Science.gov

Sample records for adult rat testes

  1. Repeated-dose liver micronucleus test of 4,4'-methylenedianiline using young adult rats.

    PubMed

    Sanada, Hisakazu; Koyama, Naomi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    Liver micronucleus (MN) tests using partial hepatectomized rats or juvenile rats have been shown to be useful for the detection of hepatic carcinogens. Moreover, Narumi et al. established the repeated-dose liver MN test using young adult rats for integration into general toxicity. In the present study, in order to examine the usefulness of the repeated-dose liver MN test, we investigated MN induction with a 14 or 28 day treatment protocol using young adult rats treated with 4,4′-methylenedianiline (MDA), a known hepatic carcinogen. MDA dose-dependently induced micronuclei in hepatocytes in 14- and 28-day repeated-dose tests. However, although statistically significant increases in micronuclei were observed in bone marrow cells at two dose levels in the 14-day study, there was no dose response and no increases in micronuclei in the 28-day study. These results indicate that the evaluation of genotoxic effects using hepatocytes is effective in cases where chromosomal aberrations are not clearly detectable in bone marrow cells. Moreover, the repeated-dose liver MN test allows evaluation at a dose below the maximum tolerable dose, which is required for the conventional MN test because micronucleated hepatocytes accumulate. The repeated-dose liver MN test employed in the present study can be integrated into the spectrum of general toxicity tests without further procedural modifications.

  2. Use of the light/dark test for anxiety in adult and adolescent male rats.

    PubMed

    Arrant, Andrew E; Schramm-Sapyta, Nicole L; Kuhn, Cynthia M

    2013-11-01

    The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-β-carboline-3-carboxamide (FG-7142) and the α₂ adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence.

  3. Maternal isobutyl-paraben exposure alters anxiety and passive avoidance test performance in adult male rats.

    PubMed

    Kawaguchi, Maiko; Irie, Kaoru; Morohoshi, Kaori; Watanabe, Gen; Taya, Kazuyoshi; Morita, Masatoshi; Kondo, Yasuhiko; Imai, Hideki; Himi, Toshiyuki

    2009-10-01

    Isobutyl-paraben (IBP), one of the most widely used preservatives, exhibits estrogenic activity. In this study, we analyzed the effects of maternal IBP treatment on the emotional behavior and learning performance in mature offspring. Pregnant female Sprague-Dawley rats were treated with IBP via a subcutaneous Silastic capsule. Consequently, the offspring were exposed to IBP during gestation through the placentae, and before weaning through the milk. Male and female offspring were tested for emotional behavior in an open field and in an elevated plus maze at five and six weeks old, respectively. IBP-exposed male (but not female) rats spent less time in the open arms of the elevated plus maze. At 11 weeks old, all females were gonadectomized and treated chronically with 17beta-estradiol or cholesterol by Silastic capsules; all males were kept intact. They were tested for learning performance in a passive avoidance test and a Morris water maze. IBP exposure impaired the performance of males in the passive avoidance test. These findings suggest that male rats are more affected by early exposure to IBP than female rats. IBP affects their adult behavior including anxiety and learning abilities.

  4. Parenteral magnesium load testing with /sup 28/Mg in weanling and young adult rats

    SciTech Connect

    Caddell, J.L.; Calhoun, N.R.; Howard, M.P.; Patterson, K.Y.; Smith, J.C. Jr.

    1981-06-01

    A sound diagnostic test for Mg deficiency is needed. This is a report of the parenteral Mg load test conducted in weanling and young adult rats fed a purified basal diet containing 3 mg magnesium/100 g with 150 mg of added magnesium/100 g (control) or 0 added magnesium (deficient). Weanlings were studied at about 1 week of dietary treatment and young adults at 2 weeks. The protocol included: a) a 6-hour preload urinary collection; b) an intraperitoneal load of 15 mg of magnesium/kg (weanlings) or 12 mg/kg (young adults) with 2 microCi 28Mg given simultaneously with each load; c) a 6-hour postload urinary collection; d) chemical analysis of selected tissues and urine for Mg; and e) 28Mg counting 6 and 24 hours postload. Controls all excreted large amounts of Mg pre- and postload, retaining less than 26% of nonradioactive loads. They had high urinary 28Mg counts. In Mg-deficient animals, the concentration of Mg in bone more than halved. These animals avidly conserved Mg and retained over 85% of nonradioactive Mg loads. Their 28Mg activity in vital organs was 3--6 times greater than in controls. We concluded that the parenteral Mg load test reliably identifies severe Mg deficiency.

  5. Comparative effects of X irradiation on the testes of adult Sprague-Dawley and Wistar rats.

    PubMed

    Delic, J I; Schlappack, O K; Harwood, J R; Stanley, J A

    1987-10-01

    The response of the testes of two strains of adult rats (Sprague-Dawley and Wistar) to graded single doses and split doses of 230 kVp X rays has been investigated. A marked difference was noted between the strains in the response of the clonogenic spermatogonia to irradiation, as measured histologically by the repopulation index. Single-dose response curves derived for these cells in the Sprague-Dawley strain had a much larger shoulder (up to about 4-5 Gy) than for the Wistar (less than 2 Gy). Split-dose studies revealed that this difference may partly be explained by a greater repair capacity in the cells of the Sprague-Dawley strain. Changes in serum FSH concentrations mirrored the changes in clonogenic spermatogonial survival following split doses of radiation.

  6. Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test?

    PubMed

    Šlamberová, R; Pometlová, M; Schutová, B; Hrubá, L; Macúchová, E; Nová, E; Rokyta, R

    2012-01-01

    Drug abuse of pregnant women is a growing problem. The effect of prenatal drug exposure may have devastating effect on development of the offsprings that may be long-term or even permanent. One of the most common drug abused by pregnant women is methamphetamine (MA), which is also the most frequently abused illicit drug in the Czech Republic. Our previous studies demonstrated that prenatal MA exposure alters behavior, cognition, pain and seizures in adult rats in sex-specific manner. Our most recent studies demonstrate that prenatal MA exposure makes adult rats more sensitive to acute injection of the same or related drugs than their controls. The aim of the present study was to examine the effect of prenatal MA exposure on drug-seeking behavior of adult male rats tested in the Conditioned place preference (CPP). Adult male rats were divided to: prenatally MA-exposed (5 mg/kg daily for the entire prenatal period), prenatally saline-exposed (1 ml/kg of physiological saline) and controls (without maternal injections). The following drugs were used in the CPP test in adulthood: MA (5 mg/kg), amphetamine (5 mg/kg), cocaine (5 and 10 mg/kg), morphine (5 mg/kg), MDMA (5 mg/kg) and THC (2 mg/kg). Our data demonstrated that prenatally MA-exposed rats displayed higher amphetamine-seeking behavior than both controls. MA as well as morphine induced drug-seeking behavior of adult male rats, however this effect did not differ based on the prenatal MA exposure. In contrast, prenatal MA exposure induced rather tolerance to cocaine than sensitization after the conditioning in the CPP. MDMA and THC did not induce significant effects. Even though the present data did not fully confirmed our hypotheses, future studies are planned to test the drug-seeking behavior also in self-administration test.

  7. The 14-day repeated dose liver micronucleus test with methapyrilene hydrochloride using young adult rats.

    PubMed

    Inoue, Kenji; Ochi, Akimu; Koda, Akira; Wako, Yumi; Kawasako, Kazufumi; Doi, Takaaki

    2015-03-01

    The repeated dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect genotoxic hepatocarcinogens that can be integrated into a general toxicity study. The assay methods were thoroughly validated by 19 Japanese facilities. Methapyrilene hydrochloride (MP), known to be a non-genotoxic hepatocarcinogen, was examined in the present study. MP was dosed orally at 10, 30 and 100mg/kg/day to 6-week-old male Crl:CD (SD) rats daily for 14 days. Treatment with MP resulted in an increase in micronucleated hepatocytes (MNHEPs) with a dosage of only 100mg/kg/day. At this dose level, cytotoxicity followed by regenerative cell growth was noted in the liver. These findings suggest that MP may induce clastogenic effects indirectly on the liver or hepatotoxicity of MP followed by regeneration may cause increase in spontaneous incidence of MNHEPs.

  8. Antinociceptive Effects of Spinal Manipulative Therapy on Nociceptive Behavior of Adult Rats during the Formalin Test

    PubMed Central

    Onifer, Stephen M.; Reed, William R.; Sozio, Randall S.; Long, Cynthia R.

    2015-01-01

    Optimizing pain relief resulting from spinal manipulative therapies, including low velocity variable amplitude spinal manipulation (LVVA-SM), requires determining their mechanisms. Pain models that incorporate simulated spinal manipulative therapy treatments are needed for these studies. The antinociceptive effects of a single LVVA-SM treatment on rat nociceptive behavior during the commonly used formalin test were investigated. Dilute formalin was injected subcutaneously into a plantar hindpaw. Licking behavior was video-recorded for 5 minutes. Ten minutes of LVVA-SM at 20° flexion was administered with a custom-made device at the lumbar (L5) vertebra of isoflurane-anesthetized experimental rats (n = 12) beginning 10 minutes after formalin injection. Hindpaw licking was video-recorded for 60 minutes beginning 5 minutes after LVVA-SM. Control rats (n = 12) underwent the same methods except for LVVA-SM. The mean times spent licking the formalin-injected hindpaw of both groups 1–5 minutes after injection were not different. The mean licking time during the first 20 minutes post-LVVA-SM of experimental rats was significantly less than that of control rats (P < 0.001). The mean licking times of both groups during the second and third 20 minutes post-LVVA-SM were not different. Administration of LVVA-SM had a short-term, remote antinociceptive effect similar to clinical findings. Therefore, mechanistic investigations using this experimental approach are warranted. PMID:26693243

  9. Neonatal treatment with lipopolysaccharide differentially affects adult anxiety responses in the light-dark test and taste neophobia test in male and female rats.

    PubMed

    Tenk, Christine M; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2013-05-01

    Neonatal administration of the bacterial cell wall component, lipopolysaccharide (LPS) has been shown to alter a variety of behavioural and physiological processes in the adult rat, including altering adult anxiety-like behaviour. Research conducted to date, however, has produced conflicting findings with some results demonstrating increases in adult anxiety-like behaviour while others report decreases or no changes in anxiety-like behaviour. Thus, the current study conducted additional evaluation of the effects of neonatal LPS exposure on adult anxiety-like behaviours by comparing the behavioural outcomes in the more traditional light-dark test, together with the less common hyponeophagia to sucrose solution paradigm. Male and female Long-Evans rats were treated systemically with either LPS (50μg/kg) or saline (0.9%) on postnatal days 3 and 5. Animals were then tested in the light-dark apparatus on postnatal day 90 for 30min. Next, following 5 days of habituation to distilled water delivery in Lickometer drinking boxes, animal were tested for neophagia to a 10% sucrose solution (0.3M) for 30min daily on postnatal days 96 and 97. In the light-dark test, neonatal LPS treatment decreased adult anxiety-like behaviour in females, but not males. In contrast, neonatal exposure to LPS did not influence adult anxiety-like behaviour as measured by hyponeophagia, but altered the licking patterns of drinking displayed towards a novel, palatable sucrose solution in adult males and females, in a manner that may reflect a decrease in situational anxiety. The current study supports the idea that neonatal LPS treatment results in highly specific alterations of adult anxiety-like behaviour, the nature of which seems to depend not only on the measure of anxiety behaviour used, but also possibly, on the degree of anxiety experienced during the behavioural test.

  10. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    PubMed Central

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1. PMID:28067316

  11. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1.

  12. Social interactions in adolescent and adult Sprague-Dawley rats: impact of social deprivation and test context familiarity.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2008-04-09

    Interactions with peers become particularly important during adolescence, and age differences in social interactions have been successfully modeled in rats. To determine the impact of social deprivation on social interactions under anxiogenic (unfamiliar) or non-anxiogenic (familiar) test circumstances during ontogeny, the present study used a modified social interaction test to assess the effects of 5 days of social isolation or group housing on different components of social behavior in early [postnatal day (P) 28], mid (P35), or late (P42) adolescent and adult (P70) male and female Sprague-Dawley rats. As expected, testing in an unfamiliar environment suppressed social interactions regardless of age, housing, and sex. Social deprivation drastically enhanced all forms of social behavior in P28 animals regardless of test situation, whereas depriving older animals of social interactions had more modest effects and was restricted predominantly to play fighting -- an adolescent-characteristic form of social interactions. Social investigation -- more adult-typical form of social behavior was relatively resistant to isolation-induced enhancement and was elevated in early adolescent isolates only. These findings confirm that different forms of social behavior are differentially sensitive to social deprivation across ontogeny.

  13. The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze.

    PubMed

    Hosseini, Mahmoud; Hadjzadeh, Mosa Al-Reza; Derakhshan, Mohammad; Havakhah, Shahrzad; Rassouli, Fatemeh Behnam; Rakhshandeh, Hassan; Saffarzadeh, Fatema

    2010-03-01

    Functional consequences of hypothyroidism include impaired learning and memory and inability to produce long-term potentiation (LTP) in hippocampus. Olibanum has been used for variety of therapeutic purposes. In traditional medicine, oilbanum is used to enhance learning and memory. In the present study the effect of olibanum on memory deficit in hypothyroid rats was investigated. Male wistar rats were divided into four groups and treated for 180 days. Group 1 received tap drinking water while in group 2, 0.03% methimazol was added to drinking water. Group 3 and 4 were treated with 0.03% methimazole as well as 100 and 500 mg/kg olibanum respectively. The animals were tested in Morris water maze. The swimming speed was significantly lower and the distance and time latency were higher in group 2 compared with group 1. In groups 3 and 4 the swimming speed was significantly higher while, the length of the swim path and time latency were significantly lower in comparison with group 2. It is concluded that methimazole-induced hypothyroidism impairs learning and memory in adult rats which could be prevented by using olibanum.

  14. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-08

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  15. Effects of repeated ether stress on the hypothalamic-pituitary-testes axis in adult rats with special reference to inhibin secretion.

    PubMed

    Tohei, A; Tomabechi, T; Mamada, M; Akai, M; Watanabe, G; Taya, K

    1997-05-01

    Effects of ether stress on the hypothalamo-hypophysial-gonadal axis in adult male rats were examined. To clarify the role of adrenal glucocorticoids in gonadal function, the effects of adrenalectomy and Dexamethasone treatment were also investigated. Ether stress increased the plasma concentrations of ACTH and corticosterone, but decreased the plasma concentrations of LH, FSH, inhibin and testosterone. The pituitary responsiveness to LH-RH for LH release and testicular responsiveness to the endogenous LH for testosterone release were maintained in stressed rats. Adrenalectomy caused an increase in the plasma concentrations of ACTH, but decreased the plasma concentrations of LH, FSH and testosterone. Dexamethasone treatment in adrenalectomized rats recovered the levels of plasma gonadotropins to control levels. The concentration of plasma inhibin did not change in adrenalectomized rats, but it was decreased compared to control rats by Dexamethasone treatment. Treatments of Dexamethasone in intact male rats resulted in a decline in plasma levels of testosterone and inhibin without a decrease in the levels of LH and FSH, indicating the direct effect of Dexamethasone on the testes. These results indicate that increased ACTH secretion in stressed rats is probably due to hypersecretion of CRH from the hypothalamus, which suppresses gonadotropin secretion via the inhibition of LH-RH. The decreased levels of testosterone may be caused by a stress-induced decrease in plasma LH concentrations and increased secretion of corticosterone in the ether stressed rats. The low levels of plasma inhibin in stressed rats was also probably due to the direct effect of corticosterone on the Sertoli cells.

  16. Accumulation of dietary methylmercury in the testes of the adult brown norway rat: Impaired testicular and epididymal function

    SciTech Connect

    Friedmann, A.S.; Chen, H.; Zirkin, B.R.; Rabuck, L.D.

    1998-05-01

    The widespread consumption of fish containing elevated concentrations of methylmercury has prompted concern over the health effects of such a diet. Previous studies with rodents have indicated that exposure to dietary mercury (Hg) impairs male reproductive health. However, adverse effects were observed following doses in the range of milligrams per kilogram of body weight, whereas typical human consumption in the United States is in the range of micrograms per kilogram of body weight. This study examined the effects of dietary Hg on male rats using levels of the metal that are more similar to those typically consumed by humans. For 19 weeks, adult male Brown Norway rats were administered methylmercury twice weekly at 0.8, 8.0, or 80 {micro}g/kg. Intratesticular testosterone levels in the high-dose group were reduced by 44$, suggesting that steroidogenesis in these animals was dramatically impaired. Although sperm production was not significantly affected, numbers of sperm in the cauda epididymides of the high-dose group were reduced by 17%. Furthermore, there was a negative correlation between fertility and testicular Hg content. These results raise the possibility that exposure to Hg at levels consumed by humans may result in steroidogenic impairment, reduced sperm counts, and fertility problems.

  17. Evaluation of an Aqueous-Ethanolic Extract from Rosmarinus officinalis (Rosemary) for its Activity on the Hormonal and Cellular Function of Testes in Adult Male Rat.

    PubMed

    Heidari-Vala, Hamed; Ebrahimi Hariry, Reza; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Ghaffari Novin, Marefat; Heidari, Mahnaz

    2013-01-01

    Rosmarinus officinalis has been used in traditional medicine extensively. This study evaluated the hormonal and cellular effects of Rosmarinus officinalis extract on testes of adult rats. Thirty male Wistar rats (in three groups) received 50 or 100 mg/Kg b.w of Rosmarinus officinalis extract (made from the plant's leaves, flower and stem) (treatment groups) and 10 mL/Kg b.w normal saline (control group) respectively, on a daily bases by gavage route for 60 days. Then, spermatological properties, histometric parameters and sperm dynamics, testis and body weight, testicular cell population and serum testosterone level were analyzed by an acceptable method. Results showed that the mean serum testosterone level was decreased significantly in both treatment groups (50 and 100 mg/Kg b.w) during the experiment time, compared with control group (p < 0.05). However, Rosmarinus officinalis did not change the total count, motility and viability of sperm. In addition, Rosmarinus officinalis at both doses did not change body and testes weight and their ratio. Furthermore, Rosmarinus officinalis increased the number of Spermatogonia at both doses, Spermatocyte at doses of 50 mg/Kg b.w, Leydig cell and Spermatid at dose of 100 mg/Kg b.w significantly (p < 0.05). Rosmarinus officinalis did not significantly affect the number of Spermatozoid and Sertoli cells. In conclusion, it seems that Rosmarinus officinalis may have some hormonal and cellular effects on the testes which can contribute the spermatogenesis process in rat. Rosmarinus officinalis may have antiandrogenic effect potentially indicating the possibility of developing herbal male contraceptive.

  18. Evaluation of an Aqueous-Ethanolic Extract from Rosmarinus officinalis (Rosemary) for its Activity on the Hormonal and Cellular Function of Testes in Adult Male Rat

    PubMed Central

    Heidari-Vala, Hamed; Ebrahimi Hariry, Reza; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Ghaffari Novin, Marefat; Heidari, Mahnaz

    2013-01-01

    Rosmarinus officinalis has been used in traditional medicine extensively. This study evaluated the hormonal and cellular effects of Rosmarinus officinalis extract on testes of adult rats. Thirty male Wistar rats (in three groups) received 50 or 100 mg/Kg b.w of Rosmarinus officinalis extract (made from the plant’s leaves, flower and stem) (treatment groups) and 10 mL/Kg b.w normal saline (control group) respectively, on a daily bases by gavage route for 60 days. Then, spermatological properties, histometric parameters and sperm dynamics, testis and body weight, testicular cell population and serum testosterone level were analyzed by an acceptable method. Results showed that the mean serum testosterone level was decreased significantly in both treatment groups (50 and 100 mg/Kg b.w) during the experiment time, compared with control group (p < 0.05). However, Rosmarinus officinalis did not change the total count, motility and viability of sperm. In addition, Rosmarinus officinalis at both doses did not change body and testes weight and their ratio. Furthermore, Rosmarinus officinalis increased the number of Spermatogonia at both doses, Spermatocyte at doses of 50 mg/Kg b.w, Leydig cell and Spermatid at dose of 100 mg/Kg b.w significantly (p < 0.05). Rosmarinus officinalis did not significantly affect the number of Spermatozoid and Sertoli cells. In conclusion, it seems that Rosmarinus officinalis may have some hormonal and cellular effects on the testes which can contribute the spermatogenesis process in rat. Rosmarinus officinalis may have antiandrogenic effect potentially indicating the possibility of developing herbal male contraceptive. PMID:24250620

  19. Diabetic rat testes: morphological and functional alterations.

    PubMed

    Ricci, G; Catizone, A; Esposito, R; Pisanti, F A; Vietri, M T; Galdieri, M

    2009-12-01

    Reproductive dysfunction is a consequence of diabetes, but the underlying mechanisms are poorly understood. This study investigated the histological and molecular alterations in the testes of rats injected with streptozotocin at prepuperal (SPI rats) and adult age (SAI rats) to understand whether diabetes affects testicular tissue with different severity depending on the age in which this pathological condition starts. The testes of diabetic animals showed frequent abnormal histology, and seminiferous epithelium cytoarchitecture appeared altered as well as the occludin distribution pattern. The early occurrence of diabetes increased the percentage of animals with high number of damaged tubules. The interstitial compartment of the testes was clearly hypertrophic in several portions of the organs both in SPI and SAI rats. Interestingly, fully developed Leydig cells were present in all the treated animals although abnormally distributed. Besides the above-described damages, we found a similar decrease in plasma testosterone levels both in SPI and SAI rats. Oxidative stress (OS) is involved in the pathogenesis of various diabetic complications, and in our experimental models we found that manganese superoxide dismutase was reduced in diabetic animals. We conclude that in STZ-induced diabetes, the altered spermatogenesis, more severe in SPI animals, is possibly due to the effect of OS on Leydig cell function which could cause the testosterone decrease responsible for the alterations found in the seminiferous epithelium of diabetic animals.

  20. Ontogenetic noradrenergic lesion alters histaminergic activity in adult rats.

    PubMed

    Nowak, Przemyslaw; Jochem, Jerzy; Zwirska-Korczala, Krystyna; Josko, Jadwiga; Noras, Lukasz; Kostrzewa, Richard M; Brus, Ryszard

    2008-04-01

    To determine whether noradrenergic nerves might have a modulatory role on the sensitivity or reactivity of histaminergic receptor systems in brain, behavioral effects of the respective histamine H1, H2 and H3 antagonists S(+)chlorpheniramine, cimetidine and thioperimide in control adult rats were compared to the effects in adult rats that had been lesioned as neonates with the noradrenergic neurotoxin DSP-4. On the 1st and 3rd days after birth rat pups were treated with either saline or DSP-4 (50 mg/kg sc), then returned to their home cages with the dam. At 8 weeks when rats were tested, S(+)chlorpheniramine (10 mg/kg ip) was found to increase locomotor activity in intact and DSP-4 lesioned rats, while cimetidine (5 mg/kg, ip) and thioperimide (5 mg/kg, ip) increased activity several-fold solely in the DSP-4 group. Exploratory activity, nociceptive activity, and irritability were little altered by the histamine antagonists, although oral activity was increased by thioperimide in intact and lesioned rats, and by cimetidine or S(+)chlorpheniramine in DSP-4 rats. High performance liquid chromatography with electrochemical detection was used to determine that DSP-4 produced a 90% reduction in frontal cortex, hippocampus and hypothalamus, with a 90% elevation of NE in cerebellum--reflecting reactive sprouting of noradrenergic fibers consequent to lesion of noradrenergic tracts projecting to proximal brain regions. These findings indicate that perinatal noradrenergic fiber lesioning in rat brain is associated with an altered behavioral spectrum by histamine H1, H2 and H3 receptor antagonists, thereby implicating histaminergic systems as modulators of noradrenergic systems in brain.

  1. Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure

    PubMed Central

    Kantak, Kathleen M.; Barlow, Nicole; Tassin, David H.; Brisotti, Madeline F.; Jordan, Chloe J

    2014-01-01

    Rationale Neuropsychological testing is widespread in adult cocaine abusers, but lacking in teens. Animal models may provide insight into age-related neuropsychological consequences of cocaine exposure. Objectives Determine whether developmental plasticity protects or hinders behavioral flexibility after cocaine exposure in adolescent vs. adult rats. Methods Using a yoked-triad design, one rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling cocaine delivery (1.0 mg/kg) self-administered for 18 sessions (starting P37 or P77), followed by 18 drug-free days. Rats next were tested in a strategy set shifting task, lasting 11–13 sessions. Results Cocaine self-administration did not differ between age groups. During initial set formation, adolescent-onset groups required more trials to reach criterion and made more errors than adult-onset groups. During the set shift phase, rats with adult-onset cocaine self-administration experience had higher proportions of correct trials and fewer perseverative + regressive errors than age-matched yoked-controls or rats with adolescent-onset cocaine self-administration experience. During reversal learning, rats with adult-onset cocaine experience (self-administered or passive) required fewer trials to reach criterion and the self-administering rats made fewer perseverative + regressive errors than yoked-saline rats. Rats receiving adolescent-onset yoked-cocaine had more trial omissions and longer lever press reaction times than age-matched rats self-administering cocaine or receiving yoked-saline. Conclusions Prior cocaine self-administration may impair memory to reduce proactive interference during set shifting and reversal learning in adult-onset but not adolescent-onset rats (developmental plasticity protective). Passive cocaine may disrupt aspects of executive function in adolescent-onset but not adult-onset rats (developmental plasticity hinders). PMID:24800898

  2. Endotoxemia in newborn rats attenuates acute pancreatitis at adult age.

    PubMed

    Jaworek, J; Konturek, S J; Macko, M; Kot, M; Szklarczyk, J; Leja-Szpak, A; Nawrot-Porabka, K; Stachura, J; Tomaszewska, R; Siwicki, A; Pawlik, W W

    2007-03-01

    Bacterial endotoxin (lipopolysaccharide, LPS), at high concentration is responsible for sepsis, and neonatal mortality, however low concentration of LPS protected the pancreas against acute damage. The aim of this study was to investigate the effect of exposition of suckling rats to LPS on the course of acute pancreatitis at adult age. Suckling rat (30-40g) received intraperitoneal (i.p.) injection of saline (control) or LPS from Escherichia coli or Salmonella typhi (5, 10 or 15 mg/kg-day) during 5 consecutive days. Two months later these rats have been subjected to i.p. cearulein infusion (25 microg/kg) to produce caerulein-induced pancreatitis (CIP). The following parameters were tested: pancreatic weight and morphology, plasma amylase and lipase activities, interleukin 1beta (IL-1 beta), interleukin 6 (IL-6), and interleukin 10 (IL-10) plasma concentrations. Pancreatic concentration of superoxide dismutase (SOD) and lipid peroxidation products; malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) have been also measured. Caerulein infusion produced CIP in all animals tested, that was confirmed by histological examination. In the rats, which have been subjected in the neonatal period of life to LPS at doses 10 or 15 mg/kg-day x 5 days, all manifestations of CIP have been reduced. In these animals acute inflammatory infiltration of pancreatic tissue and pancreatic cell vacuolization have been significantly diminished. Also pancreatic weight, plasma lipase and alpha-amylase activities, as well as plasma concentrations of IL-1beta and IL-6 have been markedly decreased, whereas plasma anti-inflammatory IL-10 concentration was significantly increased in these animals as compared to the control rats, subjected in the infancy to saline injection instead of LPS. Caerulein-induced fall in pancreatic SOD concentration was reversed and accompanied by significant reduction of MDA + 4 HNE in the pancreatic tissue. The effects of LPS derived from E. coli or S. typhi were similar

  3. Contextual fear conditioning differs for infant, adolescent, and adult rats

    PubMed Central

    Esmorís-Arranz, Francisco J.; Méndez, Cástor; Spear, Norman E.

    2009-01-01

    Contextual fear conditioning was tested in infant, adolescent, and adult rats in terms of Pavlovian conditioned suppression. When a discrete auditory conditioned stimulus (CS) was paired with footshock (unconditioned stimulus, US) within the largely olfactory context, infants and adolescents conditioned to the context with substantial effectiveness but adult rats did not. When unpaired presentations of the CS and US occurred within the context, contextual fear conditioning was strong for adults, weak for infants, but about as strong for adolescents as when pairings of CS and US occurred in the context. Nonreinforced presentations of either the CS or context markedly reduced contextual fear conditioning in infants, but, in adolescents, CS extinction had no effect on contextual fear conditioning, although context extinction significantly reduced it. Neither CS extinction nor context extinction affected responding to the CS-context compound in infants, suggesting striking discrimination between the compound and its components. Female adolescents showed the same lack of effect of component extinction on response to the compound as infants, but CS extinction reduced responding to the compound in adolescent males, a sex difference seen also in adults. Theoretical implications are discussed for the development of perceptual-cognitive processing and hippocampus role. PMID:18343048

  4. Interactions between respiratory oscillators in adult rats

    PubMed Central

    Huckstepp, Robert TR; Henderson, Lauren E; Cardoza, Kathryn P; Feldman, Jack L

    2016-01-01

    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators. DOI: http://dx.doi.org/10.7554/eLife.14203.001 PMID:27300271

  5. Acute toxicity of pesticides in adult and weanling rats.

    PubMed

    Gaines, T B; Linder, R E

    1986-08-01

    LD50 values were determined for 57 pesticides administered by the oral or dermal route to adult male and female Sherman rats. Thirty-six of the chemicals were also tested by the oral route in one sex of weanlings. Nine pesticides tested by the oral route (bufencarb, cacodylic acid, dialifor, deltamethrin, dicamba, diquat, quintozene, phoxim, pyrazon) and four tested by the dermal route (bufencarb, chlordimeform, dichlofenthion, leptophos) were more toxic to females than to males whereas famphur and 2,4,5-T (oral route) were less toxic to females. Eighteen of the test chemicals were more toxic to the adult than to the weanling and four compounds (leptophos, methidathion, pyrazon, and sulfoxide) were more toxic to the weanling. In additional studies the variability of the LD50 value over a 1-year period was examined for two typical insecticides. Six consecutive bimonthly oral LD50 determinations for parathion and DDT in adults of both sexes indicated that the LD50 values were little affected by the time of year that the tests were done.

  6. Hydrocephalus induced via intraventricular kaolin injection in adult rats.

    PubMed

    Shaolin, Z; Zhanxiang, W; Hao, X; Feifei, Z; Caiquan, H; Donghan, C; Jianfeng, B; Feng, L; Shanghang, S

    2015-01-01

    Hydrocephalus is a common neurological disease in humans, but a uniform and particularly effective hydrocephalic animal model amenable to proper appraisal and deep study has not yet been established. In this study, we attempted to construct a high-efficiency model of hydrocephalus via intraventricular kaolin injection. Adult male Sprague-Dawley rats were randomly divided into 2 groups: the control group (n = 15) and the experimental group (n = 30). Kaolin was injected into the lateral ventricle of experimental animals. Control rats underwent the same procedure but received sterile saline injection instead of kaolin. All animals with kaolin injection into the lateral ventricle developed hydrocephalus according to magnetic resonance imaging (MRI) results (success rate up to 100%). Also, the Morris water maze (MWM) test demonstrated disturbed spatial learning and memory. Furthermore, there were significant differences between groups with respect to the histological changes in the periventricular tissue. Our results indicate that experimental hydrocephalus induced by lateral ventricle injection of kaolin in adult rats is feasible and may be widely used.

  7. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  8. Helping Adult Students with Test Anxiety. Techniques.

