Science.gov

Sample records for adult rat leydig

  1. Immature rat Leydig cells are intrinsically less sensitive than adult Leydig cells to ethane dimethanesulfonate.

    PubMed

    Kelce, W R; Zirkin, B R; Ewing, L L

    1991-11-01

    Leydig cells from immature rat testes appear to be insensitive to doses of ethane-1,2-dimethanesulfonate (EDS) which eliminate Leydig cells from adult rat testes. We sought to determine whether this differential response to EDS is intrinsic to the Leydig cell or mediated by other intra- or extratesticular differences between adult and immature rats. To differentiate among these possibilities, Leydig cells were exposed to EDS (1) in vivo, (2) through in vitro testicular perfusion, or (3) in highly purified Leydig cell primary cultures. Four days after ip injections of 85 mg EDS/kg body wt Leydig cells were eliminated from testes of adult, but not immature rats. Total androgen production by testes perfused in vitro with 94 micrograms EDS/ml was dramatically reduced in adult, but not immature rats. Highly purified adult, but not immature, rat Leydig cells were far more sensitive to the effects of EDS on luteinizing hormone-stimulated androgen production (functional effects; apparent EC50 = 94 for adult and 407 micrograms/ml for immature rat Leydig cells) and on [35S]methionine incorporation (cytotoxic effects; apparent EC50 = 140 for adult and 1000 micrograms/ml for immature rat Leydig cells). Finally, the in vitro effects of EDS were both cell type and chemical specific. Since the differential response of adult and immature rat Leydig cells to EDS was manifest in vivo, during in vitro testicular perfusion, and in highly purified Leydig cell primary cultures, we conclude that immature rat Leydig cells are intrinsically less sensitive to the specific cytotoxic effects of EDS than adult rat Leydig cells.

  2. Effects of estradiol and methoxychlor on Leydig cell regeneration in the adult rat testis.

    PubMed

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-05-06

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7-15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms.

  3. Effects of Estradiol and Methoxychlor on Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-01-01

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7–15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms. PMID:24806340

  4. Prenatal exposure to dexamethasone alters Leydig cell steroidogenic capacity in immature and adult rats.

    PubMed

    Page, K C; Sottas, C M; Hardy, M P

    2001-01-01

    This study examines the effects of prenatal exposure to dexamethasone (DEX) on postnatal testosterone production in male rats. Pregnant female rats were treated on gestation days 14-19 with DEX (100 microg/kg body weight per day; n = 9) or vehicle (n = 9). Results show that 35-day-old male offspring from DEX-treated pregnant females (n = 42) had decreased levels of serum testosterone (45.6% lower, P < .05) compared with control offspring (n = 43), although serum luteinizing hormone (LH) levels were not significantly altered. These findings suggest that a direct programming of developing gonadal cells occurs in response to high levels of maternal glucocorticoid. Indeed, testosterone production was significantly reduced in Leydig cells isolated from immature offspring of DEX-treated pregnant females compared with controls (48.3%, P < .001), and LH stimulation of these cells did not compensate for the lowered steroidogenic capacity. The hypothalamic-pituitary-adrenal axis was also affected, because significant reductions in both serum adrenocorticotropic hormone (ACTH; 26.2%, P < .001) and corticosterone (CORT; 32.3%, P < .001) were measured in DEX-exposed immature male offspring. In contrast, adult male offspring from DEX-treated dams had significantly higher levels of serum ACTH (39.2%, P <. 001) and CORT (37.8%, P < .001). These same animals had higher serum testosterone (31.6%, P < or = .05) and a significant reduction in serum LH (30.8%, P < .001). Moreover, Leydig cells isolated from these adult offspring exhibited an increased capacity for testosterone biosynthesis under basal (38.6%, P < .001) and LH-stimulated conditions (33.5%, P < .001). In summary, sustained changes in steroidogenic capacity were observed in male rats exposed to high levels of glucocorticoid during prenatal development. More specifically, DEX exposure in utero perturbed Leydig cell testosterone production in both pubertal and adult rats.

  5. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-01

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  6. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes

    PubMed Central

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R.; Chen, Haolin

    2016-01-01

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry. PMID:26929346

  7. Melatonin replacement restores the circadian behavior in adult rat Leydig cells after pinealectomy.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Janjic, Marija M; Stojkov-Mimic, Natasa J; Bjelic, Maja M; Andric, Silvana A; Kostic, Tatjana S

    2015-09-15

    Melatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs. Data revealed 24-h-rhythmic expression of clock genes (Bmal1, Per1,2,3, Rev-erba,b, Rorb), steroidogenic genes (Star, Cyp11a1, Cyp17a1), and genes of steroidogenic regulators (positive-Nur77, negative-Arr19). Pinealectomy increased 24-h-oscillations of serum testosterone and LC's cAMP levels, expression of Insl3, Per1, Star/StAR, Hsd3b1/2, Nur77, decreased Arr19 and canceled Per2 oscillatory expression pattern. At hypothalamic-pituitary level, pinealectomy increased mesor of Gnrh, Lhb and rhythm robustness of Mntr1a expression. All parameters disturbed were restored by melatonin-replacement. In vitro studies did not confirm direct melatonin effects on neither clock nor steroidogenic genes. Accordingly, melatonin influence 24-h-rhythmic LC-function likely through hypothalamic-pituitary axis and consequently cAMP-signaling in LCs.

  8. Anabolic-androgenic steroids induce apoptosis and NOS2 (nitric-oxide synthase 2) in adult rat Leydig cells following in vivo exposure.

    PubMed

    Janjic, Marija M; Stojkov, Natasa J; Andric, Silvana A; Kostic, Tatjana S

    2012-12-01

    Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone (T) predominantly taken as drugs of abuse. Using in vivo treatment of adult male rats we investigated the effects of testosterone enanthate (TE) a widely abused AAS, on apoptosis of Leydig cells. Increased T and decreased luteinizing hormone levels in serum and decreased intra-testicular T values were found in 2 and 10 weeks treated groups. Two weeks of TE-treatment stimulated the expression of inducible nitric oxide synthase (NOS2) followed by increased NO production, decreased mitochondrial membrane potential and increased prevalence of Leydig cell apoptosis. This was prevented by in vivo administration of androgen receptor blocker. The induced NOS2 level and apoptosis returned to control levels after 10 weeks of TE-treatment but testes contained fewer Leydig cells. Overall, AAS in addition to reduced steroidogenesis induce transient increase of Leydig cells apoptotic rate through mechanism associated with androgen receptor, most likely involving NOS2 induction. PMID:23085480

  9. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  10. Activation of GPER-1 Estradiol Receptor Downregulates Production of Testosterone in Isolated Rat Leydig Cells and Adult Human Testis

    PubMed Central

    Vaucher, Laurent; Funaro, Michael G.; Mehta, Akanksha; Mielnik, Anna; Bolyakov, Alexander; Prossnitz, Eric R.; Schlegel, Peter N.; Paduch, Darius A.

    2014-01-01

    Purpose Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. Materials and Methods Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Results GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20–30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. Conclusions Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men. PMID:24736568

  11. In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity.

    PubMed

    Murono, Eisuke P; Derk, Raymond C; Akgul, Yucel

    2006-02-01

    Methoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively. Although in vitro studies using cultured rat Leydig cells have reported that HPTE inhibits both basal and hCG-stimulated testosterone formation, the response of circulating testosterone levels to in vivo MC has been more variable. Therefore, the current studies evaluated whether the daily in vivo administration of MC (0, 5, 40 and 200 mg/kg body weight) for a short duration (days 54-60 of age) by gavage altered serum testosterone levels and ex vivo Leydig cell testosterone formation in young adult male rats. These results demonstrate that both fluid-retained and fluid-expressed seminal vesicle weights declined to 44 and 60% of control, respectively, in the 200 mg/kg MC-exposed animals. Similarly, serum testosterone and dehydroepiandrosterone levels declined to 41 and 45% of control, respectively, in the 200 mg/kg MC-exposed animals; however, serum LH and FSH levels were unaffected. Ex vivo Leydig cell basal testosterone formation over 4h declined to 49% of control in animals exposed to 200 mg/kg MC, and ex vivo Leydig cell P450 cholesterol side-chain cleavage activity declined to 79 and 50% of control in animals exposed to 40 and 200 mg/kg of MC, respectively, supporting previous in vitro studies which demonstrated the sensitivity of this step to MC.

  12. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival. PMID:26269506

  13. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice.

    PubMed

    Karpova, Tatiana; Ravichandiran, Kumarasamy; Insisienmay, Lovella; Rice, Daren; Agbor, Valentine; Heckert, Leslie L

    2015-10-01

    The nuclear receptor steroidogenic factor 1 (SF-1, AD4BP, NR5A1) is a key regulator of the endocrine axes and is essential for adrenal and gonad development. Partial rescue of Nr5a1(-/-) mice with an SF-1-expressing transgene caused a hypomorphic phenotype that revealed its roles in Leydig cell development. In contrast to controls, all male rescue mice (Nr5a1(-/-);tg(+/0)) showed varying signs of androgen deficiency, including spermatogenic arrest, cryptorchidism, and poor virilization. Expression of various Leydig cell markers measured by immunohistochemistry, Western blot analysis, and RT-PCR indicated fetal and adult Leydig cell development were differentially impaired. Whereas fetal Leydig cell development was delayed in Nr5a1(-/-);tg(+/0) embryos, it recovered to control levels by birth. In contrast, Sult1e1, Vcam1, and Hsd3b6 transcript levels in adult rescue testes indicated complete blockage in adult Leydig cell development. In addition, between Postnatal Days 8 and 12, peritubular cells expressing PTCH1, SF-1, and CYP11A1 were observed in control testes but not in rescue testes, indicating SF-1 is needed for either survival or differentiation of adult Leydig cell progenitors. Cultured prepubertal rat peritubular cells also expressed SF-1 and PTCH1, but Cyp11a1 was expressed only after treatment with cAMP and retinoic acid. Together, data show SF-1 is needed for proper development of fetal and adult Leydig cells but with distinct primary functions; in fetal Leydig cells, it regulates differentiation, whereas in adult Leydig cells it regulates progenitor cell formation and/or survival.

  14. Depletion and repopulation of Leydig cells in the testes of aging brown Norway rats.

    PubMed

    Chen, H; Huhtaniemi, I; Zirkin, B R

    1996-08-01

    The capacity of Brown Norway rat Leydig cells to produce testosterone has been shown to decrease with aging. Our objectives herein were to determine 1) whether ethane dimethanesulfonate (EDS) administration would eliminate the hypofunctional Leydig cells of the aged Brown Norway rat testis; 2) if so, whether a new generation of Leydig cells subsequently would appear; and 3) if so, whether the steroidogenic capacity of the new Leydig cells would be at the relatively low level of the cells they replaced or at the high level of young adult Leydig cells. Young (3-month-old) and aged (18-month-old) rats received an injection of EDS (8.5 mg/100 g BW). One, 5, and 10 weeks thereafter, the serum testosterone concentration and the capacity of the testes and of isolated Leydig cells to produce testosterone were determined. One week after EDS treatment, Leydig cells were not seen in the testes of young or aged rats, and the serum testosterone concentration and testicular testosterone production were reduced to undetectable levels. Five weeks after EDS treatment, serum testosterone levels at both ages were restored to those in age-matched controls, and the capacity of the testes to produce testosterone was restored partially (young rats) or completely (aged rats). By 10 weeks after EDS treatment, the serum testosterone concentration in young rats and the ability of their testes to produce testosterone were at the levels of age-matched controls. In aged rats, however, serum testosterone and testicular testosterone production were at levels that significantly exceeded those of aged-matched controls and, indeed, were not significantly different from those of young control or EDS-treated rats. Consistent with this, the ability of Leydig cells isolated from the testes of young rats and that of cells from aged rats to produce testosterone 10 weeks after the rats were treated with EDS were equivalent. The enhanced ability of the Leydig cells restored to the aged testes to produce

  15. Intratesticular alpha1-adrenergic receptors mediate stress-disturbed transcription of steroidogenic stimulator NUR77 as well as steroidogenic repressors DAX1 and ARR19 in Leydig cells of adult rats.

    PubMed

    Stojkov-Mimic, Natasa J; Bjelic, Maja M; Radovic, Sava M; Mihajlovic, Aleksandar I; Sokanovic, Srdjan J; Baburski, Aleksandar Z; Janjic, Marija M; Kostic, Tatjana S; Andric, Silvana A

    2015-09-01

    The aim of the present study was to define the role of testicular α1-adrenergic receptors (α1-ADRs) in stress-triggered adaptation of testosterone-producing Leydig cells of adult rats. Results showed that in vivo blockade of testicular α1-ADRs prevented partial recovery of circulating androgen levels registered after 10× repeated immobilization stress (10 × IMO). Moreover, α1-ADR-blockade diminished 10 × IMO-triggered recovery of Leydig cell androgen production, and abolished mitochondrial membrane potential recovery. In the same cells, 10 × IMO-induced increase in Star transcript was abolished, Lhcgr transcript decreased, while transcription of other steroidogenic proteins was not changed. α1-ADR-blockade recovered stress-induced decrease of Nur77, one of the main steroidogenic stimulator, while significantly reduced 10 × IMO-increased in the transcription of the main steroidogenic repressors, Arr19 and Dax1. In vitro experiments revealed an adrenaline-induced α1-ADR-mediated decrease in Nur77 transcription in Leydig cells. Adrenaline-induced increase of repressor Dax1 also involves ADRs in Leydig cells. Accordingly, α1-ADRs participate in some of the stress-triggered effects on the steroidogenic machinery of Leydig cells. PMID:26003139

  16. Orally applied doxazosin disturbed testosterone homeostasis and changed the transcriptional profile of steroidogenic machinery, cAMP/cGMP signalling and adrenergic receptors in Leydig cells of adult rats.

    PubMed

    Stojkov, N J; Janjic, M M; Kostic, T S; Andric, S A

    2013-03-01

    Doxazosin (Doxa) is an α1-selective adrenergic receptor (ADR) antagonist widely used, alone or in combination, to treat high blood pressure, benign prostatic hyperplasia symptoms, and recently has been suggested as a potential drug for prostate cancer prevention/treatment. This study was designed to evaluate the effect of in vivo Doxa po-application, in clinically relevant dose, on: (i) steroidogenic machinery homeostasis; (ii) cAMP/cGMP signalling; (iii) transcription profile of ADR in Leydig cells of adult rats. The results showed that po-application of Doxa for once (1×Doxa), or for two (2×Doxa) or 10 (10×Doxa) consecutive days significantly disturbed steroidogenic machinery homeostasis in Leydig cells. Doxa po-application significantly decreased circulating luteinizing hormone and androgens levels. The level of androgens in testicular interstitial fluid and that extracted from testes obtained from 1×Doxa/2×Doxa rats decreased, although it remained unchanged in 10×Doxa rats. Similarly, the ex vivo basal androgen production followed in testes isolated from 1×Doxa/2×Doxa rats decreased, while remained unchanged in 10×Doxa rats. Differently, ex vivo testosterone production and steroidogenic capacity of Leydig cells isolated from 1×Doxa/2×Doxa rats was stimulated, while 10×Doxa had opposite effect. In the same cells, cAMP content/release showed similar stimulatory effect, but back to control level in Leydig cells of 10×Doxa. 1×Doxa/2×Doxa decreased transcripts for cAMP specific phosphodiesterases Pde7b/Pde8b, whereas 10×Doxa increased Pde4d. All types of treatment reduced the expression of genes encoding protein kinase A (PRKA) regulatory subunit (Prkar2b), whereas only 10×Doxa stimulated catalytic subunit (Prkaca). Doxa application more affected cGMP signalling: stimulated transcription of constitutive nitric oxide synthases (Nos1, Nos3) in time-dependent manner, whereas reduced inducible Nos2. 10×Doxa increased guanylyl cyclase 1 transcript and

  17. Orally applied doxazosin disturbed testosterone homeostasis and changed the transcriptional profile of steroidogenic machinery, cAMP/cGMP signalling and adrenergic receptors in Leydig cells of adult rats.

    PubMed

    Stojkov, N J; Janjic, M M; Kostic, T S; Andric, S A

    2013-03-01

    Doxazosin (Doxa) is an α1-selective adrenergic receptor (ADR) antagonist widely used, alone or in combination, to treat high blood pressure, benign prostatic hyperplasia symptoms, and recently has been suggested as a potential drug for prostate cancer prevention/treatment. This study was designed to evaluate the effect of in vivo Doxa po-application, in clinically relevant dose, on: (i) steroidogenic machinery homeostasis; (ii) cAMP/cGMP signalling; (iii) transcription profile of ADR in Leydig cells of adult rats. The results showed that po-application of Doxa for once (1×Doxa), or for two (2×Doxa) or 10 (10×Doxa) consecutive days significantly disturbed steroidogenic machinery homeostasis in Leydig cells. Doxa po-application significantly decreased circulating luteinizing hormone and androgens levels. The level of androgens in testicular interstitial fluid and that extracted from testes obtained from 1×Doxa/2×Doxa rats decreased, although it remained unchanged in 10×Doxa rats. Similarly, the ex vivo basal androgen production followed in testes isolated from 1×Doxa/2×Doxa rats decreased, while remained unchanged in 10×Doxa rats. Differently, ex vivo testosterone production and steroidogenic capacity of Leydig cells isolated from 1×Doxa/2×Doxa rats was stimulated, while 10×Doxa had opposite effect. In the same cells, cAMP content/release showed similar stimulatory effect, but back to control level in Leydig cells of 10×Doxa. 1×Doxa/2×Doxa decreased transcripts for cAMP specific phosphodiesterases Pde7b/Pde8b, whereas 10×Doxa increased Pde4d. All types of treatment reduced the expression of genes encoding protein kinase A (PRKA) regulatory subunit (Prkar2b), whereas only 10×Doxa stimulated catalytic subunit (Prkaca). Doxa application more affected cGMP signalling: stimulated transcription of constitutive nitric oxide synthases (Nos1, Nos3) in time-dependent manner, whereas reduced inducible Nos2. 10×Doxa increased guanylyl cyclase 1 transcript and

  18. Prolonged in vivo administration of testosterone-enanthate, the widely used and abused anabolic androgenic steroid, disturbs prolactin and cAMP signaling in Leydig cells of adult rats.

    PubMed

    Bjelic, Maja M; Stojkov, Natasa J; Radovic, Sava M; Baburski, Aleksandar Z; Janjic, Marija M; Kostic, Tatjana S; Andric, Silvana A

    2015-05-01

    This study was designed to systematically analyze and define the effects of 1-day, 2-weeks, 10-weeks intramuscular administration of testosterone-enanthate, widely used and abused anabolic androgenic steroid (AAS), on main regulators of steroidogenesis and steroidogenic genes expression in testosterone-producing Leydig cells of adult rats. The results showed that prolonged (10-weeks) intramuscular administration of testosterone-enanthate, in clinically relevant dose, significantly increased prolactin, but decreased Prlr2 and Gnrhr in pituitary of adult rat. The levels of testosterone, Insl3, cAMP and mitochondrial membrane potential of Leydig cells were significantly reduced. This was followed by decreased expression of some steroidogenic enzymes and regulatory proteins such as Lhcgr, Prlr1/2, Tspo, Star, Cyp11a1, Cyp17a1, Dax1. Oppositely, Hsd3b1/2, Hsd3b5, Hsd17b4, Ar, Arr19 increased. In the same cells, transcriptional milieu of cAMP signaling elements was disturbed with remarkable up-regulation of PRKA (the main regulator of steroidogenesis). Increased prolactin together with stimulated transcription of Jak2/Jak3 could account for increased Hsd3b1/2 and Hsd3b5 in Leydig cells following 10-weeks in vivo treatment with testosterone-enanthate. In vitro studies revealed that testosterone is capable to increase level of Prlr1, Prlr2, Hsd3b1/2, Hsd3b5 in Leydig cells. Accordingly, testosterone-induced changes in prolactin receptor signaling together with up-regulation of PRKA, Hsd3b1/2, Hsd3b5, Ar in Leydig cells, could be the possible mechanism that contribute to the establishment of a new adaptive response to maintain homeostasis and prevent loss of steroidogenic function. Presented data provide new molecular insights into the relationship between disturbed testosterone homeostasis and mammalian reproduction and are important in terms of wide use and abuse of AASs and human reproductive health.

  19. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  20. Directed Mouse Embryonic Stem Cells into Leydig-Like Cells Rescue Testosterone-Deficient Male Rats In Vivo

    PubMed Central

    Yang, Yan; Su, Zhijian; Xu, Wenting; Luo, Jiao; Liang, Rui; Xiang, Qi; Zhang, Qihao; Ge, Ren-shan

    2015-01-01

    The primary function of Leydig cells is to secrete testosterone, which is critical in the regulation of male reproduction and development. Low levels of testosterone will lead to male hypogonadism. Stem cell-derived Leydig cell transplantation may be a promising alternative therapy for male hypogonadism. Thus far, others have reported that Leydig-like cells can be derived from mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells. However, the efficiency of the differentiating Leydig cells remains low, and progress toward generating functional adult Leydig cells (ALCs) is limited. Herein, we describe a robust method of directing differentiation of mouse embryonic stem cells (mESCs) into Leydig-like cells in vitro by overexpression of the transcription factor steroidogenic factor-1 (SF-1) and treatment with a combination of 8-Bromoadenosine-3′,5′-cyclic monophosphate and forskolin. These differentiated cells express mRNA encoding the steroidogenic enzymes and produce progesterone and testosterone. Importantly, when transplanted into male rats that had their original Leydig cells selectively eliminated by ethylene dimethanesulfonate, these in vitro-derived Leydig-like cells further developed into functional ALCs that rescued serum testosterone levels. These data provide evidence that mESCs can be induced to differentiate into Leydig-like cells in vitro, which can develop in the in vivo microenvironment. PMID:25340537

  1. The effects of the reported active metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, on testosterone formation by cultured Leydig cells from young adult rats.

    PubMed

    Murono, Eisuke P; Derk, Raymond C

    2004-11-01

    Methoxychlor (MC) is an insecticide that is currently used on a variety of agricultural crops, especially following the ban of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) use in the United States. Following in vivo administration, MC is converted to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been demonstrated to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen or androgen receptors, respectively. A recent study reported that HPTE inhibited both basal and hCG-stimulated testosterone formation by immature and adult cultured rat Leydig cells and that this effect was mediated through the estrogen receptor. In the current studies, we examined the effects of HPTE on basal and hCG-stimulated testosterone formation by cultured Leydig cells from young adult rats. In addition, we evaluated whether the effects of HPTE on rat Leydig cell testosterone biosynthesis were mediated through the estrogen receptor as an estrogen agonist or the androgen receptor as an antiandrogen. The current studies demonstrated that HPTE inhibited both basal and hCG-stimulated testosterone formation in a dose-dependent manner with significant declines in testosterone being observed at approximately 100 nM. The effects of HPTE were localized to the cholesterol side-chain cleavage step; however, these effects were not mediated through the classic estrogen receptor or by its acting as an antiandrogen, the currently recognized modes of action of MC and HPTE.

  2. Intratesticular delivery of tumor necrosis factor-alpha and ceramide directly abrogates steroidogenic acute regulatory protein expression and Leydig cell steroidogenesis in adult rats.

    PubMed

    Morales, Victoria; Santana, Pino; Díaz, Raquel; Tabraue, Carlos; Gallardo, Germán; López Blanco, Félix; Hernández, Inmaculada; Fanjul, Luisa F; Ruiz de Galarreta, Carlos M

    2003-11-01

    Systemic or intratesticular release of TNF alpha and IL1 beta have been implicated in the reduced testosterone biosynthesis and impaired production of competent spermatozoa found in human patients suffering from sepsis or chronic inflammation. Although in vitro and in vivo studies have demonstrated that TNF alpha and IL1 beta intercept the hypothalamic-pituitary testis axis at different levels, the site(s) of action and relative contribution of each cytokine to the overall testicular failure associated to systemic inflammatory processes remains poorly defined. In this study we show that intratesticular delivery of TNF alpha induced a rapid (4 h) and sustained (up to 24 h) reduction in steroidogenic acute regulatory (StAR) protein expression and testosterone biosynthesis in nonstimulated or human chorionic gonadotropin-treated intact or hypophysectomized rats. Bilateral treatment with cell-permeant short-chain ceramides (C2-cer or C6-cer) reproduced the early (4 h) inhibitory action of TNFalpha on testosterone biosynthesis and testicular StAR expression. The inhibitory action of C2-cer or C6-cer was not observed in animals treated with inactive analogs (dihydroceramide), phosphorylcholine, sphingosine, or sphingosine-1P. In sharp contrast to the previously described ability of IL1 beta to prevent human chorionic gonadotropin-stimulated Leydig cell steroidogenesis in vitro, serum testosterone and testicular StAR protein expression remained unchanged in animals bilaterally injected with this cytokine. These data support the concept that TNF alpha triggers different effector mechanisms to directly inhibit Leydig cell StAR expression and steroidogenesis, which ultimately contribute to the global reproductive failure associated with chronic inflammation and sepsis.

  3. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells.

    PubMed

    Liu, Lin; Wang, Dian; Li, Longlong; Ding, Xiao; Ma, Haitian

    2016-07-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti‑aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose‑dependent manner, whereas it improved cell viability in a time‑dependent and dose‑dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  4. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells

    PubMed Central

    LIU, LIN; WANG, DIAN; LI, LONGLONG; DING, XIAO; MA, HAITIAN

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  5. The expression of the RLF/INSL3 gene is reduced in Leydig cells of the aging rat testis.

    PubMed

    Paust, H J; Wessels, J; Ivell, R; Mukhopadhyay, A K

    2002-12-01

    The relaxin-like factor (RLF), which is the product of the INSL3 gene, is highly expressed in the fetal and adult-type Leydig cells of all species so far examined. In adult testes it is upregulated at puberty but appears subsequently to be expressed in a constitutive manner, independently of acute changes in the hypothalamic-pituitary-gonadal (HPG) axis. Functional hypogonadism with decreased testosterone is prevalent in the aging male. In order to test whether this is a property of the HPG axis, or of the Leydig cells themselves, RLF/INSL3 was used as an independent marker to assess rat Leydig cell differentiation status. Hybridization analysis showed that in the testes of old (2 years) rats, RLF/INSL3 mRNA expression was dramatically reduced, compared to young (3 months) animals. This was also evident at the protein level using immunohistochemistry. The results suggest that increasing functional hypogonadism in older male mammals is likely caused by a dedifferentiation of the Leydig cells themselves.

  6. Drug Ligand-Induced Activation of Translocator Protein (TSPO) Stimulates Steroid Production by Aged Brown Norway Rat Leydig Cells

    PubMed Central

    Chung, J.-Y.; Chen, H.; Midzak, A.; Burnett, A. L.; Papadopoulos, V.

    2013-01-01

    Translocator protein (TSPO; 18 kDA) is a high-affinity cholesterol-binding protein that is integrally involved in cholesterol transfer from intracellular stores into mitochondria, the rate-determining step in steroid formation. Previous studies have shown that TSPO drug ligands are able to activate steroid production by MA-10 mouse Leydig tumor cells and by mitochondria isolated from steroidogenic cells. We hypothesized herein that the direct, pharmacological activation of TSPO might induce aged Leydig cells, which are characterized by reduced T production, to produce significantly higher levels of T both in vitro and in vivo. To test this, we first examined the in vitro effects of the TSPO selective and structurally distinct drug ligands N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and benzodiazepine 4′-chlorodiazepam (Ro5-4864) on steroidogenesis by Leydig cells isolated from aged (21-24 months old) and young adult (3-6 months old) Brown Norway rats. The ligands stimulated Leydig cell T production significantly, and equivalently, in cells of both ages, an effect that was significantly inhibited by the specific TSPO inhibitor 5-androsten-3,17,19-triol (19-Atriol). Additionally, we examined the in vivo effects of administering FGIN-1-27 to young and aged rats. In both cases, serum T levels increased significantly, consistent with the in vitro results. Indeed, serum T levels in aged rats administered FGIN-1-27 were equivalent to T levels in the serum of control young rats. Taken together, these results indicate that although there are reduced amounts of TSPO in aged Leydig cells, its direct activation is able to increase T production. We suggest that this approach might serve as a therapeutic means to increase steroid levels in vivo in cases of primary hypogonadism. PMID:23525219

  7. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis.

    PubMed

    Kaftanovskaya, Elena M; Lopez, Carolina; Ferguson, Lydia; Myhr, Courtney; Agoulnik, Alexander I

    2015-06-01

    It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation.

  8. Effects of acute and chronic immobilization stress on rat Leydig cell steroidogenesis.

    PubMed

    Marić, D; Kostić, T; Kovacević, R

    1996-06-01

    In rats, acute immobilization (IMO) stress (2 h) induced a fall in the serum androgen concentrations (T+DHT) without detectable changes in serum luteinizing hormone (LH) values. In vitro studies, using a suspension of Leydig cells from adult rat testis, demonstrated that acute stress inhibited conversion of progesterone (P) or 17hydroxyprogesterone (17OHP) to T while conversion of androstendione (delta 4 A) was not affected. Acute IMO reduced activity of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and decreased basal and hCG-stimulated progesterone and androgen production. Chronic IMO stress (2 h daily for 10 days) induced a decrease in serum androgen level with decline in serum LH values. In vitro, hCG-stimulated progesterone and androgen production by suspension of Leydig cells, as well as conversion of P and 17OHP to T were not significantly altered. Our data demonstrates that acute IMO stress impaired testicular steroidogenesis primarily at the testicular level (decreasing the activity of certain enzymes), while chronic IMO stress exerts the effect mainly on the hypothalamic-pituitary axis; reduced serum LH levels elicit a decrease in serum androgen levels.

  9. Modulatory effects of leptin on leydig cell function of normal and hyperleptinemic rats.

    PubMed

    Giovambattista, Andrés; Suescun, María O; Nessralla, Claudio C D L; França, Luiz R; Spinedi, Eduardo; Calandra, Ricardo S

    2003-11-01

    Neonatal L-monosodium glutamate (MSG) administration in rats induces several neuroendocrine and metabolic disruptions. Leptin, the adipocyte product, modulates several neuroendocrine systems including the hypothalamic-pituitary-gonadal (HPG) axis in mammals. The aim of the present study was to determine whether MSG-induced chronic hyperleptinemia could play any relevant role in the hypogonadism developed by male rats when examined in adulthood. We found that 120-day-old MSG male rats displayed significant hyperleptinemia, hypogonadism, and undisturbed basic testis structure and spermatogenesis. In vitro studies in purified Leydig cells from normal (CTR) and MSG-damaged rats revealed that basal and human chorionic gonadotropin (hCG)-stimulated 17-hydroxy-progesterone (17-HO-P(4)), Delta(4)-androstenedione (Delta(4)A) and testosterone (T) secretions were significantly lower in MSG than in CTR cells. Exposure to murine leptin (Mleptin, 10(-8)M) significantly inhibited hCG-elicited T secretion by CTR cells after 180 min incubation. While Mleptin significantly inhibited hCG-stimulated Delta(4)A output and the Delta(4)A:17-OH-P(4) ratio of secretion, conversely, it failed to modify the ratio T:Delta(4)A release by CTR Leydig cells. Interestingly, the effects of Mleptin found on CTR Leydig cells were absent in MSG Leydig cells. Finally, endogenous hyperleptinemia was associated with a significant decrease in Leydig cell expression of Ob-Rb mRNA in MSG rats. In summary, this study demonstrates that: (1) Mleptin inhibited testicular steroidogenesis in CTR rats; (2) MSG-treated rats showed lower in vitro 17-OH-P(4), Delta(4)A and T production under basal and post-hCG stimulation conditions; (3) purified Leydig cells from MSG-treated rats displayed resistance to the inhibitory action of Mleptin on T release, and (4) endogenous leptin exerts a modulatory effect on Leydig cell Ob-Rb mRNA expression. The inhibitory effect of leptin on testicular function is thus abrogated in MSG

  10. Leydig cells contribute to the inhibition of spermatogonial differentiation after irradiation of the rat.

    PubMed

    Shetty, G; Zhou, W; Weng, C C Y; Shao, S H; Meistrich, M L

    2016-05-01

    Irradiation with 6 Gy produces a complete block of spermatogonial differentiation in LBNF1 rats that would be permanent without treatment. Subsequent suppression of gonadotropins and testosterone (T) restores differentiation to the spermatocyte stage; however, this process requires 6 weeks. We evaluated the role of Leydig cells (LCs) in maintenance of the block in spermatogonial differentiation after exposure to radiation by specifically eliminating functional LCs with ethane dimethane sulfonate (EDS). EDS (but not another alkylating agent), given at 10 weeks after irradiation, induced spermatogonial differentiation in 24% of seminiferous tubules 2 weeks later. However, differentiation became blocked again at 4 weeks as LCs recovered. When EDS was followed by treatment with GnRH antagonist and flutamide, sustained spermatogonial differentiation was induced in >70% of tubules within 2 weeks. When EDS was followed by GnRH antagonist plus exogenous T, which also inhibits LC recovery but restores follicle stimulating hormone (FSH) levels, the spermatogonial differentiation was again rapid but transient. These results confirm that the factors that block spermatogonial differentiation are indirectly regulated by T, and probably FSH, and that adult and possibly immature LCs contribute to the production of such inhibitory factors. We tested whether insulin-like 3 (INSL3), a LC-produced protein whose expression correlated with the block in spermatogonial differentiation, was indeed responsible for the block by injecting synthetic INSL3 into the testes and knocking down its expression in vivo with siRNA. Neither treatment had any effect on spermatogonial differentiation. The Leydig cell products that contribute to the inhibition of spermatogonial differentiation in irradiated rats remain to be elucidated. PMID:26991593

  11. The mechanism for lindane-induced inhibition of steroidogenesis in cultured rat Leydig cells.

    PubMed

    Ronco, A M; Valdés, K; Marcus, D; Llanos, M

    2001-02-21

    The in vitro effect of the gamma-isomer of hexachlorocyclohexane, lindane, on rat Leydig cell steroidogenesis was studied. Leydig cells from mature male rats were incubated with human chorionic gonadotropin (hCG, 1 IU) for 3 h at 34 degrees C in the presence of different doses of lindane (2-200 microg/ml; 2-200 ppm). Results demonstrate that lindane produces a dose-dependent inhibition of testosterone production in hCG-stimulated Leydig cells. The decreased testosterone synthesis was accompanied with a half-reduced LH/hCG receptor number without any modification in the K(d) value. In addition, lindane also decreased cAMP production. These effects were not due to a detrimental action of lindane on cell viability. Results of this study demonstrate a direct inhibitory action of lindane on testicular steroidogenesis, at least in part, through a reduction in the classical second messenger production involved in this pathway.

  12. Pubertal and adult Leydig cell function in Mullerian inhibiting substance-deficient mice.

    PubMed

    Wu, Xiufeng; Arumugam, Ramamani; Baker, Stephen P; Lee, Mary M

    2005-02-01

    Mullerian inhibiting substance (MIS) causes Mullerian duct regression during sexual differentiation and regulates postnatal Leydig cell development. MIS knockout (MIS-KO) mice with targeted deletions of MIS develop Leydig cell hyperplasia, but their circulating androgen concentrations are reportedly unaltered. We compared reproductive hormone profiles, androgen biosynthesis, and the expression of key steroidogenic and metabolic enzymes in MIS-KO and wild-type (WT) mice at puberty (36 d) and sexual maturity (60 d). In pubertal animals, basal testosterone and LH concentrations in plasma were lower in MIS-KO than WT mice, whereas human chorionic gonadotropin-stimulated testosterone concentrations were similar. In adults, basal LH, and both basal and human chorionic gonadotropin (hCG)-stimulated testosterone concentrations were similar. Purified Leydig cells from pubertal MIS-KO mice had lower testosterone but higher androstanediol and androstenedione production rates. In contrast, testosterone, androstanediol, and androstenedione production rates were all lower in adult MIS-KO Leydig cells. Steroidogenic acute regulatory protein expression was lower in pubertal MIS-KO mice compared with WT, whereas 17beta-hydroxy-steroid dehydrogenase and 5alpha-reductase were greater, and P450c17 and P450scc were similar. The expression of steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase was lower in adult MIS-KO mice, whereas that of 5alpha-reductase, P450c17, and P450scc was similar. Collectively, these results suggest that in the absence of MIS, Leydig cells remain less differentiated, causing an altered intratesticular androgen milieu that may contribute to the infertility of MIS-KO mice. In immature mice, this deficit in steroidogenic capacity appears to be mediated by a direct loss of MIS action in Leydig cells as well as by indirect effects via the hypothalamic-pituitary-gonadal axis.

  13. Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage.

    PubMed

    Rich, K A; Kerr, J B; de Kretser, D M

    1979-02-01

    To study the effects of seminiferous tubule damage on Leydig cell function and morphology, rats were treated by fetal irradiation (to induce Sertoli cell-only syndrome, SCO), 3 months administration of hydroxyurea (HU), or chronic feeding of a vitamin A-deficient diet (VAD). Leydig cell function was assessed by the measurement of serum LH and testosterone and the response of serum testosterone to hCG stimulation, while morphology was studied by electron microscopy after perfusion fixation. Serum LH was significantly elevated in each experimental group, while basal serum testosterone was significantly lower only in SCO rats. In all treatment groups, the serum testosterone response to hCG was significantly decreased when measureed as the area under the response curve. Despite a decreased response to hCG, the Leydig cells were larger than normal and showed striking increases in quantities of smooth endoplasmic reticulum, mitochondria and Golgi complex. Leydig cell dysfunction has been demonstrated in animals with varying degrees of seminiferous tubule damage, but paradoxically the cytological features of the Leydig cells were indicative of hypertrophy. PMID:446879

  14. MODULATION OF RAT LEYDIG CELL STEROIDOGENIC FUNCTION BY DI(2-ETHYLHEXYL)PHTHALATE

    EPA Science Inventory

    Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate.

    Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP.

    Center for Biomedical Research, Population Council, New York, New York 10021, USA. benson@popcbr...

  15. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells

    PubMed Central

    Kilcoyne, Karen R.; Smith, Lee B.; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S.; Chambers, Thomas J. G.; De Gendt, Karel; Verhoeven, Guido; O’Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L. M.; Anderson, Richard A.; Sharpe, Richard M.

    2014-01-01

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk. PMID:24753613

  16. Cadmium-induced damage to primary cultures of rat Leydig cells.

    PubMed

    Yang, Jian-Ming; Arnush, Marc; Chen, Qiong-Yu; Wu, Xiang-Dong; Pang, Bing; Jiang, Xue-Zhi

    2003-01-01

    The mechanism of testicular toxicity of cadmium is poorly understood. Previous studies focusing on cadmium-related changes in testicular histopathology have implicated testicular blood vessel damage as the main cause of cadmium toxicity. To further explore the toxic effects of cadmium on testis, we isolated and cultured rat Leydig cells, exposed to 10, 20, and 40 microM of cadmium chloride (base doses). After 24 h of exposure, cells and supernatants were harvested to examine cytotoxicity and genotoxicity of cadmium. The results show that both cell viability and concentration of testosterone excretion in primary Leydig cells are significantly lower in cadmium-exposed groups compared to the controls. Changes in testosterone excretion with human chorionic gonadotropin (hCG) stimulation is especially profound. The contents of malondialdehyde (MDA) and the activity of glutathione peroxidase (GSH-Px) in exposed groups are significantly higher than those in the control group, but the activity of superoxide dismutase (SOD) is lower. The number of cells with DNA single strand breaks and the levels of cellular DNA damage in all three exposure groups are significantly higher than in controls. These results indicate that cadmium is directly toxic to primary Leydig cells, and that the decreased percentage of normal cells and the increased level of DNA damage in cadmium-exposed Leydig cells may be responsible for decreased testosterone secretion. PMID:14555193

  17. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-01-01

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway. PMID:25807302

  18. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-03-24

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.

  19. [Characteristics of Leydig cells in the newborn posterity of female rats with chronic injury of the hepatobiliary system of various genesis].

    PubMed

    Bryukhin, G V; Sizonenko, M L

    2015-01-01

    Morphological and functional features of interstitial endocrine cells (Leydig cells) in the posterity of female rats with experimental liver injury of various genesis in the neonatal period were analized. Found that in experimental rats are a reduction in the number of Leydig cells, the ratio between active and inactive endocrinocytes and as a consequence, reduction of its cell activity index.

  20. Effects of Etomidate on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Liu, Hua-Cheng; Zhu, Danyan; Wang, Chan; Guan, Hongguo; Li, Senlin; Hu, Cong; Chen, Zhichuan; Hu, Yuanyuan; Lin, Han; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Background Etomidate is a rapid hypnotic intravenous anesthetic agent. The major side effect of etomidate is the reduced plasma concentration of corticosteroids, leading to the abnormal reaction of adrenals. Cortisol and testosterone biosynthesis has similar biosynthetic pathway, and shares several common steroidogenic enzymes, such as P450 side chain cleavage enzyme (CYP11A1) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). The effect of etomidate on Leydig cell steroidogenesis during the cell maturation process is not well established. Methodology Immature Leydig cells isolated from 35 day-old rats were cultured with 30 μM etomidate for 3 hours in combination with LH, 8Br-cAMP, 25R-OH-cholesterol, pregnenolone, progesterone, androstenedione, testosterone and dihydrotestosterone, respectively. The concentrations of 5α-androstanediol and testosterone in the media were measured by radioimmunoassay. Leydig cells were cultured with various concentrations of etomidate (0.3–30 μM) for 3 hours, and total RNAs were extracted. Q-PCR was used to measure the mRNA levels of following genes: Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Srd5a1, and Akr1c14. The testis mitochondria and microsomes from 35-day-old rat testes were prepared and used to detect the direct action of etomidate on CYP11A1 and HSD3B1 activity. Results and Conclusions In intact Leydig cells, 30 μM etomidate significantly inhibited androgen synthesis. Further studies showed that etomidate also inhibited the LH- stimulated androgen production. On purified testicular mitochondria and ER fractions, etomidate competitively inhibited both CYP11A1 and HSD3B1 activities, with the half maximal inhibitory concentration (IC50) values of 12.62 and 2.75 μM, respectively. In addition, etomidate inhibited steroidogenesis-related gene expression. At about 0.3 μM, etomidate significantly inhibited the expression of Akr1C14. At the higher concentration (30 μM), it also reduced the expression levels of

  1. Investigation of a mechanism for Leydig cell tumorigenesis by linuron in rats.

    PubMed

    Cook, J C; Mullin, L S; Frame, S R; Biegel, L B

    1993-04-01

    In a previously conducted 2-year study, a concentration-dependent increase in Leydig cell adenomas was observed in Crl:CD BR(CD) rats fed diets containing the herbicide linuron. Linuron has been shown to be negative in a battery of six tests for genotoxicity; therefore, a nongenotoxic mechanism of tumorgenesis was investigated. Linuron is structurally related to the nonsteroidal antiandrogen, flutamide. Flutamide has also been shown to produce Leydig cell tumors within 1 year, presumably due to sustained hypersecretion of luteinizing hormone (LH) which occurs following disruption of the hypothalamic-pituitary-testicular (HPT) axis. To investigate whether linuron possesses antiandrogenic activity, sexually immature and mature CD rats were administered either 200 mg/kg linuron or 10 mg/kg flutamide (positive control) for 2 weeks. Accessory sex organs were weighed and serum hormone levels were measured to assess androgen status and alterations in the HPT axis. Serum from a multigeneration reproduction study with linuron was also analyzed for serum hormone levels. In addition, competitive receptor binding studies were conducted to evaluate the ability of linuron to bind to the androgen receptor. Linuron decreased accessory sex organ weights in sexually immature and mature linuron-treated rats. Increased serum estradiol and LH levels were observed in sexually mature linuron-treated rats. Serum estradiol and LH levels were also elevated in P1 and F1 male rats from the multigeneration reproduction study. These accessory sex organ and hormonal changes are consistent with those seen with the antiandrogen flutamide, the only exception being serum testosterone, which was elevated following exposure to flutamide but not to linuron. The inability of linuron to increase testosterone levels may reflect the lower potency of linuron as an antiandrogen compared with that of flutamide, which is a potent antiandrogen. Additionally, linuron competed with [3H]testosterone for binding to

  2. The reported active metabolite of methoxychlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits testosterone formation by cultured Leydig cells from neonatal rats.

    PubMed

    Murono, Eisuke P; Derk, Raymond C

    2005-01-01

    Methoxychlor (MC) is an insecticide that is presently used on agricultural crops, especially after the ban on the use of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) in the United States. Following administration in vivo, MC is converted to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is thought to be the active agent. However, both MC and HPTE have been reported to have weak estrogenic and antiandrogenic activities, and they are thought to exert their potential adverse (endocrine disruptive) effects through the estrogen and androgen receptors, respectively. In a recent study, HPTE was shown to inhibit both basal and hCG-stimulated testosterone production by cultured Leydig cells from immature and adult rats, and these effects were reported to be mediated through the estrogen receptor. Because fetal Leydig cells represent a separate population from adult Leydig cells and many of the reported adverse actions of endocrine disruptors are thought to have their effects during gestational exposure, the present studies examined the effects of HPTE on testosterone formation by cultured fetal Leydig cells from neonatal rats to determine whether these cells are sensitive to HPTE. Our studies demonstrated that HPTE inhibited both basal and hCG-stimulated testosterone formation in a dose-dependent manner. Significant declines in testosterone were observed at about 100nM HPTE, and this effect was detected as early as 1h after exposure. The main effects of HPTE appeared to be localized to the cholesterol side-chain cleavage step which converts cholesterol to pregnenolone. In addition, this effect did not appear to be mediated through the estrogen receptor as a weak estrogen or the androgen receptor as an antiandrogen, which are the currently proposed modes of action of MC and HPTE.

  3. A METABOLITE OF METHOXYCHLOR,2,2-BIS(P-HYDOXYPHENYL)-1,1,1- TRICHLOROETHANE REDUCES TESTOSTERONE BIOSYNTHESIS IN RAT LEYDIG CELLS THROUGH SUPPRESSION OF STEADY-STATE MESSENGER RIBONUCLEIC ACID LEVELS OF THE CHOLESTEROL SIDE-CHAIN CLEAVAGE ENZYME

    EPA Science Inventory

    Postnatal development of Leydig cells involves transformation through three stages: progenitor, immature, and adult Leydig cells. The process of differentiation is accompanied by a progressive increase in the capacity of Leydig cells to produce testosterone (T). T promotes the ma...

  4. Protective Effect of Adrenomedullin on Rat Leydig Cells from Lipopolysaccharide-Induced Inflammation and Apoptosis via the PI3K/Akt Signaling Pathway ADM on Rat Leydig Cells from Inflammation and Apoptosis

    PubMed Central

    Zhou, Pang-Hu; Hu, Wei; Zhang, Xiao-Bin; Wang, Wei; Zhang, Li-Jun

    2016-01-01

    This study was carried out to investigate whether ADM can modulate LPS-induced inflammation and apoptosis in rat Leydig cells. Leydig cells were treated with ADM before LPS-induced cytotoxicity. We determined the concentrations of ROS, MDA, GSH, LDH, and testosterone and the MMP. The mRNA levels of IL-1, IL-6, iNOS, and COX-2 were obtained, and the concentrations of IL-1, IL-6, NO, and PGE2 were determined. Apoptosis was assessed by TUNEL and detection of DNA fragmentation. The levels of mRNA and protein were determined for Bcl-2, Bax, caspase-3, and PARP. The protein contents for total and p-Akt were measured. ADM pretreatment significantly elevated the MMP and testosterone concentration and reduced the levels of ROS, MDA, GSH, and LDH. ADM pretreatment significantly decreased the mRNA levels of IL-1, IL-6, iNOS, and COX-2 and the concentrations of IL-1, IL-6, NO, and PGE2. LPS-induced TUNEL-positive Leydig cells were significantly decreased by ADM pretreatment, a result further confirmed by decreased DNA fragmentation. ADM pretreatment decreased apoptosis by significantly promoting Bcl-2 and inhibiting Bax, caspase-3, and PARP expressions. The LPS activity that reduced p-Akt level was significantly inhibited by ADM pretreatment. ADM protected rat Leydig cells from LPS-induced inflammation and apoptosis, which might be associated with PI3K/Akt mitochondrial signaling pathway. PMID:27212810

  5. Time-Course Changes of Steroidogenic Gene Expression and Steroidogenesis of Rat Leydig Cells after Acute Immobilization Stress

    PubMed Central

    Lin, Han; Yuan, Kai-ming; Zhou, Hong-yu; Bu, Tiao; Su, Huina; Liu, Shiwen; Zhu, Qiqi; Wang, Yiyan; Hu, Yuanyuan; Shan, Yuanyuan; Lian, Qing-quan; Wu, Xiao-yun; Ge, Ren-shan

    2014-01-01

    Leydig cells secrete testosterone, which is essential for male fertility and reproductive health. Stress increases the secretion of glucocorticoid (corticosterone, CORT; in rats), which decreases circulating testosterone levels in part through a direct action by binding to the glucocorticoid receptors (NR3C1) in Leydig cells. The intratesticular CORT level is dependent on oxidative inactivation of glucocorticoid by 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) in Leydig cells. In the present study, we investigated the time-course changes of steroidogenic gene expression levels after acute immobilization stress in rats. The plasma CORT levels were significantly increased 0.5, 1, 3 and 6 h after immobilization stress, while plasma testosterone levels were significantly reduced 3 and 6 h, after stress and luteinizing hormone (LH) did not change. Immobilization stress caused the down-regulation of Scarb1, Star and Cyp17a1 expression levels in the rat testis starting at the first hour of stress, ahead of the significant decreases of plasma testosterone levels. Other mRNA levels, including Cyp11a1, Hsd3b1 and Hsd17b3, began to decline after 3 h. Hsd11b1 and Nos2 mRNA levels did not change during the course of stress. Administration of glucocorticoid antagonist RU486 significantly restored plasma testosterone levels. In conclusion, Scarb1, Star and Cyp17a1 expression levels are more sensitive to acute stress, and acute immobilization stress causes the decline of the steroidogenic pathway via elevating the levels of glucocorticoid, which binds to NR3C1 in Leydig cells to inhibit steroidogenic gene expression. PMID:25405735

  6. The opposite roles of glucocorticoid and α1-adrenergic receptors in stress triggered apoptosis of rat Leydig cells.

    PubMed

    Andric, Silvana A; Kojic, Zvezdana; Bjelic, Maja M; Mihajlovic, Aleksandar I; Baburski, Aleksandar Z; Sokanovic, Srdjan J; Janjic, Marija M; Stojkov, Natasa J; Stojilkovic, Stanko S; Kostic, Tatjana S

    2013-01-01

    The stress-induced initiation of proapoptotic signaling in Leydig cells is relatively well defined, but the duration of this signaling and the mechanism(s) involved in opposing the stress responses have not been addressed. In this study, immobilization stress (IMO) was applied for 2 h daily, and animals were euthanized immediately after the first (IMO1), second (IMO2), and 10th (IMO10) sessions. In IMO1 and IMO2 rats, serum corticosterone and adrenaline were elevated, whereas serum androgens and mRNA transcription of insulin-like factor-3 in Leydig cells were inhibited. Reduced oxygen consumption and the mitochondrial membrane potential coupled with a leak of cytochrome c from mitochondria and increased caspase-9 expression, caspase-3 activity, and number of apoptotic Leydig cells was also observed. Corticosterone and adrenaline were also elevated in IMO10 rats but were accompanied with a partial recovery of androgen secretion and normalization of insulin-like factor-3 transcription coupled with increased cytochrome c expression, abolition of proapoptotic signaling, and normalization of the apoptotic events. Blockade of intratesticular glucocorticoid receptors diminished proapoptotic effects without affecting antiapoptotic effects, whereas blockade of intratesticular α(1)-adrenergic receptors diminished the antiapoptotic effects without affecting proapoptotic effects. These results confirmed a critical role of glucocorticoids in mitochondria-dependent apoptosis and showed for the first time the relevance of stress-induced upregulation of α(1)-adrenergic receptor expression in cell apoptotic resistance to repetitive IMOs. The opposite role of two hormones in control of the apoptotic rate in Leydig cells also provides a rationale for a partial recovery of androgen production in chronically stressed animals.

  7. Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.

    PubMed

    Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun

    2014-12-15

    Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development.

  8. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    SciTech Connect

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  9. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) increases serum testosterone concentration and enhances steroidogenic ability of Leydig cells in male rats.

