parameters base of support was sensitive to cervical and thoracic lesions while hind-paw print-width was affected by cervical lesion only. The inclined rolling ladder test in combination with the horizontal ladder and the CatWalk may prove useful to monitor functional recovery after experimental treatment in this

  11. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats.

    PubMed

    Slouzkey, Ilana; Maroun, Mouna

    2016-12-01

    The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction. © 2016 Slouzkey and Maroun; Published by Cold Spring Harbor Laboratory Press.

  12. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  13. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  14. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  15. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis.

    PubMed

    Zhu, Hong-Yan; Liu, Xuelian; Miao, Xiuhua; Li, Di; Wang, Shusheng; Xu, Guang-Yin

    2017-01-01

    Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12-CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with

  16. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals

  17. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats.

    PubMed

    Ruiz-Pino, F; Garcia-Galiano, D; Manfredi-Lozano, M; Leon, S; Sánchez-Garrido, M A; Roa, J; Pinilla, L; Navarro, V M; Tena-Sempere, M

    2015-02-01

    Kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which coexpress kisspeptins (Kps), neurokinin B (NKB), and dynorphin (Dyn), regulate gonadotropin secretion. The KNDy model proposes that NKB (a stimulator, through NK3R) and Dyn (an inhibitor, through κ-opioid receptor) shape Kp secretion onto GnRH neurons. However, some aspects of this paradigm remain ill defined. Here we aimed to characterize the following: 1) the effects of NKB signaling on FSH secretion and 2) the role of Dyn in gonadotropin secretion after NK3R activation; 3) additionally, we explored the roles of other tachykinin receptors, NK1R and NK2R, on gonadotropin release. Thus, the effects of the NK3R agonist, senktide, on FSH release were explored across postnatal development in male and female rats; gonadotropin responses to agonists of NK1R substance P and NK2R [neurokinin A (NKA)] were also monitored. Moreover, the effects of senktide on gonadotropin secretion were assessed after antagonizing Dyn actions by nor-binaltorphimine didydrochloride. Before puberty, rats of both sexes showed increased FSH secretion to senktide (and Kp-10). Conversely, adult female rats were irresponsive to senktide in terms of FSH, despite proven LH responses, whereas the adult males did not display FSH or LH responses to senktide, even at high doses. In turn, substance P and NKA stimulated gonadotropin secretion in prepubertal rats, whereas in adults modest gonadotropin responses to NKA were detected. By pretreatment with a Dyn antagonist, adult males became responsive to senktide in terms of LH secretion and displayed elevated basal LH and FSH levels; nor-binaltorphimine didydrochloride treatment uncovered FSH responses to senktide in adult females. Furthermore, the expression of Pdyn and Opkr1 (encoding Dyn and κ-opioid receptor, respectively) in the mediobasal hypothalamus was greater in males than in females at prepubertal ages. Overall, our data contribute to refining our understanding on how the elements of the

  18. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways

    PubMed Central

    Ding, Ruoting; Sun, Baihui; Liu, Zhongyuan; Yao, Xinqiang; Wang, Haiming; Shen, Xing; Jiang, Hui; Chen, Jianting

    2017-01-01

    Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs–RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs–RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N-acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1. PMID:28674486

  19. UNMYELINATED FIBERS OF THE ANTERIOR ETHMOIDAL NERVE IN THE RAT CO-LOCALIZE WITH NEURONS IN THE MEDULLARY DORSAL HORN AND VENTROLATERAL MEDULLA ACTIVATED BY NASAL STIMULATION

    PubMed Central

    Hollandsworth, Michael P.; DiNovo, Karyn M.; McCulloch, Paul F.

    2009-01-01

    The anterior ethmoidal nerve (AEN) innervates the nasal passages and external nares, and serves as the afferent limb of the nasopharyngeal and diving responses. However, although 65% of the AEN is composed of unmyelinated fibers, it has not been determined whether this afferent signal is carried by unmyelinated or myelinated fibers. We used the transganglionic tracers WGA-HRP, IB4-HRP, and CTB-HRP to trace the central projections of the AEN of the rat. Interpretation of the labeling patterns suggests that AEN unmyelinated fibers project primarily to the ventral tip of the ipsilateral medullary dorsal horn (MDH) at the level of the area postrema. Other unmyelinated projections were to the ventral paratrigeminal nucleus and ventrolateral medulla, specifically the Bötzinger and RVLM/C1 regions. Myelinated AEN fibers projected to the ventral paratrigeminal and mesencephalic trigeminal nuclei. Stimulating the nasal passages of urethane-anesthetized rats with ammonia vapors produced the nasopharyngeal response that included apnea, bradycardia and an increase in arterial blood pressure. Central projections of the AEN co-localized with neurons within both MDH and RVLM/C1 that were activated by nasal stimulation. Within the ventral MDH the density of AEN terminal projections positively correlated with the rostral-caudal location of activated neurons, especially at and just caudal to the obex. We conclude that unmyelinated AEN terminal projections are involved in the activation of neurons in the MDH and ventrolateral medulla that participate in the nasopharyngeal response in the rat. We also found that IB4-HRP was a much less robust tracer than WGA-HRP. PMID:19732757

  20. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    PubMed

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anxiogenic-like effects of fluoxetine render adult male rats vulnerable to the effects of a novel stress.

    PubMed

    Gomez, Francisca; García-García, Luis

    2017-02-01

    Fluoxetine (FLX) has paradoxical anxiogenic-like effects during the acute phase of treatment. In adolescent (35d-old) male rats, the stress-like effects induced by short-term (3d-4d) FLX treatment appear to involve up-regulation of paraventricular nucleus (PVN) arginine vasopressin (AVP) mRNA. However, studies on FLX-induced anxiety-like effects in adult rodents are inconclusive. Herein, we sought to study the response of adult male rats (60-65d-old) to a similar FLX treatment, also investigating how the stressful component, inherent to our experimental conditions, contributed to the responses. We show that FLX acutely increased plasma corticosterone concentrations while it attenuated the stress-induced-hyperthermia (SIH) as well as it reduced (≈40%) basal POMC mRNA expression in the arcuate nucleus (ARC). However, FLX did not alter the basal expression of PVN-corticotrophin-releasing hormone (CRH), anterior pituitary-pro-opiomelanocortin (POMC) and raphe nucleusserotonin transporter (SERT). Nonetheless, some regressions point towards the plausibility that FLX activated the hypothalamic-pituitary-adrenal (HPA). The behavioral study revealed that FLX acutely increased emotional reactivity in the holeboard, effect followed by a body weight loss of ≈2.5% after 24h. Interestingly, i.p. injection with vehicle did not have behavioral effects, furthermore, after experiencing the stressful component of the holeboard, the rats kept eating and gaining weight as normal. By contrast, the stress-naïve rats reduced food intake and gained less weight although maintaining a positive energy state. Therefore, on one hand, repetition of a mild stressor would unchain compensatory mechanisms to restore energy homeostasis after stress increasing the resiliency to novel stressors. On the other hand, FLX might render stressed adult rats vulnerable to novel stressors through the emergence of counter-regulatory changes, involving HPA axis activation and diminished sympathetic output

  2. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats.