    ERIC Educational Resources Information Center

    Gadell, Michael

    1989-01-01

    Suggestions are made regarding ways teachers can help adult learners reduce their test anxiety. These general comments apply to content-oriented courses and may have some general applicability to all testing situations. The suggestions include clearly characterizing the test prior to its administration, planning for last-minute questions on test…

  9. The effects of acute alcohol on motor impairments in adolescent, adult, and aged rats.

    PubMed

    Ornelas, Laura C; Novier, Adelle; Van Skike, Candice E; Diaz-Granados, Jaime L; Matthews, Douglas B

    2015-03-01

    Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a

  10. Birth insult alters ethanol preference in the adult rat.

    PubMed

    Boksa, P

    1998-05-08

    While genetic factors clearly play a role in regulating ethanol intake, the present study considered the possibility that early environmental factors which influence central nervous system development and long-term function might also alter ethanol intake. The specific aim of the study was to test whether alterations in birth condition, namely Caesarean section (C-section) birth and C-section birth with an added period of global anoxia, can affect subsequent ethanol preference in the adult rat. At 5 months of age, groups of experimental and vaginally born control rats were offered free choice between drinking water or various concentrations of ethanol (1-10% v/v) in water across 36 days of testing. Rats that had been born by C-section with 10 or 15 min of added global anoxia showed significant reductions in ethanol preference scores, in comparison to vaginally born controls. For the 10-min anoxia group, ethanol intake was decreased, water intake was increased and total fluid intake remained unchanged relative to values for vaginally born controls, across the entire test period. Although total fluid intake by the 15-min anoxia group also did not differ from that of vaginally born controls, the decreased ethanol preference scores in the 15-min anoxia group were mainly due to increased water intake during some test periods and a combination of reduced ethanol intake and increased water intake during others. Animals born by rapid C-section alone, with no added period of global anoxia, showed reduced ethanol preference only during a few early periods of testing, a much less pronounced effect than that observed for animals with added global anoxia. When animals were given the choice between drinking water vs. solutions of sucrose or NaCl, no group differences due to birth condition were found on measures of sucrose or NaCl preference. Together with reduced ethanol preference, the 10-min anoxia group showed a transient depression of locomotor activity in response to a low

  11. Juvenile but not adult methamphetamine exposure improves performance in the Morris Water Maze in male rats.

    PubMed

    Moenk, Michael D; Matuszewich, Leslie

    2012-06-01

    Early exposure to psychostimulants has been found to lead to long-lasting effects on cognitive processes. Our lab has previously reported that juvenile male rats administered methamphetamine showed improved performance in a spatial navigation task when tested in adulthood (McFadden and Matuszewich, 2007). What is not known, however, is if these effects are specific to the developing rat, or if a similar methamphetamine protocol given to adult rats would lead to an equally beneficial long-term change in spatial cognition. In the current study, male rats were given 1 daily injection of 2mg/kg methamphetamine or saline for 15 days during either preadolescence (PD20-34) or adulthood (PD70-84). Approximately 45 days after treatment, all rats then underwent 5 days of place training in the Morris water maze at a time when juvenile rats reached adulthood. Similar to previous findings, juvenile rats exposed to repeated methamphetamine displayed shorter latencies and distances to reach the platform throughout training compared to saline-treated rats. The juvenile rats treated with methamphetamine also swam shorter distances and had faster latencies to the hidden platform compared to adult methamphetamine-treated rats. There were no significant differences in rats treated in adulthood with methamphetamine compared to saline-treated rats. Likewise, there were no effects of prior methamphetamine treatment or age on matching-to-place trials or visible platform trials. Overall, the results show that repeated methamphetamine exposure can selectively improve spatial learning in adult male rats when administered during preadolescence, but does not significantly affect spatial learning when administered in adulthood. Furthermore, the current findings demonstrate the unique susceptibility of the developing brain to drugs that modulate dopaminergic activity, as well as the long-term behavioral impact of exposure at critical ages.

  12. Amodiaquine-induced reproductive toxicity in adult male rats.

    PubMed

    Niu, Yan-Ru; Wei, Bing; Chen, Bi; Xu, Li-Hua; Jing, Xia; Peng, Cai-Ling; Ma, Tian-Zhong

    2016-02-01

    Amodiaquine (AQ) is routinely prescribed as an anti-malarial drug. Here, we evaluated AQ-induced toxicity in the male reproductive system. Eighty adult male Sprague-Dawley rats were randomly divided into four groups that received distilled water (control) or daily doses of 5 mg/kg body weight, 10 mg/kg, or 15 mg/kg AQ for 2 weeks. Testes morphology was analyzed using hematoxylin-and-eosin staining, terminal dUTP nicked-end labeling (TUNEL), and immunostaining whereas protein expression was determined by Western blotting. AQ dose-dependently led to abnormal spermatogenesis. Disruption of the blood-testis barrier and increased germ cell apoptosis were observed in all three AQ-treated groups. Interestingly, AQ-induced damage of spermatogenesis recovered over time, based on the survival of promyelocytic leukemia zinc-finger (PLZF)-positive, undifferentiated spermatogonia. Serum levels of luteinizing hormone and testosterone, as well as testicular testosterone levels, were not significantly altered in AQ-treated groups compared with controls. Collectively, our study suggests that AQ exerts substantial acute side effects on the reproductive systems of adult male rats by inducing the apoptosis of differentiating spermatogenic cells and disruption of blood-testis barrier function.

  13. Differential effects of delta9-THC on learning in adolescent and adult rats.

    PubMed

    Cha, Young May; White, Aaron M; Kuhn, Cynthia M; Wilson, Wilkie A; Swartzwelder, H S

    2006-03-01

    Marijuana use remains strikingly high among young users in the U.S., and yet few studies have assessed the effects of delta9-tetrahydrocannabinol (THC) in adolescents compared to adults. This study measured the effects of THC on male adolescent and adult rats in the Morris water maze. In Experiment 1, adolescent (PD=30-32) and adult (PD=65-70) rats were treated acutely with 5.0 mg/kg THC or vehicle while trained on the spatial version of the water maze on five consecutive days. In Experiment 2, adolescent and adult rats were treated acutely with 2.5 or 10.0 mg/kg THC or vehicle while trained on either the spatial and non-spatial versions of the water maze. In Experiment 3, adolescent and adult rats were treated with 5.0 mg/kg THC or vehicle daily for 21 days, and were trained on the spatial and then the non-spatial versions of the water maze task four weeks later in the absence of THC. THC impaired both spatial and nonspatial learning more in adolescents than in adults at all doses tested. However, there were no long-lasting significant effects on either spatial or non-spatial learning in rats that had been previously exposed to THC for 21 days. This developmental sensitivity is analogous to the effects of ethanol, another commonly used recreational drug.

  14. Testing Solutions for Adult Film Performers.

    PubMed

    Bergman, Zachary R

    2014-01-01

    The majority of the nation's adult films are produced in California, and within California, most production occurs in Los Angeles. In order to regulate that content, the County of Los Angeles passed the Safer Sex in the Adult Film Industry Act (Measure B) by way of referendum in November 2012. Measure B requires that adult film producers wishing to film in Los Angeles County obtain permits from the Los Angeles County Department of Public Health, and it also mandates that adult film performers use condoms while filming and "engaging in anal or vaginal sexual intercourse." Nevertheless, between August 2013 and January 2014, several adult film performers in California tested positive for HIV, and the threat of infection remains. Although Measure B is not the best way forward for Los Angeles County, elements of the ordinance should be incorporated into future legislative efforts. Given the economic ramifications of industry flight due to more localized regulations, this Note concludes that California should pass statewide comprehensive reform. Any such new legislation must treat "independent contractors," the classification generally used for adult film performs, as if they were regular employees. Legislation should also couple mandatory testing mechanisms with provisions granting performers the right to choose whether they use condoms. Finally, legislation must include mechanisms that ensure performers' preferences are not improperly tainted by outside forces and pressures. While there will always be risks associated with the production of adult content, if undertaken, these reforms could significantly mitigate those hazards.

  15. Autonomic activation associated with ethanol self-administration in adult female P rats.

    PubMed

    Bell, Richard L; Rodd, Zachary A; Toalston, Jamie E; McKinzie, David L; Lumeng, Lawrence; Li, Ting-Kai; McBride, William J; Murphy, James M

    2008-12-01

    The present study examined changes in heart rate (HR) prior to and during limited access ethanol drinking in adult female P rats. P rats were implanted with radio-telemetric transmitters to measure HR. Daily testing involved a 90-min pre-test period (water only available) and a subsequent 90-min test period [either water (W) or ethanol available]. After a week of habituation, one ethanol group had access to ethanol for 7 weeks (CE), and another ethanol group had access for 4 weeks, was deprived for 2 weeks and then had access for a final week (DEP). Analyses of HR revealed that CE and DEP rats had significantly higher HR than W rats during test periods that ethanol was present and that DEP rats displayed higher HR during the early test period of the ethanol deprivation interval, as well. These data indicate that ethanol drinking induces HR activation in adult female P rats, and that this activation can be conditioned to the test cage environment, paralleling reports on contextual conditioning and cue-reactivity in alcoholics exposed to alcohol-associated stimuli. Therefore, this behavioral test may prove advantageous in screening pharmacotherapies for reducing craving and relapse, which are associated with cue-reactivity in abstinent alcoholics.

  16. Morphine treatment during juvenile isolation increases social activity and opioid peptides release in the adult rat.

    PubMed

    Van den Berg, C L; Kitchen, I; Gerrits, M A; Spruijt, B M; Van Ree, J M

    1999-05-29

    The consequences of juvenile isolation and morphine treatment on general activity, social activity and endogenous opioid release during a social interaction test were investigated in the adult rat. Rats were either isolated or socially housed during weeks 4 and 5 of age and treated daily during this isolation period subcutaneously with either saline or morphine. Directly after a social interaction test at 10 weeks of age, rats were injected with [3H]-diprenorphine and subsequently prepared for in vivo autoradiography. The autoradiographic technique was used to visualise neuroanatomical changes in opioid receptor occupancy, probably reflecting changes in opioid peptide release, as a result of social activity. Juvenile isolation increased general activity during the social interaction test, an effect which was accompanied by a reduction of opioid receptor occupancy in many brain areas, suggesting an increased opioid peptide release as a consequence of socially-induced general activity. Morphine treatment in isolated rats caused an increase in adult social activity and enhanced opioid peptide release in some cortical regions and the ventral tegmental area as compared to saline treated rats. Both social activity and opioid receptor occupancy were unaffected by morphine treatment in non-isolated rats. The present study underscores the role of opioid systems in adult social behaviors as a consequence of juvenile isolation. The results suggest a relationship between social activity and opioid peptide release during social contact. Increased social activity seems to be accompanied by elevated opioid peptide release in distinct brain areas after morphine treatment during juvenile isolation.

  17. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis123

    PubMed Central

    Grigereit, Laura; Pickel, James

    2016-01-01

    Abstract The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis. PMID:27257630

  18. Ethanol facilitation of short-term memory in adult rats with a disturbed circadian cycle.

    PubMed

    Mikolajczak, P; Okulicz-Kozaryn, I; Nowaczyk, M; Kaminska, E

    2001-01-01

    The aim of this study was to evaluate the effect of 3-month ethanol treatment on olfactory social memory test performance using two inter-exposure intervals [30 min: short-term recognition (STR); or 120 min: long-term recognition (LTR)] in adult rats with a disturbed circadian cycle (DCC). Ethanol treatment both in ethanol-preferring and -non-preferring groups improved the STR task compared to control rats. However, LTR procedure triggered the opposite tendency. Moreover, no differences between control rats with DCC and those with normal diurnal rhythm in STR and LTR paradigms were observed. Our results suggest that, under some conditions, alcohol facilitates short-term memory in adult rats.

  19. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.

    PubMed

    Fialová, Markéta; Šírová, Jana; Bubeníková-Valešová, Věra; Šlamberová, Romana

    2015-01-01

    The use of methamphetamine (MA) among pregnant women is an increasing world-wide health problem. Prenatal MA exposure may cause changes in foetus but the exact effects have remained unclear. The aim of this study is to present the effect of prenatal MA exposure on recognition memory in adult rats. Adult female Wistar rats were injected daily with D-methamphetamine HCl (MA; 5 mg/kg, s.c.) during the entire gestation period. Control females were treated with saline in the same regime. Adult male offspring was administrated acutely by MA (1 mg/kg i.p.) or saline 30 minutes before beginning of an experiment. For testing recognition memory two tasks were chosen: Novel Object Recognition Test (NORT) and Object Location Test (OLT). Our results demonstrate that prenatally MA-exposed animals were worse in NORT independently on an acute administration of MA in adulthood. Prenatally MA-exposed rats did not deteriorate in OLT, but after acute administration of MA in adulthood, there was significant worsening compared to appropriate control. Prenatally saline-exposed offspring did not deteriorate in any test even after acute administration of MA. Our data suggest that prenatal MA exposure in rats cause impairment in recognition memory in adult offspring, but not in spatial memory. In addition, acute administration of MA to controls did not deteriorate either recognition or spatial memory.

  20. Behavioral changes in preweaning and adult rats exposed prenatally to low ionizing radiation

    SciTech Connect

    Norton, S.

    1986-04-01

    Seven behavioral tests were used to evaluate the postnatal behavior of rats after exposure on gestational Day 15 to 0, 25, 50, 75, or 125 r, whole body irradiation of the pregnant rat. Three tests were administered in the first 2 postnatal weeks (righting reflex, negative geotaxis, and reflex suspension); three tests were administered on postnatal Day 21 (modified open field, spatial maze, and continuous corridor). As adults, the rats were retested with the same tests as at 21 days and also in the running wheel. Dose-response decreases in body weight were greater in the younger rats. Some behavioral tests were not altered by irradiation, while others showed clear dose-response relationships, starting as low as 25 r. The early changes were characterized by light body weight, delays in behavioral development and hypoactivity, followed by recovery of some parameters with maturation. Eventually hyperactivity developed in adult rats after gestational irradiation. However, it cannot be concluded that either morphological or behavioral tests are more sensitive than neonatal body weight change for detection of damage from gestational irradiation.

  1. Early treatment with metformin induces resistance against tumor growth in adult rats.

    PubMed

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.

  2. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  3. Hypertension after bilateral kidney irradiation in young and adult rats

    SciTech Connect

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-09-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.

  4. Maternal exposure to isobutyl-paraben impairs social recognition in adult female rats.

    PubMed

    Kawaguchi, Maiko; Morohoshi, Kaori; Imai, Hideki; Morita, Masatoshi; Kato, Nobumasa; Himi, Toshiyuki

    2010-01-01

    Isobutyl-paraben (IBP), a widely used preservative, exhibits estrogenic activity. We analyzed the effects of exposure to IBP during gestation and lactation via dam on social recognition behavior in ovariectomized offspring of Sprague-Dawley rats. Offspring were ovariectomized at 7 weeks of age, and were used in a social recognition test at 16 weeks of age. Each offspring was exposed to a novel ovariectomized rat four times and to a second novel rat in a fifth exposure. We counted the investigations by offspring of intruder rats. The IBP-exposed rats showed impaired social behavior compared with controls. These data imply that early exposure to IBP may have an effect on adult social behavior, which is reported to be an autism spectrum disorders in humans.

  5. Toluene effects on the motor activity of adolescent, young-adult, middle-age and senescent male Brown Norway rats.

    PubMed

    MacPhail, R C; Farmer, J D; Jarema, K A

    2012-01-01

    Life stage is an important risk factor for toxicity. Children and aging adults, for example, are more susceptible to certain chemicals than are young adults. In comparison to children, relatively little is known about susceptibility in older adults. Additionally, few studies have compared toxicant susceptibility across a broad range of life stages. Results are presented for behavioral evaluations of male Brown Norway rats obtained as adolescents (1 month), or young (4 months), middle-age (12 months) and senescent (24 months) adults. Motor activity was evaluated in photocell devices during 30-min sessions. Age-related baseline characteristics and sensitivity to toluene (0, 300, 650, or 1000mg/kg, p.o.) were determined. In Experiment 1, young-adult, middle-age and senescent rats were treated with corn-oil vehicle before five weekly test sessions. Baselines of horizontal and vertical activity decreased with age, but each age-group's averages remained stable across weeks of testing. Baseline activity of older rats was more variable than that of the young adults; older rats were also more variable individually from week to week. Toluene (1000mg/kg) increased horizontal activity proportionately more in senescent rats (ca. 300% of control) than in middle-age or young-adult rats (ca.145-175% of control). Experiment 2 established toluene dose-effect functions in individual adolescent, young-adult, middle-age and senescent rats; each rat received all treatments, counterbalanced across four weekly sessions. Toluene produced dose-related increases in horizontal activity that increased proportionately with age. Experiment 3 replicated the effects of toluene (1000mg/kg) in Experiment 1, showing that toluene-induced increases in horizontal activity were greatest in the oldest rats. Collectively, the results show that aging increased susceptibility to toluene and also increased variability in toluene response. Given the rapid growth of the aged population, further research is

  6. Ultrasonic Vocalizations by Adult Rats (Rattus norvegicus)

    DTIC Science & Technology

    1991-12-01

    during aggression in rats and some other myomorph species (e.g., Acomys cahirinus, Apcdemus sylvati- cus). Other species (e.g., MusM muau_...which occur when the young are handled. The author reports that, unlike rats, other rodent species (e.g., lab mice, Acomys cahirinus, Clethrionomys gajj... Acomys was removed from the mother’s cage, and during exploratory behavior in Apodemus gyiL vaticus. i1 Sewell, G.D. Ultrasonic signals from rodents

  7. Methylphenidate treatment increases Na(+), K (+)-ATPase activity in the cerebrum of young and adult rats.

    PubMed

    Scherer, Emilene B S; Matté, Cristiane; Ferreira, Andréa G K; Gomes, Karin M; Comim, Clarissa M; Mattos, Cristiane; Quevedo, João; Streck, Emilio L; Wyse, Angela T S

    2009-12-01

    Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na(+), K(+)-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na(+), K(+)-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na(+), K(+)-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na(+), K(+)-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na(+), K(+)-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na(+), K(+)-ATPase activity may be associated with neuronal excitability caused by methylphenidate.

  8. Potassium currents in adult rat intracardiac neurones.

    PubMed Central

    Xi-Moy, S X; Dun, N J

    1995-01-01

    1. Properties of K+ currents were studied in isolated adult rat parasympathetic intracardiac neurones with the use of single-electrode voltage-clamp techniques. 2. A hyperpolarization-activated inward rectifier current was revealed when the membrane was clamped close to the resting level (-60 mV). The slowly developing inward relaxation had a mean amplitude of 450 pA at -150 mV, an activation threshold of -60 to -70 mV and a relaxation time constant of 41 ms at -120 mV. The current was reversibly blocked by Cs+ (1 mM) and became smaller with reduced [K+]o and [Na+]o, indicating that this inward rectifier current probably is a time- and voltage-dependent Na(+)-K+ current. 3. Step depolarizations from the holding potential of -80 mV evoked a transient (< 100 ms at -40 mV) outward K+ current (IA) which was blocked by 4-aminopyridine (4-AP, 1 mM). The time constants for IA inactivation were 20 ms at -50 mV and 16 ms at -20 mV. The steady-state activation and (removal of) inactivation curve showed a small overlap between -70 and -40 mV; the reversal potential of IA was close to EK. 4. Step hyperpolarizations from the depolarized potentials, i.e. -30 mV, revealed a slow inward relaxation associated with the deactivation of a time- and voltage-dependent current. The inward relaxation became faster at more hyperpolarized potentials and reversed at -85 and -53 mV in 4.7 and 15 mM [K+]o. This current was blocked by muscarine (20 microM) and Ba2+ (1 mM) but not affected by Cs+ (1 mM); this current may correspond to the M-current (IM). 5. Depolarization-activated outward K+ currents were evoked by holding the membrane close to the resting potential in the presence of tetrodotoxin (TTX, 3 microM), 4-AP (1 mM) and Ba2+ (1 mM). The amplitude of the outward relaxation and the tail current became smaller as the [K+]o was elevated. The outward tail current was reduced in a Ca(2+)-free solution and the residual current was eliminated by the addition of tetraethylammonium (TEA, 10 m

  9. Effect of amphetamine on adult male and female rats prenatally exposed to methamphetamine.

    PubMed

    Šlamberová, Romana; Macúchová, Eva; Nohejlová, Kateryna; Štofková, Andrea; Jurčovičová, Jana

    2014-01-01

    The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA) exposure to adult amphetamine (AMP) treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg) or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed) were administered with AMP (5 mg/kg) or saline (1 ml/kg) in adulthood. Behaviour in unknown environment was examined in open field test (Laboras), active drug-seeking behaviour in conditioned place preference test (CPP), spatial memory in the Morris water maze (MWM), and levels of corticosterone (CORT) were analyzed by enzyme immunoassay (EIA). Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled) regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing) only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.

  10. The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats

    PubMed Central

    Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam

    2016-01-01

    Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419

  11. Intermittent access to beer promotes binge-like drinking in adolescent but not adult Wistar rats.

    PubMed

    Hargreaves, Garth A; Monds, Lauren; Gunasekaran, Nathan; Dawson, Bronwyn; McGregor, Iain S

    2009-06-01

    Teenagers are more likely than adults to engage in binge drinking and could be more vulnerable to long-term brain changes following alcohol abuse. We investigated the possibility of excessive adolescent drinking in a rodent model in which beer (4.44% ethanol vol/vol) is presented to adult and adolescent male Wistar rats. Experiment 1 tracked ad libitum beer and water consumption in group-housed rats from postnatal day (PND) 28-96. Rats consumed an average of 7.8 g/kg/day of ethanol during adolescence (PND 34-55) and this gradually declined to a lower level of intake in adulthood (PND 56-93) of 3.9 g/kg/day. In Experiment 2, beer was made available to both adolescent (PND 29+) and adult (PND 57+) rats for 2h each day in a custom-built "lickometer" apparatus over 75 days. Access to beer was provided either 1 day out of every 3 ("intermittent" groups) or every day ("daily" groups). Relative to body weight, adolescent rats consumed more beer than adult rats in these limited access sessions. Adolescents with intermittent access consumed more than adolescents with daily access, a "binge"-like effect that was not observed in adult groups and that disappeared in adulthood. After 3 months of daily or intermittent alcohol consumption, the preference for beer versus sucrose was assessed. Rats previously kept under an intermittent schedule displayed a higher preference for beer relative to 3% sucrose, but only when testing occurred after 2 days of abstinence. In Experiment 3, adolescent (PND 30-37) and adult (PND 58-65) rats were given 20-min access to beer and their blood alcohol concentrations (BACs) were assessed. Adolescent groups consumed more alcohol than adults and showed higher BACS that were typical of human "binge" drinking (>80 mg/dL). Despite this, the correlation between BAC and beer intake was similar in both age groups. Together these results show that the intermittent presentation of alcohol itself appears to have subtle long-lasting effects on the motivation

  12. Adrenal and gonadal function in hypothyroid adult male rats.

    PubMed

    Tohei, A; Akai, M; Tomabechi, T; Mamada, M; Taya, K

    1997-01-01

    The functional relationship between thyroid, adrenal and gonadal hormones was investigated using adult male rats. Hypothyroidism was produced by the administration of 4-methyl-2-thiouracil (thiouracil) in the drinking water for 2 weeks. Plasma concentrations of TSH dramatically increased, whereas plasma concentrations of tri-iodothyronine and thyroxine decreased in thiouraciltreated rats as compared with euthyroid rats. Hypothyroidism increased basal levels of plasma ACTH and pituitary content of ACTH. The pituitary responsiveness to CRH for ACTH release markedly increased, whereas the adrenal responsiveness to ACTH for corticosterone release decreased. These results indicated that hypothyroidism causes adrenal dysfunction in adult male rats. Pituitary contents of LH and prolactin decreased in hypothyroid rats as compared with euthyroid rats. In addition, hypothyroidism lowered pituitary LH responsiveness to LHRH. Testicular responsiveness to human chorionic gonadotrophin for testosterone release, however, was not different between euthyroid and hypothyroid animals. These results indicated that hypothyroidism causes adrenal dysfunction and results in hypersecretion of ACTH from the pituitary gland. Adrenal dysfunction may contribute to the inhibition of LHRH secretion from the hypothalamus, possibly mediated by excess CRH.

  13. Rapid neurobehavioral analysis of Pfiesteria piscicida effects in juvenile and adult rats.

    PubMed

    Levin, E D; Rezvani, A H; Christopher, N C; Glasgow, H B; Deamer-Melia, N J; Burkholder, J M; Moser, V C; Jensen, K

    2000-01-01

    The estuarine dinoflagellate Pfiesteria piscicida is known to kill fish and has been associated with neurocognitive deficits in humans. We have developed a rat model to demonstrate that exposure to Pfiesteria causes significant learning impairments. This has been repeatedly seen as a choice accuracy impairment during radial-arm maze learning. Pfiesteria-induced effects were also seen in a locomotor activity test in the figure-8 apparatus. The current studies used the short-term radial-arm maze acquisition, the figure-8 activity test, and the functional observational battery (FOB) to assess Pfiesteria-induced neurobehavioral effects in adult and juvenile rats. In study 1, the neurobehavioral potency of three different Pfiesteria cultures (Pf 113, Pf 728, and Pf Vandermere) was assessed. Ninety-six (12 per group) adult female Sprague-Dawley rats were injected subcutaneously with a single dose of Pfiesteria taken from aquarium-cultured Pfiesteria (35,600 or 106,800 Pfiesteria cells per kilogram of rat body weight). One control group (N = 12) was injected with saline and one (N = 12) with aquarium water not containing Pfiesteria. All three of the Pfiesteria samples (p < 0.05) impaired choice accuracy over the first six sessions of training. At the time of the radial-arm maze choice accuracy impairment, no overt Pfiesteria-related effects were seen using an FOB, indicating that the Pfiesteria-induced choice accuracy deficit was not due to generalized debilitation. In the figure-8 apparatus, Pfiesteria treatment caused a significant decrease in mean locomotor activity. In study 2, the neurobehavioral effects of the Pf 728 sample type were assessed in juvenile rats. Twenty-four day-old male and female rats were injected with 35,600 or 106,800 Pf-728 Pfiesteria cells per kilogram of rat body weight. As with adult females, the juvenile rats showed a significant impairment in radial-arm maze choice accuracy. No changes in locomotor activity or the FOB were detected in the

  14. Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine.

    PubMed

    Macúchová, E; Nohejlová, K; Slamberová, R

    2014-08-15

    Psychostimulants have been shown to affect brain regions involved in the process of learning and memory consolidation. It has been shown that females are more sensitive to the effects of drugs than males. The aim of our study was to investigate how prenatal methamphetamine (MA) exposure and application of amphetamine (AMP) in adulthood would affect spatial learning of adult female and male rats. Mothers of the tested offspring were exposed to injections of MA (5mg/kg) or saline (SA) throughout the entire gestation period. Cognitive functions of adult rats were evaluated in the Morris Water Maze (MWM) tests. Adult offspring were injected daily with AMP (5mg/kg) or SA through the period of MWM testing. Our data from the MWM tests demonstrates the following. Prenatal MA exposure did not change the learning ability of adult male and female rats. However, AMP administration to adult animals affected cognitive function in terms of exacerbation of spatial learning (increasing the latency to reach the hidden platform, the distance traveled and the search error) only in female subjects. There were sex differences in the speed of swimming. Prenatal MA exposure and adult AMP treatment increased the speed of swimming in female groups greater than in males. Overall, the male subjects showed a better learning ability than females. Thus, our results indicate that the adult AMP treatment affects the cognitive function and behavior of rats in a sex-specific manner, regardless of prenatal exposure.

  15. Different adaptation of the motor activity rhythm to chronic phase shifts between adolescent and adult rats.

    PubMed

    Albert, Nerea; da Silva, Crhistiane; Díez-Noguera, Antoni; Cambras, Trinitat

    2013-09-01

    Chronic phase shifts is a common feature in modern societies, which may induce sleep alterations and other health problems. The effects of phase shift on the circadian rhythms have been described to be more pronounced in old than in young animals. However, few works address the effects of chronic phase shifts during adolescence. Here we tested the development of the motor activity circadian rhythm of young rats under chronic phase shifts, which consisted on 6-h advances (A), 6h delays (D) or 6h advances and delays alternated every 5 days (AD) during the first 60 days after weaning. Moreover, the rhythmic pattern was compared to that of adult rats under the same lighting conditions. Results indicate that adolescent rats, independently on the lighting environment, developed a clear circadian rhythm, whose amplitude increased the first 50 days after weaning and showed a more stable circadian rhythm than adults under the same lighting conditions. In the case of A and AD groups, circadian disruption was observed only in adult rats. In all groups, the offset of activity correlated with light pattern better than the onset, and this correlation was always higher in the case of the rhythm of the pubertal rats. When AD groups were transferred to constant darkness, the group submitted to this condition during adolescence showed shorter period than that submitted in their adulthood. In conclusion, differently from adult rats, adolescent rats submitted to chronic phase shifts did not show circadian disruption and developed a single circadian rhythm, suggesting permanent changes in the circadian system.

  16. Adult emotionality and neural plasticity as a function of adolescent nutrient supplementation in male rats

    PubMed Central

    McCall, Nora; Mahadevia, Darshini; Corriveau, Jennifer A.; Glenn, Melissa

    2016-01-01

    The present study explored the effects of supplementing male rats with either choline, omega-3 fatty acids, or phytoestrogens, from weaning into early adulthood, on emotionality and hippocampal plasticity. Because of the neuroprotective properties of these nutrients, we hypothesized that they would positively affect both behavior and hippocampal function when compared to non-supplemented control rats. To test this hypothesis, male Sprague Dawley rats were assigned to one of four nutrient conditions after weaning: 1) control (normal rat chow); 2) choline (supplemented in drinking water); 3) omega 3 fatty acids (daily oral supplements); or 4) phytoestrogens (supplemented in chow). After 4 weeks on their respective diets, a subset of rats began 3 weeks of behavioral testing, while the remaining behaviorally naïve rats were sacrificed after 6 weeks on the diets to assess numbers of adult-born hippocampal neurons using the immature neuron marker, doublecortin. The results revealed that choline supplementation affected emotional functioning; compared to rats in other diet conditions, rats in this group were less anxious in an open field and after exposure to predator odor and showed less behavioral despair after forced swimming. Similar behavioral findings were evident following supplementation with omega-3 fatty acids and phytoestrogens supplementation, though not on all tests and not to the same magnitude. Histological findings followed a pattern consistent with the behavioral findings: choline supplementation, followed by omega-3 fatty acid supplementation, but not phytoestrogen supplementation, significantly increased the numbers of new-born hippocampal neurons. Choline and omega −3 fatty acids have similar biological functions—affecting cell membranes, growth factor levels, and epigenetically altering gene transcription. Thus, the present findings suggest that targeting nutrients with these effects may be a viable strategy to combat adult psychopathologies

  17. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats.

    PubMed

    Glenn, Melissa J; Adams, Raven S; McClurg, Lauren

    2012-03-14

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression.