    PubMed

    Ohta, Y; Yoshida, K; Kamiya, S; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Ogawa, H; Tamada, H

    2016-04-01

    Although Lepidium meyenii (maca), a plant growing in Peru's central Andes, has been traditionally used for enhancing fertility and reproductive performance in domestic animals and human beings, effects of maca on reproductive organs are still unclear. This study examined whether feeding the hydroalcoholic extract powder of maca for 6 weeks affects weight of the reproductive organs, serum concentrations of testosterone and luteinising hormone (LH), number and cytoplasmic area of immunohistochemically stained Leydig cells, and steroidogenesis of cultured Leydig cells in 8-week-old male rats. Feeding the extract powder increased weight of seminal vesicles, serum testosterone level and cytoplasmic area of Leydig cells when compared with controls. Weight of prostate gland, serum LH concentration and number of Leydig cells were not affected by the maca treatment. The testosterone production by Leydig cells significantly increased when cultured with 22R-hydroxycholesterol or pregnenolone and tended to increase when cultured with hCG by feeding the extract powder. The results show that feeding the hydroalcoholic extract powder of maca for 6 weeks increases serum testosterone concentration associated with seminal vesicle stimulation in male rats, and this increase in testosterone level may be related to the enhanced ability of testosterone production by Leydig cells especially in the metabolic process following cholesterol. PMID:26174043

  10. Comparison of the Effects of Dibutyl and Monobutyl Phthalates on the Steroidogenesis of Rat Immature Leydig Cells

    PubMed Central

    Li, Linxi; Chen, Xiaomin; Hu, Guoxin; Wang, Sicong; Xu, Renai; Zhu, Qiqi; Li, Xiaoheng; Wang, Mingcang; Lian, Qing-Quan; Ge, Ren-Shan

    2016-01-01

    Dibutyl phthalate (DBP) is a widely used synthetic phthalic diester and monobutyl phthalate (MBP) is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05–50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes. PMID:27148549

  11. Comparison of the Effects of Dibutyl and Monobutyl Phthalates on the Steroidogenesis of Rat Immature Leydig Cells.

    PubMed

    Li, Linxi; Chen, Xiaomin; Hu, Guoxin; Wang, Sicong; Xu, Renai; Zhu, Qiqi; Li, Xiaoheng; Wang, Mingcang; Lian, Qing-Quan; Ge, Ren-Shan

    2016-01-01

    Dibutyl phthalate (DBP) is a widely used synthetic phthalic diester and monobutyl phthalate (MBP) is its main metabolite. DBP can be released into the environment and potentially disrupting mammalian male reproductive endocrine system. However, the potencies of DBP and MBP to inhibit Leydig cell steroidogenesis and their possible mechanisms are not clear. Immature Leydig cells isolated from rats were cultured with 0.05-50 μM DBP or MBP for 3 h in combination with testosterone synthesis regulator or intermediate. The concentrations of 5α-androstanediol and testosterone in the media were measured, and the mRNA levels of the androgen biosynthetic genes were detected by qPCR. The direct actions of DBP or MBP on CYP11A1, CYP17A1, SRD5A1, and AKR1C14 activities were measured. MBP inhibited androgen production by the immature Leydig cell at as low as 50 nM, while 50 μM was required for DBP to suppress its androgen production. MBP mainly downregulated Cyp11a1 and Hsd3b1 expression levels at 50 nM. However, 50 μM DBP downregulated Star, Hsd3b1, and Hsd17b3 expression levels and directly inhibited CYP11A1 and CYP17A1 activities. In conclusion, DBP is metabolized to more potent inhibitor MBP that downregulated the expression levels of some androgen biosynthetic enzymes. PMID:27148549

  12. The effects of opioid receptor antagonists suggest that testicular opiates regulate Sertoli and Leydig cell function in the neonatal rat.

    PubMed

    Gerendai, I; Shaha, C; Gunsalus, G L; Bardin, C W

    1986-05-01

    beta-Endorphin and other peptides derived from proopiomelanocortin are synthesized in testicular Leydig cells. To better understand the possible function of these and other endogenous opioid peptides in the testis, the opioid antagonists naloxone and nalmefene were administered intratesticularly to hemicastrated 5-day-old rats. Both naloxone and nalmefene potentiated testicular hypertrophy induced by unilateral orchidectomy at 11 days of age. Unexpectedly, at least a 100-fold lower dose of nalmefene was required to produce maximal hypertrophy than that previously reported for naloxone. Leydig and Sertoli cell functions were evaluated, respectively, by measurement of basal testosterone production in vitro and rat androgen-binding protein (rABP) in serum. The optimal dose of naloxone for hypertrophy (1 microgram/testis) suppressed testosterone production and had a nonuniform effect on rABP secretion (either had no effect or produced a slight increase). By contrast, the optimal dose of nalmefene for hypertrophy (0.01 microgram/testis) not only suppressed basal testosterone secretion, but also uniformly increased rABP levels in serum. Larger doses of this opioid antagonist, up to 1 microgram/testis, were not as effective on the three parameters measured (hypertrophy, testosterone secretion, and rABP levels). These results suggest that this agent has both antagonistic and agonistic activities in the testis. At the doses that produced optimal effects on hypertrophy, systemic administration of these antagonists produced no effects. The results of these studies suggest that intratesticular opiates exert a suppressive effect on Sertoli cell growth and rABP secretion. In addition, these peptides may modulate testosterone secretion by Leydig cells. PMID:3698906

  13. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells.

    PubMed

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. PMID:25447410

  14. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells.

    PubMed

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells.

  15. Do testicular opiates regulate Leydig cell function?

    PubMed

    Gerendai, I; Shaha, C; Thau, R; Bardin, C W

    1984-10-01

    beta-Endorphin is believed to be synthesized in testicular Leydig cells. To gain more information about the role of this and other endogenous opioid peptides in the testis, opiate antagonists (naloxone and nalmefene, 100 micrograms/testis) were administered intratesticularly to hemicastrated adult rats. Leydig cell function was evaluated by measurement of serum testosterone and testosterone production in vitro. Estimation of androgen binding protein (rABP) was used as an index of Sertoli cell function. Serum testosterone was reduced significantly by intratesticular administration of naloxone and nalmefene in treated animals. Systemic administration of these antagonists had no effect at the doses used. Testes from treated animals incubated in vitro with or without hCG produced significantly less testosterone than vehicle-treated control testes. Hemicastration reduced rABP synthesis and secretion; however, treatment with opiate antagonists did not alter the amount of this protein in the serum or epididymides of these rats. These observations suggest that endogenous testicular opiates modulate testosterone secretion by Leydig cells. PMID:6541122

  16. Arachidonic acid is involved in the regulation of hCG induced steroidogenesis in rat Leydig cells

    SciTech Connect

    Didolkar, A.K.; Sundaram, K.

    1987-07-27

    Phospholipase C (PLC), an enzyme involved in the hydrolysis of membrane phospholipid- phosphatidylinositol-bisphosphate to insositol triphosphate and diacylglycerol, and Phorbol 12, myristate 13, acetate (PMA) could significantly stimulate testosterone (T) secretion from Leydig cells. Arachidonic acid (AA) stimulated T secretion by about 2 fold. The steroidogenic effect of PLC and AA was biphasic. At low concentrations both PLC and AA augmented hCG induced T secretion, while at higher concentrations they inhibited steroid production. AA also had a biphasic effect on hCG induced cyclic AMP secretion. 5,8,11,14 Eicosatetrayenoic acid, a general inhibitor of AA metabolism, and Nordihydroguaiaretic acid, an inhibitor of the lipoxygenase pathway of AA metabolism, inhibited hCG induced T secretion while indomethacin, an inhibitor of cyclo-oxygenase pathway, had no effect on hCG induced T secretion. The authors conclude from these data that AA plays a role in the regulation of hCG induced steroidogenic responses in rat Leydig cells and that the metabolite(s) of AA that are involved are not cyclo-oxygenase products. 28 references, 4 figures, 2 tables.

  17. Nuclear Morphometric Analysis of Leydig Cells of Male Pubertal Rats Exposed In Utero to Di(n-butyl) Phthalate

    PubMed Central

    Wakui, Shin; Motohashi, Masaya; Satoh, Takemi; Shirai, Masaru; Mutou, Tomoko; Takahashi, Hiroyuki; Wempe, Michael F.; Endou, Hitoshi; Inomata, Tomoo; Asari, Masao

    2013-01-01

    We recently reported that prenatal rat exposure to di(n-butyl) phthalate (DBP) induced Leydig cell (LC) hyperplasia after nine weeks (wks) of age, yet the number of LCs was similar to that of the vehicle group until seven weeks. Nuclear pleomorphism of hyperplastic LCs is common and is considered to be continuous progressive degeneration. Thus, computer-assisted image cell nuclear analysis of LCs was performed on 5- and 7-wk-old Sprague-Dawley (SD) rats whose dams had been administered DBP (i.g.) at 100 mg/kg/day or vehicle (corn oil) on gestation day 12 to 21. The results of the 5-wk-old DBP group were similar to those of the vehicle group; LC nuclei of the 7-wk-old DBP group showed normal ploidy and similar amounts of DNA. However, the size, elongation and peripheral chromatin aggregation parameters were significantly higher, and the reticular chromatin distribution and isolated chromatin aggregation parameters were significantly lower compared with the vehicle group. The present study quantitatively demonstrated nuclear morphological alterations in rat LCs at 7 wks old (puberty) due to the prenatal DBP administration before apparent LC hyperplasia developed. PMID:24526819

  18. Lansoprazole increases testosterone metabolism and clearance in male Sprague-Dawley rats: implications for Leydig cell carcinogenesis.

    PubMed

    Coulson, Michelle; Gibson, G Gordon; Plant, Nick; Hammond, Tim; Graham, Mark

    2003-10-15

    Leydig cell tumours (LCTs) are frequently observed during rodent carcinogenicity studies, however, the significance of this effect to humans remains a matter of debate. Many chemicals that produce LCTs also induce hepatic cytochromes P450 (CYPs), but it is unknown whether these two phenomena are causally related. Our aim was to investigate the existence of a liver-testis axis wherein microsomal enzyme inducers enhance testosterone metabolic clearance, resulting in a drop in circulating hormone levels and a consequent hypertrophic response from the hypothalamic-pituitary-testis axis. Lansoprazole was selected as the model compound as it induces hepatic CYPs and produces LCTs in rats. Male Sprague-Dawley rats were dosed with lansoprazole (150 mg/kg/day) or vehicle for 14 days. Lansoprazole treatment produced effects on the liver consistent with an enhanced metabolic capacity, including significant increases in relative liver weights, total microsomal CYP content, individual CYP protein levels, and enhanced CYP-dependent testosterone metabolism in vitro. Following intravenous administration of [14C]testosterone, lansoprazole-treated rats exhibited a significantly smaller area under the curve and significantly higher plasma clearance. Significant reductions in plasma and testicular testosterone levels were observed, confirming the ability of this compound to perturb androgen homeostasis. No significant changes in plasma LH, FSH, or prolactin levels were detected under our experimental conditions. Lansoprazole treatment exerted no marked effects on testicular testosterone metabolism. In summary, lansoprazole treatment induced hepatic CYP-dependent testosterone metabolism in vitro and enhanced plasma clearance of radiolabelled testosterone in vivo. These effects may contribute to depletion of circulating testosterone levels and hence play a role in the mode of LCT induction in lansoprazole-treated rats.

  19. Protection of Quercetin against Triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells.

    PubMed

    Hu, Jie; Yu, Qinwei; Zhao, Fang; Ji, Jinzi; Jiang, Zhenzhou; Chen, Xin; Gao, Peng; Ren, Yuran; Shao, Shuai; Zhang, Luyong; Yan, Ming

    2015-10-01

    Triptolide (TP) is a diterpene triepoxide with variety biological activities, such as anti-inflammatory, anti-cancerogenic, immunomodulatory and pro-apoptotic activities. However, its clinical application was limited by potential toxicity. Quercetin (Que) is a member of flavonoids with anti-oxidant effects. In this study, we aimed to demonstrate the protective effect of Que in TP-induced oxidative stress and decrease of testosterone generation in reproductive damage. Leydig cells were treated with TP (20, 40 and 60 nM), which caused obvious oxidative stress increasing intracellular ROS, decreasing activities and expressions of GPx and SOD. Apoptosis was resulted from depolarization of mitochondrial membrane potential (ΔΨm) and release of cytochrome C (Cyt-C) showing increase of BAX/Bcl-2 ratio, caspase-3 and caspase-9. Treatment of Que (5 μM) prior to triptolide could restore all the TP-induced alteration in a certain dose range indicating that the oxidative stress might be one reason of TP-induced reproductive toxic effect. These results suggest that the compatibility with Que might reduce the TP-induced reproductive toxicity, which provide a probability to extend the usage of TP. PMID:26277538

  20. Involvement of nitric oxide synthase in the mechanism of histamine-induced inhibition of Leydig cell steroidogenesis via histamine receptor subtypes in Sprague-Dawley rats.

    PubMed

    Mondillo, Carolina; Pagotto, Romina María; Piotrkowski, Bárbara; Reche, Cecilia Gabriela; Patrignani, Zoraida Judith; Cymeryng, Cora Beatriz; Pignataro, Omar Pedro

    2009-01-01

    This study was conducted to shed light on the so far unexplored intracellular mechanisms underlying negative modulation of Leydig cell steroidogenesis by histamine (HA). Using the MA-10 cell line and highly purified rat Leydig cells as experimental models, we examined the effect of the amine on biochemical steps known to be modulated by HA or involved in LH/hCG action. In agreement with previous findings, HA at 10 microM showed a potent inhibitory effect on hCG-stimulated steroid synthesis, regardless of the gonadotropin concentration used. Moreover, HA decreased not only LH/hCG-induced cAMP production but also steroid synthesis stimulated by the permeable cAMP analog dibutyryl cAMP (db-cAMP). Considering the post-cAMP sites of HA action, it is shown herein that HA markedly inhibited db-cAMP-stimulated steroidogenic acute regulatory (STAR) protein expression, as well as steps catalyzed by P450-dependent enzymes, mainly the conversion of cholesterol to pregnenolone by cholesterol side-chain cleavage enzyme (CYP11A). The antisteroidogenic action of HA was blocked by addition of the phospholipase C (PLC) inhibitor U73122, and HA significantly augmented inositol triphosphate (IP3) production, suggesting a major role for the PLC/IP3 pathway in HA-induced inhibition of Leydig cell function. Finally, HA increased nitric oxide synthase (NOS) activity, and the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) markedly attenuated the effect of the amine on steroid synthesis. On the basis of our findings, HA antagonizes the gonadotropin action in Leydig cells at steps before and after cAMP formation. NOS activation is the main intracellular mechanism by which HA exerts its antisteroidogenic effects. PMID:18768916

  1. Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production.

    PubMed

    Ronco, A M; Moraga, P F; Llanos, M N

    2002-01-01

    We have previously demonstrated that the release of arachidonic acid (AA) from human chorionic gonadotropin (hCG)-stimulated Leydig cells occurs in a dose- and time-dependent manner. In addition, the amount of AA released was dependent on the hormone-receptor interaction and the concentration of LH-hCG binding sites on the cell surface. The present study was conducted to evaluate the involvement of phospholipase A(2) (PLA(2)) and G proteins in AA release from hormonally stimulated rat Leydig cells, and the possible role of this fatty acid in cAMP production. Cells were first prelabelled with [(14)C]AA to incorporate the fatty acid into cell phospholipids, and then treated in different ways to evaluate AA release. hCG (25 mIU) increased the release of AA to 180+/-12% when compared with AA released from control cells, arbitrarily set as 100%. Mepacrine and parabromophenacyl bromide (pBpB), two PLA(2) inhibitors, decreased the hormone-stimulated AA release to 85+/-9 and 70+/-24% respectively. Conversely, melittin, a PLA(2) stimulator, increased the release of AA up to 200% over control. The inhibitory effect of mepacrine on the release of AA was evident in hCG-treated Leydig cells, but not in the melittin-treated cells. To determine if the release of AA was also mediated through a G protein, cells were first permeabilized and subsequently treated with pertussis toxin or GTPgammaS, a non-hydrolyzable analog of GTP. Results demonstrate that GTPgammaS was able to induce a similar level of the release of AA as hCG. In addition, pertussis toxin completely abolished the stimulatory effect of hCG on the release of AA, indicating that a member of the G(i) family was involved in the hCG-dependent release of AA. Cells treated with PLA(2) inhibitors did not modify cAMP production, but exogenously added AA significantly reduced cAMP production from hCG-treated Leydig cells, in a manner dependent on the concentration of AA and hCG. Results presented here suggest an involvement of

  2. Statin Drugs Markedly Inhibit Testosterone Production by Rat Leydig Cells In Vitro: Implications for Men

    EPA Science Inventory

    Statin drugs lower blood cholesterol by inhibiting hepatic 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase. During drug development it was shown that statins inhibit production of cholesterol in the testis. We evaluated testosterone production in vitro, using highly purified rat ...

  3. Stimulation of cholesterol side-chain cleavage by a luteinizing-hormone-releasing hormone (luliberin) agonist (ICI 118630) in rat Leydig cells.

    PubMed Central

    Sullivan, M H; Cooke, B A

    1983-01-01

    The action of a luliberin (luteinizing-hormone-releasing hormone) agonist (ICI 118630) and lutropin (luteinizing hormone) on the activity of the cytochrome P-450 cholesterol side-chain cleavage enzyme in rat Leydig cells has been investigated. This has been carried out by studying the metabolism of exogenous (22R)-22- and 25-hydroxycholesterol to testosterone. It was found that both hydroxycholesterols increased testosterone production to higher levels than achieved by lutropin alone. Addition of luliberin agonist but not lutropin was found to increase further the metabolism of the hydroxycholesterol to testosterone; this occurred in the presence of saturating and subsaturating levels of the hydroxycholesterols. This effect of luliberin agonist was potentiated in the presence of lutropin. The protein synthesis inhibitor, cycloheximide, inhibited the luliberin agonist-induced stimulation of the hydroxycholesterol metabolism. At low calcium levels (1.1 microM), testosterone production was increased by addition of (22R)-22-hydroxycholesterol but the luliberin agonist effect was negated. The calmodulin inhibitor trifluoperazine inhibited (22R)-22-hydroxycholesterol-stimulated steroidogenesis and negated the luliberin agonist effect. These results indicate that luliberin agonist specifically increases the synthesis of the cytochrome P-450 cholesterol side-chain cleavage enzyme in rat testis Leydig cells. PMID:6230077

  4. PURIFICATION OF RAT LEYDIG CELLS: INCREASED YIELDS AFTER UNIT-GRAVITY SEDIMENTATION OF COLLAGENASE-DISPERSED INTERSTITIAL CELLS

    EPA Science Inventory

    Abstract

    Procedures for purification of Leydig cells have facilitated studies of their regulatory biology. A multistep procedure, that includes a filtration with nylon mesh (100 micron pore size) to separate interstitial cells from the seminiferous tubules, combining centr...

  5. Naltrexone normalizes the suppression but not the surge of delta 5-3 beta-hydroxysteroid dehydrogenase activity in Leydig cells of stressed rat fetuses.

    PubMed

    Ward, I L; Ward, O B; Hayden, T; Weisz, J; Orth, J M

    1990-07-01

    Rat fetuses from mothers stressed chronically by immobilization and high intensity illumination beginning on day 14 of gestation have higher than normal levels of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta HSD) activity in Leydig cells on day 17 of gestation and lower than normal levels on days 18 and 19. Plasma testosterone titers in normal and stressed male fetuses closely parallel the activity of 3 beta HSD in fetal Leydig cells. In the present study quantitative cytochemistry was used to determine whether the stress-induced alterations in 3 beta HSD activity could be prevented by treating the mother with naltrexone, an opioid receptor blocker, before each stress session. Naltrexone normalized 3 beta HSD activity on days 18 and 19 of gestation, suggesting that the stress-induced suppression involves the endogenous opioid system. In contrast, naltrexone did not prevent the elevation in enzyme activity seen on day 17 in stressed fetuses. The persistence of a stress-induced surge on day 17, in spite of naltrexone therapy, suggests that some nonopioid mechanism is operational at that time. PMID:2361487

  6. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes.

    PubMed

    Shima, Yuichi; Miyabayashi, Kanako; Haraguchi, Shogo; Arakawa, Tatsuhiko; Otake, Hiroyuki; Baba, Takashi; Matsuzaki, Sawako; Shishido, Yurina; Akiyama, Haruhiko; Tachibana, Taro; Tsutsui, Kazuyoshi; Morohashi, Ken-ichirou

    2013-01-01

    Testosterone is a final product of androgenic hormone biosynthesis, and Leydig cells are known to be the primary source of androgens. In the mammalian testis, two distinct populations of Leydig cells, the fetal and the adult Leydig cells, develop sequentially, and these two cell types differ both morphologically and functionally. It is well known that the adult Leydig cells maintain male reproductive function by producing testosterone. However, it has been controversial whether fetal Leydig cells can produce testosterone, and the synthetic pathway of testosterone in the fetal testis is not fully understood. In the present study, we generated transgenic mice in which enhanced green fluorescence protein was expressed under the control of a fetal Leydig cell-specific enhancer of the Ad4BP/SF-1 (Nr5a1) gene. The transgene construct was prepared by mutating the LIM homeodomain transcription factor (LHX9)-binding sequence in the promoter, which abolished promoter activity in the undifferentiated testicular cells. These transgenic mice were used to collect highly pure fetal Leydig cells. Gene expression and steroidogenic enzyme activities in the fetal Leydig cells as well as in the fetal Sertoli cells and adult Leydig cells were analyzed. Our results revealed that the fetal Leydig cells synthesize only androstenedione because they lack expression of Hsd17b3, and fetal Sertoli cells convert androstenedione to testosterone, whereas adult Leydig cells synthesize testosterone by themselves. The current study demonstrated that both Leydig and Sertoli cells are required for testosterone synthesis in the mouse fetal testis. PMID:23125070

  7. Age and markers of Leydig cell function, but not of Sertoli cell function predict the success of sperm retrieval in adolescents and adults with Klinefelter's syndrome.

    PubMed

    Rohayem, J; Fricke, R; Czeloth, K; Mallidis, C; Wistuba, J; Krallmann, C; Zitzmann, M; Kliesch, S

    2015-09-01

    Microsurgical testicular sperm extraction (mTESE), combined with intracytoplasmic sperm injection (ICSI) represents a chance for azoospermic men with Klinefelter's syndrome (KS) to father children. The objective of this study was to identify predictive factors for the success of mTESE from adolescents and adults with KS. The clinical data of 50 late pubertal adolescents (13-19 years) and 85 adult patients (20-61 years) with non-mosaic KS, who underwent mTESE, were analysed with respect to factors, potentially predictive of active spermatogenesis; specifically a history of cryptorchidism, age, testicular volumes, serum levels of LH, FSH, testosterone (T) and estradiol at the time of surgery. Inhibin B, AMH and INSL3 were additionally analysed in the adolescents. A younger age and a near-compensated Leydig cell function were associated with higher success of sperm retrieval via mTESE: In adolescents ≥15-19 years, spermatozoa were retrieved in 45%, compared to 31% in adults; in adolescents aged 13-14 years, spermatozoa were collected in only 10%. Adolescents with an LH ≤17.5 U/L, along with a T level ≥7.5 nmol/L had the best success rate (54%), which fell to 44% with higher LH, whereas those with low T (<7.5 nmol/L), irrespective of LH had no sperm retrieval. In adults with T levels above and LH below these thresholds, the success rate was 51%, falling to 19%, if LH was higher. When T was lower than threshold, the rate was 17%. No association between testicular volumes, serum levels of FSH, Inhibin B, AMH, estradiol and mTESE success was found. A history of cryptorchidism was associated with lower retrieval rates. A window of opportunity for an approximate 50% chance to retrieve spermatozoa via mTESE exists for young, late pubertal KS patients between age 15 and young adulthood, when Leydig cell function is at its best. In these cases, referral to a centre of expertise should be considered.

  8. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men

    PubMed Central

    O’Hara, Laura; McInnes, Kerry; Simitsidellis, Ioannis; Morgan, Stephanie; Atanassova, Nina; Slowikowska-Hilczer, Jolanta; Kula, Krzysztof; Szarras-Czapnik, Maria; Milne, Laura; Mitchell, Rod T.; Smith, Lee B.

    2015-01-01

    Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. PMID:25404712

  9. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging.

  10. Male Sprague-Dawley rats exposed to in utero di(n-butyl) phthalate: dose dependent and age-related morphological changes in Leydig cell smooth endoplasmic reticulum.

    PubMed

    Shirai, Masaru; Wakui, Shin; Wempe, Michael F; Mutou, Tomoko; Oyama, Noriko; Motohashi, Masaya; Takahashi, Hiroyuki; Kansaku, Norio; Asari, Masao; Hano, Hiroshi; Endou, Hitoshi

    2013-01-01

    When 100 mg/kg/day of di(n-butyl) phthalate (DBP) was intragastrically administered to pregnant Sprague-Dawley rats throughout gestation days 12 to 21, the male pups had similar body weights with no apparent physical differences (e.g., litter size, sex ratio) compared to that of the vehicle group. However, prominent age-related morphological alterations in the smooth endoplasmic reticulum (sER) of testicular Leydig cells (LCs) were observed once these animals reached puberty. At weeks 5 to 7, the abundant sER with non-dilated cisternae was distributed in LCs. Subsequently, although the number of LCs significantly increased, the amount of sER was significantly decreased at 9 to 14 weeks of age and had disappeared at 17 weeks. In contrast, the number of LCs and the amount of sER in LCs of the lower dose groups (10, 30, and 50 mg/kg/day) were similar to those of the vehicle group. Further, serum testosterone levels in the 100 mg/kg dose group were significantly lower during 5 to 17 weeks of age. While their luteinizing hormone (LH) level was significantly lower at 5 to 7 weeks of age, it became significantly higher during 9 to 17 weeks. The amount of sER in LCs decreased with age with the increase in LCs proliferation and serum LH levels in rat exposed in utero to DBP in a dose-dependent manner.

  11. Steroidogenesis in amlodipine treated purified Leydig cells

    SciTech Connect

    Latif, Rabia; Lodhi, Ghulam Mustafa; Hameed, Waqas; Aslam, Muhammad

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  12. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.

    PubMed

    Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Su, Zhijian; Zhang, Qihao; Ou, Shiyi; Huang, Yadong

    2013-10-16

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been shown to impede the male reproductive function. However, its mechanism of action remains to be elucidated. In this study, the effects of 3-MCPD on progesterone production were investigated using R2C Leydig cells. 3-MCPD caused concentration-dependent inhibition of cell viability at the IC25, IC50, and IC75 levels of 1.027, 1.802, and 3.160 mM, respectively. Single cell gel/comet assay and atomic force microscopy assay showed that 3-MCPD significantly induced early apoptosis. In addition, 3-MCPD significantly reduced progesterone production by reducing the expression of cytochrome P450 side-chain cleavage enzyme, steroidogenic acute regulatory protein, and 3β-hydroxysteroid dehydrogenase in R2C cells. The change in steroidogenic acute regulatory protein expression was highly consistent with progesterone production. Furthermore, the mitochondrial membrane potential and cAMP significantly decreased. PMID:24040863

  13. Influence of long-term dietary administration of procymidone, a fungicide with anti-androgenic effects, or the phytoestrogen genistein to rats on the pituitary-gonadal axis and Leydig cell steroidogenesis.

    PubMed

    Svechnikov, K; Supornsilchai, V; Strand, M-L; Wahlgren, A; Seidlova-Wuttke, D; Wuttke, W; Söder, O

    2005-10-01

    Procymidone is a fungicide with anti-androgenic properties, widely used to protect fruits from fungal infection. Thereby it contaminates fruit products prepared for human consumption. Genistein-containing soy products are increasingly used as food additives with health-promoting properties. Therefore we examined the effects of long-term dietary administration (3 months) of the anti-androgen procymidone (26.4 mg/animal per day) or the phytoestrogen genistein (21.1 mg/animal per day) to rats on the pituitary-gonadal axis in vivo, as well as on Leydig cell steroidogenesis and on spermatogenesis ex vivo. The procymidone-containing diet elevated serum levels of LH and testosterone and, furthermore, Leydig cells isolated from procymidone-treated animals displayed an enhanced capacity for producing testosterone in response to stimulation by hCG or dibutyryl cAMP, as well as elevated expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450 scc) and cytochrome P450 17alpha (P450c17). In contrast, the rate of DNA synthesis during stages VIII and IX of spermatogenesis in segments of seminiferous tubules isolated from genistein-treated rats was decreased without accompanying changes in the serum level of either LH or testosterone. Nonetheless, genistein did suppress the ex vivo steroidogenic response of Leydig cells to hCG or dibutyryl cAMP by down-regulating their expression of P450 scc. Considered together, our present findings demonstrate that long-term dietary administration of procymidone or genistein to rats exerts different effects on the pituitary-gonadal axis in vivo and on Leydig cell steroidogenesis ex vivo. Possibly as a result of disruption of hormonal feedback control due to its anti-androgenic action, procymidone activates this endocrine axis, thereby causing hyper-gonadotropic activation of testicular steroidogenesis. In contrast, genistein influences spermatogenesis and significantly inhibits Leydig cell

  14. Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro

    PubMed Central

    Teerds, Katja J; van Dissel-Emiliani, Federica MF; De Miguel, Maria P; de Boer-Brouwer, Mieke; Körting, Lina M; Rijntjes, Eddy

    2007-01-01

    Background The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential. Oncostatin M (OSM) is a multifunctional cytokine and member of the interleukin (IL)-6 family that also includes other cytokines such as LIF. In the rat OSM is highly expressed in the late fetal and neonatal testis, and may thus be a candidate factor involved in Leydig cell progenitor formation. Methods Interstitial cells were isolated from 13-day-old rat testes and cultured for 1, 3 or 8 days in the presence of different doses of OSM (range: 0.01 to 10 ng/ml) alone or in combination with LH (1 ng/ml). The effects of OSM and LH on cell proliferation were determined by incubating the cultures with [3H]thymidine or bromodeoxyuridine (BrdU). Developing progenitor cells were identified histochemically by the presence of the marker enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Results OSM, when added at a dose of 10 ng/ml, caused a nearly 2-fold increase in the percentage of Leydig cell progenitors after 8 days of culture. Immunohistochemical double labelling experiments with 3beta-HSD and BrdU antibodies showed that this increase was the result of differentiation of stem Leydig cells/precursor cells and not caused by proliferation of progenitor cells themselves. The addition of LH to the cultures consistently resulted in an increase in progenitor formation throughout the culture period. Surprisingly, when OSM and LH were added together, the LH induced rise in progenitor cells was significantly inhibited after 3 and 8 days of culture. Conclusion Taken together, the results of the present study suggest that locally produced OSM

  15. The functional development of Leydig cells in a marsupial

    PubMed Central

    Butler, Christopher M; Shaw, Geoff; Clark, Joan; Renfree, Marilyn B

    2008-01-01

    Leydig cells are the major source of androgen in the male mammal. We describe here for the first time the development of the Leydig cell in a macropodid marsupial, the tammar wallaby, Macropus eugenii. Leydig cells are first recognized morphologically 2 days after birth with the appearance of lipid droplets in the cytoplasm of certain interstitial cells. Lipid content closely matches the steroid content of the developing testis and marks the maturation of the steroid synthesis pathway in the tammar testis. Morphologically mature Leydig cells, marked by distinct mitochondria with tubular cristae and an extensive anastomosing network of smooth endoplasmic reticulum, are developed by day 10 after birth – the time of peak testosterone content in perinatal tammar testes. The volume percentage of each cell type in the testis does not change over time so the growth of each cellular component keeps pace with growth of the whole testis. There was no morphological or quantitative evidence of a change from one population of Leydig cells to another in the tammar testis as has been reported in several other species including the rat, mouse and human. Maturation of the testis is also marked by the development of tight junctions between the cell membranes of adjacent Sertoli cells. These appear around day 30 after birth and coincide with the onset of mitotic arrest in male germ cells. Overall, the development of the Leydig cell in the tammar wallaby follows a similar pattern to that seen in other mammals, although the start of Leydig cell differentiation is, like many other organ systems in marsupials, post natal, not fetal and there appears to be only a single population of Leydig cells. PMID:18069991

  16. The functional development of Leydig cells in a marsupial.

    PubMed

    Butler, Christopher M; Shaw, Geoff; Clark, Joan; Renfree, Marilyn B

    2008-01-01

    Leydig cells are the major source of androgen in the male mammal. We describe here for the first time the development of the Leydig cell in a macropodid marsupial, the tammar wallaby, Macropus eugenii. Leydig cells are first recognized morphologically 2 days after birth with the appearance of lipid droplets in the cytoplasm of certain interstitial cells. Lipid content closely matches the steroid content of the developing testis and marks the maturation of the steroid synthesis pathway in the tammar testis. Morphologically mature Leydig cells, marked by distinct mitochondria with tubular cristae and an extensive anastomosing network of smooth endoplasmic reticulum, are developed by day 10 after birth - the time of peak testosterone content in perinatal tammar testes. The volume percentage of each cell type in the testis does not change over time so the growth of each cellular component keeps pace with growth of the whole testis. There was no morphological or quantitative evidence of a change from one population of Leydig cells to another in the tammar testis as has been reported in several other species including the rat, mouse and human. Maturation of the testis is also marked by the development of tight junctions between the cell membranes of adjacent Sertoli cells. These appear around day 30 after birth and coincide with the onset of mitotic arrest in male germ cells. Overall, the development of the Leydig cell in the tammar wallaby follows a similar pattern to that seen in other mammals, although the start of Leydig cell differentiation is, like many other organ systems in marsupials, post natal, not fetal and there appears to be only a single population of Leydig cells.

  17. Leydig cell tumours in childhood.

    PubMed

    Mengel, W; Knorr, D

    1983-01-01

    Two cases of Leydig cell tumours in childhood are presented. In one case, delayed diagnosis and operation led to pubertas praecox vera whereas in the other case normal growth and development occurred after early diagnosis and operation. PMID:6878724

  18. 4-Nitrophenol induces Leydig cells hyperplasia, which may contribute to the differential modulation of the androgen receptor and estrogen receptor-α and -β expression in male rat testes.

    PubMed

    Zhang, Yonghui; Piao, Yuanguo; Li, Yansen; Song, Meiyan; Tang, Pingli; Li, Chunmei

    2013-11-25

    4-Nitrophenol (PNP) is generally regarded as an environmental endocrine disruptor capable of estrogenic and anti-androgenic activities. To investigate PNP-induced reproductive effects, immature male rats were injected subcutaneously with PNP (0.1, 1, 10mg/kg body weight or vehicle) daily for 4 weeks. We assessed reproductive tract alterations, sex hormone balance in the serum and estrogen receptor (ER)-α, -β and androgen receptor (AR) expression in testes. Although no significant difference was observed in body weight or testes weights of PNP-treated rats compared with the controls, the serum concentrations of testosterone in the 10mg/kg PNP-treated group were significantly elevated. This effect was accompanied by Leydig cells hyperplasia in the testes. Conversely, there was a significant decrease in estradiol concentration and aromatase expression in the testes of the 10mg/kg PNP-treated group. Furthermore, we observed a significant increase in ERα expression in the testes of the 10mg/kg PNP-treated group compared with the control group. Conversely, ERβ expression displayed a significant reduction. Moreover, AR expression was significantly increased in the 10mg/kg PNP-treated group compared with the control group. The existence of AR, ER-α and -β in the testes suggests that estradiol and testosterone directly affect germ cells and that differential modulation of AR, ER-α and -β in the testis may be involved in the direct effects of PNP or either the indirect effects of PNP-induced disruption of the estradiol-to-testosterone balance or the Leydig cells hyperplasia. Thus, the measurement of many endpoints is necessary for good risk assessment.

  19. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death

    PubMed Central

    Morgan, Jessica A.; Lynch, John; Panetta, John C.; Wang, Yao; Frase, Sharon; Bao, Ju; Zheng, Jie; Opferman, Joseph T.; Janke, Laura; Green, Daniel M.; Chemaitilly, Wassim; Schuetz, John D.

    2015-01-01

    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer. PMID:26576726

  20. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells.

    PubMed

    Stojkov, Natasa J; Janjic, Marija M; Bjelic, Maja M; Mihajlovic, Aleksandar I; Kostic, Tatjana S; Andric, Silvana A

    2012-05-01

    This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17α-hydroxylase/17,20 lyase), and Hsd17b3 (17β-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells. In the same cells, the transcription of adenylyl cyclases (Adcy7, Adcy9, Adcy10) and cAMP-specific phosphodiesterases (Pde4a, Pde4b, Pde4d, Pde7a, Pde8a) was stimulated, whereas the expression of the genes encoding protein kinase A subunits were unaffected. Ten times repeated IMO increased the levels of all adrenergic receptors and β-adrenergic receptor kinase (Adrbk1) in Leydig cells. The transcription analysis was supported by cAMP/testosterone production. In this signaling scenario, partial recovery of testosterone production in medium/content was detected. The physiological significance of the present results was proven by ex vivo application of epinephrine, which increased cAMP/testosterone production by Leydig cells from control rats in greater fashion than from stressed. IMO did not affect the expression of transcripts for Crhr1/Crhr2 (corticotropin releasing hormone receptors), Acthr (adrenocorticotropin releasing hormone receptor), Gr (glucocorticoid receptor), and Hsd11b1 [hydroxysteroid (11-β) dehydrogenase 1], while all types of IMO stimulated the expression of Hsd11b2, the unidirectional oxidase with high affinity to inactivate

  1. Sodium metabisulfite-induced changes on testes, spermatogenesis and epididymal morphometric values in adult rats

    PubMed Central

    Shekarforoush, Shahnaz; Ebrahimi, Zahra; Hoseini, Maryam

    2015-01-01

    Background: Sulphites are widely used as a preservative and antioxidant additives in the food and pharmaceutical industries. Many types of biological and toxicological effects of sulphites in multiple organs of mammals have been shown in previous studies. Objective: The aim of this study was to investigate the effects of sodium metabisulfite (SMB) on testicular function and morphometric values of epididymis in adult male Wistar rats. Materials and Methods: A total of 32 rats were randomly divided into four groups. The experimental groups received SMB at doses of 10 mg/kg (S10), 100mg/kg (S100), and 260 mg/kg (S260) while an equal volume of normal saline was administered to the control group via gavage. The rats were anaesthetized after 28 days and the left testis with the head of epididimis was excised following abdominal incision for histological observation using hematoxylin and eosin staining. Serum samples were collected for assay of testosterone level. The initial epididymis was analyzed for motility, morphology, and the number of sperms. Result: The results of this study showed that normal morphology, count, and motility of sperms and testosterone level were decreased in the SMB treated groups. In comparison with the control group, SMB resulted in a lower total number of spermatogonia, primary spermatocyte, spermatids, and Leydig cells. Conclusion: It is suggested that SMB decreases the sperm production and has the potential to affect the fertility adversely in male rats. PMID:27141536

  2. Effects of opioid (tramadol) treatment on testicular functions in adult male rats: The role of nitric oxide and oxidative stress.

    PubMed

    Ahmed, Marwa A; Kurkar, Adel

    2014-04-01

    Nowadays, tramadol hydrochloride is frequently used as a pain reliever, and for the treatment of premature ejaculation. Decreased semen quality was noted in chronic tramadol users. The present study aimed to elucidate the effects of tramadol on the testicular functions of adult male rats. A total of 40 albino adult male rats were divided into control and tramadol groups, with 20 rats for each group. Rats of the tramadol group were subcutaneously injected with 40 mg/kg three times per week for 8 weeks. The control group received normal saline 0.9%. Blood samples from each animal were obtained. Plasma levels of different biochemical substances were determined. Nitric oxide was measured in testicular tissue samples. Those samples together with epididymal tissue samples were processed for histopathological examination. Tramadol significantly reduced plasma levels of luteinizing hormone, follicle-stimulating hormone, testosterone and total cholesterol, but elevated prolactin and estradiol levels compared with the control group. In addition, tramadol increased the testicular levels of nitric oxide and lipid peroxidation, and decreased the anti-oxidant enzymes activities significantly compared with the control group. The tramadol group showed decreased sperm count and motility, and numbers of primary spermatocytes, rounded spermatid and Leydig cells. Immunohistochemical examinations showed that tramadol increased the expression of endothelial nitric oxide synthase in testicular tissues. The present study showed that tramadol treatment affects the testicular function of adult male rats, and these effects might be through the overproduction of nitric oxide and oxidative stress induced by this drug.

  3. Expression of functional leptin receptors in rodent Leydig cells.

    PubMed

    Caprio, M; Isidori, A M; Carta, A R; Moretti, C; Dufau, M L; Fabbri, A

    1999-11-01

    Several studies indicate that the size of body fat stores and the circulating levels of the adipocyte-derived hormone leptin are able to influence the activity of the hypothalamic-pituitary-gonadal axis. The leptin-hypothalamic-pituitary-gonadal interactions have been mainly studied at the level of the central nervous system. In this study, we investigated the possibility that leptin may have direct effects on the rodent Leydig cell function. To probe this hypothesis, we first analyzed the expression of leptin receptors (OB-R) in rodent Leydig cells in culture. RT-PCR studies showed that rat Leydig cells express both the long (OB-Rb) and short isoform (OB-Ra) of leptin receptor, whereas MLTC-1 cells (a murine Leydig tumor cell line) express only the long isoform. Short-term (30-90 min) incubation of rat Leydig cells with increasing concentrations ofleptin (2-500 ng/ml) led to a significant and dose-dependent inhibition of human (h)CG-stimulated testosterone (T) production (approximately 60% reduction, IC50 = 20 ng/ml) but no change in basal androgen release. Also, leptin (150 ng/ml) amplified hCG-induced intracellular cAMP formation (1- to 2-fold) without modifying basal cAMP levels. Subsequent experiments showed that leptin inhibited 8Br-cAMP-stimulated T production, indicating that leptin's effect is exerted beyond cAMP. The inhibitory effect of leptin on hCG-induced T secretion was accompanied by a significant reduction of androstenedione and a concomitant rise of the precursor metabolites pregnenolone, progesterone, and 17-OH-progesterone, conceivable with a leptin-induced lesion of 17,20 lyase activity. Separate experiments performed with the MLTC-1 cells (not expressing cytochrome P450-17alpha) showed that leptin, though amplifying hCG-stimulated cAMP production, did not modify hCG-stimulated pregnenolone and progesterone release. These results further indicate that leptin action on steroidogenesis occurs downstream of progesterone synthesis. Northern Blot

  4. Leydig cell aging and hypogonadism.

    PubMed

    Beattie, M C; Adekola, L; Papadopoulos, V; Chen, H; Zirkin, B R

    2015-08-01

    Leydig cell testosterone (T) production is reduced with age, resulting in reduced serum T levels (hypogonadism). A number of cellular changes have been identified in the steroidogenic pathway of aged Leydig cells that are associated with reduced T formation, including reductions in luteinizing hormone (LH)-stimulated cAMP production, the cholesterol transport proteins steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and downstream steroidogenic enzymes of the mitochondria and smooth endoplasmic reticulum. Many of the changes in steroid formation that characterize aged Leydig cells can be elicited by the experimental alteration of the redox environment of young cells, suggesting that changes in the intracellular redox balance may cause reduced T production. Hypogonadism is estimated to affect about 5 million American men, including both aged and young. This condition has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass, reduced bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Exogenous T administration is now used widely to elevate serum T levels in hypogonadal men and thus to treat symptoms of hypogonadism. However, recent evidence suggests that men who take exogenous T may face increased risk of stroke, heart attack, and prostate tumorigenesis. Moreover, it is well established that administered T can have suppressive effects on LH, resulting in lower Leydig cell T production, reduced intratesticular T concentration, and reduced spermatogenesis. This makes exogenous T administration inappropriate for men who wish to father children. There are promising new approaches to increase serum T by directly stimulating Leydig cell T production rather than by exogenous T therapy, thus potentially avoiding some of its negative consequences. PMID:25700847

  5. Male rats exposed in utero to di(n-butyl) phthalate: Age-related changes in Leydig cell smooth endoplasmic reticulum and testicular testosterone-biosynthesis enzymes/proteins.

    PubMed

    Motohashi, Masaya; Wempe, Michael F; Mutou, Tomoko; Takahashi, Hiroyuki; Kansaku, Norio; Ikegami, Masahiro; Inomata, Tomo; Asari, Masao; Wakui, Shin

    2016-01-01

    This study investigated the age-related (i.e., weeks 5, 7, 9, 14 and 17) morphological changes of Leydig cell smooth endoplasmic reticulum (LCs-ER) and testicular testosterone biosynthesis/protein expression in rats in utero exposed to di(n-butyl) phthalate (DBP) (intragastrically; 100mg/kg/day) on days 12-21 post-conception. Ultrastructural observations revealed the LCs-ER of the DBP group were non-dilated until peri-puberty, and thereafter decreased and disappeared. RT-PCR and Western blotting analyses revealed that StAR and P450scc levels in the DBP group were significantly lower at 5 and 7 weeks compared with the vehicle group but became similar during weeks 9-17. Although 3β-HSD, P450c17, and 17β-HSD levels of mRNA and protein in the DBP group were similar to the vehicle control group at 5 and 7 weeks of age, they were significantly lower during weeks 9-17. In utero DBP exposure results in age-related LCs-ER changes corresponding to reduction of testicular testosterone biosynthesis enzymes/associated proteins.

  6. Advantage of Guaraná (Paullinia cupana Mart.) supplementation on cadmium-induced damages in testis of adult Wistar rats.

    PubMed

    Leite, Rodrigo P; Predes, Fabrícia S; Monteiro, Juliana C; Freitas, Karine M; Wada, Ronaldo S; Dolder, Heidi

    2013-01-01

    Paullinia cupana is an Amazonian bush whose seeds have long been used in folk medicine. However, most of the therapeutic properties attributed to this plant are broad and nonspecific, although an antioxidant activity has been reported.  On the other hand, cadmium is a heavy metal known for increasing free radicals, hence resulting in cellular oxidative damages. This study was designed to evaluate whether Paullinia cupana is able to reduce cadmium-induced morphological impairment in Wistar rat testis. Adult male Wistar rats 110 days old were ip injected with cadmium (1.15 mg/kg BW [body weight]) and subsequently treated with P. cupana during 56 days.  Furthermore, groups receiving either P. cupana extract or cadmium are mentioned. After the treatment period, testis samples were subjected to histological and stereological analyses. Moderate to severe testicular impairments were shown by the animals exposed to cadmium. However, the animals supplemented with P. cupana after cadmium exposure showed a significant decrease in the proportion of damaged seminiferous tubules. Also, P. cupana supplementation was effective in maintaining the number of Leydig cells per testis in the animals exposed to cadmium. In conclusion, P. cupana supplementation was partially efficient in preventing cadmium from damaging the testis of adult Wistar rats. PMID:22659242

  7. Advantage of Guaraná (Paullinia cupana Mart.) supplementation on cadmium-induced damages in testis of adult Wistar rats.

    PubMed

    Leite, Rodrigo P; Predes, Fabrícia S; Monteiro, Juliana C; Freitas, Karine M; Wada, Ronaldo S; Dolder, Heidi

    2013-01-01

    Paullinia cupana is an Amazonian bush whose seeds have long been used in folk medicine. However, most of the therapeutic properties attributed to this plant are broad and nonspecific, although an antioxidant activity has been reported.  On the other hand, cadmium is a heavy metal known for increasing free radicals, hence resulting in cellular oxidative damages. This study was designed to evaluate whether Paullinia cupana is able to reduce cadmium-induced morphological impairment in Wistar rat testis. Adult male Wistar rats 110 days old were ip injected with cadmium (1.15 mg/kg BW [body weight]) and subsequently treated with P. cupana during 56 days.  Furthermore, groups receiving either P. cupana extract or cadmium are mentioned. After the treatment period, testis samples were subjected to histological and stereological analyses. Moderate to severe testicular impairments were shown by the animals exposed to cadmium. However, the animals supplemented with P. cupana after cadmium exposure showed a significant decrease in the proportion of damaged seminiferous tubules. Also, P. cupana supplementation was effective in maintaining the number of Leydig cells per testis in the animals exposed to cadmium. In conclusion, P. cupana supplementation was partially efficient in preventing cadmium from damaging the testis of adult Wistar rats.

  8. The total Leydig cell volume of the testis in some common mammals.

    PubMed

    Kothari, L K; Patni, M K; Jain, M L

    1978-01-01

    Total Leydig cell volume has been quantitatively determined by a histometric point-counting method in six common mammals, including man. Although the size of the testis has increased from 1.3 +/- 0.1 ml in the rat to 19.8 +/- 6.9 ml in the buffalo, the composition has remained fairly constant with the Leydig cells making up 9--16% of the testicular volume. In absolute terms, the Total Leydig Volume has increased progressively with body size, from 0.11 +/- 0.02 ml/testis in rat to 2.44 +/- 0.64 ml/testis in buffalo, the value for man being 2.21 +/- 0.40 ml/testis. The significance of these findings, from the point of view of the comparative physiology of male reproduction, has been discussed. PMID:686402

  9. INSL3 as a biomarker of Leydig cell functionality.

    PubMed

    Ivell, Richard; Wade, John D; Anand-Ivell, Ravinder

    2013-06-01

    Insulin-like factor 3 (INSL3) is a small peptide hormone made and secreted uniquely by mature Leydig cells in the testes of all mammals. Importantly, this expression and secretion appears to be constitutive and therefore reflects the differentiation status and number of the Leydig cells present, differing thereby from testosterone, which is acutely and homeostatically regulated by the hormones of the hypothalamic-pituitary-gonadal axis. As a consequence, the measurement of INSL3 either as mRNA in the testis or as secreted peptide circulating in the blood provides an excellent assessment of Leydig cell differentiation, for example, during fetal development, puberty, or aging or following exposure to endocrine-disrupting agents. Whereas INSL3 is proving increasingly useful as a biomarker for testis status, less is known about its functions, particularly in the adult male. Current evidence points to autocrine, paracrine, and endocrine roles, acting through the G-protein-coupled receptor called RXFP2, although more research is required to characterize these functions in detail.

  10. The triphasic nature of Leydig cell development in humans, and comments on nomenclature.

    PubMed

    Prince, F P

    2001-02-01

    Leydig cell development in humans, although for years described as being biphasic, with fetal and adult phases of maturation, is better considered as a triphasic developmental phenomenon. The morphological literature is summarized in this commentary. Although the majority of studies are of a qualitative nature and many questions remain as to the relative and absolute numbers of cells involved in these developmental phases, this literature is more consistent with a triphasic developmental pattern. This view of Leydig cell development is in accord with the well-known triphasic history of testosterone production, i.e. peaks at 14-18 weeks of fetal life, 2-3 months after birth, and from puberty throughout adult life. It is also significant that the neonatal phase of testosterone production is dependent upon reactivation of the hypothalamic-pituitary-testicular axis (HPT). The current interest in the functional implications of the neonatal period will be better served by considering human Leydig cell development as triphasic.

  11. INHIBITION OF TESTICULAR STEROIDOGENESIS BY THE XENOESTROGEN BISPHENOL A IS ASSOCIATED WITH REDUCED PITUITARY LH SECRETION AND DECREASED STEROIDOGENIC ENZYME GENE EXPRESSION IN RAT LEYDIG CELLS

    EPA Science Inventory

    Exposure of humans to bisphenol A (BPA), a monomer in polycarbonate plastics and constituent of resins used in food packaging and denistry, is significant. In this report, exposure of rats to 2.4 ug/kg/day (a dose that approximates BPA levels in the environment) from postnatal da...

  12. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    PubMed

    Jarial, M S

    1989-12-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin.

  13. The effect of acute stress and opioid antagonist on the activity of NADPH-P450 reductase in rat Leydig cells.

    PubMed

    Kostić, T; Andrić, S; Marić, D; Kovacević, R

    1998-07-01

    Previous studies indicate that acute immobilization stress (IMO; 2 h) impaired testicular steroidogenesis primarily at the testicular level decreasing the activity of certain steroidogenic enzymes. In the present study unstressed rats as well as IMO rats (2 h) were treated by intratesticular injection of naltrexone methobromide (NMB; peripheral opioid receptor antagonist; 36 microg/testis) or vehicle at the beginning of and at 1 h of the IMO period. In IMO rats the activity of P450c17 was significantly reduced as well as the activity of NADPH-P450 reductase (which catalyzes the transfer of electrons from NADPH to cytochrome P450), while the activity of NADH-b5 reductase was not affected. Present data confirmed previous results that acute IMO reduced testicular P450c17 activity and implicate that decreased activity of NADPH-P450 reductase could be responsible for the inhibition of P450c17 under IMO conditions, while NADH-b5 reductase is probably not involved. NMB treatment antagonized the inhibitory effect of IMO on P450c17 and NADPH-P450 reductase activities. Such results put forward the implication that endogenous opioid peptides are involved in mediating the inhibitory effect of IMO on testicular steroidogenesis, and allow the speculation that NADPH-P450 reductase could be a possible site of such an inhibition. PMID:9712411

  14. Interactions between respiratory oscillators in adult rats

    PubMed Central

    Huckstepp, Robert TR; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. DOI: http://dx.doi.org/10.7554/eLife.14203.001 PMID:27300271

  15. Alteration of the lipid composition of rat testicular plasma membranes by dietary (n-3) fatty acids changes the responsiveness of Leydig cells and testosterone synthesis.

    PubMed

    Sebokova, E; Garg, M L; Wierzbicki, A; Thomson, A B; Clandinin, M T

    1990-06-01

    Experiments were conducted to assess whether changing dietary fat composition altered phospholipid composition of rat testicular plasma membranes in a manner that altered receptor-mediated action of luteinizing hormone (LH)/human chorionic gonadotropin (hCG). Weanling rats were fed diets that provided high or low cholesterol intakes and that were enriched with linseed oil, fish oil or beef tallow for 4 wk. Feeding diets high in (n-3) fatty acids decreased plasma and testicular plasma membrane 20:4(n-6) content. A marked reduction of the 22:5(n-6) content and an increase in the 22:6(n-3) content of testicular plasma membrane was found only in animals fed fish oil. A decrease in binding capacity of the gonadotropin (LH/hCG) receptor in the plasma membrane, with no change in receptor affinity, was observed for animals fed either linseed oil or fish oil diets. Dietary treatments that raised plasma membrane cholesterol content and the cholesterol to phospholipid ratio in the membrane were associated with increased binding capacity of the gonadotropin receptor. Feeding diets high in 18:3(n-3) vs. those high in fish oil altered receptor-mediated adenylate cyclase activity in a manner that depended on the level of dietary cholesterol. Feeding diets high in cholesterol or fish oil increased basal and LH-stimulated testosterone synthesis relative to that in animals fed the low cholesterol diet containing linseed oil. It is concluded that changing the fat composition of the diet alters the phospholipid composition of rat testicular plasma membranes and that this change in composition influences membrane-mediated unmasking of gonadotropin receptor-mediated action in testicular tissue. PMID:2352035

  16. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats

    NASA Technical Reports Server (NTRS)

    Tash, Joseph S.; Johnson, Donald C.; Enders, George C.

    2002-01-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.