    PubMed

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A; Glenn, Melissa J

    2015-03-14

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4weeks on their respective diets, a subset of rats began 3weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogen supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega-3 fatty acids have similar biological functions-affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies. Copyright

  3. [Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and energy metabolism in adult rats].

    PubMed

    Dang, Yong-ming; Fang, Ya-dong; Hu, Jiong-yu; Zhang, Jia-ping; Song, Hua-pei; Zhang, Yi-ming; Zhang, Qiong; Huang, Yue-sheng

    2010-02-01

    To investigate the influence of microtubule depolymerization of myocardial cells on distribution and activity of mitochondria, and energy metabolism of cells in adult rats. Myocardial cells of SD adult rats and SD suckling rats were isolated and cultured. They were divided into adult and suckling rats control groups (AC and SC, normally cultured without any stimulating factor), adult and suckling rats microtubule depolymerization agent groups (AMDA and SMDA, cultured with 8 micromol/L colchicine containing nutrient solution for 30 minutes) according to the random number table. (1) The expression of polymerized beta tubulin in myocardial cells of adult and suckling rats was detected with Western blot. (2) Myocardial cells of rats in AC and AMDA groups were collected. The expression of cytochrome c was detected with Western blot. Distribution of voltage-dependent anion channels (VDAC) and polymerized beta tubulin in myocardial cells were observed with immunofluorescent staining. Mitochondrial inner membrane potential was determined with immunocytochemical method. Activity of myocardial cells was detected with MTT method. Contents of ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP) and energy charge of cells were determined with high performance liquid chromatography. (1) The expression of polymerized beta tubulin:in AMDA group it was 0.52 + or - 0.07, which was obviously lower than that (1.25 + or - 0.12) in AC group (F = 31.002, P = 0.000); in SMDA group it was 0.76 + or - 0.12, which was significantly lower than that (1.11 + or - 0.24) in SC group (F = 31.002, P = 0.000), but was obviously higher than that in AMDA group (F = 31.002, P = 0.009). (2) The expression of cytochrome c in AC group was 0.26 + or - 0.03, which was obviously lower than that (1.55 + or - 0.13) in AMDA group (t = -24.056, P = 0.000). (3) Immunofluorescent staining result: in AC group, microtubules of myocardial cells were in linear tubiform, distributed in parallel with

  4. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    PubMed

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups.

  5. Sunscreen Use on the Dorsal Hands at the Beach

    PubMed Central

    Warren, Donald B.; Riahi, Ryan R.; Hobbs, Jason B.; Wagner, Richard F.

    2013-01-01

    Background. Since skin of the dorsal hands is a known site for the development of cutaneous squamous cell carcinoma, an epidemiologic investigation was needed to determine if beachgoers apply sunscreen to the dorsal aspect of their hands as frequently as they apply it to other skin sites. Aim. The aim of the current study was to compare the use of sunscreen on the dorsal hands to other areas of the body during subtropical late spring and summer sunlight exposure at the beach. Materials and Methods. A cross-sectional survey from a convenience sample of beachgoers was designed to evaluate respondent understanding and protective measures concerning skin cancer on the dorsal hands in an environment with high natural UVR exposure. Results. A total of 214 surveys were completed and analyzed. Less than half of subjects (105, 49%) applied sunscreen to their dorsal hands. Women applied sunscreen to the dorsal hands more than men (55% women versus 40% men, P = 0.04). Higher Fitzpatrick Skin Type respondents were less likely to protect their dorsal hands from ultraviolet radiation (P = 0.001). Conclusions. More public education focused on dorsal hand protection from ultraviolet radiation damage is necessary to reduce the risk for squamous cell carcinomas of the hands. PMID:23840956

  6. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Neurogenesis enhancer RO 25-6981 facilitates repeated spatial learning in adult rats.

    PubMed

    Soloviova, O A; Proshin, A T; Storozheva, Z I; Sherstnev, V V

    2012-09-01

    The effects of Ro 25-6981 (selective NMDA receptor blocker) in a dose stimulating neurogenesis on repeated learning, reversal learning, and memory reconsolidation were studied in adult rats in Morris water maze. Ro 25-6981 facilitated repeated learning 13 days after injection, but did not influence reversal learning. The blocker injected directly before reminder did not disturb repeated learning and reversal learning in Morris water maze. These effects of Ro 25-6981 on the dynamics of repeated learning seemed to be due to its effects on neurogenesis processes in adult brain.

  8. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    PubMed

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  9. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression

    PubMed Central

    Burke, Andrew R.; Watt, Michael J.; Forster, Gina L.

    2011-01-01

    Components of the brain’s dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35–P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc) and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence. PMID:21933700

  10. Effects of Icariside II on Corpus Cavernosum and Major Pelvic Ganglion Neuropathy in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng

    2014-01-01

    Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034

  11. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition.

    PubMed

    Shi, Yue; Liang, Xiao-chun; Zhang, Hong; Wu, Qun-li; Qu, Ling; Sun, Qing

    2013-09-01

    To examine the effects of quercetin, a natural antioxidant, on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons of rats. DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of NF-кB, IкBα, phosphorylated IкBα and Nrf2 was examined using RT PCR and Western blot assay. The expression of hemeoxygenase-1 (HO-1), IL-6, TNF-α, iNOS, COX-2, and caspase-3 were also examined. HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway. Co-treatment with quercetin (2.5, 5, and 10 mmol/L) dose-dependently decreased HG-induced caspase-3 activation and apoptosis. Quercetin could directly scavenge ROS and significantly increased the expression of Nrf-2 and HO-1 in DRG neurons. Quercetin also dose-dependently inhibited the NF-κB signaling pathway and suppressed the expression of iNOS, COX-2, and proinflammatory cytokines IL-6 and TNF-α. Quercetin protects rat DRG neurons against HG-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition, thus may be beneficial for the treatment of diabetic neuropathy.

  12. Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle.