  18. Muscle mechanical properties of adult and older rats submitted to exercise after immobilization

    PubMed Central

    Kodama, Fábio Yoshikazu; Camargo, Regina Celi Trindade; Job, Aldo Eloizo; Ozaki, Guilherme Akio Tamura; Koike, Tatiana Emy; Camargo Filho, José Carlos Silva

    2012-01-01

    Objectives To describe the effects of immobilization, free remobilization and remobilization by physical exercise about mechanical properties of skeletal muscle of rats of two age groups. Methods 56 Wistar rats divided into two groups according to age, an adult group (five months) and an older group (15 months). These groups were subdivided in: control, immobilized, free remobilized and remobilized by physical exercise. The pelvic limb of rats was immobilized for seven days. The exercise protocol consisted of five swimming sessions, once per day and 25 minutes per session. The gastrocnemius muscle was subjected to tensile tests, and evaluated the properties: load at the maximum limit, stretching at the maximum limit and stiffness. Results The immobilization reduced the values of load at the maximum limit and the remobilization protocols were not sufficient to restore control levels in adult group and older rats. The stretching at the maximum limit differs only in the older group. Conclusions The immobilization reduces the muscle's ability to bear loads and exercise protocol tends to restore the default at control values in adult and older rats. The age factor only interfered in the stretching at the maximum limit, inducing a reduction of this property in the post-immobilization. Level of Evidence II, Investigating the Results of Treatment. PMID:24453606

  19. Ethanol induces second-order aversive conditioning in adolescent and adult rats

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2011-01-01

    Alcohol abuse and dependence is considered a developmental disorder with etiological onset during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, i.g.) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescent and adults, respectively) using SOC. These doses were derived from Experiment 1, which found similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults, for females and males, and after one, two, or three training trials. One finding, however, suggested that adolescents were less sensitive than adults to ethanol’s aversive effects at the intermediate level of training. In conjunction with previous results, the present study showed that in adolescent rats subjected to SOC, ethanol’s hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the post-ingestive effects of high-dose ethanol as similarly aversive when assessed by SOC. PMID:21187242

  20. [In vitro organotypic cultivation of adult newt and rat retinas].

    PubMed

    Novikova, Iu P; Aleĭnikova, K S; Krasnov, M S; Poplinskaia, V A; Grigorian, E N

    2010-01-01

    Adult rat and newt retinas were studied during long organotypic 3D cultivation. A high proliferation level was discovered in the region of growth by applying DNA synthesis markers and in vitro mitosis registration in newt retina. Aggregates were formed in the retina spheroid cavity because dedifferentiated cells migrated into this region. Small cell populations in nuclear layers also had dividing and migration capacity. Rosette formation has been shown in newt retina. It is a characteristic of fetal retinal development under pathological conditions. The antiG FAP antibody dye demonstrated an increase in the parent M@uller cell population and generation of a small cell pool with short GFAP-extensions de novo. Recoverin expression studies detected its translocation from photoreceptor extensions to the cell bodies. Moreover, protein was presented in some cells inside the spheroid. It has been shown for the first time that cell proliferation occurred in the developing adult rat retinal spheroid in vitro; BrdU-positive cells and multiple mitoses were revealed in this zone. However, the source of proliferation was not in the peripheral retina, and stable macrophages and glial cells located among neurons of the inner nuclear layer had the ability to divide. The antiGFAP antibody showed an increase in GFAP fibers in the rat retina as well as in the newt retina. Recoverin translocated into photoreceptor perikaryons and the outer plexiform layer in cultivated rat retina. Interestingly, some cells with probably de novo expression of recoverin were discovered in rat and newt retinas.

  1. An Efficient Method for Transferring Adult Mosquitoes during Field Tests,

    DTIC Science & Technology

    CULICIDAE, *COLLECTING METHODS, REPRINTS, BLOOD SUCKING INSECTS, FIELD TESTS, HAND HELD, EFFICIENCY, LABORATORY EQUIPMENT, MORTALITY RATES , ADULTS, AEDES, ASPIRATORS, CULICIDAE, TEST AND EVALUATION, REPRINTS

  2. Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats

    PubMed Central

    Glenn, Melissa J.; Adams, Raven S.; McClurg, Lauren

    2012-01-01

    Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10–22, on postnatal days (PD) 25–50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats’ anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression. PMID:22305146

  3. Ethanol induces second-order aversive conditioning in adolescent and adult rats.

    PubMed

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E

    2011-02-01

    Alcohol abuse and dependence are considered public health problems, with an etiological onset often occurring during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, intragastrically [i.g.]) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescents and adults, respectively) using SOC. Experiment 1 revealed similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, the rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults; for females and males; and after one, two, or three training trials. In conjunction with previous results, the present study showed that, in adolescent rats subjected to SOC, ethanol's hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the postingestive effects of high-dose ethanol as similarly aversive when assessed by SOC.

  4. On Again, Off Again Effects of Gonadectomy on the Acoustic Startle Reflex in Adult Male Rats

    PubMed Central

    Turvin, J.C.; Messer, W.S.

    2007-01-01

    Numerous studies have shown sex and/or estrous cycle differences in the acoustic startle reflex (ASR) and its prepulse inhibition (PPI) in humans and animals. However, few have examined the effects of hormone manipulations on these behaviors. This study paired gonadectomy (GDX) in adult male rats with testing for ASR and PPI at 2, 4, 9, 16, 23, 30 and 37 days after surgery. Initial studies of control, GDX and GDX rats given testosterone propionate revealed no group differences in PPI, but did reveal phasic facilitation of the ASR in GDX rats that was greatest on the first and final testing sessions and that was attenuated by testosterone. A second study addressing roles for estrogen and androgen signaling tested new control and GDX rats along with GDX rats given estradiol or the non-aromatizable androgen, 5-alpha-dihydrotestosterone and revealed no group differences in PPI, and increases in ASR in GDX rats that were largest during the first and final testing sessions and that were attenuated by both hormone replacements. However, while responses in GDX rats given testosterone were similar to those of controls, ASR in estradiol- and to a lesser extent in dihydrotestosterone-treated GDX rats were typically lower than in controls. This may suggest that hormone modulation of the ASR requires synergistic estrogen and androgen actions. In the male brain where this can be achieved by local steroid metabolism, the enzymes responsible, e.g., aromatase, could help identify loci in the startle circuitry that may be especially relevant for the hormone modulation observed. PMID:17169383

  5. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  6. Social and non-social anxiety in adolescent and adult rats after repeated restraint.

    PubMed

    Doremus-Fitzwater, Tamara L; Varlinskaya, Elena I; Spear, Linda P

    2009-06-22

    Adolescence is associated with potentially stressful challenges, and adolescents may differ from adults in their stress responsivity. To investigate possible age-related differences in stress responsiveness, the consequences of repeated restraint stress (90 min/day for 5 days) on anxiety, as indexed using the elevated plus-maze (EPM) and modified social interaction (SI) tests, were assessed in adolescent and adult Sprague-Dawley male and female rats. Control groups at each age included non-stressed and socially deprived animals, with plasma corticosterone (CORT) levels also measured in another group of rats on days 1 and 5 of stress (sampled 0, 30, 60, 90, and 120 min following restraint onset). While repeatedly restrained animals exhibited similar anxiety levels compared to non-stressed controls in the EPM, restraint stress increased anxiety at both ages in the SI test (as indexed by reduced social investigation and social preference). Daily weight gain measurements, however, revealed more marked stress-related suppression of body weight in adolescents versus adults. Analysis of stress-induced increases in CORT likewise showed that adolescents demonstrated less habituation than adults, embedded within typical sex differences in CORT magnitude (females greater than males) and age differences in CORT recovery (adolescents slower than adults). Despite no observable age-related differences in the behavioral response to restraint, adolescents were more sensitive to the repeated stressor in terms of physiological indices of attenuated weight gain and habituation of stress-induced CORT.

  7. Beer promotes high levels of alcohol intake in adolescent and adult alcohol-preferring rats.

    PubMed

    Hargreaves, Garth A; Wang, Emyo Y J; Lawrence, Andrew J; McGregor, Iain S

    2011-08-01

    Previous studies suggest that high levels of alcohol consumption can be obtained in laboratory rats by using beer as a test solution. The present study extended these observations to examine the intake of beer and equivalent dilute ethanol solutions with an inbred line of alcohol-preferring P rats. In Experiment 1, male adolescent P rats and age-matched Wistar rats had access to either beer or equivalent ethanol solutions for 1h daily in a custom-built lickometer apparatus. In subsequent experiments, adolescent (Experiment 2) and adult (Experiment 3) male P rats were given continuous 24-h home cage access to beer or dilute ethanol solutions, with concomitant access to lab chow and water. In each experiment, the alcohol content of the beer and dilute ethanol solutions was gradually increased from 0.4, 1.4, 2.4, 3.4, 4.4, 5 to 10% EtOH (vol/vol). All three experiments showed a major augmentation of alcohol intake when rats were given beer compared with equivalent ethanol solutions. In Experiment 1, the overall intake of beer was higher in P rats compared with Wistar rats, but no strain difference was found during the 1-h sessions with plain ethanol consumption. Experiment 1 also showed that an alcohol deprivation effect was more readily obtained in rats with a history of consuming beer rather than plain ethanol solutions. In Experiments 2 and 3, voluntary beer intake in P rats represented ethanol intake of 10-15 g/kg/day, among the highest reported in any study with rats. This excessive consumption was most apparent in adolescent rats. Beer consumption markedly exceeded plain ethanol intake in these experiments except at the highest alcohol concentration (10%) tested. The advantage of using beer rather than dilute ethanol solutions in both selected and nonselected rat strains is therefore confirmed. Our findings encourage the use of beer with alcohol-preferring rats in future research that seeks to obtain high levels of alcohol self-administration.

  8. Right-but not left-paw use in female rats provides advantage in forced swim tests.

    PubMed

    Soyman, Efe; Tunckol, Elcin; Lacin, Emre; Canbeyli, Resit

    2015-10-15

    Left- and right-pawed adult female Wistar rats were subjected to forced swimming on two consecutive days. Compared to the right-pawed group, left- pawed rats displayed significantly increased immobility from the first to the second swim test and remained significantly more immobile in the second swim test. Both groups performed similarly in spatial learning in the Morris water maze suggesting that left- pawed rats are differentially and specifically susceptible to depressogenic treatment.

  9. Raloxifene prevents skeletal fragility in adult female Zucker Diabetic Sprague-Dawley rats.

    PubMed

    Hill Gallant, Kathleen M; Gallant, Maxime A; Brown, Drew M; Sato, Amy Y; Williams, Justin N; Burr, David B

    2014-01-01

    Fracture risk in type 2 diabetes is increased despite normal or high bone mineral density, implicating poor bone quality as a risk factor. Raloxifene improves bone material and mechanical properties independent of bone mineral density. This study aimed to determine if raloxifene prevents the negative effects of diabetes on skeletal fragility in diabetes-prone rats. Adult Zucker Diabetic Sprague-Dawley (ZDSD) female rats (20-week-old, n = 24) were fed a diabetogenic high-fat diet and were randomized to receive daily subcutaneous injections of raloxifene or vehicle for 12 weeks. Blood glucose was measured weekly and glycated hemoglobin was measured at baseline and 12 weeks. At sacrifice, femora and lumbar vertebrae were harvested for imaging and mechanical testing. Raloxifene-treated rats had a lower incidence of type 2 diabetes compared with vehicle-treated rats. In addition, raloxifene-treated rats had blood glucose levels significantly lower than both diabetic vehicle-treated rats as well as vehicle-treated rats that did not become diabetic. Femoral toughness was greater in raloxifene-treated rats compared with both diabetic and non-diabetic vehicle-treated ZDSD rats, due to greater energy absorption in the post-yield region of the stress-strain curve. Similar differences between groups were observed for the structural (extrinsic) mechanical properties of energy-to-failure, post-yield energy-to-failure, and post-yield displacement. These results show that raloxifene is beneficial in preventing the onset of diabetes and improving bone material properties in the diabetes-prone ZDSD rat. This presents unique therapeutic potential for raloxifene in preserving bone quality in diabetes as well as in diabetes prevention, if these results can be supported by future experimental and clinical studies.

  10. Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity.

    PubMed

    van de Heijning, Bert J M; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M

    2015-07-08

    Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%-75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed.

  11. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  12. Forced swim test behavior in postpartum rats.

    PubMed

    Craft, R M; Kostick, M L; Rogers, J A; White, C L; Tsutsui, K T

    2010-10-01

    This study was undertaken to determine whether depression-like behavior can be observed in gonadally intact females that have experienced normal pregnancy. When tested on the forced swim test (FST) on postpartum days 1-7, previously pregnant rats spent slightly more time immobile, significantly less time swimming and diving, and defecated more than virgin controls. Subchronic treatment with nomifensine (DA reuptake inhibitor, 2.5mg/kg) but not sertraline (serotonin reuptake inhibitor, 10mg/kg) or desipramine (norepinephrine reuptake inhibitor, 10mg/kg) significantly decreased immobility on postpartum day 2. In rats pre-exposed to the FST in mid-pregnancy, neither subchronic nor chronic treatment with desipramine or sertraline decreased immobility on postpartum day 2; in contrast, chronic desipramine significantly decreased immobility in virgin controls. These results indicate that postpartum female rats, compared to virgin controls, show a reduction in some "active coping behaviors" but no significant increase in immobility when tested during the early postpartum period, unlike ovariectomized females that have undergone hormone-simulated pregnancy (HSP). Additionally, immobility that is increased by FST pre-exposure is not readily prevented by treatment with standard antidepressant medications in postpartum females. Depression-like behaviors previously observed in females that have undergone HSP may result from the more dramatic changes in estradiol, prolactin or corticosterone that occur during the early "postpartum" period, compared to the more subtle changes in these hormones that occur in actual postpartum females.

  13. Plexin a4 expression in adult rat cranial nerves.

    PubMed

    Gutekunst, Claire-Anne; Gross, Robert E

    2014-11-01

    PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.

  14. Both young and older adults discount suggestions from older adults on a social memory test.

    PubMed

    Davis, Sara D; Meade, Michelle L

    2013-08-01

    In the present study, we examined the impacts of participant age and confederate age on social memory processes. During a collaborative recall phase, young and older adult participants were exposed to the erroneous memory reports of a young or an older adult confederate. On a subsequent individual recall test, young and older adult participants were equally likely to incorporate the confederates' erroneous suggestions into their memory reports, suggesting that participant age had a minimal effect on social memory processes. However, confederate age did have a marked effect: Young adult participants were less likely to incorporate misleading suggestions from older adult confederates and less likely to report "remembering" items suggested by older adult confederates. Critically, older adult participants were also less likely to incorporate misleading information from fellow older adult confederates. Both young and older adult participants discounted older adult confederates' contributions to a memory test.

  15. Home cage testing of delay discounting in rats.

    PubMed

    Koot, S; Adriani, W; Saso, L; van den Bos, R; Laviola, G

    2009-11-01

    Testing rodents in their home cages has become increasingly popular. Since human intervention, handling, and transport are minimized, behavior can be recorded undisturbed and continuously. Currently existing home cage systems are too complex if only relatively simple operant-learning tests are to be carried out in rats. For that purpose, a new low-cost computer-controlled operant panel was designed, which can be placed inside the home cage. A pilot study was carried out, using an intolerance-to-delay protocol, classically developed for testing behavioral impulsivity. Male adult rats were tested in their home cages, containing the operant panel provided with nose-poking holes. Nose poking in one hole resulted in the immediate delivery of one food pellet (small-soon, SS), whereas nose poking in the other hole delivered five food pellets after a delay (large-late), which was increased progressively each day (0-150 sec). The two daily sessions, spaced 8 h apart, lasted 1 h each, and the time-out after food delivery was 90 sec. A clear-cut shift toward preference for SS, which is considered a classical index of cognitive impulsivity, was shown at the longest delay. It is noteworthy that rats shifted when the delay interval was longer than the mean intertrial interval-that is, when they experienced more than one delay-equivalent odds against discounting (see Adriani & Laviola, 2006). The shortened training (2 days) and testing (5 days) phases, as allowed by prolonged and multiple daily sessions, can be advantageous in testing rodents during selected short phases of development. Current research is focusing on further validation of this and similar protocols.

  16. To Test or Not to Test? Metabolic Testing in Adolescents and Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Moog, Ute; de Die-Smulders, Christine; Martens, Herman; Schrander-Stumpel, Connie; Spaapen, Leo

    2008-01-01

    In order to add to the knowledge on adult phenotypes of metabolic disorders associated with intellectual disability (ID) and to evaluate criteria for recommending metabolic testing of adolescents and adults with unexplained ID, the authors analyzed retrospectively the outcome of metabolic investigations performed during a 10-year period on 256…

  17. Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats

    PubMed Central

    Werling, Linda L.; Reed, Stephanie Collins; Wade, Dean; Izenwasser, Sari

    2009-01-01

    A significant number of youths use cigarettes, and more than half of the youths who smoke daily also use illicit drugs. The focus of these studies is on how exposure to nicotine affects subsequent responses to both nicotine and cannabinoids in adolescents compared with adults. We have shown previously that chronic treatment with nicotine produces sensitization to its locomotor-activating effects in female and adult rats but not male adolescent rats. To better understand the effects of nicotine on adolescent and adult rats, rats were injected with nicotine or saline for 7 days and, on day 8, either challenged with delta-9-tetrahydrocannabinol (Δ9-THC) or the cannabinoid agonist CP 55,940 and tested for locomotor activity, or the brains were removed for quantitative autoradiography studies of the cannabinoid1 receptor. A separate group of rats was treated with nicotine plus the cannabinoid antagonist AM 251 and then challenged with CP 55,940. In adolescent male rats, nicotine administration led to sensitization to the locomotor-decreasing effects of both Δ9-THC and CP 55,940, but in adult male rats, the response to either drug was unchanged compared to controls. The effect of nicotine on CP 55,940-mediated locomotor activity was blocked by co-administration of AM 251 with the nicotine. Further, cannabinoid receptor density was increased in the prelimbic prefrontal cortex, ventral tegmental area, and select regions of the hippocampus in adolescent male rats pretreated with nicotine compared to vehicle-treated controls. There were no significant changes in cannabinoid receptor binding, however, in any of the brain regions examined in adult males pretreated with nicotine. The prelimbic prefrontal cortex and the hippocampus have been shown previously to be involved in stimulant reinforcement; thus it is possible that these changes contribute to the unique behavioral effects of chronic nicotine and subsequent drug administration in adolescents compared with adults. PMID

  18. Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.

    PubMed

    Lu, Qi; Jiang, Cuiping; Zhang, Jiping

    2016-02-01

    Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time.

  19. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life.

  20. Prenatal hypoxia impairs circadian synchronisation and response of the biological clock to light in adult rats

    PubMed Central

    Joseph, Vincent; Mamet, Julie; Lee, Fuchun; Dalmaz, Yvette; Van Reeth, Olivier

    2002-01-01

    The aim of this study was to test the hypothesis that prenatal hypoxia in rats might lead to consistent changes in the entrainment of the circadian clock by light. Pregnant female rats were placed in a chamber provided with hypoxic gas (10 % O2-90 % N2) at gestational day 5 and returned to normoxia before delivery. Once adult, rats born to hypoxic mothers had significant alterations in their circadian rhythm of locomotor activity (recorded in freely accessible running wheels). Under a regular 12/12 light/dark (LD) cycle, they showed a phase advance of their rhythm of activity (mean phase advance of 87 min) and were less active than control rats. After an abrupt 6 h phase delay in the LD cycle, rats from the prenatal hypoxic group (PNH) took significantly more time to resynchronise to the new LD cycle compared to controls (+53 %; 6.0 ± 1.5 vs. 9.2 ± 0.5 days respectively). Under constant darkness, PNH and control rats had a similar period of activity (24.27 ± 0.20 vs. 24.40 ± 0.13) but the response of PNH rats to a light pulse in the early subjective night was less marked than that of control rats (101 ± 9 vs. 158 ± 13 min). When submitted to acute restraint stress, PNH rats had a prolonged secretion of corticosterone compared to controls. These results indicate that prenatal hypoxia is a factor that has long lasting consequences for the functional output of the biological clock and the hormonal response to stress. PMID:12181309

  1. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  2. Wnt Expression in the Adult Rat Subventricular Zone After Stroke

    PubMed Central

    Morris, Daniel C.; Zhang, Zheng Geng; Wang, Ying; Zhang, Rui Lan; Greg, Sara; Liu, Xian Shuang; Chopp, Michael

    2007-01-01

    Introduction: In the adult brain, neurogenesis occurs in the subventricular zone (SVZ) of the lateral ventricle. During development, the Wnt pathways contribute to stem cell maintenance and promote neurogenesis. We hypothesized that the Wnt family genes are expressed in neural progenitor cells of the non-ischemic and ischemic SVZ of the adult rodent brain after middle cerebral artery (MCA) occlusion. Methods: Non-ischemic and ischemic cultured SVZ cells and a single population of non-ischemic and ischemic SVZ cells isolated by laser capture microdisection (LCM) were analyzed for Wnt pathway expression using real-time RT-PCR and immunostaining. Results: The number of neurospheres increased significantly (p<0.05) in SVZ cells derived from ischemic (32 ±4.7/rat) compared with the number in non-ischemic SVZ cells (18 ± 3/rat). Wnt family gene mRNA levels were detected in SVZ cells isolated from both cultured and LCM SVZ cells, however there was no upregulation between non-ischemic and ischemic SVZ cells. Immunostaining on brain sections also demonstrated no upregulation of Wnt pathway protein between ischemic and non-ischemic SVZ cells. Conclusions: Expression of the Wnt family genes in SVZ cells suggests that the Wnt pathway may be involved in neurogenesis in the adult brain. However, ischemia does not upregulate Wnt family gene expression. PMID:17400378

  3. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  4. Effects of moderate zinc deficiency on cognitive performance in young adult rats.

    PubMed

    Massaro, T F; Mohs, M; Fosmire, G

    1982-07-01

    Two experiments were conducted to establish a dietary zinc level which approximates a moderate deficiency in the young adult rat and to determine if a concurrent zinc deficiency affects cognitive performance. Male rats were fed varying levels of zinc in diet throughout a 17-day period. The lowest dietary level that depressed serum and bone zinc without influencing food consumption or body weight gains was observed to be 5.8 microgram Zn/g diet. Young adult rats maintained on either a zinc adequate (24.4 microgram Zn/g) or low-zinc (5.3 microgram Zn/g) diet were tested in a modified Skinner Box involving tests of visual, auditory, association, and discrimination learning. No differences were observed in the visual discrimination performance of the zinc deficient animals when compared with control counterparts. Deficits in the ability to transfer a learned association between visual and auditory stimuli were observed, however, in the deficient group during the transfer test phase. The latter performed better during the final auditory discrimination task in transferring a learned food-relevant cue.

  5. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model.

    PubMed

    Groves, James O; Leslie, Isla; Huang, Guo-Jen; McHugh, Stephen B; Taylor, Amy; Mott, Richard; Munafò, Marcus; Bannerman, David M; Flint, Jonathan

    2013-01-01

    The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.

  6. Fructose-1,6-bisphosphatase from young and adult rats.

    PubMed

    Klefenz, H F; Rockstein, M

    1976-07-01

    Fructose-1,6-bisphosphatase (E.C. 3.1.3.11) was purified from the livers of young (69-86 days) and adult (370-386 days) Fisher rats. The enzyme preparations were examined for increasing amounts of missynthesized proteins by means of heat-inactivation as well as for differences in regulatory properties. No significant difference with respect to the fraction of rapidly heat-inactivated enzyme or Km- and Ki-values was found. These results do not support the hypothesis that error accumulation resulting in an error catastrophe is a general phenomenon underlying senescence and death.

  7. Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats.

    PubMed

    García, Graciela B; Quiroga, Ariel D; Stürtz, Nelson; Martinez, Alejandra I; Biancardi, María E

    2004-08-01

    In the present work we show morphological data of the in vivo susceptibility of CNS myelin to sodium metavanadate [V(+5)] in adult rats. The possible role of vanadium in behavioral alterations and in brain lipid peroxidation was also investigated. Animals were injected intraperitoneally (i.p.) with 3 mg/kg body weight (bw) of sodium metavanadate [1.25 V/kg bw/day] for 5 consecutive days. Open field and rotarod tests were performed the day after the last dose had been administered and then animals were sacrificed by different methods for histological and lipid peroxidation studies. The present results show that intraperitoneal administration of V(+5) to adult rats resulted in changes in locomotor activity, specific myelin stainings and lipid peroxidation in some brain areas. They support the notion that CNS myelin could be a preferential target of V(+5)-mediated lipid peroxidation in adult rats. The mechanisms underlying this action could affect the myelin sheath leading to behavioral perturbations.

  8. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  9. Juvenile exposure to methamphetamine attenuates behavioral and neurochemical responses to methamphetamine in adult rats.

    PubMed

    McFadden, Lisa M; Carter, Samantha; Matuszewich, Leslie

    2012-04-01

    Previous research has shown that children living in clandestine methamphetamine (MA) labs are passively exposed to the drug [1]. The long-term effects of this early exposure on the dopaminergic systems are unknown, but may be important for adult behaviors mediated by dopamine, such as drug addiction. The current study sought to determine if juvenile exposure to low doses of MA would lead to altered responsiveness to the stimulant in adulthood. Young male and female rats (PD20-34) were injected daily with 0 or 2 mg/kg MA or left undisturbed and then tested at PD90. In the open field, adult rats exposed to MA during preadolescence had reduced locomotor activity compared to control non-exposed rats following an acute injection of MA (2 mg/kg). Likewise, methamphetamine-induced dopamine increases in the dorsal striatum were attenuated in male and female rats that had been exposed to MA as juveniles, although there were no changes in basal in vivo or ex vivo dopamine levels. These findings suggest that exposure of juveniles to MA leads to persistent changes in the behavioral and neurochemical responses to stimulants in adulthood.

  10. Regulatory Mechanism of Muscle Disuse Atrophy in Adult Rats

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During the last phase of NAG 2-386 we completed three studies. The effects of 14 days of weightlessness; the vastus medialis (VM) from flight rats in COSMOS 2044 was compared with the VM from tail suspended rats and other controls. The type I and II fibers in the mixed fiber portion of the VM were significantly reduced in flight rats and capillary densities paralleled the fiber density changes. The results of this project compared favorably with those in the extensor digitorum longus following seven days of flight in SL 3. The cardiovascular projects focused on the blood pressure changes in head down tilted rats (HDT) and non-head down tilted (N-HDT) rats. Blood pressures (MAP, SP and DP) were significantly elevated through seven days of HDT and rapidly returned to control levels within one day after removal from the HDT position. The N-HDT showed some slight rise in blood pressure but these were not as great and they were not as rapid. The HDT rats were characterized as exhibiting transient hypertension. These results led to some of the microvascular and vascular graduate student projects of Dr. Bernhard Stepke. Also our results refute or, at least, do not agree with previous reports from other laboratories. Each animal, in our blood pressure projects, served as its own control thereby providing more accurate results. Also, our experiments focused on recovery studies which can, in and of themselves, provide guidelines for flight experiments concerned with blood pressure changes. Another experiment was conducted to examine the role of testicular atrophy in whole body suspended (WBS) and tail suspended (TS) rats. We worked in conjunction with Dr. D.R. Deaver's laboratory at Pennsylvania State University and Dr. R. P. Amann at Colorado State University. In the TS rats the testes are retracted into the abdominal cavity, unless a ligature is placed to maintain them in the external scrotal sac. The cryptorchid condition in TS rats results in atrophy of the testes and

  11. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  12. Age and sex differences in reward behavior in adolescent and adult rats.

    PubMed

    Hammerslag, Lindsey R; Gulley, Joshua M

    2014-05-01

    Compared to adults, adolescents are at heightened risk for drug abuse and dependence. One of the factors contributing to this vulnerability may be age-dependent differences in reward processing, with adolescents approaching reward through stimulus-directed, rather than goal-directed, processes. However, the empirical evidence for this in rodent models of adolescence, particularly those that investigate both sexes, is limited. To address this, male and female rats that were adolescents (P30) or adults (P98) at the start of the experiment were trained in a Pavlovian approach (PA) task and were subsequently tested for the effects of reward devaluation, extinction, and re-acquisition. We found significant interactions between age and sex: females had enhanced acquisition of PA and poorer extinction, relative to males, while adolescents and females were less sensitive to reward devaluation than male adults. These results suggest that females and adolescents exhibit reward behavior that is more stimulus-directed, rather than goal-directed.

  13. Alcohol exposure in utero perturbs retinoid homeostasis in adult rats

    PubMed Central

    Kim, Youn-Kyung; Zuccaro, Michael V.; Zhang, Changqing; Sarkar, Dipak

    2015-01-01

    Background Maternal alcohol exposure and adult alcohol intake have been shown to perturb the metabolism of various micro- and macro-nutrients, including vitamin A and its derivatives (retinoids). Therefore, it has been hypothesized that the well-known detrimental consequences of alcohol consumption may be due to deregulations of the metabolism of such nutrients rather than to a direct effect of alcohol. Alcohol exposure in utero also has long-term harmful consequences on the health of the offspring with mechanisms that have not been fully clarified. Disruption of tissue retinoid homeostasis has been linked not only to abnormal embryonic development, but also to various adult pathological conditions, including cancer, metabolic disorders and abnormal lung function. We hypothesized that prenatal alcohol exposure may permanently perturb tissue retinoid metabolism, predisposing the offspring to adult chronic diseases. Methods Serum and tissues (liver, lung and prostate from males; liver and lung from females) were collected from 60-75 day-old sprague dawley rats born from dams that were: (I) fed a liquid diet containing 6.7% alcohol between gestational day 7 and 21; or (II) pair-fed with isocaloric liquid diet during the same gestational window; or (III) fed ad libitum with regular rat chow diet throughout pregnancy. Serum and tissue retinoid levels were analyzed by reverse-phase high-performance liquid chromatography (HPLC). Serum retinol-binding protein (RBP) levels were measured by western blot analysis, and liver, lung and prostate mRNA levels of lecithin-retinol acyltransferase (LRAT) were measured by qPCR. Results Retinyl ester levels were significantly reduced in the lung of both males and females, as well as in the liver and ventral prostate of males born from alcohol-fed dams. Tissue LRAT mRNA levels remained unchanged upon maternal alcohol treatment. Conclusions Prenatal alcohol exposure in rats affects retinoid metabolism in adult life, in a tissue- and sex

  14. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  15. The Impact of Adult Vitamin D Deficiency on Behaviour and Brain Function in Male Sprague-Dawley Rats

    PubMed Central

    Turner, Karly M.; Eyles, Darryl W.; McGrath, John J.; Burne, Thomas H. J.

    2013-01-01

    Background Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD) deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. Methods Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT) and the 5 choice continuous performance task (5C-CPT) and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS) task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. Results AVD-deficient rats were deficient in vitamin D3 (<10 nM) and had normal calcium and phosphate levels after 8–10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI) than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA) responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. Conclusions AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour. PMID:23951200

  16. Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Ribeiro, Karine F; Petronilho, Fabrícia; Vuolo, Francieli; Colpo, Gabriela D; Pfaffenseller, Bianca; Kapczinski, Flávio; Dal-Pizzol, Felipe; Quevedo, João

    2013-04-01

    A growing body of evidence is pointing toward an association between immune molecules, as well brain-derived neurotrophic factor (BDNF) and the depression. The present study was aimed to evaluate the behavioral and molecular effects of the antidepressant imipramine in maternally deprived adult rats. To this aim, maternally deprived and non-deprived (control group) male rats were treated with imipramine (30mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming test. In addition to this, IL-10, TNF-α and IL-1β cytokines were assessed in the serum and cerebrospinal fluid (CSF). In addition, BDNF protein levels were assessed in the prefrontal cortex, hippocampus and amygdala. In deprived rats treated with saline was observed an increase on immobility time, compared with non-deprived rats treated with imipramine (p<0.05). Deprived rats treated with saline presented a decrease on BDNF levels in the amygdala (p<0.05), compared with all other groups. The IL-10 levels were decreased in the serum (p<0.05). TNF-α and IL-1β levels were increased in the serum and CSF of deprived rats treated with saline (p<0.05). Interestingly, imipramine treatment reversed the effects of maternal deprivation on BDNF and cytokines levels (p<0.05). Finally, these findings further support a relationship between immune activation, neurotrophins and the depression, and considering the action of imipramine, it is suggested that classic antidepressants could exert their effects by modulating the immune system.

  17. The longitudinal study of rat hippocampus influenced by stress: early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats.