  17. Effects of date palm pollen (Phoenix dactylifera L.) and Astragalus ovinus on sperm parameters and sex hormones in adult male rats

    PubMed Central

    Mehraban, Fouad; Jafari, Mehrzad; Akbartabar Toori, Mehdi; Sadeghi, Hossein; Joodi, Behzad; Mostafazade, Mostafa; Sadeghi, Heibatollah

    2014-01-01

    Background: Date Palm Pollen (DPP) and Astragalus genus are used in some countries for the treatment of infertility. Objective: This study was designed to investigate effects of DPP and Astragalus ovinus (A.Ovinus) on fertility in healthy adult male rats. Materials and Methods: Thirty-six rats were divided into six groups (n=6) including control and five treatment groups. DPP (120, 240 and 360 mg/kg) and A.ovinus (100, 500 mg/ kg) were orally given to the treatment groups. After thirty-five days, blood samples were taken to determine serum levels of FSH, LH, testosterone and estradiol. Weight of testis and epididymis, sperm count, sperm motility, seminiferous tubules diameter (STD), germinal cell layer thickness (GCLT), sertoli, leydig and spermatogonia cells were also evaluated. Results: DPP at the of 120 and 240 mg/kg doses significantly raised the ratio of testis or epididymis to body weight, sperm count, sperm motility , and estradiol level compared to the control group (p<0.05). LH and testosterone levels only noticeably increased at 120 mg/kg of DPP (p<0.01 and p<0.001 respectively). STD increased in the three applied doses (p=0.001). A. ovinus extract at the indicated doses produced a significant reduction in the ratio of testis or epididymis to body weight and sperm motility (p<0.05). Sperm count, spermatogonia, leydig cells and FSH level decreased at dose of 500 mg/kg. Furthermore, GCLT, spermatogonia cells, and serum estradiol level increased at 100 mg/kg dose of A. ovinus. Conclusion: Our findings indicate that DPP could improve fertility factors, while A.ovinus can exhibit deleterious effects on gonad and sperm parameters in rats. PMID:25469129

  18. Differences between brainstem gliomas in juvenile and adult rats

    PubMed Central

    WANG, YU; TIAN, YONGJI; WAN, HONG; LI, DEZHI; WU, WENHAO; YIN, LUXIN; JIANG, JIAN; WAN, WEIQING; ZHANG, LIWEI

    2013-01-01

    Clinical studies have shown that gliomas of the brainstem behave differently in children and adults. The aim of the present study was to compare and analyze the differences between these gliomas in juvenile and adult rats with regard to tumor growth, survival, pathology and magnetic resonance imaging (MRI). A total of 25 juvenile and 25 adult Wistar rats were divided into groups A (15 juvenile rats), B (10 juvenile rats), C (15 adult rats) and D (10 adult rats). The rats of groups A and C (experimental) were injected with glioma cells, while groups B and D (control) were injected with a physiological saline solution. Rat neurological signs, survival time, tumor size, hematoxylin and eosin (HE) staining and immunohistochemical staining for MMP-2, MMP-9 and β-catenin were compared. The survival time of group A was 19.47±2.232 days, whereas that of group C was 21.47±2.232 days (P<0.05). The tumor sizes were 4.55 and 4.62 mm (P>0.05) in groups A and C, respectively. HE and immunohistochemical staining revealed no differences between the groups. The results suggest that the growth patterns and invasiveness of brainstem gliomas may vary in children compared with adults due to the varied biological behaviors of the tumor cells. PMID:23946812

  19. Leucocyte responses to fighting in the adult male bandicoot rat.

    PubMed

    Ghosh, P R; Sahu, A; Maiti, B R

    1983-01-01

    The effect of fighting stress on blood leucocyte count was studied in the adult male bandicoot rat. Exposure to fighting stress for 3 h induced neutrophilia, eosinopenia, lymphopenia and monocytopenia. The changes were more significant in the subordinate rat than in the dominant animal. It is suggested that leucocyte responses to fighting are perhaps mediated by the adrenal gland in these animals.

  20. Antiviral responses of human Leydig cells to mumps virus infection or poly I:C stimulation

    PubMed Central

    Le Tortorec, A.; Denis, H.; Satie, A-P.; Patard, J-J.; Ruffault, A.; Jégou, B.; Dejucq-Rainsford, N.

    2008-01-01

    BACKGROUND The immuno-privileged status of the testis is essential to the maintenance of its functions, and innate immunity is likely to play a key role in limiting harmful viral infections, as demonstrated in the rat. In men mumps virus infects Leydig cells and has deleterious effects on testosterone production and spermatogenesis. The aim of this study was to test whether mumps virus infection of isolated human Leydig cells was associated with an inhibition of their innate antiviral defences. METHODS Leydig cell production of mRNA and protein for interferons (IFNs) and of three antiviral proteins—2′5′ oligoadenylate synthetase (2′5′OAS), double-stranded RNA-activated protein kinase (PKR) and MxA—was investigated, in the absence or presence of mumps virus or viral stimuli including poly I:C, a mimetic of RNA viruses replication product. RESULTS Stimulated or not, human Leydig cells appeared unable to produce routinely detectable IFNs α, β and γ. Although the level of PKR remained unchanged after stimulation, the expression of 2′5′OAS and MxA was enhanced following either mumps virus or poly I:C exposure (P < 0.05 versus control). CONCLUSIONS Overall, our results demonstrate that mumps virus replication in human Leydig cells is not associated with a specific inhibition of IFNs or 2′5′OAS, MxA and PKR production and that these cells display relatively weak endogenous antiviral abilities, as opposed to their rat counterparts. PMID:18567898

  1. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis123

    PubMed Central

    Grigereit, Laura; Pickel, James

    2016-01-01

    Abstract The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis. PMID:27257630

  2. Low-dose and combined effects of oral exposure to bisphenol A and diethylstilbestrol on the male reproductive system in adult Sprague-Dawley rats.

    PubMed

    Jiang, Xiao; Chen, Hong-Qiang; Cui, Zhi-Hong; Yin, Li; Zhang, Wen-Long; Liu, Wen-Bin; Han, Fei; Ao, Lin; Cao, Jia; Liu, Jin-Yi

    2016-04-01

    Study of the joint action of xenobiotics is important to fully explore their toxicity and complete risk analysis. In this study, we investigated the effects of low-dose and combined exposure of bisphenol A (BPA) and diethylstilbestrol (DES) on the reproductive system in adult male rats. The results showed that the sperm motility decreased in the BPA/DES and combined groups. Sperm deformity ratios and histological lesions of the testes were significantly higher and more significant, respectively, in the combined group compared with the single treated groups. No dose-effect relationship or significant additive effect on serum hormone levels was observed after combined exposure to BPA/DES. Ultrastructural results showed lesions of the Sertoli and Leydig cells, mainly in the endoplasmic reticulum (ER), in all treated groups. ER stress molecular sensor IRE1 was phosphorylated and activated after BPA and DES treatment in this study. The protein levels of ES stress molecular marker CHOP were significantly up-regulated after exposure to BPA, DES, and BPA and DES combined. These findings indicate that ER stress is important in BPA/DES-induced damage in rat testes. Low-dose and combined exposure to BPA and DES may have toxic effects on male fertility in the adult population. PMID:26970683

  3. Farnesoid X receptor, through the binding with steroidogenic factor 1-responsive element, inhibits aromatase expression in tumor Leydig cells.

    PubMed

    Catalano, Stefania; Malivindi, Rocco; Giordano, Cinzia; Gu, Guowei; Panza, Salvatore; Bonofiglio, Daniela; Lanzino, Marilena; Sisci, Diego; Panno, Maria Luisa; Andò, Sebastiano

    2010-02-19

    The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. It is expressed in the liver and the gastrointestinal tract, but also in several non-enterohepatic tissues including testis. Recently, FXR was identified as a negative modulator of the androgen-estrogen-converting aromatase enzyme in human breast cancer cells. In the present study we detected the expression of FXR in Leydig normal and tumor cell lines and in rat testes tissue. We found, in rat Leydig tumor cells, R2C, that FXR activation by the primary bile acid chenodeoxycholic acid (CDCA) or a synthetic agonist GW4064, through a SHP-independent mechanism, down-regulates aromatase expression in terms of mRNA, protein levels, and its enzymatic activity. Transient transfection experiments, using vector containing rat aromatase promoter PII, evidenced that CDCA reduces basal aromatase promoter activity. Mutagenesis studies, electrophoretic mobility shift, and chromatin immunoprecipitation analysis reveal that FXR is able to compete with steroidogenic factor 1 in binding to a common sequence present in the aromatase promoter region interfering negatively with its activity. Finally, the FXR-mediated anti-proliferative effects exerted by CDCA on tumor Leydig cells are at least in part due to an inhibition of estrogen-dependent cell growth. In conclusion our findings identify for the first time the activators of FXR as negative modulators of the aromatase enzyme in Leydig tumor cell lines.

  4. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  5. Ultrastructure of Leydig cells in human ageing testes.

    PubMed Central

    Paniagua, R; Amat, P; Nistal, M; Martin, A

    1986-01-01

    Ultrastructural study of Leydig cells in elderly men revealed the following Leydig cell types: (1) ultrastructurally normal Leydig cells (46.2%); (2) Leydig cells either with multiple cytoplasmic or intranuclear Reinke crystals or with numerous para-crystalline inclusions (6.1%); (3) multivacuolated Leydig cells with the cytoplasm almost filled by lipid droplets (16.7%; (4) dedifferentiated Leydig cells with poor development of agranular endoplasmic reticulum and mitochondria, and increased amounts of lipofuscin granules (22.3%); and (5) bi- or trinucleate Leydig cells (8.7%) showing either a normal (2.8%) or dedifferentiated (5.9%) cytoplasm. These results suggest an involution of Leydig cells with advancing age. A correlation between the proportion of altered Leydig cells and the decrease in testosterone and increase in luteinising hormone levels could be observed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Figs. 6-7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:3693056

  6. Leydig cell number and sperm production decrease induced by chronic ametryn exposure: a negative impact on animal reproductive health.

    PubMed

    Dantas, T A; Cancian, G; Neodini, D N R; Mano, D R S; Capucho, C; Predes, F S; Pulz, R Barbieri; Pigoso, A A; Dolder, H; Severi-Aguiar, G D C

    2015-06-01

    Ametryn is an herbicide used to control broadleaf and grass weeds and its acute and chronic toxicity is expected to be low. Since toxicological data on ametryn is scarce, the aim of this study was to evaluate rat reproductive toxicity. Thirty-six adult male Wistar rats (90 days) were divided into three groups: Co (control) and T1 and T2 exposed to 15 and 30 mg/kg/day of ametryn, respectively, for 56 days. Testicular analysis demonstrated that ametryn decreased sperm number per testis, daily sperm production, and Leydig cell number in both treated groups, although little perceptible morphological change has been observed in seminiferous tubule structure. Lipid peroxidation was higher in group T2, catalase activity decreased in T1 group, superoxide dismutase activity diminished, and a smaller number of sulphydryl groups of total proteins were verified in both exposed groups, suggesting oxidative stress. These results showed negative ametryn influence on the testes and can compromise animal reproductive performance and survival.

  7. Role of 11β-OH-C(19) and C(21) steroids in the coupling of 11β-HSD1 and 17β-HSD3 in regulation of testosterone biosynthesis in rat Leydig cells.

    PubMed

    Latif, Syed A; Shen, Mae; Ge, Ren-Shan; Sottas, Chantal M; Hardy, Matthew P; Morris, David J

    2011-06-01

    Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C(19)- and C(21)-11β-OH-steroids, in the presence of [(3)H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p<0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM). Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP(+) regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems.

  8. A study of the effect of B-EP and naloxone on the function of the hypothalamo-pituitary-testicular axis of the rat.

    PubMed

    Zhou, Z F; Xiao, B L; Zhang, G Y; Zhuang, L Z

    1990-01-01

    To investigate whether endogenous opioid peptides (EOP) play an important role in intragonadal regulation of testicular function and regulation of the hypothalamic-pituitary-gonadal axis of the male rat, the authors employed two principal methods: culture of testicular Leydig cells and Sertoli cells, and in vitro perifusion of hypothalamo-pituitary Leydig cells of the adult rat. The results demonstrated that incubation of Leydig cells with B-endorphin (B-EP 10(-9) = 10(-6) mol/L) or naloxone (NAL 10(-5) = 10(-8) mol/L) manifested no significant changes of non-stimulated or hCG-stimulated testosterone secretion both in 20 and 60 day-old rats. Similar results were obtained when the cells were treated with B-EP (10(-10) = 10(-7) mol/L) for 48 h during culture. Pretreatment of incubated Leydig cells with B-EP in similar concentrations for 48 h showed no effect on the response to hCG stimulation. In addition, treatment with B-EP in vitro for 24 or 72 h manifested no effects on estradiol production by aromatization of cultured Sertoli cells. Neither NAL 10(-5) given in vitro nor NAL (5 mg/body weight) injected subcutaneously 1 h before decapitation affected LH and testosterone release from the perifused hypothalamo-pituitary Leydig cells system. These results could not support the hypothesis that B-EP is a local regulator of testicular function. The physiological significance of EOP in regulating the function of gonadal axis of adult male rat remains to be investigated further.

  9. Slc15a1 is involved in the transport of synthetic F5-peptide into the seminiferous epithelium in adult rat testes

    PubMed Central

    Su, Linlin; Zhang, Yufei; Cheng, Yan C.; Lee, Will M.; Ye, Keping; Hu, Dahai

    2015-01-01

    Spermiation and BTB restructuring, two critical cellular events that occur across seminiferous epithelium in mammalian testis during spermatogenesis, are tightly coordinated by biologically active peptides released from laminin chains. Our earlier study reported that F5-peptide, synthesized based on a stretch of 50 amino acids within laminin-γ3 domain IV, could reversibly induce the impairment of spermatogenesis, disruption of BTB integrity, and germ cell loss, and thus is a promising male contraceptive. However, how F5-peptide when administered intratesticularly enters seminiferous tubules and exerts effects beyond BTB is currently unknown. Here we demonstrated that Slc15a1, a peptide transporter also known as Pept1, was predominantly present in peritubular myoid cells, interstitial Leydig cells, vascular endothelial cells and germ cells, while absent in Sertoli cells or BTB site. The steady-state protein level of Slc15a1 in adult rat testis was not affected by F5-peptide treatment. Knockdown of Slc15a1 by in vivo RNAi in rat testis was shown to prevent F5-peptide induced disruptive effects on spermatogenesis. This study suggests that Slc15a1 is involved in the transport of synthetic F5-peptide into seminiferous epithelium, and thus Slc15a1 is a novel target in testis that could be genetically modified to improve the bioavailability of F5-peptide as a prospective male contraceptive. PMID:26537751

  10. Slc15a1 is involved in the transport of synthetic F5-peptide into the seminiferous epithelium in adult rat testes.

    PubMed

    Su, Linlin; Zhang, Yufei; Cheng, Yan C; Lee, Will M; Ye, Keping; Hu, Dahai

    2015-11-05

    Spermiation and BTB restructuring, two critical cellular events that occur across seminiferous epithelium in mammalian testis during spermatogenesis, are tightly coordinated by biologically active peptides released from laminin chains. Our earlier study reported that F5-peptide, synthesized based on a stretch of 50 amino acids within laminin-γ3 domain IV, could reversibly induce the impairment of spermatogenesis, disruption of BTB integrity, and germ cell loss, and thus is a promising male contraceptive. However, how F5-peptide when administered intratesticularly enters seminiferous tubules and exerts effects beyond BTB is currently unknown. Here we demonstrated that Slc15a1, a peptide transporter also known as Pept1, was predominantly present in peritubular myoid cells, interstitial Leydig cells, vascular endothelial cells and germ cells, while absent in Sertoli cells or BTB site. The steady-state protein level of Slc15a1 in adult rat testis was not affected by F5-peptide treatment. Knockdown of Slc15a1 by in vivo RNAi in rat testis was shown to prevent F5-peptide induced disruptive effects on spermatogenesis. This study suggests that Slc15a1 is involved in the transport of synthetic F5-peptide into seminiferous epithelium, and thus Slc15a1 is a novel target in testis that could be genetically modified to improve the bioavailability of F5-peptide as a prospective male contraceptive.

  11. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  12. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  13. Acute effects of hexabromocyclododecane on Leydig cell cyclic nucleotide signaling and steroidogenesis in vitro

    PubMed Central

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Dakic, Vanja; Kaisarevic, Sonja; Hrubik, Jelena; Andric, Nebojsa; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2013-01-01

    Hexabromocyclododecane (HBCDD), an additive brominated flame retardant routinely added to various consumer products, was reported to have toxic effects upon biota, including endocrine disruption. In this study, the potential toxicity of HBCDD was tested in peripubertal rat Leydig cells in vitro during 6 h exposure. HBCDD inhibited human chorionic gonadotropin- and forskolin-supported cAMP accumulation and steroidogenesis. It also inhibited basal cAMP production, but elevated basal steroidogenesis. The expression of several cAMP-dependent genes, including steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase, was also inhibited by HBCDD treatment. Nevertheless, this was not accompanied by a decrease in steroidogenic acute regulatory protein expression, as documented by western blot analysis, and activity of steroidogenic enzymes, as documented by unaffected steroidogenesis in the presence of permeable 22(R)-hydroxycholesterol. However, HBCDD caused significant decrease in mitochondrial membrane potential in untreated and human chorionic gonadotropin-treated cells. This indicates that HBCDD acute toxicity in Leydig cells reflects changes in mitochondrial membrane potential-dependent cAMP production and basal and cAMP-regulated cholesterol transport. This in turn facilitates basal but inhibits cAMP-dependent steroidogenesis. Acute effects of HBCDD treatment on transcription are also indicative of its sustained effects on Leydig cell function. PMID:23347875

  14. Androgens inhibit aromatase expression through DAX-1: insights into the molecular link between hormone balance and Leydig cancer development.

    PubMed

    Maris, Pamela; Campana, Antonella; Barone, Ines; Giordano, Cinzia; Morelli, Catia; Malivindi, Rocco; Sisci, Diego; Aquila, Saveria; Rago, Vittoria; Bonofiglio, Daniela; Catalano, Stefania; Lanzino, Marilena; Andò, Sebastiano

    2015-04-01

    Leydig cell tumors (LCTs) of the testis are steroid-secreting tumors associated with various steroid biosynthetic abnormalities and endocrine dysfunctions. Despite their overall rarity, LCTs are still of substantial interest owing to the paucity of information regarding their exact nature and malignant potential. In the present study, we disclose the ability of androgens to inhibit Leydig tumor cell proliferation by opposing to self-sufficient in situ estrogen production. In rat Leydig tumor cells, R2C, androgen treatment significantly decreases the expression and the enzymatic activity of cytocrome P450 aromatase, responsible for the local conversion of androgens into estrogens. This inhibitory effect relies on androgen receptor (AR) activation and involves negative regulation of the CYP19 gene transcriptional activity through the nuclear orphan receptor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1). Ligand-activated AR up-regulates the expression of DAX-1 and promotes its increased recruitment within the steroidogenic factor-1 site-containing region of the aromatase proximal promoter II in association with the nuclear receptor corepressor. The biological relevance in LCTs of the newly highlighted functional interplay between AR, DAX-1, and aromatase is underlined by our in vivo observations, revealing a marked down-regulation of AR and DAX-1 expression and a strong increase in aromatase levels in testes tissues from old Fischer rats with spontaneously developed Leydig cell neoplasia, compared with normal testes tissues from younger animals. In elucidating a mechanism by which androgens modulate the growth of Leydig tumor cells, our finding support the hypothesis that maintaining the adequate balance between androgen and estrogens may represent the key for blocking estrogen-secreting Leydigioma development, opening new prospects for therapeutic intervention. PMID:25603045

  15. Reproductive toxicity of DDT in adult male rats.

    PubMed

    Ben Rhouma, K; Tébourbi, O; Krichah, R; Sakly, M

    2001-08-01

    The reproductive toxicity of DDT was investigated in adult male rats exposed to 50 and 100 mg/kg body weight (b.wt) day(-1) for 10 successive days. Compared with control animals, administration of DDT led to a dose-dependent reduction of testicular weight and the number as well as the percentage of motile spermatozoa in the epididymis. Testicular histological observations revealed also a marked loss of gametes in the lumen of seminiferous tubules. In DDT-treated rats, the seminal vesicles weights dropped significantly, resulting from a decrease of testosterone production by testes, whereas serum LH and FSH increased after pesticide exposure. This increase of gonadotrophin levels may be related to an impairment of the negative feedback exerted by the steroid on the hypothalamic--pituitary axis. It is concluded that DDT induced adverse effects on male rat fertility by acting directly on the testes and altering the neuroendocrine function.

  16. Toxicity of zinc oxide nanoparticles on adult male Wistar rats.

    PubMed

    Abbasalipourkabir, Roghayeh; Moradi, Hemen; Zarei, Sadegh; Asadi, Soheila; Salehzadeh, Aref; Ghafourikhosroshahi, Abolfazl; Mortazavi, Motahareh; Ziamajidi, Nasrin

    2015-10-01

    The purpose of this study was to investigate the effects of zinc oxide nanoparticles (nZnO) on adult male Wistar rats. Thirty male Wistar rats divided into five groups of six animals each were used for this study. For ten days, Groups one to four continuously received 50, 100, 150 and 200 mg/kg nZnO, respectively. Group five served as the control group. At the end of the study, the rats were sacrificed and histopathological study of the liver and renal tissue, sperm analysis, serum oxidative stress parameters and some liver enzymes were done. The results of this study showed that nZnO at concentration more than 50 mg/kg lead to significant changes in liver enzymes, oxidative stress, liver and renal tissue and sperm quality and quantity. In conclusion, the toxicity of nZnO is more significant when the concentration is increased; however, the use of low doses requires further investigation.

  17. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  18. Contextual fear conditioning differs for infant, adolescent, and adult rats.

    PubMed

    Esmorís-Arranz, Francisco J; Méndez, Cástor; Spear, Norman E

    2008-07-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian-conditioned suppression. When a discrete auditory-conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness, but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role.

  19. Intestinal absorption of aspartame decomposition products in adult rats.

    PubMed

    Lipton, W E; Li, Y N; Younoszai, M K; Stegink, L D

    1991-12-01

    The dipeptide sweetener aspartame (N-L-alpha-aspartyl-L-phenylalanine, 1-methyl ester; alpha-APM) is relatively stable in dry powder form. However, when exposed to elevated temperature, extremes of pH and/or moisture, alpha-APM is converted into a variety of products. In aqueous solution alpha-APM decomposes to yield methanol, two isomeric forms of L-aspartyl-L-phenylalanine (Asp-Phe) [alpha-Asp-Phe and beta-Asp-Phe], and APM's diketopiperazine cyclo-Asp-Phe. Depending on beverage storage conditions, individuals drinking alpha-APM-sweetened beverages may consume small quantities of these three compounds. Relatively little has been published about the metabolism of beta-Asp-Phe and cyclo-Asp-Phe. We compared the absorption and metabolism of alpha-Asp-Phe, beta-Asp-Phe, and cyclo-Asp-Phe with that of L-phenylalanine (Phe) in adult rats. Steady-state perfusion studies of rat jejunum indicated rapid carrier-assisted uptake of Phe and alpha-Asp-Phe, but only slow passive diffusion of beta-Asp-Phe and cyclo-Asp-Phe from the lumen. Homogenates of rat intestinal mucosa, liver, and cecal contents, as well as homogenates of pure cultures of Escherichia coli B, catalyzed the hydrolysis of alpha-Asp-Phe, but not cyclo-Asp-Phe. Homogenates of E coli and rat cecal contents, but not homogenates of rat liver or intestinal mucosa catalyzed the hydrolysis of beta-Asp-Phe.

  20. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.

  1. Adult Rats Treated with Risperidone during Development Are Hyperactive

    PubMed Central

    Bardgett, Mark E.; Franks-Henry, Julie M.; Colemire, Kristin R.; Juneau, Kathleen R.; Stevens, Rachel M.; Marczinski, Cecile A.; Griffith, Molly S.

    2014-01-01

    Risperidone is an antipsychotic drug approved for use in children, but little is known about the long-term effects of early-life risperidone treatment. In animals, prolonged risperidone administration during development increases forebrain dopamine receptor expression immediately upon the cessation of treatment. A series of experiments was performed to ascertain whether early-life risperidone administration altered locomotor activity, a behavior sensitive to dopamine receptor function, in adult rats. One additional behavior modulated by forebrain dopamine function, spatial reversal learning, was also measured during adulthood. In each study, Long-Evans rats received daily subcutaneous injections of vehicle or one of two doses of risperidone (1.0 and 3.0 mg/kg per day) from postnatal days 14 – 42. Weight gain during development was slightly yet significantly reduced in risperidone-treated rats. In the first two experiments, early-life risperidone administration was associated with increased locomotor activity at one week post-administration through approximately nine months of age, independent of changes in weight gain. In a separate experiment, it was found that the enhancing effect of early-life risperidone on locomotor activity occurred in males and female rats. A final experiment indicated that spatial reversal learning was unaffected in adult rats administered risperidone early in life. These results indicate that locomotor activity during adulthood is permanently modified by early-life risperidone treatment. The findings suggest that chronic antipsychotic drug use in pediatric populations (e.g., treatment for the symptoms of autism) could modify brain development and alter neural set-points for specific behaviors during adulthood. PMID:23750695

  2. Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues.

    PubMed

    Vanderwinden, J M; Mailleux, P; Schiffmann, S N; Vanderhaeghen, J J

    1992-09-01

    Pleiotrophin (PTN), also known as HB-GAM, belongs to an emerging cytokine family unrelated to other growth factors. We report here the first comprehensive study using in situ hybridization on the cellular distribution of this new heparin-binding growth factor mRNA in rat tissues. PTN mRNA was developmentally expressed in many--but not all--neuroectodermal and mesodermal lineages, whilst no PTN mRNA was detected in endoderm, ectoderm and trophoblast. PTN mRNA was found in the nervous system throughout development, with a post-natal peak of expression. In the adult nervous system, significant expression persisted in hippocampal CA1 pyramidal neurons and in cortical neurons, but also in different non-neuronal cells types in various locations (olfactory nerve, cerebellar astrocytes, pituicytes, Schwann cells surrounding the neurons in sensory ganglia). PTN mRNA was also found during development in the mesenchyme of lung, gut, kidney and reproductive tract, in bone and cartilage progenitors, in dental pulp, in myoblasts, and in several other sites. Expression was differently regulated in each location, but usually faded around birth. In the adult, PTN mRNA was still present in the meninges, the iris, the Leydig cells of the testis and in the uterus. PTN mRNA was also strongly expressed in the basal layers of the tongue epithelium, which is the only epithelium and ectodermal derivative to express PTN mRNA, and this only after birth. PTN is known to be a growth factor for perinatal brain neurons and a mitogen for fibroblasts in vitro. Recently, trophic effects on epithelial cells and a role as a tumour growth factor have been reported. The mechanisms of regulation and the functions of PTN are however still uncertain. Its expression pattern during development suggests important roles in growth and differentiation. Moreover, the presence of PTN mRNA in several adult tissues and the up-regulation of PTN mRNA expression in the gravid uterus indicate that PTN also has

  3. Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Wold, Loren E.; Ren, Jun; Murphy, Eric J.

    2013-01-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content is known to change in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43%, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total PUFA, in the n-3/n-6 ratio, and in the 22:6 n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of post-natal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats. PMID:23996454

  4. A role for kit receptor signaling in Leydig cell steroidogenesis.

    PubMed

    Rothschild, Gerson; Sottas, Chantal M; Kissel, Holger; Agosti, Valter; Manova, Katia; Hardy, Matthew P; Besmer, Peter

    2003-09-01

    Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum

  5. Effects of Adolescent Ethanol Exposure on Sleep in Adults Rats

    PubMed Central

    Criado, José R.; Wills, Derek N.; Walker, Brendan M.; Ehlers, Cindy L.

    2010-01-01

    Although adolescent ethanol (EtOH) exposure has been associated with long-lasting changes in brain function, little is known as to whether EtOH exposure during adolescence alters sleep and cortical arousal. This study examined protracted alterations in sleep in adult rats exposed to EtOH during adolescence. Adolescent male Wistar rats were exposed to EtOH vapor for 12 hr/day for five weeks. Cortical electroencephalograms (EEGs) were obtained during 4-hr recording sessions after five weeks of withdrawal from EtOH. Adolescent EtOH exposure significantly reduced the mean duration of slow-wave sleep (SWS) episodes and the total amount of time spent in SWS in EtOH-exposed rats, compared to controls. Spectral analysis revealed that adolescent EtOH exposure significantly increased cortical peak frequencies during SWS in the 2-4 Hz, 4-6 Hz and 6-8 Hz bands. Taken together, our findings suggest that chronic EtOH exposure in adolescent rats reduces measures of SWS, an effect also seen as part of normal aging. Although the cellular and molecular mechanisms mediating the consequences of EtOH exposure on the aging process are not known, the similarities between adolescent EtOH exposure and aging merits further investigation. PMID:18922666

  6. Preproglucagon mRNA expression in adult rat submandibular glands.

    PubMed

    Egéa, J C; Hirtz, C; Deville de Périère, D

    2003-04-01

    Salivary glands of various animal species have been reported to contain and suggested to produce glucagon or glucagon-like material, but the origin and the nature of this salivary peptide are still doubtful. The present study was undertaken to ascertain whether the glucagon gene is expressed in rat submandibular glands and in an immortalized murine cell line derived from salivary glands (SCA-9 cell line). For this purpose, total RNA was isolated from submandibular glands or cultured cells and submitted to reverse transcription. The cDNAs obtained were amplified by a nested polymerase chain reaction using preproglucagon primers. The results showed that the preproglucagon mRNA was expressed in adult rat submandibular glands but not in the SCA-9 cell line. Determination of cyclic DNA (cDNA) sequence established identity with the coding regions of rat pancreatic pre-proglucagon gene. In conclusion, these results strongly support the idea that rat submandibular glands could represent a source of extrapancreatic glucagon or of its precursor's peptide.

  7. Maternal hyperthyroidism in rats impairs stress coping of adult offspring.

    PubMed

    Zhang, Limei; Hernández, Vito S; Medina-Pizarro, Mauricio; Valle-Leija, Pablo; Vega-González, Arturo; Morales, Teresa

    2008-05-01

    Given the evidence that maternal hyperthyroidism (MH) compromises expression of neuronal cytoskeletal proteins in the late fetal brain by accelerated neuronal differentiation, we investigated possible consequences of MH for the emotional and cognitive functions of adult offspring during acute and subchronic stress coping. Experimental groups consisted of male rat offspring from mothers implanted with osmotic minipumps infusing either thyroxine (MH) or vehicle (Ctrl) during pregnancy. Body weight and T4 level were monitored during the first 3 postnatal months, and no differences were found with the controls. We analyzed hippocampal CA3 pyramidal neurons and dentate granular cell morphology during several postnatal stages and found increased dendritic arborization. On postnatal day 90 a modified subchronic mild stress (SCMS) protocol was applied to experimental subjects for 10 days. The Morris water maze was used before, during, and after application of the SCMS protocol to measure spatial learning. The tail suspension test (TST) and forced-swimming test (FST) were used to evaluate behavioral despair. The MH rats displayed normal locomotor activity and spatial memory prior to SCMS, but impaired spatial learning after acute and chronic stress. In both the FST and TST we found that MH rats spent significantly more time immobile than did controls. Serum corticosterone level was found to increase after 30 min of restraint stress, and corticotropin-releasing factor immunoreactivity was found to be increased in the central nucleus of the amygdala. Our results suggest that MH in rats leads to the offspring being more vulnerable to stress in adulthood.

  8. Fluoxetine induces changes in the testicle and testosterone in adult male rats exposed via placenta and lactation.

    PubMed

    Monteiro Filho, Waldo Oliveira; de Torres, Sandra Maria; Amorim, Marleyne José Afonso Accioly Lins; Andrade, Anderson Joel Martino; de Morais, Rosana Nogueira; Tenorio, Bruno Mendes; da Silva Junior, Valdemiro Amaro

    2014-10-01

    Fluoxetine is a selective serotonin reuptake inhibitor used to treat depression in pregnant and nursing women. However, recent studies have shown adverse effects in the male reproductive system after fluoxetine treatment. Aiming to analyze the extent of damage caused by fluoxetine in the testicle and safe doses for treatment during the perinatal period, the present study analyzed the effects of in utero exposure and exposure during lactation to fluoxetine in spermatogenesis of male rat offspring in adulthood. Wistar rat dams were orally treated with fluoxetine (5, 10, and 20 mg/kg) from 13 days of gestation to lactation day 21 and their offspring were analyzed at 90 days old. Results showed a reduction in the weight of testes (16%), epididymis (28%), and seminal glands (18%) in animals exposed to fluoxetine 20 mg/kg compared to the control. Seminal gland weight was also reduced 25% and 30% in animals exposed to 5 mg/kg and 10 mg/kg fluoxetine, respectively. Body weight of animals exposed to 20 mg/kg fluoxetine was reduced from post-natal day 9 to 36 compared to controls but from the post-natal day 9 to 36 there was no statistical difference. The volume of seminiferous epithelium reduced 17% and the total volume of Leydig cells reduced 30% in the group exposed to fluoxetine at 20 mg/kg. Furthermore, Leydig cells volume reduced 29% in the 5 mg/kg group. The length of the seminiferous tubules reduced 17% and daily sperm production per testicle also reduced 18% in animals exposed to the highest dose of fluoxetine compared to controls. The individual area of Leydig cells increased 7% and plasma testosterone increased 49% in animals exposed to fluoxetine at 20 mg/kg. In conclusion, exposure to 20 mg/kg fluoxetine via the placenta and during lactation may change testosterone and testicular parameters important for sperm production and male fertility in adulthood.

  9. [Average values of electrocardiograph parameters in healthy, adult Wistar rats].

    PubMed

    Zaciragić, Asija; Nakas-ićindić, Emina; Hadzović, Almira; Avdagić, Nesina

    2004-01-01

    Average values of heart rate (HR) and the average duration of electrocardiograph parameters were investigated (RR interval, P wave, PQ interval, QRS complex and QT interval) in healthy, adult Wistar rats of both sexes (n=86). Electrocardiogram (ECG) was recorded by Shiller Resting ECG, and for analysis of recordings SEMA-200 Vet computer program was used. Prior to registration animals were exposed to light ether anesthesia. Mean value of HR was 203.03+/-3.09 beats/min in whole sample. Observed differences in mean values of heart rate and duration of followed ECG parameters between sexes were not statistically significant. Results gathered in our study could serve as standard values for electrocardiograph parameters in future research where will be used Wistar rats in conditions of registration and analysis of ECG that are described in our paper.

  10. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  11. Alcohol exposure in utero perturbs retinoid homeostasis in adult rats

    PubMed Central

    Kim, Youn-Kyung; Zuccaro, Michael V.; Zhang, Changqing; Sarkar, Dipak

    2015-01-01

    Background Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified. Disruption of tissue retinoid homeostasis has been linked not only to abnormal embryonic development, but also to various adult pathological conditions, including cancer, metabolic disorders and abnormal lung function. We hypothesized that prenatal alcohol exposure may permanently perturb tissue retinoid metabolism, predisposing the offspring to adult chronic diseases. Methods Serum and tissues (liver, lung and prostate from males; liver and lung from females) were collected from 60-75 day-old sprague dawley rats born from dams that were: (I) fed a liquid diet containing 6.7% alcohol between gestational day 7 and 21; or (II) pair-fed with isocaloric liquid diet during the same gestational window; or (III) fed ad libitum with regular rat chow diet throughout pregnancy. Serum and tissue retinoid levels were analyzed by reverse-phase high-performance liquid chromatography (HPLC). Serum retinol-binding protein (RBP) levels were measured by western blot analysis, and liver, lung and prostate mRNA levels of lecithin-retinol acyltransferase (LRAT) were measured by qPCR. Results Retinyl ester levels were significantly reduced in the lung of both males and females, as well as in the liver and ventral prostate of males born from alcohol-fed dams. Tissue LRAT mRNA levels remained unchanged upon maternal alcohol treatment. Conclusions Prenatal alcohol exposure in rats affects retinoid metabolism in adult life, in a tissue- and sex

  12. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  13. Developmental Vitamin D3 deficiency alters the adult rat brain.

    PubMed

    Féron, F; Burne, T H J; Brown, J; Smith, E; McGrath, J J; Mackay-Sim, A; Eyles, D W

    2005-03-15

    There is growing evidence that Vitamin D(3) (1,25-dihydroxyvitamin D(3)) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D(3) deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D(3) deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D(3) deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D(3) deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-A(alpha4). We conclude that transient early life hypovitaminosis D(3) not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitaminosis D(3) in women of child-bearing age, the public health implications of these findings warrant attention. PMID:15763180

  14. Decline of taste sensitivity in protein deficient adult rats.

    PubMed

    Ohara, I; Tabuchi, R; Kimura, M; Itokawa, Y

    1995-05-01

    The influence of dietary protein levels on taste sensitivity was studied in adult rats. Low protein diets of 0.0, 2.5, or 5.0% purified egg protein (PEP) were fed to animals for 28 days. Two bottle choice preference tests between aqueous solutions of either 2, 9, 17, or 86 mM sodium chloride and deionized water were conducted in an ascending order on days 14, 16, 18, and 20. Urine samples were collected for zinc and creatinine analysis. Blood samples were also collected for measuring serum zinc and creatinine concentrations. Scanning electron microscopy was performed to observe rats' tongue epithelia. Protein free diet group showed significantly lower taste sensitivity and renal reabsorption rate than other protein containing diet groups, while serum zinc and creatinine concentrations, and creatinine clearance were not affected by dietary protein level. Degeneration of filiform papillae and imperforation of taste pore of fungiform papillae were observed in protein free diet group. This experiment implies at least 2.5% dietary protein is required to manifest normal taste function in the adult. PMID:7610145

  15. Decline of taste sensitivity in protein deficient adult rats.

    PubMed

    Ohara, I; Tabuchi, R; Kimura, M; Itokawa, Y

    1995-05-01

    The influence of dietary protein levels on taste sensitivity was studied in adult rats. Low protein diets of 0.0, 2.5, or 5.0% purified egg protein (PEP) were fed to animals for 28 days. Two bottle choice preference tests between aqueous solutions of either 2, 9, 17, or 86 mM sodium chloride and deionized water were conducted in an ascending order on days 14, 16, 18, and 20. Urine samples were collected for zinc and creatinine analysis. Blood samples were also collected for measuring serum zinc and creatinine concentrations. Scanning electron microscopy was performed to observe rats' tongue epithelia. Protein free diet group showed significantly lower taste sensitivity and renal reabsorption rate than other protein containing diet groups, while serum zinc and creatinine concentrations, and creatinine clearance were not affected by dietary protein level. Degeneration of filiform papillae and imperforation of taste pore of fungiform papillae were observed in protein free diet group. This experiment implies at least 2.5% dietary protein is required to manifest normal taste function in the adult.

  16. Acute behavioral toxicity of carbaryl and propoxur in adult rats.

    PubMed

    Ruppert, P H; Cook, L L; Dean, K F; Reiter, L W

    1983-04-01

    Motor activity and neuromotor function were examined in adult CD rats exposed to either carbaryl or propoxur, and behavioral effects were compared with the time course of cholinesterase inhibition. Rats received an IP injection of either 0, 2, 4, 6 or 8 mg/kg propoxur or 0, 4, 8, 16 or 28 mg/kg carbaryl in corn oil 20 min before testing. All doses of propoxur reduced 2 hr activity in a figure-eight maze, and crossovers and rears in an open field. For carbaryl, dosages of 8, 16 and 28 mg/kg decreased maze activity whereas 16 and 28 mg/kg reduced open field activity. In order to determine the time course of effects, rats received a single IP injection of either corn oil, 2 mg/kg propoxur or 16 mg/kg carbaryl, and were tested for 5 min in a figure-eight maze either 15, 30, 60, 120 or 240 min post-injection. Immediately after testing, animals were sacrificed and total cholinesterase was measured. Maximum effects of propoxur and carbaryl on blood and brain cholinesterase and motor activity were seen within 15 min. Maze activity had returned to control levels within 30 and 60 min whereas cholinesterase levels remained depressed for 120 and 240 min for propoxur and carbaryl, respectively. These results indicate that both carbamates decrease motor activity, but behavioral recovery occurs prior to that of cholinesterase following acute exposure.

  17. Effect of exposure to diazinon on adult rat's brain.

    PubMed

    Rashedinia, Marzieh; Hosseinzadeh, Hossein; Imenshahidi, Mohsen; Lari, Parisa; Razavi, Bibi Marjan; Abnous, Khalil

    2016-04-01

    Diazinon (DZN), a commonly used agricultural organophosphate insecticide, is one of the major concerns for human health. This study was planned to investigate neurotoxic effects of subacute exposure to DZN in adult male Wistar rats. Animals received corn oil as control and 15 and 30 mg/kg DZN orally by gastric gavage for 4 weeks. The cerebrum malondialdehyde and glutathione (GSH) contents were assessed as biomarkers of lipid peroxidation and nonenzyme antioxidants, respectively. Moreover, activated forms of caspase 3, -9, and Bax/Bcl-2 ratios were evaluated as key apoptotic proteins. Results of this study suggested that chronic administration of DZN did not change lipid peroxidation and GSH levels significantly in comparison with control. Also, the active forms of caspase 3 and caspase 9 were not significantly altered in DZN-treated rat groups. Moreover, no significant changes were observed in Bax and Bcl-2 ratios. This study indicated that generation of reactive oxygen species was probably modulated by intracellular antioxidant system. In conclusion, subacute oral administration of DZN did not alter lipid peroxidation. Moreover, apoptosis induction was not observed in rat brain.

  18. Effect of MPEP in Morris water maze in adult and old rats.

    PubMed

    Car, Halina; Stefaniuk, Radosław; Wiśniewska, Róza J

    2007-01-01

    The present investigation assessed the effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on acquisition and reference memory in the Morris water maze in young adult rats aged 3-month and old rats aged 26-month. MPEP reduced the swim speed of the young adult rats during acquisition, shortened the distance they covered and reduced their swim speed in the probe trial. The untreated old rats had impaired acquisition of spatial learning, shortened distance and a lower swim speed in the probe trial in comparison with young rats. MPEP did not influence the activity of the old rats in the water maze. In summary, MPEP did not influence acquisition of spatial learning and reference memory in the young adult and old rats.

  19. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Metachronous Bilateral Testicular Leydig-Like Tumors Leading to the Diagnosis of Congenital Adrenal Hyperplasia (Adrenogenital Syndrome)

    PubMed Central

    Vukina, Josip; Chism, David D.; Sharpless, Julie L.; Raynor, Mathew C.; Milowsky, Matthew I.; Funkhouser, William K.

    2015-01-01

    A 33-year-old male with a history of left testis Leydig cell tumor (LCT), 3-month status after left radical orchiectomy, presented with a rapidly enlarging (0.6 cm to 3.7 cm) right testicular mass. He underwent a right radical orchiectomy, sections interpreted as showing a similar Leydig cell-like oncocytic proliferation, with a differential diagnosis including metachronous bilateral LCT and metachronous bilateral testicular tumors associated with congenital adrenal hyperplasia (a.k.a. “testicular adrenal rest tumors” (TARTs) and “testicular tumors of the adrenogenital syndrome” (TTAGS)). Additional workup demonstrated a markedly elevated serum adrenocorticotropic hormone (ACTH) and elevated adrenal precursor steroid levels. He was diagnosed with congenital adrenal hyperplasia, 3β-hydroxysteroid dehydrogenase deficiency (3BHSD) type, and started on treatment. Metachronous bilateral testicular masses in adults should prompt consideration of adult presentation of CAH. Since all untreated CAH patients are expected to have elevated serum ACTH, formal exclusion of CAH prior to surgical resection of a testicular Leydig-like proliferation could be accomplished by screening for elevated serum ACTH. PMID:26351608

  1. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  2. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    PubMed

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  3. Polygonal networks, "geodomes", of adult rat hepatocytes in primary culture.

    PubMed

    Mochizuki, Y; Furukawa, K; Mitaka, T; Yokoi, T; Kodama, T

    1988-01-01

    Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices. PMID:3396075

  4. Cysteamine reduces serum gonadotropin concentrations in adult male rats.

    PubMed

    Badger, T M; Sagar, S M; Millard, W J; Martin, J B; Rosenblum, P

    1982-01-18

    We have examined the effects of cysteamine on the hypothalamic-pituitary-gonadal axis of the adult male rat. A single subcutaneous injection of cysteamine (300 mg/kg) reduces significantly (p less than or equal to 0.05 serum concentrations of LH, FSH and T. Cysteamine blocked LH secretion induced by castration and administration of naloxone and LHRH. Neither acute nor chronic treatment (7 days) altered the hypothalamic LHRH content. These results suggest that cysteamine acts to reduce pituitary responsiveness to LHRH, resulting in lower mean serum gonadotropin and testosterone concentrations. It is possible, however, that cysteamine acts also at the hypothalamus to reduce LHRH secretion and/or at the testes to reduce testosterone release.

  5. Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats.

    PubMed

    Krause, A; Nowak, Z; Srbu, R; Bell, H J

    2016-10-01

    In the present study we investigated the pattern and efficacy of respiratory autoresuscitation in spontaneously breathing adult male rats across three separate anesthetic backgrounds. Each animal was administered one of three injectable anesthetics to achieve a surgical plane of anesthesia: ketamine-xylazine (KET, n=10), pentobarbital (PEN, n=10), or urethane (URE, n=10). Animals were tracheostomized and equipped with a femoral artery catheter to record airflow and arterial pressures. In response to a bout of breathing anoxic air, none of the 10 URE animals were able to mount a successful autoresuscitation response. In contrast, all KET and PEN animals survived all four consecutive anoxic exposures, restoring eupneic breathing in all cases. Moreover, only 4/10 URE animals expressed gasping breaths following the onset of respiratory arrest, and these were temporally delayed (p<0.001) and much smaller in volume (P≤0.012) compared to KET and PEN animals. URE animals showed no clear aberrations in their cardiovascular responses to anoxia, with the exception of lower arterial pulse pressures compared to either KET or PEN animals at specific points following RA. Ketamine-xylazine and pentobarbital anesthesia can be reliably and effectively used to create models for the study of autoresuscitation in adult rats. In contrast, urethane causes catastrophic failure of respiratory autoresuscitation, by delaying or outright preventing the elaboration of gasping breaths following anoxia-induced respiratory arrest. The neuronal and synaptic alterations accompanying urethane anesthesia may therefore provide a means of understanding potential pathological alterations in rhythm generation that can predispose the respiratory control system to failed autoresuscitation following an episode of acute severe hypoxemia. PMID:27378495

  6. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  7. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.

  8. Disturbance in Testosterone Production in Leydig Cells by Polycyclic Aromatic Hydevrepocarbons

    PubMed Central

    Oh, Seunghoon

    2014-01-01

    Polycyclic aromatic hydevrepocarbons (PAHs), which are ubiquitous in the air, are present as volatile and particulate pollutants that result from incomplete combustion. Most PAHs have toxic, mutagenic, and/or carcinogenic properties. Among PAHs, benzo[a]pyrene (B[a]P) and dimethylbenz[a]anthracene (DMBA) are suspected endocrine disruptors. The testis is an important target for PAHs, yet effects on steroidogenesis in Leydig cells are yet to be ascertained. Particularly, disruption of testosterone production by these chemicals can result in serious defects in male reproduction. Exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. Of note, the testosterone level reductions were accompanied by decreased steroidogenic acute regulatory protein (StAR) and 3β-hydevrepoxysteroid dehydevrepogenase isomerase (3β-HSD) expression in Leydig cells. B[a]P exposure can decrease epididymal sperm quality, possibly by disturbing the testosterone level. StAR may be a key steroidogenic protein that is targeted by B[a]P or other PAHs. PMID:25949189

  9. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    PubMed Central

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation. PMID:27428949

  10. Identification, localization and developmental studies of rat prepro thyrotropin-releasing hormone mRNA in the testis.

    PubMed

    Feng, P; Gu, J; Kim, U J; Carnell, N E; Wilber, J F

    1993-02-01

    Thyrotropin-releasing hormone (TRH) plays the central regulatory role in the hypothalamic-pituitary-thyroid axis, but is also present in many extra-hypothalamic loci. The adult rat testis has been identified previously as a source of hypothalamic neuropeptides including TRH. To investigate whether the TRH gene is transcribed in testis, the identification and localization of prepro(pp) TRH mRNA and TRH were studied. Northern blot analyses of ppTRH mRNA in the adult rat testis showed a 2.0 kb band, hybridized with a ppTRH cRNA probe. This band was 0.4 kb greater than the 1.6 kb hypothalamic band. The concentration of ppTRH mRNA in the adult testis was approximately 13% of that found in the hypothalamus. Developmental studies of testicular ppTRH mRNA revealed that no ppTRH mRNA could be detected at the earliest stage (day 8). However, hybridization signals were detected on day 20 and increased progressively on days 35, 45 and 70 by 5.8, 6.4, and 9.8-fold, respectively. In addition, ppTRH mRNA was determined in Leydig cells by Northern analyses of elutriated testicular cell fractions. TRH was also measured in the rat testes at different developmental stages by RIA. TRH concentrations paralleled ppTRH mRNA during development. TRH was localized to Leydig cells by immunohistochemistry. These results indicate that ppTRH mRNA and TRH are present in the rat testis, especially in the Leydig cells. The changes of ppTRH gene expression and the concentration of TRH in the rat testis are developmentally dependent. TRH may function as a new paracrine or autocrine regulator of testicular function.

  11. Comparison of electroretinographic responses between two different age groups of adult Dark Agouti rats

    PubMed Central

    Fu, Lin; Lo, Amy Cheuk Yin; Lai, Jimmy Shiu Ming; Shih, Kendrick Co

    2015-01-01

    AIM To describe and compare the differences in electroretinographic responses between two different age groups of adult Dark Agouti (DA) rats and to better understand the effect of age on retinal histology and function. METHODS The electroretinographic responses of two different age groups of adult DA rats were compared. Animals were divided into younger adult DA rats 10-12wk (n=8) and older adult DA rats 17-19wk (n=8). Full field electroretinography (ERG) was recorded simultaneously from both eyes after dark adaption and light adaption and parameters including the positive scotopic threshold response (pSTR), negative scotopic threshold response (nSTR), scotopic a-wave, b-wave, photopic a-wave, b-wave and photopic negative response (PhNR) were compared between groups. RESULTS The older adult rats displayed lower stimulation thresholds of the STRs (pSTR and nSTR) and higher amplitudes of pSTR, scotopic a-wave and b-wave, photopic b-wave and PhNR amplitudes, with shorter implicit times. Photopic a-wave amplitudes were however higher in the younger adult rats. CONCLUSION In summary, for the rod system, photoreceptor, bipolar cell and RGC activity was enhanced in the older adult rats. For the cone system, RGC and bipolar cell activity was enhanced, while photoreceptor activity was depressed in the older adult rats. Such age-related selective modification of retinal cell function needs to be considered when conducting ophthalmic research in adult rats. PMID:26558198

  12. Neonatal injections of methoxychlor decrease adult rat female reproductive behavior.

    PubMed

    Bertolasio, Jennifer; Fyfe, Susanne; Snyder, Ben W; Davis, Aline M

    2011-12-01

    Methoxychlor (MXC), a commonly used pesticide, has been labeled as an endocrine disruptor. To evaluate the impact of neonatal exposure to MXC on female reproduction, female Sprague-Dawley rats were given subcutaneous injections on postnatal days 1, 3, and 5. The injections contained 1.0mg MXC, 2.0mg MXC, 10 μg 17β-estradiol benzoate (positive control), or sesame oil (vehicle). The injections of MXC had no effect on anogenital distance or day of vaginal opening. Treatment with either 2.0mg MXC or estradiol significantly increased the total number of days with vaginal keratinization. Treatment with MXC had no effect on ability to exhibit a mating response as an adult female, although the high dose MXC (2.0) and the positive control (estradiol) animals demonstrated a decrease in degree of receptivity, a decrease in proceptive behavior and an increase in rejection behavior. These data suggest that higher doses of MXC given directly to pups during the neonatal period can act as an estrogen and alter aspects of the nervous system, impacting adult reproductive characteristics.

  13. Effect of MDMA (ecstasy) on activity and cocaine conditioned place preference in adult and adolescent rats.

    PubMed

    Aberg, Maria; Wade, Dean; Wall, Erin; Izenwasser, Sari

    2007-01-01

    MDMA (ecstasy) is a drug commonly used in adolescence, and many users of MDMA also use other illicit drugs. It is not known whether MDMA during adolescence alters subsequent responses to cocaine differently than in adults. This study examined the effects of MDMA in adolescent and adult rats on cocaine conditioned reward. At the start of these experiments, adolescent rats were at postnatal day (PND) 33 and adult rats at PND 60. Each rat was treated for 7 days with MDMA (2 or 5 mg/kg/day or vehicle) and locomotor activity was measured. Five days later cocaine conditioned place preference (CPP) was begun. Rats were trained for 3 days, in the morning with saline and in the afternoon with 10 mg/kg cocaine in 30 min sessions, and tested on the fourth day. MDMA stimulated activity in both age groups, but with a greater effect in the adult rats. Sensitization to the locomotor-stimulant effects of the lower dose of MDMA occurred in adult rats and in both groups to the higher dose. Cocaine did not produce a CPP in vehicle-treated adolescent rats, but a significant CPP was observed subsequent to treatment with MDMA. In contrast, cocaine-induced CPP was diminished after MDMA in adult rats. These effects were still evident 2 weeks later upon retest. Thus, under the present conditions, MDMA increased cocaine conditioned reward in adolescent and decreased it in adult rats. These findings suggest that exposure to MDMA during this critical developmental period may carry a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of stimulant abuse after use of MDMA.

  14. Leukemia inhibitory factor antagonizes gonadotropin induced-testosterone synthesis in cultured porcine leydig cells: sites of action.