    PubMed

    Liu, Yia-Ping; Huang, Teng-Shun; Tung, Che-Se; Lin, Chen-Cheng

    2015-01-02

    Atomoxetine, a noradrenaline reuptake inhibitor (NRI), which is a non-stimulating medicine that is used for the treatment of patients with attention deficit hyperactivity disorder (ADHD), has been found to be effective in reducing behavioral impulsivity in rodents, but its efficacy in a dorsal noradrenergic ascending bundle (DNAB)-lesioned condition has not been examined. The present study aimed to investigate the effects of DNAB lesions on attention and impulsive control in the five-choice serial reaction time task (5-CSRTT) in rats treated with atomoxetine. The drug-induced changes in noradrenaline efflux in the medial prefrontal cortex were also measured. 5-CSRTT-trained rats were included in one of the following groups: N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)/Atomoxetine, Sham/Atomoxetine, DSP-4/Saline, or Sham/Saline. Acute atomoxetine (0.3 mg/kg) was administered 14 days after the DSP-4 regime. The behavioral testing included manipulations of the inter-trial interval (ITI), stimulation duration and food satiety. In vivo microdialysis of the noradrenaline efflux in the medial prefrontal cortex and the expression of the noradrenaline transporter (NAT) in the DNAB areas were examined. Atomoxetine reduced impulsivity and perseveration in the long-ITI condition with no effects on any other variables. This phenomenon was not influenced by DSP-4 pre-treatment. The DNAB-lesioned rats had lower noradrenaline efflux in the medial prefrontal cortex. DSP-4 caused no change in NAT expression in the DNAB areas. These findings suggested that noradrenaline reuptake may not be exclusively responsible for the atomoxetine effects in adjusting impulsivity. The role of DNAB should also be considered, particularly in conditions requiring greater behavioral inhibition. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Dorsal Augmentation with Homologous Rib.

    PubMed

    Kridel, Russell W H; Sturm, Angela K

    2017-04-01

    Dorsal augmentation grafts are used to reconstruct and raise the nasal dorsum in patients with dorsal saddling due to trauma, infection, or previous nasal surgery, as well as in patients with a narrow, congenitally low, and/or wide dorsum. Alloplastic implants and various biomaterials are available for grafting, each with advantages and disadvantages. Although autologous septal cartilage is a preferable and often convenient source of cartilage, it is frequently not sufficient for large volume dorsal augmentation, nor is it available in patients who have had septoplasty, infection, previous rhinoplasty with grafting, or significant trauma. Ear cartilage may be used but it is difficult to make homogenous and smooth, and dorsal irregularities can be seen in the long term especially in thin-skinned patients. For these reasons, we frequently use irradiated costal cartilage from tissue banks as our grafting source, thereby eliminating the morbidity of harvesting the patient's own rib. Proper surgical techniques, the use of antibiotics, and proper sculpting and placement of the cartilage limits complications such as warping, resorption, infection, and extrusion. Irradiated homograft costal cartilage grafts have been used successfully in large numbers of patients with long-term follow-up with low complication rates and serve as a welcome alternative to harvesting a patient's rib cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density.

    PubMed

    Cortés, Claudia; Eugenin, Eliseo; Aliaga, Esteban; Carreño, Leandro J; Bueno, Susan M; Gonzalez, Pablo A; Gayol, Silvina; Naranjo, David; Noches, Verónica; Marassi, Michelle P; Rosenthal, Doris; Jadue, Cindy; Ibarra, Paula; Keitel, Cecilia; Wohllk, Nelson; Court, Felipe; Kalergis, Alexis M; Riedel, Claudia A

    2012-09-01

    Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.

  15. Optical imaging of respiratory neuron activity from the dorsal view of the lower brainstem.

    PubMed

    Onimaru, Hiroshi; Homma, Ikuo

    2005-04-01

    1. We visualized respiratory-related neuron network activity in the dorsal part of the pons and medulla of an in vitro preparation from newborn rats by optical recordings using a voltage-sensitive dye. We measured optical signals from several seconds before to several seconds after the inspiratory phase using the inspiratory motor nerve discharge as the trigger signal and we averaged the optical signals of 20-50 respiratory cycles to obtain an optical image correlating specifically to inspiratory activity. 2. Four areas that were excited or inhibited corresponding to the respiratory cycles were detected. (i) The most rostral activity was in the rostral and lateral parts of the pons, with activity mainly in the inspiratory phase, corresponding to the pontine-respiratory group. (ii) In the midpontine level, inspiratory activity followed by long-lasting hyperpolarization appeared in the midlateral parts. This part was presumed to reflect activity in the locus coeruleus. The hyperpolarization became almost negligible after treatment with the alpha-adrenergic antagonist, phentolamine. (iii) In the dorsal medulla, the predominantly inspiratory activity was detected at the rostral level of the area postrema. This part was considered to reflect activity mainly of the hypoglossal nucleus. (iv) At a similar level, we also detected weak and disperse inspiratory activity extending more laterally and caudally than that of the hypoglossal nucleus activity. This might reflect activity of the dorsal respiratory group. 3. In conclusion, the present optical recording study revealed that the dorsal part of the lower brainstem in the in vitro preparation is noticeably active as well as the ventral part shown in the previous study. This method is very useful for analysis of pharmacological properties, as well as the spatio-temporal pattern of respiratory-related network activity in the brainstem.

  16. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons.

    PubMed

    Koplas, P A; Rosenberg, R L; Oxford, G S

    1997-05-15

    Capsaicin (Cap) is a pungent extract of the Capsicum pepper family, which activates nociceptive primary sensory neurons. Inward current and membrane potential responses of cultured neonatal rat dorsal root ganglion neurons to capsaicin were examined using whole-cell and perforated patch recording methods. The responses exhibited strong desensitization operationally classified as acute (diminished response during constant Cap exposure) and tachyphylaxis (diminished response to successive applications of Cap). Both acute desensitization and tachyphylaxis were greatly diminished by reductions in external Ca2+ concentration. Furthermore, chelation of intracellular Ca2+ by addition of either EGTA or bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid to the patch pipette attenuated both forms of desensitization even in normal Ca2+. Release of intracellular Ca2+ by caffeine triggered acute desensitization in the absence of extracellular Ca2+, and barium was found to effectively substitute for calcium in supporting desensitization. Cap activated inward current at an ED50 of 728 nM, exhibiting cooperativity (Hill coefficient, 2.2); however, both forms of desensitization were only weakly dependent on [Cap], suggesting a dissociation between activation of Cap-sensitive channels and desensitization. Removal of ATP and GTP from the intracellular solutions resulted in nearly complete tachyphylaxis even with intracellular Ca2+ buffered to low levels, whereas changes in nucleotide levels did not significantly alter the acute form of desensitization. These data suggest a key role for intracellular Ca2+ in desensitization of Cap responses, perhaps through Ca2+-dependent dephosphorylation at a locus that normally sustains Cap responsiveness via ATP-dependent phosphorylation. It also seems that the signaling mechanisms underlying the two forms of desensitization are not identical in detail.

  17. Clonidine as adjuvant for oxybuprocaine, bupivacaine or dextrorphan has a significant peripheral action in intensifying and prolonging analgesia in response to local dorsal cutaneous noxious pinprick in rats.