    PubMed

    Jin, Fengkui; Li, Lei; Shi, Mei; Li, Zhenzi; Zhou, Jinghua; Chen, Li

    2013-06-01

    Epidemiologic studies indicate that early adverse experience is related to learning disabilities in adults, but the neurobiological mechanisms have not yet been identified. We used longitudinal animal experiments to test the hypothesis that early life stress enhances hippocampal vulnerability and working memory deficit in adult rats. The expression of Synaptophysin (SYN) and apoptosis (Apo) in hippocampal CA3 and dentate gyrus (DG) regions were examined to evaluate the effects of environmental factors on the hippocampus. The working memory errors via radial 8-arm maze were studied to evaluate the long-term effect of early stress on rats' spatial learning ability. Our results indicated that chronic restraint stress in early life and forced cold water swimming stress in adulthood reduced SYN expression and increased Apo levels in rat hippocampus, but the hippocampal damage tended to recover when rats returned to a non-stress environment. In addition, when the rats were exposed to forced cold water swimming stress during adulthood, SYN expression (CA3 and DG regions) and Apo levels (CA3 region) in rat hippocampus showed statistical difference between early restraint stress group and non-early restraint stress group (rats exposed to stress in adulthood only). One month after the two groups of rats returned to non-stress environment, this difference of SYN expression (CA3 and DG regions) and working memory deficit between the two groups was still statistically significant. Our study findings suggested that early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats, and reduces structural plasticity of hippocampus.

  18. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  19. Darbepoetin alfa (Aranesp) improves recognition memory in adult rats that have sustained bilateral ventral hippocampal lesions as neonates or young adults.

    PubMed

    Hori, S E; Powell, K J; Robertson, G S

    2007-01-05

    Recognition memory was assessed in adult rats that received bilateral injections of saline (sham lesions) or ibotenic acid (lesioned) in the ventral hippocampus as neonates (postnatal day 7, PD7) or young adult (42 days of age, PD42) using the Novel Object Recognition Test (NORT). Normal or sham-lesioned rats were able to distinguish novel from familiar objects over a 0.5 and 2 h delay between the sample and choice phases. Adult rats (PD70) lesioned as neonates performed progressively worse than sham-lesioned animals at delays of 0.5 and 2 h. A single injection of darbepoetin alfa (500 or 5000 U/kg, i.p.), given 1 h before the sample phase restored performance 0.5 or 2 h later in the choice phase to same levels as sham-lesioned rats. Adults lesioned on PD42 displayed deficits in NORT performance with a 2 h delay between the choice and sample phases that were completely reversed by administration of darbepoetin alfa (5000 U/kg, i.p.) 1 h before the sample phase. These results suggest that darbepoetin alfa may have utility in treating memory deficits associated with brain dysfunction related to developmental disorders such as schizophrenia.

  20. Homocysteine Induces Glial Reactivity in Adult Rat Astrocyte Cultures.

    PubMed

    Longoni, Aline; Bellaver, Bruna; Bobermin, Larissa Daniele; Santos, Camila Leite; Nonose, Yasmine; Kolling, Janaina; Dos Santos, Tiago M; de Assis, Adriano M; Quincozes-Santos, André; Wyse, Angela T S

    2017-03-02

    Astrocytes are dynamic glial cells associated to neurotransmitter systems, metabolic functions, antioxidant defense, and inflammatory response, maintaining the brain homeostasis. Elevated concentrations of homocysteine (Hcy) are involved in the pathogenesis of age-related neurodegenerative disorders, such as Parkinson and Alzheimer diseases. In line with this, our hypothesis was that Hcy could promote glial reactivity in a model of cortical primary astrocyte cultures from adult Wistar rats. Thus, cortical astrocytes were incubated with different concentrations of Hcy (10, 30, and 100 μM) during 24 h. After the treatment, we analyzed cell viability, morphological parameters, antioxidant defenses, and inflammatory response. Hcy did not induce any alteration in cell viability; however, it was able to induce cytoskeleton rearrangement. The treatment with Hcy also promoted a significant decrease in the activities of Na(+), K(+) ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in the glutathione (GSH) content. Additionally, Hcy induced an increase in the pro-inflammatory cytokine release. In an attempt to elucidate the putative mechanisms involved in the Hcy-induced glial reactivity, we measured the nuclear factor kappa B (NFκB) transcriptional activity and heme oxygenase 1 (HO-1) expression, which were activated and inhibited by Hcy, respectively. In summary, our findings provide important evidences that Hcy modulates critical astrocyte parameters from adult rats, which might be associated to the aging process.

  1. Bupropion attenuates methamphetamine self-administration in adult male rats.

    PubMed

    Reichel, Carmela M; Murray, Jennifer E; Grant, Kathleen M; Bevins, Rick A

    2009-02-01

    Bupropion is a promising candidate medication for methamphetamine use disorder. As such, we used a preclinical model of drug-taking to determine the effects of bupropion on the reinforcing effects of methamphetamine (0.025, 0.05 or 0.1 mg/kg/infusion). Specificity was determined by investigating the effects of bupropion on responding maintained by sucrose. In the self-administration study, rats were surgically prepared with indwelling jugular catheters and trained to self-administer methamphetamine under an FR5 schedule. A separate group of rats was trained to press a lever for sucrose. Once responding stabilized, rats were pretreated with bupropion (0, 10, 30 and 60 mg/kg i.p.) 5 min before chamber placement in a unique testing order. Following acute testing, rats were then repeatedly pretreated with 30 and 60 mg/kg bupropion. Acute treatments of bupropion dose dependently reduced drug intake for 0.025-0.1 mg/kg methamphetamine; sucrose deliveries were only reduced with the high bupropion dose. Repeated exposure to 60 mg/kg bupropion before the session resulted in a consistent decrease in methamphetamine intake (0.05 and 0.1 mg/kg) and sucrose deliveries. Considered together, this pattern of findings demonstrates that bupropion decreases responding for methamphetamine, but the effects are only somewhat specific.

  2. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats.

    PubMed

    Fabio, María Carolina; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2014-04-01

    A question still to be answered is whether ethanol initiation has a greater effect on ethanol consumption if it occurs during adolescence than in adulthood. This study assessed the effect of ethanol initiation during adolescence or adulthood on voluntary ethanol consumption when animals were still within the same age range. Adolescent or adult rats were given 5, 2, or 0 ethanol exposures. The animals were tested for ethanol consumption through two-bottle choice tests, before undergoing a 1-week deprivation. A two-bottle assessment was conducted after the deprivation. Adolescents, but not adults, given two ethanol administrations during initiation exhibited significantly higher ethanol intake during the pre-deprivation period. These adolescents also exhibited a threefold increase in ethanol intake after 7 days of drug withdrawal, when compared with controls. These findings suggest that very brief experience with binge ethanol intoxication in adolescence, but not in adulthood, impacts later predisposition to drink.

  3. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats

    PubMed Central

    Beuk, Jonathan; Beninger, Richard J.; Paré, Martin

    2016-01-01

    Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations. PMID:27555818

  4. Contractile force measured in unskinned isolated adult rat heart fibres.

    PubMed

    Brady, A J; Tan, S T; Ricchiuti, N V

    1979-12-13

    A number of investigators have succeeded in preparing isolated cardiac cells by enzymatic digestion which tolerate external [Ca2+] in the millimolar range. However, a persistent problem with these preparations is that, unlike in situ adult ventricular fibres, the isolated fibres usually beat spontaneously. This spontaneity suggests persistent ionic leakage not present in situ. A preferable preparation for mechanical and electrical studies would be one which is quiescent but excitable in response to electrical stimulation and which does not undergo contracture with repeated stimulation. We report here a modified method of cardiac fibre isolation and perfusion which leaves the fibre membrane electrically excitable and moderately resistant to mechanical stress so that the attachment of suction micropipettes to the fibre is possible for force measurement and length control. Force generation in single isolated adult rat heart fibres is consistent with in situ contractile force. The negative staircase effect (treppe) characteristic of adult not heart tissue is present with increased frequency of stimulation. Isometric developed tension increases with fibre length as in in situ ventricular tissue.

  5. [Comparative study of the long-term behavioral effects of noopept and piracetam in adult male rats and female rats in postnatal period].

    PubMed

    Voronina, T A; Guzevatykh, L S; Trofimov, S S

    2005-01-01

    Adult male and female rats were treated with the peptide nootrope drug noopept (daily dose, 0.1 mg/kg) and piracetam (200 mg/kg). In the period from 8th to 20th day, both drugs (cognitive enhancers) suppressed the horizontal and vertical activity and the anxiety in test animals as compared to the control group treated with 0.9 % aqueous NaCl solution. Early postnatal injections of the nootropes influenced neither the morphology development nor the behavior of adult female rats in the plus maze, extrapolational escape, passive avoidance, and pain sensitivity threshold tests. Animals in the "intact" group (having received neither drugs not physiological solution, that is, developing in a poor sensor environment), showed less pronounced habituation in the open field test as compared to the control and drug treated groups.

  6. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  7. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats.

    PubMed

    Lan, Kuo-Mao; Tien, Lu-Tai; Pang, Yi; Bhatt, Abhay J; Fan, Lir-Wan

    2015-04-02

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist.

  8. Adolescent nicotine exposure produces less affective measures of withdrawal relative to adult nicotine exposure in male rats

    PubMed Central

    O’Dell, Laura E.; Torres, Oscar V.; Natividad, Luis A.; Tejeda, Hugo A.

    2012-01-01

    Vulnerability to nicotine addiction is significantly increased in individuals who begin smoking during adolescence; however, the underlying mechanisms of this phenomenon remain unclear. This study examined the motivational effects of nicotine withdrawal in adolescent (PND 27–42) and adult (PND 60–75) rats using the conditioned place aversion paradigm. Male Wistar rats were tested for their initial preference for either of two distinct compartments of our conditioning apparatus. Rats were then implanted with subcutaneous (sc) pumps that produce equivalent blood plasma levels of nicotine for 14 days. Conditioning was conducted over the last 8 days of nicotine exposure. Rats received the nicotinic antagonist mecamylamine (1.5 or 3.0 mg/kg, sc) to precipitate withdrawal in their initially preferred compartment, and on alternate days they received saline in their non-preferred compartment. Following conditioning, rats were re-tested for their preference for each compartment. A subsequent study was conducted to examine potential developmental differences in learning place aversion produced by another aversive stimulus, lithium chloride (LiCl). Rats received LiCl (0, 10, 30, or 100 mg/kg, sc) in their initially preferred side using similar conditioning procedures. Adults displayed robust place aversion produced by nicotine withdrawal. This effect was lower in adolescent rats even in a group of young rats that received 7 additional days of nicotine exposure prior to conditioning. This developmental difference was specific to nicotine withdrawal since there were no differences between adolescents and adults in learning place aversion with LiCl. Our findings demonstrating reduced effects of nicotine withdrawal constitute a powerful basis for the increased vulnerability to nicotine dependence during adolescence. PMID:17184972

  9. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal

  10. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  11. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    PubMed

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  12. SEXUAL INTERACTIONS WITH UNFAMILIAR FEMALES REDUCE HIPPOCAMPAL NEUROGENESIS AMONG ADULT MALE RATS

    PubMed Central

    Spritzer, Mark D.; Curtis, Molly G.; DeLoach, Julia P.; Maher, Jack; Shulman, Leanne M.

    2016-01-01

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of BrdU (200 mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30 min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohisotchemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. There were no differences in the amount of sexual behavior (mounts, intromissions, ejaculations, or contact time) that the familiar and unfamiliar groups engaged in, indicating that the differences in neurogenesis were not due to the relative amounts of sexual activity. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect

  13. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  14. Lead Exposure Induces Weight Gain in Adult Rats, Accompanied by DNA Hypermethylation

    PubMed Central

    Zhao, Li; Li, Qin; Cang, Zhen; Chen, Chi; Lu, Meng; Cheng, Jing; Zhai, Hualing; Xia, Fangzhen; Ye, Lin; Lu, Yingli

    2017-01-01

    Objective Previous studies have revealed the association of lead (Pb) exposure with obesity. DNA methylation alteration has been suggested to be one of the regulatory mechanisms of obesity. We aimed to explore whether Pb exposure is related with weight gain and DNA methylation alteration. Methods Male adult 8 week Wistar rats were divided into 5 groups: the normal chow diet (NCD); the NCD+0.05%Pb; the NCD+0.15%Pb; the NCD+0.45%Pb and the high fat diet. Rats were exposed to different dosages of Pb through drinking water for 21 weeks. Body weight, fasted blood glucose level, fasted insulin level, homeostasis assessment of insulin resistance (HOMA-IR) index and lipid profile were detected. Intra-peritoneal glucose tolerance test (IPGTT) was constructed to evaluate the glucose tolerance. Lipid accumulation of liver was detected and liver DNA underwent whole genome bisulfite sequencing. Results The NCD+0.05%Pb group had significantly greater weight, HOMA-IR and triglycerides, and lower glucose intolerance than the NCD group (P <0.05). This group also showed hepatic lipid accumulation. These metabolic changes were not observed in the other two Pb dosage groups. Furthermore, DNA hypermethylation extended along pathways related to glucose and lipid metabolism in NCD+0.05%Pb group. Conclusion Pb exposure resulted in dose-specific weight gain in adult Wistar rats, accompanied by alteration of DNA methylation. PMID:28107465

  15. Adult Basic Counseling and Testing Program; Pilot Project Evaluative Report.

    ERIC Educational Resources Information Center

    Eastern Wyoming Coll., Torrington.

    Undertaken by Eastern Wyoming College, this pilot program of adult basic counseling and testing sought to stimulate the enrollment of school dropouts in adult basic education courses, help enrollees discover their vocational interests and capabilities, and aid them in their personal and social adjustment. A full-time counselor took charge of…

  16. Adult Learning and High-Stakes Testing: Strategies for Success

    ERIC Educational Resources Information Center

    Mitchell, Grace

    2004-01-01

    In this world of increasing competition for jobs and accountability in the workplace, adults are facing many new pressures, one of which is passing tests as part of the application process. This is especially difficult for adults who are academically challenged or did not go far enough with their education to feel comfortable in testing…

  17. Effect of "enriched environment" during development on adult rat behavior and response to the dopamine receptor agonist apomorphine.

    PubMed

    Hoffmann, L C; Schütte, S R M; Koch, M; Schwabe, K

    2009-02-18

    Enriched housing conditions (enriched environment, EE) during development has been shown to influence adult rat behavior and transmitter systems, especially dopamine function. We were interested in how different degrees of enrichment during development would affect adult rats' behavior and response to dopamine receptor challenge. Two groups of male Wistar rats (n=11-12) were raised under two different degrees of EE, i.e. "high enriched" and "low enriched" groups. A third group was kept under standard conditions and served as "non-enriched" control. As adults, rats were tested for anxiety (elevated plus-maze), for spatial learning (four-arm-baited eight-arm radial maze), and for motivation (breakpoint of the progressive ratio test). Finally, locomotor activity (activity box) and sensorimotor gating (prepulse inhibition (PPI) of the acoustic startle response (ASR)) were tested with and without challenge with the dopamine receptor agonist apomorphine. The time spent on the open or enclosed arms of the elevated plus-maze did not differ between groups, but the high enriched group showed higher rearing activity on the open arms. The breakpoint did not differ between groups. Learning and memory in the radial maze task only differed on the first few trials, but high enriched rats run faster compared with the other groups. In contrast, in the activity box enriched groups were less active, but apomorphine had the highest effect. Between groups, no difference in PPI and startle amplitude was found, but in the high and low EE group startle amplitude was enhanced after administration of apomorphine, while the PPI deficit induced by this drug was not different between groups. Altogether, we found no evidence that different amounts of environmental enrichment without differences in social EE affect rats' cognitive, emotional or motivational behavior. However, motor activity seems to be enhanced when rats are behaviorally or pharmacologically challenged by dopamine receptor

  18. Neurobehavioral assessment following e-cigarette refill liquid exposure in adult rats.

    PubMed

    Golli, Narges El; Dallagi, Yosra; Rahali, Dalila; Rejeb, Ines; Fazaa, Saloua El

    2016-07-01

    The present study was conducted to assess the toxic effect of e-cigarette refill liquid on cognitive and motor functions in adult rats. Animals were administered 28 μl/kg of body weight of e-liquid with/without a dose of 0.5 mg of nicotine/kg of body weight, using the intraperitoneally route for a period of 4 weeks. They were then evaluated by novel object recognition test (NORT) and spontaneous alternation T-maze test for cognitive functions. Results indicated that e-liquid without nicotine induced, in the NORT, a decrease in time exploring the novel object during the test session and lower discrimination and recognition indexes compared to control and e-liquid with nicotine treated rats. Furthermore, short-term spatial memory was affected after e-liquid treatment in the spontaneous alternation T-maze test, identifying recognition memory impairments. However, none of the treatments altered motor functions assessed by inclined plane test, Kondziela's inverted screen test and weights test. Cell cytotoxicity assessment following e-liquid exposure showed a significant decrease in hippocampal cell viability, but no change in cortical cell viability. Thereby, e-liquid without nicotine causes cognitive impairments, especially on the hippocampus. Based on these results, more extensive assessments on e-cigarettes must be carried out.

  19. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  20. HIV antibody testing in young, urban adults.

    PubMed

    Berrios, D C; Hearst, N; Perkins, L L; Burke, G L; Sidney, S; McCreath, H E; Hulley, S B

    1992-02-01

    We surveyed men and women aged 21 to 34 years to determine the rates of human immunodeficiency virus (HIV) antibody testing in blacks and whites of diverse education levels in four US cities. Responses to the anonymous, mailed questionnaire were received from 90% of 777 white women, 64% of 734 black women, 79% of 677 white men, and 48% of 541 black men. The percentages reporting HIV testing for these four race-gender groups were 29%, 22%, 30%, and 38%, respectively. The percentages reporting testing that was voluntarily sought (ie, not in connection with blood donation, military service) were 16%, 14%, 18%, and 22%, respectively. In each race-gender group, roughly half of those who had not been tested said they "might have a blood test for the AIDS virus in the future". Education level was not correlated with HIV-testing frequency. Blacks were significantly less likely than whites to be aware of "a blood test that can detect the AIDS virus infection" (58% vs 77%), but blacks who knew of the test were more likely than whites to have been tested (47% vs 37%). Eleven percent of subjects reported at least one major risk factor for HIV infection. In these people, HIV testing was most common among homosexually active men (56% tested; 52% voluntarily sought), intermediate among injection drug users (40% tested; 31% voluntarily sought), and least common among the sexual partners of injection-drug users (21% tested; 11% voluntarily sought). Health education programs need to communicate the availability of, and need for, anonymous HIV testing.

  1. Chronic social instability in adult female rats alters social behavior, maternal aggression and offspring development.

    PubMed

    Pittet, Florent; Babb, Jessica A; Carini, Lindsay; Nephew, Benjamin C

    2017-04-01

    We investigated the consequences of chronic social instability (CSI) during adulthood on social and maternal behavior in females and social behavior of their offspring in a rat model. CSI consisted of changing the social partners of adult females every 2-3 days for 28 days, 2 weeks prior to mating. Females exposed to CSI behaved less aggressively and more pro-socially towards unfamiliar female intruders. Maternal care was not affected by CSI in a standard testing environment, but maternal behavior of CSI females was less disrupted by a male intruder. CSI females were quicker to attack prey and did not differ from control females in their saccharin consumption indicating, respectively, no stress-induced sensory-motor or reward system impairments. Offspring of CSI females exhibited slower growth and expressed more anxiety in social encounters. This study demonstrates continued adult vulnerability to social challenges with an impact specific to social situations for mothers and offspring.

  2. Eszopiclone and fluoxetine enhance the survival of newborn neurons in the adult rat hippocampus.

    PubMed

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Duman, Ronald S

    2009-11-01

    Clinical research has shown that co-administration of eszopiclone, a sedative-hypnotic sleeping agent, and fluoxetine, a serotonin uptake inhibitor, exerts an additive antidepressant action in treating patients with both depression and insomnia. Preclinical studies demonstrate that the behavioural actions of antidepressants are linked to neurogenesis in the adult hippocampus. To test the hypothesis that the additive effects of eszopiclone and fluoxetine could act via such a mechanism, the influence of combined administration of these agents on the proliferation and survival of bromodeoxyuridine (BrdU)-labelled newborn cells in the hippocampus of adult rats was determined. Chronic eszopiclone+fluoxetine co-administration significantly increased the survival, but not proliferation, of newborn neurons in dorsal hippocampus by approximately 50%, an effect greater than either drug alone. These findings are consistent with the hypothesis that eszopiclone enhances the antidepressant action of fluoxetine, in part via a novel mechanism that increases the survival of newborn neurons.

  3. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    SciTech Connect

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  4. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.

  5. A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents.

    PubMed

    Doherty, James M; Cooke, Bradley M; Frantz, Kyle J

    2013-02-01

    Adolescent drug abuse is hypothesized to increase the risk of drug addiction. Yet male rats that self-administer heroin as adolescents show attenuated drug-seeking after abstinence, compared with adults. Here we explore a role for neural activity in the medial prefrontal cortex (mPFC) in age-dependent heroin-seeking. Adolescent (35-day-old at start; adolescent-onset) and adult (86-day-old at start) male rats acquired lever-pressing maintained by heroin using a fixed ratio one reinforcement schedule (0.05 and 0.025 mg/kg per infusion). Following 12 days of forced abstinence, rats were tested for heroin-seeking over 1 h by measuring the number of lever presses on the active lever. Unbiased stereology was then used to estimate the number of Fos-ir(+) and Fos-ir(-) neurons in prelimbic and infralimbic mPFC. As before, adolescents and adults self-administered similar amounts of heroin, but subsequent heroin-seeking was attenuated in the younger rats. Similarly, the adolescent-onset group failed to show significant neural activation in the prelimbic or infralimbic mPFC during the heroin-seeking test, whereas the adult-onset heroin self-administration group showed two to six times more Fos-ir(+) neurons than their saline counterparts in both mPFC subregions. Finally, the overall number of neurons in the infralimbic cortex was greater in rats from the adolescent-onset groups than adults. The mPFC may thus have a key role in some age-dependent effects of heroin self-administration.

  6. Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    PubMed Central

    Zheng, Weimin

    2012-01-01

    Behavioral adaption to a changing environment is critical for an animal's survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment. PMID:22973201

  7. Chordin and noggin expression in the adult rat trigeminal nuclei.

    PubMed

    Hayashi, Yutaro; Mikawa, Sumiko; Masumoto, Kazuma; Katou, Fuminori; Sato, Kohji

    2016-12-01

    Bone morphogenetic proteins (BMP) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators, such as chordin and noggin. Although the deep involvement of BMP signaling in the development and functions of the trigeminal nuclei has been postulated, little information is available for its expression in the trigeminal nuclei. We, thus, investigated chordin and noggin expression in the adult rat trigeminal nuclei using immunohistochemistry. Chordin and noggin were intensely expressed throughout the trigeminal nuclei. In addition, interesting differences are observed between chordin expression and noggin expression. For example, chordin prefers dendritic expression than noggin, suggesting that chordin is involved in the regulation of dendritic morphology and synaptic homeostasis. Furthermore, chordin and noggin were differentially expressed in the neuropil of the trigeminal nuclei. Since BMP signaling is known to play a pivotal role to make precise neural network, theses differences might be important to keep precise interneuronal connections by regulating local BMP signaling intensity in each region. Interestingly, we also detected chordin and noggin expression in axons of the trigeminal nerves. These data indicate that chordin and noggin play pivotal roles also in the adult trigeminal system.

  8. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  9. Prenatal ethanol exposure impairs temporal ordering behaviours in young adult rats.

    PubMed

    Patten, Anna R; Sawchuk, Scott; Wortman, Ryan C; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2016-02-15

    Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats. Previous research has shown that in the DG, these deficits are not apparent in age-matched PNEE females. This study aimed to expand these findings and determine if PNEE induces deficits in hippocampal-dependent behaviours in both male and female young adult rats (PND 60). The metric change behavioural test examines DG-dependent deficits by determining whether an animal can detect a metric change between two identical objects. The temporal order behavioural test is thought to rely in part on the CA sub-region of the hippocampus and determines whether an animal will spend more time exploring an object that it has not seen for a larger temporal window as compared to an object that it has seen more recently. Using the liquid diet model of FASD (where 6.6% (v/v) ethanol is provided through a liquid diet consumed ad libitum throughout the entire gestation), we found that PNEE causes a significant impairment in the temporal order task, while no deficits in the DG-dependent metric change task were observed. There were no significant differences between males and females for either task. These results indicate that behaviours relying partially on the CA-region may be more affected by PNEE than those that rely on the DG.

  10. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  11. Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: behavioural and autoradiographic studies.

    PubMed

    Van den Berg, C L; Van Ree, J M; Spruijt, B M; Kitchen, I

    1999-09-01

    The consequences of juvenile isolation and morphine treatment during the isolation period on (social) behaviour and mu-, delta- and kappa-opioid receptors in adulthood were investigated by using a social interaction test and in vitro autoradiography in rats. Juvenile isolation reduced social exploration in adults. Morphine treatment counteracted this reduction in isolated rats, but decreased social exploration in nonisolated rats. Self-grooming and nonsocial exploration were enhanced after juvenile isolation. Morphine treatment had no effect on self-grooming, but suppressed nonsocial exploration in isolated rats. With respect to the opioid receptors, juvenile isolation resulted in regiospecific increases in mu-binding sites with a 58% increase in the basolateral amygdala and a 33% increase in the bed nucleus of stria terminalis. Morphine treatment in isolated rats reversed this upregulation in both areas. The number of delta-binding sites did not differ between the experimental groups. A general upregulation of kappa-binding sites was observed after juvenile isolation, predominantly in the cortical regions, the hippocampus and the substantia nigra. Morphine treatment did not affect the upregulation of kappa-receptors. The results show that juvenile isolation during the play period causes long-term effects on social and nonsocial behaviours and on the number of mu- and kappa- but not delta-opioid receptors in distinct brain areas. The number of mu-receptors in the basolateral amygdala appears to be negatively correlated with the amount of social exploration in adult rats.

  12. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    PubMed Central

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  13. Choline dietary supplementation improves LiCl-induced context aversion retention in adult rats.

    PubMed

    Moreno, Hayarelis C; Gil, Marta; Carias, Diamela; Gallo, Milagros; de Brugada, Isabel

    2012-06-25

    Previous studies have demonstrated that choline is an essential nutrient during prenatal and early postnatal developmental periods. Thus, the availability of choline during these periods produces some beneficial effects on hippocampal-dependent learning and memory in rats. However, research on the effect of adult choline supplementation on learning and memory abilities is scarce. In the present study, 3-4 month-old male Wistar rats receiving a 7-week choline-supplemented diet (4.5 fold that of a standard diet) and control rats receiving a standard diet were trained in a LiCl-induced contextual aversion task. Short and long-term context aversion retention was assessed by recording the consumption of a flavoured solution in the aversive and safe contexts over two subsequent tests. Statistical analysis showed that the supplemented group exhibited greater intake suppression in the aversive context than in the safe context when two retention tests were applied 3 and 15 days after conditioning. These results suggest that increasing dietary choline availability during adulthood may favour the retention of a context aversion.

  14. Olfactory Behavioral Testing in the Adult Mouse

    PubMed Central

    M. Witt, Rochelle; M. Galligan, Meghan; R. Despinoy, Jennifer; Segal, Rosalind

    2009-01-01

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise. PMID:19229182

  15. Olfactory behavioral testing in the adult mouse.

    PubMed

    Witt, Rochelle M; Galligan, Meghan M; Despinoy, Jennifer R; Segal, Rosalind

    2009-01-28

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.

  16. Effects of neonatal ganglioside GM1 administration on memory in adult and old rats.

    PubMed

    Silv, R H; Bergamo, M; Frussa-Filho, R

    2000-09-01

    Numerous investigations have been reporting the involvement of GM1 ganglioside in central nervous system development and memory formation. The effects of neonatal treatment with GMI ganglioside on the performance of adult rats in a plus-maze discriminative avoidance task and old rats in a step-down passive avoidance task were investigated. Rats were injected subcutaneously from day 3 to 15 after birth with 10 mg/kg GM1 or saline. GM1 treatment did not modify indicative landmarks of physical and motor development. Behavioural tasks were carried out when the animals were 4 (discriminative avoidance) or 24 (passive avoidance) months old. Discriminative avoidance conditioning was performed in a modified elevated plus-maze. During the training session, the animals received aversive stimulation (light and hot air blow) in one of the enclosed arms. Tests were performed 7, 14 and 21 days after conditioning (tests 1, 2 and 3), in the absence of the aversive stimulation. In all tests, GM1-treated animals spent less time in the aversive arm than in the non-aversive enclosed arm. Control animals, however, spent a shorter time in the aversive arm only in tests 1 and 2. Passive avoidance conditioning was performed in an acrylic box with a grid floor, that was partially covered by an inclined platform. Animals were placed on the platform and received a 0,5 mA foot shock when stepped down. A test was performed 48 hr later. Latency to step down presented by GM 1-treated animals was significantly higher in the test session, whereas no significant increase in latency to step down was found for control animals. The results suggest a possible action of GM1 on the maturation of the central nervous system that persists during adulthood and ageing.

  17. Different effects of vitamin D hormone treatment on depression-like behavior in the adult ovariectomized female rats.

    PubMed

    Fedotova, Julia; Dudnichenko, Tatyana; Kruzliak, Peter; Puchavskaya, Zhanna

    2016-12-01

    Vitamine D (VD) has important functions in the human brain and may play a role in affective-related disorders. VD receptors are expressed in multiple brain regions associated with depressive disorders. The aim of the preclinical study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0mg/kg/day,s.c., once daily, for 14days) on the depression-like behavior and corticosterone levels in the blood samples following ovariectomy in female rats. Cholecalciferol was administered to the ovariectomized (OVX) rats and OVX rats treated with 17β-estradiol (17β-E2, 0.5μg/rat,s.c., once daily, for 14days). Depression-like behavior and spontaneous locomotor activity were assessed in the forced swimming test (FST) and the open field test (OFT), respectively. The corticosterone levels in the blood serum before and after FST were measured in all experimental groups. Treatment with cholecalciferol in high dose (5.0mg/kg/day,s.c.) significantly decreased the immobility time of OVX rats in the FST. Co-administration of cholecalciferol in high dose with 17β-E2 exerted a markedly synergistic antidepressant-like effect in the OVX rats on the same model of depression-like behavior testing. Cholecalciferol in high dose (5.0mg/kg/day,s.c.) administered alone or together with 17β-E2 significantly enhanced frequency of grooming for the OVX rats in the OFT. Moreover, cholecalciferol in high dose administered alone or together with 17β-E2 significantly decreased the elevated corticosterone levels in the blood serum of OVX rats following the FST. These results indicate that Cholecalciferol in high dose has a marked antidepressant-like effect in the adult female rats with low levels of estrogen.

  18. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  19. Behavioral differences between late preweanling and adult female Sprague-Dawley rat exploration of animate and inanimate stimuli and food.

    PubMed

    Smith, Kiersten S; Morrell, Joan I

    2011-03-01

    The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli.

  20. Predictive Accuracy of Exercise Stress Testing the Healthy Adult.

    ERIC Educational Resources Information Center

    Lamont, Linda S.