    PubMed

    Mauduit, C; Goddard, I; Besset, V; Tabone, E; Rey, C; Gasnier, F; Dacheux, F; Benahmed, M

    2001-06-01

    /hCG-induced steroidogenic acute regulatory protein messenger RNA levels. The maximal inhibitory effect was obtained with 6.6 ng/ml of LIF after 48 h of treatment. In contrast, LIF had no effect on PBR messenger RNA expression or PBR binding. This inhibitory effect of LIF on Leydig cell steroidogenesis is probably exerted via an auto/paracrine action of the cytokine. Indeed, by immunohistochemistry, LIF and LIF receptor proteins were identified in Leydig and Sertoli cells but not in other testicular cell types, except for LIF receptor in spermatogonia. Furthermore, the presence of LIF and its receptor in Leydig cells at the neonatal and adult periods suggests that the inhibitory effect of LIF on androgen formation reported here probably occurs in both the fetal and the adult Leydig cell populations during testicular development.

  15. Autoantibodies against Leydig cells in patients after spermatic cord torsion.

    PubMed Central

    Zanchetta, R; Mastrogiacomo, I; Graziotti, P; Foresta, C; Betterle, C

    1984-01-01

    This study is aimed at searching for the presence of circulating antibodies against frozen sections of human testis, ovary and trophoblast in patients that had spermatic cord torsion. Sixty-eight sera samples were studied. Nine patients (13.2%) were positive for organ specific anti-testis autoantibodies. Six patients were positive for antibodies against Leydig cells: five were positive only with the indirect immunofluorescence technique of complement fixing (ITT/CF), the sixth patient was positive only with the indirect immunofluorescence technique (ITT). The other three patients were positive for antibodies against germ line cells: two patients were positive with both techniques, the third was positive only with indirect immunofluorescence technique. Eight of these patients were negative for antibodies against adrenal cortex while only one case was positive with indirect immunofluorescence technique both on adrenal cortex and Leydig cells. Human lyophilized testis absorbed the reactive antibodies against Leydig cells and germ line cells, while adrenal cortex and lyophilized testosterone were ineffective. This study shows the identification of a specific antibody against Leydig cells and germ line cells in patients after spermatic cord torsion. PMID:6362937

  16. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells.

    PubMed

    Nygaard, Marie Berg; Almstrup, Kristian; Lindbæk, Louise; Christensen, Søren Tvorup; Svingen, Terje

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about the formation and function of primary cilia in the mammalian testis. Here, we characterized primary cilia in adult human testis and report a constitutive expression of cilia in peritubular myoid cells and a dynamic expression of cilia in differentiating Leydig cells. Primary cilia are generally absent from cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components of Hedgehog signalling, including Smoothened, Patched-1, and GLI2, which are involved in regulating Leydig cell differentiation. Stimulation of Hedgehog signalling increases the localization of Smoothened to the cilium, which is followed by transactivation of the Hedgehog target genes, Gli1 and Ptch1. Our findings provide new information on the spatiotemporal formation of primary cilia in the testis and show that primary cilia in immature Leydig cells mediate Hedgehog signalling. PMID:25992706

  17. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells.

    PubMed

    Nygaard, Marie Berg; Almstrup, Kristian; Lindbæk, Louise; Christensen, Søren Tvorup; Svingen, Terje

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about the formation and function of primary cilia in the mammalian testis. Here, we characterized primary cilia in adult human testis and report a constitutive expression of cilia in peritubular myoid cells and a dynamic expression of cilia in differentiating Leydig cells. Primary cilia are generally absent from cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components of Hedgehog signalling, including Smoothened, Patched-1, and GLI2, which are involved in regulating Leydig cell differentiation. Stimulation of Hedgehog signalling increases the localization of Smoothened to the cilium, which is followed by transactivation of the Hedgehog target genes, Gli1 and Ptch1. Our findings provide new information on the spatiotemporal formation of primary cilia in the testis and show that primary cilia in immature Leydig cells mediate Hedgehog signalling.

  18. Nocturnal food-related hyperdipsia in the adult spontaneously hypertensive rat.

    PubMed

    Kraly, F S; Moore, A F; Miller, L A; Drexler, A

    1982-05-01

    Male adult spontaneously hypertensive rats (SHR) ate the same but drank more and had a higher water to food ratio (W:F) than did Wistar-Kyoto (WKY) rats in 24-hr when they had continuous access to standard laboratory pellets and tap water. When rats ate in the day phase of a 12:12 light/dark cycle after 24-hr food deprivation, SHR rats ate and drank the same ad did WKY rats in a 60-min test. When the same rats ate at night after 24-hr food deprivation, however, SHR rats were hyperdipsic: They ate the same as did WKY rats, but SHR rats drank more and had a higher W:F. This relative hyperdipsia reflected the increased ability of ingestion of food to stimulate drinking in SHR, because when food was absent for a 60-min test at night SHR drank the same as did WKY rats. Three dipsogens which are candidate components for eating-elicited drinking in the rat, cellular dehydration, histamine and angiotensin II, elicited drinking differentially in SHR and WKY rats: SHR drank more than did WKY rats in response to (1) cellular dehydration produced by IP hypertonic saline, (2) large doses of SC histamine, and (3) SC angiotensin II. These results demonstrate that SHR exhibit a nocturnal food-related hyperdipsia which may reflect differential sensitivity to stimuli important for eating-elicited drinking such as increased osmolality and endogenous histamine or angiotensin.

  19. Differences in Response Initiation and Behavioral Flexibility Between Adolescent and Adult Rats

    PubMed Central

    Simon, Nicholas W.; Gregory, Timothy A.; Wood, Jesse; Moghaddam, Bita

    2014-01-01

    Adolescence is a period of increased vulnerability to psychiatric illnesses such as addiction, mood disorders, and schizophrenia. Rats provide a useful animal model for investigating the differences in behavior and biology between adults and adolescents that stem from ongoing brain development. We developed the Cued Response Inhibition Task, or CRIT, to assess response inhibition and initiation processes by measuring the ability of rodents to withhold a response during an inhibitory cue and then to respond promptly after cue termination. We found no difference between adult and adolescent rats in the ability to appropriately inhibit a response during cue presentation. Adolescents, however, were unable to initiate a response as quickly as adults after cue termination. Further, we observed that this difference in responding was abolished after adolescent rats aged to adulthood with no additional training. In a separate experiment, adult and adolescent rats were trained in CRIT and then trained in another protocol in which the response inhibitory cue from CRIT was used as a Pavlovian cue predictive of reward. Adolescents demonstrated more reward-seeking behavior during the previously inhibitory Pavlovian cue than adults, indicative of greater behavioral flexibility. Taken together, these data suggest that, compared with adults, adolescent rats (a) are less able to initiate a response after response inhibition, (b) equally inhibit behavioral responses, and (c) are more adept at flexibly switching behavioral patterns. Furthermore, this study characterizes a task that is well suited for future pharmacological and electrophysiological investigations for assessing neuronal processing differences between adolescents and adults. PMID:23398439

  20. Accumulation of glycogen in axotomized adult rat facial motoneurons.

    PubMed

    Takezawa, Yosuke; Baba, Otto; Kohsaka, Shinichi; Nakajima, Kazuyuki

    2015-06-01

    This study biochemically determined glycogen content in the axotomized facial nucleus of adult rats up to 35 days postinsult. The amounts of glycogen in the transected facial nucleus were significantly increased at 5 days postinsult, peaked at 7 days postinsult, and declined to the control levels at 21-35 days postinsult. Immunohistochemical analysis with antiglycogen antibody revealed that the quantity of glycogen granules in the axotomized facial nucleus was greater than that in the control nucleus at 7 days postinjury. Dual staining methods with antiglycogen antibody and a motoneuron marker clarified that the glycogen was localized mainly in motoneurons. Immunoblotting and quantification analysis revealed that the ratio of inactive glycogen synthase (GS) to total GS was significantly decreased in the injured nucleus at about 1-3 days postinsult and significantly increased from 7 to 14 days postinsult, suggesting that glycogen is actively synthesized in the early period postinjury but suppressed after 7 days postinsult. The enhanced glycogen at about 5-7 days postinsult is suggested to be responsible for the decrease in inactive GS levels, and the decrease of glycogen after 7 days postinsult is considered to be caused by increased inactive GS levels and possibly the increase in active glycogen phosphorylase.

  1. Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin).

    PubMed

    Barron, Elyssa; Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2009-01-01

    Eight groups of male adolescent and adult spontaneous hyperactive rats (SHR) were used in a dose response (saline, 0.6, 2.5, and 10 mg/kg) experiment of methylphenidate (MPD). Four different locomotor indices were recorded for 2 hours postinjection using a computerized monitoring system. Acutely, the 0.6 mg/kg dose of MPD did not elicit an increase in locomotor activity in either the adolescent or in the adult male SHR. The 2.5 and the 10.0 mg/kg doses increased activity in the adolescent and the adult rats. Chronically, MPD treatment when comparing adolescent and adult gave the following results: the 0.6 mg/kg dose of MPD failed to cause sensitization in the adolescent group but caused sensitization in the adult group, while the 2.5 and 10 mg/kg both caused sensitization in the adolescent and adult groups.

  2. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  3. Effects of long-term methylphenidate treatment in adolescent and adult rats on hippocampal shape, functional connectivity and adult neurogenesis.

    PubMed

    van der Marel, K; Bouet, V; Meerhoff, G F; Freret, T; Boulouard, M; Dauphin, F; Klomp, A; Lucassen, P J; Homberg, J R; Dijkhuizen, R M; Reneman, L

    2015-11-19

    Methylphenidate (MPH) is a widely prescribed stimulant drug for the treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents. Its use in this age group raises concerns regarding the potential interference with ongoing neurodevelopmental processes. Particularly the hippocampus is a highly plastic brain region that continues to develop postnatally and is involved in cognition and emotional behavior, functions known to be affected by MPH. In this study, we assessed whether hippocampal structure and function were affected by chronic oral MPH treatment and whether its effects were different in adolescent or adult rats. Using behavioral testing, resting-state functional MRI, post-mortem structural magnetic resonance imaging (MRI), and immunohistochemistry, we assessed MPH's effects on recognition memory, depressive-like behavior, topological features of functional connectivity networks, hippocampal shape and markers for hippocampal neurogenesis and proliferation. Object recognition memory was transiently impaired in adolescent treated rats, while in animals treated during adulthood, increased depressive-like behavior was observed. Neurogenesis was increased in adolescent treated rats, whereas cell proliferation was decreased following adult treatment. Adolescent treated rats showed inward shape deformations adjacent to ventral parahippocampal regions known to be involved in recognition memory, whereas such deformations were not observed in adult treated animals. Irrespective of the age of treatment, MPH affected topological features of ventral hippocampal functional networks. Thus, chronic oral treatment with a therapeutically relevant dose of MPH preferentially affected the ventral part of the hippocampus and induced contrasting effects in adolescent and adult rats. The differences in behavior were paralleled by opposite effects on adult neurogenesis and granule cell proliferation.

  4. Differential Effects of Acute Alcohol on EEG and Sedative Responses in Adolescent and Adult Wistar Rats

    PubMed Central

    Pian, Jerry P.; Criado, Jose R.; Walker, Brendan M.; Ehlers, Cindy L.

    2008-01-01

    Age-related developmental differences in sensitivity to the acute effects of alcohol may play an important role in the development of alcoholism. The present study was designed to evaluate the acute effects of alcohol on cortical electroencephalogram (EEG) in adolescent (P36) and adult (P78) Wistar rats. Five minutes of EEG was recorded after administration of 0, 0.75 or 1.5 g/kg alcohol. The righting reflex was performed to measure the sedative effects of alcohol (3.5 g/kg) and total sleeping time for each rat. Our results showed that alcohol (1.5 g/kg) increased power in the 1–2 Hz band and decreased the power in the 32–50 Hz band in the parietal cortical region of adolescent rats. Alcohol (1.5 g/kg) also increased stability of the EEG power in the slow-wave frequency bands (2–4 Hz, 4–6 Hz, and 6–8 Hz) of adolescent rats. In the frontal cortex of adult rats, but not in adolescent rats, alcohol (1.5 or 0.75 g/kg) decreased the power in the 16–32 Hz frequency band. Alcohol (1.5 g/kg) differentially increased power in a multiple of slow-wave frequency bands (2–4 Hz and 4–6 Hz) in the parietal cortex of adult rats as compared to adolescent rats. Adolescent rats were shown significantly shorter sleeping time and higher blood alcohol levels after regaining reflex than adult rats. Our results provide additional evidence of age-related differences in the effects of acute alcohol on cortical EEG, sedation and tolerance. PMID:18191821

  5. Daily patterns of ethanol drinking in peri-adolescent and adult alcohol-preferring (P) rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Sable, Helen J K; Schultz, Jonathon A; Hsu, Cathleen C; Lumeng, Lawrence; Murphy, James M; McBride, William J

    2006-01-01

    Alcohol abuse among adolescents continues to be a major health problem for our society. Our laboratory has used the peri-adolescent alcohol-preferring, P, rat as an animal model of adolescent alcohol abuse. Even though peri-adolescent P rats consume more alcohol (g/kg/day) than their adult counterparts, it is uncertain whether their drinking is sufficiently aggregated to result in measurable blood ethanol concentrations (BECs). The objectives of this study were to examine daily alcohol drinking patterns of adolescent and adult, male and female P rats, and to determine whether alcohol drinking episodes were sufficiently aggregated to result in meaningful BECs. Male and female P rats were given 30 days of 24 h free-choice access to alcohol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a "lickometer" set-up. The results indicated that (a) peri-adolescent P rats consumed more water and total fluids than adult P rats, (b) female P rats consumed more water and total fluids than male P rats, (c) there were differences in alcohol, and water, licking patterns between peri-adolescent and adult and female and male P rats, (d) individual licking patterns revealed that alcohol was consumed in bouts often exceeding the amount required to self-administer 1 g/kg of alcohol, and (e) BECs at the end of the dark cycle, on the 30th day of alcohol access, averaged 50 mg%, with alcohol intakes during the last 1 to 2 h averaging 1.2 g/kg. Overall, these findings indicate that alcohol drinking patterns differ across the age and sex of P rats. This suggests that the effectiveness of treatments for reducing excessive alcohol intake may vary depending upon the age and/or sex of the subjects being tested.

  6. The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells.

    PubMed

    Mendoza-Villarroel, Raifish E; Robert, Nicholas M; Martin, Luc J; Brousseau, Catherine; Tremblay, Jacques J

    2014-07-01

    Testosterone production is dependent on cholesterol transport within the mitochondrial matrix, an essential step mediated by a protein complex containing the steroidogenic acute regulatory (STAR) protein. In steroidogenic Leydig cells, Star expression is hormonally regulated and involves several transcription factors. NR2F2 (COUP-TFII) is an orphan nuclear receptor that plays critical roles in cell differentiation and lineage determination. Conditional NR2F2 knockout prior to puberty leads to male infertility due to insufficient testosterone production, suggesting that NR2F2 could positively regulate steroidogenesis and Star expression. In this study we found that NR2F2 is expressed in the nucleus of some peritubular myoid cells and in interstitial cells, mainly in steroidogenically active adult Leydig cells. In MA-10 and MLTC-1 Leydig cells, small interfering RNA (siRNA)-mediated NR2F2 knockdown reduces basal steroid production without affecting hormone responsiveness. Consistent with this, we found that STAR mRNA and protein levels were reduced in NR2F2-depleted MA-10 and MLTC-1 cells. Transient transfections of Leydig cells revealed that a -986 bp mouse Star promoter construct was activated 3-fold by NR2F2. Using 5' progressive deletion constructs, we mapped the NR2F2-responsive element between -131 and -95 bp. This proximal promoter region contains a previously uncharacterized direct repeat 1 (DR1)-like element to which NR2F2 is recruited and directly binds. Mutations in the DR1-like element that prevent NR2F2 binding severely blunted NR2F2-mediated Star promoter activation. These data identify an essential role for the nuclear receptor NR2F2 as a direct activator of Star gene expression in Leydig cells, and thus in the control of steroid hormone biosynthesis.

  7. Franz von Leydig (1821-1908), pioneer of comparative histology.

    PubMed

    Schneider, Marlon R

    2012-05-01

    Franz von Leydig, a German histologist and zoologist, is known to every student of human or animal anatomy because of the testicular testosterone-producing cells carrying his name. However, he made many contributions to our knowledge of the fine structure of animal tissues, including more than 200 scientific articles and several books. His most important work, the book Lehrbuch der Histologie des Menschen und der Thiere, established him as a pioneer if not the founder of comparative histology. Leydig taught at three different universities (Würzburg, Tübingen and Bonn) and received many honours from scientific organizations worldwide, including the Royal Society. He died in Rothenburg ob der Tauber, the town of his birth, aged 86 years.

  8. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    SciTech Connect

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development.

  9. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    PubMed

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  10. Testosterone differentially alters cocaine-induced ambulatory and rearing behavioral responses in adult and adolescent rats

    PubMed Central

    Minerly, AnaChristina E.; Wu, Hui Bing K.; Weierstall, Karen M.; Niyomchai, Tipyamol; Kemen, Lynne; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-01-01

    Little is known about the physiological and behavioral effects of testosterone when co-administered with cocaine during adolescence. The present study aimed to determine whether exogenous testosterone administration differentially alters psychomotor responses to cocaine in adolescent and adult male rats. To this end, intact adolescent (30-days-old) and adult (60-day-old) male Fisher rats were pretreated with vehicle (sesame oil) or testosterone (5 or 10 mg/kg) 45 minutes prior to saline or cocaine (20 mg/kg) administration. Behavioral responses were monitored 1 hour after drug treatment, and serum testosterone levels were determined. Serum testosterone levels were affected by age: saline- and cocaine-treated adults in the vehicle groups had higher serum testosterone levels than adolescents rats, but after co-administration of testosterone the adolescent rats had higher serum testosterone levels than the adults. Pretreatment with testosterone affected baseline activity in adolescent rats: 5 mg/kg of testosterone increased both rearing and ambulatory behaviors in saline-treated adolescent rats. After normalizing data to % saline, an interaction between hormone administration and cocaine-induced behavioral responses was observed; 5 mg/kg of testosterone decreased both ambulatory and rearing behaviors among adolescents whereas 10 mg/kg of testosterone decreased only rearing behaviors. Testosterone pretreatment did not alter cocaine-induced behavioral responses in adult rats. These findings suggest that adolescents are more sensitive than adults to an interaction between testosterone and cocaine, and, indirectly, suggest that androgen abuse may lessen cocaine-induced behavioral responses in younger cocaine users. PMID:19822170

  11. Unpredictable chronic stress in juvenile or adult rats has opposite effects, respectively, promoting and impairing resilience.

    PubMed

    Ricon, T; Toth, E; Leshem, M; Braun, K; Richter-Levin, G

    2012-01-01

    We evaluated the effects of early maternal deprivation (MD; age 7-14 days) alone or in combination with unpredictable chronic stress (UCS; MDUN; 28-84 days) on anxiety and learning in 90 days old adult rats. We hypothesized that exposure to both stressors (MDUN) would be more detrimental than exposure to one or neither. Unexpectedly, adult rats from the MDUN group did not differ from control animals, whereas adult MD animals exhibited impaired avoidance learning. We next investigated the effect of juvenile-onset (30-90 days) versus adult-onset (60-90 days) stress on avoidance learning in adulthood (90 days). We found that adult-onset chronic stress impaired avoidance learning and memory whereas juvenile-onset stress did not. Thus, the results again indicate that juvenile exposure to UCS induces resilience rather than impairment.

  12. Tetrahydroisoquinoline alkaloids mimic direct but not receptor-mediated inhibitory effects of estrogens and phytoestrogens on testicular endocrine function. Possible significance for Leydig cell insufficiency in alcohol addiction

    SciTech Connect

    Stammel, W.; Thomas, H. ); Staib, W.; Kuehn-Velten, W.K. )

    1991-01-01

    Possible effects of various tetrahydroisoquinolines (TIQs) on rat testicular endocrine function were tested in vitro in order to prove whether these compounds may be mediators of the development of Leydig cell insufficiency. TIQ effects on different levels of regulation of testis function were compared in vitro with estrogen effects, since both classes of compounds have structural similarities. Gonadotropin-stimulated testosterone production by testicular Leydig cells was inhibited by tetrahydropapaveroline and isosalsoline, the IC{sub 50} values being comparable to those of estradiol, 2-hydroxyestradiol, and the phytoestrogens, coumestrol and genistein; salsolinol and salsoline were less effective, and salsolidine was ineffective. None of these TIQs interacted significantly with testicular estrogen receptor as analyzed by estradiol displacement. However, tetrahydropapaveroline, isosalsoline and salsolinol competitively inhibited substrate binding to cytochrome P45OXVII, with similar efficiency as the estrogens did; salsoline and salsolidine were again much less effective.

  13. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  14. Ethanol facilitation of short-term memory in adult rats with a disturbed circadian cycle.

    PubMed

    Mikolajczak, P; Okulicz-Kozaryn, I; Nowaczyk, M; Kaminska, E

    2001-01-01

    The aim of this study was to evaluate the effect of 3-month ethanol treatment on olfactory social memory test performance using two inter-exposure intervals [30 min: short-term recognition (STR); or 120 min: long-term recognition (LTR)] in adult rats with a disturbed circadian cycle (DCC). Ethanol treatment both in ethanol-preferring and -non-preferring groups improved the STR task compared to control rats. However, LTR procedure triggered the opposite tendency. Moreover, no differences between control rats with DCC and those with normal diurnal rhythm in STR and LTR paradigms were observed. Our results suggest that, under some conditions, alcohol facilitates short-term memory in adult rats. PMID:11468127

  15. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  16. Regeneration of central cholinergic neurones in the adult rat brain.

    PubMed

    Svendgaard, N A; Björklund, A; Stenevi, U

    1976-01-30

    The regrowth of lesioned central acetylcholinesterase (AChE)-positive axons in the adult rat was studied in irides implanted to two different brain sites: in the caudal diencephalon and hippocampus, and in the hippocampal fimbria. At both implantation sites the cholinergic septo-hippocampal pathways were transected. At 2-4 weeks after lesion, newly formed, probably sprouting fibres could be followed in abundance from the lesioned proximal axon stumps into the iris transplant. Growth of newly formed AChE-positive fibres into the transplant was also observed from lesioned axons in the anterior thalamus, and to a minor extent also from the dorsal and ventral tegmental AChE-positive pathways and the habenulo-interpeduncular tract. The regrowth process of the sprouting AChE-positive, presumed cholinergic fibres into the iris target was studied in further detail in whole-mount preparations of the transplants. For this purpose the irides were removed from the brain, unfolded, spread out on microscope slides, and then stained for AChE. During the first 2-4 weeks after transplantation the sprouting central fibres grew out over large areas of the iris. The new fibres branched profusely into a terminal plexus that covered maximally about half of the iris surface, and in some areas the patterning of the regenerated central fibres mimicked closely that of the normal autonomic cholinergic innervation of the iris. In one series of experiments the AChE-staining was combined with fluorescence histochemical visualization of regenerated adrenergic fibres in the same specimens. In many areas there was a striking congruence in the distributional patterns of the regenerated central cholinergic and adrenergic fibres in the transplant. This indicates that - as in the normal iris - the sprouting cholinergic axons (primarily originating in the lesioned septo-hippocampal pathways) and adrenergic axons (primarily originating in the lesioned axons of the locus neurones) regenerate together

  17. Dose related effects of nicotine on oxidative injury in young, adult and old rats.

    PubMed

    Jain, Anshu; Flora, S J S

    2012-03-01

    Nicotine affects a variety of cellular process ranging from induction of gene expression to secretion of hormones and modulation of enzymatic activities. The objective of the present study was to study the dose dependent toxicity of nicotine on the oxidative stress in young, adult and old rats which were administered 0.75, 3 and 6 mg kg(-1) nicotine as nicotine hydrogen tartarate intraperitoneally for a period of seven days. No changes were observed in blood catalase (CAT) activity and level of blood reactive oxygen species (ROS) in any of the age group at the lowest dose of nicotine. However, at the highest dose (6 mg kg(-1) nicotine) ROS level increased significantly from 1.17 to 1.41 microM ml(-1) in young rats and from 1.13 to 1.40 microM ml(-1) in old rats. However, no change was observed in blood ROS levels of adult rats. Administration of 3 mg kg(-1) nicotine resulted in an increase in level of reduced glutathione (GSH) in rats of all the age groups. The young animals were the most sensitive as a dose of 6 mg kg(-1) resulted in decline in the levels of reduced GSH to 0.89 mg ml(-1) as compared to normal control (1.03 mg ml(-1)). The antioxidant enzymes SOD and CAT were sensitive to a dose of 6 mg kg(-1) as it resulted in decline of the enzymatic activity in all age group animals. Also, administration of nicotine at a lower dose of 3 mg kg(-1) inhibited SOD activity from 1.48 to 1.20 units min(-1) mg(-1) protein in old rats. Catalase activity showed a similar trend at a dose of 3 mg kg(-1). Administration of nicotine also increased the blood lipid peroxidation levels at all three doses in young and old rats dose dependently. Nicotine exposure also increased ROS in brain at the doses of 3 and 6 mg kg(-1) in all the three age groups. Brain GSH decreased significantly at high dose of nicotine (6 mg kg(-1) b.wt.) in adult rats (4.27 mg g(-1)) and old rats (3.68 mg g(-1)) but in young rats level increased to 4.40 mg g(-1) at the lower dose (0.75 mg kg nicotine

  18. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  19. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  20. CYP 450 enzyme induction by chronic oral musk xylene in adult and developing rats.

    PubMed

    Suter-Eichenberger, R; Boelsterli, U A; Conscience-Egli, M; Lichtensteiger, W; Schlumpf, M

    2000-04-10

    Developmental and adult toxicity of musk xylene was studied in Long Evans (LE) rats fed with chow containing musk xylene (MX) in food pellets in concentrations of 1 mg, 10 mg, 33 mg, 100 mg and 1000 mg MX per 1 kg chow corresponding to a daily intake of 0.07-0.08 mg MX/kg up to 70-80 mg MX/kg body weight. Adult male and female rats were MX exposed for a minimum of 10 weeks before mating. Exposure continued throughout pregnancy, birth and lactation. The effects of MX on CYP1A1/1A2 were studied in liver microsomes by EROD (7-ethoxyresorufin-rosomes deethylase) for CYP1A1 and by MROD (methoxyresorufin-o-demethylase) for CYP1A2 activity and by Western blotting. MX induced these enzymes dose dependently in adult and developing rats at PN (postnatal day) 1 and 14. The lowest effective maternal dose was 2-3 mg MX/kg/day. Western blot data of CYP2B and CYP3A indicated the induction of both P450 enzyme proteins in developing rats at PN 14 at the higher dose of 70-80 mg MX/kg/day. In contrast, upon high MX exposure CYP2B but not CYP3A was found to be induced in adult first generation male and female rats, indicating differential sensitivity to MX in development.

  1. CYP 450 enzyme induction by chronic oral musk xylene in adult and developing rats.

    PubMed

    Suter-Eichenberger, R; Boelsterli, U A; Conscience-Egli, M; Lichtensteiger, W; Schlumpf, M

    1999-12-20

    Developmental and adult toxicity of musk xylene was studied in Long Evans (LE) rats fed with chow containing musk xylene (MX) in food pellets in concentrations of 1 mg, 10 mg, 33 mg, 100 mg and 1000 mg MX per 1 kg chow corresponding to a daily intake of 0.07-0.08 mg MX/kg up to 70-80 mg MX/kg body weight. Adult male and female rats were MX exposed for a minimum of 10 weeks before mating. Exposure continued throughout pregnancy, birth and lactation. The effects of MX on CYP1A1/1A2 were studied in liver microsomes by EROD (7-ethoxyresorufin-o-deethylase) for CYP1A1 and by MROD (methoxyresorufin-o-demethylase) for CYP1A2 activity and by Western blotting. MX induced these enzymes dose dependently in adult and developing rats at PN (postnatal day) 1 and 14. The lowest effective maternal dose was 2-3 mg MX/kg/day. Western blot data of CYP2B and CYP3A indicated the induction of both P450 enzyme proteins in developing rats at PN 14 at the higher dose of 70-80 mg MX/kg/day. In contrast, upon high MX exposure CYP2B but not CYP3A was found to be induced in adult first generation male and female rats, indicating differential sensitivity to MX in development.

  2. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  3. Vitamin A Kinetics in Neonatal Rats vs. Adult Rats: Comparisons from Model-Based Compartmental Analysis12

    PubMed Central

    Tan, Libo; Green, Michael H; Ross, A Catharine

    2015-01-01

    A critical role for vitamin A (VA) in development is well established, but still relatively little is known about whole-body VA metabolism in early postnatal life. Recently, methods of mathematical modeling have begun to shed light on retinol kinetics in the postnatal growth period and on the effect of retinoid supplementation on retinol kinetics. Comparison of kinetic parameters from tracer studies in neonatal rats with those previously determined in models of VA metabolism in the adult suggests both similarities and differences in the relative transfer rates of plasma retinol to extrahepatic tissues, resulting in similarities and differences in kinetic parameters and inferences about physiologic processes. Similarities between neonatal and adult models include the capacity for efficient digestion and absorption of VA; characteristics of a high-response system; extensive retinol recycling among liver, plasma, and extrahepatic tissues; and comparable VA disposal rates. Differences between neonatal and adult models include that, in neonates, retinol turnover is faster and retinol recycling is much more extensive; there is a greater role for extrahepatic tissues in the uptake of chylomicron VA; and the intestine plays an important role in chylomicron VA uptake, especially in neonatal rats treated with a supplement containing VA. In summary, retinol kinetic modeling in the neonatal rat has provided a first view of whole-body VA metabolism in this age group and suggests that VA kinetics in neonatal rats differs in many ways from that in adults, perhaps reflecting an adaption to the lower VA concentration found in neonates compared with adults. PMID:25540407

  4. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats.

    PubMed

    Lamoureux, Jeffrey A; Meck, Warren H; Williams, Christina L

    2008-12-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development.

  5. Prenatal choline availability alters the context sensitivity of Pavlovian conditioning in adult rats

    PubMed Central

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3–4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline availability significantly altered the contextual control of these learned behaviors. Both control and choline-deprived rats exhibited context specificity of conditioned excitation as exhibited by a loss in responding when tested in an alternate context after conditioning; in contrast, choline-supplemented rats showed no such effect. When switched to a different context following extinction, however, both choline-supplemented and control rats showed substantial contextual control of responding, whereas choline-deficient rats did not. These data support the view that configural associations that rely on hippocampal function are selectively sensitive to prenatal manipulations of dietary choline during prenatal development. PMID:19050158

  6. Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats

    PubMed Central

    Adjene, Josiah Obaghwarhievwo; Ezeoke, Joseph Chigozie; Nwose, Ezekiel Uba

    2010-01-01

    Background: Health concerns over soda pop drinks have been severally report. However, histological perspectives are not very common. Aim: The objective of this study is to investigate histological effect of chronic consumption of soda pop drinks on the kidney of adult Wistar rats. Materials and methods: The rats of both sexes (n = 24), with average weight of 200g were randomly assigned into two treatment (A & B) (n=16) and Control (c) (n=8) groups. The rats in the treatment group (A) received a brand of soda pop drink on a daily basis for thirty days. The rats in treatment group (B) received another brand of soda drink, while the control group (C) received equal amount of water for the same period. The rats were given the drinks as well as feeds liberally for thirty days, and sacrificed by cervical dislocation on the thirty-first day of the experiment. The kidney was carefully dissected out and quickly fixed in 10% formal saline for histological study. Results: The findings indicate that rats in the treated groups (A&B) showed some varying degree of distortion and disruption of the renal structure. There are observable diffuse signs of glomerulonephritis with some congestion and tubular necrosis as compared to the control group. Conclusion: Chronic consumption of soda pop drinks may affect the microanatomy of the kidney of adult Wistar rats. Further study aimed at corroborating these observations in humans is warranted. PMID:22574291

  7. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  8. RODENT LEYDIG CELL TUMORIGENESIS: A REVIEW OF THE PHYSIOLOGY, PATHOLOGY, MECHANISMS, AND RELEVANCE TO HUMANS

    EPA Science Inventory

    Leydig cells (LCs) are the cells of the testis that have as their primary function the production of testosterone. LCs are a common target of compounds tested in rodent carcinogenicity bioassays. The number of reviews on Leydig cell tumors (LCTs) has increased in recent years bec...

  9. Different adaptation of the motor activity rhythm to chronic phase shifts between adolescent and adult rats.

    PubMed

    Albert, Nerea; da Silva, Crhistiane; Díez-Noguera, Antoni; Cambras, Trinitat

    2013-09-01

    Chronic phase shifts is a common feature in modern societies, which may induce sleep alterations and other health problems. The effects of phase shift on the circadian rhythms have been described to be more pronounced in old than in young animals. However, few works address the effects of chronic phase shifts during adolescence. Here we tested the development of the motor activity circadian rhythm of young rats under chronic phase shifts, which consisted on 6-h advances (A), 6h delays (D) or 6h advances and delays alternated every 5 days (AD) during the first 60 days after weaning. Moreover, the rhythmic pattern was compared to that of adult rats under the same lighting conditions. Results indicate that adolescent rats, independently on the lighting environment, developed a clear circadian rhythm, whose amplitude increased the first 50 days after weaning and showed a more stable circadian rhythm than adults under the same lighting conditions. In the case of A and AD groups, circadian disruption was observed only in adult rats. In all groups, the offset of activity correlated with light pattern better than the onset, and this correlation was always higher in the case of the rhythm of the pubertal rats. When AD groups were transferred to constant darkness, the group submitted to this condition during adolescence showed shorter period than that submitted in their adulthood. In conclusion, differently from adult rats, adolescent rats submitted to chronic phase shifts did not show circadian disruption and developed a single circadian rhythm, suggesting permanent changes in the circadian system.

  10. Different adaptation of the motor activity rhythm to chronic phase shifts between adolescent and adult rats.

    PubMed

    Albert, Nerea; da Silva, Crhistiane; Díez-Noguera, Antoni; Cambras, Trinitat

    2013-09-01

    Chronic phase shifts is a common feature in modern societies, which may induce sleep alterations and other health problems. The effects of phase shift on the circadian rhythms have been described to be more pronounced in old than in young animals. However, few works address the effects of chronic phase shifts during adolescence. Here we tested the development of the motor activity circadian rhythm of young rats under chronic phase shifts, which consisted on 6-h advances (A), 6h delays (D) or 6h advances and delays alternated every 5 days (AD) during the first 60 days after weaning. Moreover, the rhythmic pattern was compared to that of adult rats under the same lighting conditions. Results indicate that adolescent rats, independently on the lighting environment, developed a clear circadian rhythm, whose amplitude increased the first 50 days after weaning and showed a more stable circadian rhythm than adults under the same lighting conditions. In the case of A and AD groups, circadian disruption was observed only in adult rats. In all groups, the offset of activity correlated with light pattern better than the onset, and this correlation was always higher in the case of the rhythm of the pubertal rats. When AD groups were transferred to constant darkness, the group submitted to this condition during adolescence showed shorter period than that submitted in their adulthood. In conclusion, differently from adult rats, adolescent rats submitted to chronic phase shifts did not show circadian disruption and developed a single circadian rhythm, suggesting permanent changes in the circadian system. PMID:23792134

  11. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Fisher, Jeffrey W.

    2010-09-01

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  12. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    SciTech Connect

    Young, R.A.; Meyers, B.; Alex, S.; Fang, S.L.; Braverman, L.E.

    1988-05-01

    The amount of tracer (125I)T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of (125I)T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer (125I)T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of (125I)T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of (125I)T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat.

  13. Reinstatement of cocaine seeking induced by drugs, cues, and stress in adolescent and adult rats

    PubMed Central

    Carroll, Marilyn E.

    2010-01-01

    Rationale In human and animal studies, adolescence marks a period of increased vulnerability to the initiation and subsequent abuse of drugs. Adolescents may be especially vulnerable to relapse, and a critical aspect of drug abuse is that it is a chronically relapsing disorder. However, little is known of how vulnerability factors such as adolescence are related to conditions that induce relapse, triggered by the drug itself, drug-associated cues, or stress. Objective The purpose of this study was to compare adolescent and adult rats on drug-, cue-, and stress-induced reinstatement of cocaine-seeking behavior. Methods On postnatal days 23 (adolescents) and 90 (adults), rats were implanted with intravenous catheters and trained to lever press for i.v. infusions of cocaine (0.4 mg/kg) during two daily 2-h sessions. The rats then self-administered i.v. cocaine for ten additional sessions. Subsequently, visual and auditory stimuli that signaled drug delivery were unplugged, and rats were allowed to extinguish lever pressing for 20 sessions. Rats were then tested on cocaine-, cue-, and yohimbine (stress)-induced cocaine seeking using a within-subject multicomponent reinstatement procedure. Results Results indicated that adolescents had heightened cocaine seeking during maintenance and extinction compared to adults. During reinstatement, adolescents (vs adults) responded more following cocaine- and yohimbine injections, while adults (vs adolescents) showed greater responding following presentations of drug-associated cues. Conclusion These results demonstrated that adolescents and adults differed across several measures of drug-seeking behavior, and adolescents may be especially vulnerable to relapse precipitated by drugs and stress. PMID:19953228

  14. Regulatory Mechanism of Muscle Disuse Atrophy in Adult Rats

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During the last phase of NAG 2-386 we completed three studies. The effects of 14 days of weightlessness; the vastus medialis (VM) from flight rats in COSMOS 2044 was compared with the VM from tail suspended rats and other controls. The type I and II fibers in the mixed fiber portion of the VM were significantly reduced in flight rats and capillary densities paralleled the fiber density changes. The results of this project compared favorably with those in the extensor digitorum longus following seven days of flight in SL 3. The cardiovascular projects focused on the blood pressure changes in head down tilted rats (HDT) and non-head down tilted (N-HDT) rats. Blood pressures (MAP, SP and DP) were significantly elevated through seven days of HDT and rapidly returned to control levels within one day after removal from the HDT position. The N-HDT showed some slight rise in blood pressure but these were not as great and they were not as rapid. The HDT rats were characterized as exhibiting transient hypertension. These results led to some of the microvascular and vascular graduate student projects of Dr. Bernhard Stepke. Also our results refute or, at least, do not agree with previous reports from other laboratories. Each animal, in our blood pressure projects, served as its own control thereby providing more accurate results. Also, our experiments focused on recovery studies which can, in and of themselves, provide guidelines for flight experiments concerned with blood pressure changes. Another experiment was conducted to examine the role of testicular atrophy in whole body suspended (WBS) and tail suspended (TS) rats. We worked in conjunction with Dr. D.R. Deaver's laboratory at Pennsylvania State University and Dr. R. P. Amann at Colorado State University. In the TS rats the testes are retracted into the abdominal cavity, unless a ligature is placed to maintain them in the external scrotal sac. The cryptorchid condition in TS rats results in atrophy of the testes and

  15. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats.

    PubMed

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  16. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    PubMed Central

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  17. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats

    PubMed Central

    Holtz, Nathan A.; Carroll, Marilyn E.

    2016-01-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability. PMID:25769092

  18. Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats.

    PubMed

    Schutová, B; Hrubá, L; Pometlová, M; Slamberová, R

    2009-01-01

    Psychostimulants have been shown to alter behaviour in both rats and humans. The aim of the present study was: (1) to assess the effect of prenatal and acute methamphetamine (MA) administration on behaviour in adult male rats and (2) to find out if the prenatal exposure to MA increases sensitivity to acute MA application in adulthood. Behaviour of adult male rats prenatally exposed to MA (5 mg/kg) or no drug was tested in Open field (OF) and Elevated plus maze (EPM). Half of the animals were injected with MA (1 mg/kg) subcutaneously 30 minutes prior to testing. Locomotion, exploration, comforting behaviour and anxiety were evaluated in the OF, while anxiety and exploratory behaviour were assessed in the EPM. Our results showed that prenatal MA did not have an effect on baseline behaviour in either of the tests. By contrast, acute MA increased overall psychomotor activity by increasing locomotion and exploratory behaviour and decreasing comforting behaviour. Moreover, adult rats prenatally exposed to MA were more sensitive to the effects of acute MA on exploration. In addition, acute MA application decreased anxiety in the OF as well as in the EPM. Our present study, thus, demonstrates that acute MA increases overall psychomotor activity and decreases anxiety to novel environment. To further support our hypothesis that prenatal MA exposure increases sensitivity to drugs in adulthood, studies investigating the levels of dopamine in the rat brain after prenatal MA exposure are planned.

  19. Muscle mechanical properties of adult and older rats submitted to exercise after immobilization

    PubMed Central

    Kodama, Fábio Yoshikazu; Camargo, Regina Celi Trindade; Job, Aldo Eloizo; Ozaki, Guilherme Akio Tamura; Koike, Tatiana Emy; Camargo Filho, José Carlos Silva

    2012-01-01

    Objectives To describe the effects of immobilization, free remobilization and remobilization by physical exercise about mechanical properties of skeletal muscle of rats of two age groups. Methods 56 Wistar rats divided into two groups according to age, an adult group (five months) and an older group (15 months). These groups were subdivided in: control, immobilized, free remobilized and remobilized by physical exercise. The pelvic limb of rats was immobilized for seven days. The exercise protocol consisted of five swimming sessions, once per day and 25 minutes per session. The gastrocnemius muscle was subjected to tensile tests, and evaluated the properties: load at the maximum limit, stretching at the maximum limit and stiffness. Results The immobilization reduced the values of load at the maximum limit and the remobilization protocols were not sufficient to restore control levels in adult group and older rats. The stretching at the maximum limit differs only in the older group. Conclusions The immobilization reduces the muscle's ability to bear loads and exercise protocol tends to restore the default at control values in adult and older rats. The age factor only interfered in the stretching at the maximum limit, inducing a reduction of this property in the post-immobilization. Level of Evidence II, Investigating the Results of Treatment. PMID:24453606

  20. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats.

    PubMed

    Holtz, Nathan A; Carroll, Marilyn E

    2015-06-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability.

  1. Intracellular redistribution of SCP2 in Leydig cells after hormonal stimulation may contribute to increased pregnenolone production.

    PubMed

    van Noort, M; Rommerts, F F; van Amerongen, A; Wirtz, K W

    1988-07-15

    Sterol carrier protein2 (SCP2) also designated non specific lipid transfer protein (nsL-TP), added to tumour Leydig cell mitochondria as a pure compound or in cytosolic preparations, stimulates pregnenolone production two- to three-fold. This stimulation can be abolished by addition of anti rat SCP2 but not by preimmune IgG-antibodies. SCP2- levels in the cytosol are increased in less than two minutes after addition of lutropin (LH). This increased SCP2 level may contribute to stimulation of steroid production in intact cells. After hormonal stimulation the subcellular distribution of SCP2 changes. A two-fold increase of SCP2- levels in the supernatant fraction and four-fold decrease in extracts of the particulate fraction was observed 30 min after stimulation of tumour Leydig cells with LH and subsequent fractionation. This apparent shift of SCP2 can be explained by an altered association with membranes or a true relocation of the protein from the particulate to the supernatant fractions under the influence of the hormone. PMID:3395346

  2. Restricted feeding facilitates time-place learning in adult rats.

    PubMed

    Lukoyanov, Nikolai V; Pereira, Pedro A; Mesquita, Rui M; Andrade, José P

    2002-08-21

    Many species can acquire time-of-day discrimination when tested in food reinforced place learning tasks. It is believed that this type of learning is dependent upon the ability of animals to consult their internal circadian pacemakers entrained by various environmental zeitgebers, such as light-dark cycles and scheduled restricted feeding. In the present study, we examined, (1) whether rats can acquire time-of-day discrimination in an aversively motivated water maze task wherein an escape platform is located in one position in the morning and in another position in the afternoon; (2) whether time-of-day cues provided by the light- and feeding-entrainable pacemakers may have divergent impacts upon the ability of rats to learn this task. Two groups of rats, both maintained on 12-h light:12-h dark cycle, were used; in one group, animals had free access to food, whereas in the other, they were subjected to a restricted feeding protocol (60% of food consumed by rats fed ad libitum, once daily). Despite the heightened difficulty of the task, food-restricted rats were apparently able to acquire associations between two different platform positions and two different times of day, as indicated by the fact that the percentage of discrimination errors in this group declined progressively, as a function of training, and stabilized at the level of 22+/-9%. In contrast, rats that were fed ad libitum, even after extensive training, failed to perform the task above level of chance. These data indicate that time-place learning is a universal, reward-nonspecific, cognitive phenomenon. They furthermore suggest that the ability of animals to integrate spatial and temporal information can be dependent on the access to timing stimuli provided by the feeding-entrainable circadian system.

  3. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    PubMed

    Oosthuizen, M K; Amrein, I

    2016-06-01

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. PMID:26979050

  4. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.

    PubMed

    Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

    2014-10-01

    Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation.

  5. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  6. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  7. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  8. Radial glia-like cells persist in the adult rat brain.

    PubMed

    Gubert, Fernanda; Zaverucha-do-Valle, Camila; Pimentel-Coelho, Pedro M; Mendez-Otero, Rosalia; Santiago, Marcelo F

    2009-03-01

    During development, radial glia cells contribute to neuronal migration and neurogenesis, and differentiate into astrocytes by the end of the developmental period. Recently, it was demonstrated that during development, radial glia cells, in addition to their role in migration, also give rise to neuroblasts. Furthermore, radial glial cells remain in the adult brain as adult neural stem cells (NSC) in the subventricular zone (SVZ) around the lateral ventricles (LVs), and generate new neurons continuously throughout adulthood. In this study, we used immunohistochemical and morphological methods to investigate the presence of radial glia-like cells around the LVs during the postnatal development period until adulthood in rats. In all ages of rats studied, we identified cells with morphological and immunocytochemical features that are similar to the radial glia cells found in the embryonic brain. Similarly to the radial glia, these cells express nestin and vimentin, and have a radial morphology, extending perpendicularly as processes from the ventricle wall. These cells also express GFAP, GLAST, and Pax6, and proliferate. In the brains of adult rats, we identified cells with relatively long processes (up to 600 mum) in close apposition with migrating neuroblasts. Our results showed that the radial glia-like cells present in the adult rat brain share several morphological and functional characteristics with the embryonic radial glia. We suggest that the embryonic radial glia cells located around the LV walls do not complete their transformation into astrocytes, but rather persist in adulthood.

  9. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion.

  10. The role of apelin in the modulation of gastric and pancreatic enzymes activity in adult rats.

    PubMed

    Antuschevich, H; Kapica, M; Krawczynska, A; Herman, A; Kato, I; Kuwahara, A; Zabielski, R

    2016-06-01

    Apelin is considered as important gut regulatory peptide ligand of APJ receptor with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behavior. Circulating apelin inhibits secretion of pancreatic juice through vagal- cholecystokinin-dependent mechanism and reduces local blood flow. Our study was aimed to determine the effect of fundectomy and intraperitoneal or intragastric administration of apelin-13 on pancreatic and gastric enzymes activities in adult rats. Fundectomy is a surgical removal of stomach fundus - maine site apelin synthesis. Three independent experiments were carried out on Wistar rats. In the first and second experiment apelin-13 was given by intragastric or intraperitoneal way twice a day for 10 days (100 nmol/kg b.w.). Control groups received the physiological saline respectively. In the third experiment the group of rats after fundectomy were used. Fundectomized rats did not receive apelin and the rats from control group were 'sham operated'. At the end of experiment rats were sacrificed and blood from rats was withdrawn for apelin and CCK (cholecystokinin) radioimmunoassay analysis and pancreas and stomach tissues were collected for enzyme activity analyses. Intragastric and intraperitoneal administrations of apelin-13 increased basal plasma CCK level and stimulated gastric and pancreatic enzymes activity in rats. In animals after fundectomy decreased activity of studied enzymes was observed, as well as basal plasma apelin and CCK levels. In conclusion, apelin can effects on CCK release and stimulates some gastric and pancreatic enzymes activity in adult rats while fudectomy suppresses those processes. Changes in the level of pancreatic lipase activity point out that apelin may occurs as a regulator of lipase secretion. PMID:27512001

  11. The peroxisome proliferator perfluorodecanoic acid inhibits the peripheral-type benzodiazepine receptor (PBR) expression and hormone-stimulated mitochondrial cholesterol transport and steroid formation in Leydig cells.

    PubMed

    Boujrad, N; Vidic, B; Gazouli, M; Culty, M; Papadopoulos, V

    2000-09-01

    The peroxisome proliferator perfluordecanoic acid (PFDA) has been shown to exert an antiandrogenic effect in vivo by acting directly on the interstitial Leydig cells of the testis. The objective of this study was to examine the in vitro effects of PFDA and identify its site of action in steroidogenesis using as model systems the mouse tumor MA-10 and isolated rat Leydig cells. PFDA inhibited in a time- and dose-dependent manner the hCG-stimulated Leydig cell steroidogenesis. This effect was localized at the level of cholesterol transport into the mitochondria. PFDA did not affect either the total cell protein synthesis or the mitochondrial integrity. Moreover, it did not induce any DNA damage. Morphological studies indicated that PFDA induced lipid accumulation in the cells, probably due to the fact that cholesterol mobilized by hCG did not enter the mitochondria to be used for steroidogenesis. In search of the target of PFDA, we examined its effect on key regulatory mechanisms of steroidogenesis. PFDA did not affect the hCG-induced steroidogenic acute regulatory protein (StAR) levels. However, it was found to inhibit the mitochondrial peripheral-type benzodiazepine receptor (PBR) ligand binding capacity, 18-kDa protein, and messenger RNA (mRNA) levels. Further studies indicated that PFDA did not affect PBR transcription, but it rather accelerated PBR mRNA decay. Taken together, these data suggest that PFDA inhibits the Leydig cell steroidogenesis by affecting PBR mRNA stability, thus inhibiting PBR expression, cholesterol transport into the mitochondria, and the subsequent steroid formation. Moreover, this action of PFDA on PBR mRNA stability indicates a new mechanism of action of peroxisome proliferators distinct from the classic transcription-mediated regulation of target genes.

  12. Transgenerational Effects of Di(2-ethylhexyl) Phthalate in the SD Male Rat

    EPA Science Inventory

    In the rat, some phthalates alter sexual differentiation at relatively low dosage levels by altering fetal Leydig cell development and hormone synthesis, thereby inducing abnormalities of the testis, gubernacular ligaments, epididymis and other androgen-dependent tissues. In ...

  13. Juvenile play conditions sexual partner preference in adult female rats.

    PubMed

    Paredes-Ramos, Pedro; Miquel, Marta; Manzo, Jorge; Coria-Avila, Genaro A

    2011-10-24

    Rats can display a conditioned partner preference for individuals that bear an odor previously associated with sexual reward. Herein we tested the possibility that odors associated with the reward induced by social play in prepubescent rats would induce a conditioned partner preference in adulthood. Two groups of 31-day-old, single-housed female rats were formed, and were given daily 30-min periods of social play with scented females. In one group, almond scent was paired with juvenile play during conditioning trials, whereas lemon scent functioned as a novel odor in the final test. The counterbalanced group received the opposite association. At age 42, females were tested for play partner preference with two males, one almond-scented and one lemon-scented. In both groups females displayed a play partner preference only for males scented with the paired odor. They were ovariectomized, hormone-primed, and at age 55 were tested for sexual partner preference with two scented stud males. Females displayed a sexual preference towards males scented with the paired odor as observed with more visits, solicitations, hops and darts, intromissions and ejaculations. These results indicate that olfactory stimuli paired with juvenile play affects later partner choice for play as well as for sex in female rats.

  14. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  15. Effect of Phaleria macrocarpa on Sperm Characteristics in Adult Rats

    PubMed Central

    Parhizkar, Saadat; Yusoff, Maryam Jamielah; Dollah, Mohammad Aziz

    2013-01-01

    Purpose: The purpose of this study was to determine the effects of Phaleria macrocarpa (PM) on male fertility by assessing its effect on the sperm characteristics which included the sperm count, motility, viability and morphology. Methods: Eighteen male rats were equally divided into three groups. Each group of rats was orally supplemented for 7 weeks either with PM aqueous extract (240 mg/kg), distilled water (0 mg/kg) or testosterone hormone, Andriol® Testocaps™ (4 mg/kg) respectively. On the last day of supplementation period, the rats were sacrificed and sperm was obtained from cauda epididymis via orchidectomy. The sperm count, motility, viability and morphology were determined. Results: PM aqueous extract significantly increased (p<0.05) the percentage of sperm viability. However, there was no significant effect of PM on the percentage of both sperm motility and morphology. The mean of body weight declined significantly in rats supplemented with PM aqueous extract compared to control groups (p<0.05). Conclusion: The results showed that PM significantly increased sperm viability without changing the sperm motility and morphology. Hence, this study suggests that PM offers an alternative way to improve male fertility by improving the sperm quality. PMID:24312859

  16. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats.

    PubMed

    Lin, Yu-Lung; Wang, Sabrina

    2014-02-01

    Major depression is one of the most prevalent mental disorders in the population. In addition to genetic influences, disturbances in fetal nervous system development might be a contributing factor. Maternal infection during pregnancy may affect fetal brain development and consequently lead to neurological and mental disorders. Previously, we used low-dose lipopolysaccharide (LPS) exposure on embryonic day 10.5 to mimic mild maternal infection in rats and found that dopaminergic and serotonergic neurons were reduced in the offspring. The offspring also showed more anxiety-like behavior and an enhanced stress response. In the present study we used forced swim test and chronic mild stress challenge to assess depression-like behaviors in the affected offspring and examined their adult hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) concentration. Our results showed that prenatally LPS-exposed rats (LPS rats) displayed more depression-like behaviors and had reduced adult neurogenesis and BDNF. The behavioral abnormalities and reduction in adult neurogenesis could be reversed by chronic fluoxetine (FLX) treatment. This study demonstrates that during the critical time of embryonic development LPS exposure can produce long-term behavioral changes and reduction in adult neurogenesis. The findings of enhanced depression-like behaviors, reduced adult neurogenesis, and their responsiveness to chronic antidepressant treatment suggest that prenatal LPS exposure could serve as an animal model of depression.