    PubMed

    Chen, Yu-Wen; Chu, Chin-Chen; Chen, Yu-Chung; Hung, Ching-Hsia; Hsueh, Meng-I; Wang, Jhi-Joung

    2011-06-08

    The aim of the study was to evaluate co-administration of clonidine with oxybuprocaine (ester type), bupivacaine (amide type) or dextrorphan (non-ester or non-amide type) and to see whether it could have a peripheral action in enhancing local anesthesia on infiltrative cutaneous analgesia in rats. Cutaneous analgesia was evaluated by a block of the cutaneous trunci muscle reflex (CTMR) in response to local dorsal cutaneous noxious pinprick in rats. The analgesic effect of the addition of clonidine with oxybuprocaine, bupivacaine or dextrorphan by subcutaneous injection was evaluated. On an ED(50) basis, the rank of drug potency was oxybuprocaine>bupivacaine>dextrorphan (P<0.01). Mixtures of clonidine (0.12μmol) with oxybuprocaine, bupivacaine or dextrorphan (ED(50) or ED(95)) extended the duration of action and increased the potency on infiltrative cutaneous analgesia. Among these drugs, the addition of clonidine to bupivacaine (amide type) elicits the most effective cutaneous analgesia. Clonidine at the dose of 0.12 and 0.24μmol did not produce cutaneous analgesia. Oxybuprocaine showed more potent cutaneous analgesia than bupivacaine or dextrorphan in rats. Co-administration of oxybuprocaine, bupivacaine or dextrorphan with clonidine increased the potency and duration on infiltrative cutaneous analgesia. The addition of clonidine to bupivacaine (amide type) elicits more effective cutaneous analgesia than oxybuprocaine (ester type) or dextrorphan (non-ester or non-amide type). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. UK DRAFFT - A randomised controlled trial of percutaneous fixation with kirschner wires versus volar locking-plate fixation in the treatment of adult patients with a dorsally displaced fracture of the distal radius

    PubMed Central

    2011-01-01

    Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires) and volar plate fixation using fixed-angle screws (locking-plates). The primary aim of this trial is to determine if there is a difference in the Patient-Reported Wrist Evaluation one year following K-wire fixation versus locking-plate fixation for adult patients with a dorsally-displaced fracture of the distal radius. Methods/design All adult patients with an acute, dorsally-displaced fracture of the distal radius, requiring operative fixation are potentially eligible to take part in this study. A total of 390 consenting patients will be randomly allocated to either K-wire fixation or locking-plate fixation. The surgery will be performed in trauma units across the UK using the preferred technique of the treating surgeon. Data regarding wrist function, quality of life, complications and costs will be collected at six weeks and three, six and twelve months following the injury. The primary outcome measure will be wrist function with a parallel economic analysis. Discussion This pragmatic, multi-centre trial is due to deliver results in December 2013. Trial registration Current Controlled Trials ISRCTN31379280 UKCRN portfolio ID 8956 PMID:21914196

  19. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.

    PubMed

    Audi, Said H; Bongard, Robert D; Krenz, Gary S; Rickaby, David A; Haworth, Steven T; Eisenhauer, Jessica; Roerig, David L; Merker, Marilyn P

    2005-11-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.

  20. Flux control exerted by overt carnitine palmitoyltransferase over palmitoyl-CoA oxidation and ketogenesis is lower in suckling than in adult rats.

    PubMed Central

    Krauss, S; Lascelles, C V; Zammit, V A; Quant, P A

    1996-01-01

    We examined the potential of overt carnitine palmitoyltransferase (CPT I) to control the hepatic catabolism of palmitoyl-CoA in suckling and adult rats, using a conceptually simplified model of fatty acid oxidation and ketogenesis. By applying top-down control analysis, we quantified the control exerted by CPT I over total carbon flux from palmitoyl-CoA to ketone bodies and carbon dioxide. Our results show that in both suckling and adult rat, CPT I exerts very significant control over the pathways under investigation. However, under the sets of conditions we studied, less control is exerted by CPT I over total carbon flux in mitochondria isolated from suckling rats than in those isolated from adult rats. Furthermore the flux control coefficient of CPT I changes with malonyl-CoA concentration and ATP turnover rate. PMID:8912677

  1. Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury.

    PubMed

    Wang, Hong-Sheng; Yu, Gang; Wang, Zhi-Tong; Yi, Shou-Pu; Su, Rui-Bin; Gong, Ze-Hui

    2016-10-01

    Disturbance of glutamate homeostasis is a well-characterized mechanism of neuropathic pain. Vesicular glutamate transporters (VGLUTs) determine glutamate accumulation in synaptic vesicles and their roles in neuropathic pain have been suggested by gene-knockout studies. Here, we investigated the spatio-temporal changes in VGLUT expression during the development of neuropathic pain in wild-type rats. Spared nerve injury (SNI) induced mechanical allodynia from postoperative day 1 to at least day 14. Expression of VGLUT1 and VGLUT2 in dorsal root ganglia and spinal cord was examined by western blot analyses on different postoperative days. We observed that VGLUT2 were selectively upregulated in crude vesicle fractions from the ipsilateral lumbar enlargement on postoperative days 7 and 14, while VGLUT1 was transiently downregulated in ipsilateral DRG (day 4) and contralateral lumbar enlargement (day 1). Upregulation of VGLUT2 was not accompanied by alterations in vesicular expression of synaptotagmin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thus, VGLUTs expression, especially VGLUT2, is regulated following peripheral nerve injury. Temporal regulation of VGLUT2 expression in spinal cord may represent a novel presynaptic mechanism contributing to injury-induced glutamate imbalance and associated neuropathic pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  3. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest.

    PubMed

    Spreng, R Nathan; Stevens, W Dale; Viviano, Joseph D; Schacter, Daniel L

    2016-09-01

    Anticorrelation between the default and dorsal attention networks is a central feature of human functional brain organization. Hallmarks of aging include impaired default network modulation and declining medial temporal lobe (MTL) function. However, it remains unclear if this anticorrelation is preserved into older adulthood during task performance, or how this is related to the intrinsic architecture of the brain. We hypothesized that older adults would show reduced within- and increased between-network functional connectivity (FC) across the default and dorsal attention networks. To test this hypothesis, we examined the effects of aging on task-related and intrinsic FC using functional magnetic resonance imaging during an autobiographical planning task known to engage the default network and during rest, respectively, with young (n = 72) and older (n = 79) participants. The task-related FC analysis revealed reduced anticorrelation with aging. At rest, there was a robust double dissociation, with older adults showing a pattern of reduced within-network FC, but increased between-network FC, across both networks, relative to young adults. Moreover, older adults showed reduced intrinsic resting-state FC of the MTL with both networks suggesting a fractionation of the MTL memory system in healthy aging. These findings demonstrate age-related dedifferentiation among these competitive large-scale networks during both task and rest, consistent with the idea that age-related changes are associated with a breakdown in the intrinsic functional architecture within and among large-scale brain networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal

  5. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    PubMed

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  6. Subsecond fear discrimination in rats: adult impairment in adolescent heavy alcohol drinkers.