    1981-01-01

    Exercise stress testing provides information on the aerobic capacity, heart rate, and blood pressure responses to graded exercises of a healthy adult. The reliability of exercise tests as a diagnostic procedure is discussed in relation to sensitivity and specificity and predictive accuracy. (JN)

  1. Transformation of adult rat cardiac myocytes in primary culture.

    PubMed

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  2. Expression of gonadotropin-releasing hormone receptor in cerebral cortical neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2007-01-03

    Mammalian gonadotropin-releasing hormone (GnRH) was initially isolated from hypothalamus and its receptor from anterior pituitary, although extrapituitary GnRH receptors have been reported. The aim of the present study was to investigate whether GnRH receptor and its mRNA are expressed in cerebral cortical neurons of rat embryos and adult rats using immunohistochemical and reverse transcriptase polymerase chain reaction (RT-PCR) techniques. The immunohistochemistry and RT-PCR analysis showed expression of GnRH receptor and presence of its mRNA, in both cerebral cortical neurons of rat embryos and cerebral cortical tissues of adult rats. Additional experiments showed a decrease in the receptor mRNA expression when cultured neurons of rat embryos were treated with GnRH. It is possible that the presence of GnRH receptors in cortical neurons of rat may be involved in other physiological roles such as neurohormone or neuromodulator.

  3. Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity.

    PubMed

    Weintraub, Ari; Singaravelu, Janani; Bhatnagar, Seema

    2010-07-09

    In adolescence, gender differences in rates of affective disorders emerge. For both adolescent boys and girls, peer relationships are the primary source of life stressors though adolescent girls are more sensitive to such stressors. Social stressors are also powerful stressors for non-human social species like rodents. In a rat model, we examined how social isolation during adolescence impacts stress reactivity and specific neural substrates in adult male and female rats. Rats were isolated during adolescence by single housing from day 30 to 50 of age and control rats were group housed. On day 50, isolated rats and control rats were re-housed in same-treatment same-sex groups. Adult female rats isolated as adolescents exhibited increased adrenal responses to acute and to repeated stress and exhibited increased hypothalamic vasopressin mRNA and BDNF mRNA in the CA3 hippocampal subfield. In contrast, adult male rats isolated as adolescents exhibited a lower corticosterone response to acute stress, exhibited a reduced state of anxiety as assessed in the elevated plus maze and reduced Orexin mRNA compared to adult males group-housed as adolescents. These data point to a markedly different impact of isolation experienced in adolescence on endocrine and behavioral endpoints in males compared to females and identify specific neural substrates that may mediate the long-lasting effects of stress in adolescence.

  4. Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats.

    PubMed

    Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

    2012-09-01

    Traumatic experiences that occur during adolescence can render individuals vulnerable to mood and anxiety disorders. A model in juvenile rats (age: 27-29 days) was developed previously to study the long-term effects of adolescent stress exposure on behaviour and physiology. This paradigm, termed juvenile stress, involves subjecting juvenile rats to different stressors on consecutive days over a 3-day period. Here, we investigated the effects of the juvenile stress paradigm on freezing behaviour and aversive 22-kHz ultrasonic vocalizations (USVs) during auditory fear conditioning in adult male rats (age: 68-90 days). We found that rats previously subjected to juvenile stress increased aversive 22-kHz USVs (total calls and time spent calling) compared with controls during fear-conditioning training. The acoustic USV parameters between control and juvenile stress rats were largely equivalent, including duration, peak frequency and amplitude. While rats did not differ in freezing behaviour during fear conditioning, juvenile stress rats exhibited greater cue-conditioned freezing upon testing 24 h later. Our results show that juvenile stress elicited different long-term changes in freezing and aversive USVs during fear conditioning. Furthermore, they highlight the importance of assessing USVs to detect experience-dependent differences between control and stress-exposed animals which are not detectable by measuring visible behaviour.

  5. The robustness of diagnostic tests for GH deficiency in adults.

    PubMed

    Andersen, Marianne

    2015-06-01

    Since the 1970s, GH treatment has been an important tool in paediatric endocrinology for the management of growth retardation. It is now accepted that adults with severe GH deficiency (GHD) demonstrate impaired physical and psychological well-being and may benefit from replacement therapy with recombinant human GH. There is, however, an ongoing debate on how to diagnose GHD, especially in adults. A GH response below the cut-off limit of a GH-stimulation test is required in most cases for establishing GHD in adults. No 'gold standard' GH-stimulation test exists, but some GH stimulation tests may be more robust to variations in patient characteristics such as age and gender, as well as to pre-test conditions like heat exposure due to a hot bath or bicycling. However, body mass index (BMI) is negatively associated with GH-responses to all available GH-stimulation tests and glucocorticoid treatment, including conventional substitution therapy, influences the GH-responses. Recently, the role of IGF-I measurements in the clinical decision making has been discussed. The aim of this review is to discuss the available GH-stimulation tests. In this author's opinion, tests which include growth-hormone-releasing hormone (GHRH) tend to be more potent and robust, especially the GHRH+arginine test which has been proven to be of clinical use. In contrast, the insulin tolerance test (ITT) and the glucagon test appear to have too many drawbacks.

  6. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  7. Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-04-21

    Methylphenidate (MPH) is a central stimulant, prescribed for the treatment of attention deficit/hyperactivity disorder. The long-term behavioral consequences of MPH treatment are unknown. In this study, the oxidative stress and neuroinflammation induced by various doses of MPH were investigated. Forty adult male rats were divided into 5 groups; and treated with different doses of MPH for 21 days. Twenty four hours after drug treatment, Open Field Test (OFT) was performed in all animals. At the end of the study, blood cortisol level (BCL) was measured and hippocampus was isolated and oxidative stress and inflammation parameters and histological changes were analyzed. Chronic MPH at all doses decreased central square entries, number of rearing, ambulation distance and time spent in central square in OFT. BCL increased in doses 10 and 20mg/kg of MPH. Furthermore, MPH in all doses markedly increased lipid peroxidation, mitochondrial oxidized glutathione (GSSG) level, Interleukin 1β (IL-1β) and Tumor Necrosis Factor α (TNF-α) in isolated hippocampus. MPH (10 and 20mg/kg) treated groups had decreased mitochondrial reduced glutathione (GSH) content, and reduced superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRx) activities. 10 and 20mg/kg of MPH change cell density and morphology of cells in Dentate Gyrus (DG) and CA1 areas of hippocampus. Chronic treatment with high doses of MPH can cause oxidative stress, neuroinflammation and neurodegeneration in hippocampus of adult rats.

  8. Maternal separation exaggerates spontaneous recovery of extinguished contextual fear in adult female rats.

    PubMed

    Xiong, Gui-Jing; Yang, Yuan; Wang, Li-Ping; Xu, Lin; Mao, Rong-Rong

    2014-08-01

    Early life stress increases the risk of posttraumatic stress disorders (PTSD). Patients with PTSD show impaired extinction of traumatic memory, and in women, this occurs more often when PTSD is preceded by child trauma. However, it is still unclear how early life stress accounts for extinction impairment. Here, we studied the effects of maternal separation (MS, postnatal day 2 to 14) on contextual fear extinction in adult female rats. Additionally, to examine changes in synaptic function affected by MS, we measured long-term potentiation (LTP) in prefrontal cortex and hippocampus in vitro, both of which have been implicated in fear extinction. We found that adult female rats had been subjected to MS exhibited significant spontaneous recovery of fear to the extinguished context. Furthermore, MS exposure resulted in LTP impairment in both infralimbic prefrontal cortex layer 2/3-layer 5 and hippocampal SC-CA1 pathways. Interestingly, no obvious effects of MS on contextual fear conditioning, fear recall as well as extinction training and recall were observed. Innate fear in the elevated plus maze or open field test remained nearly unaffected. These findings provided the first evidence that MS may exaggerate spontaneous recovery after contextual fear extinction, for which LTP impairment in the medial prefrontal cortex and hippocampus may be responsible, thereby possibly leading to impaired extinction associated with PTSD.

  9. Adolescent nicotine exposure fails to impact cocaine reward, aversion and self-administration in adult male rats.

    PubMed

    Pomfrey, Rebecca L; Bostwick, Tamaara A; Wetzell, B Bradley; Riley, Anthony L

    2015-10-01

    The present experiments examined the effects of adolescent nicotine pre-exposure on the rewarding and aversive effects of cocaine and on cocaine self-administration in adult male rats. In Experiment 1, adolescent Sprague-Dawley rats (postnatal days 28-43) were given once daily injections of nicotine (0.6mg/kg) or vehicle and then tested for the aversive and rewarding effects of cocaine in a combined conditioned taste avoidance (CTA)/conditioned place preference (CPP) procedure in adulthood. In Experiment 2, adolescent Sprague-Dawley rats were pre-exposed to nicotine then tested for cocaine self-administration (0.25 or 0.75mg/kg), progressive ratio (PR) responding, extinction and cue-induced reinstatement in adulthood. In Experiment 1, rats showed significant dose-dependent cocaine-induced taste avoidance with cocaine-injected subjects consuming less saccharin over trials, but no effect of nicotine pre-exposure. For place preferences, cocaine induced significant place preferences with cocaine injected subjects spending significantly more time on the cocaine-paired side, but again there was no effect of nicotine history. All rats in Experiment 2 showed clear, dose-dependent responding during cocaine acquisition, PR testing, extinction and reinstatement with no effect of nicotine pre-exposure. These studies demonstrate that adolescent nicotine pre-exposure does not have an impact on cocaine's affective properties or its self-administration at least with the specific parametric conditions under which these effects were tested.

  10. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    PubMed

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood.

  11. The effects of perinatal tebuconazole exposure on adult neurological, immunological, and reproductive function in rats.

    PubMed

    Moser, V C; Barone, S; Smialowicz, R J; Harris, M W; Davis, B J; Overstreet, D; Mauney, M; Chapin, R E

    2001-08-01

    Studies are under way to address concerns of potential persistent immunotoxic, reproductive, and neurotoxic effects of perinatal exposure to several pesticides. Tebuconazole, a triazole fungicide, was evaluated as part of this project. Sprague-Dawley dams were administered tebuconazole (0, 6, 20, or 60 mg/kg) by oral gavage daily from gestational day 14 to postnatal day (PND)7; the pups were then dosed daily at the same levels from PND7-42. Separate groups of rats were used for testing of immunological parameters, neurobehavioral testing using a screening battery of functional tests, and cognitive evaluations. Other groups of rats were evaluated for reproductive development and function, while yet others were sacrificed at the end of the dosing period for histological analyses of major organs systems, including neuropathological assessments. Pup viability and body weight were decreased in the highest dose group. There were no differences in the fertility indices in the exposed rats mated as adults. In the sheep RBC-immunized high-dose rats, spleen weights and cellularity were increased, and the ratio of cell types was altered compared to controls. There were, however, no biologically significant changes in the immune function of these rats. At necropsy on PND46 or 152, kidney, liver, and spleen weights were altered by tebuconazole treatment, but a dose-response relationship was not clear for most organs; only decreased kidney and increased liver weights were consistent in both sexes. Histological analyses were generally unremarkable outside of the brain. One month after the end of dosing, acquisition of learning the platform location in a water tank (i.e., Morris water maze) was impaired in the high-dose group; there were no differences in neuromuscular ability, motor activity, or swim speed to account for this finding. Furthermore, there was no effect on recall of the position during a free-swim trial. Neuropathological evaluations revealed pyknotic cells across

  12. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.

    PubMed

    Rai, Kiranmai S; Murthy, K Dilip; Rao, Muddanna S; Karanth, K Sudhakar

    2005-07-01

    Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala.

  13. Effects of morphine on thermal sensitivity in adult and aged rats.

    PubMed

    Morgan, Drake; Mitzelfelt, Jeremiah D; Koerper, Lorraine M; Carter, Christy S

    2012-06-01

    There are contradictory data regarding older individuals' sensitivity to pain stimulation and opioid administration. Adult (12-16 months; n = 10) and aged (27-31 months; n = 7) male F344xBN rats were tested in a thermal sensitivity procedure where the animal chooses to remain in one of two compartments with floors maintained at various temperatures ranging from hot (45°C) through neutral (30°C) to cold (15°C). Effects of morphine were determined for three temperature comparisons (ie, hot/neutral, cold/neutral, and hot/cold). Aged rats were more sensitive to cold stimulation during baseline. Morphine produced antinociception during hot thermal stimulation, but had no effect on cold stimulation. The antinociceptive (and locomotor-altering) effects of morphine were attenuated in aged rats. These data demonstrate age-related differences in baseline thermal sensitivity and responsiveness to opioids. Based on behavioral and physiological requirements of this procedure, it is suggested that thermal sensitivity may provide a relevant animal model for the assessment of pain and antinociception.

  14. Effects of different exercise protocols on ethanol-induced spatial memory impairment in adult male rats.

    PubMed

    Hashemi Nosrat Abadi, T; Vaghef, L; Babri, S; Mahmood-Alilo, M; Beirami, M

    2013-06-01

    Chronic ethanol consumption is often accompanied by numerous cognitive deficits and may lead to long-lasting impairments in spatial learning and memory. The aim of the present study was to evaluate the therapeutic potential of regular treadmill exercise on hippocampal-dependent memory in ethanol-treated rats. Spatial memory was tested in a Morris Water Maze task. Adult male Wistar rats were exposed to ethanol (4 g/kg, 20% v/v for 4 weeks) and effects of three exercise protocols (pre-ethanol, post-ethanol and pre-to-post-ethanol treatment) were examined. Results showed that ethanol exposure resulted in longer escape latencies during the acquisition phase of the Morris Water Maze task. Moreover, all three exercise protocols significantly decreased the latency to locate the hidden platform. During the probe trial, ethanol led to decreased time spent in the target quadrant. In contrast, performance on the probe trial was significantly better in the rats that had done the post- and pre-to-post-ethanol, but not pre-ethanol, exercises. These findings suggest that treadmill running can attenuate the adverse effects of chronic ethanol exposure on spatial memory, and may serve as a non-pharmacological alcohol abuse treatment.

  15. Systemic elevation of interleukin-15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E

    2008-08-15

    In this study, we tested the hypothesis that systemic elevation of IL-15 would attenuate apoptosis in skeletal muscles of aged rats. IL-15 was administered to young adult (n=6) and aged (n=6) rats for 14 days. Apoptosis was quantified using an ELISA assay and verified through TUNEL staining of muscle sections. As expected, apoptosis was greater in muscles from aged control rats, compared to age-matched control. Apoptosis was also greater in the muscles from young adult and aged rats treated with IL-15. These increases in apoptosis were associated with decreases in muscle mass of IL-15 treated rats. These data do not support our initial hypothesis and suggest that systemic elevation of IL-15 promotes apoptosis in skeletal muscle. The proposed anti-apoptotic property of IL-15 may be specific to cell-type and/or the degree of muscle pathology present; however, additional research is required to more clearly decipher its role in skeletal muscle.

  16. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty.

    PubMed

    Mendes, Talita Biude; Paccola, Camila Cicconi; de Oliveira Neves, Flávia Macedo; Simas, Joana Noguères; da Costa Vaz, André; Cabral, Regina Elisabeth L; Vendramini, Vanessa; Miraglia, Sandra Maria

    2016-07-01

    The aim of this study was to investigate the protective action of resveratrol against the reproductive damage caused by left-sided experimental varicocele. There was a reduction of testicular major axis in the varicocele group when compared with the other groups; the testicular volume was reduced in varicocele group in comparison to the sham-control and resveratrol groups. The frequency of morphologically abnormal sperm was higher in varicocele and varicocele treated with resveratrol groups than in sham-control and resveratrol groups. The frequency of sperm with 100% of mitochondrial activity and normal acrosome integrity were lower in varicocele group than in varicocele treated with resveratrol, sham-control and resveratrol groups. Sperm motility was also reduced in varicocele group than in other groups. The sperm DNA fragmentation was higher in varicocele group than in other groups. Testicular levels of malondialdehyde were higher in varicocele and varicocele treated with resveratrol groups. The varicocele and varicocele treated with resveratrol groups had a significantly higher frequency of TUNEL-positive cells than sham-control and resveratrol groups; however, immunolabeling of the testes from varicocele treated with resveratrol group showed a lower number of apoptotic germ cells in comparison with the left testis of rats of the varicocele group. Reproductive alterations produced by varicocele from peripuberty were reduced by resveratrol in adulthood. Resveratrol should be better investigated as an adjuvant in the treatment of varicocele. Daily administration of resveratrol to rats with varicocele from peripuberty improves sperm quality in the adulthood.

  17. Perinatal exposure to xenoestrogens affects pain in adult female rats.

    PubMed

    Ceccarelli, Ilaria; Fiorenzani, Paolo; Della Seta, Daniele; Massafra, Cosimo; Cinci, Giuliano; Bocci, Anna; Aloisi, Anna Maria

    2009-01-01

    Estrogens have a variety of effects in addition to their action on reproductive structures, including permanent effects on the Central Nervous System (CNS). Therefore environmental chemicals with estrogenic activity (xenoestrogens) can potentially affect a number of CNS functions. In the present experiment, female rats receiving ethynylestradiol (EE) or methoxychlor (MXC) via the mothers during pregnancy (pre) or lactation (post) were tested in comparison with females born from mothers treated with OIL. The Object Recognition, Plantar and Formalin tests were carried out to evaluate the effects of these compounds on integrated functions such as memory and pain. Testosterone and estradiol plasma levels were determined by RIA. The results of the Object Recognition and Plantar tests did not differ among groups. However the groups differed in the Formalin test since flexing duration was higher in the EE- and MXC-pre groups than in the EE- and MXC-post and OIL groups. Estradiol plasma levels were higher in EE-pre than in the other groups. These results confirm the possibility that estrogen-like compounds (EE and MXC) can affect complex neural processes like pain when taken during critical stages of CNS development.

  18. Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin).

    PubMed

    Barron, Elyssa; Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2009-01-01

    Eight groups of male adolescent and adult spontaneous hyperactive rats (SHR) were used in a dose response (saline, 0.6, 2.5, and 10 mg/kg) experiment of methylphenidate (MPD). Four different locomotor indices were recorded for 2 hours postinjection using a computerized monitoring system. Acutely, the 0.6 mg/kg dose of MPD did not elicit an increase in locomotor activity in either the adolescent or in the adult male SHR. The 2.5 and the 10.0 mg/kg doses increased activity in the adolescent and the adult rats. Chronically, MPD treatment when comparing adolescent and adult gave the following results: the 0.6 mg/kg dose of MPD failed to cause sensitization in the adolescent group but caused sensitization in the adult group, while the 2.5 and 10 mg/kg both caused sensitization in the adolescent and adult groups.

  19. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    PubMed

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  20. Long-term consequences of neonatal fluoxetine exposure in adult rats.

    PubMed

    Ko, Meng-Ching; Lee, Lukas Jyuhn-Hsiarn; Li, Yang; Lee, Li-Jen

    2014-10-01

    Serotonin (5-HT) plays important roles during neural development. Administration of selective serotonin reuptake inhibitor (SSRI)-type medication during gestation may influence the maturation of the fetal brain and subsequent brain functions. To mimic the condition of late-gestation SSRI exposure, we administered fluoxetine (FLX) in neonatal rats during the first postnatal week, which roughly corresponds to the third trimester period of human gestation. FLX-exposed adult male rats exhibited reduced locomotor activity and depression-like behaviors. Furthermore, sensorimotor gating capacity was also impaired. Interestingly, increased social interaction was noticed in FLX-exposed rats. When the levels of 5-HT and tryptophan hydroxylase were examined, no significant changes were found in FLX rats compared to control (CON) rats. The behavioral phenotypes of FLX rats suggested malfunction of the limbic system. Dendritic architectures of neurons in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) were examined. Layer II/III mPFC pyramidal neurons in FLX rats had exuberant dendritic branches with elongated terminal segments compared to those in CON rats. In BLA pyramidal neurons, the dendritic profiles were comparable between the two groups. However, in FLX rats, the density of dendritic spines was reduced in both mPFC and BLA. Together, our results demonstrated the long-lasting effects of early FLX treatment on emotional and social behaviors in adult rats in which impaired neuronal structure in the limbic system was also noticed. The risk of taking SSRI-type antidepressants during pregnancy should be considered.

  1. Neonatal manipulation of oxytocin alters oxytocin levels in the pituitary of adult rats.

    PubMed

    Young, E; Carter, C S; Cushing, B S; Caldwell, J D

    2005-07-01

    The neuropeptide oxytocin (OT) and its OT antagonists (OTA) in infant rats affect their behavior as adults. In this study we attempted to determine whether treating rats on the day of birth (postnatal day 1) with OT or OTA would affect brain OT levels of these rats as adults. Rat pups were injected with OT (3 microg), OTA (0.3 microg) or saline vehicle ip on postnatal day 1. As 60-day-old adults, treated rats were killed, and the OT content in their medial preoptic areas (MPOAs), medial hypothalami (MH) and pituitaries were assayed. In females, treatment with OTA on postnatal day 1 significantly decreased pituitary OT levels as adults. In males, by contrast, treatment with OTA on postnatal day 1 resulted in increased pituitary OT levels when they become adults compared to male rats treated with OT on postnatal day 1. There were no significant effects of neonatal treatment on OT levels in either the MH or MPOA. Day 1 postnatal treatment with OT or OTA had a long-term sexually dimorphic effect on OT levels in the pituitary.

  2. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  3. Chronic exposure of adult, postnatal and in utero rat models to low-dose 137Cesium: impact on circulating biomarkers

    PubMed Central

    Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar

    2016-01-01

    The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399

  4. [Transplantation of embryonic medulla oblongata into cerebella of adult rats].

    PubMed

    Nanami, T

    1989-01-01

    Pieces of medulla oblongata anlagen were dissected free from embryonic 13-20 day (E 13 to E 20) rat brain, and these were transplanted into the cerebellar vermis of adult rats (Fischer 344). After grafting, host animals survived for 4-9 months. Cytoarchitectonic organization of the graft and the relationship between host and graft were analyzed light microscopically in 34 animals using the Nissl and silver impregnation methods. Fine structures of the graft were analyzed in 4 animals using electron microscope. Grafts from E 13-14 donor tissue showed the highest survival rate (90%), which decreased as the donor embryonic age increased (i.e., E 15-16: 33%, E 17-20: 15%). In the surviving grafts, small (5-10 microns diameter), medium-sized (10-20 microns) and large (20-30 microns) neurons, whose cytoplasmic organelles appeared normal, were observed. Bundles of myelinated fibers traversed in every direction and neurons were often clustered, indicating characteristic features of the medulla oblongata. Electron microscopically, various types of synaptic formations were also observed. Degenerative profiles of nerve-fiber endings, containing dense bodies and lysosomal figures, were also seen. The degeneration seemed to be caused by the failure of their establishing connections with their proper targets in the host. In both the host tissue and the graft-host interface, neuronal processes apparently derived from the graft were frequently observed. Some axonal processes contained large-cored vesicles, and some dendritic processes were enlarged at their stalks and tips. Aberrant axon terminals of unmyelinated fibers in the host medullary layer were considered to be the graft origin. These fibers were always accompanied by prominent glial proliferation. There was no indication of forming myelinated fiber bundles that entered the host cerebellum from the donor tissue, although the former was the target of the latter. Cell bodies of host granule cells and oligodendroglia in the

  5. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.

  6. Differential Behavioral and Neurobiological Effects of Chronic Corticosterone Treatment in Adolescent and Adult Rats

    PubMed Central

    Li, Jitao; Xie, Xiaomeng; Li, Youhong; Liu, Xiao; Liao, Xuemei; Su, Yun-Ai; Si, Tianmei

    2017-01-01

    Adolescence is a critical period with ongoing maturational processes in stress-sensitive systems. While adolescent individuals show heightened stress-induced hormonal responses compared to adults, it is unclear whether and how the behavioral and neurobiological consequences of chronic stress would differ between the two age groups. Here we address this issue by examining the effects of chronic exposure to the stress hormone, corticosterone (CORT), in both adolescent and adult animals. Male Sprague-Dawley (SD) rats were injected intraperitoneally with CORT (40 mg/kg) or vehicle for 21 days during adolescence (post-natal day (PND) 29–49) or adulthood (PND 71–91) and then subjected to behavioral testing or sacrifice for western blot analyses. Despite of similar physical and neuroendocrine effects in both age groups, chronic CORT treatment produced a series of behavioral and neurobiological effects with striking age differences. While CORT-treated adult animals exhibited decreased sucrose preference, increased anxiety levels and cognitive impairment, CORT-treated adolescent animals demonstrated increased sucrose preference, decreased anxiety levels, and increased sensorimotor gating functions. These differential behavioral alterations were accompanied by opposite changes in the two age groups in the expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylation of the obligatory subunit of the NMDA receptor, GluN1, and PSD-95 in rat hippocampus. These results suggest that prolonged glucocorticoid exposure during adolescence produces different behavioral and neurobiological effects from those in adulthood, which may be due to the complex interaction between glucocorticoids and the ongoing neurodevelopmental processes during this period. PMID:28210212

  7. Age and Sex Differences in Reward Behavior in Adolescent and Adult Rats

    PubMed Central

    Hammerslag, Lindsey R.; Gulley, Joshua M.

    2016-01-01

    Compared to adults, adolescents are at heightened risk for drug abuse and dependence. One of the factors contributing to this vulnerability may be age-dependent differences in reward processing, with adolescents approaching reward through stimulus-directed, rather than goal-directed, processes. However, the empirical evidence for this in rodent models of adolescence, particularly those that investigate both sexes, is limited. To address this, male and female rats that were adolescents (P30) or adults (P98) at the start of the experiment were trained in a Pavlovian approach (PA) task and were subsequently tested for the effects of reward devaluation, extinction, and re-acquisition. We found significant interactions between age and sex: females had enhanced acquisition of PA and poorer extinction, relative to males, while adolescents and females were less sensitive to reward devaluation than male adults. These results suggest that females and adolescents exhibit reward behavior that is more stimulus-directed, rather than goal-directed. PMID:23754712

  8. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats

    PubMed Central

    Robertson, Donald; Rodger, Jennifer; Martin-Iverson, Mathew T.

    2016-01-01

    The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease. PMID:27936175

  9. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    PubMed

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring.

  10. Refinement of the urine concentration test in rats.

    PubMed

    Kulick, Lisa J; Clemons, Donna J; Hall, Robert L; Koch, Michael A

    2005-01-01

    The urine concentration test is a potentially stressful procedure used to assess renal function. Historically, animals have been deprived of water for 24 h or longer during this test, creating the potential for distress. Refinement of the technique to lessen distress may involve decreasing the water-deprivation period. To determine the feasibility of reduced water-deprivation time, 10 male and 10 female rats were food- and water-deprived for 22 h. Clinical condition and body weights were recorded, and urine was collected every 2 h, beginning 16 h after the onset of food and water deprivation. All rats lost weight (P < 0.001). All rats were clinically normal after 16 h, but 90% of the males and 30% of the females appeared clinically dehydrated after 22 h. After 16 h, mean urine specific gravities were 1.040 and 1.054 for males and females, respectively, and mean urine osmolalities were 1,362 and 2,080 mOsm/kg, respectively, indicating the rats were adequately concentrating urine. The rats in this study tolerated water deprivation relatively well for 16 h but showed clinical signs of dehydration after 22 h. Based on this study, it was concluded that the urine concentration test can be refined such that rats are not deprived of water for more than 16 h without jeopardizing test results.

  11. Safety of Intracerebroventricular Copper Histidine in Adult Rats

    PubMed Central

    Lem, Kristen E.; Brinster, Lauren R.; Tjurmina, Olga; Lizak, Martin; Lal, Simina; Centeno, Jose A.; Liu, Po-Ching; Godwin, Sarah C.; Kaler, Stephen G.

    2007-01-01

    Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in a P-type ATPase (ATP7A) that normally delivers copper to the developing central nervous system. Infants with large deletions, or other mutations in ATP7A that incapacitate copper transport to the brain, show poor clinical outcomes and subnormal brain copper despite early subcutaneous copper histidine (CuHis) injections. These findings suggest a need for direct central nervous system approaches in such patients. To begin to evaluate an aggressive but potentially useful new strategy for metabolic improvement of this disorder, we studied the acute and chronic effects of CuHis administered by intracerebroventricular (ICV) injection in healthy adult rats. Magnetic resonance imaging (MRI) after ICV CuHis showed diffuse T1-signal enhancement, indicating wide brain distribution of copper after ICV administration, and implying the utility of this paramagnetic metal as a MRI contrast agent. The maximum tolerated dose (MTD) of CuHis, defined as the highest dose that did not induce overt toxicity, growth retardation, or reduce lifespan, was 0.5 mcg. Animals receiving multiple infusions of this MTD showed increased brain copper concentrations, but no significant differences in activity, behavior, and somatic growth, or brain histology compared to saline-injected controls. Based on estimates of the brain copper deficit in Menkes disease patients, CuHis doses 10-fold lower than the MTD found in this study may restore proper brain copper concentration. Our results suggest that ICV CuHis administration have potential as a novel treatment approach in Menkes disease infants with severe mutations. Future trials of direct CNS copper administration in mouse models of Menkes disease will be informative. PMID:17336116

  12. Nicotine produces long-term increases in cocaine reinforcement in adolescent but not adult rats.

    PubMed

    Reed, Stephanie Collins; Izenwasser, Sari

    2017-01-01

    Studies have shown that many smokers begin using nicotine during adolescence, yet the influence of early nicotine use on the response to other drugs of abuse in adulthood is not fully understood. In the current study, nicotine was administered to adolescent and adult rats for seven days. Thirty days later, cocaine-induced locomotor activity and cocaine self-administration were examined when the rats pretreated as adolescents were adults. Rats exposed to nicotine during early adolescence were sensitized thirty days later to the locomotor-activating effects of cocaine and self-administered a greater number of cocaine infusions than adolescent rats pretreated with vehicle. As a result of this increased intake, the cocaine self-administration dose-response curve was shifted upward indicating an increase in cocaine reinforcement. Rats pretreated with nicotine as adults, however, did not show a difference in locomotor activity or cocaine self-administration thirty days later compared to adult rats pretreated with vehicle. These findings suggest that early exposure to nicotine has long-term consequences on cocaine use. These data further suggest that nicotine use may carry a greater risk during adolescence than adulthood and adolescents who smoke may be particularly vulnerable to stimulant use. This article is part of a Special Issue entitled SI: Adolescent plasticity.

  13. Induction of maternal behavior in adult female rats following chronic morphine exposure during puberty.

    PubMed

    Byrnes, Elizabeth M; Rigero, Beth A; Bridges, Robert S

    2003-12-01

    The peripubertal period in the female rat is the time when the stimulatory effects of opioids on prolactin (PRL) secretion develop. In the adult rat, the administration of chronic high-dose morphine has been shown to attenuate the ability of opiates to stimulate PRL secretion. One function of PRL in adult virgin rats is the induction of maternal behavior. The present study examined whether chronic high-dose morphine exposure during the peripubertal period alters PRL-mediated induction of maternal behavior in adult female rats. Two groups of juvenile female rats were administered increasing doses of morphine or vehicle (s.c.) from age 30 to 50 days. As adults, these females either remained intact, or were ovariectomized and treated with a PRL-dependent, steroid hormone regimen that stimulates a rapid onset of maternal behavior. All females were then exposed daily to rat foster pups to determine whether peripubertal morphine exposure affected their latencies to induce maternal behavior. Morphine treatment resulted in a delay in vaginal opening and a temporary reduction in the rate of weight gain; however, the rate of onset of maternal behavior was unaffected by peripubertal morphine treatment. Thus, chronic morphine exposure in the pubertal female did not impact the expression of pup-induced maternal care.