  17. Dermal penetration of [14C]captan in young and adult rats.

    PubMed

    Fisher, H L; Hall, L L; Sumler, M R; Shah, P V

    1992-07-01

    Age dependence in dermal absorption has been a major concern in risk assessment. Captan, a chloroalkyl thio heterocyclic fungicide, was selected for study of age dependence as representative of this class of pesticides. Dermal penetration of [14C]captan applied at 0.286 mumol/cm2 was determined in young (33-d-old) and adult (82-d-old) female Fischer 344 rats in vivo and by two in vitro methods. Dermal penetration in vivo at 72 h was about 9% of the recovered dose in both young and adult rats. The percentage penetration was found to increase as dosage (0.1, 0.5, 2.7 mumol/cm2) decreased. Two in vitro methods gave variable dermal penetration values compared with in vivo results. A static system yielded twofold higher dermal penetration values compared with in vivo results for both young and adult rats. A flow system yielded higher dermal penetration values in young rats and lower penetration values in adults compared with in vivo results. Concentration in body, kidney, and liver was less in young than in adult rats given the same absorbed dosage. A physiological pharmacokinetic model was developed having a dual compartment for the treated skin and appeared to describe dermal absorption and disposition well. From this model, tissue/blood ratios of captan-derived radioactivity for organs were found to range from 0.35 to 3.4, indicating no large uptake or binding preferences by any organ. This preliminary pharmacokinetic model summarizes the experimental findings and could provide impetus for more complex and realistic models.

  18. Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats.

    PubMed

    Asokan, Aditya; Ball, Alan R; Laird, Christina D; Hermer, Linda; Ormerod, Brandi K

    2014-01-01

    Adult hippocampal neurogenesis has been linked to the effects of anti-depressant drugs on behavior in rodent models of depression. To explore this link further, we tested whether the serotonin-norepinephrine reuptake inhibitor (SNRI) venlafaxine impacted adult hippocampal neurogenesis differently than its primary active SNRI metabolite desvenlafaxine. Adult male Long Evans rats (n = 5-6 per group) were fed vehicle, venlafaxine (0.5 or 5 mg) or desvenlafaxine (0.5 or 5 mg) twice daily for 16 days. Beginning the third day of drug treatment, the rats were given a daily bromodeoxyuridine (BrdU; 50 mg/kg) injection for 5 days to label dividing cells and then perfused 2 weeks after the first BrdU injection to confirm total new hippocampal cell numbers and their phenotypes. The high desvenlafaxine dose increased total new BrdU+ cell number and appeared to accelerate neuronal maturation because fewer BrdU+ cells expressed maturing neuronal phenotypes and more expressed mature neuronal phenotypes in the dentate gyri of these versus vehicle-treated rats. While net neurogenesis was not increased in the dentate gyri of rats treated with the high desvenlafaxine dose, significantly more mature neurons were detected. Our data expand the body of literature showing that antidepressants impact adult neurogenesis by stimulating NPC proliferation and perhaps the survival of neuronal progeny and by showing that a high dose of the SNRI antidepressant desvenlafaxine, but neither a high nor low venlafaxine dose, may also accelerate neuronal maturation in the adult rat hippocampus. These data support the hypothesis that hippocampal neurogenesis may indeed serve as a biomarker of depression and the effects of antidepressant treatment, and may be informative for developing novel fast-acting antidepressant strategies.

  19. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats

    PubMed Central

    Jessberger, Sebastian; Clark, Robert E.; Broadbent, Nicola J.; Clemenson, Gregory D.; Consiglio, Antonella; Lie, D. Chichung; Squire, Larry R.; Gage, Fred H.

    2009-01-01

    New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior. PMID:19181621

  20. Effect of prenatal programming and postnatal rearing on glomerular filtration rate in adult rats.

    PubMed

    Lozano, German; Elmaghrabi, Ayah; Salley, Jordan; Siddique, Khurrum; Gattineni, Jyothsna; Baum, Michel

    2015-03-01

    The present study examined whether a prenatal low-protein diet programs a decrease in glomerular filtration rate (GFR) and an increase in systolic blood pressure (BP). In addition, we examined whether altering the postnatal nutritional environment of nursing neonatal rats affected GFR and BP when rats were studied as adults. Pregnant rats were fed a normal (20%) protein diet or a low-protein diet (6%) during the last half of pregnancy until birth, when rats were fed a 20% protein diet. Mature adult rats from the prenatal low-protein group had systolic hypertension and a GFR of 0.38 ± 0.03 versus 0.57 ± 0.05 ml·min(-1)·100 g body wt(-1) in the 20% group (P < 0.01). In cross-fostering experiments, mothers continued on the same prenatal diet until weaning. Prenatal 6% protein rats cross-fostered to a 20% mother on day 1 of life had a GFR of 0.53 ± 0.05 ml·min(-1)·100 g body wt(-1), which was not different than the 20% group cross-fostered to a different 20% mother (0.45 ± 0.04 ml·min(-1)·100 g body wt(-1)). BP in the 6% to 20% group was comparable with the 20% to 20% group. Offspring of rats fed either 20% or 6% protein diets during pregnancy and cross-fostered to a 6% mother had elevated BP but a comparable GFR normalized to body weight as the 20% to 20% control group. Thus, a prenatal low-protein diet causes hypertension and a reduction in GFR in mature adult offspring, which can be modified by postnatal rearing.

  1. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  2. Juvenile stress affects anxiety-like behavior and limbic monoamines in adult rats.

    PubMed

    Luo, Xiao-Min; Yuan, San-Na; Guan, Xi-Ting; Xie, Xi; Shao, Feng; Wang, Wei-Wen

    2014-08-01

    Epidemiological evidence suggests that childhood and adolescent maltreatment is a major risk factor for mood disorders in adulthood. However, the mechanisms underlying the manifestation of mental disorders during adulthood are not well understood. Using a recently developed rat model for assessing chronic variable stress (CVS) during early adolescence (juvenility), we investigated the long-term effects of juvenile CVS on emotional and cognitive function and on monoaminergic activities in the limbic areas. During juvenility (postnatal days 27-33), rats in the stress group were exposed to variable stressors every other day for a week. Four weeks later, anhedonia was tested in the sucrose test, anxiety-like behaviors were assessed in the elevated plus-maze (EPM) and open field (OF) tests, and cortically mediated cognitive function was evaluated during an attentional set-shifting task (AST). After the behavioral tests, the rats were decapitated to determine limbic monoamine and metabolite levels. Adult rats stressed during juvenility exhibited higher anxiety-like behaviors, as evidenced by reduced locomotion and rearing behavior in the OF and fewer entries into the open arms in the EPM. There were no differences between the stressed rats and the controls in depressive-like anhedonia during the sucrose preference test or in cognitive function during the AST test in adulthood. In addition, the previously stressed rats exhibited increased dopamine (DA) and decreased 5-HIAA in the medial prefrontal cortex (mPFC) and decreased noradrenaline in the amygdala compared with controls. Furthermore, DA levels in the mPFC were correlated with adult anxious behaviors in the OF. These results suggest that juvenile stress induces long-term changes in the expression of anxiety-like behaviors and limbic monoaminergic activity in adult rats.

  3. Functional Myotube Formation from Adult Rat Satellite Cells in a Defined Serum-free System

    PubMed Central

    McAleer, Christopher W.; Rumsey, John W.; Stancescu, Maria; Hickman, James J.

    2016-01-01

    This manuscript describes the development of a culture system whereby mature contracting myotubes were formed from adult rat derived satellite cells. Satellite cells, extracted from the Tibialis Anterior (TA) of adult rats, were grown in defined serum-free growth and differentiation media, on a non-biological substrate, N-1[3-trimethoxysilyl propyl] diethylenetriamine. Myotubes were evaluated morphologically and immunocytochemically, using MyHC specific antibodies, as well as functionally using patch clamp electrophysiology to measure ion channel activity. Results indicated the establishment of the rapid expression of adult myosin isoforms that contrasts to their slow development in embryonic cultures. This culture system has applications in the understanding and treatment of age related muscle myopathy, muscular dystrophy, and for skeletal muscle engineering by providing a more relevant phenotype for both in vitro and in vivo applications. PMID:25683642

  4. Physiological and behavioral effects of acute ethanol hangover in juvenile, adolescent, and adult rats.

    PubMed

    Brasser, Susan M; Spear, Norman E

    2002-04-01

    This study examined differential responding of juvenile, adolescent, and adult rats after intoxication from an acute alcohol challenge. Experiment I generated blood ethanol curves for subjects 25, 35, or 110 days postnatal, after doses of 2.0 or 4.0 g/kg, assessing elimination rates and time of drug clearance. Experiment 2 compared ethanol's initial hypothermic and delayed hyperthermic effect across age by 48-hr temperature measurement with telemetry. At clearance or 24 hr after alcohol exposure, Experiment 3 tested subjects for changes in acoustic startle reactivity and ultrasonic vocalization (USV). Younger rats showed an absent or reduced tendency for residual hyperthermia, and adults showed alterations in USV observed as aftereffects of intoxication, despite greater initial blood alcohol levels and ethanol hypothermia in the former. The lesser ethanol hangover effects in weanlings and adolescents may be due in part to faster ethanol elimination at these ages compared with adults.

  5. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  6. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  7. Perinatal taurine exposure alters renal potassium excretion mechanisms in adult conscious rats.

    PubMed

    Roysommuti, Sanya; Malila, Pisamai; Lerdweeraphon, Wichaporn; Jirakulsomchok, Dusit; Wyss, J Michael

    2010-08-24

    Perinatal taurine exposure has long-term effects on the arterial pressure and renal function. This study tests its influence on renal potassium excretion in young adult, conscious rats. Female Sprague-Dawley rats were fed normal rat chow and given water alone (C), 3% beta-alanine in water (taurine depletion, TD) or 3% taurine in water (taurine supplementation, TS), either from conception until delivery (fetal period; TDF or TSF) or from delivery until weaning (lactation period; TDL or TSL). In Experiment 1, male offspring were fed normal rat chow and tap water, while in Experiment 2, beta-alanine and taurine were treated from conception until weaning and then female pups were fed normal rat chow and 5% glucose in drinking water (CG, TDG or TSG) or water alone (CW, TDW or TSW). At 7-8 weeks of age, renal potassium excretion was measured at rest and after an acute saline load (5% of body weight) in conscious, restrained rats. Although all male groups displayed similar renal potassium excretion, TSF rats slightly increased fractional potassium excretion at rest but not in response to saline load, whereas TDF did the opposite. Plasma potassium concentration was only slightly altered by the diet manipulations. In female offspring, none of the perinatal treatments significantly altered renal potassium excretion at rest or after saline load. High sugar intake slightly decreased potassium excretion at rest in TDG and TSG, but only the TDG group displayed a decreased response to saline load. The present data indicates that perinatal taurine exposure only mildly influences renal potassium excretion in adult male and female rats.

  8. The role of testicular hormones and luteinizing hormone in spatial memory in adult male rats.

    PubMed

    McConnell, Sarah E A; Alla, Juliet; Wheat, Elizabeth; Romeo, Russell D; McEwen, Bruce; Thornton, Janice E

    2012-04-01

    Attempts to determine the influence of testicular hormones on learning and memory in males have yielded contradictory results. The present studies examined whether testicular hormones are important for maximal levels of spatial memory in young adult male rats. To minimize any effect of stress, we used the Object Location Task which is a spatial working memory task that does not involve food or water deprivation or aversive stimuli for motivation. In Experiment 1 sham gonadectomized male rats demonstrated robust spatial memory, but gonadectomized males showed diminished spatial memory. In Experiment 2 subcutaneous testosterone (T) capsules restored spatial memory performance in gonadectomized male rats, while rats with blank capsules demonstrated compromised spatial memory. In Experiment 3, gonadectomized male rats implanted with blank capsules again showed compromised spatial memory, while those with T, dihydrotestosterone (DHT), or estradiol (E) capsules demonstrated robust spatial memory, indicating that T's effects may be mediated by its conversion to E or to DHT. Gonadectomized male rats injected with Antide, a gonadotropin-releasing hormone receptor antagonist which lowers luteinizing hormone levels, also demonstrated spatial memory, comparable to that shown by T-, E-, or DHT-treated males. These data indicate that testicular androgens are important for maximal levels of spatial working memory in male rats, that testosterone may be converted to E and/or DHT to exert its effects, and that some of the effects of these steroid hormones may occur via negative feedback effects on LH.

  9. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Parthasarathy, Chandrakesan

    2009-10-01

    N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.

  10. Histological effects of chronic administration of Phyllanthus amarus on the kidney of adult Wistar rat

    PubMed Central

    Adjene, Josiah Obaghwarhieywo; Nwose, Ezekiel Uba

    2010-01-01

    Background: Phyllanthus amarus is commonly used for treatment such as in gastro, urogenital diseases and infection. However, it is speculated to have some toxic effects such as renal tubular damage. Aims: This study was to investigate the histological effects of chronic administration of the herb on kidney of adult Wistar rats. Material and Methods: Rats of both sexes (n = 24), with average weight of 200g were randomly assigned into two treatments (A and B) and control (C) groups of 8 rats each. Rats in treatment groups (A) and (B) respectively received daily administration of 400mg and 800mg of aqueous Phyllanthus amarus, per 70kg body weight for 30days through the orogastric tube. The control group received distilled water through the same route. All rats were fed with grower's mash and given water liberally. The rats were sacrificed by cervical dislocation on the thirty-first day of the experiment and the kidneys were carefully dissected out and quickly fixed in 10% formal saline for histological study. Results: The observations indicate that rats in the treated groups showed some varying degree of distortion and disruption in microanatomy of the kidney including interstitial oedema and tubular necrosis, when compared to the control section. Conclusion: This report provides further evidence that medicinal use of Phyllanthus amarus has a potential adverse effect. This warrants further studies to establish or rule out any untoward side-effect of chronic renal dysfunctions. PMID:22624139

  11. Establishment and evaluation of a stable steroidogenic goat Leydig cell line.

    PubMed

    Zhou, Jinhua; Dai, Rui; Lei, Lanjie; Lin, Pengfei; Lu, Xiaolong; Wang, Xiangguo; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Leydig cells play a key role in synthesizing androgen and regulating spermatogenesis. The dysfunction of Leydig cells may lead to various male diseases. Although primary Leydig cell cultures have been used, their finite lifespan hinders the assessment of long-term effects. In the present study, primary goat Leydig cells (GLCs) were immortalized via the transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expressions of hTERT and telomerase activity were evaluated in transduced GLCs (hTERT-GLCs). These cells steadily expressed the hTERT gene and exhibited longer telomere lengths at passage 55 that were similar to those of HeLa cells. The hTERT-GLCs at passages 30 and 50 expressed genes that encoded key proteins, enzymes and receptors that are inherent to normal Leydig cells, for example, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH-receptor (LH-R). Additionally, the immortalized goat Leydig cells secreted detectable quantities of testosterone in response to hCG stimulation. Furthermore, this cell line appeared to proliferate more quickly than the control cells, although no neoplastic transformation occurred in vitro. We concluded that the GLCs immortalized with hTERT retained their original characteristics and might provide a useful model for the study of Leydig cell function. PMID:26462462

  12. Establishment and evaluation of a stable steroidogenic goat Leydig cell line.

    PubMed

    Zhou, Jinhua; Dai, Rui; Lei, Lanjie; Lin, Pengfei; Lu, Xiaolong; Wang, Xiangguo; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Leydig cells play a key role in synthesizing androgen and regulating spermatogenesis. The dysfunction of Leydig cells may lead to various male diseases. Although primary Leydig cell cultures have been used, their finite lifespan hinders the assessment of long-term effects. In the present study, primary goat Leydig cells (GLCs) were immortalized via the transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. The expressions of hTERT and telomerase activity were evaluated in transduced GLCs (hTERT-GLCs). These cells steadily expressed the hTERT gene and exhibited longer telomere lengths at passage 55 that were similar to those of HeLa cells. The hTERT-GLCs at passages 30 and 50 expressed genes that encoded key proteins, enzymes and receptors that are inherent to normal Leydig cells, for example, steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD) and LH-receptor (LH-R). Additionally, the immortalized goat Leydig cells secreted detectable quantities of testosterone in response to hCG stimulation. Furthermore, this cell line appeared to proliferate more quickly than the control cells, although no neoplastic transformation occurred in vitro. We concluded that the GLCs immortalized with hTERT retained their original characteristics and might provide a useful model for the study of Leydig cell function.

  13. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    PubMed Central

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  14. Cellular microenvironment dictates androgen production by murine fetal Leydig cells in primary culture.

    PubMed

    Carney, Colleen M; Muszynski, Jessica L; Strotman, Lindsay N; Lewis, Samantha R; O'Connell, Rachel L; Beebe, David J; Theberge, Ashleigh B; Jorgensen, Joan S

    2014-10-01

    Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3-5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  15. Effects of neonatal methamphetamine treatment on adult stress-induced corticosterone release in rats.

    PubMed

    Grace, Curtis E; Schaefer, Tori L; Herring, Nicole R; Williams, Michael T; Vorhees, Charles V

    2012-01-01

    In rats, neonatal (+)-methamphetamine (MA) exposure and maternal separation stress increase corticosterone during treatment and result in learning and memory impairments later in life. Early-life stress also changes later responses to acute stress. We tested the hypothesis that neonatal MA exposure would alter adult corticosterone after acute stress or MA challenge. Rats were treated with MA (10 mg/kg × 4/day), saline, or handling on postnatal (P) days 11-15 or 11-20 (days that lead to learning and memory impairments at this dose). As adults, corticosterone was measured before and after 15 min forced swim (FS) or 15 min forced confinement (FC), counterbalanced, and after an acute MA challenge (10 mg/kg) given last. FS increased corticosterone more than FC; order and stress type interacted but did not interact with treatment; treatment interacted with FS but not with FC. In the P11-15 regimen, MA-treated rats showed more rapid increases in corticosterone after FS than controls. In the P11-20 regimen, MA-treated rats showed a trend toward more rapid decrease in corticosterone after FS. No differences were found after MA challenge. The data do not support the hypothesis that neonatal MA causes changes in adult stress responsiveness to FS, FC, or an acute MA challenge.

  16. Beer promotes high levels of alcohol intake in adolescent and adult alcohol-preferring rats.

    PubMed

    Hargreaves, Garth A; Wang, Emyo Y J; Lawrence, Andrew J; McGregor, Iain S

    2011-08-01

    Previous studies suggest that high levels of alcohol consumption can be obtained in laboratory rats by using beer as a test solution. The present study extended these observations to examine the intake of beer and equivalent dilute ethanol solutions with an inbred line of alcohol-preferring P rats. In Experiment 1, male adolescent P rats and age-matched Wistar rats had access to either beer or equivalent ethanol solutions for 1h daily in a custom-built lickometer apparatus. In subsequent experiments, adolescent (Experiment 2) and adult (Experiment 3) male P rats were given continuous 24-h home cage access to beer or dilute ethanol solutions, with concomitant access to lab chow and water. In each experiment, the alcohol content of the beer and dilute ethanol solutions was gradually increased from 0.4, 1.4, 2.4, 3.4, 4.4, 5 to 10% EtOH (vol/vol). All three experiments showed a major augmentation of alcohol intake when rats were given beer compared with equivalent ethanol solutions. In Experiment 1, the overall intake of beer was higher in P rats compared with Wistar rats, but no strain difference was found during the 1-h sessions with plain ethanol consumption. Experiment 1 also showed that an alcohol deprivation effect was more readily obtained in rats with a history of consuming beer rather than plain ethanol solutions. In Experiments 2 and 3, voluntary beer intake in P rats represented ethanol intake of 10-15 g/kg/day, among the highest reported in any study with rats. This excessive consumption was most apparent in adolescent rats. Beer consumption markedly exceeded plain ethanol intake in these experiments except at the highest alcohol concentration (10%) tested. The advantage of using beer rather than dilute ethanol solutions in both selected and nonselected rat strains is therefore confirmed. Our findings encourage the use of beer with alcohol-preferring rats in future research that seeks to obtain high levels of alcohol self-administration.

  17. Cross-sensitization between testosterone and cocaine in adolescent and adult rats.

    PubMed

    Engi, Sheila A; Cruz, Fabio C; Crestani, Carlos C; Planeta, Cleopatra S

    2015-11-01

    Cocaine and anabolic-androgenic steroids are substances commonly co-abused. The use of anabolic steroids and cocaine has increased among adolescents. However, few studies investigated the consequences of the interaction between anabolic-androgenic steroids in animals' model of adolescence. We examined the effects of acute and repeated testosterone administration on cocaine-induced locomotor activity in adult and adolescent rats. Rats received ten once-daily subcutaneous (s.c.) injections of testosterone (10mg/kg) or vehicle. Three days after the last testosterone or vehicle injections rats received an intraperitoneal (i.p.) challenge injection of either saline or cocaine (10mg/kg). A different subset of rats was treated with a single injection of testosterone (10mg/kg) or vehicle and three days later was challenged with cocaine (10mg/kg, i.p.) or saline. Immediately after cocaine or saline injections the locomotor activity was recorded during forty minutes. Our results demonstrated that repeated testosterone induced locomotor sensitization to cocaine in adolescent but not adult rats.

  18. Behavioral changes in preweaning and adult rats exposed prenatally to low ionizing radiation

    SciTech Connect

    Norton, S.

    1986-04-01

    Seven behavioral tests were used to evaluate the postnatal behavior of rats after exposure on gestational Day 15 to 0, 25, 50, 75, or 125 r, whole body irradiation of the pregnant rat. Three tests were administered in the first 2 postnatal weeks (righting reflex, negative geotaxis, and reflex suspension); three tests were administered on postnatal Day 21 (modified open field, spatial maze, and continuous corridor). As adults, the rats were retested with the same tests as at 21 days and also in the running wheel. Dose-response decreases in body weight were greater in the younger rats. Some behavioral tests were not altered by irradiation, while others showed clear dose-response relationships, starting as low as 25 r. The early changes were characterized by light body weight, delays in behavioral development and hypoactivity, followed by recovery of some parameters with maturation. Eventually hyperactivity developed in adult rats after gestational irradiation. However, it cannot be concluded that either morphological or behavioral tests are more sensitive than neonatal body weight change for detection of damage from gestational irradiation.

  19. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  20. Cross-sensitization between testosterone and cocaine in adolescent and adult rats.

    PubMed

    Engi, Sheila A; Cruz, Fabio C; Crestani, Carlos C; Planeta, Cleopatra S

    2015-11-01

    Cocaine and anabolic-androgenic steroids are substances commonly co-abused. The use of anabolic steroids and cocaine has increased among adolescents. However, few studies investigated the consequences of the interaction between anabolic-androgenic steroids in animals' model of adolescence. We examined the effects of acute and repeated testosterone administration on cocaine-induced locomotor activity in adult and adolescent rats. Rats received ten once-daily subcutaneous (s.c.) injections of testosterone (10mg/kg) or vehicle. Three days after the last testosterone or vehicle injections rats received an intraperitoneal (i.p.) challenge injection of either saline or cocaine (10mg/kg). A different subset of rats was treated with a single injection of testosterone (10mg/kg) or vehicle and three days later was challenged with cocaine (10mg/kg, i.p.) or saline. Immediately after cocaine or saline injections the locomotor activity was recorded during forty minutes. Our results demonstrated that repeated testosterone induced locomotor sensitization to cocaine in adolescent but not adult rats. PMID:26150134

  1. Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats?

    PubMed

    Slamberová, Romana; Schutová, Barbora; Hrubá, Lenka; Pometlová, Marie

    2011-10-10

    Methamphetamine (MA) is one of the most frequently used illicit drugs worldwide and also one of the most common drugs abused by pregnant women. Repeated administration of psychostimulants induces behavioral sensitization in response to treatment of the same or related drugs in rodents. The effect of prenatal MA exposure on sensitivity to drugs in adulthood is not yet fully determined. Because our most recent studies demonstrated that prenatal MA (5mg/kg) exposure makes adult rats more sensitive to acute injection of the same drug, we were interested whether the increased sensitivity corresponds with the increased drug-seeking behavior. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the conditioned place preference (CPP). The following psychostimulant drugs were used as a challenge in adulthood: MA (5mg/kg), amphetamine (5mg/kg) and cocaine (10mg/kg). All psychostimulant drugs induced increased drug-seeking behavior in adult male rats. However, while MA and amphetamine-induced increase in drug-seeking behavior did not differ based on the prenatal drug exposure, prenatally MA-exposed rats displayed tolerance effect to cocaine in adulthood. In addition, prenatally MA-exposed rats had decreased weight gain after administration of MA or amphetamine, while the weight of prenatally MA-exposed rats stayed unchanged after cocaine administration. Defecation was increased by all the drugs (MA, amphetamine and cocaine), while only amphetamine increased the tail temperature. In conclusion, our results did not confirm our hypothesis that prenatal MA exposure increases drug-seeking behavior in adulthood in the CPP test.

  2. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    PubMed

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  3. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    PubMed

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes.

  4. Plasticity in the prefrontal cortex of adult rats

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  5. The effects of quinapril and atorvastatin on artery structure and function in adult spontaneously hypertensive rats.

    PubMed

    Yang, Lufang; Gao, Yu-Jing; Lee, Robert M K W

    2005-08-22

    We studied the combined treatment effects of quinapril and atorvastatin on blood pressure and structure and function of resistance arteries from adult spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY rats). Apoptotic cells were identified by in situ end labeling using the terminal deoxynucleotide transferase-mediated dUTP nick end labeling method. Vascular structure was measured using a morphometric protocol and confocal microscopy and a pressurized artery system was used to study vascular functions. We found that a combined treatment with quinapril and atorvastatin lowered systolic blood pressure in both adult SHR and WKY rats and decreased medial thickness and volume and the number of smooth muscle cell layers in mesenteric arteries, as well as media-to-lumen ratio in the interlobular arteries from SHR but not in those from WKY rats. The number of apoptotic smooth muscle cells was higher in the mesenteric arteries from control WKY rats than control SHR and treatment increased the number of apoptotic smooth muscle cells in the arteries from both SHR and WKY rats. Treatment with quinapril and atorvastatin reduced ventricular weight in SHR and normalized the augmented contractile responses to norepinephrine but did not alter the contraction to electric field stimulation. Relaxation responses to acetylcholine and sodium nitroprusside were not affected by the treatment. We conclude that a combined treatment with quinapril and atorvastatin lowered blood pressure and improved cardiac and vessel hypertrophy and vessel function. An increase in apoptotic smooth muscle cells may be one of the mechanisms underlying the structural improvement.

  6. Regional distribution of neuropeptide processing endopeptidases in adult rat brain.

    PubMed

    Berman, Y L; Rattan, A K; Carr, K; Devi, L

    1994-01-01

    Many peptide hormone and neuropeptide precursors undergo post-translational processing at mono- and/or dibasic residues. An enzymatic activity capable of processing prodynorphin at a monobasic processing site designated 'dynorphin converting enzyme' has been previously reported in rat rain and bovine pituitary. In this study the distribution of dynorphin converting enzyme activity in ten regions of rat brain has been compared with the distribution of subtilisin-like processing enzymes and with the immuno-reactive dynorphin peptides. The distribution of dynorphin converting enzyme activity generally matches the distribution of immuno-reactive dynorphin B-13 in most but not all brain regions. The regions that are known to have a relatively large number of immuno-reactive dynorphin-neurons also contain high levels of dynorphin converting enzyme activity. The distribution of dynorphin converting enzyme activity does not match the distribution of subtilisin-like processing enzyme or carboxypeptidase E activities. Taken together the data support the possibility that the dynorphin converting enzyme is involved in the maturation of dynorphin, as well as other neuropeptides, and peptide hormones.

  7. IN UTERO EXPOSURE TO THE FUNGICIDE PROCYMIDONE AND DIBUTYL PHTHALATE PRODUCE DOSE ADDITIVE DISRUPTIONS OF MALE RAT SEXUAL DIFFERENTIATION

    EPA Science Inventory

    Procymidone (PRO) and dibutyl phthalate (DBP) alter male rat sexual differentiation by disrupting the androgen-signaling pathway via distinctly different cellular mechanisms of toxicity. DBP inhibits fetal Leydig cell androgen production whereas PRO binds AR and blocks androgen a...

  8. Effect of dietary caffeine and theophylline on urinary calcium excretion in the adult rat.

    PubMed

    Whiting, S J; Whitney, H L

    1987-07-01

    The chronic effects of dietary caffeine or theophylline on urinary calcium excretion were investigated in the adult male rat. When caffeine was added at two concentrations, 0.75 and 1.50 g/kg diet, 24-h urinary calcium excretion rose 300 and 450% on d 7, and 200 and 330% on d 14, respectively. There were no changes in the 24-h urinary excretion of phosphate, sulfate, sodium and cAMP nor did urine volume change. The high dose of caffeine was compared to an equimolar dose of theophylline (1.39 g/kg diet) in both Wistar and Sprague-Dawley rats. Urinary calcium excretion in theophylline-treated rats was significantly greater than in caffeine-treated rats on all sampling days and in both strains of rat; the calciuric effect lasted at least 22 d. When rats were given indomethacin (3.3 mg/kg diet) the calciuria induced by caffeine and theophylline was abolished, and sodium excretion in all groups was reduced by 35-50%, but urine volume was unchanged. The calciuria of methylxanthine feeding may result from a prostaglandin-mediated process distinct from diuresis. PMID:3612301

  9. Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake.

    PubMed

    Zhou, Hongxia; Huang, Cao; Tong, Jianbin; Hong, Weimin C; Liu, Yong-Jian; Xia, Xu-Gang

    2011-01-01

    Parkinson's disease (PD) results from progressive degeneration of dopaminergic neurons. Most PD cases are sporadic, but some have pathogenic mutation in the individual genes. Mutation of the leucine-rich repeat kinase-2 (LRRK2) gene is associated with familial and sporadic PD, as exemplified by G2019S substitution. While constitutive expression of mutant LRRK2 in transgenic mice fails to induce neuron death, transient expression of the disease gene by viral delivery causes a substantial loss of dopaminergic neurons in mice. To further assess LRRK2 pathogenesis, we created inducible transgenic rats expressing human LRRK2 with G2019S substitution. Temporal overexpression of LRRK2(G2019S) in adult rats impaired dopamine reuptake by dopamine transporter (DAT) and thus enhanced locomotor activity, the phenotypes that were not observed in transgenic rats constitutively expressing the gene throughout life time. Reduced DAT binding activity is an early sign of dopaminergic dysfunction in asymptomatic subjects carrying pathogenic mutation in LRRK2. Our transgenic rats recapitulated the initiation process of dopaminergic dysfunction caused by pathogenic mutation in LRRK2. Inducible transgenic approach uncovered phenotypes that may be obscured by developmental compensation in constitutive transgenic rats. Finding in inducible LRRK2 transgenic rats would guide developing effective strategy in transgenic studies: Inducible expression of transgene may induce greater phenotypes than constitutive gene expression, particularly in rodents with short life time. PMID:21698001

  10. Associative and non-associative blinking in classically conditioned adult rats.

    PubMed

    Lindquist, Derick H; Vogel, Richard W; Steinmetz, Joseph E

    2009-03-01

    Over the last several years, a growing number of investigators have begun using the rat in classical eyeblink conditioning experiments, yet relatively few parametric studies have been done to examine the nature of conditioning in this species. We report here a parametric analysis of classical eyeblink conditioning in the adult rat using two conditioned stimulus (CS) modalities (light or tone) and three interstimulus intervals (ISI; 280, 580, or 880 ms). Rats trained at the shortest ISI generated the highest percentage of conditioned eyeblink responses (CRs) by the end of training. At the two longer ISIs, rats trained with the tone CS produced unusually high CR percentages over the first few acquisition sessions, relative to rats trained with the light CS. Experiment 2 assessed non-associative blink rates in response to presentations of the light or tone, in the absence of the US, at the same ISI durations used in paired conditioning. Significantly more blinks occurred with longer than shorter duration lights or tones. A higher blink rate was also recorded at all three durations during the early tone-alone sessions. The results suggest that early in classical eyeblink conditioning, rats trained with a tone CS may emit a high number of non-associative blinks, thereby inflating the CR frequency reported at this stage of training. PMID:19071146

  11. Micro-CT analysis of myocardial blood supply in young and adult rats

    NASA Astrophysics Data System (ADS)

    Schaefer, Heather M.; Beighley, Patricia E.; Eaker, Diane R.; Vercnocke, Andrew J.; Ritman, Erik L.

    2009-02-01

    This study addresses whether the vasculature grows in proportion to the myocardium as the rat heart develops. The volume of myocardium and coronary vessels were estimated from micro-CT images of the hearts injected with Microfil(R) contrast agent. Young (n=5) and adult (n=5) hearts were scanned, resulting in 3D images comprised of 20μm on-a-side cubic voxels. The myocardial muscle and vessel lumen volumes were measured for all vessels 40 to 320μm in diameter by an erosion and dilation method applied to the binary images in which the contrast in the vessels were assigned "1" and all non-opacified entities were assigned "0". The average total muscle volume increases by 50%, 129.4 to 237.4mm3, from young to adult rats, while the luminal volume increases by 10%, 16.6 to 18.6mm3. The vessel volume is 12% of the total muscle volume in young and 8% in adults. For a given vessel volume, the muscle volume in the young is 82% of the muscle volume in adults. We conclude that as the heart matures, the myocardium grows more rapidly than the vasculature. This may result in greater angles of separation between vessel branches, and the increase in myocardial coronary volume. The ratio suggests either higher blood flow velocity or a lower metabolic rate in adults.

  12. Effect of the antioxidant dibunol on adrenocortical, thyroid, and adenohypopyseal function in adult and old rats

    SciTech Connect

    Gorban', E.N.

    1986-04-01

    This paper studies the effect of dibunol (4-methyl-2,6-di-tert-butylphenol) (D) on the function of the adrenal cortex, thyroid gland, and adenhypophysis, which produces trophic hormones for the other two glands. Experiments were carried out on adult rats. After injection of D concentrations of corticosterone (CS), triodothyronine (T/sub 3/), ACTH, and thyrotrophin (TSH) in the blood plasma and the CS concentration in tssue of the adenohypophysis were determined. It is shown that injection of D caused biphasic changes in the CS concentration in both tissues studied in adult and old animals.

  13. Adolescent social defeat disturbs adult aggression-related impulsivity in wild-type rats.

    PubMed

    Coppens, Caroline M; Coolen, Alex; de Boer, Sietse F; Koolhaas, Jaap M

    2014-10-01

    Adolescence is generally considered as a developmental period during which adverse social experiences may have lasting consequences in terms of an increased vulnerability to affective disorders. This study aimed at determining the individual susceptibility to adolescent social stress using a rat model. We used rats of the Wild-type Groningen strain, which are characterized by a broad variation in adult levels of aggression and impulsivity. We hypothesized that experience of social defeat in adolescence results in heightened aggression and impulsivity levels in adulthood. In contrast to our expectation, adolescent social defeat did not lead to a difference in the average adult level of aggression and impulsivity, but the significant correlation between offensive aggression and impulsivity found in control animals was not present in animals defeated during adolescence.

  14. Some factors influencing cadmium-manganese interaction in adult rats

    SciTech Connect

    Gruden, N.; Matausic, S. )

    1989-07-01

    Recent data show that even a low dose of cadmium (20 {mu}g/day/rat) significantly suppresses manganese transduodenal transport when administered during a three-day period. The inhibitory effect of cadmium upon manganese absorption is enhanced by concurrently administered iron-fortified milk diet. This suggests that the (synergistic) action of cadmium and iron upon manganese and the competition between these (three) ions in the intestine depend on their relative concentrations and affinity for the binding sites within the intestinal mucosa. For this reason the authors considered it worthwhile examining whether this inhibitory effect of cadmium would be affected by simultaneously administered manganese-fortified milk. Since the absorption of heavy metals and, at the same time, the demand for manganese is higher in the young than in the old animals, they also studied how this interaction depends upon the animals' age and sex and whether it is the same in the whole small intestine.

  15. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats.

    PubMed

    López-Doval, S; Salgado, R; Pereiro, N; Moyano, R; Lafuente, A

    2014-10-01

    Perfluorooctane sulfonate (PFOS) is a neurotoxic agent and it can disrupt the endocrine system activity. This work was undertaken to evaluate the possible effects of PFOS exposure on the hypothalamic-pituitary-testicular axis (HPT) in adult male rats, and to evaluate the possible morphological alterations induced by PFOS in the endocrine tissues of this axis. Adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0 mg of PFOS/kg/day for 28 days. After PFOS exposure, hypothalamic noradrenaline concentration increased in the anterior hypothalamus and in the median eminence, not changing in the mediobasal hypothalamus. PFOS treated rats presented a decrease of the gonadotropin releasing hormone (GnRH) gene expression, increasing the mRNA levels of the luteinizing hormone (LH) in rats treated with all doses administered except with the dose of 6 mg/kg/day. PFOS also induced a raise of the follicle stimulating hormone (FSH) gene expression in the animals exposed to 0.5 and 1.0 mg of PFOS/kg/day. After PFOS exposure, hypothalamic GnRH concentration was modified, LH and testosterone release was inhibited and FSH secretion was stimulated. Moreover, PFOS induced several histopathological alterations in the hypothalamus, pituitary gland and testis. The results obtained in the present study suggest in general terms that PFOS can inhibit the physiological activity of the reproductive axis in adult male rats, which could be explained, at least in part, by the structural alterations showed in the animals exposed to this chemical: very dense chromatin, condensed ribosomes and a loss of the morphology in the hypothalamus; a degeneration of the gonadotrophic cells, as well as a loss and degeneration of the spermatozoids and a very marked edema in the testis.

  16. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  17. The effects of undernutrition on connectivity in the cerebellar cortex of adult rats.

    PubMed Central

    Yucel, F; Warren, M A; Gumusburun, E

    1994-01-01

    The effects of a 30 d period of undernutrition, followed in some animals by nutritional rehabilitation, on neuronal connectivity in adult rat cerebellum were investigated using the disector method. There was no significant difference between well fed (719 +/- 74, mean +/- S.E.) and undernourished (709 +/- 53) synapse-to-neuron ratios in 134-d-old rat cerebellar cortex, nor was there a significant difference in synapse-to-neuron ratios between control animals (941 +/- 71) and previously undernourished rats (813 +/- 42) at 175 d of age. However, the age-related changes were significant (P < 0.05) in the controls, but not in the experimental group. It may be that the period of undernutrition caused subtle changes in the rehabilitating group which reduced the capacity for growth seen in well fed, matched control animals. PMID:8157493

  18. Altered hypothalamic-pituitary function in the adult female rat with streptozotocin-induced diabetes.

    PubMed

    Spindler-Vomachka, M; Johnson, D C

    1985-01-01

    Infertility associated with anovulation and loss of regular oestrous cyclicity is a consequence of diabetes mellitus in the rat. In an attempt to define loci of altered function, studies were undertaken to examine various aspects of hypothalamic-pituitary function in rats treated with streptozotocin. Medial basal hypothalamic fragments from adult female diabetic rats contained the same amount of gonadotrophin-releasing hormone but, with depolarization, released slightly but insignificantly (p greater than 0.05) more than did those from control animals. Furthermore, release of luteinizing hormone from pituitaries exposed to hypothalamic gonadotrophin-releasing hormone was not altered by diabetes. Removal of the negative feedback effect of gonadal steroids upon the hypothalamic-pituitary axis produced an increase in luteinizing hormone and follicle stimulating hormone concentrations in the serum of normal rats within 6h (p less than 0.05), whereas 24h were required for similar increases in diabetic rats. However, the same concentrations of gonadotrophins were found in diabetic and control animals 120 h after ovariectomy. The inhibitory action of oestradiol benzoate on the secretion of gonadotrophins was more pronounced in ovariectomized diabetic than in control rats. A 74% depression in serum luteinizing hormone (p less than 0.01) was produced by 0.5 microgram oestradiol benzoate per day in diabetic rats, while 5 micrograms was required in control animals. Similar reductions in follicle stimulating hormone concentrations (50%, p less than 0.05) were obtained by injecting 5 micrograms of the oestrogen into diabetic or 50 micrograms into control rats. Increases in serum prolactin were greater in the control animals however.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Testosterone potentiates the hypoxic ventilatory response of adult male rats subjected to neonatal stress.

    PubMed

    Fournier, Sébastien; Gulemetova, Roumiana; Joseph, Vincent; Kinkead, Richard

    2014-05-01

    Neonatal stress disrupts development of homeostatic systems. During adulthood, male rats subjected to neonatal maternal separation (NMS) are hypertensive and show a larger hypoxic ventilatory response (HVR), with greater respiratory instability during sleep. Neonatal stress also affects sex hormone secretion; hypoxia increases circulating testosterone of NMS (but not control) male rats. Given that these effects of NMS are not observed in females, we tested the hypothesis that testosterone elevation is necessary for the stress-related increase of the HVR in adult male rats. Pups subjected to NMS were placed in an incubator for 3 h per day from postnatal day 3 to 12. Control pups remained undisturbed. Rats were reared until adulthood, and the HVR was measured by plethysmography (fractional inspired O2 = 0.12, for 20 min). We used gonadectomy to evaluate the effects of reducing testosterone on the HVR. Gonadectomy had no effect on the HVR of control animals but reduced that of NMS animals below control levels. Immunohistochemistry was used to quantify androgen receptors in brainstem areas involved in the HVR. Androgen receptor expression was generally greater in NMS rats than in control rats; the most significant increase was noted in the caudal region of the nucleus tractus solitarii. We conclude that the abnormal regulation of testosterone is important in stress-related augmentation of the HVR. The greater number of androgen receptors within the brainstem may explain why NMS rats are more sensitive to testosterone withdrawal. Based on the similarities of the cardiorespiratory phenotype of NMS rats and patients suffering from sleep-disordered breathing, these results provide new insight into its pathophysiology, especially sex-based differences in its prevalence.

  20. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence.

  1. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  2. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    PubMed Central

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  3. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life. PMID:26836141

  4. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  5. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats.

    PubMed

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F

    1995-07-01

    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  6. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  7. Hyperforin alleviates mood deficits of adult rats suffered from early separation.

    PubMed

    Zhu, Minghui; Liu, Chunhua; Qin, Xuan; Yang, Zhuo

    2015-11-01

    In this study, we aimed to explore the effect of hyperforin (Hyp) on adult rats suffered from early separation. Wistar infant rats were randomly divided into three groups: control group (CON), early separation from parents group (ESP), and early separation from parents+treatment with 3mg/kg/day Hyp group (ESP+Hyp). Postnatal rats of ESP group and ESP+Hyp group were separated from their mothers for 6h every day on the 14th day after birth, and this separation lasted for 3 weeks, while rats of CON group had no separation. Hyperforin was intragastric administrated on the 21th day after birth, and lasted for 2 weeks in ESP+Hyp group. After separation, adult rats were evaluated by using the open field test (OFT), novelty suppressed feeding test (NSF) and forced swimming test (FST). In OFT, time spent in central grids was much shorter in ESP group compared with that of CON group. After treatment with hyperforin, time spent in central area was much longer compared with that of ESP group. In NSF, the feeding latency of ESP group was much longer than that of CON group. After treatment with hyperforin, the feeding latency was shorter compared with that of ESP group. In FST, score of ESP group was markedly higher than that of CON group. Interestingly, the score was obviously lower in ESP+Hyp group than that of ESP group. In conclusion, these results suggest that hyperforin is able to alleviate anxiety and remit depression in ESP rats. PMID:26420027

  8. A new protocol for cultivation of predegenerated adult rat Schwann cells.

    PubMed

    Pietrucha-Dutczakv, Marita; Marcol, Wiesław; Francuz, Tomasz; Gołka, Dariusz; Lewin-Kowalik, Joanna

    2014-09-01

    The purpose of this study was to optimize the methodology of cultivation of predegenerated Schwann cells (SCs). SCs were isolated from 7-day-predegenerated sciatic nerves of adult rats. We applied commercially available culture medium for cultivation of endothelial cells endothelial cell culture medium (EBM-2) instead of Dulbecco's Modified Eagle's Medium commonly used to culture adult Schwann cells. Additionally, cell culture medium was supplemented with factors specifically supporting SCs growth as: bovine pituitary extract (5 μg/ml), heregulin (40 ng/ml) and insulin (2.5 ng/ml). Similarly to the reports of others authors, we did not observe any beneficial effects of Forskolin application, so we didn't supplement our medium with it. Cell culture purity was determined by counting the ratio of GFAP, N-Cadherin and NGFR p75-positive cells to total number of cells. About 94-97 % of cells were confirmed as Schwann cells. As a result, we obtained sufficient number and purity of Schwann cells to be applied in different experimental models in rats. EBM-2 medium coated with fibronectin was the best for cultivation of adult rat Schwann cells.

  9. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats.

    PubMed

    Montandon, Gaspard; Horner, Richard L; Kinkead, Richard; Bairam, Aida

    2009-11-15

    Caffeine is commonly used clinically to treat apnoeas and unstable breathing associated with premature birth. Caffeine antagonizes adenosine receptors and acts as an efficient respiratory stimulant in neonates. Owing to its persistent effects on adenosine receptor expression in the brain, neonatal caffeine administration also has significant effects on maturation of the respiratory control system. However, since adenosine receptors are critically involved in sleep regulation, and sleep also modulates breathing, we tested the hypothesis that neonatal caffeine treatment disrupts regulation of sleep and breathing in the adult rat. Neonatal caffeine treatment (15 mg kg(-1) day(-1)) was administered from postnatal days 3-12. At adulthood (8-10 weeks old), sleep and breathing were measured with a telemetry system and whole-body plethysmography respectively. In adult rats treated with caffeine during the neonatal period, sleep time was reduced, sleep onset latency was increased, and non-rapid eye movement (non-REM) sleep was fragmented compared to controls. Ventilation at rest was higher in caffeine-treated adult rats compared to controls across sleep/wake states. Hypercapnic ventilatory responses were significantly reduced in caffeine-treated rats compared to control rats across sleep/wake states. Additional experiments in adult anaesthetized rats showed that at similar levels of arterial blood gases, phrenic nerve activity was enhanced in caffeine-treated rats. This study demonstrates that administration of caffeine in the neonatal period alters respiratory control system activity in awake and sleeping rats, as well as in the anaesthetized rats, and also has persistent disrupting effects on sleep that are apparent in adult rats.

  10. Brain Pathology in Adult Rats Treated With Domoic Acid.

    PubMed

    Vieira, A C; Alemañ, N; Cifuentes, J M; Bermúdez, R; Peña, M López; Botana, L M

    2015-11-01

    Domoic acid (DA) is a neurotoxin reported to produce damage to the hippocampus, which plays an important role in memory. The authors inoculated rats intraperitoneally with an effective toxic dose of DA to study the distribution of the toxin in major internal organs by using immunohistochemistry, as well as to evaluate the induced pathology by means of histopathologic and immunohistochemical methods at different time points after toxin administration (6, 10, and 24 hours; 5 and 54 days). DA was detected by immunohistochemistry exclusively in pyramidal neurons of the hippocampus at 6 and 10 hours after dosing. Lesions induced by DA were prominent at 5 days following treatment in selected regions of the brain: hippocampus, amygdala, piriform and perirhinal cortices, olfactory tubercle, septal nuclei, and thalamus. The authors found 2 types of lesions: delayed death of selective neurons and large areas of necrosis, both accompanied by astrocytosis and microgliosis. At 54 days after DA exposure, the pathology was characterized by still-distinguishable dying neurons, calcified lesions in the thalamus, persistent astrocytosis, and pronounced microgliosis. The expression of nitric oxide synthases suggests a role for nitric oxide in the pathogenesis of neuronal degeneration and chronic inflammation induced by DA in the brain.

  11. CYTOPLASMIC INCLUSIONS RESEMBLING NUCLEOLI IN SYMPATHETIC NEURONS OF ADULT RATS

    PubMed Central

    Grillo, Mary A.

    1970-01-01

    A distinctive cytoplasmic inclusion consisting of a convoluted network of electron-opaque strands embedded in a less dense matrix was identified in the neurons, but not in the supporting cells, of rat sympathetic ganglia. This ball-like structure, designated "nematosome," measures ∼ 0.9 µ and lacks a limiting membrane. Its strands (diameter = 400–600 A) appear to be made of an entanglement of tightly packed filaments and particles ∼ 25–50 A thick. Cytochemical studies carried out with the light microscope suggest the presence of nonhistone proteins and some RNA. Usually only one such structure is present in a cell, and it appears to occur in most ganglion cells. Although they can be seen anywhere in the cell body, nematosomes are typically located in the perinuclear cytoplasm, where they are often associated with smooth-surfaced and coated vesicles. In fine structure and stainability, they bear a resemblance to the fibrous component of the nucleolus. Subsynaptic formations, which are a special feature of some of the synapses in sympathetic ganglia, appear similar to the threadlike elements in the nematosomes. The possibility that these three structures—nucleolus, nematosome, and subsynaptic formation—may be interrelated in origin and function is discussed. PMID:5458990

  12. Behavioral deficits in adult rats treated neonatally with glutamate.

    PubMed

    Hlinák, Zdenek; Gandalovicová, Dana; Krejcí, Ivan

    2005-01-01

    The present study evaluated long-term behavioral consequences of neonatal monosodium-l-glutamate (MSG) treatment in rats. The pups received MSG (3 mg/g sc) daily from postnatal day (PD) 5-12. Data from an automatic activity monitor showed that locomotion of MSG-treated females and males aged 56 and 84 days was significantly reduced. Beginning PD 120, three behavioral tests were performed. As compared to the controls, in the elevated plus maze test, modified to evaluate the adaptive form of spatial memory, MSG-treated animals of both sex had significantly prolonged start and transfer latencies. In the social recognition test, assessing olfactory working memory, MSG-treated males displayed a reduced interest in the juvenile conspecific as the stimulus partner during both the initial exposure and re-exposure performed 30 min later. In the open field test, a significant decrease in the habituation rate was found in MSG-treated animals. Sex-dependent differences in behavioral performance were suggested in the open field and elevated plus maze tests. Behavioral changes are discussed in light of the deficits in perception and processing of visual and olfactory stimuli.

  13. Chronic systemic administration of 5-HT produces weight loss in mature adult male rats.

    PubMed

    Edwards, S

    1995-09-01

    Adult male rats were allowed to free-feed until their body weights had stabilised. They were next trained onto a 4 h per day feeding regimen, until further stabilisation occurred. All rats then received saline injections for 5 days, to establish baseline body weights. One group was then injected with 5.0 mg/kg 5-HT daily for 30 days while the other group continued with saline. Progressive and significant weight loss occurred in the drug-treated animals. After 30 days, the 5-HT-treated rats had lost 7.0% of their baseline body weights, whereas the control group had gained 1.3%. At this point, the 5-HT treated rats were switched back to saline injections to investigate rebound effects. Although the group that had received 5-HT treatment showed evidence of rebound weight gain, mean weights at the end of the 10 day rebound period were still 4.5% lower than baseline values. These data clearly indicate that chronic systemic administration of 5-HT can produce considerable weight loss in rats.

  14. Effect of restraint and copper deficiency on blood pressure and mortality of adult rats

    SciTech Connect

    Klevay, L.M.; Halas, E.S. )

    1989-02-01

    The etiology of most hypertension is unknown; stress is thought to elevate blood pressure. Male, weanling Sprague-Dawley rats were fed a purified diet plus a drinking solution containing 10{mu}g Zn and 2{mu}g Cu/ml (acetate sulfate, respectively). Systolic blood pressure was measured without anesthesia. After being matched by mean weight (280g) and blood pressure into 4 groups of 15, groups 1 and 2 received a drinking solution without copper. After 24 days rats in groups 2 and 4 were restrained for 45 min. daily (A.M.) for 23 days in a small plastic cage (19{times}6{times}6 cm). Final pressures were affected both by stress and dietary Cu: group 1, 119; group 2, 131; group 3, 114; group 4, 123 mm Hg. One rat in each of groups 1, 3, 4 and 10 rats in group 2, died. Among these latter hemorrhage was prominent, blood being found in bladder (2), gut (2), peritoneum (2) and scrotum (1). Copper deficiency decreased cooper in both adrenal gland and liver by 58% and in heart by 29% restraint was without effect. Cardiac sodium was increased 6% only by deficiency. Results confirm the hypertensive effect of copper deficiency in adult rats and reveal that the stress of restraint increases blood pressure. Copper deficiency plus stress is harmful.

  15. γ/δ Cells in Fetal, Neonatal, and Adult Rat Lymphoid Organs

    PubMed Central

    Kühnlein, P.; Vicente, A.; Varas, A.; Hünig, T.

    1995-01-01

    In the present study, we have analyzed the appearance and maturation of γ/δ T cells, recognized with a new mAb V65, in the central and peripheral lymphoid organs of fetal, neonatal, and adult Wistar rats. Cytofluorometrical analysis demonstrated the first V65+ γ/δ T cells in the thymus of 16-17-day embryonic rats, although by immunohistology, they were identified only in 19-day rat embryos in both the cortico-medullary border and thymic medulla. Phenotypically, γ/δ thymocytes from fetal and neonatal thymus expressed CD3, CD2, and CD5, but only 60-80% were CD8+ and approximately 40-50% expressed the α chain (p55) of the IL-2R. In the periphery, the immunohistological study identified for the first time ,γ/δ T cells in the splenic white pulp and the gut of 21-day fetal rats, where they occurred within the epithelium as well as in the lamina propria. After birth, γ/δ lymphocytes appeared in the skin, where they were present as dendritic epidermal T cells in increasing numbers during postnatal life. Whereas these γ/δ T cells formed the predominant T-cell population in the rat skin, γ/δ T cells in peripheral lymphoid organs, BALT, or the gut only represented a minor T-cell population. These results are discussed in comparison to γ/δ T cells of other vertebrate species. PMID:8770557

  16. Myocardial infarction induces cognitive impairment by increasing the production of hydrogen peroxide in adult rat hippocampus.