    PubMed

    DiLeo, Alyssa; Wright, Kristina M; McDannald, Michael A

    2016-11-01

    Discriminating safety from danger must be accurate and rapid. Yet, the rapidity with which fear discrimination emerges remains unknown. Rapid fear discrimination in adulthood may be susceptible to impairment by adolescent heavy alcohol drinking, which increases incidence of anxiety disorders. Rats were given voluntary, adolescent alcohol access, and heavy drinkers were identified. In adulthood, rapid fear discrimination of safety, uncertainty, and danger cues was assessed. Normal rats, but not heavy drinkers, showed discriminative fear <1 sec following cue onset. This provides the first demonstration of subsecond fear discrimination and its adult impairment in adolescent heavy alcohol drinkers. © 2016 DiLeo et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Adolescent, but not adult, rats exhibit ethanol-mediated appetitive second-order conditioning

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2008-01-01

    Background Adolescent rats are less sensitive to the sedative effects of ethanol than older animals. They also seem to perceive the reinforcing properties of ethanol. However, unlike neonates or infants, ethanol-mediated appetitive behavior has yet to be clearly shown in adolescents. Appetitive ethanol reinforcement was assessed in adolescent (postnatal day 33, P33) and adult rats (P71) through second-order conditioning (SOC). Methods On P32 or P70 animals were intragastrically administered ethanol (0.5 or 2.0 g/kg) paired with intraoral pulses of sucrose (CS1, first-order conditioning phase). CS1 delivery took place either 5-20 (Early pairing) or 30-45 (Late pairing) min following ethanol. CS1 exposure and ethanol administration were separated by 240 min in unpaired controls. On P33 or P71, animals were presented the CS1 (second-order conditioning phase) while in a distinctive chamber (CS2). Then, they were tested for CS2 preference. Results Early and late paired adolescents, but not adults, had greater preference for the CS2 than controls, a result indicative of ontogenetic variation in ethanol-mediated reinforcement. During the CS1 - CS2 associative phase, paired adolescents given 2.0 g/kg ethanol wall-climbed more than controls. Blood and brain ethanol levels associated with the 0.5 and 2.0 g/kg doses at the onset of each conditioning phase did not differ substantially across age, with mean BECs of 38 and 112 mg %. Conclusions These data indicate age-related differences between adolescent and adult rats in terms of sensitivity to ethanol’s motivational effects. Adolescents exhibit high sensitivity for ethanol’s appetitive effects. These animals also showed EtOH-mediated behavioral activation during the second-order conditioning phase. The SOC preparation provides a valuable conditioning model for assessing ethanol’s motivational effects across ontogeny. PMID:18782343

  8. Surgical Strategy and Techniques for Low-Profile Dorsal Plating in Treating Dorsally Displaced Unstable Distal Radius Fractures

    PubMed Central

    Hamada, Yoshitaka; Gotani, Hiroyuki; Hibino, Naohito; Tanaka, Yoshitaka; Satoh, Ryousuke; Sasaki, Kousuke; Kanchanathepsak, Thepparat

    2016-01-01

    Background The low-profile dorsal locking plating (DLP) technique is useful for treating dorsally comminuted intra-articular distal radius fractures; however, due to the complications associated with DLP, the technique is not widely used. Methods A retrospective review of 24 consecutive cases treated with DLP were done. Results All cases were classified into two types by surgical strategy according to the fracture pattern. In type 1, there is a volar fracture line distal to the watershed line in the dorsally displaced fragment, and this type is treated by H-framed DLP. In type 2, the displaced dorsal die-punch fragment is associated with a minimally displaced styloid shearing fracture or a transverse volar fracture line. We found that the die-punch fragment was reduced by the buttress effect of small l-shaped DLP after stabilization of the styloid shearing for the volar segment by cannulated screws from radial styloid processes. At 6 months after surgery, outcomes were good or excellent based on the modified Mayo wrist scores with no serious complications except one case. The mean range of motion of each type was as follows: the palmar flexion was 50, 65 degrees, dorsiflexion was 70, 75 degrees, supination was 85, 85 degrees, and pronation was 80, 80 degrees; in type 1 and 2, respectively. Conclusion DLP is a useful technique for the treatment of selected cases of dorsally displaced, comminuted intra-articular fractures of the distal radius with careful soft tissue coverage. PMID:28428920

  9. Attenuated effects of experimenter-administered heroin in adolescent vs. adult male rats: physical withdrawal and locomotor sensitization

    PubMed Central

    Doherty, James M.; Frantz, Kyle J.

    2012-01-01

    Objectives Early onset of heroin use during adolescence might increase chances of later drug addiction. Prior work from our laboratory suggests, however, that adolescent male rats are actually less sensitive than adults to some enduring effects of heroin self-administration. In the present study, we tested two likely correlates of sensitivity to behavioral reinforcement in rats: physical withdrawal and locomotor sensitization. Methods Adolescent (35 days old at start) and adult (79 days old) male Sprague-Dawley rats were administered escalating doses of heroin, increasing from 1.0 to 8.0 mg/kg (i.p.) every 12 hr, across 13 days. Somatic signs of spontaneous withdrawal were scored 12 and 24 hr after the last injection, then every 24 hr for 5 days; locomotion was recorded concurrently. Challenge injections of heroin (1 mg/kg i.p.) were given at 4 points: as the first of the escalating doses (day 1), at days 7 and 13 during the escalating regimen, and after 12 days of forced abstinence. Body mass and food intake were measured throughout experimentation. Results A heroin withdrawal syndrome was not observed among adolescents as it was among adults, including somatic signs as well as reduced locomotion, body mass, and food intake. On the other hand, heroin-induced locomotor sensitization did not differ across ages. Conclusion Reduced withdrawal is consistent with the attenuated reinforcing effects of heroin among adolescent male rats that we reported previously. Thus, it is possible that adolescent rats could reveal important neuroprotective factors for use in treatment of heroin dependence. PMID:22941050

  10. Agenesis of the dorsal pancreas

    PubMed Central

    Schnedl, Wolfgang J; Piswanger-Soelkner, Claudia; Wallner, Sandra J; Krause, Robert; Lipp, Rainer W

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al (World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal pancreas in humans. Agenesis of the dorsal pancreas, a rare congenital pancreatic malformation, is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation, hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families, more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease. PMID:19140241

  11. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats.

    PubMed

    Schmeichel, Brooke E; Matzeu, Alessandra; Koebel, Pascale; Vendruscolo, Leandro F; Sidhu, Harpreet; Shahryari, Roxana; Kieffer, Brigitte L; Koob, George F; Martin-Fardon, Rémi; Contet, Candice

    2018-04-06

    The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.