  14. The Antinociceptive Effects of Hydroalcoholic Extract of Borago Officinalis Flower in Male Rats Using Formalin Test

    PubMed Central

    Shahraki, Mohammad Reza; Ahmadimoghadm, Mahdieh; Shahraki, Ahmad Reza

    2015-01-01

    Introduction: Borago officinalis flower (borage) is a known sedative in herbal medicine; the aim of the present study was to evaluate the antinociceptive effect of borage hydroalcoholic extract in formalin test male rats. Methods: Fifty-six adult male albino Wistar rats were randomly divided into seven groups: Control groups of A (intact), B (saline), and C (Positive control) plus test groups of D, E, F, and G (n=8). The groups D, E, and F received 6.25, 12.5, and 25 mg/kg, Borago officinalis flower hydroalcholic extract before the test, respectively but group G received 25 mg/kg borage extract and aspirin before the test. A biphasic pain was induced by injection of formalin 1%. The obtained data were analyzed by SPSS software ver. 17 employing statistical tests of Kruskal-Wallis and Mann-Whitney. The results were expressed as mean±SD. Statistical differences were considered significant at P<0.05. Results: The results revealed that the acute and chronic pain behavior score in test groups of D, E, F, and G significantly decreased compared to groups A and B, but this score did not show any difference compared to group C. Moreover, chronic pain behavior score in group G was significantly lower than all other groups. Discussion: The results indicated that Borago officinalis hydroalcoholic extract affects the acute and chronic pain behavior response in formaline test male rats. PMID:26649166

  15. Early life versus lifelong oral manganese exposure differently impairs skilled forelimb performance in adult rats

    PubMed Central

    Beaudin, Stephane A.; Nisam, Sean; Smith, Donald R.

    2013-01-01

    Recent studies of children suggest that exposure to elevated manganese (Mn) levels disrupt aspects of motor, cognitive and behavioral functions that are dependent on dopamine brain systems. Although basal ganglia motor functions are well-known targets of adult occupational Mn exposure, the extent of motor function deficits in adults as a result of early life Mn exposure is unknown. Here we used a rodent model early life versus lifelong oral Mn exposure and the Montoya staircase test to determine whether developmental Mn exposure produces long-lasting deficits in sensorimotor performance in adulthood. Long-Evans male neonate rats (n=11/treatment) were exposed daily to oral Mn at levels of 0, 25, or 50 mg Mn/kg/d from postnatal day (PND) 1-21 (early life only), or from PND 1 - throughout life. Staircase testing began at age PND 120 and lasted 1 month to objectively quantify measures of skilled forelimb use in reaching and pellet grasping/retrieval performance. Behavioral reactivity also was rated on each trial. Results revealed that (1) behavioral reactivity scores were significantly greater in the Mn-exposed groups, compared to controls, during the staircase acclimation/training stage, but not the latter testing stages, (2) early life Mn exposure alone caused long-lasting impairments in fine motor control of reaching skills at the higher, but not lower Mn dose, (3) lifelong Mn exposure from drinking water led to widespread impairment in reaching and grasping/retrieval performance in adult rats, with the lower Mn dose group showing the greatest impairment, and (4) lifelong Mn exposure produced similar (higher Mn group) or more severe (lower Mn group) impairments compared to their early life-only Mn exposed counterparts. Collectively, these results substantiate the emerging clinical evidence in children showing associations between environmental Mn exposure and deficits in fine sensorimotor function. They also show that the objective quantification of skilled motor

  16. Acute and adaptive motor responses to caffeine in adolescent and adult rats.

    PubMed

    Rhoads, Dennis E; Huggler, April L; Rhoads, Lucas J

    2011-07-01

    Caffeine is a psychostimulant with intake through foods or beverages tending to increase from childhood through adolescence. The goals of the present study were to examine the effects of caffeine on young adolescent Long-Evans rats and to compare the motor-behavioral responses of adolescent and adult rats to acute and chronic caffeine. Adolescent rats had a biphasic dose-response to caffeine comparable to that reported for adult rats. The magnitude of the motor response to a challenge dose of caffeine (30mg/kg, ip) was similar between adolescent and adult rats. Administration of caffeine in the drinking water (1mg/ml) for a period of 2 weeks led to overall consumption of caffeine which was not significantly different between adolescents and adults when normalized to body mass. There were no impacts of caffeinated drinking water on volume of fluid consumed nor weight gain in either age group compared to age matched controls drinking non-caffeinated tap water. Following this period of caffeine consumption, return to regular drinking water (caffeine withdrawal) led to a significant decrease in baseline movement compared to caffeine-naïve rats. This effect inversion was observed for adolescents but not adults. In addition, the response of the adolescents to the challenge dose of caffeine (30mg/kg, ip) was reduced significantly after chronic caffeine consumption and withdrawal. This apparent tolerance to the caffeine challenge dose was not seen with the adults. Thus, the developing brain of these adolescents may show similar sensitivity to adults in acute caffeine exposure but greater responsiveness to adaptive changes associated with chronic caffeine consumption.

  17. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  18. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats.

    PubMed

    Cha, Young May; Jones, Katherine H; Kuhn, Cynthia M; Wilson, Wilkie A; Swartzwelder, Harry Scott

    2007-09-01

    Like other recreational drugs, cannabinoids may produce different effects in men and women. In this study we measured the effects of delta9-tetrahydrocannabinol (THC) on spatial learning in two groups that are underrepresented in drug research--females and adolescents. In the first experiment, adolescent (postnatal day 30) and adult (postnatal day 70) rats of both sexes were treated subchronically with 5.0 mg/kg THC or vehicle for five consecutive days. Thirty minutes after each daily injection, they were tested on the spatial version of the Morris water maze task. In the second experiment, a separate group of adolescent and adult rats of both sexes was treated with 5.0 mg/kg THC or vehicle daily for 21 days and tested, 4 weeks later, on the spatial version of the water maze. Subchronic THC impaired spatial learning, and this effect was dependent upon both the age and sex of the animals tested. Prior exposure to chronic THC, however, did not cause any long-lasting spatial learning deficits. On the basis of our previous studies in male rats the third experiment assessed the dose-response relationship for the effects of THC on spatial learning and memory in female animals. We found that subchronic THC treatment (2.5, 5.0, or 10.0 mg/kg, intraperitoneally) disrupted learning in both adolescents and adults, but with greater effects at higher doses in adolescents compared with adults. The developmental sensitivity to subchronic THC confirms previous work carried out in our laboratory, and the sex-dependent effects highlight the importance of including females in drug abuse and addiction research.

  19. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    PubMed

    Iguchi, Yoshio; Kosugi, Sakurako; Nishikawa, Hiromi; Lin, Ziqiao; Minabe, Yoshio; Toda, Shigenobu

    2014-01-01

    Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX) to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing) rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  20. Effects of Neonatal Overfeeding on Juvenile and Adult Feeding and Energy Expenditure in the Rat

    PubMed Central

    Stefanidis, Aneta; Spencer, Sarah J.

    2012-01-01

    Overfeeding during perinatal life leads to an overweight phenotype that persists throughout the juvenile stage and into adulthood, however, the mechanim(s) underlying this effect are poorly understood. We hypothesized that obesity due to neonatal overfeeding is maintained by changes in energy expenditure and that these changes differ between males and females. We investigated feeding, physical activity, hormonal and metabolic alterations that occur in adult rats made obese by having been nursed in small litters (SL) compared with those from control litters (CL). There were no differences in absolute food intake between the groups, and juvenile and adult SL rats ate less chow per gram body weight than the CL did in the dark (active) phase. Juvenile, but not adult SL rats did have reduced whole body energy expenditure, but there were no differences between the groups by the time they reached adulthood. Adult SL females (but not males) had reduced brown adipose tissue (BAT) temperatures compared with CL in the first half of the dark phase. Our results indicate a persistent overweight phenotype in rats overfed as neonates is not associated with hyperphagia at any stage, but is reflected in reduced energy expenditure into the juvenile phase. The reduced dark phase BAT activity in adult SL females is not sufficient to reduce total energy expenditure at this stage of life and there is an apparently compensatory effect that prevents SL and CL from continuing to diverge in weight that appears between the juvenile and adult stages. PMID:23251693

  1. Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats.

    PubMed

    Al-Akhras, Moh'd-Ali; Darmani, Homa; Elbetieha, Ahmed

    2006-02-01

    The effects of an extremely low frequency (ELF) magnetic field on the sex hormones and other fertility parameters of adult male Sprague-Dawley rats were investigated. Adult male rats were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 18 consecutive weeks. There were no significant effects on the absolute body weight and the weight of the testes of the exposed rats. However, the weights of seminal vesicles and preputial glands were significantly reduced in the exposed male rats. Similarly, a significant reduction in sperm count was observed in the exposed group. Furthermore, there were no significant effects on the serum levels of male follicle stimulating hormone (FSH) during the 18 weeks of exposure period. On the other hand, there was a significant increase in the serum levels of male luteinizing hormone (LH) after 18 weeks of exposure (P < .005), while testosterone levels were significantly decreased only after 6 and 12 weeks of the exposure period. These results suggest that long term exposure to ELF could have adverse effects on mammalian fertility and reproduction.

  2. Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment.

    PubMed

    Schneider, Miriam; Koch, Michael

    2005-05-01

    The aim of the present study was to investigate the effects of neonatal excitotoxic lesions of the medial prefrontal cortex (mPFC) on social play, social behavior unrelated to play, and self-grooming in juvenile and adult rats. We additionally examined the behavioral effects of chronic pubertal treatment with the cannabinoid agonist WIN 55,212-2 (WIN) in order to test the hypothesis that early lesions render the brain vulnerable to cannabinoid intake in later life. Neonatal mPFC lesions and pubertal WIN treatment disrupted social play, social behavior, and self-grooming in juvenile and adult rats. Additionally, we observed more social play behaviors during light cycle in WIN-treated than in vehicle-treated rats. Notably, the combination of surgery and WIN treatment disrupted social behavior in lesioned and sham-lesioned rats. The present data indicate that the mPFC is important for adequate juvenile response selection in the context of social play and might be involved in the development of adult social and nonsocial behavior. Moreover, our data add further evidence for an involvement of the cannabinoid system in anxiety and social behavior. Additive effects of neonatal surgery-induced stress or cortical lesions in combination with pubertal cannabinoid administration are also shown. The disturbances of social and nonsocial behavior in rats are comparable to symptoms of early frontal cortex damage, as well as neurodevelopmental disorders in humans, such as schizophrenia and autism. Therefore, we propose the combination of neonatal cortical lesions with chronic cannabinoid administration during puberty as an animal model for studying neuronal mechanisms of impaired social functioning in neuropsychiatric disorders.

  3. Low and moderate doses of acute ethanol do not impair spatial cognition but facilitate accelerating rotarod performance in adolescent and adult rats.

    PubMed

    Novier, Adelle; Van Skike, Candice E; Chin, Vivien S; Diaz-Granados, Jaime L; Matthews, Douglas B

    2012-03-14

    Adolescents and adult rodents have differing sensitivities to the acute effects of ethanol on a variety of behavioral and electrophysiological measures. Often, these differences are revealed using high ethanol doses and consequently little is known about these age-related effects using lower ethanol doses. We sought to determine if low-dose ethanol produces differential effects on cognition and motor behavior in adolescent and adult rats. Adolescent (postnatal day PD 30-32) and adult (PD 70-72) male Sprague Dawley rats were trained on the standard version of the Morris Water Maze (MWM) for 5 days or received 5 training trials on an accelerating rotarod (ARR). Adolescents learned the location of the submerged platform in the MWM significantly slower than adults during training and, acute ethanol administration (0.5 g/kg, 0.75 g/kg, or 1.0 g/kg) 30 min before testing did not impair spatial memory in either age group. On the ARR test, adolescent rats spent significantly more time on the rotarod compared to adults and, alcohol exposure (1.0 g/kg) significantly increased ARR performance 30 min following administration. Our findings address the utility of investigating low and moderate doses of ethanol during different developmental stages in rats.

  4. Substratum preferences of motor and sensory neurons in postnatal and adult rats.

    PubMed

    Gonzalez-Perez, Francisco; Alé, Albert; Santos, Daniel; Barwig, Christina; Freier, Thomas; Navarro, Xavier; Udina, Esther

    2016-02-01

    After peripheral nerve injuries, damaged axons can regenerate but functional recovery is limited by the specific reinnervation of targets. In this study we evaluated if motor and sensory neurites have a substrate preference for laminin and fibronectin in postnatal and adult stages. In postnatal dorsal root ganglia (DRG) explants, sensory neurons extended longer neurites on collagen matrices enriched with laminin (~50%) or fibronectin (~35%), whereas motoneurons extended longer neurites (~100%) in organotypic spinal cord slices embedded in fibronectin-enriched matrix. An increased percentage of parvalbumin-positive neurites (presumptive proprioceptive) vs. neurofilament-positive neurites was also found in DRG in fibronectin-enriched matrix. To test if the different preference of neurons for extracellular matrix components was maintained in vivo, these matrices were used to fill a chitosan guide to repair a 6-mm gap in the sciatic nerve of adult rats. However, the number of regenerating motor and sensory neurons after 1 month was similar between groups. Moreover, none of the retrotraced sensory neurons in DRG was positive for parvalbumin, suggesting that presumptive proprioceptive neurons had poor regenerative capabilities compared with other peripheral neurons. Using real-time PCR we evaluated the expression of α5β1 (receptor for fibronectin) and α7β1 integrin (receptor for laminin) in spinal cord and DRG 2 days after injury. Postnatal animals showed a higher increase of α5β1 integrin, whereas both integrins were similarly expressed in adult neurons. Therefore, we conclude that motor and sensory axons have a different substrate preference at early postnatal stages but this difference is lost in the adult.

  5. Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats.

    PubMed

    Alaa-Eldin, Eman Ahmad; El-Shafei, Dalia Abdallah; Abouhashem, Nehal S

    2017-01-01

    Commercial mixtures of chlorpyrifos and cypermethrin pesticides are widely used to enhance the toxic effects of cypermethrin on target insects. So, the purpose of the current study was to evaluate the individual and combined toxic effects of chlorpyrifos (CPF) and cypermethrin (CYP) on reproductive system of adult male albino rats. Forty adult male albino rats were randomized into main four groups: group I (control group) included 16 rats, subdivided into negative and positive control; group II (eight rats) received chlorpyrifos 6.75 mg/kg b.w./orally∕daily); group III (eight rats) (received cypermethrin 12.5 mg/kg b.w./orally∕daily); and group IV (eight rats) (received chlorpyrifos and cypermethrin at the same previously mentioned doses). All treatments were given by oral gavage for 12 weeks. We found that single CPF and CYP exposures significantly have adverse effects on reproductive function of adult male albino rats manifested by reduced testicular weight, decreased sperm count, motility and viability, significantly increased percent of morphologically abnormal spermatozoa, and significant increments in sperm DNA fragmentation index (DFI) with respect to control group. Furthermore, serum follicle stimulating hormone, luteinizing hormone, and testosterone levels were decreased significantly compared to control group. This was accompanied with histopathological changes in the testis of rats such as necrosis, degeneration, decreasing number of spermatogenic cells in some seminiferous tubules, edema, congested blood vessels, and exudate in interstitial tissue of the testis. Notably, all these changes were exaggerated in rats treated concomitantly with chlorpyrifos and cypermethrin rendering the mixture more toxic than the additive effects of each compound and causing greater damage on the reproductive system of male albino rats than the individual pesticides.

  6. Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring.

    PubMed

    Harvey, Louise; Boksa, Patricia

    2014-08-01

    Both iron deficiency (ID) and infection are common during pregnancy and studies have described altered brain development in offspring as a result of these individual maternal exposures. Given their high global incidence, these two insults may occur simultaneously during pregnancy. We recently described a rat model which pairs dietary ID during pregnancy and prenatal immune activation. Pregnant rats were placed on iron sufficient (IS) or ID diets from embryonic day 2 (E2) until postnatal day 7, and administered the bacterial endotoxin, lipopolysaccharide (LPS) or saline on E15/16. In this model, LPS administration on E15 caused greater induction of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α, in ID dams compared to IS dams. This suggested that the combination of prenatal immune activation on a background of maternal ID might have more adverse neurodevelopmental consequences for the offspring than exposure to either insult alone. In this study we used this model to determine whether combined exposure to maternal ID and prenatal immune activation interact to affect juvenile and adult behaviors in the offspring. We assessed behaviors relevant to deficits in humans or animals that have been associated with exposure to either maternal ID or prenatal immune activation alone. Adult offspring from ID dams displayed significant deficits in pre-pulse inhibition of acoustic startle and in passive avoidance learning, together with increases in cytochrome oxidase immunohistochemistry, a marker of metabolic activity, in the ventral hippocampus immediately after passive avoidance testing. Offspring from LPS treated dams showed a significant increase in social behavior with unfamiliar rats, and subtle locomotor changes during exploration in an open field and in response to amphetamine. Surprisingly, there was no interaction between effects of the two insults on the behaviors assessed, and few observed alterations in juvenile behavior. Our findings

  7. Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) - Mammalian Mutagenicity Study Group (MMS).

    PubMed

    Hamada, Shuichi; Ohyama, Wakako; Takashima, Rie; Shimada, Keisuke; Matsumoto, Kazumi; Kawakami, Satoru; Uno, Fuyumi; Sui, Hajime; Shimada, Yasushi; Imamura, Tadashi; Matsumura, Shoji; Sanada, Hisakazu; Inoue, Kenji; Muto, Shigeharu; Ogawa, Izumi; Hayashi, Aya; Takayanagi, Tomomi; Ogiwara, Yosuke; Maeda, Akihisa; Okada, Emiko; Terashima, Yukari; Takasawa, Hironao; Narumi, Kazunori; Wako, Yumi; Kawasako, Kazufumi; Sano, Masaki; Ohashi, Nobuyuki; Morita, Takeshi; Kojima, Hajime; Honma, Masamitsu; Hayashi, Makoto

    2015-03-01

    The repeated-dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect hepatocarcinogens. We conducted a collaborative study to assess the performance of this assay and to evaluate the possibility of integrating it into general toxicological studies. Twenty-four testing laboratories belonging to the Mammalian Mutagenicity Study Group, a subgroup of the Japanese Environmental Mutagen Society, participated in this trial. Twenty-two model chemicals, including some hepatocarcinogens, were tested in 14- and/or 28-day RDLMN assays. As a result, 14 out of the 16 hepatocarcinogens were positive, including 9 genotoxic hepatocarcinogens, which were reported negative in the bone marrow/peripheral blood micronucleus (MN) assay by a single treatment. These outcomes show the high sensitivity of the RDLMN assay to hepatocarcinogens. Regarding the specificity, 4 out of the 6 non-liver targeted genotoxic carcinogens gave negative responses. This shows the high organ specificity of the RDLMN assay. In addition to the RDLMN assay, we simultaneously conducted gastrointestinal tract MN assays using 6 of the above carcinogens as an optional trial of the collaborative study. The MN assay using the glandular stomach, which is the first contact site of the test chemical when administered by oral gavage, was able to detect chromosomal aberrations with 3 test chemicals including a stomach-targeted carcinogen. The treatment regime was the 14- and/or 28-day repeated-dose, and the regime is sufficiently promising to incorporate these methods into repeated-dose toxicological studies. The outcomes of our collaborative study indicated that the new techniques to detect chromosomal aberrations in vivo in several tissues worked successfully.

  8. Embedding a Panoramic Representation of Infrared Light in the Adult Rat Somatosensory Cortex through a Sensory Neuroprosthesis

    PubMed Central

    Hartmann, Konstantin; Thomson, Eric E.; Zea, Ivan; Yun, Richy; Mullen, Peter; Canarick, Jay; Huh, Albert

    2016-01-01

    Can the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d. Animals in which IR information was delivered in spatial register with whisker topography learned the task more quickly. Further, in animals that had learned to use the prosthesis, altering the topographic mapping from IR sensor to stimulating electrode had immediate deleterious effects on discrimination performance. Multielectrode recordings revealed that S1 neurons had multimodal (tactile/IR) receptive fields, with clear preferences for those stimuli most likely to be delivered during the task. Neuronal populations predicted, with high accuracy, which stimulation pattern was present in small (75 ms) time windows. Surprisingly, when identical microstimulation patterns were delivered during an unrelated task, cortical activity in S1 was strongly suppressed. Overall, these results show that the adult mammalian neocortex can readily absorb completely new information sources into its representational repertoire, and use this information in the production of adaptive behaviors. SIGNIFICANCE STATEMENT Understanding the potential for plasticity in the adult brain is a key goal for basic neuroscience and modern rehabilitative medicine. Our study examines one dimension of this challenge: how malleable is sensory processing in adult mammals? We implemented a panoramic infrared (IR) sensory prosthetic system in rats; it consisted of four IR sensors equally spaced around the circumference of the head of the rat. Each sensor was coupled to a microstimulating electrode placed in the somatosensory

  9. Characterization of membrane currents in dissociated adult rat pineal cells.

    PubMed Central

    Aguayo, L G; Weight, F F

    1988-01-01

    1. Membrane currents, particularly the outward components, were studied in pineal cells acutely dissociated from adult rats using the whole-cell variant of the patch-clamp technique. 2. In current clamp, outward constant current elicited a transient graded depolarizing response. A sustained membrane rectification developed within 20 ms; this phenomenon was reduced in cells internally dialysed with 120 mM-CsCl. 3. Study of the membrane current revealed the existence of a transient and a delayed outward current. These currents were virtually eliminated when the cell was internally dialysed with CsCl. 4. The delayed outward current, isolated from a holding potential of -50 mV, activated at potentials near -20 mV, reached a steady-state current amplitude within 60 ms and had little or no decay during steps up to 400 ms in duration. This component was reduced by 80% or more with the addition of 5 mM-TEA. 5. From -100 mV, the transient outward current reached a peak within 15 ms and decayed with a single-exponential time course. The mean decay time constant was 66 +/- 10 ms (at -33 mV) and it showed little voltage sensitivity. This current, which activated at potentials positive to -60 mV and displayed half-inactivation at -76 +/- 8 mV, was reduced by 50% with the addition of 5 mM-4-AP (4-amino-pyridine). 6. In the presence of external Ca2+, the current-voltage relationship for the delayed current did not display a region of negative-slope conductance (N-shape). Increasing the intracellular ionized Ca2+ concentration by varying the Ca-EGTA buffer ratio did not alter the dependence of the current on the membrane potential. 7. Block of outward currents with internal Cs+ revealed a small (less than 90 pA) inward Ca2+ current when the external Ca2+ concentration was increased to 10 mM. From a holding potential of -50 mV, it had a threshold at -30 mV and peaked at +5 mV. Evidence for an inward Na+ current was not obtained. 8. We conclude that acutely dissociated pineal cells

  10. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  11. PROSTATE CANCER SCREENING: PSA TEST AWARENESS AMONG ADULT MALES.

    PubMed

    Obana, Michael; O'Lawrence, Henry

    2015-01-01

    The overall purpose of this study was to determine whether visits to the doctor in the last 12 months, education level, and annual household income for adult males increased the awareness of prostate-specific antigen (PSA) tests. The effect of these factors for the knowledge of PSA exams was performed using statistical analysis. A retrospective secondary database was utilized for this study using the questionnaire in the California Health Interview Survey from 2009. Based on this survey, annual visits to the doctor, higher educational levels attained, and greater take-home pay were statistically significant and the results of the study were equivalent to those hypothesized. This also reflects the consideration of marketing PSA blood test screenings to those adult males who are poor, uneducated, and do not see the doctor on a consistent basis.

  12. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats.

    PubMed

    Della, Franciela P; Abelaira, Helena M; Réus, Gislaine Z; Santos, Maria Augusta B dos; Tomaz, Débora B; Antunes, Altamir R; Scaini, Giselli; Morais, Meline O S; Streck, Emilio L; Quevedo, João

    2013-03-01

    Maternally deprived rats were treated with tianeptine (15 mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming and open field tests. The BDNF, NGF and energy metabolism were assessed in the rat brain. Deprived rats increased the immobility time, but tianeptine reversed this effect and increased the swimming time; the BDNF levels were decreased in the amygdala of the deprived rats treated with saline and the BDNF levels were decreased in the nucleus accumbens within all groups; the NGF was found to have decreased in the hippocampus, amygdala and nucleus accumbens of the deprived rats; citrate synthase was increased in the hippocampus of non-deprived rats treated with tianeptine and the creatine kinase was decreased in the hippocampus and amygdala of the deprived rats; the mitochondrial complex I and II-III were inhibited, and tianeptine increased the mitochondrial complex II and IV in the hippocampus of the non-deprived rats; the succinate dehydrogenase was increased in the hippocampus of non-deprived rats treated with tianeptine. So, tianeptine showed antidepressant effects conducted on maternally deprived rats, and this can be attributed to its action on the neurochemical pathways related to depression.

  13. Juvenile social subjugation induces a sex-specific pattern of anxiety and depression-like behaviors in adult rats.

    PubMed

    Weathington, Jill M; Arnold, Amanda R; Cooke, Bradley M

    2012-01-01

    Child abuse is the most significant environmental risk factor for the development of mood disorders, which occur twice as frequently in women as in men. To determine whether juvenile social subjugation (JSS) of rats induces mood disorder-like symptoms, we exposed 28 day-old male and female rats to daily aggressive acts from aggressive male residents. Each rat received pins, kicks, and dominance postures from the resident for 10 min per day for 10 days. When the rats were adults, we tested their anxiety- and depression-like behaviors. In addition, we measured circulating basal and stress-evoked corticosterone (CORT) levels, and weighed the adrenal glands. Although the amount of JSS was indistinguishable between males and females, females were nonetheless more severely affected by the experience. Subjugated females became immobile more quickly during forced swim tests, and made fewer investigatory approaches during the social interaction test than control females. Juvenile social subjugation increased closed arm time in the elevated plus maze of males and females, but the effect of social subjugation was greater in females. Finally, stress-evoked CORT levels were significantly higher, and adrenal gland weights were significantly heavier, in subjugated females relative to their controls and to subjugated males. Our results demonstrate that JSS increases depression- and anxiety-like behaviors and sensitizes the stress response system in a sex-specific manner.

  14. Blood Pressure Response to Submaximal Exercise Test in Adults

    PubMed Central

    Szmigielska, Katarzyna; Leszczynska, Joanna; Jegier, Anna

    2016-01-01

    Background. The assessment of blood pressure (BP) response during exercise test is an important diagnostic instrument in cardiovascular system evaluation. The study aim was to determine normal values of BP response to submaximal, multistage exercise test in healthy adults with regard to their age, gender, and workload. Materials and Methods. The study was conducted in randomly selected normotensive subjects (n = 1015), 512 females and 498 males, aged 18–64 years (mean age 42.1 ± 12.7 years) divided into five age groups. All subjects were clinically healthy with no chronic diseases diagnosed. Exercise stress tests were performed using Monark bicycle ergometer until a minimum of 85% of physical capacity was reached. BP was measured at rest and at peak of each exercise test stage. Results. The relations between BP, age, and workload during exercise test were determined by linear regression analysis and can be illustrated by the equations: systolic BP (mmHg) = 0.346 × load (W) + 135.76 for males and systolic BP (mmHg) = 0.103 × load (W) + 155.72 for females. Conclusions. Systolic BP increases significantly and proportionally to workload increase during exercise test in healthy adults. The relation can be described by linear equation which can be useful in diagnostics of cardiovascular diseases. PMID:27703976

  15. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    PubMed

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol.

  16. Stress in the Adult Rat Exacerbates Muscle Pain Induced by Early-Life Stress

    PubMed Central

    Alvarez, Pedro; Green, Paul G.; Levine, Jon D.

    2013-01-01

    Background Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. Methods Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding, NLB) for one week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines, interleukin 6 (IL-6) and tumor necrosis alpha (TNFα) in nociception, was evaluated through of behavioral and ELISA assays, surgical interventions and intrathecal antisense treatments. Results Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6-receptor subunit gp130, but not to TNFα type 1 receptor (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared to control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control but not in NLB rats. Conclusions Early-life stress induces a persistent elevation of IL-6, hyperalgesia and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and pro-inflammatory cytokines acting at muscle nociceptor level. PMID:23706525

  17. Telepsychiatry for Neurocognitive Testing in Older Rural Latino Adults

    PubMed Central

    Vahia, Ipsit V.; Ng, Bernardo; Camacho, Alvaro; Cardenas, Veronica; Cherner, Mariana; Depp, Colin A.; Palmer, Barton W.; Jeste., Dilip V.; Agha, Zia

    2015-01-01

    As the population of older Latinos in the U.S. increases, availability of culturally-adapted geriatric psychiatry services is becoming a growing concern. This issue is exacerbated for rural Latino populations. In this study, we assessed whether neurocognitive assessment via telepsychiatry (TP) using a Spanish-language battery would be comparable to in-person (IP) testing using the same battery in a sample of Spanish-speaking older adults in a rural setting. Patients (N=22) received IP and TP testing 2 weeks apart. The order of IP and TP test administrations in individual subjects was determined randomly. Comparison of scores indicated that there were no significant differences between IP and TP test performance though both groups scored non-significantly higher at the second visit. This study demonstrates feasibility and utility of neurocognitive testing in Spanish using TP among older rural Latinos. PMID:25708655

  18. Telepsychiatry for Neurocognitive Testing in Older Rural Latino Adults.

    PubMed

    Vahia, Ipsit V; Ng, Bernardo; Camacho, Alvaro; Cardenas, Veronica; Cherner, Mariana; Depp, Colin A; Palmer, Barton W; Jeste, Dilip V; Agha, Zia

    2015-07-01

    As the population of older Latinos in the U.S. increases, availability of culturally adapted geriatric psychiatry services is becoming a growing concern. This issue is exacerbated for rural Latino populations. In this study, we assessed whether neurocognitive assessment via telepsychiatry (TP) using a Spanish-language battery would be comparable to in-person (IP) testing using the same battery in a sample of Spanish-speaking older adults in a rural setting. Patients (N = 22) received IP and TP testing 2 weeks apart. The order of IP and TP test administrations in individual subjects was determined randomly. Comparison of scores indicated that there were no significant differences between IP and TP test performance though both groups scored non-significantly higher at the second visit. This study demonstrates feasibility and utility of neurocognitive testing in Spanish using TP among older rural Latinos.

  19. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  20. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat.

    PubMed

    Liu, W; Crews, F T

    2015-05-07

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on-2 days off; P25-P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood.

  1. Increased rat neonatal activity influences adult cytokine levels and relative muscle mass

    PubMed Central

    Buchowicz, Bryce; Yu, Tiffany; Nance, Dwight M.; Zaldivar, Frank P.; Cooper, Dan M.; Adams, Gregory R.

    2011-01-01

    Little is known about the effect of physical activity in early life on subsequent growth and regulation of inflammation. We previously reported that exposure of muscles in growing rats to IL-6 results in decreased muscle growth apparently due to a state of resistance to growth factors such IGF-I and that running exercise could ameliorate this growth defect. Herein we hypothesized that increased activity, for a brief period during neonatal life, would pattern the adult rat towards a less inflammatory phenotype. Neonatal rats were induced to move about their cage for brief periods from day 5 to day 15 postpartum. Additional groups were undisturbed controls (CON) and handled (HAND). Sub-groups of rats were sampled at 30 and 65 days of age. Relative to CON and HAND, neonatal exercise (EX) results in decreased circulating levels of TNFα, IL-6 and IL-1β in adulthood, primarily in male rats. In addition, adult male EX rats had lower body mass and increased skeletal muscle mass suggesting a leaner phenotype. The results of this study suggest that moderate increases in activity early in life can influence the adult toward a more healthy phenotype with regard to inflammatory mediators and relative muscle mass. PMID:20657345

  2. Early life permethrin insecticide treatment leads to heart damage in adult rats.

    PubMed

    Vadhana, M S Dhivya; Carloni, Manuel; Nasuti, Cinzia; Fedeli, Donatella; Gabbianelli, Rosita

    2011-09-01

    Early life environmental exposure to xenobiotics could represent a critical period for the onset of permanent alterations in the structure and function of different organs. Cardiovascular diseases can be related to various factors including environmental toxicants. The aim of the present study was to evaluate the effect of early life permethrin treatment (1/50 LD(50), from 6th to 21st day of life) on heart of adult rats. Increased DNA damage, decreased heart cell membrane fluidity, increased cholesterol content, protein and lipid oxidation were measured in heart cells from adult rats treated with permethrin during the neonatal period with respect to control rats. Moreover, the same group showed higher levels of cholesterol, IL-1β, IL-2, IFN-γ, rat-Rantes and IL-10 cytokines and decreased albumin content in plasma. Lower cholesterol levels and perturbation in the phospholipid lateral diffusion together with decreased GSH levels and increased GPx activity were measured in heart mitochondria of the treated group. Our findings support the evidence that the neonatal period has a critical role in the development of heart disease in adulthood. We hypothesize that the alterations observed in adult rats could depend on epigenetic changes that occurred during this period which influence gene expression throughout the rat's life, leading to alterations of certain parameters related to cardiac function.