    PubMed

    Liu, Chunhua; Liu, Ye; Yang, Zhuo

    2014-02-01

    Accumulating clinical evidence has shown a causal relationship between heart diseases and cognitive impairment in clinical, but the underlying mechanism remains unclear. In this study, rats with myocardial infarction (MI) were used to investigate cognition-related synaptic function and proteins. Adult male Wistar rats were subjected to MI by ligating of left anterior descending artery (LAD) and the infarct size of rat heart was measured by 2,3,5-triphenyltetrazoium chloride (TTC) staining. In this study, results showed that compared with control group, long-term potentiation was suppressed in dentate gyrus area, the contents of hydrogen peroxide (H2O2) and malondialdehyde were significantly increased, whereas the Cu/Zn-superoxide dismutase activity and N-methyl-d-aspartate receptor subunit 2B were attenuated in hippocampus of MI rats. Interestingly, it was observed that the PI3K/Akt pathway was activated in MI rats. Therefore, this study suggests that H2O2 plays an important role in cognitive dysfunction induced by MI.

  17. Early deprivation reduced anxiety and enhanced memory in adult male rats.

    PubMed

    Zhang, Xuliang; Wang, Bo; Jin, Jing; An, Shuming; Zeng, Qingwen; Duan, Yanhong; Yang, Liguo; Ma, Jing; Cao, Xiaohua

    2014-09-01

    The effects of early deprivation (ED, which involves both dam and littermate deprivation) on anxiety and memory are less investigated in comparison with maternal separation (MS), and it is not yet clear how ED affects long-term potentiation (LTP) in the hippocampal Schaffer collateral pathway. By using a series of behavioral tests, enzyme-linked immunosorbent assay and field potential recording, we explored the effect of pre-weaning daily 3-h ED on anxiety, memory and potential mechanisms in adult male rats. Compared with control, ED rats spent longer time in open arms of elevated plus maze and in light compartment of light-dark transition box. Consistently, stress-induced blood plasma corticosterone level was also lower in ED rats. Moreover, ED rats showed better performance in social recognition and Morris water maze test. In accordance with results in memory tests, the threshold of LTP induction in hippocampal CA3-CA1 pathway of ED rats was also reduced. Our results indicate ED reduced anxiety, but enhanced social recognition and spatial reference memory. We suggest the diminished hypothalamic-pituitary-adrenal axis response and facilitated hippocampal LTP may contribute to the anxiety-reducing and memory-enhancing effects of ED, respectively.

  18. Toxic effects of Mn2O3 nanoparticles on rat testis and sex hormone

    PubMed Central

    Negahdary, Masoud; Arefian, Zahra; Dastjerdi, Hajar Akbari; Ajdary, Marziyeh

    2015-01-01

    Background and Objective: The safety of Mn2O3 nanoparticles (which are extensively used in industries) on male reproductive system is not known. Hence, we investigated the effects of Mn2O3 nanoparticles on male reproductive system. Materials and Methods: A total of 40 Wistar adult male rats were randomly assigned to four groups of 10 rats each. Three groups received Mn2O3 solution in concentrations of 100, 200, and 400 ppm orally for 14 days; the control group received equal volume of saline solution. Blood samples and testicles were collected for analysis. Results: Significant reduction in luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, spermatogonial cells, primary spermatocyte, spermatid and Leydig cell was observed in the Mn2O3 nanoparticles treated groups compared with controls. Conclusion: Mn2O3 nanoparticles significantly reduce FSH, LH, and testosterone levels resulting in a significant reduction in testicular cytology. PMID:26283824

  19. Acute lethal graft-versus-host disease stimulates cellular proliferation in the adult rat liver.

    PubMed

    Klein, R M; Clancy, J; Stuart, S

    1982-11-01

    The present investigation was designed to analyse the effects of acute lethal graft-versus-host disease (GVHD) in adult (DA x LEW)F1 rats on cellular proliferation within the liver. The influence of the host thymus on GVHD-induced proliferation was also assessed. From 1-28 days after initiation of GVHD [3H]thymidine ([3H]-TdR) was injected i.v. and rats were killed one hour later. Percentage labelled cells (LI) of periportal infiltrating cells (PIC), hepatocytes (H), and sinusoidal lining cells (SC) were counted. Mean values for control rats were 0.3 +/- 0.1% (H), 0.4 +/- 0.1% (SC) and 0.2 +/- 0.1% (PIC). GVHD rats demonstrated a significant increase in LI of PIC (days 1-21), SC (days 2-17) and H (days 2-17). Most labelled cells in PIC were large lymphocytes. Peak LI values were 7.0 +/- 1.0% PIC (day 17), 6.8 +/- 0.9% SC (day 17), and 5.2 +/- 0.9% H (day 7), with all cellular compartments returning to near normal LI values by day 28. Stimulation of cellular proliferation occurred in all three liver cell compartments in neonatally thymectomized (TXM) rats. The intensity of GVHD-induced cell proliferation was significantly decreased at day 7 in all compartments and PIC was dramatically decreased at day 21 in TXM-GVHD rats as compared to non-TXM-GVHD rats. It is hypothesized that the general stimulation of hepatocyte cell proliferation in GVHD is related to the secretion of lymphokines by primarily donor and secondarily host T cells in the periportal infiltrate. PMID:7172201

  20. Hypothyroidism increases prolactin secretion and decreases the intromission threshold for induction of pseudopregnancy in adult female rats.

    PubMed

    Tohei, A; Taya, K; Watanabe, G; Voogt, J L

    In order to understand the mechanism by which thyroid hormones alter prolactin (PRL) secretion, we investigated the role of tuberoinfundibular dopamine (TIDA) neurons and pituitary and hypothalamus vasoactive intestinal peptide (VIP) in thiouracil- (0. 03% in drinking water for 16 days) induced-hypothyroid adult female rats. The intromission threshold for induction of pseudopregnancy also was examined to evaluate the PRL response to coital stimulation in hypothyroid rats. Hypothyroidism in adult female rats did not affect TIDA neuronal activity as measured by tyrosine hydroxylase activity (DOPA accumulation 30 min after administration of m-hydroxybenzylhydrazine dihydrochloride, 100 mg/kg, i.p.) in the stalk-median eminence compared with that in euthyroid rats, whereas pituitary concentration of VIP was dramatically increased. Plasma concentration of PRL was higher at 1100 h of proestrus and estrus in hypothyroid rats as compared with that of euthyroid rats. The proportion of female rats exhibiting pseudopregnancy was higher in hypothyroid animals (100%) receiving seven intromissions than in euthyroid animals (43%). Administration of L-thyroxine in hypothyroid rats decreased the proportion of pseudopregnancy (40%) to the level of euthyroid animals. These results indicate that the increased level of pituitary VIP probably affects PRL secretion in a paracrine or autocrine manner and account for the hyperprolactinemia induced in hypothyroid female rats. No role for TIDA neurons in PRL elevation can be ascribed. A decrease in the intromission threshold for induction of pseudopregnancy might be due to increased levels of PRL in hypothyroid female rats.

  1. Circadian rhythm of intraocular pressure in the adult rat.

    PubMed

    Lozano, Diana C; Hartwick, Andrew T E; Twa, Michael D

    2015-05-01

    Ocular hypertension is a risk factor for developing glaucoma, which consists of a group of optic neuropathies characterized by progressive degeneration of retinal ganglion cells and subsequent irreversible vision loss. Our understanding of how intraocular pressure damages the optic nerve is based on clinical measures of intraocular pressure that only gives a partial view of the dynamic pressure load inside the eye. Intraocular pressure varies over the course of the day and the oscillator regulating these daily changes has not yet been conclusively identified. The purpose of this study was to compare and contrast the circadian rhythms of intraocular pressure and body temperature in Brown Norway rats when these animals are housed in standard light-dark and continuous dim light (40-90 lux) conditions. The results from this study show that the temperature rhythm measured in continuous dim light drifted forward relative to external time, indicating that the rhythm was free running and being regulated by an internal biological clock. Also, the results show that there is a persistent, but dampened, circadian rhythm of intraocular pressure in continuous dim light and that the circadian rhythms of temperature and intraocular pressure are not synchronized by the same central oscillator. We conclude that once- or twice-daily clinical measures of intraocular pressure are insufficient to describe intraocular pressure dynamics. Similarly, our results indicate that, in experimental animal models of glaucoma, the common practice of housing animals in constant light does not necessarily eliminate the potential influence of intraocular pressure rhythms on the progression of nerve damage. Future studies should aim to determine whether an oscillator within the eye regulates the rhythm of intraocular pressure and to better characterize the impact of glaucoma on this rhythm.

  2. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  3. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  4. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons. PMID:21946944

  5. Perinatal iron deficiency affects locomotor behavior and water maze performance in adult male and female rats.

    PubMed

    Bourque, Stephane L; Iqbal, Umar; Reynolds, James N; Adams, Michael A; Nakatsu, Kanji

    2008-05-01

    Iron deficiency during early growth and development adversely affects multiple facets of cognition and behavior in adult rats. The purpose of this study was to assess the nature of the learning and locomotor behavioral deficits observed in male and female rats in the absence of depressed brain iron levels at the time of testing. Adult female Wistar rats were fed either an iron-enriched diet (>225 mg/kg Fe) or an iron-restricted diet (3 mg/kg Fe) for 2 wk prior to and throughout gestation, and a nonpurified diet (270 mg/kg Fe) thereafter. Open-field (OF) and Morris water maze (MWM) testing began when the offspring reached early adulthood (12 wk). At birth, perinatal iron-deficient (PID) offspring had reduced (P < 0.001) hematocrits (-33%), liver iron stores (-83%), and brain iron concentrations (-38%) compared with controls. Although there were no differences in iron status in adults, the PID males and females exhibited reduced OF exploratory behavior, albeit only PID males had an aversion to the center of the apparatus (2.5 vs. 6.9% in controls, P < 0.001). Additionally, PID males required greater path lengths to reach the hidden platform in the MWM, had reduced spatial bias for the target quadrant, and had a tendency for greater thigmotactic behavior in the probe trials (16.5 vs. 13.0% in controls; P = 0.06). PID females had slower swim speeds in all testing phases (-6.2%; P < 0.001). These results suggest that PID has detrimental programming effects in both male and female rats, although the behaviors suggest different mechanisms may be involved in each sex.

  6. Efficacy of Retigabine on Acute Limbic Seizures in Adult Rats

    PubMed Central

    Friedman, LK; Slomko, AM; Wongvravit, JP; Naseer, Z; Hu, S; Wan, WY; Ali, SS

    2015-01-01

    Background and Purpose: The efficacy of retigabine (RGB), a positive allosteric modulator of K+ channels indicated for adjunct treatment of partial seizures, was studied in two adult models of kainic acid (KA)-induced status epilepticus to determine it’s toleratbility. Methods: Retigabine was administered systemiclly at high (5 mg/kg) and low (1–2 mg/kg) doses either 30 min prior to or 2 hr after KA-induced status epilepticus. High (1 µg/µL) and low (0.25 µg/µL) concentrations of RGB were also delivered by intrahippocampal microinjection in the presence of KA. Results: Dose-dependent effects of RGB were observed with both models. Lower doses increased seizure behavior latency and reduced the number of single spikes and synchronized burst events in the electroencephalogram (EEG). Higher doses worsened seizure behavior, produced severe ataxia, and increased spiking activity. Animals treated with RGB that were resistant to seizures did not exhibit significant injury or loss in GluR1 expression; however if stage 5–6 seizures were reached, typical hippocampal injury and depletion of GluR1 subunit protein in vulernable pyramidal fields occurred. Conclusions: RGB was neuroprotective only if seizures were significantly attenuated. GluR1 was simultaneously suppressed in the resistant granule cell layer in presence of RGB which may weaken excitatory transmission. Biphasic effects observed herein suggest that the human dosage must be carefully scrutinized to produce the optimal clinical response. PMID:26819936

  7. Histomorphometric evaluation of renal glomeruli exposed to sustained delivery of estrogen using adult ovariectomized rats.

    PubMed

    Hafez, Naiel A; Benghuzzi, Hamed; Tucci, Michelle

    2003-01-01

    Hormonal replacement therapy (HRT) has shown to be efficacious in treatment and preventing of heart disease, osteoporosis and reducing mortality in postmenopausal and ovariectomized females. Several attempts to utilize the native estrogen and its analogs such as Depo-Provera, conjugated estrogen and estrogen benzoate have shown different physiological responses. In addition, the route of administration and its mode of action is lacking in the literature. The specific objective of this study was to investigate the role of sustained delivery of estrogen on the functional and structural capacity of the kidney using adult female rats as a model. A total of 24 adult female rats were subdivided into four equal groups. Groups I and II were ovariectomized (OVX) by following standard laboratory surgical procedures. Each rat in groups II and III (intact) were implanted with tricalcium phosphate lysine (TCPL) drug delivery system loaded with 40 mg of estrogen. Rats in group IV were unimplanted and untreated to be served as a control group. At the end of 45 days post treatment the animals were sacrificed by using overdose of Halothane and assured by cervical dislocation. Vital and reproductive organs were retrieved, weighed and subjected to H&E staining procedure. The results of this investigation suggest: (i) TCPL delivery system released estrogen at a sustained level for 45 days without any untoward response, (ii) the wet weights of kidneys (normalized to body weight) were increased (p < 0.05) in intact rats treated with estrogen compared to control, (iii) sustained delivery of estrogen resulted in a maintenance of kidney weights compared to the control level, however, the lack of estrogen treatment resulted in a remarkable regression in the kidney weights of OVX rats, (iv) the ratio of renal arteries-diameter (normalized to arterial wall thickness) was significantly increased in intact rats treated with estrogen compared to the control and other experimental groups, (v

  8. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus.

    PubMed

    Williamson, Lauren L; Chao, Agnes; Bilbo, Staci D

    2012-03-01

    Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Environmental enrichment (EE) in rodents increases neurogenesis, enhances cognition, and promotes recovery from injury. However, little is known about the effects of EE on glia (astrocytes and microglia). Given their importance in neural repair, we predicted that EE would modulate glial phenotype and/or function within the hippocampus. Adult male rats were housed either 12 h/day in an enriched environment or in a standard home cage. Rats were injected with BrdU at 1 week, and after 7 weeks, half of the rats from each housing group were injected with lipopolysaccharide (LPS), and cytokine and chemokine expression was assessed within the periphery, hippocampus and cortex. Enriched rats had a markedly blunted pro-inflammatory response to LPS within the hippocampus. Specifically, expression of the chemokines Ccl2, Ccl3 and Cxcl2, several members of the tumor necrosis factor (TNF) family, and the pro-inflammatory cytokine IL-1β were all significantly decreased following LPS administration in EE rats compared to controls. EE did not impact the inflammatory response to LPS in the cortex. Moreover, EE significantly increased both astrocyte (GFAP+) and microglia (Iba1+) antigen expression within the DG, but not in the CA1, CA3, or cortex. Measures of neurogenesis were not impacted by EE (BrdU and DCX staining), although hippocampal BDNF mRNA was significantly increased by EE. This study demonstrates the importance of environmental factors on the function of the immune system specifically within the brain, which can have profound effects on neural function.

  9. A Microdialysis Study of the Medial Prefrontal Cortex of Adolescent and Adult Rats

    PubMed Central

    Staiti, Amanda M.; Morgane, Peter J.; Galler, Janina R.; Grivetti, Janice Y.; Bass, Donna C.; Mokler, David J.

    2011-01-01

    The medial prefrontal cortex (mPFC) of the rat has become a key focus of studies designed to elucidate the basis of behavior involving attention and decision making, i.e. executive functions. The adolescent mPFC is of particular interest given the role of the mPFC in impulsivity and attention, and disorders such as attentional deficit disorder. In the present study we have examined the basal extracellular concentrations of the neurotransmitters 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the ventral portion of the mPFC (vmPFC) in both adolescent (post-natal day 45–50) and adult, and male and female rats using in vivo microdialysis. We have also examined both the left and right vmPFCs given reports of laterality in function between the hemispheres. Basal extracellular concentrations of 5-HT differed significantly between male and female rats. Extracellular DA also differed significantly between male and female rats and between the left and the right vmPFC in adult males. No differences were seen in basal extracellular NE. There was a significant age difference between groups in the laterality of extracellular NE levels between right and left vmPFC. Infusion of 100 µM methamphetamine through the dialysis probe increased the extracellular concentration of all the monoamines although there were no differences between groups in methamphetamine stimulated release. The findings from this study demonstrate that there are differences in monoaminergic input to the mPFC of the rat based on age, gender and hemisphere. This work sets the neurochemical baseline for further investigations of the prefrontal cortex during development. PMID:21527264

  10. Effect of supraphysiological dose of Nandrolone Decanoate on the testis and testosterone concentration in mature and immature male rats: A time course study

    PubMed Central

    Jannatifar, Rahil; Shokri, Saeed; Farrokhi, Ahmad; Nejatbakhsh, Reza

    2015-01-01

    Background: Most studies on anabolic-androgenic steroids abuse have been done in adult rats, but few data are available to immature. Objective: This study was conducted to assay the effect of Nandrolone Decanoate (ND) on the testis and testosterone concentration in male immature rats compare with mature ones in short and long time. Materials and Methods: 40 mature rats were divided into 4 groups: group A (short term) and group B (long-term) received 10 mg/kg/day ND interaperitoneally for 35 and 70 days, respectively. Group C (control) without any treatment, and group D (vehicle) received dimethyl sulfoxide (DMSO) solution in two periods 35 and 70 days. 40 immature rats were divided into 4 groups same as mature ones. After surgery body weight, testis size, histomorphometry of testis, and serum testosterone level were evaluated. Results: Our results showed that ND decreased the number of Leydig cells in group B (39.9 ±. 919), group A (43.4 ±. 120), and long term (40.6 ±. 299) immature rats, which could result in a reduction of testosterone concentration significantly in all experimental groups except short term mature group. Number of sertoli cells, testis size, and diameter of seminiferous tubules decreased in the long-term immature group. Eventually, the number of sperm was decreased in mature and immature groups, but a severe depletion of sperm was occurred in both mature and immature in long time in comparison to the control group (p< 0.05). Conclusion: This time course study showed that supraphysiological dose of ND may negatively affect the number of Leydig cells, sperm cell, and testosterone concentration of immature rats in the same matter of mature rats. However, the number of sertoli cell, testis size, and seminferous diameter were decreased only in the long immature rats. PMID:27141538

  11. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity.

    PubMed

    van de Heijning, Bert J M; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M

    2015-07-08

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%-75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  12. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity

    PubMed Central

    van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.

    2015-01-01

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291

  13. Histological correlates of N40 auditory evoked potentials in adult rats after neonatal ventral hippocampal lesion: animal model of schizophrenia.

    PubMed

    Romero-Pimentel, A L; Vázquez-Roque, R A; Camacho-Abrego, I; Hoffman, K L; Linares, P; Flores, G; Manjarrez, E

    2014-11-01

    The neonatal ventral hippocampal lesion (NVHL) is an established neurodevelopmental rat model of schizophrenia. Rats with NVHL exhibit several behavioral, molecular and physiological abnormalities that are similar to those found in schizophrenics. Schizophrenia is a severe psychiatric illness characterized by profound disturbances of mental functions including neurophysiological deficits in brain information processing. These deficits can be assessed by auditory evoked potentials (AEPs), where schizophrenics exhibit abnormalities in amplitude, duration and latency of such AEPs. The aim of the present study was to compare the density of cells in the temporal cerebral cortex and the N40-AEP of adult NVHL rats versus adult sham rats. We found that rats with NVHL exhibit significant lower amplitude of the N40-AEP and a significant lower number of cells in bilateral regions of the temporal cerebral cortex compared to sham rats. Because the AEP recordings were obtained from anesthetized rats, we suggest that NVHL leads to inappropriate innervation in thalamic-cortical pathways in the adult rat, leading to altered function of cortical networks involved in processing of primary auditory information.

  14. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    SciTech Connect

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  15. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition.

    PubMed

    Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J; Ren, Xuefang; Hu, Heng; Nurkiewicz, Timothy R; McBride, Carroll R; Yi, Jinghai; Engels, Kevin; Simpkins, James W

    2016-01-01

    It is generally accepted that gestational xenobiotic exposures result in systemic consequences in the adult F1 generation. However, data on detailed behavioral and cognitive consequences remain limited. Using our whole-body nanoparticle inhalation facility, pregnant Sprague-Dawley rats (gestational day [GD] 7) were exposed 4 d/wk to either filtered air (control) or nano-titanium dioxide aerosols (nano-TiO2; count median aerodynamic diameter of 170.9 ± 6.4 nm, 10.4 ± 0.4 mg/m(3), 5 h/d) for 7.8 ± 0.5 d of the remaining gestational period. All rats received their final exposure on GD 20 prior to delivery. The calculated daily maternal deposition was 13.9 ± 0.5 µg. Subsequently, at 5 mo of age, behavior and cognitive functions of these pups were evaluated employing a standard battery of locomotion, learning, and anxiety tests. These assessments revealed significant working impairments, especially under maximal mnemonic challenge, and possible deficits in initial motivation in male F1 adults. Evidence indicates that maternal engineered nanomaterial exposure during gestation produces psychological deficits that persist into adulthood in male rats.

  16. Environmental enrichment for adult rats: effects on trait and state anxiety.

    PubMed

    Goes, Tiago Costa; Antunes, Fabrício Dias; Teixeira-Silva, Flavia

    2015-01-01

    Experimental evidence indicates that enriched environment (EE) induces neurobiological and behavioural alterations. EE in early life improves learning and memory and reduces trait and state anxiety. However, the effect of EE established in adulthood has rarely been investigated. Thus, the aim of this study was to evaluate the possibility of modifying the levels of trait and/or state anxiety of adult rats exposed to EE. Seventy adult Wistar male rats were first tested in the free-exploratory paradigm (FEP) and were categorized according to their levels of trait anxiety (high, medium and low). Subsequently, half of the animals from each category returned to their home cages (standard condition: SC) and the other half was transferred to an enriched environment (enriched condition: EC). After three weeks, all animals were again tested in FEP. Seven to 10 days later, fifty of the seventy animals were tested on the elevated plus-maze test (EPM). In FEP, EE reduced locomotor activity in the second exposition independently of the anxiety category and, it decreased the levels of trait anxiety of highly anxious rats. No effect of EE was observed on EPM. In conclusion, EE established in adulthood was able to reduce high trait anxiety, a major risk factor for anxiety disorders.

  17. Unilateral eye enucleation in adult rats causes neuronal loss in the contralateral superior colliculus

    PubMed Central

    SMITH, S. A.; BEDI, K. S.

    1997-01-01

    Several studies have reported the morphological changes induced by unilateral enucleation during early neonatal life on the developing visual system. This study has examined cellular changes in the superior colliculi by removal of a single eye in adult rats. Anaesthetised male hooded rats aged 90 d had their right eyes removed. Groups of nonenucleated control and enucleated rats were killed when aged either 150 or 390 d. The brains were removed and both the right and left superior colliculi dissected out. The volume of the stratum griseum superficiale (SGS) within these colliculi was estimated stereologically by light microscopy, as well as the numerical density and total number of neurons within this cell layer. The volume of the cell layer was reduced by about 40% on the side contralateral to the enucleated eye but not on the ipsilateral side at both survival periods examined. The numerical density of neurons within the SGS was unaffected by the enucleation so that the colliculi contralateral to the enucleated eye showed a substantial loss of neurons within this cell layer. This study demonstrates the importance of the retinal ganglion cell input, even in adult animals, for maintaining the viability of neurons in the SGS layer of the superior colliculus. PMID:9183672

  18. Maternal separation is associated with DNA methylation and behavioural changes in adult rats.

    PubMed

    Anier, Kaili; Malinovskaja, Kristina; Pruus, Katrin; Aonurm-Helm, Anu; Zharkovsky, Alexander; Kalda, Anti

    2014-03-01

    Early life stress is known to promote long-term neurobiological changes, which may underlie the increased risk of psychopathology. Maternal separation (MS) is used as an early life stressor that causes profound neurochemical and behavioural changes in the pups that persist into adulthood. However, the exact mechanism of how MS alters these behavioural changes is not yet understood. Epigenetic modifications, such as DNA methylation, are critical regulators of persistent gene expression changes and may be related to behavioural disorders. The aim of the present study was to investigate whether early life stress on rats could alter cocaine-induced behavioural sensitisation in adulthood via aberrant DNA methylation. We have three main findings: (1) MS increased DNA methyltransferases (DNMTs) expression in the nucleus accumbens (NAc) of infant and adult rats; (2) MS induced DNA hypomethylation on a global level in the NAc, and hypermethylation of the promoter regions of the protein phosphatase 1 catalytic subunit (PP1C) and adenosine A2Areceptor (A2AR) genes, which was associated with their transcriptional downregulation in the NAc; (3) MS-induced molecular changes paralleled an increased response to cocaine-induced locomotor activity and exploratory behaviour in adult rats. Thus, our results suggest that stressful experiences in early life may create a background, via aberrant DNA methylation, which promotes the development of cocaine-induced behavioural sensitisation in adulthood. PMID:23972903

  19. Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition.

    PubMed

    Engler-Chiurazzi, Elizabeth B; Stapleton, Phoebe A; Stalnaker, Jessica J; Ren, Xuefang; Hu, Heng; Nurkiewicz, Timothy R; McBride, Carroll R; Yi, Jinghai; Engels, Kevin; Simpkins, James W

    2016-01-01

    It is generally accepted that gestational xenobiotic exposures result in systemic consequences in the adult F1 generation. However, data on detailed behavioral and cognitive consequences remain limited. Using our whole-body nanoparticle inhalation facility, pregnant Sprague-Dawley rats (gestational day [GD] 7) were exposed 4 d/wk to either filtered air (control) or nano-titanium dioxide aerosols (nano-TiO2; count median aerodynamic diameter of 170.9 ± 6.4 nm, 10.4 ± 0.4 mg/m(3), 5 h/d) for 7.8 ± 0.5 d of the remaining gestational period. All rats received their final exposure on GD 20 prior to delivery. The calculated daily maternal deposition was 13.9 ± 0.5 µg. Subsequently, at 5 mo of age, behavior and cognitive functions of these pups were evaluated employing a standard battery of locomotion, learning, and anxiety tests. These assessments revealed significant working impairments, especially under maximal mnemonic challenge, and possible deficits in initial motivation in male F1 adults. Evidence indicates that maternal engineered nanomaterial exposure during gestation produces psychological deficits that persist into adulthood in male rats. PMID:27092594

  20. Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats.

    PubMed

    Takeuchi, Takashi; Kitagawa, Hiroshi; Harada, Etsumori

    2004-05-01

    Using adult rats, the characteristic transporting system for lactoferrin (LF) from intestinal lumen into the blood circulation was investigated. The rats were randomly divided into two groups, a non-collected thoracic lymph (NC) group and a collected thoracic lymph (LC) group. Peripheral blood and thoracic lymph were collected from a jugular vein and a thoracic lymph duct, respectively, under anaesthesia. Bovine LF (bLF) was infused into the duodenal lumen by needle over a 1-min period at a dose of 1 g kg(-1). The transported bLF in the plasma and lymph was assayed quantitatively by double-antibody enzyme-linked immunosorbent assay (ELISA). Morphological investigation was also carried out in the intestine, lymph node, and liver. Following intraduodenal administration of bLF, the transported bLF in the NC group was detected in the plasma, and reached a peak value at 2 h. Furthermore, the bLF concentration in the thoracic duct lymph fluid in the LC group increased significantly, and peaked 2 h after the administration. In addition, bLF was not detected in the plasma of the LC group. Immunohistochemical analysis clearly showed anti-bLF positive particles in the epithelial cells of the apical villi. The striated border and baso-lateral membrane were also bLF positive. These results suggest that intraduodenally infused bLF is transported into the blood circulation via the lymphatic pathway, not via portal circulation in adult rats.

  1. Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine.

    PubMed

    Macúchová, E; Nohejlová, K; Slamberová, R

    2014-08-15

    Psychostimulants have been shown to affect brain regions involved in the process of learning and memory consolidation. It has been shown that females are more sensitive to the effects of drugs than males. The aim of our study was to investigate how prenatal methamphetamine (MA) exposure and application of amphetamine (AMP) in adulthood would affect spatial learning of adult female and male rats. Mothers of the tested offspring were exposed to injections of MA (5mg/kg) or saline (SA) throughout the entire gestation period. Cognitive functions of adult rats were evaluated in the Morris Water Maze (MWM) tests. Adult offspring were injected daily with AMP (5mg/kg) or SA through the period of MWM testing. Our data from the MWM tests demonstrates the following. Prenatal MA exposure did not change the learning ability of adult male and female rats. However, AMP administration to adult animals affected cognitive function in terms of exacerbation of spatial learning (increasing the latency to reach the hidden platform, the distance traveled and the search error) only in female subjects. There were sex differences in the speed of swimming. Prenatal MA exposure and adult AMP treatment increased the speed of swimming in female groups greater than in males. Overall, the male subjects showed a better learning ability than females. Thus, our results indicate that the adult AMP treatment affects the cognitive function and behavior of rats in a sex-specific manner, regardless of prenatal exposure.

  2. Novel Targets for the Transcription Factors MEF2 in MA-10 Leydig Cells1

    PubMed Central

    Di-Luoffo, Mickaël; Daems, Caroline; Bergeron, Francis; Tremblay, Jacques J.

    2015-01-01

    Testosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) are transcription factors recently identified in somatic cells of the male gonad. In other tissues, MEF2 factors are essential regulators of organogenesis and cell differentiation. So far in the testis, MEF2 factors were found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MEF2-depleted MA-10 Leydig cells, and the results were analyzed using Partek and Ingenuity Pathway Analysis software. Several genes were differentially expressed in MEF2-depleted Leydig cells, and 16 were validated by quantitative RT-PCR. A large number of these genes are known to be involved in fertility, gonad morphology, and steroidogenesis. These include Ahr, Bmal1, Cyp1b1, Hsd3b1, Hsd17b7, Map2k1, Nr0b2, Pde8a, Por, Smad4, Star, and Tsc22d3, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2-binding sites within the first 2 kb upstream of the transcription start site of the Por, Bmal1, and Nr0b2 promoters, suggesting direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, small interfering RNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1, and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction. PMID:26019261

  3. Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia.

    PubMed Central

    Ling, L; Olson, E B; Vidruk, E H; Mitchell, G S

    1997-01-01

    1. Hypoxic ventilatory responses are greatly attenuated in adult rats exposed to moderate hyperoxia (60% O2) during the first month of life (perinatal treated rats). The present study was designed to test the hypothesis that perinatal hyperoxia impairs central integration of carotid chemoreceptor afferent inputs, thereby diminishing the hypoxic ventilatory response. 2. Time-dependent phrenic nerve responses to electrical stimulation of the carotid sinus nerve (CSN) and steady-state relationships between CSN stimulation frequency and phrenic nerve output were compared in control and perinatal treated rats. The rats were urethane anaesthetized, vagotomized, paralysed and artificially ventilated. End-tidal CO2 was monitored and maintained at isocapnic levels; arterial blood gases were determined. 3. Two stimulation protocols were used: (1) three 2 min episodes of CSN stimulation (20 Hz, 0.2 ms duration, 3 x threshold), separated by 5 min intervals; and (2) nine 45 s episodes of CSN stimulation with stimulus frequencies ranging from 0.5 to 20 Hz (0.2 ms duration, 3 x threshold), separated by 4 min intervals. 4. The mean threshold currents to elicit phrenic responses were similar between groups. Burst frequency (f, burst min-1), peak amplitude of integrated phrenic activity (integral of Phr), and minute phrenic activity (integral of Phr x f) during and after CSN stimulation were not distinguishable between groups in either protocol at any time or at any stimulus intensity (P > 0.05). 5. Perinatal hyperoxia does not alter temporal or steady-state phrenic responses to CSN stimulation, suggesting that the central integration of carotid chemoreceptor afferent inputs is not impaired in perinatal treated rats. It is speculated that carotid chemoreceptors per se are impaired in perinatal treated rats. PMID:9161991

  4. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.

  5. Nuclear transfer of adult and genetically modified fetal cells of the rat.

    PubMed

    Hayes, E; Galea, S; Verkuylen, A; Pera, M; Morrison, J; Lacham-Kaplan, O; Trounson, A

    2001-04-27

    The present study examines the handling, activation, and micromanipulation of rat eggs in an attempt to produce live young using nuclear transfer (NT) of adult and genetically modified rat fetal cells. Mature rat eggs cultured in calcium-free medium showed reduced rates (24%) of chromosomal dispersion ("spontaneous activation" characteristic of this species) compared with eggs cultured in calcium-containing medium (47%), but failed to survive micromanipulation procedures. High rates of parthenogenetic cleavage were obtained with chemical activation using ethanol/cycloheximide (65%) compared with other standard chemical activation methods (4-28%). This type of activation was also effective in reestablishing cleavage capability (19-71%), in a time-dependent manner, of spontaneously activated eggs arrested at a second prophase-like state. At most, two of four tested micromanipulation procedures were effective in producing NT embryos capable of morula or blastocyst development (14-16%) in vivo following transfer to mouse oviducts. NT blastocysts produced from cumulus cells and transfected rat fetal fibroblasts appeared morphologically and karyotypically normal (2n = 42). Nocodazole-assisted metaphase enucleation and piezoelectric-assisted donor cell injection produced significant and equivocal effects on survival and cleavage rates of reconstructed embryos but failed to significantly improve in vivo morula/blastocyst development rates (16-28%) compared with unassisted micromanipulation (16%). Live births have not yet been obtained from early cleavage stage embryos (n = 269) transferred to pseudopregnant recipient rat oviducts. Improvements in reconstituted NT embryo culture and transfer are required for these methods to be an effective means of transgenic rat production.

  6. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise

    PubMed Central

    Merkley, Christina M.; Jian, Charles; Mosa, Adam; Tan, Yao-Fang; Wojtowicz, J. Martin

    2014-01-01

    Adult neurogenesis is highly responsive to environmental and physiological factors. The majority of studies to date have examined short-term consequences of enhancing or blocking neurogenesis but long-term changes remain less well understood. Current evidence for age-related declines in neurogenesis warrant further investigation into these long-term changes. In this report we address the hypothesis that early life experience, such as a period of voluntary running in juvenile rats, can alter properties of adult neurogenesis for the remainder of the animal's life. The results indicate that the number of proliferating and differentiating neuronal precursors is not altered in runners beyond the initial weeks post-running, suggesting homeostatic regulation of these processes. However, the rate of neuronal maturation and survival during a 4 week period after cell division was enhanced up to 11 months of age (the end of the study period). This study is the first to show that a transient period of physical activity at a young age promotes changes in neurogenesis that persist over the long-term, which is important for our understanding of the modulation of neurogenesis by exercise with age. Functional integration of adult-born neurons within the hippocampus that resist homeostatic regulation with aging, rather than the absolute number of adult-born neurons, may be an essential feature of adult neurogenesis that promotes the maintenance of neural plasticity in old age. PMID:25071426

  7. Astrocytes in the Rat Medial Amygdala Are Responsive to Adult Androgens

    PubMed Central

    Johnson, Ryan T.; Schneider, Amanda; DonCarlos, Lydia L.; Breedlove, S. Marc; Jordan, Cynthia L.

    2014-01-01

    The posterodorsal medial amygdala (MePD) exhibits numerous sex differences including differences in volume and in the number and morphology of neurons and astroctyes. In adulthood, gonadal hormones, including both androgens and estrogens, have been shown to play a role in maintaining the masculine character of many of these sex differences, but whether adult gonadal hormones maintain the increased number and complexity of astrocytes in the male MePD was unknown. To answer this question we examined astrocytes in the MePD of male and female Long Evans rats that were gonadectomized as adults and treated for 30 days with either testosterone or a control treatment. At the end of treatment brains were collected and immunostained for glial fibrillary acidic protein. Stereological analysis revealed that adult androgen levels influenced the number and complexity of astrocytes in the MePD of both sexes, but the specific effects of androgens were different in males and females. However, sex differences in the number and complexity of adult astrocytes persisted even in the absence of gonadal hormones in adulthood, suggesting that androgens also act earlier in life to determine these adult sex differences. Using immunofluorescence and confocal microscopy, we found robust androgen receptor immunostaining in a subpopulation of MePD astrocytes, suggesting that testosterone may act directly on MePD astrocytes to influence their structure and function. PMID:22581688

  8. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats

    PubMed Central

    Shepherd, Daniel J.; Tsai, Shih-Yen; O'Brien, Timothy E.; Farrer, Robert G.; Kartje, Gwendolyn L.

    2016-01-01

    Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis. PMID:27803646

  9. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats

    PubMed Central

    Beuk, Jonathan; Beninger, Richard J.; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  10. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats.

    PubMed

    Beuk, Jonathan; Beninger, Richard J; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  11. A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats.

    PubMed

    Lin, Tiao; Tong, Wei; Chandra, Abhishek; Hsu, Shao-Yun; Jia, Haoruo; Zhu, Ji; Tseng, Wei-Ju; Levine, Michael A; Zhang, Yejia; Yan, Shi-Gui; Liu, X Sherry; Sun, Dongming; Young, Wise; Qin, Ling

    2015-01-01

    Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI. PMID:26528401

  12. Tianeptine facilitates spreading depression in well-nourished and early-malnourished adult rats.

    PubMed

    Amancio-Dos-Santos, Angela; Maia, Luciana Maria Silva de Seixas; Germano, Paula Catirina Pereira da Silva; Negrão, Yleana Danielle Dos Santos; Guedes, Rubem Carlos Araújo

    2013-04-15

    Nutritional status during development can modify the brain's electrophysiological properties and its response to drugs that reduce the serotonin availability in the synaptic cleft. Here we used cortical spreading depression (CSD) in the rat as a neurophysiological parameter to investigate the interaction between nutritional status and treatment with tianeptine, a serotonin uptake enhancer. From postnatal day 2 to 24, well-nourished and early-malnourished rat pups were s.c. injected with tianeptine (5 or 10mg/kg; 10 ml/kg) or equivalent volume of saline solution (control group). When the animals were 25-30 days old, CSD was recorded on the brain cortical surface. In the well-nourished rats, but not in the malnourished group, systemic tianeptine dose-dependently increased the CSD propagation velocity, with 10mg/kg producing a significant (P<0.05) effect. An experiment in adult rats showed that cortical topical application of tianeptine solutions (5mg/ml, 10mg/ml, and 20mg/ml) increased the CSD propagation in both the well-nourished and early-malnourished conditions. In well-nourished animals, 0.5mg/ml topical tianeptine did not affect CSD propagation, and 2mg/ml produced a small, but significant CSD acceleration. Our results indicate a facilitating action of tianeptine on CSD propagation, probably via tianeptine's pharmacological action on the serotonin system. These findings support previous data suggesting an antagonistic role of the serotoninergic system on CSD.

  13. A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats

    PubMed Central

    Lin, Tiao; Tong, Wei; Chandra, Abhishek; Hsu, Shao-Yun; Jia, Haoruo; Zhu, Ji; Tseng, Wei-Ju; Levine, Michael A; Zhang, Yejia; Yan, Shi-Gui; Liu, X Sherry; Sun, Dongming; Young, Wise; Qin, Ling

    2015-01-01

    Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI. PMID:26528401

  14. Tianeptine facilitates spreading depression in well-nourished and early-malnourished adult rats.

    PubMed

    Amancio-Dos-Santos, Angela; Maia, Luciana Maria Silva de Seixas; Germano, Paula Catirina Pereira da Silva; Negrão, Yleana Danielle Dos Santos; Guedes, Rubem Carlos Araújo

    2013-04-15

    Nutritional status during development can modify the brain's electrophysiological properties and its response to drugs that reduce the serotonin availability in the synaptic cleft. Here we used cortical spreading depression (CSD) in the rat as a neurophysiological parameter to investigate the interaction between nutritional status and treatment with tianeptine, a serotonin uptake enhancer. From postnatal day 2 to 24, well-nourished and early-malnourished rat pups were s.c. injected with tianeptine (5 or 10mg/kg; 10 ml/kg) or equivalent volume of saline solution (control group). When the animals were 25-30 days old, CSD was recorded on the brain cortical surface. In the well-nourished rats, but not in the malnourished group, systemic tianeptine dose-dependently increased the CSD propagation velocity, with 10mg/kg producing a significant (P<0.05) effect. An experiment in adult rats showed that cortical topical application of tianeptine solutions (5mg/ml, 10mg/ml, and 20mg/ml) increased the CSD propagation in both the well-nourished and early-malnourished conditions. In well-nourished animals, 0.5mg/ml topical tianeptine did not affect CSD propagation, and 2mg/ml produced a small, but significant CSD acceleration. Our results indicate a facilitating action of tianeptine on CSD propagation, probably via tianeptine's pharmacological action on the serotonin system. These findings support previous data suggesting an antagonistic role of the serotoninergic system on CSD. PMID:23499681

  15. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    PubMed

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication.

  16. The longitudinal study of rat hippocampus influenced by stress: early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats.

    PubMed

    Jin, Fengkui; Li, Lei; Shi, Mei; Li, Zhenzi; Zhou, Jinghua; Chen, Li

    2013-06-01

    Epidemiologic studies indicate that early adverse experience is related to learning disabilities in adults, but the neurobiological mechanisms have not yet been identified. We used longitudinal animal experiments to test the hypothesis that early life stress enhances hippocampal vulnerability and working memory deficit in adult rats. The expression of Synaptophysin (SYN) and apoptosis (Apo) in hippocampal CA3 and dentate gyrus (DG) regions were examined to evaluate the effects of environmental factors on the hippocampus. The working memory errors via radial 8-arm maze were studied to evaluate the long-term effect of early stress on rats' spatial learning ability. Our results indicated that chronic restraint stress in early life and forced cold water swimming stress in adulthood reduced SYN expression and increased Apo levels in rat hippocampus, but the hippocampal damage tended to recover when rats returned to a non-stress environment. In addition, when the rats were exposed to forced cold water swimming stress during adulthood, SYN expression (CA3 and DG regions) and Apo levels (CA3 region) in rat hippocampus showed statistical difference between early restraint stress group and non-early restraint stress group (rats exposed to stress in adulthood only). One month after the two groups of rats returned to non-stress environment, this difference of SYN expression (CA3 and DG regions) and working memory deficit between the two groups was still statistically significant. Our study findings suggested that early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats, and reduces structural plasticity of hippocampus.

  17. Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification.

    PubMed

    Daamen, W F; Nillesen, S T M; Hafmans, T; Veerkamp, J H; van Luyn, M J A; van Kuppevelt, T H

    2005-01-01

    Collagen-elastin scaffolds may be valuable biomaterials for tissue engineering because they combine tensile strength with elasticity. In this study, the tissue response to and the calcification of these scaffolds were evaluated. In particular, the hypothesis was tested that calcification, a common phenomenon in biomaterials, may be due to microfibrils within the elastic fibre, and that these microfibrils might generate a tissue response. Four scaffolds were subcutaneously implanted, viz. collagen, collagen + pure elastin, collagen+microfibril-containing, and collagen + pulverised elastic ligament (the source for elastin). Explants were evaluated at day 3, 7 and 21. In young Sprague Dawley rats, collagen + ligament calcified substantially, whereas collagen + elastin (with and without microfibrils) calcified less, and collagen did not. Calcification started at elastic fibres. In both Sprague Dawley and Wistar adult rats, however, none of the scaffolds calcified. Mononuclear cell infiltration was prominent in young and adult Sprague Dawley rats. In adult Wistar rats, this infiltration was associated with the presence of microfibrils. Degradation of scaffolds and new matrix formation were related with cellular influx and degree of vascularisation. In conclusion, absence of microfibrils from the elastic fibre does not prevent calcification in young Sprague Dawley rats, but does reduce the tissue response in adult Wistar rats. Cellular response and calcification differs with age and strain and therefore the choice of animal model is of key importance in biomaterial evaluation.

  18. Moderate prenatal alcohol exposure and quantification of social behavior in adult rats.

    PubMed

    Hamilton, Derek A; Magcalas, Christy M; Barto, Daniel; Bird, Clark W; Rodriguez, Carlos I; Fink, Brandi C; Pellis, Sergio M; Davies, Suzy; Savage, Daniel D

    2014-01-01

    Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE(1), and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring. PMID:25549080

  19. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  20. The 14-day repeated dose liver micronucleus test with methapyrilene hydrochloride using young adult rats.

    PubMed

    Inoue, Kenji; Ochi, Akimu; Koda, Akira; Wako, Yumi; Kawasako, Kazufumi; Doi, Takaaki

    2015-03-01

    The repeated dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect genotoxic hepatocarcinogens that can be integrated into a general toxicity study. The assay methods were thoroughly validated by 19 Japanese facilities. Methapyrilene hydrochloride (MP), known to be a non-genotoxic hepatocarcinogen, was examined in the present study. MP was dosed orally at 10, 30 and 100mg/kg/day to 6-week-old male Crl:CD (SD) rats daily for 14 days. Treatment with MP resulted in an increase in micronucleated hepatocytes (MNHEPs) with a dosage of only 100mg/kg/day. At this dose level, cytotoxicity followed by regenerative cell growth was noted in the liver. These findings suggest that MP may induce clastogenic effects indirectly on the liver or hepatotoxicity of MP followed by regeneration may cause increase in spontaneous incidence of MNHEPs.

  1. Functional evidence of α1D-adrenoceptors in the vasculature of young and adult spontaneously hypertensive rats

    PubMed Central

    Villalobos-Molina, Rafael; López-Guerrero, J Javier; Ibarra, Maximiliano

    1999-01-01

    The role of α1D-adrenoceptors in the vasculature of spontaneously hypertensive (SHR) and normotensive Wistar Kyoto rats (WKY), of different ages was assessed in pithed rats by the use of the selective α1D-adrenoceptor antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-8-azaspiro [4.5]decane-7,9-dione dihydrochloride). BMY 7378 displaced the pressor effect of phenylephrine in young pre-hypertensive pithed SHR rats, but produced no effect in young WKY rats (dose ratio of 3.4 and 1.6, respectively), while in adult rats BMY 7378 produced a greater shift in the phenylephrine response curve than in younger animals (dose ratio of 3.2 and 6.2 in WKY and SHR, respectively). The presence of α1D-adrenoceptors in the vasculature of pre-hypertensive rats, suggests its role in the pathogenesis/maintenance of increased blood pressure. PMID:10323583

  2. Functional evidence of alpha1D-adrenoceptors in the vasculature of young and adult spontaneously hypertensive rats.

    PubMed

    Villalobos-Molina, R; López-Guerrero, J J; Ibarra, M

    1999-04-01

    The role of alpha1D-adrenoceptors in the vasculature of spontaneously hypertensive (SHR) and normotensive Wistar Kyoto rats (WKY), of different ages was assessed in pithed rats by the use of the selective alpha1D-adrenoceptor antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-8-azaspiro [4.5]decane-7,9-dione dihydrochloride). BMY 7378 displaced the pressor effect of phenylephrine in young pre-hypertensive pithed SHR rats, but produced no effect in young WKY rats (dose ratio of 3.4 and 1.6, respectively), while in adult rats BMY 7378 produced a greater shift in the phenylephrine response curve than in younger animals (dose ratio of 3.2 and 6.2 in WKY and SHR, respectively). The presence of alpha1D-adrenoceptors in the vasculature of pre-hypertensive rats, suggests its role in the pathogenesis/maintenance of increased blood pressure. PMID:10323583

  3. Effects of acute and chronic administration of fenproporex on DNA damage parameters in young and adult rats.

    PubMed

    Gonçalves, Cinara L; Rezin, Gislaine T; Ferreira, Gabriela K; Jeremias, Isabela C; Cardoso, Mariane R; Valvassori, Samira S; Munhoz, Bruna J P; Borges, Gabriela D; Bristot, Bruno N; Leffa, Daniela D; Andrade, Vanessa M; Quevedo, João; Streck, Emilio L

    2013-08-01

    Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage. PMID:23636618

  4. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study

    PubMed Central

    Saunders, Norman R.; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Habgood, Mark D.; Wakefield, Matthew J.; Lindsay, Helen; Stratzielle, Nathalie; Ghersi-Egea, Jean-Francois; Liddelow, Shane A.

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve) with expression levels 2–98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15). In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g., Slc16a10, a thyroid hormone transporter) gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients. PMID:25972776

  5. Intestinal mast cells and eosinophils in relation to Strongyloides ratti adult expulsion from the small and large intestines of rats.

    PubMed

    Shintoku, Y; Kadosaka, T; Kimura, E; Takagi, H; Kondo, S; Itoh, M

    2013-04-01

    Mucosal mast cells (MMC) play a crucial role in the expulsion of Strongyloides ratti adults from the small intestine of mice. We reported the large intestinal parasitism of S. ratti in rats, and there has been no report on MMC in the large intestine of the natural host. We studied kinetics of MMC, together with eosinophils, in the upper and lower small intestines, caecum and colon of infected rats. Two distinct phases of mastocytosis were revealed: one in the upper small intestine triggered by stimulation of 'ordinary' adults, and the other in the colon stimulated by 'immune-resistant' adults that started parasitizing the colon around 19 days post-infection. In all 4 intestinal sites, the MMC peaks were observed 5-7 days after the number of adult worms became the maximum and the height of MMC peaks appeared to be dependent on the number of parasitic adults, suggesting an important role played by worms themselves in the MMC buildup.

  6. Estrogen promotes Leydig cell engulfment by macrophages in male infertility.

    PubMed

    Yu, Wanpeng; Zheng, Han; Lin, Wei; Tajima, Astushi; Zhang, Yong; Zhang, Xiaoyan; Zhang, Hongwen; Wu, Jihua; Han, Daishu; Rahman, Nafis A; Korach, Kenneth S; Gao, George Fu; Inoue, Ituro; Li, Xiangdong

    2014-06-01

    Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest-specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility.

  7. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells

    PubMed Central

    Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2015-01-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin‐releasing hormone, luteinizing hormone, and follicle‐stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real‐time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone‐induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a‐hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down‐regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. J. Cell. Physiol. 231: 1385–1391, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26626779

  8. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells.

    PubMed

    Pomara, Cristoforo; Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2016-06-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real-time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone-induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a-hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down-regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. PMID:26626779

  9. Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells.

    PubMed

    Pomara, Cristoforo; Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela

    2016-06-01

    Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real-time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone-induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a-hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down-regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects.

  10. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.

    PubMed

    Audi, Said H; Bongard, Robert D; Krenz, Gary S; Rickaby, David A; Haworth, Steven T; Eisenhauer, Jessica; Roerig, David L; Merker, Marilyn P

    2005-11-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.

  11. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  12. Repeated Ketamine Exposure Induces an Enduring Resilient Phenotype in Adolescent and Adult Rats

    PubMed Central

    Parise, Eric M.; Alcantara, Lyonna F.; Warren, Brandon L.; Wright, Katherine N.; Hadad, Roey; Sial, Omar K.; Kroeck, Kyle G.; Iñiguez, Sergio D.; Bolaños-Guzmán, Carlos A.

    2013-01-01

    Background Major Depressive Disorder (MDD) afflicts up to 10% of adolescents. However, nearly 50% of those afflicted are considered non-responsive to available treatments. Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist has shown potential as a rapid-acting and long-lasting treatment for MDD in adults. Thus, the effectiveness and functional consequences of ketamine exposure during adolescence were explored. Methods Adolescent male rats (postnatal day [PD] 35) received two ketamine (0, 5, 10 or 20 mg/kg) injections, 4 hours apart, after exposure to day 1 of the forced swim test (FST). The next day, rats were re-exposed to the FST to assess ketamine-induced antidepressant-like responses. Separate groups were exposed to chronic unpredictable stress (CUS) to confirm findings from the FST. After these initial experiments, adolescent naïve rats were exposed to either 1 or 15 consecutive days (PD35–49) of ketamine (20 mg/kg) twice/daily. Ketamine's influence on behavioral reactivity to rewarding (i.e., sucrose preference) and aversive (i.e., elevated plus-maze, FST) circumstances was then assessed 2 months after treatment. To control for age-dependent effects, adult rats (PD75–89) were exposed to identical experimental conditions. Results Ketamine (20 mg/kg) reversed the CUS-induced depression-like behaviors in the FST. Repeated ketamine exposure resulted in anxiolytic- and antidepressant-like responses 2 months after drug exposure. None of the ketamine doses used were capable of inducing drug-seeking behaviors as measured by place preference conditioning. Conclusions Repeated ketamine exposure induces enduring resilient-like responses regardless of age of exposure. These findings point to ketamine, and its repeated exposure, as a potentially useful antidepressant during adolescence. PMID:23790225

  13. Comparative analysis of antioxidants against cadmium induced reproductive toxicity in adult male rats.

    PubMed

    Jahan, Sarwat; Khan, Mehreen; Ahmed, Shakeel; Ullah, Hizb

    2014-02-01

    The present study was conducted to compare and evaluate the potential benefits of three different antioxidants in reversing cadmium (Cd)-induced reproductive toxicity in adult male rats. Rats (n = 5) weighing 180 +/- 20 gm were divided into five groups (control, Cd, Cd + sulforaphane, Cd + vitamin E, and Cd + plant extract). Treated groups received CdCl2 (0.2 mg/kg), sulforaphane (25 µg/rat), vitamin E (75 mg/kg), and plant extract (100 mg/kg) for 15 days. Blood samples and testicular tissues were obtained for estimation of testosterone, Zn, and Cd concentration and daily sperm production/efficiency of sperm production. Cadmium exposure caused a significant decrease in final body weight (p < 0.0001). The plasma concentrations of Cd were significantly increased and Zn concentration decreased (p < 0.0001) in the Cd group as compared to the control group. The testicular concentrations of Cd were significantly increased and Zn concentration decreased (p < 0.0001) in the Cd group as compared to the control group. Cadmium exposure caused a significant decrease (p < 0.0001) in plasma testosterone concentrations and daily sperm production as compared to the control group. More significant effects were observed with Cd+sulforaphane, Cd + vitamin E, and Cd + plant extract treated groups in slashing Cd-induced toxicity. Present findings suggest that Ficus religiosa and sulforaphane are more powerful antioxidants as compared to vitamin E in reversing the oxidative stress and can have a protective role against Cd induced reproductive toxicity in adult male rats. Part of the mechanism involved in this protective role seems to be associated with the antioxidant properties of these agents in reducing reproductive damage. PMID:24156729

  14. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats.