  12. Cardiorespiratory effects of gap junction blockade in the locus coeruleus in unanesthetized adult rats.

    PubMed

    Patrone, Luis G A; Bícego, Kênia Cardoso; Hartzler, Lynn K; Putnam, Robert W; Gargaglioni, Luciane H

    2014-01-01

    The locus coeruleus (LC) plays an important role in central chemoreception. In young rats (P9 or younger), 85% of LC neurons increase firing rate in response to hypercapnia vs. only about 45% of neurons from rats P10 or older. Carbenoxolone (CARB - gap junction blocker) does not affect the % of LC neurons responding in young rats but it decreases the % responding by half in older animals. We evaluated the participation of gap junctions in the CO2 ventilatory response in unanesthetized adult rats by bilaterally microinjecting CARB (300μM, 1mM or 3mM/100nL), glycyrrhizic acid (GZA, CARB analog, 3mM) or vehicle (aCSF - artificial cerebrospinal fluid) into the LC of Wistar rats. Bilateral gap junction blockade in LC neurons did not affect resting ventilation; however, the increase in ventilation produced by hypercapnia (7% CO2) was reduced by ∼25% after CARB 1mM or 3mM injection (1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1468.3±122.2mLkg(-1)min(-1) for 1mM CARB, P<0.05; 1939.7±104.8mLkg(-1)min(-1) for the aCSF group and 1540.9±68.4mLkg(-1)min(-1) for the 3mM CARB group, P<0.05) due largely to a decrease in respiratory frequency. GZA injection or CARB injection outside the LC (peri-LC) had no effect on ventilation under any conditions. The results suggest that gap junctions in the LC modulate the hypercapnic ventilatory response of adult rats. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Factors that Contribute to Neuron Survival and Neuron Growth after Injury

    DTIC Science & Technology

    1993-02-03

    and undergo a laminectomy to expose the fourth lumbar (L4) segment. The adjacent dorsal roots are cut near the dorsal root entry zone and reflected...caudally. A hemisection cavity 3-4mm in length is aspirated from the lumbar enlargement, the appropriate transplant is introduced into the cavity, and the...transplanted into the lumbar enlargement of adult Sprague-Dawley rats, and the IA or L5 dorsal root was cut and then juxtaposed to the transplant One

  14. Participation of the dorsal periaqueductal grey matter in the hypoxic ventilatory response in unanaesthetized rats.

    PubMed

    Lopes, L T; Biancardi, V; Vieira, E B; Leite-Panissi, C; Bícego, K C; Gargaglioni, L H

    2014-07-01

    Although periaqueductal grey matter activation is known to elicit respiratory and cardiovascular responses, the role of this midbrain area in the compensatory responses to hypoxia is still unknown. To test the participation of the periaqueductal grey matter in cardiorespiratory and thermal responses to hypoxia in adult male Wistar rats, we performed a chemical lesion of the dorsolateral/dorsomedial or the ventrolateral/lateral periaqueductal grey matter using ibotenic acid. Pulmonary ventilation, mean arterial pressure, heart rate and body temperature were measured in unanaesthetized rats during normoxic and hypoxic exposure (5, 15, 30 min, 7% O2). An ibotenic acid lesion of the dorsolateral/dorsomedial periaqueductal grey matter caused a higher increase in pulmonary ventilation (67.1%, 1730±282.5 mL kg(-1) min(-1)) compared to the Sham group (991.4±194 mL kg(-1) min(-1)) after 15 min in hypoxia, whereas for the ventrolateral/Lateral periaqueductal grey matter lesion, no differences were observed between groups. Mean arterial pressure, heart rate and body temperature were not affected by a dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter lesion. Middle to caudal portions of the dorsolateral/dorsomedial periaqueductal grey matter neurones modulate the hypoxic ventilatory response, exerting an inhibitory modulation during low O2 situations. In addition, the middle to caudal portions of the dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter do not appear to exert a tonic role on cardiovascular or thermal parameters during normoxic and hypoxic conditions. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro.

    PubMed Central

    Thayer, S A; Miller, R J

    1990-01-01

    1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering

  16. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    PubMed

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG.

  17. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-01-01

    Abstract Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons. The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation. Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation. Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  18. Tumor necrosis factor-α-dependent infiltration of macrophages into the dorsal root ganglion in a rat disc herniation model.

    PubMed

    You, Changcheng; Zhu, Kai; Liu, Xiaoqi; Xi, Chunyang; Zhang, Zhipeng; Xu, Gongping; Yan, Jinglong

    2013-11-01

    A prospective molecular mechanism of macrophages infiltration in experimental disc herniation. To investigate the mechanisms of macrophages infiltration into the dorsal root ganglion (DRG) in a rat model of disc herniation. Macrophages infiltrate the DRG after application of nucleus pulposus (NP) on the DRG, and may play an important role in radiculopathy. However, the mechanisms of macrophages infiltration after NP application remain poorly understood. After experimental disc herniation in this study, we investigated changes in the expression of ED1 (a marker of macrophages) and vascular cell adhesion molecule-1 (VCAM-1) in DRG using immunofluorescence. We also investigated the expression of ED1 and VCAM-1 in DRG by treatment with tumor necrosis factor-α (TNF-α) inhibitor at the time of surgery. We found a massive ED1-positive macrophages infiltrated the DRG, and VCAM-1-like immunoreactivity vessels became evident after NP application. Furthermore, both macrophage infiltration and VCAM-1 expression were prevented by treatment with TNF-α inhibitor at the time of surgery. These findings indicated that macrophages infiltration into the DRG was TNF-α-dependent, and might be partly mediated by VCAM-1 in the early stage of experimental lumbar disc herination. Taken together, this study provides important preliminary data suggesting that TNF-α plays an important role in the macrophage infiltration. N/A.

  19. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    PubMed Central

    Moss, Andrew; Ingram, Rachel; Koch, Stephanie; Theodorou, Andria; Low, Lucie; Baccei, Mark; Hathway, Gareth J; Costigan, Michael; Salton, Stephen R; Fitzgerald, Maria

    2008-01-01

    Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol) to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain. PMID:19077191

  20. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  1. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  2. Effect of "enriched environment" during development on adult rat behavior and response to the dopamine receptor agonist apomorphine.

    PubMed

    Hoffmann, L C; Schütte, S R M; Koch, M; Schwabe, K

    2009-02-18

    Enriched housing conditions (enriched environment, EE) during development has been shown to influence adult rat behavior and transmitter systems, especially dopamine function. We were interested in how different degrees of enrichment during development would affect adult rats' behavior and response to dopamine receptor challenge. Two groups of male Wistar rats (n=11-12) were raised under two different degrees of EE, i.e. "high enriched" and "low enriched" groups. A third group was kept under standard conditions and served as "non-enriched" control. As adults, rats were tested for anxiety (elevated plus-maze), for spatial learning (four-arm-baited eight-arm radial maze), and for motivation (breakpoint of the progressive ratio test). Finally, locomotor activity (activity box) and sensorimotor gating (prepulse inhibition (PPI) of the acoustic startle response (ASR)) were tested with and without challenge with the dopamine receptor agonist apomorphine. The time spent on the open or enclosed arms of the elevated plus-maze did not differ between groups, but the high enriched group showed higher rearing activity on the open arms. The breakpoint did not differ between groups. Learning and memory in the radial maze task only differed on the first few trials, but high enriched rats run faster compared with the other groups. In contrast, in the activity box enriched groups were less active, but apomorphine had the highest effect. Between groups, no difference in PPI and startle amplitude was found, but in the high and low EE group startle amplitude was enhanced after administration of apomorphine, while the PPI deficit induced by this drug was not different between groups. Altogether, we found no evidence that different amounts of environmental enrichment without differences in social EE affect rats' cognitive, emotional or motivational behavior. However, motor activity seems to be enhanced when rats are behaviorally or pharmacologically challenged by dopamine receptor

  3. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  4. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    PubMed

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  5. Preictal Activity of Subicular, CA1, and Dentate Gyrus Principal Neurons in the Dorsal Hippocampus before Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K.