  3. Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2009-09-11

    Mammalian gonadotropin-releasing hormone (GnRH) and its receptor have been found in the neuroendocrine reproductive axis. However, they can be localized in other extra-pituitary tissues as well including the central nervous system. The present study reports the expression of GnRH receptor and its mRNA in spinal cord neurons of rat embryos and adult rats, using immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR). Immunohistochemistry showed that the spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor. The study of GnRH receptor mRNAs revealed that both cultured spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor mRNA. Additional in vitro experiments showed that the expression of GnRH receptor mRNA was less in the spinal cord neurons exposed to GnRH compared to unexposed ones. These results raise the possibility that GnRH may play other roles independently from its participation in reproductive function.

  4. Effect of different doses of Malaysian honey on reproductive parameters in adult male rats.

    PubMed

    Mohamed, M; Sulaiman, S A; Jaafar, H; Sirajudeen, K N S

    2012-05-01

    The aim of this study was to evaluate the effect of different doses of Malaysian honey on male reproductive parameters in adult rats. Thirty-two healthy adult male Sprague-Dawley rats were randomly divided into four groups (eight rats per group). Group 1 (control group) was given 0.5 ml of distilled water. Groups 2, 3 and 4 were given 0.2, 1.2 and 2.4 g kg(-1) body weight of honey respectively. The rats were treated orally by gavage once daily for 4 weeks. Honey did not significantly alter body and male reproductive organs weights. The rats in Group 3 which received honey at 1.2 g kg(-1) had significantly higher epididymal sperm count than those in Groups 1, 2 and 4. No significant differences were found for the percentage of abnormal sperm, elongated spermatid count, reproductive hormonal levels as well as the histology of the testis among the groups. In conclusion, Malaysian honey at a dose of 1.2 g kg(-1) daily significantly increased epididymal sperm count without affecting spermatid count and reproductive hormones. These findings might suggest that oral administration of honey at this dose for 4 weeks may enhance spermiogenesis in adult rats.

  5. Early social isolation disrupts latent inhibition and increases dopamine D2 receptor expression in the medial prefrontal cortex and nucleus accumbens of adult rats.

    PubMed

    Han, Xiao; Li, Nanxin; Xue, Xiaofang; Shao, Feng; Wang, Weiwen

    2012-04-04

    Adolescence is a critical period for neurodevelopment. In the present study, we investigated the effects of peri-adolescent social isolation on latent inhibition (LI) and dopamine D2 receptor expression in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) of young adult rats. Male Sprague-Dawley rats were randomly divided into adolescent isolation (ISO; isolated housing, 21-34 days of age) and social housing (SOC) groups. LI was tested at postnatal day 56. After behavioral testing, the number of dopamine D2 receptor-expressing cells was determined using immunohistochemistry. Adolescent social isolation impaired LI and increased the number of cells expressing the D2 receptor in the mPFC and NAc. The results suggest that adolescent social isolation produces profound effects on cognitive and dopaminergic function in adult rats, and could be used as an animal model of various neurodevelopmental disorders.

  6. Vitamin D Deficiency Exacerbates Experimental Stroke Injury and Dysregulates Ischemia-Induced Inflammation in Adult Rats

    PubMed Central

    Balden, Robyn; Selvamani, Amutha

    2012-01-01

    Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I. PMID:22408173

  7. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring.

    PubMed

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2013-06-01

    Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.

  8. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats

    PubMed Central

    Albores-Garcia, Damaris; Hernandez, Alberto J.; Loera, Miriam J.

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined. PMID:26885512

  9. Early Developmental Low-Dose Methylmercury Exposure Alters Learning and Memory in Periadolescent but Not Young Adult Rats.

    PubMed

    Albores-Garcia, Damaris; Acosta-Saavedra, Leonor C; Hernandez, Alberto J; Loera, Miriam J; Calderón-Aranda, Emma S

    2016-01-01

    Few studies have assessed the effects of developmental methylmercury (MeHg) exposure on learning and memory at different ages. The possibility of the amelioration or worsening of the effects has not been sufficiently investigated. This study aimed to assess whether low-dose MeHg exposure in utero and during suckling induces differential disturbances in learning and memory of periadolescent and young adult rats. Four experimental groups of pregnant Sprague-Dawley rats were orally exposed to MeHg or vehicle from gestational day 5 to weaning: (1) control (vehicle), (2) 250 μg/kg/day MeHg, (3) 500 μg/kg/day MeHg, and (4) vehicle, and treated on the test day with MK-801 (0.15 mg/kg i.p.), an antagonist of the N-methyl D-aspartate receptor. The effects were evaluated in male offspring through the open field test, object recognition test, Morris water maze, and conditioned taste aversion. For each test and stage assessed, different groups of animals were used. MeHg exposure, in a dose-dependent manner, disrupted exploratory behaviour, recognition memory, spatial learning, and acquisition of aversive memories in periadolescent rats, but alterations were not observed in littermates tested in young adulthood. These results suggest that developmental low-dose exposure to MeHg induces age-dependent detrimental effects. The relevance of decreasing exposure to MeHg in humans remains to be determined.

  10. [Disruption of latent inhibition in adult rats after prepubertal dopamine terminals lesions in the ventral hippocampus].

    PubMed

    Loskutova, L V; Kostiunina, N V; Red'kina, A V

    2010-05-01

    Wistar rats were submitted to bilateral ventral hippocampal injection of 6-hydroxydopamine on 32nd day after birth. Latent inhibition was measured in passive or active avoidance tasks when the rats received 20 and 100 pre-exposures of conditioned stimulus. Prepubertal and adult lesioned rats showed a deficit in the latent inhibition but not in the capacity to avoidance learning in presence of the conditioned stimulus novelty. Possible mechanism of the involvement of hippocampal dopaminergic terminals in attention inhibition to irrelevant information is considered.

  11. Stress-Induced Locomotor Sensitization to Amphetamine in Adult, but not in Adolescent Rats, Is Associated with Increased Expression of ΔFosB in the Nucleus Accumbens

    PubMed Central

    Carneiro de Oliveira, Paulo E.; Leão, Rodrigo M.; Bianchi, Paula C.; Marin, Marcelo T.; Planeta, Cleopatra da Silva; Cruz, Fábio C.

    2016-01-01

    While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats. PMID:27672362

  12. The Ginkgo biloba Extract Reverses the Renal Effects of Titanium Dioxide Nanoparticles in Adult Male Rats

    PubMed Central

    Reynoso-Andeola, Irma Guadalupe; Jaramillo-Juárez, Fernando; Martínez-Ruvalcaba, Haydée; Posadas del Rio, Francisco A.

    2016-01-01

    The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27% of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200–300 g), divided into four groups: control group (treated with 5.0 mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO2-NPs) group (5.0 mg/kg, intravenous), GbE group (10 mg/kg, intraperitoneal), and GbE + TiO2-NPs group (treated 24 h before with 10 mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0 mg/kg of TiO2-NPs intravenously. The statistical analysis was performed using Student's t-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO2-NPs because it reversed the increased activity of γ-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase IV at all times tested (0–5, 5–24, 24–48, and 48–72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three times tested (5–24, 24–48, and 48–72). Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO2-NPs, in experimental rats. PMID:27042354

  13. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    PubMed

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  14. Effects of chronic adult dietary restriction on spatial learning in the aged F344 x BN hybrid F1 rat.

    PubMed

    Fitting, Sylvia; Booze, Rosemarie M; Gilbert, Candace A; Mactutus, Charles F

    2008-02-27

    Dietary restriction (DR) has been shown to increase life span and reduce disease incidence across a variety of species. Recent research suggests that chronic adult DR may also alter age-related cognitive decline. The purpose of this study was twofold: (1) to examine the potential deficits in spatial learning ability in the aged F344 x BN hybrid F1 rat with specific attention to the contributory effects of motoric impairments and (2) to determine the influence of chronic adult DR on any such impairments. The Morris water maze (MWM) task was employed with a 1.8 m diameter tank, 10 cm2 escape platform, 28 degrees C water, and an automated collapsing central starting platform. Spatial learning impairments in the aged rats were evident on all dependent measures during training and the probe test. Motoric function, as reflected in measures of strength and locomotion demonstrated profound age-related performance impairments that were attenuated by chronic adult DR. The present data also replicate previous reports, indicating that DR attenuates the age-related impairments of performance in the MWM as indexed by the latency measure in acquisition, but critically was dissociated from any DR effect on measures of preference and, more critically, accuracy in the probe test. Collectively, the most parsimonious interpretation of DR effects on MWM performance would appear to be the preservation of motoric, and not cognitive, function.

  15. Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy.

    PubMed

    Sitnikova, Evgenia

    2011-03-04

    Absence epilepsy has age-related onset. In a WAG/Rij rat genetic model, absence seizures appear after puberty and they are increased with age. It is known that (1) epileptic activity in WAG/Rij rats is initiated at the perioral area in the somatosensory cortex; (2) sensory deprivation, i.e., whisker trimming during the critical period of development, could enhance excitatory activity in the somatosensory cortex. It is hypothesized that the cortex may become more excitable after neonatal vibrissae removal, and this may precipitate absence seizures in adult rats. We found that whisker trimming during the first postnatal weeks caused more rapid development of EEG seizure activity in adult WAG/Rij rats. Epileptic discharges in the trimmed rats were more numerous (vs control), showed longer duration and often appeared in desynchronized and drowsy EEG. The number of absence-like spindle-shaped EEG events (spike-wave spindles) in the whisker-trimmed rats was higher than in control, especially during the intermediate sleep state. An age-dependent increase of intermediate sleep state was found in the trimmed rats, but not in the intact animals. We discuss epigenetic factors that can modulate absence epilepsy in genetically prone subjects.

  16. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats.

    PubMed

    Oshiro, W M; Beasley, T E; McDaniel, K L; Evansky, P A; Martin, S A; Moser, V C; Gilbert, M E; Bushnell, P J

    2015-01-01

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoline alone (E0) and gasoline with 15% or 85% ethanol (E15 and E85, respectively). Rat dams were exposed for 6.5h daily to the vapors at concentrations of 0, 3000, 6000, or 9000 ppm in inhalation chambers from gestational day (GD) 9 through 20. Cage controls (offspring of non-exposed dams that remained in the animal facility during these exposures) were also assessed in the E0 experiment, but showed no consistent differences from the offspring of air-exposed controls. Offspring were tested as adults with trace fear conditioning, Morris water maze, or appetitive operant responding. With fear conditioning, no significant effects were observed on cue or context learning. In the water maze, there were no differences in place learning or escaping to a visible platform. However, during the reference memory probe (no platform) male rats exposed prenatally to E85 vapor (6000 and 9000 ppm) failed to show a bias for the target quadrant. Across studies, females (treated and some controls) were less consistent in this measure. Males showed no differences during match-to-place learning (platform moved each day) in any experiment and females showed only transient differences in latency and path length in the E0 experiment. Similarly, no differences were observed in delayed match-to-sample operant performance of E0 males or females; thus this test was not used to evaluate effects of E15 or E85 vapors. During choice reaction time assessments (only males were tested) decision and movement times were unimpaired by any prenatal exposure, while anticipatory responses were increased by vapors of E0 (9000 ppm) and E15 (6000 and 9000 ppm), and the latter group also showed reduced accuracy. E85 vapors did not disrupt

  17. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Fisher, Jeffrey W.

    2010-09-01

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  18. Ventilatory phenotypes among four strains of adult rats.

    PubMed

    Hodges, Matthew R; Forster, Hubert V; Papanek, Paula E; Dwinell, Melinda R; Hogan, Genevieve E

    2002-09-01

    Our purpose in this study was to identify different ventilatory phenotypes among four different strains of rats. We examined 114 rats from three in-house, inbred strains and one outbred strain: Brown Norway (BN; n = 26), Dahl salt-sensitive (n = 24), Fawn-hooded Hypertensive (FHH: n = 27), and outbred Sprague-Dawley rats (SD; n = 37). We measured eupneic (room air) breathing and the ventilatory responses to hypoxia (12% O(2)-88% N(2)), hypercapnia (7% CO(2)), and two levels of submaximal exercise. Primary strain differences were between BN and the other strains. BN rats had a relatively attenuated ventilatory response to CO(2) (P < 0.001), an accentuated ventilatory response to exercise (P < 0.05), and an accentuated ventilatory roll-off during hypoxia (P < 0.05). Ventilation during hypoxia was lower than other strains, but hyperventilation during hypoxia was equal to the other strains (P > 0.05), indicating that the metabolic rate during hypoxia decreased more in BN rats than in other strains. Another strain difference was in the frequency and timing components of augmented breaths, where FHH rats frequently differed from the other strains, and the BN rats had the longest expiratory time of the augmented breaths (probably secondary to the blunted CO(2) sensitivity). These strain differences not only provide insight into physiological mechanisms but also indicate traits (such as CO(2) sensitivity) that are genetically regulated. Finally, the data establish a foundation for physiological genomic studies aimed at elucidating the genetics of these ventilatory control mechanisms.

  19. Similar withdrawal severity in adolescents and adults in a rat model of alcohol dependence.

    PubMed

    Morris, S A; Kelso, M L; Liput, D J; Marshall, S A; Nixon, K

    2010-02-01

    Alcohol use during adolescence leads to increased risk of developing an alcohol use disorder (AUD) during adulthood. Converging evidence suggests that this period of enhanced vulnerability for developing an AUD may be due to the adolescent's unique sensitivity and response to alcohol. Adolescent rats have been shown to be less sensitive to alcohol intoxication and withdrawal susceptibility; however, age differences in ethanol pharmacokinetics may underlie these effects. Therefore, this study investigated alcohol intoxication behavior and withdrawal severity using a modified Majchrowicz model of alcohol dependence that has been shown to result in similar blood ethanol concentrations (BECs) despite age differences. Adolescent (postnatal day, PND, 35) and adult rats (PND 70+) received ethanol according to this 4-day binge paradigm and were observed for withdrawal behavior for 17h. As expected, adolescents showed decreased sensitivity to alcohol-induced CNS depression as evidenced by significantly lower intoxication scores. Thus, adolescents received significantly more ethanol each day (12.3+/-0.1g/kg/day) than adults (9.2+/-0.2g/kg/day). Despite greater ethanol dosing in adolescent rats, both adolescent and adult groups had comparable peak BECs (344.5+/-10.2 and 338.5+/-7.8mg/dL, respectively). Strikingly, withdrawal severity was similar quantitatively and qualitatively between adolescent and adult rats. Further, this is the first time that withdrawal behavior has been reported for adolescent rats using this model of alcohol dependence. A second experiment confirmed the similarity in BECs at various time points across the binge. These results demonstrate that after consideration of ethanol pharmacokinetics between adults and adolescents by using a model that produces similar BECs, withdrawal severity is nearly identical. This study, in combination with previous reports on ethanol withdrawal in adolescents and adults, suggests only a BEC-dependent effect of ethanol on

  20. Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats.

    PubMed

    Mustroph, Martina L; King, Michael A; Klein, Ronald L; Ramirez, Julio J

    2012-07-15

    Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer's disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics.

  1. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats

    PubMed Central

    Kong, Lu; Tang, Meng; Zhang, Ting; Wang, Dayong; Hu, Ke; Lu, Weiqi; Wei, Chao; Liang, Geyu; Pu, Yuepu

    2014-01-01

    Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions. PMID:25407529

  2. Postnatal ethanol exposure disrupts signal detection in adult rats.

    PubMed

    Woolfrey, Kevin M; Hunt, Pamela S; Burk, Joshua A

    2005-01-01

    Human prenatal ethanol exposure that occurs during a period of increased synaptogenesis known as the "brain growth spurt" has been associated with significant impairments in attention, learning, and memory. The present experiment assessed whether administration of ethanol during the brain growth spurt in the rat, which occurs shortly after birth, disrupts attentional performance. Rats were administered 5.25 g/kg/day ethanol via intragastric intubation from postnatal days (PD) 4-9, sham-intubation, or no intubation (naïve). Beginning at PD 90, animals were trained to asymptotic performance in a two-lever attention task that required discrimination of brief visual signals from trials with no signal presentation. Finally, manipulations of background noise and inter-trial interval duration were conducted. Early postnatal ethanol administration did not differentially affect acquisition of the attention task. However, after rats were trained to asymptotic performance levels, those previously exposed to ethanol demonstrated a deficit in detection of signals but not of non-signals compared to sham-intubated and naïve rats. The signal detection deficit persisted whenever these animals were re-trained in the standard task, but further task manipulations failed to interact with ethanol pretreatment. The present data support the hypothesis that early postnatal ethanol administration disrupts aspects of attentional processing in the rat.

  3. Effects of testicular transfixation on seminiferous tubule morphology and sperm parameters of prepubertal, pubertal, and adult rats.

    PubMed

    Ribeiro, Carina T; De Souza, Diogo B; Costa, Waldemar S; Pereira-Sampaio, Marco A; Sampaio, Francisco J B

    2015-10-15

    Orchiopexy is performed as part of cryptorchidism and testicular torsion treatment. The inflammation caused by the needle and suture penetration has been suggested to be one of the possible causes of subfertility after parenchymal transfixation of the testicles. The purpose of the present study was to investigate testicular alterations after parenchymal transfixation sutures at different ages in rats. Prepubertal, pubertal, and adult rats were submitted to parenchymal suturing (without tying the knots, thus avoiding local ischemic injury) of the right testicle, which was maintained for 4 hours. All animals were subjected to euthanasia on completion of 14 weeks of life. The right testicles were studied as the sutured testicles, whereas the left organs were studied as contralateral. One age-matched control group of rats that was not submitted to any procedure was used for comparison. During euthanasia, sperm were collected from the tail of the epididymal and evaluated for concentration, motility, and viability. Samples from testicular tissue were collected for morphologic analysis. Sperm analysis indicated that only the adult operated animals presented reductions in motility (38.2% of adult vs. 54.1% of control; P = 0.02) and viability (16.6% of adult vs. 24.6% of control; P = 0.003). Several morphologic alterations were noted both in sutured and in contralateral testes at all ages. For instance, the seminiferous epithelium volumetric density of right testicles was reduced from 50.4% in controls to 32.3% in prepubertal operated animals, 45.3% in pubertal operated animals, and 39.4% in adult operated animals (P < 0.05). The seminiferous epithelium volumetric density was also reduced to 39.9% and 39.0% in contralateral testicles of animals operated before and after puberty, respectively (P < 0.05). The animals operated on before puberty and in adulthood showed more testicular morphologic alterations, as seminiferous tubule volumetric density, seminiferous tubule length

  4. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats.

    PubMed

    Holtz, Nathan A; Carroll, Marilyn E

    2015-06-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability.

  5. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats

    PubMed Central

    Holtz, Nathan A.; Carroll, Marilyn E.

    2016-01-01

    Adolescence is a transitional phase marked by a heightened vulnerability to substances of abuse. It has been hypothesized that both increased sensitivity to reward and decreased sensitivity to aversive events may drive drug-use liability during this phase. To investigate possible age-related differences in sensitivity to the aversive consequences of drug use, adolescent and adult rats were compared on self-administration of cocaine before, during, and after a 10-day period in which an aversive agent, histamine, was added to the cocaine solution. Adult and adolescent female rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) over 10 sessions (2 h/session; 2 sessions/day). Histamine (4 mg/kg/infusion) was then added directly into the cocaine solution for the next 10 sessions. Finally, the cocaine/histamine solution was replaced with a cocaine-only solution, and rats continued to self-administer cocaine (0.4 mg/kg) for 20 sessions. Compared with adolescent rats, adult rats showed a greater decrease in cocaine self-administration when it was punished with intravenous histamine compared with their baseline cocaine self-administration rates. These results suggest that differences in the sensitivity to negative consequences of drug use may partially explain developmental differences in drug use vulnerability. PMID:25769092

  6. Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning.

    PubMed

    Ueda, S; Sakakibara, S; Yoshimoto, K

    2005-01-01

    The dentate gyrus of the hippocampal formation produces new neurons throughout adulthood in mammalian species. Several experimental statuses and factors regulating to neurogenesis have been identified in the adult dentate gyrus. For example, exposure to an enriched environment enhances neurogenesis in the dentate gyrus and improves hippocampus-dependent spatial learning. Furthermore, serotonin is known to influence adult neurogenesis, and learning and memory. However, the effects of long-lasting depletion of serotonin over the developing period on neurogenesis have not been investigated. Thus, we examined the influence of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis and spatial memory performance. As reported previously, environmental enrichment significantly increased new neurons in the dentate gyrus. However, there was no improvement of the spatial learning test in adult rats in standard and in environmental enrichment housings. Intracisternal administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine, on postnatal day 3 apparently reduced serotonin content in the adult hippocampus without regeneration. This experimental depletion of serotonin in the hippocampus of rats housed in an enriched environment had no effect on spatial memory performance, but produced significant decreases in the number of bromodeoxyuridine-labeled new cells in the dentate gyrus. These findings indicate that newly generated cells stimulated by environmental enrichment are not critical for improvements in hippocampus-dependent learning. Furthermore, numbers of bromodeoxyuridine-labeled cells in the dentate gyrus of 5,7-dihydroxytryptamine-injected rats did not differ between 1 day and 4 weeks after bromodeoxyuridine injection. These data suggest that survival of newly generated dentate gyrus cells remains relatively constant under long-lasting serotonin depletion.

  7. Early metabolic reactivation versus antioxidant therapy after a traumatic spinal cord injury in adult rats.

    PubMed

    Torres, Sergio; Salgado-Ceballos, Hermelinda; Torres, José Luis; Orozco-Suarez, Sandra; Díaz-Ruíz, Araceli; Martínez, Angelina; Rivera-Cruz, Mario; Ríos, Camilo; Lara, Alicia; Collado, Carlos; Guizar-Sahagún, Gabriel

    2010-02-01

    Disability after traumatic spinal cord injury (TSCI) results from physical trauma and from "secondary mechanisms of injury" such as low metabolic energy levels, oxidative damage and lipid peroxidation. In order to prove if early metabolic reactivation is a better therapeutic option than antioxidant therapy in the acute phase of TSCI, spinal cord contusions were performed in adult rats using a well-characterized weight drop technique at thoracic 9 level. After TSCI, pyrophosphate of thiamine or non-degradable cocarboxylase (NDC) enzyme was used to maintain energy levels, antioxidants such as superoxide dismutase and catalase (ANT) were used to decrease oxidative damage and methylprednisolone (MP), which has both therapeutic properties, was used as a control. Rats were divided into one sham group and six with TSCI; one of them received no treatment, and the rest were treated with NDC, MP, NDC + MP, NDC + ANT or ANT. The ANT group decreased lactate and creatine phosphokinase levels and increased the amount of preserved tissue (morphometric analysis) as well as functional recovery (Basso, Beattie and Bresnahan or BBB motor scale). In contrast, NDC treatment increased lipid peroxidation, measured through thiobarbituric acid reactive substances (TBARS) levels, as well as spinal cord tissue destruction and functional deficit. Early metabolic reactivation after a TSCI may be deleterious, while natural early metabolic inhibition may not be a "secondary mechanism of injury" but a "secondary neuroprotective response". While increased antioxidant defence after a TSCI may currently be an ideal therapeutic strategy, the usefulness of metabolic reactivation should be tested in the sub-acute or chronic phases of TSCI and new strategies must continue to be tested for the early ones.

  8. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    ERIC Educational Resources Information Center

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  9. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  10. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  11. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  12. Validity of a modified shuttle test in adult cystic fibrosis

    PubMed Central

    Bradley, J.; Howard, J.; Wallace, E.; Elborn, S.

    1999-01-01

    BACKGROUND—The purpose of this study was to provide some evidence of the validity of a modified shuttle test (MST) by comparing performance on the MST with peak oxygen consumption (V̇O2peak) measured during a treadmill test in a group of adult patients with cystic fibrosis.
METHOD—Twenty patients with stable cystic fibrosis performed a ramped maximal treadmill test (STEEP protocol) and the MST using a randomised balanced design.
RESULTS—The relationship between the distance achieved on the MST and V̇O2peak was strong (r = 0.95, p<0.01) with 90% of the variance in V̇O2peak explained by the variance in MST distance. The relationship was represented by the regression equation (with 95% confidence intervals) V̇O2peak = 6.83 (2.85 to 10.80) + 0.028 (0.019 to 0.024)× MST distance.
CONCLUSION—This study provides evidence of the construct validity of the MST as an objective measure of exercise capacity in adults with cystic fibrosis.

 PMID:10212110

  13. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    PubMed

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species.

  14. Maternal high-fat diet inversely affects insulin sensitivity in dams and young adult male rat offspring.

    PubMed

    Karbaschi, Roxana; Sadeghimahalli, Forouzan; Zardooz, Homeira

    2016-09-01

    This study attempts to further clarify the potential effects of maternal high-fat (HF) diet on glucose homeostasis in dams and young adult male rat offspring. Female rats were divided into control (CON dams) and HF (HF dams) diet groups, which received the diet 4 weeks prior to and through pregnancy and lactation periods. Blood samples were taken to determine metabolic parameters, then an intraperitoneal glucose tolerance test (IPGTT) was performed. Maternal HF diet increased intra-abdominal fat mass and plasma corticosterone level, but decreased leptin concentration in dams. In HF offspring intra-abdominal fat mass, plasma leptin, and corticosterone levels decreased. Following IPGTT, the plasma insulin level of HF dams was higher than the controls. In HF offspring plasma insulin level was not significantly different from the controls, but a steeper decrease of their plasma glucose concentration was observed.

  15. NASA Rat Acoustic Tolerance Test 1994-1995

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Mele, Gary D.; Naidu, Sujata

    1996-01-01

    The major objective of this Cooperative Agreement was to develop a noise level specification for laboratory rats in the Centrifuge Facility Specimen Chambers (Space Station Biological Research Project), and to validate the specification for 3 noise octave bands: center frequencies 8 kHz, 16, kHz, and 32 kHz. This has been accomplished. Objective measures were used to verify that the chronic noise exposure was not harmful to the animals from physiological and behavioral perspectives. These measures were defined in the Stress Assessment Battery Validation for the Rat Acoustic Tolerance Test. In addition, the effects of the chronic noise exposure on rat hearing was assessed by the Brainstem Auditory Evoked Potential Method (BAER).

  16. NASA Rat Acoustic Tolerance Test 1994-1995: 8 kHz, 16 kHz, 32 kHz Experiments

    NASA Technical Reports Server (NTRS)

    Mele, Gary D.; Holley, Daniel C.; Naidu, Sujata

    1996-01-01

    Adult male Sprague-Dawley rats were exposed to chronic applied sound (74 to 79 dB, SPL) with octave band center frequencies of either 8, 16 or 32 kHz for up to 60 days. Control cages had ambient sound levels of about 62 dB (SPL). Groups of rats (test vs. control; N=9 per group) were euthanized after 0. 5. 14, 30, and 60 days. On each euthanasia day, objective evaluation of their physiology and behavior was performed using a Stress Assessment Battery (SAB) of measures. In addition, rat hearing was assessed using the brain stem auditory evoked potential (BAER) method after 60 days of exposure. No statistically significant differences in mean daily food use could be attributed to the presence of the applied test sound. Test rats used 5% more water than control rats. In the 8 kHz and 32 kHz tests this amount was statistically significant(P less than .05). This is a minor difference of questionable physiological significance. However, it may be an indication of a small reaction to the constant applied sound. Across all test frequencies, day 5 test rats had 6% larger spleens than control rats. No other body or organ weight differences were found to be statistically significant with respect to the application of sound. This spleen effect may be a transient adaptive process related to adaptation to the constant applied noise. No significant test effect on differential white blood cell counts could be demonstrated. One group demonstrated a low eosinophil count (16 kHz experiment, day 14 test group). However this was highly suspect. Across all test frequencies studied, day 5 test rats had 17% fewer total leukocytes than day 5 control rats. Sound exposed test rats exhibited 44% lower plasma corticosterone concentrations than did control rats. Note that the plasma corticosterone concentration was lower in the sound exposed test animals than the control animals in every instance (frequency exposure and number of days exposed).

  17. Electrophysiological properties of newborn and adult rat spinal cord glycine receptors expressed in Xenopus oocytes.

    PubMed Central

    Morales, A; Nguyen, Q T; Miledi, R

    1994-01-01

    The properties of glycine receptors (GlyRs) from newborn and adult rat spinal cord were studied in Xenopus oocytes injected with whole mRNA or the heavy (H) or light (L) mRNA fractions encoding their respective GlyRs. Mean open times and conductances of channels gated by H- or L-GlyRs were determined by noise analysis or voltage jumps. We found that adult H- and L-GlyRs opened channels that differed in their mean open time but had the same channel conductance. Both H- and L-GlyRs gated Cl- currents that displayed a similarly strong outward rectification. Nevertheless, single channels of adult H- and L-GlyRs did not rectify and their mean open times were only slightly altered by voltage. It follows that the outward rectification of adult GlyRs is due mainly to a reduction in the number of open channels. In contrast to H-GlyRs, whose characteristics seem to remain essentially unchanged with age, L-GlyRs from newborn and adult rats have different properties. Channels of newborn L-GlyRs have a higher conductance, longer open time, and greater voltage dependency than those from the adult. Interestingly, properties of newborn GlyRs expressed by whole mRNA were markedly different from those encoded by newborn or adult L or H mRNA. These results demonstrate that the functional heterogeneity of GlyRs is developmentally regulated. PMID:8159710

  18. The Development and Testing of Adult Vocational Programs Utilizing the Adult Performance Level Competency Approach. Final Report.

    ERIC Educational Resources Information Center

    Tennessee State Dept. of Education, Nashville.

    A project set out to develop and test adult performance level (APL) materials for pre-vocational programs to enable adults to develop those skills needed to seek and retain employment. Addressing the APL area of occupational knowledge only, methodology focused on (1) joint planning in material development and testing; (2) extensive training in…

  19. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  20. Effect of a high or low ambient perinatal temperature on adult obesity in Osborne-Mendel and S5B/Pl rats.

    PubMed

    White, Christy L; Braymer, H Doug; York, David A; Bray, George A

    2005-05-01

    Perinatal environment is an important determinant of health status of adults. We tested the hypothesis that perinatal ambient temperature alters sympathetic activity and affects body composition in adult life and that this effect differs between S5B/Pl (S5B) and Osborne-Mendel (OM) strains of rat that were resistant (S5B) or susceptible (OM) to dietary obesity. From 1 wk before birth, rat litters were raised at either 18 or 30 degrees C until 2 mo of age while consuming a chow diet. Rats were then housed at normal housing temperature (22 degrees C) and provided either high-fat or low-fat diet. OM rats initially reared at 18 degrees C gained more weight on both diets than those reared at 30 degrees C. Perinatal temperature had no effect on body weight gain of the S5B rats on either diet. At 12 wk of age, OM and S5B rats reared at 18 degrees C had higher intakes of the high-fat diet than those reared at 30 degrees C but lower beta3-adrenergic receptor (beta3-AR) and uncoupling protein-1 (UCP1) mRNA levels in brown adipose tissue (BAT). The increase in metabolic rate in response to the beta3-agonist CL-316243, was greater in both OM and S5B rats reared at 18 degrees C than in those reared at 30 degrees C. Perinatal temperature differentially affects body weight in OM and S5B rats while having similar effects on food intake, response to a beta3-agonist, and BAT beta3-AR and UCP-1. The data suggest that OM rats are more susceptible to epigenetic programming than S5B rats.