    PubMed

    Yucel, Atakan; Yucel, Nermin; Ozkanlar, Seckin; Polat, Elif; Kara, Adem; Ozcan, Halil; Gulec, Mustafa

    2016-04-01

    Agomelatine (AG) is an agonist of melatonin receptors and an antagonist of the 5-HT2C-receptor subtype. The chronobiotic properties of AG are of significant interest due to the disorganization of internal rhythms, which might play a role in the pathophysiology of depression. The present study was designed to assess the effects of the antidepressant-like activity of AG, a new antidepressant drug, on adult neurogenesis and apoptosis using stress-exposed rat brains. Over the period of 1 week, the rats were exposed to light stress twice a day for 1h. After a period of 1 week, the rats were given AG treatment at a dose of either 10mg/kg or 40mg/kg for 15 days. The animals were then scarified, and the obtained tissue sections were stained with immuno-histochemical anti-BrdU, Caspase-3, and Bcl-2 antibodies. Serum brain-derived neurotrophic factor (BDNF) concentrations were measured biochemically using a BDNF Elisa kit. Biochemical BDNF analysis revealed a high concentration of BDNF in the serum of the stress-exposed group, but the concentrations of BDNF were much lower those of the AG-treated groups. Immuno-histochemical analysis revealed that AG treatment decreased the BrdU-positive and Bcl-2-positive cell densities and increased the Caspase-3-positive cell density in the hippocampus of stress-induced rats as compared to those of the stress group. The results of the study demonstrated that AG treatment ameliorated the hippocampal apoptotic cells and increased hippocampal neurogenesis. These results also strengthen the possible relationship between depression and adult neurogenesis, which must be studied further.

  15. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats.

    PubMed

    Yucel, Atakan; Yucel, Nermin; Ozkanlar, Seckin; Polat, Elif; Kara, Adem; Ozcan, Halil; Gulec, Mustafa

    2016-04-01

    Agomelatine (AG) is an agonist of melatonin receptors and an antagonist of the 5-HT2C-receptor subtype. The chronobiotic properties of AG are of significant interest due to the disorganization of internal rhythms, which might play a role in the pathophysiology of depression. The present study was designed to assess the effects of the antidepressant-like activity of AG, a new antidepressant drug, on adult neurogenesis and apoptosis using stress-exposed rat brains. Over the period of 1 week, the rats were exposed to light stress twice a day for 1h. After a period of 1 week, the rats were given AG treatment at a dose of either 10mg/kg or 40mg/kg for 15 days. The animals were then scarified, and the obtained tissue sections were stained with immuno-histochemical anti-BrdU, Caspase-3, and Bcl-2 antibodies. Serum brain-derived neurotrophic factor (BDNF) concentrations were measured biochemically using a BDNF Elisa kit. Biochemical BDNF analysis revealed a high concentration of BDNF in the serum of the stress-exposed group, but the concentrations of BDNF were much lower those of the AG-treated groups. Immuno-histochemical analysis revealed that AG treatment decreased the BrdU-positive and Bcl-2-positive cell densities and increased the Caspase-3-positive cell density in the hippocampus of stress-induced rats as compared to those of the stress group. The results of the study demonstrated that AG treatment ameliorated the hippocampal apoptotic cells and increased hippocampal neurogenesis. These results also strengthen the possible relationship between depression and adult neurogenesis, which must be studied further. PMID:26970810

  16. A comparison of adult and adolescent rat behavior in operant learning, extinction, and behavioral inhibition paradigms.

    PubMed

    Andrzejewski, Matthew E; Schochet, Terri L; Feit, Elizabeth C; Harris, Rachel; McKee, Brenda L; Kelley, Ann E

    2011-02-01

    Poor self-control, lack of inhibition, and impulsivity contribute to the propensity of adolescents to engage in risky or dangerous behaviors. Brain regions (e.g., prefrontal cortex) involved in impulse-control, reward-processing, and decision-making continue to develop during adolescence, raising the possibility that an immature brain contributes to dangerous behavior during adolescence. However, very few validated animal behavioral models are available for behavioral neuroscientists to explore the relationship between brain development and behavior. To that end, a valid model must be conducted in the relatively brief window of adolescence and not use manipulations that potentially compromise development. The present experiments used three operant arrangements to assess whether adolescent rats differ from adults in measures of learning, behavioral inhibition, and impulsivity, within the aforementioned time frame without substantial food restriction. In Experiment 1, separate squads of rats were trained to lever-press and then transitioned to two types of extinction. Relative to their baselines, adolescent rats responded more during extinction than adults, suggesting that they were less sensitive to the abolishment of the reinforcement contingency. Experiment 2 demonstrated similar age-related differences during exposure to a differential reinforcement of low rates schedule, a test of behavioral inhibition. Lastly, in Experiment 3, adolescent's responding decreased more slowly than adults during exposure to a resetting delay of reinforcement schedule, suggesting impaired self-control. Results from these experiments suggest that adolescents exhibit impaired learning, behavioral inhibition and self-control, and in concert with recent reports, provide researchers with three behavioral models to more fully explore neurobiology of risk-taking behavior in adolescence.

  17. Increased excitability and molecular changes in adult rats after a febrile seizure.

    PubMed

    Reid, Aylin Y; Riazi, Kiarash; Campbell Teskey, G; Pittman, Quentin J

    2013-04-01

    Both early life inflammation and prolonged febrile seizures have been associated with increased excitation in the adult brain. We hypothesized this may be due in part to changes in the cation-chloride cotransporter system. Rat pups received saline or lipopolysaccharide/kainic acid (LPS/KA) resulting in inflammation, followed by a behavioral febrile seizure (FS) in approximately 50% of rats. Adult animals from the saline, inflammation, or inflammation + FS groups underwent the following: (1) in vitro electrophysiologic studies; (2) Western blotting or polymerase chain reaction; or (3) application of the Na-K-Cl cotransporter 1 (NKCC1) blocker bumetanide to determine its effect on reversing increased excitability in vitro. The inflammation and inflammation + FS groups demonstrated increased excitability in vitro and increased hippocampal protein expression of NR2B and GABAA α5 receptor subunits and mRNA expression of NKCC1. The inflammation + FS group also had decreased protein expression of GluR2 and GABAA α1 receptor subunits and mRNA and protein expression of KCC2. Bumetanide decreased in vitro 4-aminopyridine-induced inter-ictal activity in the inflammation and inflammation + FS groups. The results demonstrate early-life inflammation with or without a behavioral FS can lead to long-lasting molecular changes and increased excitability in the adult rat hippocampus, although some changes are more extensive when inflammation is accompanied by behavioral seizure activity. Bumetanide is effective in reversing increased excitability in vitro, providing evidence for a causal role for cation-chloride cotransporters and suggesting this drug may prove useful for treating epilepsy that develops after a FS. PMID:23293960

  18. Thermoregulatory deficits in adult Long Evans rat exposed perinatally to the antithyroidal drug, propylthiouracil.

    PubMed

    Johnstone, Andrew F M; Gilbert, Mary E; Aydin, Cenk; Grace, Curtis E; Hasegawa, Masashi; Gordon, Christopher J

    2013-01-01

    Developmental exposure to endocrine disrupting drugs and environmental toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (T(c)) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic pituitary thyroid (HPT) axis. We hypothesized that thermoregulation would be disrupted in adult offspring exposed perinatally to an HPT disruptor. Propylythiouracil (PTU) was used as a prototypical compound because of its well known antithyroidal properties. PTU was added to the drinking water of pregnant rats in concentrations of 0, 1, 2, 3, and 10 ppm from gestational day (GD) 6 through postnatal day (PND) 21. Adult male offspring were implanted with radiotransmitters to monitor Tc and motor activity (MA) and were observed undisturbed at an ambient temperature of 22 °C for 12 consecutive days. Data were averaged into a single 24 hour period to minimize impact of ultradian changes in T(c) and MA. All treatment groups showed a distinct circadian temperature rhythm. Rats exposed to 10 ppm PTU exhibited a marked deviation in their regulated T(c) with a reduction of approximately 0.4 °C below that of controls throughout the daytime period and a smaller reduction at night. Rats exposed to 1 or 2 ppm also had smaller but significant reductions in T(c). MA was unaffected by PTU. Overall, developmental exposure to moderate doses of an antithyroidal drug led to an apparent permanent reduction in T(c) of adult offspring that was independent of changes in MA. PMID:23732561

  19. Maternal separation stress leads to enhanced emotional responses to noxious stimuli in adult rats.

    PubMed

    Uhelski, Megan L; Fuchs, Perry N

    2010-10-15

    The purpose of the current study was to examine pain processing in adult rats following repeated maternal separation in infancy, a common model of early life stress. Sensory pain processing remained unaltered, as measured using threshold testing of nociception. However, affective pain processing was enhanced as revealed by increased responding during the tonic phase of the formalin test and during the place escape/avoidance test. The pattern of enhanced responses suggests that early life stress alters the emotional response to pain. Further research could determine if this pattern holds true for different pain models, or if post-weaning enrichment could reverse the effects of maternal separation on pain processing.

  20. The effects of nanoparticles on mouse testis Leydig cells in vitro.

    PubMed

    Komatsu, Tomoko; Tabata, Masako; Kubo-Irie, Miyoko; Shimizu, Takahisa; Suzuki, Ken-Ichiro; Nihei, Yoshimasa; Takeda, Ken

    2008-12-01

    We have indicated the possibility that nanoparticles such as diesel exhaust particles (DEP) and titanium dioxide (TiO(2)) may impair the male mouse reproductive system. In this study, to evaluate the direct effect of nanoparticles on testis-constituent cells, we examined the effect of DEP, TiO(2) and carbon black (CB) on mouse Leydig TM3 cells, the testosterone-producing cells of the testis. The uptake of three nanoparticles into Leydig cells was detected using transmission electron microscopy (TEM) or field emission type scanning electron microscopy/energy-dispersive X-ray spectroscopy (FE-SEM/EDS). We examined the cytotoxicity and the effect on gene expression by treatment with nanoparticles. TiO(2) was more cytotoxic to Leydig cells than other nanoparticles. The proliferation of Leydig cells was suppressed transiently by treatment with TiO(2) or DEP. The expression of heme oxygenase-1 (HO-1), a sensitive marker for oxidative stress, was induced remarkably by treatment with DEP. Furthermore, CB and DEP slightly increased the gene expression of the steroidogenic acute regulatory (StAR) protein, the factor that controls mitochondrial cholesterol transfer. In this study, we found that DEPs, TiO(2) and CB nanoparticles were taken up by Leydig cells, and affected the viability, proliferation and gene expression. The patterns were unique for each nanoparticle. PMID:18805477

  1. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model.

    PubMed

    Groves, James O; Leslie, Isla; Huang, Guo-Jen; McHugh, Stephen B; Taylor, Amy; Mott, Richard; Munafò, Marcus; Bannerman, David M; Flint, Jonathan

    2013-01-01

    The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis. PMID:24039591

  2. Impairment on sperm quality and fertility of adult rats after antiandrogen exposure during prepuberty.

    PubMed

    Perobelli, Juliana Elaine; Alves, Thaís Regina; de Toledo, Fabíola Choqueta; Fernandez, Carla Dal Bianco; Anselmo-Franci, Janete A; Klinefelter, Gary R; Kempinas, Wilma De Grava

    2012-06-01

    This study evaluated the effects of antiandrogen exposure during the prepubertal period on reproductive development and reproductive competence in adults. Male rats were divided into two groups: flutamide, receiving 25 mg/kg/day of flutamide by oral gavage and control, receiving vehicle daily. Dosing continued from PND 21 to 44, and animals were killed on PND 50 or PND 75-80. The epididymis, prostate, vas deferens and seminal vesicle weights were lower in Flutamide group on PND 50, while on PND 80 only seminal vesicle weight was reduced. Fertility assessed by IUI revealed a decrease in the fertility potential in the flutamide-treated adults. Flutamide accelerated sperm transit time through the epididymis, impairing sperm motility and storage. A quantitative analysis of the cauda sperm membrane proteome revealed a few significant changes in protein expression. Thus, exposure to flutamide during the prepubertal period compromises the function of the epididymis along with epididymal sperm quality at adulthood.

  3. The effects of running and of inhibiting adult neurogenesis on learning and memory in rats.

    PubMed

    Wojtowicz, J Martin; Askew, Michele L; Winocur, Gordon

    2008-03-01

    The presence of ongoing adult neurogenesis within the highly plastic hippocampal circuitry poses questions as to the relevance of new neurons to learning and memory. Correlational and causal evidence suggests that some, but not all, hippocampal tasks involve the new neurons. The evidence with regard to spatial learning in the water maze, one of the most commonly used hippocampal tasks, is contradictory. In this study we examined the effects of irradiation-induced reduction in neurogenesis on spatial learning and another standard hippocampal task, contextual fear conditioning, in rats that experienced normal cage conditions or voluntary running. The results indicate that reduced neurogenesis had little effect on spatial learning but severely impaired contextual fear conditioning. It was suggested that compensatory mechanisms within the hippocampus may have contributed selectively to sparing of spatial function. Performance on the fear conditioning task was weakly related to enhanced neurogenesis or running. The results improve our understanding of the functional role of adult neurogenesis in behaving animals.

  4. The effects of swimming exercise and supraphysiological doses of nandrolone decanoate on the testis in adult male rats: a transmission electron microscope study.

    PubMed

    Naraghi, M A; Abolhasani, F; Kashani, I; Anarkooli, I J; Hemadi, M; Azami, A; Barbarestani, M; Aitken, R J; Shokri, S

    2010-08-01

    Anabolic-androgenic steroids (AAS) are used in high doses by athletes to improve athletic ability, physical appearance, and muscle mass. Unfortunately, the abuse of these agents has significantly increased. It has been established that exercise and high doses of AAS may influence the hypothalamic-pituitary gonadal (H-P-G) axis, which can in turn affect the ultrastructure of the testes. However, the effect of the combination of exercise and high doses of AAS on the ultrastructure of the testes is not known. This study was undertaken in order to examine the combination effects of swimming exercise and supraphysiological doses of nandrolone decanoate on the ultrastructural changes in rat testes. Five groups of male Wistar strain albino rats were treated as follows for 8 weeks: solvent of nandrolone decanoate (peanut oil) as a vehicle (sham); nandrolone decanoate (ND) (10 mg/kg/week) - ND; exercise (1 h/day, 5 days a week) - exercise; ND (10 mg/kg/week) and exercise (1 h/day, 5 days a week) - ND-EX; and sedentary control without any injection or exercise - control. Ultrastructural changes in the rat testes were characterised by transmission electron microscopy. The number and size of Leydig cells were considerably decreased in the interstitial space in the experimental rats. The increased thickness and irregular wavy multilaminar appearance of basement membrane in the treated animals, especially in the ND-EX group, are associated with well developed myoid cells. Cytoplasm vacuolisation, vesicular-like crista of the mitochondria, numerous lipid droplets, and lysosome and phagolysosome in Sertoli cells were significantly observed in the experimental groups. Several apoptotic germ cells were considerably observed in the experimental rats (p ≤ 0.05). Exercise training seems to increase the extent of ultrastructural changes caused by supraphysiological doses of ND in rats, which in turn may affect fertility.

  5. A detailed viscoelastic characterization of the P17 and adult rat brain.

    PubMed

    Elkin, Benjamin S; Ilankovan, Ashok I; Morrison, Barclay

    2011-11-01

    Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. These ages are commonly used in rat experimental models. We measured mechanical properties of both white and gray matter regions in coronal slices with a custom-designed microindentation device performing stress-relaxation indentations to 10% effective strain. Shear moduli calculated for short (100?ms), intermediate (1?sec), and long (20?sec) time points, ranged from ?1?kPa for short term moduli to ?0.4?kPa for long term moduli. Both age and anatomic region were significant factors affecting the time-dependent shear modulus. White matter regions and regions of the cerebellum were much more compliant than those of the hippocampus, cortex, and thalamus. Linear viscoelastic models (Prony series, continuous phase lag, and a power law model) were fit to the time-dependent shear modulus data. All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data. PMID:21341982

  6. Effects of running wheel training on adult obese rats programmed by maternal prolactin inhibition.

    PubMed

    Boaventura, G; Casimiro-Lopes, G; Pazos-Moura, C C; Oliveira, E; Lisboa, P C; Moura, E G

    2013-10-01

    The inhibition of maternal prolactin production in late lactation leads to metabolic syndrome and hypothyroidism in adult offspring. Physical training is a therapeutic strategy that could prevent or reverse this condition. We evaluated the effects of a short-duration low-intensity running wheel training program on the metabolic and hormonal alterations in rats. Lactating Wistar rats were treated with bromocriptine (Bro, 1 mg twice a day) or saline on days 19, 20, and 21 of lactation, and the training of offspring began at 35 days of age. Offspring were divided into sedentary and trained controls (C-Sed and C-Ex) and sedentary and trained Bro-treated rats (Bro-Sed and Bro-Ex). Chronic exercise delayed the onset of weight gain in Bro-Ex offspring, and the food intake did not change during the experimental period. At 180 days, visceral fat mass was higher (+46%) in the Bro-Sed offspring than in C-Sed and Bro-Ex rats. As expected, running capacity was higher in trained animals. Most parameters observed in the Bro-Sed offspring were consistent with hypothyroidism and metabolic syndrome and were reversed in the Bro-Ex group. Chronic exercise did not influence the muscle glycogen in the C-Ex group; however, liver glycogen was higher (+30%) in C-Ex group and was unchanged in both Bro offspring groups. Bro-Ex animals had higher plasma lactate dehydrogenase levels, indicating skeletal muscle damage and intolerance of the training program. Low-intensity chronic training is able to normalize many clinical aspects in Bro animals; however, these animals might have had a lower threshold for exercise adaptation than the control rats. PMID:23863192

  7. Developmental vitamin D (DVD) deficiency in the rat alters adult behaviour independently of HPA function.

    PubMed

    Eyles, Darryl W; Rogers, Fiona; Buller, Kathryn; McGrath, John J; Ko, Pauline; French, Kathryn; Burne, Thomas H J

    2006-09-01

    Developmental vitamin D deficiency (DVD) has been shown to alter the orderly pattern of brain development. Even though the period of vitamin D deficiency is restricted to gestation this is sufficient to induce behavioural abnormalities in the adult offspring consistent with those seen in many animal models of schizophrenia. Given that some of these behavioural alterations could also be an indirect result of either impaired maternal hypothalamic pituitary axis (HPA) function (which in turn could influence maternal care) or the result of a permanent alteration in HPA function in the adult offspring we have examined HPA status in both maternal animals and adult offspring. In this study we have established that HPA function is normal in the maternally vitamin D deficient rat. We replicate the behavioural phenotype of hyperlocomotion whilst establishing that HPA function is also unchanged in the adult male offspring. We conclude that the behavioural alterations induced by DVD deficiency are due to some adverse event in brain development rather than via an alteration in stress response. PMID:16890375

  8. Differential stress reactivity in intact and ovariectomized prepubertal and adult female rats.

    PubMed

    Romeo, Russell D; Lee, Susan J; McEwen, Bruce S

    2004-01-01

    The pubertal development of the hypothalamic-pituitary-adrenal (HPA) axis has received relatively little experimental attention. As puberty is marked by an increase in the susceptibility to various psychiatric disorders that may be related to HPA dysfunction, it is imperative to elucidate the pubertal development of this neuroendocrine axis. To date, the limited research in this area has been conducted primarily on males. Presently, we investigated stress responsiveness, as measured by both stress hormones (e.g., corticotropin (ACTH) and corticosterone) and gonadal steroids, in intact and ovariectomized prepubertal and adult female rats before and after a 30-min session of restraint stress. We report here that intact prepubertal females exhibit an extended corticosterone stress response (30-45 min longer) compared to intact adults. Moreover, ovariectomized prepubertal females continue to exhibit a prolonged stress-induced corticosterone and progesterone response compared to ovariectomized adults, indicating these protracted responses prior to puberty are independent of ovarian hormones. ACTH levels were not significantly different between intact and ovariectomized prepubertal and adult animals at all the post-stress time points measured, suggesting that the prolonged corticosterone response in prepubertal females is due to an enhanced sensitivity to ACTH at the level of the adrenal cortex. Taken together, these data indicate that stress reactivity changes dramatically during puberty in females. Furthermore, these data demonstrate additional development of the HPA axis during pubertal maturation, resulting in a more quickly terminated stress response in adulthood.

  9. The social behavior of male rats administered an adult-onset calorie restriction regimen.

    PubMed

    Govic, Antonina; Levay, Elizabeth A; Kent, Stephen; Paolini, Antonio G

    2009-03-23

    The behavioral outcomes of a calorie restricted diet are often neglected in favour of a more physiological examination of the consequences of calorie restriction (CR). This is especially the case with social behavior. A few findings within the maternal CR literature suggest that adult male social behavior is altered by this regimen. Despite the paucity of findings within the maternal CR literature, a systematic investigation of the behavioral phenotype of males administered an adult-onset CR is completely lacking and was the focus of the current study. Adult male hooded Wistar rats were administered a three week CR, with one group receiving a 25% CR and another group receiving a 50% CR before male-to-male social behavior was examined and compared with ad libitium fed males. Various behavioral elements were modulated by CR, both the CR25% and 50% group initiated contact sooner and engaged in greater social activity compared to the ad libitum fed controls. The CR25% group also demonstrated less non-social (self-grooming) behavior and a greater frequency of walkovers compared to all groups, indicating a propensity towards dominance. The CR50% group demonstrated greater environmental assessment/exploration, as measured by the frequency of rearing. As with the maternal CR literature, an adult-onset chronic CR induces a more socially active behavioral phenotype and reduces interest in non-social behavior in the moderately CR group. Taken together, the social behavioral phenotype can be modulated by a CR initiated and maintained during adulthood.

  10. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    PubMed

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups. PMID:23093010

  11. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    SciTech Connect

    Ronco, Ana Maria; Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel; Saez, Daniel; Hirsch, Sandra; Zepeda, Ramiro; Llanos, Miguel N.

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  12. Impulsive choice and anxiety-like behavior in adult rats exposed to chronic intermittent ethanol during adolescence and adulthood.

    PubMed

    Mejia-Toiber, Jana; Boutros, Nathalie; Markou, Athina; Semenova, Svetlana

    2014-06-01

    Binge drinking during adolescence and adulthood may have differential long-term effects on the brain. We investigated the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence and adulthood on impulsivity and anxiety-like behavior. Adolescent (adolescent-exposed) and adult (adult-exposed) rats were exposed to CIE/water on postnatal days (PND) 28-53 and PND146-171, respectively, and a 4-day ethanol/water binge on PND181-184 and PND271-274, respectively. During withdrawal from CIE and 4-day binge exposures, anxiety-like behavior and arousal were measured in the light-potentiated startle (LPS) and acoustic startle (ASR) procedures, respectively. Impulsive choice was evaluated in the delay discounting task (DDT) at baseline and after ethanol challenges. Independent of age, ASR and LPS were decreased during withdrawal from CIE exposure. In contrast, LPS was increased in adult-exposed, but not adolescent-exposed, rats during withdrawal from the 4-day ethanol binge. CIE exposure had no effect on preference for the large delayed reward at baseline, independent of age. During DDT acquisition, CIE-exposed, compared with water-exposed rats, omitted more responses, independent of age, suggesting the CIE-induced disruption of cognitive processes. Ethanol challenges decreased preference for the large reward in younger adolescent-exposed rats but had no effect in older adult-exposed rats, independent of previous CIE/water exposure. Taken together, the present studies demonstrate that CIE withdrawal-induced decreases in anxiety and arousal were not age-specific. CIE exposure had no long-term effects on baseline impulsive choice. Subsequent ethanol exposure produced age-dependent effects on impulsivity (increased impulsivity in younger adolescent-exposed rats) and anxiety-like behavior (increased anxiety-like behavior in older adult-exposed rats).

  13. Differential effects of insulin and dietary amino acids on muscle protein synthesis in adult and old rats

    PubMed Central

    Prod'homme, Magali; Balage, Michèle; Debras, Elisabeth; Farges, Marie-Chantal; Kimball, Scott; Jefferson, Leonard; Grizard, Jean

    2005-01-01

    The potential roles of insulin and dietary amino acids in the regulation of skeletal muscle protein synthesis were examined in adult and old rats. Animals were fed over 1 h with either a 25% or a 0% amino acid/protein meal. In each nutritional condition, postprandial insulin secretion was either maintained or blocked with diazoxide injections. Protein synthesis in gastrocnemius and soleus muscles was assessed in vivo using the flooding dose method. Insulin suppression decreased protein synthesis in both muscles irrespective of the nutritional condition and age of the rats. Moreover, reduced insulinaemia was associated with 4E-BP1 dephosphorylation, enhanced assembly of the 4E-BP1−eIF4E inactive complex and hypophosphorylation of eIF4E, p70S6k and protein kinase B, key intermediates in the regulation of translation initiation and protein synthesis. Old rats did not differ from adult rats. The lack of amino acids in the meal of insulin-suppressed rats did not result in any additional decrease in protein synthesis. In the presence of insulin secretion, dietary amino acid suppression significantly decreased gastrocnemius protein synthesis in adult but not in old rats. Amino acid suppression was associated with reduced phosphorylation of 4E-BP1 and p70S6k in adults. Along with protein synthesis, only the inhibition of p70S6k phosphorylation was abolished in old rats. We concluded that insulin is required for the regulation of muscle protein synthesis irrespective of age and that the effect of dietary amino acids is blunted in old rats. PMID:15513948

  14. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  15. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction.

    PubMed

    Thornton, S N; Padzys, G S; Trabalon, M

    2014-05-01

    The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult.

  16. Differential Effects of Acute Alcohol on Prepulse Inhibition and Event-Related Potentials in Adolescent and Adult Wistar Rats

    PubMed Central

    Pian, Jerry P.; Criado, Jose R.; Ehlers, Cindy L.

    2009-01-01

    Background Previous studies have demonstrated that adolescent and adult rats show differential sensitivity to many of the acute effects of alcohol. We recently reported evidence of developmental differences in the effects of acute alcohol on the cortical electroencephalogram (EEG). However, it is unclear whether developmental differences are also observed in other neurophysiological and neurobehavioral measurements known to be sensitive to alcohol exposure. The present study determined the age-related effects of acute alcohol on behavioral and event-related potential (ERP) responses to acoustic startle (AS) and prepulse inhibition (PPI). Methods Male adolescent and adult Wistar rats were implanted with cortical recording electrodes. The effects of acute alcohol (0.0, 0.75, and 1.5 g/kg) on behavioral and ERP responses to AS and PPI were assessed. Results Acute alcohol (0.75 and 1.5 g/kg) significantly reduced the behavioral and electrophysiological response to AS in adolescent and adult rats. Both 0.75 and 1.5 g/kg alcohol significantly enhanced the behavioral response to PPI in adolescent, but not in adult rats. During prepulse+pulse trials, 1.5 g/kg alcohol significantly increased the N10 pulse response in the adolescent frontal cortex. Acute alcohol (0.75 and 1.5 g/kg) also increased the N1 ERP pulse response to prepulse stimuli in frontal and parietal cortices in adult rats, but not in adolescent rats. Conclusions These data suggest that alcohol’s effect on behavioral and electrophysiological indices of AS do not differ between adults and adolescents whereas developmental stage does appear to significantly modify alcohol influenced response to PPI. PMID:18828807

  17. Effects of age, but not sex, on elevated startle during withdrawal from acute morphine in adolescent and adult rats.

    PubMed

    Radke, Anna K; Gewirtz, Jonathan C; Carroll, Marilyn E

    2015-08-01

    Investigations into animal models of drug withdrawal have largely found that emotional signs of withdrawal (e.g. anxiety, anhedonia, and aversion) in adolescents are experienced earlier and less severely than in their adult counterparts. The majority of these reports have examined withdrawal from ethanol or nicotine. To expand our knowledge about the emotional withdrawal state in adolescent rats, we used potentiation of the acoustic startle reflex after an acute dose of morphine (10 mg/kg, subcutaneously) as a measure of opiate withdrawal. Startle was measured at four time points after morphine injection (2, 3, 4, and 5 h) in 28-day-old and 90-day-old male and female rats. The results of this experiment revealed that peak potentiation of the startle reflex occurred at 3 h in the adolescent rats and at 5 h in the adult rats, and that the magnitude of withdrawal was larger in the adults. No sex differences were observed. Overall, these results affirm that, similar to withdrawal from ethanol and nicotine, opiate withdrawal signs are less severe in adolescent than in adult rats.

  18. Effects of age, but not sex, on elevated startle during withdrawal from acute morphine in adolescent and adult rats

    PubMed Central

    Radke, Anna K.; Gewirtz, Jonathan C.; Carroll, Marilyn E.

    2015-01-01

    Investigations into animal models of drug withdrawal have largely found that emotional signs of withdrawal (e.g., anxiety, anhedonia, and aversion) in adolescents are experienced earlier and less severely than in their adult counterparts. The majority of these reports have examined withdrawal from ethanol or nicotine. In order to expand our knowledge about the emotional withdrawal state in adolescent rats, we used potentiation of the acoustic startle reflex after an acute dose of morphine (10 mg/kg, s.c.) as a measure of opioid withdrawal. Startle was measured at four time points after morphine injection (2, 3, 4, and 5 h) in 28 and 90 day old male and female rats. The results of this experiment revealed that peak potentiation of the startle reflex occurred at 3 h in the adolescent rats and at 5 h in the adult rats, and that the magnitude of withdrawal was larger in the adults. No sex differences were observed. Overall, these results affirm that, similar to withdrawal from ethanol and nicotine, opiate withdrawal signs are less severe in adolescent than in adult rats. PMID:26154436

  19. Spaced training facilitates long-term retention of place navigation in adult but not in adolescent rats.

    PubMed

    Spreng, Matthieu; Rossier, Jérôme; Schenk, Françoise

    2002-01-01

    Young and adult Long Evans rats were tested in the water maze according to two different procedures: half of the subjects were given one session of four trials a day for 6 days, whereas the other subjects had the same amount of training massed in 1 day. For both conditions, a 14-day retention interval was then introduced to test long-term memory. This was followed by a four-trial reversal session. All groups showed a significant learning curve, but escape latencies were shorter for the adult than for the young rats, without differential effect of the training procedure. A first probe trial (PT1) confirmed similar accurate short-term retention in all the groups. But unimpaired long-term memory was only seen in the adult rats trained with the spaced procedure. The young rats trained over 1 day also showed some retention of the platform location after 14 days, but not the other two groups. Reversal acquisition of the new platform location was rapid in the four groups. These results indicate that although accurate short-term spatial memory in the water maze is seen after a 1-day massed training in both age groups, unimpaired long-term retention is only observed in adult rats trained with 24-h inter-session intervals.

  20. Subacute toxicity assessment of diflubenzuron, an insect growth regulator, in adult male rats.

    PubMed

    de Barros, Aline Lima; Cavalheiro, Gabriela Finoto; de Souza, Alexsandra Vila Maior; Traesel, Giseli Karenina; Anselmo-Franci, Janete A; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina

    2016-04-01

    Diflubenzuron (DFB), an insecticide and acaricide insect growth regulator, can be used in agriculture against insect predators and in public health programs, to control insects and vectors, mainly Aedes aegypti larvae. Due to the lack of toxicological assessments of this compound, the objective of the present study was to evaluate the toxicological effects of subacute exposure to the DFB insecticide in adult male rats. Adult male rats were exposed (gavage) to 0, 2, 4, or 8 mg/kg of DFB for 28 days. No clinical signs of toxicity were observed in the DFB-treated animals of the experimental groups. However, there was an increase in serum levels of alanine aminotransferase in the group that received 8 mg/kg/DFB/day and urea at doses of 4 and 8 mg/kg/DFB/day, without altering other biochemical or hematological parameters. The subacute exposure to the lowest dose of DFB caused significant decrease in testis weight, daily sperm production, and in number of sperm in the epididymis in relation to the control group. However, no alterations were observed in the sperm morphology, testicular, epididymis, liver and kidney histology, or testosterone levels. These findings unveiled the hazardous effects of DFB on male reproduction after the subacute exposure and special attention should be addressed to the effects of low doses of this pesticide.

  1. Hindlimb Stretching Alters Locomotor Function Post-Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Atkinson, Darryn A.; Brown, Edward H.; Donaldson, Katie; Seibt, Erik; Chea, Tim; Smith, Erin; Chung, Karianne; Shum-Siu, Alice; Cron, Courtney C.; Magnuson, David S. K.

    2014-01-01

    Background Stretching is a widely accepted standard-of-care therapy following spinal cord injury that has not been systematically studied in animal models. Objective To investigate the influence of a daily stretch-based physical therapy program on locomotor recovery in adult rats with moderate T9 contusive SCI. Methods A randomized treatment and control study of stretching in an animal model of acute spinal cord injury (SCI). Moderate spinal cord injuries were delivered with the NYU Impactor. Daily stretching (30 min./day, 5 days/wk for 8 wks) was provided by a team of animal handlers. Hindlimb function was assessed using the BBB Open Field Locomotor Scale and kinematically. Passive range-of-motion for each joint was determined weekly using a goniometer. Results Declines in hindlimb function during overground stepping were observed for the first 4 weeks. BBB scores improved weeks 5–10 but remained below the control group. Stretched animals had significant deficits in knee passive ROM starting at week 4 and for the duration of the study. Kinematic assessment showed decreased joint excursion during stepping that partially recovered beginning at week 5. Conclusion Stretch-based therapy significantly impaired functional recovery in adult rats with a moderate contusive SCI at T10. The negative impact on function was greatest acutely, but persisted even after the stretching ceased at 8 weeks post-injury. PMID:25106555

  2. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. PMID:26210720

  3. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    PubMed

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.

  4. Environmental enrichment protects the retina from early diabetic damage in adult rats.

    PubMed

    Dorfman, Damián; Aranda, Marcos L; González Fleitas, María Florencia; Chianelli, Mónica S; Fernandez, Diego C; Sande, Pablo H; Rosenstein, Ruth E

    2014-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.

  5. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  6. Environmental Enrichment Protects the Retina from Early Diabetic Damage in Adult Rats

    PubMed Central

    Dorfman, Damián; Aranda, Marcos L.; González Fleitas, María Florencia; Chianelli, Mónica S.; Fernandez, Diego C.; Sande, Pablo H.; Rosenstein, Ruth E.

    2014-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats. PMID:25004165

  7. Effects of Rolipram on Adult Rat Oligodendrocytes and Functional Recovery after Contusive Cervical Spinal Cord Injury

    PubMed Central

    Beaumont, Eric; Whitaker, Christopher M.; Burke, Darlene A.; Hetman, Michal; Onifer, Stephen M.

    2009-01-01

    Traumatic human spinal cord injury causes devastating and long-term hardships. These are due to the irreparable primary mechanical injury and secondary injury cascade. In particular, oligodendrocyte cell death, white matter axon damage, spared axon demyelination, and the ensuing dysfunction in action potential conduction lead to the initial deficits and impair functional recovery. For these reasons, and that oligodendrocyte and axon survival may be related, various neuroprotective strategies after SCI are being investigated. We previously demonstrated that oligodendrocytes in the adult rat epicenter ventrolateral funiculus express 3′-5′-cyclic adenosine monophosphate-dependent phosphodiesterase 4 subtypes and that their death was attenuated up to 3 days after contusive cervical spinal cord injury when rolipram, a specific inhibitor of phosphodiesterase 4, was administered. Here, we report that 1) there are more oligodendrocyte somata in the adult rat epicenter ventrolateral funiculus, 2) descending and ascending axonal conductivity in the ventrolateral funiculus improves, and that 3) there are fewer hindlimb footfall errors during grid-walking at 5 weeks after contusive cervical spinal cord injury when rolipram is delivered for 2 weeks. This is the first demonstration of improved descending and ascending long-tract axonal conductivity across a spinal cord injury with this pharmacological approach. Since descending long-tract axonal conductivity did not return to normal, further evaluations of the pharmacokinetics and therapeutic window of rolipram as well as optimal combinations are necessary before consideration for neuroprotection in humans with spinal cord injury. PMID:19635528

  8. Extracellular space diffusion analysis in the infant and adult rat striatum using magnetic resonance imaging.

    PubMed

    Yang, Shuangfeng; Wang, Yan; Li, Kai; Tang, Xiaolu; Zhang, Kuo; Shi, Chunyan; Han, Hongbin; Peng, Yun

    2016-10-01

    The extracellular space (ECS) in the brain provides an extrasynaptic transfer channel among neurons, axons and glial cells. It is particularly important in the early stage after birth, when angiogenesis is not yet complete and the ECS may provide the main pathway for metabolite transport. However, the characteristics of extracellular transport remain unclear. In this study, a novel magnetic resonance imaging (MRI) method was used to perform real-time visualization and quantification of diffusion in the brain ECS of infant (postnatal day 10 (P10)) and adult rats. Using a modified diffusion equation and the linear relationship between the signal intensity and the gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) concentration, diffusion parameters were obtained; these parameters include the effective diffusion coefficient (D*), clearance rate (k'), tortuosity (λ) and the volume fraction of distribution (Vd%). There were significant differences in the diffusion parameters between P10 and adult rats. This finding provides a reference for future treatment of brain diseases using drugs administered via interstitial pathways.

  9. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-04-21

    Methylphenidate (MPH) is a central stimulant, prescribed for the treatment of attention deficit/hyperactivity disorder. The long-term behavioral consequences of MPH treatment are unknown. In this study, the oxidative stress and neuroinflammation induced by various doses of MPH were investigated. Forty adult male rats were divided into 5 groups; and treated with different doses of MPH for 21 days. Twenty four hours after drug treatment, Open Field Test (OFT) was performed in all animals. At the end of the study, blood cortisol level (BCL) was measured and hippocampus was isolated and oxidative stress and inflammation parameters and histological changes were analyzed. Chronic MPH at all doses decreased central square entries, number of rearing, ambulation distance and time spent in central square in OFT. BCL increased in doses 10 and 20mg/kg of MPH. Furthermore, MPH in all doses markedly increased lipid peroxidation, mitochondrial oxidized glutathione (GSSG) level, Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNF-α) in isolated hippocampus. MPH (10 and 20mg/kg) treated groups had decreased mitochondrial reduced glutathione (GSH) content, and reduced superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRx) activities. 10 and 20mg/kg of MPH change cell density and morphology of cells in Dentate Gyrus (DG) and CA1 areas of hippocampus. Chronic treatment with high doses of MPH can cause oxidative stress, neuroinflammation and neurodegeneration in hippocampus of adult rats.

  10. Sex mediates dopamine and adrenergic receptor expression in adult rats exposed prenatally to cocaine

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Silvers, Janelle M.; Hasselrot, Ulla; Strupp, Barbara J.; Booze, Rosemarie M.

    2010-01-01

    The extent of catecholaminergic receptor and respective behavioral alterations associated with prenatal cocaine exposure varies according to exogenous factors such as the amount, frequency, and route of maternal exposure, as well as endogenous factors such as specific brain regions under consideration and sex of the species. The goal of the current study was to use autoradiography to delineate possible moderators of dopaminergic and adrenergic receptor expression in adult rat offspring exposed to cocaine in utero. The current study demonstrated sex-dependent D1 receptor, α2, and noradrenergic transporter binding alterations in prelimbic, hippocampus, and anterior cingulate regions of adult rat brains exposed to cocaine during gestational days 8–21. Of further interest was the lack of alterations in the nucleus accumbens for nearly all receptors/transporters investigated, as well as the lack of alterations in D3 receptor binding in nearly all of the regions investigated (nucleus accumbens, prelimbic region, hippocampus, and cingulate gyrus). Thus, the current investigation demonstrated persistent receptor and transporter alterations that extend well into adulthood as a result of cocaine exposure in utero. Furthermore, the demonstration that sex played a mediating role in prenatal cocaine-induced, aberrant receptor/transporter expression is of primary importance for future studies that seek to control for sex in either design or analysis. PMID:17933484

  11. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus

    PubMed Central

    Wong-Goodrich, Sarah J. E.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2008-01-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a Control or SUP diet on embryonic days 12–17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function. PMID:18353663

  12. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  13. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress

    PubMed Central

    KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE

    2015-01-01

    The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395

  14. Learning under stress in the adult rat is differentially affected by 'juvenile' or 'adolescent' stress.

    PubMed

    Tsoory, Michael; Richter-Levin, Gal

    2006-12-01

    Epidemiological studies suggest that childhood trauma is associated with a predisposition to develop both mood and anxiety disorders, while trauma during adolescence is associated mainly with anxiety disorders. We studied in the rat the long-term consequences of 'juvenile' stress, namely stress experienced in a period in which substantial remodelling occurs across species in stress-sensitive brain areas involved in emotional and learning processing. In adulthood, 'juvenile' stressed rats exhibited reduced exploration in a novel setting, and poor avoidance learning, with 41% learning mainly to escape while 28% exhibited learned helplessness-like behaviours. In adult rats that underwent 'adolescent' stress, learned helplessness-like behaviours were not evident, although decreased exploration and poor avoidance learning were observed. This suggests that in the prepubertal phase juvenility may constitute a stress-sensitive period. The results suggest that juvenile stress induces lasting impairments in stress-coping responses. The 'juvenile' stress model presented here may be of relevance to individuals' reported predisposition to anxiety and depression following childhood trauma, and their increased susceptibility only to anxiety disorders following adolescent stress. PMID:16321169

  15. Prenatal testosterone supplementation alters puberty onset, aggressive behavior, and partner preference in adult male rats.

    PubMed

    Dela Cruz, Cynthia; Pereira, Oduvaldo C M

    2012-03-01

    The objective of this study was to investigate whether prenatal exposure to testosterone (T) could change the body weight (BW), anogenital distance (AGD), anogenital distance index (AGDI), puberty onset, social behavior, fertility, sexual behavior, sexual preference, and T level of male rats in adulthood. To test this hypothesis, pregnant rats received either 1 mg/animal of T propionate diluted in 0.1 ml peanut oil or 0.1 ml peanut oil, as control, on the 17th, 18th and 19th gestational days. No alterations in BW, AGD, AGDI, fertility, and sexual behavior were observed (p > 0.05). Delayed onset of puberty (p < 0.0001), increased aggressive behavior (p > 0.05), altered pattern of sexual preference (p < 0.05), and reduced T plasma level (p < 0.05) were observed for adult male rats exposed prenatally to T. In conclusion, the results showed that prenatal exposure to T was able to alter important aspects of sexual and social behavior although these animals were efficient at producing descendants. In this sense more studies should be carried to evaluated the real impact of this hormonal alteration on critical period of sexual differentiation on humans, because pregnant women exposed to hyperandrogenemia and then potentially exposing their unborn children to elevated androgen levels in the uterus can undergo alteration of normal levels of T during the sexual differentiation period, and, as a consequence, affect the reproductive and behavior patterns of their children in adulthood.

  16. The recreational drug ecstasy disrupts the hypothalamic-pituitary-gonadal reproductive axis in adult male rats.

    PubMed

    Dickerson, Sarah M; Walker, Deena M; Reveron, Maria E; Duvauchelle, Christine L; Gore, Andrea C

    2008-01-01

    Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy'), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA either once (acute) or for 20 days (chronic) and were euthanized 7 days following the last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone concentrations, and serum testosterone levels as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the hypothalamic-pituitary-gonadal axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage.

  17. Ghrelin stimulates milk intake by affecting adult type feeding behaviour in postnatal rats.

    PubMed

    Piao, H; Hosoda, H; Kangawa, K; Murata, T; Narita, K; Higuchi, T

    2008-03-01

    The influence of ghrelin on feeding behaviour during infancy is unknown. To determine whether ghrelin influences milk intake in rat pups, newborn rats received a single i.p. injection of either rat ghrelin (100 microg/kg) or rabbit anti-ghrelin immunoglobulin G (100 microg/kg) every 5 days from postpartum day 5 to day 30 (P5-P30). Milk intake was then assessed by body weight gain following a 2-h suckling period. Ghrelin significantly increased weight gain relative to vehicle-injected controls in P20, P25 and P30 pups, but not in younger animals. Similarly, after 8 h of milk restriction, anti-ghrelin injections significantly decreased weight gain in P25 and P30, but not in younger pups. Interestingly, however, ghrelin did increase independent feeding in P10 and P15 pups using a paradigm in which pups consumed milk from a milk-soaked paper towel. We therefore conclude that ghrelin stimulates milk intake at an early postnatal stage, primarily by affecting adult-type feeding behaviour. PMID:18194428

  18. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats.

    PubMed

    Hashemi Nosrat Abadi, T; Vaghef, L; Babri, S; Mahmood-Alilo, M; Beirami, M

    2013-06-01

    Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment.

  19. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    NASA Technical Reports Server (NTRS)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  20. Liquid diets reduce cell proliferation but not neurogenesis in the adult rat hippocampus.

    PubMed

    Patten, A R; Moller, D J; Graham, J; Gil-Mohapel, J; Christie, B R

    2013-12-19

    Neurogenesis continues to occur in restricted regions of the brain throughout adulthood and can be modulated by dietary factors. Liquid or "soft" diets are commonly used for the administration of drugs in experimental models of disease, making it critical to determine whether dietary composition itself can affect neurogenesis. In this study Sprague-Dawley rats were fed either a liquid or a solid diet of identical composition from weaning until young adulthood. No differences in neuronal differentiation and survival of newly born cells were observed between rats that were fed a liquid diet and those that received a solid diet. However, a significant reduction in hippocampal cell proliferation was observed in the liquid diet-fed group, as assessed by the expression of two endogenous proliferation markers, Ki67 and proliferating cell nuclear antigen (PCNA). The method of feeding did not alter the basal function of the hypothalamic-pituitary-adrenal (HPA) axis in these animals, as no changes in circulating levels of corticosterone (CORT) were detected between liquid and solid diet-fed groups. There was also a significant reduction in cellular proliferation in the hypothalamus of liquid diet-fed rats, a brain region known to be involved in feeding-related behaviors. These findings indicate that liquid diets themselves can directly impact rates of cellular proliferation, but this does not seem to impact levels of overall neurogenesis in the adult brain.

  1. D-methionine protects against cisplatin-induced neurotoxicity in the hippocampus of the adult rat.

    PubMed

    Hinduja, Sneha; Kraus, Kari Suzanne; Manohar, Senthilvelan; Salvi, Richard J

    2015-04-01

    The hippocampus plays an important role in memory, mood, and spatial navigation. In the dentate gyrus of the adult hippocampus, in the subgranular zone (SGZ), new cells are generated, which differentiate and mature into new neurons. Cisplatin, a highly effective antineoplastic drug with nephrotoxic and ototoxic side effects, induces apoptosis and suppresses neurogenesis in the hippocampus leading to memory impairment. Previous studies have shown that the antioxidant D-methionine protects against cisplatin-induced ototoxicity and nephrotoxicity suggesting that it might also prevent neurogenesis from being suppressed by cisplatin treatment. To test this hypothesis, rats were treated with cisplatin, D-methionine, cisplatin plus D-methionine, or saline (controls). Seven days after treatment, the rats were sacrificed, and hippocampal sections immunolabeled for doublecortin (DCX) to identify neuronal precursor cells and maturing neurons in the SGZ. Cisplatin significantly reduced the number of DCX-labeled cells (~80 %) relative to controls. In contrast, DCX cell counts in rats treated with D-methionine prior to cisplatin were similar to controls. The treatment with D-methionine alone did not affect the number of DCX cells. These results indicate that D-methionine prevents the dramatic cisplatin-induced decrease of neurogenesis.

  2. Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats.

    PubMed

    Dąbrowska-Bouta, Beata; Zięba, Mateusz; Orzelska-Górka, Jolanta; Skalska, Joanna; Sulkowski, Grzegorz; Frontczak-Baniewicz, Małgorzata; Talarek, Sylwia; Listos, Joanna; Strużyńska, Lidia

    2016-07-01

    Nanoscale particles have large surface to volume ratio that significantly enhances their chemical and biological reactivity. Although general toxicity of nano silver (nanoAg) has been intensively studied in both in vitro and in vivo models, its neurotoxic effects are poorly known, especially those of low-dose exposure. In the present study we assess whether oral administration of nanoAg influences behavior of exposed rats and induces changes in cerebral myelin. We examine the effect of prolonged exposure of adult rats to small (10nm) citrate-stabilized nanoAg particles at a low dose of 0.2mg/kg b.w. (as opposed to the ionic silver) in a comprehensive behavioral analysis. Myelin ultrastructure and the expression of myelin-specific proteins are also investigated. The present study reveals slight differences with respect to behavioral effects of Ag(+)- but not nanoAg-treated rats. A weak depressive effect and hyperalgesia were observed after Ag(+) exposure whereas administration of nanoAg was found to specifically increase body weight and body temperature of animals. Both nanoAg and Ag(+) induce morphological disturbances in myelin sheaths and alter the expression of myelin-specific proteins CNP, MAG and MOG. These results suggest that the CNS may be a target of low-level toxicity of nanoAg. PMID:27427492

  3. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Brown, Ronald P.; Fisher, Jeffrey W.

    2011-09-15

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 {mu}g/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 {mu}g/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral

  4. Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia

    PubMed Central

    Prieto-Lloret, Jesus; Ramirez, Maria; Olea, Elena; Moral-Sanz, Javier; Cogolludo, Angel; Castañeda, Javier; Yubero, Sara; Agapito, Teresa; Gomez-Niño, Angela; Rocher, Asuncion; Rigual, Ricardo; Obeso, Ana; Perez-Vizcaino, Francisco; González, Constancio

    2015-01-01

    Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55–60% O2 for the last 5–6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2-sensitivity of K+ currents in the PASMC of hyperoxic animals is normal, indicating that their inhibition is not sufficient to trigger HPV. Perinatal hyperoxia also abrogated responses elicited by hypoxia on catecholamine and cAMP metabolism in the CB. An increase in EPO plasma levels elicited by hypoxia was identical in hyperoxic and control animals, implying a normal functioning of EPO-producing cells. The loss of HPV observed in adult rats and caused by perinatal hyperoxia, comparable to oxygen therapy in premature infants, might represent a previously unrecognized complication of such a medical intervention capable of aggravating medical conditions such as regional pneumonias, atelectases or general anaesthesia in adult life. Key points Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is

  5. Tickling in juvenile but not adult female rats conditions sexual partner preference.

    PubMed

    Paredes-Ramos, Pedro; Miquel, Marta; Manzo, Jorge; Pfaus, James G; López-Meraz, Maria Leonor; Coria-Avila, Genaro A

    2012-08-20

    Female rats display a conditioned partner preference for males that bear odors paired with different types of rewarding unconditioned stimuli (UCS). Here we examined whether tickling constitutes a rewarding UCS that supports the development of partner preferences. In Experiment 1, we tested the possibility that odors associated with a tickling UCS in prepubescent rats would induce a conditioned partner preference in adulthood. Two groups were formed with 31-day-old, single-housed females, tickled for 6 min daily for 10 days, by a hand that wore a scented glove (almond or lemon). At 47 days of age, females were ovariectomized (OVX), hormone-primed (EB+P), and tested for sexual partner preference with two scented stud males (one almond and one lemon). In each group, females displayed a sexual preference toward males bearing the odor paired with tickling, as observed with longer visits, more solicitations, hops & darts, and receiving more intromissions and ejaculations from the preferred male. In Experiment 2, we used 3-month old, OVX, hormone-primed rats conditioned every 4 days for 10 trials. In contrast to juvenile females, adult females failed to prefer males that bore the odor paired with tickling but instead preferred the novel male. These results suggest that tickling has opposite age-dependent effects in the conditioning of partner preference. Tickling in juvenile females appears to act as a rewarding UCS, whereas in adult females it may act as an aversive UCS. Further research is needed to understand brain mechanisms that might account for such differences.

  6. Neocortical neurodegeneration in young adult Wistar rats prenatally exposed to ethanol.

    PubMed

    Fakoya, Francis Adelade; Caxton-Martins, Ezekiel Ademola

    2006-01-01

    This study was aimed to determine the persistence of neurodegeneration in the cerebral cortex of adult Wistar rats following prenatal ethanol exposure. Timed pregnant rats maintained on standard mouse chow (Ladokun Feeds, Ibadan, Nigeria) and water ad libitum were used for the study. The rats were divided randomly into groups A and B (n-6) and C (n = 4). Group A received a daily ethanol dose of 5.8 g/Kg body weight/day, on the 9th, 10th, 11th, and 12th days of gestation by intragastric intubation, at 16.00 h (PEE) group B was pair-fed with the ethanol dams on isocaloric solution of sucrose for the same duration (PF), while group C received standard chow (C) and water ad libitum. At birth, the pups were weighed and weaned at 30 days of age. Wet brain weights of adult offsprings were determined at 42 days of age. Following whole body perfusion-fixation after anaesthesia, specimens of the neocortex were processed routinely for paraffin embedding and sections of 6 mum thickness stained for neurohistology from each group. Another set of specimens was cryosectioned at -23 degrees C and evaluated for apoptosis by the TUNEL method. The study showed a significantly sustained 44% reduction in brain weight. Neurodegeneration was evident in the layer V, consisting of mostly pyknotic pyramidal neurons, with broken dendrites, collapsed cell bodies, obliterated nuclei and nucleoli. There was a 55% decrease in the normal pyramidal neuron cell pack density. The negative TUNEL signals in both groups suggest that apoptosis may play no role in the mechanism of action occurring at this age of the animals. These sustained changes may underlie the neurobehavioural deficits that have been variously reported. PMID:16503114

  7. Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats.