    2014-01-01

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2–4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41–57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. PMID:25505320

  6. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  7. The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner.

    PubMed

    Castillo, C; Norcini, M; Baquero-Buitrago, J; Levacic, D; Medina, R; Montoya-Gacharna, J V; Blanck, T J J; Dubois, M; Recio-Pinto, E

    2011-03-17

    The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further

  8. [Effects of Chinese herbal medicine Yiqi Huayu Recipe on apoptosis of dorsal root ganglion neurons and expression of caspase-3 in rats with lumbar nerve root compression].

    PubMed

    Xu, Le-qin; Li, Xiao-feng; Zhang, You-wei; Shu, Bing; Shi, Qi; Wang, Yong-jun; Zhou, Chong-jian

    2010-12-01

    To observe the effects of Yiqi Huayu Recipe, a Chinese compound herbal medicine, on apoptosis of dorsal root ganglion (DRG) neurons and expression of caspase-3 in rats after lumbar nerve root compression injury. A total of 40 male Sprague-Dawley rats were randomly allocated into 4 groups: control group, untreated group, Methylcobal group and Yiqi Huayu Recipe group. Surgery was performed on rats of untreated group, Methylcobal group and Yiqi Huayu Recipe group to place a micro-silica gel on right L₄ DRG, while control group received skin and paravertebral muscle incision only. Rats in Methylcobal group and Yiqi Huayu Recipe group were given Methylcobal by intramuscular injection and Yiqi Huayu Recipe intragastrically respectively. Rats in control group and untreated group received saline intragastrically as equal amount as Yiqi Huayu Recipe group. The compressed nerve roots were harvested at the 10th day after treatment. Apoptosis of DRG neurons was detected by terminal deoxynucleotidyl transferase-mediated nick-end labeling. Caspase-3 activity and mRNA expression in compressed nerve roots were detected with spectrophotography and real-time polymerase chain reaction respectively. Apoptosis of DRG neurons was significantly increased in the rat model. The apoptosis index of untreated group was higher than that of control group (P<0.01). Yiqi Huayu Recipe and Methylcobal could reduce the apoptosis of DRG neurons, and both groups showed a lower apoptosis index than untreated group (P<0.01). Caspase-3 activity and its gene expression were significantly increased in untreated group. The levels of caspase-3 activity and its gene expression in untreated group were higher than those in control group (P<0.05 or P<0.01). Yiqi Huayu Recipe and Methylcobal could reduce the overexpression of caspase-3 mRNA, and statistically significant differences were found between the untreated group and Yiqi Huayu Recipe group or Methylcobal group (P<0.01). Lumbar nerve root compression

  9. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    PubMed

    Byrne, Jacqueline H; Voogt, Meggie; Turner, Karly M; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2013-01-01

    Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  10. Developmental expression of VGF mRNA in the prenatal and postnatal rat.

    PubMed

    Snyder, S E; Pintar, J E; Salton, S R

    1998-04-27

    VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.

  11. Locomotor damage in rats after X-irradiation in utero

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullenix, Phyllis; Norton, Stata; Culver, Bruce

    1975-08-01

    Alterations in gait were found in rats after whole-body irradiation with 125 R on day 14, 15, and 16 of gestation. No effects on locomotion were detected after irradiation on day 17 with 125 R or after irradiation on day 14 with 50 R. A technique was set up for quantitative evaluation of locomotion based on a modification of other methods. Walking patterns of irradiated rats were recorded, when they were adults, by requiring them to walk up a 10$sup 0$ incline through a corridor after their feet had been dipped in ink. Rats irradiated on gestational day 14 hadmore » an in-phase, hopping gait with the sine of the angle between the hind feet and the direction of progression over 0.9. Rats irradiated on gestational days 15 and 16 had an alternating, waddling gait with wider stance and broader angle than control rats. Histologic examination of serial sections of the brains of these rats showed that the 14-day rats lacked all telencephalic commissures except for a few fibers which crossed in some rats. There was a progressive improvement in the condition of the anterior and ventral hippocampal commissures up to day 17, but the corpus callosum and doral hippocampal commissure were lacking or markedly reduced in all day 17 rats. No animals showed damage to the mesencephalic posterior commissure. Since rats which used the in-phase mode of locomotion were never observed to use alternating gait, the possible causal relationship of the commissural damage to the altered locomotor patterns was considered. In view of the restricted period of damage found for the anterior and ventral hippocampal commissures and the restriction of altered locomotion to damage in the same period, primary involvement of the corpus callosum and dorsal hippocampal commissure could be excluded, but a possible role for the other telencephalic commissures remained. (auth)« less

  12. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  13. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    PubMed

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  14. [The influence of partial dorsal root rhizotomy on IGF-I expression in spared root ganglion and spinal cord].

    PubMed

    Wang, Wei-min; Guan, Yu-guang; Liu, Fen; Wang, Ting-hua; Xu, Xin-yun; Ke, Qing; Lu, Yong-chao; Yuan, Yuan

    2005-01-01

    To explore the temporospatial changes of IGF-I expression in the spared dorsal root ganglia (DRG, L6) on the operated side and un-operated side, in the spinal lamina II (L3, L5, L6) and Clarke's nucleus (L3) of the adult cats that have undergone partial dorsal rhizotomy, and compare them against those of the normal adult cats so as to unveil the relation between IGF-I and the plasticity of spinal cord. Fifteen male adult cats were divided into three groups. The cats of two groups were subjected to unilateral partial dorsal root rhizotomy (L1-L5, L7-S2 DRG were sectioned, but L6 was spared) and were sacrificed at 7 days and 14 days after operation. The bilateral L6 dorsal root ganglia and L3, L5, L6 spinal cord of all groups were made into frozen sections 20 microm thick. Then, the sections were stained by the immunohistochemistry ABC method using IGF-I (1:200, Santa Cruz) antibody. The distribution and the number of IGF-I positive neurons in bilateral spared DRG (L6) on the operated/un-operated side, in spinal lamina I (L3, L5, L6) and in Clarke' nucleus (L3) of each animal were observed and counted. All data were analyzed by one-way ANOVA, SNK-q test and paired-t test. (1) Seven days after partial dorsal root rhizotomy, the number of IGF-I positive neurons in spared DRG on the operated side declined as compared with that of normal group (P<0.05), but it was not significantly different from that of L6 spared DRG on the un-operated side (P>0.05). On the 14th day, the IGF-I expression in neurons of L6 DRG on the operated side was significantly lower than that of normal group and that of L6 spared DRG on the unoperated side (P<0.01), but it was not significantly different from that of the 7th day group (P>0.05). (2) There was no difference in number of IGF-I positive neuron in L3, L5, L6 spinal lamina II between normal group, 7th day post-operation group and 14th day post-operation group (P>0.05). After operation, IGF-I expression in Clarke's nucleus declined on the 7

  15. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    PubMed Central

    Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.

    2015-01-01

    Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123

  16. Cytotoxic effect of commercially available methylprednisolone acetate with and without reduced preservatives on dorsal root ganglion sensory neurons in rats.

    PubMed

    Knezevic, Nebojsa Nick; Candido, Kenneth D; Cokic, Ivan; Krbanjevic, Aleksandar; Berth, Sarah L; Knezevic, Ivana

    2014-01-01

    Epidural and intrathecal injections of methylprednisolone acetate (MPA) have become the most commonly performed interventional procedures in the United States and worldwide in the last 2 decades. However neuraxial MPA injection has been dogged by controversy regarding the presence of different additives used in commercially prepared glucocorticoids. We previously showed that MPA could be rendered 85% free of polyethylene glycol (PEG) by a simple physical separation of elements in the suspension. The objective of the present study was to explore a possible cytotoxic effect of commercially available MPA (with intact or reduced preservatives) on rat sensory neurons. We exposed primary dissociated rat dorsal root ganglia (DRG) sensory neurons to commercially available MPA for 24 hours with either the standard (commercial) concentration of preservatives or to different fractions following separation (MPA suspension whose preservative concentration had been reduced, or fractions containing higher concentrations of preservatives). Cells were stained with the TUNEL assay kit to detect apoptotic cells and images were taken on the Bio-Rad Laser Sharp-2000 system. We also detected expression of caspase-3, as an indicator of apoptosis in cell lysates. We exposed sensory neurons from rat DRG to different concentrations of MPA from the original commercially prepared vial. TUNEL assay showed dose-related responses and increased percentages of apoptotic cells with increasing concentrations of MPA. Increased concentrations of MPA caused 1.5 - 2 times higher caspase-3 expression in DRG sensory neurons than in control cells (ANOVA, P = 0.001). Our results showed that MPA with reduced preservatives caused significantly less apoptosis observed with TUNEL assay labeling (P < 0.001) and caspase-3 immunoblotting (P = 0.001) than in neurons exposed to MPA from a commercially prepared vial or "clear phase" that contained higher concentrations of preservatives. Even though MPA with reduced

  17. The effects of ropivacaine hydrochloride on the expression of CaMK II mRNA in the dorsal root ganglion neurons.

    PubMed

    Wen, Xianjie; Lai, Xiaohong; Li, Xiaohong; Zhang, Tao; Liang, Hua

    2016-12-01

    In this study, we identified the subtype of Calcium/calmodulin-dependent protein kinase II (CaMK II) mRNA in dorsal root ganglion neurons and observed the effects of ropivacaine hydrochloride in different concentration and different exposure time on the mRNA expression. Dorsal root ganglion neurons were isolated from the SD rats and cultured in vitro. The mRNA of the CaMK II subtype in dorsal root ganglion neurons were detected by real-time PCR. As well as, the dorsal root ganglion neurons were treated with ropivacaine hydrochloride in different concentration (1mM,2mM, 3mM and 4mM) for the same exposure time of 4h, or different exposure time (0h,2h,3h,4h and 6h) at the same concentration(3mM). The changes of the mRNA expression of the CaMK II subtype were observed with real-time PCR. All subtype mRNA of the CaMK II, CaMK II α , CaMK II β , CaMK II δ , CaMK II γ , can be detected in dorsal root ganglion neurons. With the increased of the concentration and exposure time of the ropivacaine hydrochloride, all the subtype mRNA expression increased. Ropivacaine hydrochloride up-regulate the CaMK II β , CaMK II δ , CaMK II g mRNA expression with the concentration and exposure time increasing. The nerve blocking or the neurotoxicity of the ropivacaine hydrochloride maybe involved with CaMK II. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure.

    PubMed

    Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca

    2017-03-01

    The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta 9 -tetrahydrocannabinol (Δ 9 -THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ 9 -THC induced a significant reduction (p<0.05) in basal and K + -evoked [ 3 H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [ 3 H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ 9 -THC induced a significant reduction of CB1 receptor binding (B max ) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ 9 -THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K + -evoked [ 3 H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring

  19. Increased expression of CRF and CRF-receptors in dorsal striatum, hippocampus, and prefrontal cortex after the development of nicotine sensitization in rats.

    PubMed

    Carboni, Lucia; Romoli, Benedetto; Bate, Simon T; Romualdi, Patrizia; Zoli, Michele

    2018-05-29

    Nicotine addiction supports tobacco smoking, a main preventable cause of disease and death in Western countries. It develops through long-term neuroadaptations in the brain reward circuit by modulating intracellular pathways and regulating gene expression. This study assesses the regional expression of the transcripts of the CRF transmission in a nicotine sensitization model, since it is hypothesised that the molecular neuroadaptations that mediate the development of sensitization contribute to the development of addiction. Rats received intraperitoneal nicotine administrations (0.4 mg/kg) once daily for either 1 day or over 5 days. Locomotor activity was assessed to evaluate the development of sensitization. The mRNA expression of CRF and CRF1 and CRF2 receptors was measured by qPCR in the ventral mesencephalon, ventral striatum, dorsal striatum (DS), prefrontal cortex (PFCx), and hippocampus (Hip). Acute nicotine administration increased locomotor activity in rats. In the sub-chronic group, locomotor activity progressively increased and reached a clear sensitization. Significant effects of sensitization on CRF mRNA levels were detected in the DS (increasing effect). Significantly higher CRF1 and CRF2 receptor levels after sensitization were detected in the Hip. Additionally, CRF2 receptor levels were augmented by sensitization in the PFCx, and treatment and time-induced increases were detected in the DS. Nicotine treatment effects were observed on CRF1R levels in the DS. This study suggests that the CRF transmission, in addition to its role in increasing withdrawal-related anxiety, may be involved in the development of nicotine-habituated behaviours through reduced control of impulses and the aberrant memory plasticity characterising addiction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Dendritic GIRK Channels Gate the Integration Window, Plateau Potentials, and Induction of Synaptic Plasticity in Dorsal But Not Ventral CA1 Neurons.

    PubMed

    Malik, Ruchi; Johnston, Daniel

    2017-04-05

    Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. SIGNIFICANCE STATEMENT The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1