    PubMed

    Hrubá, Lenka; Schutová, Barbora; Pometlová, Marie; Rokyta, Richard; Slamberová, Romana

    2010-03-17

    The aim of our study was to examine the effect of prenatal methamphetamine (MA) exposure and cross-fostering on cognitive functions of adult male rats tested in Morris water maze (MWM). Rat mothers were exposed daily to injection of MA (5mg/kg) or saline for 9 weeks: prior to impregnation, throughout gestation and lactation periods. Females without any injections were used as an absolute control. On postnatal day 1, pups were cross-fostered so that each mother raised 4 pups of her own and 8 pups from the mothers with the other two treatments. Four types of tests were used: (1) Place navigation test (Learning), (2) Probe test (Probe), (3) Retention memory test (Memory) and (4) Visible platform task. Our results demonstrate that the prenatal exposure to MA does not impact learning and memory, while postnatal exposure to MA shows impairments in cognition. In the test of learning, all animals fostered to MA-treated dams had longer latencies, bigger search error and used lower spatial strategies than the animals fostered to control or saline-treated mother, regardless of prenatal exposure. Regardless of postnatal exposure, the animals prenatally exposed to saline swam faster in all the tests than the animals prenatally exposed to MA and controls, respectively. This study indicates that postnatal but not prenatal exposure to MA affects learning in adult male rats. However, it is still not clear whether these impairments are due to a direct effect of MA on neuronal structure or due to an indirect effect of MA mediated by impaired maternal care.

  8. Subculture of proliferating adult rat hepatocytes in medium supplemented with nicotinamide and EGF.

    PubMed

    Mitaka, T; Kojima, T; Mizuguchi, T; Mochizuki, Y

    1996-09-01

    To establish parenchymal hepatocyte cell lines, we tried to subculture the primary hepatocytes isolated from adult rats. The hepatocytes were cultured in serum-free modified Dulbecco's modified Eagle's medium supplemented with 10 mM nicotinamide and 10 ng/ml epidermal growth factor. When 6 x 10(5) cells were plated on 35-mm dishes coated with rat tail collagen, the cells proliferated and reached confluence at Day 6 to Day 8. The first subculture was carried out at Day 8 using 0.005% collagenase and gentle pipettings. Most cells were recovered and plated on the new dishes coated with the collagen (first passage). The attached cells could proliferate and reached near confluence when the cells occupied more than two-thirds of the dish surface. About a week after the first subculture, the second one was conducted. Although the number of the recovered cells was smaller than at the first passage, the cells could attach and proliferate to a certain extent. Thereafter, they were maintained for more than 2 mo, but they never overgrew. Albumin secretion into the culture medium was confirmed in the subcultured cells. Ultrastructurally, these subcultured cells possessed hepatic characteristics such as peroxisomes with a crystalline nucleiod and bile-canaliculus structures. When 10% fetal bovine serum and ascorbic acid 2-phosphate were added to the cells of the second passage, they began to proliferate very slowly. These proliferating cells were mainly mononucleate and had a small cytoplasm. In addition, some of them could differentitate into typical mature hepatocytes by forming a three-dimensional structure interacting with nonparenchymal cells. In this experiment, we showed the successful subculturing of parenchymal hepatocytes isolated from adult rats and provided evidence that the subcultured cells still have the potential to proliferate and to differentiate.

  9. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  10. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects.

  11. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.

  12. Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations.

    PubMed

    Brand, T; Kroonen, J; Mos, J; Slob, A K

    1991-09-01

    Intact adult male rats, in which aromatization of testosterone to estradiol was prevented pre- and/or neonatally by ATD (1,4,6-androstatriene-3,17-dione), were repeatedly tested for partner preference behavior (choice: estrous female vs active male). In consecutive tests increasing preference scores for the female were found. Neonatal ATD males showed significantly lower preference scores for an estrous female than controls or prenatal ATD males. Prenatal ATD caused preference scores only slightly lower than those of controls. Ejaculation frequencies were markedly reduced or even absent in neonatal ATD males. Prenatal ATD treatment only had no or a moderately lowering effect on ejaculation frequency. Lordosis behavior of adult intact males was more facilitated following neonatal ATD treatment than following prenatal ATD treatment. In a number of tests the serotonergic drug 8-OH-DPAT was injected prior to testing for sexual partner preference and copulatory behavior. DPAT significantly increased preference for an estrous female in all groups of males when interaction was possible, but had no effect when sexual interaction was prevented by wire mesh. DPAT was able to increase the number of ejaculators in nonejaculating groups (i.e., perinatally ATD-treated males). "Premature ejaculations," i.e., ejaculations with the first intromission, were frequently observed with DPAT treatment in all groups of males. In conclusion, the availability of neonatal estrogen (derived from testosterone) organizes, at least partially, the preference for an estrous female normally shown by adult male rats. The lack of neonatal estrogen causes males to be less masculinized, both in partner preference behavior and ejaculatory behavior, and less defeminized in lordosis behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring.

    PubMed

    Care, Alison S; Sung, Miranda M; Panahi, Sareh; Gragasin, Ferrante S; Dyck, Jason R B; Davidge, Sandra T; Bourque, Stephane L

    2016-05-01

    This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.

  14. Role of Periductal and Ductular Epithelial Cells of the Adult Rat Pancreas in Pancreatic Hepatocyte Lineage

    PubMed Central

    Rao, M. Sambasiva; Dwivedi, Rama S.; Yeldandi, Anjana V.; Subbarao, V.; Tan, Xiaodi; Usman, Mohammed I.; Thangada, Shobha; Nemali, Mohan R.; Kumar, Sujata; Scarpelli, Dante G.; Reddy, Janardan K.

    1989-01-01

    Development of pancreatic hepatocytes in adult rats maintained on copper dificient diet containing 0.6% trien (CuDT) has been reported recently. To elucidate the histogenesis of hepatocytes a sequential study was undertaken using morphologic, histochemical, immunochemical, in situ hybridization, and Northern blot analysis. Male F-344 rats weighing 80 to 90 g were fed CuDT for 8 weeks and returned to normal rat chow. Beginning from 4 weeks of copper depletion, there was a progressive loss of acinar cells and by 8 weeks more than 90% of the acinar tissue was lost. During this period, there was an increase in the number of adipocytes in the interstitium, and in the number of interstitial and ductular cells. Morphologic observations were confirmed by immunoblot and Northern blot analysis, in which the amount of pancreatic proteins and their mRNAs decreased between 5 and 8 weeks. During this period, a progressive increase in the level of albumin mRNA was observed. In situ hybridization, performed at 7 weeks of copper deficiency, showed localization of albumin mRNA over interstitial and ductular cells. Pancreatic hepatocytes were identified immediately after the rats were returned to a normal diet and gradually increased in number. The hepatocytes occupied almost 60% of the pancreatic volume by 8 weeks. During the early recovery phase, hepatocytes were identified in ductules as well as in the interstitium. Based on these studies, it is concluded that both the ductular cells and interstitial cells, which resemble oval cells of liver, are capable of transforming into pancreatic hepatocytes and these cells may be considered stem-cell equivalent. ImagesFigure 9Figure 10Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16 PMID:2470253

  15. Maternal protein restriction impairs the transcriptional metabolic flexibility of skeletal muscle in adult rat offspring.

    PubMed

    da Silva Aragão, Raquel; Guzmán-Quevedo, Omar; Pérez-García, Georgina; Manhães-de-Castro, Raul; Bolaños-Jiménez, Francisco

    2014-08-14

    Skeletal muscle exhibits a remarkable flexibility in the usage of fuel in response to the nutrient intake and energy demands of the organism. In fact, increased physical activity and fasting trigger a transcriptional programme in skeletal muscle cells leading to a switch from carbohydrate to lipid oxidation. Impaired metabolic flexibility has been reported to be associated with obesity and type 2 diabetes, but it is not known whether the disability to adapt to metabolic demands is a cause or a consequence of these pathological conditions. Inasmuch as a poor nutritional environment during early life is a predisposing factor for the development of metabolic diseases in adulthood, in the present study, we aimed to determine the long-term effects of maternal malnutrition on the metabolic flexibility of offspring skeletal muscle. To this end, the transcriptional responses of the soleus and extensor digitorum longus muscles to fasting were evaluated in adult rats born to dams fed a control (17 % protein) or a low-protein (8 % protein, protein restricted (PR)) diet throughout pregnancy and lactation. With the exception of reduced body weight and reduced plasma concentrations of TAG, PR rats exhibited a metabolic profile that was the same as that of the control rats. In the fed state, PR rats exhibited an enhanced expression of key regulatory genes of fatty acid oxidation including CPT1a, PGC-1α, UCP3 and PPARα and an impaired expression of genes that increase the capacity for fat oxidation in response to fasting. These results suggest that impaired metabolic inflexibility precedes and may contribute to the development of metabolic disorders associated with early malnutrition. PMID:24823946

  16. Assessment of methyl methanesulfonate using the repeated-dose liver micronucleus assay in young adult rats.

    PubMed

    Muto, Shigeharu; Yamada, Katsuya; Kato, Tatsuya; Wako, Yumi; Kawasako, Kazufumi; Iwase, Yumiko; Uno, Yoshifumi

    2015-03-01

    A repeated-dose liver micronucleus assay using young adult rats was conducted with methyl methanesulfonate (MMS) as a part of a collaborative study supported by the Collaborative Study Group for the Micronucleus Test/the Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group. MMS is a classical DNA-reactive carcinogen, but it is not a liver carcinogen. In the first experiment (14-day study), MMS was administered per os to 6-week-old male Crl:CD (SD) rats every day for 14 days at a dose of 12.5, 25, or 50mg/kg/day. In the second experiment (28-day study), 6-week-old male SD rats were treated with MMS at 7.5, 15, or 30mg/kg/day for 28 days, because the highest dose used in the 14-day study (50mg/kg/day) caused mortality. Hepatocyte and bone marrow cell specimens were prepared on the day after the final dose. The frequency of micronucleated hepatocytes (MNHEPs) in the liver and that of micronucleated immature erythrocytes (MNIMEs) in the bone marrow were evaluated. Exposure to 50mg/kg/day MMS for 14 days resulted in an increased frequency of MNHEPs, but MMS had no effect on the frequency of MNHEPs in the rats exposed to the chemical for 28 days at doses up to 30mg/kg/day. MMS induced MNIMEs production at doses of 25 and 50mg/kg/day in the 14-day study and at doses of 15 and 30mg/kg/day in the 28-day study. Overall, the effect of MMS on the frequency of MNHEPs was considered to be equivocal.

  17. Persistent neocortical astrogliosis in adult wistar rats following prenatal ethanol exposure.

    PubMed

    Fakoya, Francis Adelade

    2005-06-01

    Timed pregnant wistar rats were divided randomly into groups A and B (n=6) each and C (n=4). Group A received a daily ethanol dose of 5.8 g/kg body weight per day, at 16.00 h on days 9-12th of gestation by intragastric intubations. Group B was pair-fed along with the treated rats and received an isocaloric solution of sucrose to substitute for the ethanol in the experimental group, for the same duration, while group C received standard chow and water ad libitum. The adult offsprings at 42 days of age, (n=10) from each group were sacrificed by whole body perfusion-fixation, after anaesthesia by an overdose of pentothal intraperitoneally. Specimens of neocortical samples were processed routinely for paraffin embedding and sections of 6 microm thickness stained for neurohistology. Another set of specimens was cryosectioned at -23 degrees C after cryoprotection in 30% sucrose/PBS and evaluated for GFAP immunohistochemistry. The study showed a distortion of the microanatomy of the neocortex in the treatment group A, particularly of layer V pyramidal neurons, which revealed mostly pyknotic pyramidal neurons with broken dendrites, collapsed cell bodies, obliterated nuclei and nucleoli. No differences were found between the brains from rats in groups B and C. There were widespread focal areas of reactive astrogliosis, more prominent within the layer V. Astrocytes demonstrated highly stained GFAP-positive immunoreactivity with heavy fibrillary processes in the neocortex of group A offsprings compared to the controls. The sub-pial regions were, however, sparse. In conclusion, this study confirms the hypothesis that microanatomical and microchemical changes following prenatal ethanol exposure persist into adulthood in rats. PMID:15862187

  18. Developmental neurotoxicity of PHAHs: Endocrine-mediated and general behavioral endpoints in adult male rats.

    PubMed

    Lilienthal, Hellmuth; Roth-Härer, Astrid; Hack, Alfons; Altmann, Lilo; Winneke, Gerhard

    2005-05-01

    During development, gonadal steroids exert effects on the nervous system which are long-lasting or organizational, in contrast to the transient activational actions in adulthood. Therefore, disturbance of neuroendocrine functions by developmental exposure to polyhalogenated aromatic hydrocarbons (PHAHs) is likely to affect sex-dependent behavior in adults. Our previous data revealed effects of maternal PCB exposure on sexual differentiation of the brain and subsequent sweet preference as sexually dimorphic behavior in adult offspring. Present research is focused on brominated flame retardants because of their wide-spread use and accumulation in human breast milk. Pregnant Long Evans rats were SC injected with PBDE 99 (2,2',4,4',5-PBDE) daily from gestational day 10 to 18. For comparison, an additional group was exposed to Aroclor 1254. Preliminary results indicate a dose-related increase in sweet preference in adult male offspring exposed to PBDE. Exposure also led to decreases in testosterone and estradiol serum levels. Additional decreases were detected in male anogenital distance. There were no changes of locomotor activity in the open field. On haloperidol-induced catalepsy, latencies were prolonged in all exposed males. In summary, PBDE induced endocrine effects and concomitant changes of sex-dependent behavior similar to PCBs. Outcome of general behavior suggests an involvement of dopaminergic processes in developmental PBDE exposure.

  19. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    PubMed

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  20. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  1. Further studies on hypothalamic-pituitary-testicular function in old rats.

    PubMed

    Pirke, K M; Krings, B; Vogt, H J

    1979-10-01

    The dysfunction of the hypothalamic-pituitary-gonadal axis in old age was studied in 24-month old male Wistar rats which were compared with 3-month old animals. The hypothalamic LH-RH content and the pituitary LH were significantly lower in the old than in the young adult animals. The plasma concentrations of LH and testosterone were significantly higher in the young rats. The primary cause of these age-dependent changes probably is a hypothalamic dysfunction. When isolated Leydig cells of young and old rats were incubated in vitro, the testosterone secretion per cell was significantly smaller in old than in young cells with as well as without HCG stimulation. In vivo stimulation of rats by iv injection of biologically active iodinated hCG revealed that the intratesticular uptake of the gonadotrophin was not different in young and old rats. The testosterone response, however, was significantly reduced in old age. An in vitro "desensitisation" experiment in which the LH receptor capacity was artificially reduced demonstrated that the 40% reduction of receptor capacity in old testes as described earlier will not impair the testicular uptake of gonadotrophin from blood. Repeated injection of hCG results in equally elevated testosterone concentrations in young and old rats.

  2. Olanzapine Treatment of Adolescent Rats Alters Adult D2 Modulation of Cortical Inputs to the Ventral Striatum

    PubMed Central

    Brooks, Julie M.; Frost, Douglas O.

    2016-01-01

    Background: The striatal dopamine system undergoes vast ontogenetic changes during adolescence, making the brain vulnerable to drug treatments that target this class of neurotransmitters. Atypical antipsychotic drugs are often prescribed to children and adolescents for off-label treatment of neuropsychiatric disorders, yet the long-term impact this treatment has on brain development remains largely unknown. Methods: Adolescent male rats were treated with olanzapine or vehicle for 3 weeks (during postnatal day 28–49) using a dosing condition designed to approximate closely D2 receptor occupancies in the human therapeutic range. We assessed D2 receptor modulation of corticostriatal inputs onto medium spiny neurons in the adult ventral striatum using in vitro whole-cell current clamp recordings. Results: The D2/D3 agonist quinpirole (5 µM) enhanced cortically driven medium spiny neuron synaptic responses in slices taken from adult rats treated with vehicle during adolescence, as in untreated adult rats. However, in slices from mature rats treated with olanzapine during adolescence, quinpirole reduced medium spiny neuron activation. The magnitude of decrease was similar to previous observations in untreated, prepubertal rats. These changes may reflect alterations in local inhibitory circuitry, as the GABA-A antagonist picrotoxin (100 µM) reversed the effects of quinpirole in vehicle-treated slices but had no impact on cortically evoked responses in olanzapine-treated slices. Conclusions: These data suggest that adolescent atypical antipsychotic drug treatment leads to enduring changes in dopamine modulation of corticostriatal synaptic function. PMID:27207908

  3. Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    PubMed Central

    Zheng, Weimin

    2012-01-01

    Behavioral adaption to a changing environment is critical for an animal's survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment. PMID:22973201

  4. Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat

    PubMed Central

    MacDonell, C W; Power, K E; Chopek, J W; Gardiner, K R; Gardiner, P F

    2015-01-01

    Key points This is the first report, in adult decerebrate rats, to examine intracellular hindlimb motoneurone properties during quiescence, fictive locomotion and a tonic period immediately before fictive locomotion that is characterized by increased peripheral nerve activity. It is shown for the first time during fictive locomotion that motoneurones become more responsive in the tonic period, suggesting that the motoneurone pool becomes primed before patterned motor output commences. Spike frequency adaptation exists in quiescence and during fictive locomotion during constant excitation with injected current but not during centrally driven fictive locomotion. Motoneurones within the extensor motor pool show changes in excitability even when they are not directly involved in locomotion. The data show increased responsiveness of motoneurones during locomotion via a lowered threshold for spike initiation and decreased rheobase. Abstract This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the ‘tonic’ period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor–extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as ‘idle’ motoneurones. LDP and

  5. Influence of hyperoxia and mechanical ventilation in lung inflammation and diaphragm function in aged versus adult rats.

    PubMed

    Andrade, P V; dos Santos, J M; Silva, H C A; Wilbert, D D; Cavassani, S S; Oliveira-Júnior, I S

    2014-04-01

    Although assist ventilation with FIO2 0.21 is the preferable mode of ventilation in the intensive care unit, sometimes controlled ventilation with hyperoxia is needed. But the impact of this setting has not been extensively studied in elderly subjects. We hypothesized that a high fraction of inspired oxygen (FiO(2)) and controlled mechanical ventilation (CMV) is associated with greater deleterious effects in old compared to adult subjects. Adult and old rats were submitted to CMV with low tidal volume (6 ml/kg) and FiO(2) 1 during 3 or 6 h. Arterial blood gas samples were measured at 0, 60 and 180 min (four groups: old and adult rats, 3 or 6 h of CMV), and additionally at 360 min (two groups: old and adult rats, 6 h of CMV). Furthermore, total protein content (TPC) and tumor necrosis factor-alpha (TNF-α) in bronchoalveolar lavage were assessed; lung tissue was used for malondialdehyde and histological analyses, and the diaphragm for measurement of contractile function. Arterial blood gas analysis showed an initial (60 min) greater PaO(2) in elderly versus adult animals; after that time, elderly animals had lowers pH and PaO(2), and greater PaCO(2). After 3 h of CMV, TPC and TNF-α levels were higher in the old compared with the adult group (P < 0.05). After 6 h of MV, malondialdehyde was significantly higher in elderly compared with the adult animals (P < 0.05). Histological analysis showed leukocyte infiltration and edema, greater in old animals. In diaphragm, twitch contraction with caffeine significantly declined after 6 h of CMV only for the elderly group. These data support the hypothesis that relatively short-term CMV with low tidal volume and hyperoxia has greatest impact in elderly rats, decreasing diaphragmatic contractile function and increasing lung inflammation.

  6. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats.

    PubMed

    Mu, J S; Li, W P; Yao, Z B; Zhou, X F

    1999-07-24

    Brain-derived neurotrophic factor (BDNF) is abundantly expressed in the hippocampus and cerebral cortex and is involved in synaptic plasticity and long-term potentiation (LTP). The present study was under taken to investigate whether endogenous BDNF was required for spatial learning and memory in a rat model. Antibodies to BDNF (anti-BDNF, n=7) or control immunoglobulin G (control, n=6) were delivered into the rat brain continuously for 7 days with an osmotic pump. The rats were then subjected to a battery of behavioral tests. The results show that the average escape latencies in the BDNF antibody treated group were dramatically longer than those of the control (F=13.3, p<0.001). The rats treated with control IgG swam for a significantly longer distance in the P quadrant (where the escape plane had been placed) compared with the other three quadrants (p<0.05). In contrast, anti-BDNF-treated rats swam an equivalent distance in all four quadrants. The average percentage of swimming distance in the P quadrant by anti-BDNF-treated rats was much less than that by control IgG treated rats (p<0.001). These results suggest that endogenous BDNF is required for spatial learning and memory in adult rats.

  7. The effect of opioid antagonists in local regulation of testicular response to acute stress in adult rats.

    PubMed

    Kostić, T; Andrić, S; Kovacević, R; Marić, D

    1997-11-01

    The present study examined the effects of naloxone (N) and naltrexone-methobromide (NMB; an opioid receptor antagonist that does not cross the blood-brain barrier) on testicular steroidogenesis during acute immobilization stress (IMO; 2 h) in adult rats. Unstressed rats as well as IMO rats were treated by unilateral intratesticular injection of N (20 micrograms/testis), NMB (36 micrograms/testis), or vehicle at the beginning of and at 1 h of the IMO period. In IMO rats serum T levels were significantly reduced, while serum luteinizing hormone levels were not affected. N and NMB normalized serum T levels in IMO rats and had no effects in controls. In IMO rats the activities of 3 beta-hydroxysteroid dehydrogenase (HSD) and P450(17 alpha, lyase) were significantly reduced, while the activity of 17 beta-HSD was not affected. N and NMB antagonized the inhibitory effect of IMO on 3 beta-HSD and P450(17 alpha, lyase) but did not alter enzyme activity in freely moving rats. Acute IMO decreased basal and human chorionic gonadotropin-stimulated androgen production by hemitestis preparation, but N (10(-4) M) added directly to the incubation medium blocked the decrease and had no effect on testes from freely moving control rats. These results support the conclusion that endogenous opioid peptides are potentially important paracrine regulators of testicular steroidogenesis under stress conditions. PMID:9366009

  8. Effects of chronic overload on muscle hypertrophy and mTOR signaling in adult and aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effect of 28 days of overload on mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling in young adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats subjected to bilateral synergist ablation (SA) of two-thirds of the gas...

  9. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  10. Abnormal secretion of reproductive hormones and antioxidant status involved in quinestrol-induced reproductive toxicity in adult male rat.

    PubMed

    Li, Jian; Wang, Hongwei; Zhang, Jiliang; Zhou, Bianhua; Si, Lifang; Wei, Lan; Li, Xiang

    2014-02-01

    This study aimed to evaluate the effects of quinestrol, a synthetic oestrogen homologue with reproductive toxicity, on the secretion of reproductive hormones and antioxidant status in adult male rat. Our results showed that quinestrol exposure significantly decreased the weight of the testis, epididymides, seminal vesicle, and prostate, as well as the sperm counts in the cauda epididymis of rats. Quinestrol significantly reduced the size of seminiferous tubules and the total number of spermatogenic cells. Serum testosterone, follitropin, and lutropin were also significantly reduced in a dose-related manner after quinestrol exposure. Meanwhile, the activity of superoxide dismutase, glutathione peroxidase, and total antioxide capacity significantly decreased, whereas the malondialdehyde and nitric oxide concentrations significantly increased in the testes. These findings revealed that endocrine disorders of reproductive hormones and oxidative stress may be involved in reproductive toxicity induced by quinestrol in adult male rats. PMID:24183492

  11. Perinatal undernutrition facilitates morphine sensitization and cross-sensitization to cocaine in adult rats: a behavioral and neurochemical study.

    PubMed

    Velazquez, E E; Valdomero, A; Orsingher, O A; Cuadra, G R

    2010-01-20

    The development of sensitization to the locomotor effects of morphine and cross-sensitization between morphine and cocaine were evaluated in adult rats submitted to a protein malnutrition schedule from the 14th day of gestation up to 30 days of age (D-rats), and compared with well-nourished animals (C-rats). Dose-response curves to morphine-induced locomotor activity (5, 7.5, 10 or 15 mg/kg, i.p., every other day for 5 days) revealed a shift to the left in D-rats compared to C-rats. This implies that D-rats showed behavioral sensitization to the lower dose of morphine used (5 mg/kg), which was ineffective in C-rats. Furthermore, when a cocaine challenge (10 mg/kg, i.p) was given 48 h after the last morphine administration, only D-rats exhibited cross-sensitization in morphine-pretreated animals (7.5 and 10 mg/kg). In order to correlate the differential response observed with the functioning of the mesocorticolimbic dopaminergic system, extracellular dopamine (DA) levels were measured in the nucleus accumbens (core and shell) and the dorsal caudate-putamen. A challenge with cocaine in morphine pre-exposed animals produced an increase in DA release, but only in the nucleus accumbens "core" of D-rats. Similar DA levels were found in the nucleus accumbens "shell" and in the dorsal caudate-putamen of both groups. Finally, these results demonstrate that D-rats had a lower threshold for developing both a progressive behavioral sensitization to morphine and a cross-sensitization to cocaine. In accordance with these behavioral findings, a higher responsiveness of the nucleus accumbens core, expressed by increased DA levels, both basal and after cocaine challenge, was observed in D-rats.

  12. Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex.

    PubMed

    Rezin, Gislaine T; Scaini, Giselli; Ferreira, Gabriela K; Cardoso, Mariane R; Gonçalves, Cinara L; Constantino, Larissa S; Deroza, Pedro F; Ghedim, Fernando V; Valvassori, Samira S; Resende, Wilson R; Quevedo, João; Zugno, Alexandra I; Streck, Emilio L

    2012-12-01

    Fenproporex is an amphetamine-based anorectic and it is rapidly converted in vivo into amphetamine. It elevates the levels of extracellular dopamine in the brain. Acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine. Thus, we investigated whether the effects of chronic administration of fenproporex in adult rats alters acquisition and retention of avoidance memory and acetylcholinesterase activity. Adult male Wistar rats received repeated (14 days) intraperitoneal injection of vehicle or fenproporex (6.25, 12.5 or 25 mg/kg i.p.). For behavioral assessment, animals were submitted to inhibitory avoidance (IA) tasks and continuous multiple trials step-down inhibitory avoidance (CMIA). Acetylcholinesterase activity was measured in the prefrontal cortex, hippocampus, hypothalamus and striatum. The administration of fenproporex (6.25, 12.5 and 25 mg/kg) did not induce impairment in short and long-term IA or CMIA retention memory in rats. In addition, longer periods of exposure to fenproporex administration decreased acetylcholinesterase activity in prefrontal cortex and striatum of rats, but no alteration was verified in the hippocampus and hypothalamus. In conclusion, the present study showed that chronic fenproporex administration decreased acetylcholinesterase activity in the rat brain. However, longer periods of exposure to fenproporex did not produce impairment in short and long-term IA or CMIA retention memory in rats. PMID:22832793

  13. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  14. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior. PMID:19782105

  15. Effects of T-2 toxin on the regulation of steroidogenesis in mouse Leydig cells.

    PubMed

    Yang, Jian Ying; Zhang, Yong Fa; Li, Yuan Xiao; Guan, Gui Ping; Kong, Xiang Feng; Liang, Ai Min; Ma, Kai Wang; Da Li, Guang; Bai, Xue Fei

    2016-10-01

    T-2 toxin is one of the mycotoxins, a group of type A trichothecenes produced by several fungal genera including Fusarium species, which may lead to the decrease of testosterone secretion in primary Leydig cells derived from mouse testis. The previous study demonstrated T-2 toxin decrease the testosterone biosynthesis in the primary Leydig cells derived from the mouse testis directly. In this study, we further examined the direct biological effects of T-2 toxin on the process of steroidogenesis, primarily in Leydig cells of mice. Leydig cells of mature mouse were purified by Percoll gradient centrifugation and the cell purity was determined by 3β-hydroxysteroid dehydrogenase (3β-HSD) staining. To examine the decrease in T-2 toxin-induced testosterone secretion, we measured the transcription level of three key steroidogenic enzymes including 3β-HSD-1, cytochrome P450 side-chain cleavage (P450scc) enzyme, and steroidogenic acute regulatory (StAR) protein in T-2 toxin/human chorionic gonadotropin (hCG) co-treated cells. Our previous study showed that T-2 toxin (10(-7), 10(-8), and 10(-9) M) significantly suppressed hCG (10 ng/ml)-induced testosterone secretion. The studies demonstrated that the suppressive effect is correlated with a decrease in the level of transcription of 3β-HSD-1, P450scc, and StAR (p < 0.05).

  16. Modulation of mouse Leydig cell steroidogenesis through a specific arginine-vasopressin receptor

    SciTech Connect

    Tahri-Joutei, A.; Pointis, G.

    1988-01-01

    Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (/sup 3/H)-AVP was found to bind to a single class of sites with high affinity and low capacity. Binding displacements with specific selection analogs of AVP indicated the presence of V/sub 1/ subtype receptors on Leydig cells. The ability of AVP to displace (/sup 3/H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (/sup 3/H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells. This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation. AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation. This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels.

  17. True Precocious Puberty Following Treatment of a Leydig Cell Tumor: Two Case Reports and Literature Review

    PubMed Central

    Verrotti, Alberto; Penta, Laura; Zenzeri, Letizia; Lucchetti, Laura; Giovenali, Paolo; De Feo, Pierpaolo

    2015-01-01

    Leydig cell testicular tumors are a rare cause of precocious pseudopuberty in boys. Surgery is the main therapy and shows good overall prognosis. The physical signs of precocious puberty are expected to disappear shortly after surgical removal of the mass. We report two children, 7.5 and 7.7 year-old boys, who underwent testis-sparing surgery for a Leydig cell testicular tumor causing precocious pseudopuberty. During follow-up, after an immediate clinical and laboratory regression, both boys presented signs of precocious puberty and ultimately developed central precocious puberty. They were successfully treated with gonadotropin-releasing hormone (GnRH) analogs. Only six other cases have been described regarding the development of central precocious puberty after successful treatment of a Leydig cell tumor causing precocious pseudopuberty. Gonadotropin-dependent precocious puberty should be considered in children treated for a Leydig cell tumor presenting persistent or recurrent physical signs of puberty activation. In such cases, therapy with GnRH analogs appears to be the most effective medical treatment. PMID:26579503

  18. Differential mechanisms of ang (1-7)-mediated vasodepressor effect in adult and aged candesartan-treated rats.

    PubMed

    Bosnyak, S; Widdop, R E; Denton, K M; Jones, E S

    2012-01-01

    Angiotensin (1-7) (Ang (1-7)) causes vasodilator effects in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) via angiotensin type 2 receptors (AT(2)R). However, the role of vascular AT(2)R in aging is not known. Therefore, we examined the effect of aging on Ang (1-7)-mediated vasodepressor effects and vascular angiotensin receptor localization in aging. Blood pressure was measured in conscious adult (~17 weeks) and aged (~19 months) normotensive rats that received drug combinations in a randomised fashion over a 4-day protocol: (i) Ang (1-7) alone, (ii) AT(1)R antagonist, candesartan, alone, (iii) Ang (1-7) and candesartan, or (iv) Ang-(1-7), candesartan, and the AT(2)R antagonist, PD123319. In a separate group of animals, the specific MasR antagonist, A779, was administered in place of PD123319. Receptor localisation was also assessed in aortic sections from adult and aged WKY rats by immunofluorescence. Ang (1-7) reduced blood pressure (~15 mmHg) in adult normotensive rats although this effect was dependant on the background dose of candesartan. This depressor effect was reversed by AT(2)R blockade. In aged rats, the depressor effect of Ang (1-7) was evident but was now inhibited by either AT(2)R blockade or MasR blockade. At the same time, AT(2)R, MasR, and ACE2 immunoreactivity was markedly elevated in aortic sections from aged animals. These results indicate that the Ang (1-7)-mediated depressor effect was preserved in aged animals. Whereas Ang (1-7) effects were mediated exclusively via stimulation of AT(2)R in adult WKY, with aging the vasodepressor effect of Ang (1-7) involved both AT(2)R and MasR.

  19. Prenatal caffeine exposure induces a poor quality of articular cartilage in male adult offspring rats via cholesterol accumulation in cartilage.

    PubMed

    Luo, Hanwen; Li, Jing; Cao, Hong; Tan, Yang; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-12-07

    Epidemiological investigations indicate that osteoarthritis is associated with intrauterine growth retardation (IUGR) and abnormal cholesterol metabolism. Our previous studies showed that prenatal caffeine exposure (PCE) induced chondrogenesis retardation in IUGR offspring rats. The current study sought to investigate the effects of PCE on male IUGR offspring rats' articular cartilage, and the mechanisms associated with abnormal cholesterol metabolism. Based on the results from both male fetal and adult fed a high-fat diet (HFD) studies of rats that experienced PCE (120 mg/kg.d), the results showed a poor quality of articular cartilage and cholesterol accumulation in the adult PCE group. Meanwhile, the serum total cholesterol and low-density lipoprotein-cholesterol concentrations were increased in adult PCE offspring. We also observed lower expression of insulin-like growth factor1 (IGF1) and impaired cholesterol efflux in adult articular cartilage. Furthermore, the expression of cartilage functional genes, components of the IGF1 signaling pathway and cholesterol efflux pathway related genes were decreased in PCE fetal cartilage. In conclusion, PCE induced a poor quality of articular cartilage in male adult offspring fed a HFD. This finding was shown to be due to cholesterol accumulation in the cartilage, which may have resulted from intrauterine reduced activity of the IGF1 signaling pathway.

  20. Cellular distribution and localisation of iron in adult rat brain ( substantia nigra)

    NASA Astrophysics Data System (ADS)

    Meinecke, Ch.; Morawski, M.; Reinert, T.; Arendt, T.; Butz, T.

    2006-08-01

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 μm thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 μm) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques.

  1. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  2. Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats.

    PubMed

    Hrubá, L; Schutová, B; Šlamberová, R

    2012-01-18

    The aim of the present study was to investigate the impact of prenatal and postnatal methamphetamine (MA) exposure on behavior and anxiety in adult male and female rats. Mothers were daily exposed to injection of MA (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother raised 6 saline-exposed pups and 6 MA-exposed pups. Based on the prenatal and postnatal exposure 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in the Open field (OF) and in the Elevated plus maze (EPM) in adulthood. Locomotion, exploration, immobility and comforting behavior were evaluated in the OF, while anxiety was assessed in the EPM. While prenatal MA exposure did not affect behavior and anxiety in adulthood, postnatal MA exposure (i.e. MA administration to lactating mothers) induced long-term changes. Specifically, adult female rats in diestrus and adult males postnatally exposed to MA via breast milk (S/MA and MA/MA) had decreased locomotion and exploratory behavior in the OF and showed increased anxiety-like behavior in the EPM when compared to female rats in diestrus or males postnatally exposed to saline (S/S and MA/S). In adult females in proestrus, postnatal exposure to MA affected only exploratory behavior in the OF when compared to rats in proestrus postnatally exposed to saline. Thus, the present study shows that postnatal exposure to MA via breast milk impairs behavior in unfamiliar environment and anxiety-like behavior of adult male and female rats more than prenatal MA exposure. PMID:21884713

  3. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors.

  4. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats.

    PubMed

    Armenti, AnnMarie E; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  5. Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Jeremias, Gabriela C; Furlanetto, Camila B; Morais, Meline O S; Mello-Santos, Lis Maira; Quevedo, João; Streck, Emilio L

    2014-10-01

    Methylphenidate (MPH) is commonly prescribed for children who have been diagnosed with attention deficit hyperactivity disorder (ADHD); however, the action mechanisms of methylphenidate have not been fully elucidated. Studies have shown a relationship between apoptosis signaling pathways and psychiatric disorders, as well as in therapeutic targets for such disorders. So, we investigated if chronic treatment with MPH at doses of 1, 2 and 10mg/kg could alter the levels of pro-apoptotic protein, Bax, anti-apoptotic protein, Bcl-2, caspase-3 and cytochrome c in the brain of young and adult Wistar rats. Our results showed that MPH at all doses increased Bax in the cortex; the Bcl-2 and caspase-3 were increased with MPH (1mg/kg) and were reduced with MPH (2 and 10mg/kg); the cytochrome c was reduced in the cortex after treatment with MPH at all doses; in the cerebellum there was an increase of Bax with MPH at all doses, however, there was a reduction of Bcl-2, caspase-3, and cytochrome c with MPH (2 and 10mg/kg); in the striatum the treatment with MPH (10mg/kg) decreased caspase-3 and cytochrome c; treatment with MPH (2 and 10mg/kg) increased Bax and decreased Bcl-2 in the hippocampus; and the caspase-3 and cytochrome c were reduced in the hippocampus with MPH (10mg/kg). In conclusion, our results suggest that MPH influences plasticity in the brain of young and adult rats; however, the effects were dependent of age and brain area, on the one hand activating the initial cascade of apoptosis, increasing Bax and reducing Bcl-2, but otherwise inhibiting apoptosis by reduction of caspase-3 and cytochrome c. PMID:25128604

  6. Extensor motoneurone properties are altered immediately before and during fictive locomotion in the adult decerebrate rat.

    PubMed

    MacDonell, C W; Power, K E; Chopek, J W; Gardiner, K R; Gardiner, P F

    2015-05-15

    This study examined motoneurone properties during fictive locomotion in the adult rat for the first time. Fictive locomotion was induced via electrical stimulation of the mesencephalic locomotor region in decerebrate adult rats under neuromuscular blockade to compare basic and rhythmic motoneurone properties in antidromically identified extensor motoneurones during: (1) quiescence, before and after fictive locomotion; (2) the 'tonic' period immediately preceding locomotor-like activity, whereby the amplitude of peripheral flexor (peroneal) and extensor (tibial) nerves are increased but alternation has not yet occurred; and (3) locomotor-like episodes. Locomotion was identified by alternating flexor-extensor nerve activity, where the motoneurone either produced membrane oscillations consistent with a locomotor drive potential (LDP) or did not display membrane oscillation during alternating nerve activity. Cells producing LDPs were referred to as such, while those that did not were referred to as 'idle' motoneurones. LDP and idle motoneurones during locomotion had hyperpolarized spike threshold (Vth ; LDP: 3.8 mV; idle: 5.8 mV), decreased rheobase and an increased discharge rate (LDP: 64%; idle: 41%) during triangular ramp current injection even though the frequency-current slope was reduced by 70% and 55%, respectively. Modulation began in the tonic period immediately preceding locomotion, with a hyperpolarized Vth and reduced rheobase. Spike frequency adaptation did not occur in spiking LDPs or firing generated from sinusoidal current injection, but occurred during a sustained current pulse during locomotion. Input conductance showed no change. Results suggest motoneurone modulation occurs across the pool and is not restricted to motoneurones engaged in locomotion. PMID:25809835

  7. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    PubMed Central

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  8. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  9. Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats.

    PubMed

    Ko, Meng-Chang; Hung, Yu-Hui; Ho, Pei-Yin; Yang, Yi-Ling; Lu, Kwok-Tung

    2014-12-01

    Synthetic glucocorticoid dexamethasone (DEX) is frequently used as a therapeutic agent to lessen the morbidity of chronic lung disease in premature infants. Previous studies suggested that neonatal DEX treatment altered brain development and cognitive function. It has been recognized that the amygdala is involved in emotional processes and also a critical site of neuronal plasticity for fear conditioning. Little is known about the possible long-term adverse effect of neonatal DEX treatment on amygdala function. The present study was aimed to evaluate the possible effect of neonatal DEX treatment on the synaptic function of amygdala in adult rats. Newborn Wistar rats were subjected to subcutaneous tapering-dose injections of DEX (0.5, 0.3 and 0.1 mg/kg) from post-natal day one to three, PN1-PN3. Animals were then subjected to a forced swimming test (FST) and electrophysiological recording aged eight weeks. The results of the FST showed neonatal DEX treatment increased depression-like behaviour in adulthood. After acute stress evoking, the percentage of time spent free floating is significantly increased in the DEX treated group compared with the control animals. Furthermore, neonatal DEX treatment elevated long-term potentiation (LTP) response and the phosphorylation level of MAPK in the lateral nucleus of amygdala (LA). Intracerebroventricular infusion of the MAPK inhibitor, PD98059, showed significant rescue effects including reduced depression-like behaviour and restoration of LTP to within normal range. In conclusion, our results suggested that MAPK signalling cascade in the LA plays an important role in the adverse effect of neonatal DEX treatment on amygdala function, which may result in adverse consequences in adult age, such as the enhancement of susceptibility for a depressive disorder in later life. PMID:24945924

  10. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  11. Methoxychlor induced biochemical alterations and disruption of spermatogenesis in adult rats.

    PubMed

    Aly, Hamdy A A; Azhar, Ahmad S

    2013-09-01

    Adult male albino rats were treated orally with methoxychlor at doses of 0, 50, 100 or 200 mg/kg/day for 15 consecutive days. Testicular weight, sperm count and motility were significantly decreased. Methoxychlor at doses of 100 and 200 mg/kg significantly inhibited α-glucosidase activity, while plasma testosterone was significantly decrease by the three dose levels in a dose-related pattern. Testicular activities of 3β-HSD, 17β-HSD, SDH were significantly decreased, while ACP, ALP (except for 50 mg/kg), and LDH were significantly increased. H2O2 production and LPO were significantly increased while the enzymic (SOD, CAT and GPx) and non-enzymic antioxidants (thiol content) were significantly decreased. Caspase-3 activity was significantly increased in a dose related manner. The findings of this study indicate that methoxychlor induces oxidative stress associated with impairment of spermatogenesis, in addition to apoptosis. These data provide insight into the mode of action of methoxychlor-induced toxicity in the rat testis.

  12. Metabolic alterations in liver and testes of adult and newborn rats following cadmium administration

    SciTech Connect

    Agarwal, A.K.

    1988-04-01

    A large number of studies have been conducted to understand the effect of cadmium on cellular intermediary metabolism. Although, most of the metal is stored in liver and kidney, the organ affected most in acute toxicity is testis. Increased lipid peroxidation and decreased mitochondrial respiration along with other cellular enzyme activities have been reported to take place due to cadmium administration. The present experiment was designed to study the effect of acute cadmium administration on the activities of some of the tissue enzyme systems that provide the reducing equivalent NADPH. The levels of NADH and NADPH were also measured. All the measurements were conducted in two tissues: liver and testes. The effect of simultaneous administration of zinc on cadmium induced changes was also determined. Newborn animals have been found to be resistant to many effects of cadmium. The present studies were also conducted in newborn rat liver and testes. The purpose of the study is to compare the effects of cadmium on adult and new born rats.

  13. Adult-Age Inflammatory Pain Experience Enhances Long-Term Pain Vigilance in Rats

    PubMed Central

    Li, Sheng-Guang; Wang, Jin-Yan; Luo, Fei

    2012-01-01

    Background Previous animal studies have illustrated a modulatory effect of neonatal pain experience on subsequent pain-related behaviors. However, the relationship between chronic pain status in adulthood and future pain perception remains unclear. Methodology/Principal Findings In the current study, we investigated the effects of inflammatory pain experience on subsequent formalin-evoked pain behaviors and fear conditioning induced by noxious stimulation in adult rats. Our results demonstrated an increase of the second but not the first phase of formalin-induced pain behaviors in animals with a history of inflammatory pain that have recovered. Similarly, rats with persistent pain experience displayed facilitated acquisition and prolonged retention of pain-related conditioning. These effects of prior pain experience on subsequent behavior were prevented by repeated morphine administration at an early stage of inflammatory pain. Conclusions/Significance These results suggest that chronic pain diseases, if not properly and promptly treated, may have a long-lasting impact on processing and perception of environmental threats. This may increase the susceptibility of patients to subsequent pain-related disorders, even when chronic pain develops in adulthood. These data highlight the importance of treatment of chronic pain at an early stage. PMID:22574223

  14. Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats.

    PubMed

    Golli, Narges El; Dallagi, Yosra; Rahali, Dalila; Rejeb, Ines; Fazaa, Saloua El

    2016-07-01

    The present study was conducted to assess the toxic effect of e-cigarette refill liquid on cognitive and motor functions in adult rats. Animals were administered 28 μl/kg of body weight of e-liquid with/without a dose of 0.5 mg of nicotine/kg of body weight, using the intraperitoneally route for a period of 4 weeks. They were then evaluated by novel object recognition test (NORT) and spontaneous alternation T-maze test for cognitive functions. Results indicated that e-liquid without nicotine induced, in the NORT, a decrease in time exploring the novel object during the test session and lower discrimination and recognition indexes compared to control and e-liquid with nicotine treated rats. Furthermore, short-term spatial memory was affected after e-liquid treatment in the spontaneous alternation T-maze test, identifying recognition memory impairments. However, none of the treatments altered motor functions assessed by inclined plane test, Kondziela's inverted screen test and weights test. Cell cytotoxicity assessment following e-liquid exposure showed a significant decrease in hippocampal cell viability, but no change in cortical cell viability. Thereby, e-liquid without nicotine causes cognitive impairments, especially on the hippocampus. Based on these results, more extensive assessments on e-cigarettes must be carried out. PMID:27401341

  15. Effect of hindlimb unloading on motor activity in adult rats: impact of prenatal stress.

    PubMed

    Canu, M H; Darnaudéry, M; Falempin, M; Maccari, S; Viltart, O

    2007-02-01

    Environmental changes that occur in daily life or, in particular, in situations like actual or simulated microgravity require neuronal adaptation of sensory and motor functions. Such conditions can exert long-lasting disturbances on an individual's adaptive ability. Additionally, prenatal stress also leads to behavioral and physiological abnormalities in adulthood. Therefore, the aims of the present study were (a) to evaluate in adult rats the behavioral motor adaptation that follows 14 days of exposure to simulated microgravity (hindlimb unloading) and (b) to determine whether restraint prenatal stress influences this motor adaptation. For this purpose, the authors assessed rats' motor reactivity to novelty, their skilled walking on a ladder, and their swimming performance. Results showed that unloading severely impaired motor activity and skilled walking. By contrast, it had no effect on swimming performance. Moreover, results demonstrated for the first time that restraint prenatal stress exacerbates the effects of unloading. These results are consistent with the role of a steady prenatal environment in allowing an adequate development and maturation of sensorimotor systems to generate adapted responses to environmental challenges during adulthood. PMID:17324062

  16. Efficient estimation of the total number of acini in adult rat lung

    PubMed Central

    Barré, Sébastien F.; Haberthür, David; Stampanoni, Marco; Schittny, Johannes C.

    2014-01-01

    Abstract Pulmonary airways are subdivided into conducting and gas‐exchanging airways. An acinus is defined as the small tree of gas‐exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X‐ray micro‐CT or synchrotron radiation‐based X‐rays tomographic microscopy. The entrances of the acini were counted in three‐dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60‐day‐old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume. PMID:24997068

  17. Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats.

    PubMed

    Golli, Narges El; Dallagi, Yosra; Rahali, Dalila; Rejeb, Ines; Fazaa, Saloua El

    2016-07-01

    The present study was conducted to assess the toxic effect of e-cigarette refill liquid on cognitive and motor functions in adult rats. Animals were administered 28 μl/kg of body weight of e-liquid with/without a dose of 0.5 mg of nicotine/kg of body weight, using the intraperitoneally route for a period of 4 weeks. They were then evaluated by novel object recognition test (NORT) and spontaneous alternation T-maze test for cognitive functions. Results indicated that e-liquid without nicotine induced, in the NORT, a decrease in time exploring the novel object during the test session and lower discrimination and recognition indexes compared to control and e-liquid with nicotine treated rats. Furthermore, short-term spatial memory was affected after e-liquid treatment in the spontaneous alternation T-maze test, identifying recognition memory impairments. However, none of the treatments altered motor functions assessed by inclined plane test, Kondziela's inverted screen test and weights test. Cell cytotoxicity assessment following e-liquid exposure showed a significant decrease in hippocampal cell viability, but no change in cortical cell viability. Thereby, e-liquid without nicotine causes cognitive impairments, especially on the hippocampus. Based on these results, more extensive assessments on e-cigarettes must be carried out.

  18. Subcellular distribution of ( sup 3 H)-dexamethasone mesylate binding sites in Leydig cells using electron microscope radioautography

    SciTech Connect

    Stalker, A.; Hermo, L.; Antakly, T. )

    1991-01-01

    The present view is that glucocorticoid hormones bind to their cytoplasmic receptors before reaching their nuclear target sites, which include specific DNA sequences. Although it is believed that cytoplasmic sequestration of steroid receptors and other transcription factors (such as NFKB) may regulate the overall activity of these factors, there is little information on the exact subcellular sites of steroid receptors or even of any other transcription factors. Tritiated (3H)-dexamethasone 21-mesylate (DM) is an affinity label that binds covalently to the glucocorticoid receptor (GR), thereby allowing morphological localization of the receptor at the light and electron microscope levels as well as for quantitative radioautographic (RAG) analysis. After injection of 3H-DM into the testis, a specific radioautographic signal was observed in Leydig cells, which correlated with a high level of immunocytochemically demonstrable GR in these cells at the light-microscope level. To localize the 3H-DM binding sites at the electron microscope (EM) level, the testes of 5 experimental and 3 control adrenalectomized rats were injected directly with 20 microCi 3H-DM; control rats received simultaneously a 25-fold excess of unlabeled dexamethasone; 15 min later, rats were fixed with glutaraldehyde and the tissue was processed for EM RAG analysis combined with quantitative morphometry. The radioautographs showed that the cytosol, nucleus, smooth endoplasmic reticulum (sER), and mitochondria were labeled. Since the cytosol was always adjacent to tubules of the sER, the term sER-rich cytosol was used to represent label over sER networks, which may also represent cytosol labeling due to the limited resolution of the radioautographic technique. Labeling was highest in sER-rich cytosol and mitochondria, at 53% and 31% of the total, respectively.

  19. Methoxychlor induces apoptosis via mitochondria- and FasL-mediated pathways in adult rat testis.

    PubMed

    Vaithinathan, S; Saradha, B; Mathur, P P

    2010-04-29

    In the past few years, there has been much concern about the adverse health effects of environmental contaminants in general and organochlorine in particular. Studies have shown the repro-toxic effects of long-term exposure to methoxychlor, a member of the organochlorine family. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. In the present study we sought to elucidate the mechanism(s) underpinning the gonadal effects within hours of exposure to methoxychlor. Experimental rats were divided into six groups of four each. Animals were orally administered with a single dose of methoxychlor (50mg/kg body weight) and killed at 0, 3, 6, 12, 24, and 72h post-treatment. The levels and time-course of induction of apoptosis-related proteins like cytochorome C, caspase 3 and procaspase 9, Fas-FasL and NF-kappaB were determined to assess sequential induction of apoptosis in the rat testis. DNA damage was assessed by TUNEL assay and flowcytometry. Administration of methoxychlor resulted in a significant increase in the levels of cytosolic cytochrome c and procaspase 9 as early as 6h following exposure. Time-dependent elevations in the levels of Fas, FasL, pro- and cleaved caspase 3 were observed. The DNA damage was measured and showed time-dependent increase in the TUNEL positive cells, and also by flowcytometry of testicular cells. The study demonstrates induction of testicular apoptosis in adult rats following exposure to a single dose of methoxychlor.

  20. Fast and delayed locomotor response to acute high-dose nicotine administration in adult male rats.

    PubMed

    Jandová, K; Marešová, D; Pokorný, J

    2013-01-01

    The aim of the present study was to compare the immediate and delayed locomotor response to high-dose nicotine (NIC) administration in rats. The vertical and horizontal activity of behavior in adult male rats exposed to 1 mg/kg NIC or saline (SAL) were tested in a Laboras apparatus for one hour after drug application. Animals were then returned to their cages and housed for another seven days. After this period all animals were placed in Laboras again and their behavioral pattern was retested for another period of one hour (delayed response). Horizontal activity: immediately after nicotine administration animal were less mobile (first 2-minutes interval), when compared with controls. The immobilization effect of nicotine disappeared within 4 minutes and during whole first 10-minutes interval time spent by locomotion did not differ from controls. Locomotion activity of animals treated with nicotine increased robustly in following 10 minutes and remained significantly higher in 2nd, 3rd and 5th 10-minutes interval. Vertical activity: Rearing frequency was significantly lowered by NIC administration in first two minutes of the experiment and the same was found when the duration of rearing was analyzed. Lower rearing intensity of NIC treated animals disappeared in 4 minutes and was finally higher during whole test session as compared with controls. When duration of rearing was analyzed it was significantly longer in NIC treated animals. In majority of observed behavioral aspects there were no differences between NIC treated rats and controls seven days after NIC or SAL treatment. Our results reflect effect of NIC and we conclude that NIC significantly influences behavior of experimental animals.

  1. The structural effect of systemic NGF treatment on permanently axotomised dorsal root ganglion cells in adult rats

    PubMed Central

    TANDRUP, T.; VESTERGAARD, S.; TOMLINSON, D. R.; DIEMEL, L. T.; JAKOBSEN, J.

    1999-01-01

    The effect of systemic NGF treatment on loss and shrinkage of dorsal root ganglion cells was studied in adult male rats after permanent axotomy. Nineteen 16 to 18-wk-old rats had their right 5th lumbar spinal nerve ligated and cut approximately 7 mm peripheral to the ganglion. Two days before the operation, treatment with subcutaneous injections of human recombinant NGF (1.0–0.5 mg/kg/day) was started in 9 test rats; 10 controls were given saline injections. After 1 mo the levels of substance P (SP) and calcitonin gene related peptide (CGRP) were significantly increased in intact sciatic nerve. The number and mean volume of perikarya were estimated using assumption-free stereological techniques including vertical sections, the Cavalieri principle, optical disectors, the planar rotator and systematic sampling techniques. Systemic NGF administration had no influence on survival of primary sensory neurons after axotomy. The number of perikarya was 14300 ( S.D.=1800) in axotomised ganglia in control rats versus 14700 ( S.D.=2100) in axotomised ganglia of NGF treated rats. The reduction of perikarya volume after axotomy was significantly less after NGF treatment (11600 μm3 in the control group versus 8000 μm3 in the NGF treated group). However, the apparent protection of NGF-treatment on perikaryal volume is explained by a hitherto unrecognised size effect on nonaxotomised dorsal root ganglion cells. The unt