  1. Cimetidine-induced vascular cell apoptosis impairs testicular microvasculature in adult rats.

    PubMed

    Beltrame, Flávia L; Yamauti, Caroline T; Caneguim, Breno H; Cerri, Paulo S; Miraglia, Sandra M; Sasso-Cerri, Estela

    2012-10-01

    Cimetidine, an H₂ receptor antagonist used for treatment of gastric ulcers, exerts antiandrogenic and antiangiogenic effects. In the testes cimetidine impairs spermatogenesis, Sertoli cells and peritubular tissue, inducing apoptosis in the myoid cells. Regarding the importance of histamine and androgens for vascular maintenance, the effect of cimetidine on the structural integrity of the testicular vasculature was evaluated. Adult male rats received cimetidine (CMTG) and saline (CG) for 50 days. The testes were fixed in buffered 4% formaldehyde and embedded in historesin and paraffin. In the PAS-stained sections, the microvascular density (MVD) and the vascular luminal area (VLA) were obtained. TUNEL method was performed for detection of cell death. Testicular fragments embedded in Araldite were analyzed under transmission electron microscopy. A significant decrease in the MVD and VLA and a high number of collapsed blood vessel profiles were observed in CMTG. Endothelial cells and vascular muscle cells were TUNEL-positive and showed ultrastructural features of apoptosis. These results indicate that cimetidine induces apoptosis in vascular cells, leading to testicular vascular atrophy. A possible antagonist effect of cimetidine on the H₂ receptors and/or androgen receptors in the vascular cells may be responsible for the impairment of the testicular microvasculature.

  2. Passive exposure to speech sounds induces long-term memory representations in the auditory cortex of adult rats

    PubMed Central

    Kurkela, Jari L. O.; Lipponen, Arto; Hämäläinen, Jarmo A.; Näätänen, Risto; Astikainen, Piia

    2016-01-01

    Experience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of rats exposed to either spectrotemporal or tonal changes in speech sounds served as controls for each other. Then, electrophysiological brain responses from the auditory cortex were recorded to the same stimuli. In both the exposure and test phase statistical learning paradigm, was applied. The exposure effect was found for the spectrotemporal sounds, but not for the tonal sounds. Only the animals exposed to spectrotemporal sounds differentiated subtle changes in these stimuli as indexed by the mismatch negativity response. The results point to the occurrence of long-term memory traces for the speech sounds due to passive exposure in adult animals. PMID:27996015

  3. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats.

    PubMed

    Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Aloisi, Anna M; Barr, Gordon A

    2017-01-01

    Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1-2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period.

  4. Long-Term Effects of Chronic Buspirone during Adolescence Reduce the Adverse Influences of Neonatal Inflammatory Pain and Stress on Adaptive Behavior in Adult Male Rats

    PubMed Central

    Butkevich, Irina P.; Mikhailenko, Viktor A.; Vershinina, Elena A.; Aloisi, Anna M.; Barr, Gordon A.

    2017-01-01

    Neonatal pain and stress induce long-term changes in pain sensitivity and behavior. Previously we found alterations in pain sensitivity in adolescent rats exposed to early-life adverse events. We tested whether these alterations have long-lasting effects and if those effects can be improved by the 5-hydroxytryptamine 1A (5-HT1A) receptor agonist buspirone injected chronically during the adolescent period. This study investigates: (1) effects of inflammatory pain (the injection of formalin into the pad of a hind paw) or stress (short maternal deprivation-isolation, MI), or their combination in 1–2-day-old rats on the adult basal pain, formalin-induced pain, anxiety and depression; (2) effects of adolescent buspirone in adult rats that experienced similar early-life insults. Changes in nociceptive thresholds were evaluated using the hot plate (HP) and formalin tests; levels of anxiety and depression were assessed with the elevated plus maze and forced swim tests respectively. Both neonatal painful and stressful treatments induced long-term alterations in the forced swim test. Other changes in adult behavioral responses were dependent on the type of neonatal treatment. There was a notable lack of long-term effects of the combination of early inflammatory pain and stress of MI on the pain responses, anxiety levels or on the effects of adolescent buspirone. This study provides the first evidence that chronic injection of buspirone in adolescent rats alters antinociceptive and anxiolytic effects limited to adult rats that showed behavioral alterations induced by early-life adverse treatments. These data highlight the role of 5-HT1A receptors in long-term effects of neonatal inflammatory pain and stress of short MI on adaptive behavior and possibility of correction of the pain and psychoemotional behavior that were altered by adverse pain/stress intervention using buspirone during critical adolescent period. PMID:28184190

  5. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity.

    PubMed

    Hodges, Travis E; McCormick, Cheryl M

    2015-03-01

    We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.

  6. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  7. Impairment of male reproduction in adult rats exposed to hydroxyprogesterone caproate in utero

    NASA Astrophysics Data System (ADS)

    Pushpalatha, T.; Ramachandra Reddy, P.; Sreenivasula Reddy, P.

    Hydroxyprogesterone caproate is one of the most effective and widely used drugs for the treatment of uterine bleeding and threatened miscarriage in women. Hydroxyprogesterone caproate was administered to pregnant rats in order to assess the effect of intraperitoneal exposure to supranormal levels of hydroxyprogesterone caproate on the male reproductive potential in the first generation. The cauda epididymal sperm count and motility decreased significantly in rats exposed to hydroxyprogesterone caproate during embryonic development, when compared with control rats. The levels of serum testosterone decreased with an increase in follicle stimulating hormone and luteinizing hormone in adult rats exposed to hydroxyprogesterone caproate during the embryonic stage. It was suggested that the impairment of male reproductive performance could be mediated through the inhibition of testosterone production.

  8. Phonetic Intelligibility Testing in Adults with Down Syndrome

    PubMed Central

    Bunton, Kate; Leddy, Mark; Miller, Jon

    2009-01-01

    The purpose of the study was to document speech intelligibility deficits for a group of five adult males with Down syndrome, and use listener based error profiles to identify phonetic dimensions underlying reduced intelligibility. Phonetic error profiles were constructed for each speaker using the Kent, Weismer, Kent, and Rosenbek (1989) word intelligibility test. The test was designed to allow for identification of reasons for the intelligibility deficit, quantitative analyses at varied levels, and sensitivity to potential speech deficits across populations. Listener generated profiles were calculated based on a multiple-choice task and a transcription task. The most disrupted phonetic features, across listening task, involved simplification of clusters in both the word initial and word final position, and contrasts involving tongue-posture, control, and timing (e.g., high-low vowel, front-back vowel, and place of articulation for stops and fricatives). Differences between speakers in the ranking of these phonetic features was found, however, the mean error proportion for the six most severely affected features correlated highly with the overall intelligibility score (0.88 based on multiple-choice task, .94 for the transcription task). The phonetic feature analyses are an index that may help clarify the suspected motor speech basis for the speech intelligibility deficits seen in adults with Down syndrome and may lead to improved speech management in these individuals. PMID:17692179

  9. Early exposure to sugars influences the sugar preference of the adult rat.

    PubMed

    Marlin, N A

    1983-11-01

    Female rats were maintained on either a High Sucrose or High Glucose diet during gestation and lactation. Their pups were continued on the same diet as their dam until they were 42 days of age; thereafter all animals were maintained on laboratory chow. From 21-84 days of age, each rat was given a weekly two-choice preference test between the High Sucrose and High Glucose diets. Rats that were fed the High Sucrose diet throughout their early development had heavier body weights and a greater preference for the High Sucrose diet beginning on Day 63 than did the rats that were fed the High Glucose diet. Rats fed the High Glucose diet demonstrated a greater preference for the High Glucose diet during adulthood. These data indicate that early dietary experience can modify the rat's subsequent preference for sugars.

  10. Suppression of spermatogenesis by testosterone undecanoate-loaded injectable in situ-forming implants in adult male rats.

    PubMed

    Zhang, Xiao-Wei; Zhang, Chong; Zhang, Wei; Yang, Dan; Meng, Shu; Wang, Ping; Guo, Jing; Liu, Dan-Hua

    2016-01-01

    We have investigated the feasibility of administration of testosterone undecanoate (TU)-loaded injectable in situ-forming implant (ISFI) for contraception in adult male Sprague-Dawley rats. Male rats were treated with vehicle, TU-loaded ISFIs (540, 270 and 135 mg TU kg-1 ) or TU injections (45 mg TU kg-1 every 30 days) for 120 days. Fertility tests served for determining infertility or restoration of fertility in treated rats. Serum testosterone concentration, epididymal sperm count, motility, morphology, and histology of the testis were monitored. The TU-loaded ISFIs increased serum testosterone levels in rats steadily without fluctuation over 3 months. One month after TU administration, the epididymal sperm count decreased significantly in all experimental groups. After 3 months, the animals treated with 270 and 135 mg kg-1 TU-loaded ISFIs were 100% infertile, and no implantation sites were produced in the mated females. However, some of males treated with 540 mg kg-1 ISFI or TU injections were still fertile but numbers of implantation sites were also significantly lower than control values. TU-loaded ISFI at an appropriate dose has potential as a long-acting male contraceptive drug that suppresses spermatogenesis consistently over a period of 3 months.

  11. Molecular and immunocytochemical characterization of primary neuronal cultures from adult rat brain: Differential expression of neuronal and glial protein markers.

    PubMed

    Ray, Balmiki; Bailey, Jason A; Sarkar, Sumit; Lahiri, Debomoy K

    2009-11-15

    Neurobiological studies using primary neuronal cultures commonly employ fetal-derived neurons, but much less often adult brain-derived neurons. Our goal is to perform morphological and molecular characterization of primary neuronal cultures from adult rat brain, including the relative expression of neuronal and glial cell markers at different time points. We tested the hypothesis that long-term neuronal viability is compatible with glial proliferation in adult neuron culture. We examined neuron culture from adult rat brain, which was maintained at steady state up to 24 days, and characterized them on the basis of cellular, molecular and biochemical properties at different time points of the culture. We identified neuronal and glial cells by both immunocytochemical and western immunoblotting techniques using NSE and Tau as neuronal markers and GFAP as glial protein marker, which revealed the presence of predominantly neuronal cells in the initial phase of the culture and a rise in glial cells from day 12 onwards. Notably, neuronal cells were preserved in the culture along with the glial cells even at day 24. Transfection of the cultured cells with a GFP expression vector and plasmids containing a luciferase reporter gene under the control of two different gene promoters demonstrated DNA transfectability. Taken together, these results suggest a differential expression of neuronal and glial cells at different time points and long-term neuronal viability in the presence of glial proliferation. Such adult neurons serve as a suitable system for the application of neurodegeneration models and for drug target discovery in various brain disorders including Alzheimer's disease.

  12. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    SciTech Connect

    Tonk, Elisa C.M.; Verhoef, Aart; Gremmer, Eric R.; Loveren, Henk van; Piersma, Aldert H.

    2012-04-01

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the

  13. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats.

    PubMed

    Galvão, Rui P; Garcia-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2008-12-10

    In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test whether this effect is cell-autonomous, we grafted SVZ cells from TrkB knock-out mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin(+) periglomerular interneurons seemed unaffected by the loss of TrkB, whereas dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis.

  14. Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults.

    PubMed

    Hasegawa, Atsushi; Takahashi, Masahito; Satomi, Kazuhiko; Ohne, Hideaki; Takeuchi, Takumi; Sato, Shunsuke; Ichimura, Shoichi

    2016-01-01

    The aim of this study was to investigate forelimb motor function after cervical spinal cord injury in juvenile and adult rats. Both rats received a left segmental hemisection of the spinal cord after C3-C4 laminectomy. Behavioral evaluation of motor function was monitored and assessed using the New Rating Scale (NRS) and Forelimb Locomotor Scale (FLS) and by measuring the range of motion (ROM) of both the elbow and wrist. Complete left forelimb motor paralysis was observed in both rats. The NRS showed motor function recovery restored to 50.2 ± 24.7% in juvenile rats and 34.0 ± 19.8% in adult rats. FLS was 60.4 ± 26.8% in juvenile rats and 46.5 ± 26.9% in adult rats. ROM of the elbow and wrist were 88.9 ± 20.6% and 44.4 ± 24.1% in juvenile rats and 70.0 ± 29.2% and 40.0 ± 21.1% in adult rats. Thus, the NRS and ROM of the elbow showed a significant difference between age groups. These results indicate that left hemisection of the cervical spinal cord was not related to right-sided motor functions. Moreover, while motor paralysis of the left forelimb gradually recovered in both groups, the improvement was greater in juvenile rats.

  15. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength

  16. Developmental lead exposure impairs extinction of conditioned fear in young adult rats.

    PubMed

    McGlothan, Jennifer L; Karcz-Kubicha, Marzena; Guilarte, Tomás R

    2008-11-01

    Pavlovian fear conditioning is a model of emotional learning in which a neutral stimulus such as a tone is paired with an aversive stimulus such as a foot shock. Presentation of a tone with a foot shock in a context (test box) elicits a freezing response representative of stereotypic fear behavior. After conditioning has occurred, presentation of the context (test box) or tone in the absence of the unconditioned stimulus (shock) causes extinction of the fear response. Rats chronically exposed to environmentally relevant levels of lead (Pb(2+)) and controls were tested in a fear-conditioning (FC) paradigm at 50 days of age (PN50). Littermates to FC rats received an immediate shock (IS) when placed in the test box with no tone. Blood Pb(2+) levels in control and Pb(2+)-exposed animals were (mean+/-S.E.M.): 0.76+/-0.11 (n=15) and 25.8+/-1.28microg/dL (n=14). Freezing behavior was recorded during acquisition (day of training) or during 4 consecutive extinction days. Control and Pb(2+)-exposed FC rats exhibited the same level of freezing time on the acquisition day. No freezing behavior occurred in IS rats regardless of treatment. Presentation of context 24h later produced a freezing response on both control and Pb(2+)-exposed FC rats but not in IS rats. When tested in the extinction phase, Pb(2+)-exposed FC rats exhibited deficits in extinction compared to control FC rats. That is, when presented with context on 4 consecutive days after acquisition of the fear response, Pb(2+)-exposed FC rats exhibited a greater freezing response than control FC rats. These findings indicate that chronic Pb(2+) exposure produces a deficit in extinction learning and the animals remain more fearful than controls.

  17. Usability testing of AsthmaWise with older adults.

    PubMed

    Burns, Pippa; Jones, Sandra C; Iverson, Don; Caputi, Peter

    2013-05-01

    There are many reasons why online self-management education is attractive to both patients and providers. AsthmaWise, an online self-management program, was developed using a Moodle platform, to enable older adults to learn asthma self-management skills. This study aimed to improve AsthmaWise through conducting: usability testing with a sample of end users; a cognitive walk-through undertaken by an independent health researcher; and assessment of content readability. A Perceived Health Web Site Usability Questionnaire score of 67% was achieved, indicating that there were usability issues that needed to be addressed. The cognitive walk-through and readability assessment identified unique issues that were not identified through usability testing with end users. The testing process allowed issues to be identified and rectified before piloting AsthmaWise, creating a more accessible and refined end product. The involvement of the site designer in the testing process was valuable and is highly recommended. This study shows that usability testing involving both end users and experts is an essential part of the design process that is relatively easy and inexpensive to undertake and can be effectively conducted by a nonexpert.

  18. The National Adult Reading Test: restandardisation against the Wechsler Adult Intelligence Scale-Fourth edition.

    PubMed

    Bright, Peter; Hale, Emily; Gooch, Vikki Jayne; Myhill, Thomas; van der Linde, Ian

    2016-09-14

    Since publication in 1982, the 50-item National Adult Reading Test (NART; Nelson, 1982 ; NART-R; Nelson & Willison, 1991 ) has remained a widely adopted method for estimating premorbid intelligence both for clinical and research purposes. However, the NART has not been standardised against the most recent revisions of the Wechsler Adult Intelligence Scale (WAIS-III; Wechsler, 1997 , and WAIS-IV; Wechsler, 2008 ). Our objective, therefore, was to produce reliable standardised estimates of WAIS-IV IQ from the NART. Ninety-two neurologically healthy British adults were assessed and regression equations calculated to produce population estimates of WAIS-IV full-scale IQ (FSIQ) and constituent index scores. Results showed strong NART/WAIS-IV FSIQ correlations with more moderate correlations observed between NART error and constituent index scores. FSIQ estimates were closely similar to the published WAIS and WAIS-R estimates at the high end of the distribution, but at the lower end were approximately equidistant from the highly discrepant WAIS (low) and WAIS-R (high) values. We conclude that the NART is likely to remain an important tool for estimating the impact of neurological damage on general cognitive ability. We advise caution in the use of older published WAIS and/or WAIS-R estimates for estimating premorbid WAIS-IV FSIQ, particularly for those with low NART scores.

  19. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    PubMed

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  20. The role of testicular hormones and luteinizing hormone in spatial memory in adult male rats.

    PubMed

    McConnell, Sarah E A; Alla, Juliet; Wheat, Elizabeth; Romeo, Russell D; McEwen, Bruce; Thornton, Janice E

    2012-04-01

    Attempts to determine the influence of testicular hormones on learning and memory in males have yielded contradictory results. The present studies examined whether testicular hormones are important for maximal levels of spatial memory in young adult male rats. To minimize any effect of stress, we used the Object Location Task which is a spatial working memory task that does not involve food or water deprivation or aversive stimuli for motivation. In Experiment 1 sham gonadectomized male rats demonstrated robust spatial memory, but gonadectomized males showed diminished spatial memory. In Experiment 2 subcutaneous testosterone (T) capsules restored spatial memory performance in gonadectomized male rats, while rats with blank capsules demonstrated compromised spatial memory. In Experiment 3, gonadectomized male rats implanted with blank capsules again showed compromised spatial memory, while those with T, dihydrotestosterone (DHT), or estradiol (E) capsules demonstrated robust spatial memory, indicating that T's effects may be mediated by its conversion to E or to DHT. Gonadectomized male rats injected with Antide, a gonadotropin-releasing hormone receptor antagonist which lowers luteinizing hormone levels, also demonstrated spatial memory, comparable to that shown by T-, E-, or DHT-treated males. These data indicate that testicular androgens are important for maximal levels of spatial working memory in male rats, that testosterone may be converted to E and/or DHT to exert its effects, and that some of the effects of these steroid hormones may occur via negative feedback effects on LH.

  1. Effect of morphine, naloxone and histamine system on water intake in adult male rats.

    PubMed

    Eidi, Maryam; Oryan, Shahrbanoo; Eidi, Akram; Sepehrara, Leili

    2003-10-08

    The present study investigated the interaction between histamine and opioid systems on water intake in adult male rats. Intracerebroventricular (i.c.v.) injections were carried out in all experiments. Water intake was measured 1 h after drug injections. Administration of histamine (40-80 microg/rat) and naloxone (0.5-1 microg/rat) increased, while morphine (2.5 microg/rat), pyrilamine (25-50 microg/rat), the histamine H1 receptor antagonist, and ranitidine (10-20 microg/rat), the histamine H2 receptor antagonist, decreased water intake in isolated rats. Blockade of histamine H1 and H2 receptors attenuated the histamine-induced response. Pyrilamine, but not ranitidine, increased the inhibitory effect induced by morphine. Also, pharmacological blockade of histamine H1 and H2 receptors decreased the naloxone-induced effect on water intake. It is concluded that the histaminergic system may have a close interaction with morphine and naloxone on drinking behavior.

  2. Antidiabetic-drug combination treatment for glucose intolerance in adult female rats treated acutely with olanzapine.

    PubMed

    Boyda, Heidi N; Procyshyn, Ric M; Asiri, Yahya; Wu, Claire; Wang, Cathy K; Lo, Ryan; Pang, Catherine C Y; Honer, William G; Barr, Alasdair M

    2014-01-03

    Second generation antipsychotic drugs are routinely used as treatment for psychotic disorders. Many of these compounds, including olanzapine, cause metabolic side-effects such as impaired glucose tolerance and insulin resistance. Individual antidiabetic drugs can help control elevated glucose levels in patients treated with antipsychotics, but the effects of combining antidiabetics, which routinely occurs with Type 2 diabetes mellitus patients, have never been studied. Presently, we compared the effects of the three different antidiabetics metformin (500mg/kg, p.o.), rosiglitazone (30mg/kg, p.o.) and glyburide (10mg/kg, p.o.) on metabolic dysregulation in adult female rats treated acutely with olanzapine. In addition, dual combinations of each of these antidiabetics were compared head-to-head against each other and the individual drugs. The animals received two daily treatments with antidiabetics and were then treated acutely with olanzapine (10mg/kg, i.p.). Fasting glucose and insulin levels were measured, followed by a 2h glucose tolerance test. Olanzapine caused a large and highly significant glucose intolerance compared to vehicle treated rats. Rosiglitazone decreased glucose levels non-significantly, while both metformin and glyburide significantly decreased glucose levels compared to olanzapine-only treated animals. For antidiabetic dual-drug combinations, the rosiglitazone-metformin group showed an unexpected increase in glucose levels compared to all of the single antidiabetic drugs. However, both the metformin-glyburide and rosiglitazone-glyburide groups showed significantly greater reductions in glucose levels following olanzapine than with single drug treatment alone for metformin or rosiglitazone, bringing glucose levels down to values equivalent to vehicle-only treated animals. These findings indicate that further study of antidiabetic dual-drug combinations in patients treated with antipsychotic drugs is warranted.

  3. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats

    PubMed Central

    Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco

    2014-01-01

    Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. PMID:24566543

  4. The possible mechanisms by which maternal hypothyroidism impairs insulin secretion in adult male offspring in rats.

    PubMed

    Karbalaei, Narges; Ghasemi, Asghar; Hedayati, Mehdi; Godini, Aliashraf; Zahediasl, Saleh

    2014-04-01

    Previous studies have recently shown that maternal hypothyroidism leads to impaired glucose metabolism and reduced insulin secretion in adult offspring in rats. The aim of this study was to locate the defect in the insulin secretion pathway induced by maternal hypothyroidism. Pregnant Wistar rats were divided into two groups; the control group consumed water, while the hypothyroid (FH) group received water containing 0.025% 6-propyl-2-thiouracil during gestation. An intravenous glucose tolerance test was carried out on 5-month-old male offspring. In in vitro studies, the effects of various secretagogues and inhibitors acting at different levels of the insulin secretion cascade were investigated, and insulin content, insulin secretion and glucokinase activity of the islets were compared. Although insulin content of the FH islets did not differ from that of control islets, insulin secretion from FH islets was reduced when it was challenged by glucose or arginine. Compared with control islets, activities of both hexokinase and glucokinase were also significantly decreased in the FH islets. Although, in both groups, increasing glibenclamide and nifedipine concentrations in the presence of 16.7 mmol l(-1) glucose increased and decreased insulin secretion, respectively, the percentage of changes in secretion of FH islets was significantly lower compared with control islets. The response of FH islets to high extracellular potassium concentration and diazoxide was also significantly lower than that of the control islets. These findings demonstrate that impaired insulin secretion in the FH group is probably related to alterations in different steps of the insulin secretion pathway and not in the insulin pool of β-cells.

  5. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats.

    PubMed

    Tash, Joseph S; Johnson, Donald C; Enders, George C

    2002-03-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.

  6. Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats

    NASA Technical Reports Server (NTRS)

    Tash, Joseph S.; Johnson, Donald C.; Enders, George C.

    2002-01-01

    The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.

  7. Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats

    PubMed Central

    2014-01-01

    Background Pomegranate fruit has been extensively used as a natural medicine in many cultures. The present study was aimed at evaluating the protective effects of pomegranate (Punica granatum) juice against carbon tetrachloride (CCl4)-induced oxidative stress and testes injury in adult Wistar rats. Methods Twenty eight Wistar albino male rats were divided equally into 4 groups for the assessment of protective potential of pomegranate juice. Rats of group I (control) received only vehicles and had free access to food and water. Rats of groups II and IV were treated with CCl4 (2 ml/kg bwt) via the intraperitoneal route once a week for ten weeks. The pomegranate juice was supplemented via drinking water 2 weeks before and concurrent with CCl4 treatment to group IV. Group III was supplemented with pomegranate juice for twelve weeks. The protective effects of pomegranate on serum sex hormones, oxidative markers, activities of antioxidant enzymes and histopathology of testes were determined in CCl4-induced reproductive toxicity in rats. Results Pomegranate juice showed significant elevation in testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) those depleted by the injection of CCl4. Activity levels of endogenous testesticular antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and glutathione (GSH) contents were increased while lipid peroxidation (LPO) and nitric oxide (NO) were decreased with pomegranate juice. Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were restored with the treatment of pomegranate juice. Conclusion The results clearly demonstrated that pomegranate juice augments the antioxidant defense mechanism against carbon tetrachloride-induced reproductive toxicity and provides evidence that it may have a therapeutic role in free radical mediated

  8. Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats.

    PubMed

    Chin, Vivien S; Van Skike, Candice E; Berry, Raymond B; Kirk, Roger E; Diaz-Granados, Jamie; Matthews, Douglas B

    2011-08-01

    The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.

  9. Evidence That the Periaqueductal Gray Matter Mediates the Facilitation of Panic-Like Reactions in Neonatally-Isolated Adult Rats

    PubMed Central

    Quintino-dos-Santos, Jeyce Willig; Müller, Cláudia Janaína Torres; Bernabé, Cristie Setúbal; Rosa, Caroline Azevedo; Tufik, Sérgio; Schenberg, Luiz Carlos

    2014-01-01

    Plenty of evidence suggests that childhood separation anxiety (CSA) predisposes the subject to adult-onset panic disorder (PD). As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG). Accordingly, here we examined whether the neonatal social isolation (NSI), a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM) and forced-swimming test (FST) respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2) until weaning (PN21) allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26) whilst siblings (sham-isolated rats, SHAM, n = 27) and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18) remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60) and subjected to sessions of intracranial stimulation (PN65), EPM (PN66) and FST (PN67-PN68). Groups were compared by Fisher's exact test (stimulation sites), likelihood ratio chi-square tests (stimulus-response threshold curves) and Bonferroni's post hoc t-tests (EPM and FST), for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate

  10. Differential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents?

    PubMed

    Karanges, Emily; Li, Kong M; Motbey, Craig; Callaghan, Paul D; Katsifis, Andrew; McGregor, Iain S

    2011-05-01

    Selective serotonin reuptake inhibitor use is associated with increased risk of suicidal ideation in adolescent humans, yet the neuropharmacological basis of this phenomenon is unknown. Consequently, we examined the behavioural and neurochemical effects of chronic paroxetine (PRX) treatment in adult and adolescent rats. Rats received PRX in their drinking water (target dose 10 mg/kg) for 22 d, during which time they were assessed for depression- and anxiety-like behaviours. Subsequent ex-vivo analyses examined serum PRX concentrations, striatal neurotransmitter content, and regional serotonin and dopamine transporter (SERT, DAT) binding density. After 11-12 d treatment, PRX-treated adolescent rats showed a significant inhibition of social interaction while adults were unaffected. After 19-20 d treatment, adolescents failed to show an antidepressant-like effect of PRX treatment on the forced swim test (FST), while PRX-treated adults showed a typical decrease in immobility and increase in swimming. Two PRX-treated adolescents died unexpectedly after the FST suggesting a compromised response to physical stress. Despite their greater apparent adverse reaction to the drug, adolescents had significantly lower plasma PRX than adults at day 22 of treatment. Chronic PRX treatment had similar effects in adults and adolescents on striatal 5-HT (unchanged relative to controls) and 5-HIAA levels (decreased), while markers of dopaminergic function (DOPAC, HVA, DA turnover) were increased in adults only. SERT density was up-regulated in the amygdala in PRX-treated adolescents only while DAT density in the nucleus accumbens was down-regulated only in PRX-treated adults. These data suggest that the immature rat brain responds differently to PRX and that this might be of use in modelling the atypical response of human adolescents to antidepressants. The age-specific PRX-induced changes in dopaminergic markers and SERT and DAT binding provide clues as to the neural mechanisms

  11. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    PubMed

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  12. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  13. Cross-sensitization between testosterone and cocaine in adolescent and adult rats.

    PubMed

    Engi, Sheila A; Cruz, Fabio C; Crestani, Carlos C; Planeta, Cleopatra S

    2015-11-01

    Cocaine and anabolic-androgenic steroids are substances commonly co-abused. The use of anabolic steroids and cocaine has increased among adolescents. However, few studies investigated the consequences of the interaction between anabolic-androgenic steroids in animals' model of adolescence. We examined the effects of acute and repeated testosterone administration on cocaine-induced locomotor activity in adult and adolescent rats. Rats received ten once-daily subcutaneous (s.c.) injections of testosterone (10mg/kg) or vehicle. Three days after the last testosterone or vehicle injections rats received an intraperitoneal (i.p.) challenge injection of either saline or cocaine (10mg/kg). A different subset of rats was treated with a single injection of testosterone (10mg/kg) or vehicle and three days later was challenged with cocaine (10mg/kg, i.p.) or saline. Immediately after cocaine or saline injections the locomotor activity was recorded during forty minutes. Our results demonstrated that repeated testosterone induced locomotor sensitization to cocaine in adolescent but not adult rats.

  14. The multivariate concentric square field test reveals different behavioural profiles in male AA and ANA rats with regard to risk taking and environmental reactivity.

    PubMed

    Roman, Erika; Meyerson, Bengt J; Hyytiä, Petri; Nylander, Ingrid

    2007-11-02

    The aim of the present investigation was to compare the behavioural profiles in alcohol-preferring AA (Alko, alcohol) and alcohol-avoiding ANA (Alko, non-alcohol) rats. Twelve adult, alcohol-naïve male AA and ANA rats were tested in the recently established multivariate concentric square field (MCSF) test. The more traditional open field and elevated plus-maze tests were used as reference tests. Six weeks after the initial MCSF test, a repeated testing was used to explore differences in acquired recognition after a previous experience. The results revealed distinct differences between the two lines. The ANA rats were generally more active in the three tests. In the MCSF, parameters of risk taking and shelter seeking indicated differences between the two lines. The ANA rats had higher shelter seeking behaviour and less risk taking behaviour than the AA rats. Repeated exposure to the MCSF caused a general decrease in activity and reduction in the number of visits to the various zones, especially evident in the ANA rats. The ANA rats showed more shelter seeking than the AA rats and also more shelter seeking than in the first trial, supporting an "anxiety-like" profile in these rats. In conclusion, the parameters related to risk taking and shelter seeking revealed obvious differences between AA and ANA rats. The higher risk taking behaviour seen in the AA rats might relate to their innate propensity for high voluntary alcohol intake. The results are discussed in relation to the reported neurobiological differences and in relation to other alcohol-preferring and alcohol-avoiding rat lines.

  15. Ketamine alone or combined with midazolam or dexmedetomidine does not affect anxiety-like behaviours and memory in adult Wistar rats.

    PubMed

    Magalhães, Ana; Valentim, Ana; Venâncio, Carlos; Pereira, Mariana; Melo, Pedro; Summavielle, Teresa; Antunes, Luis

    2017-04-01

    Ketamine administration has been associated with controversial behavioural impairments and psychotic episodes. Even though ketamine alone and in combination with midazolam or dexmedetomidine are frequently used in laboratory animals, the side-effects of such protocols are not well known. Therefore, our aim was to evaluate the effects of ketamine alone and in combination with midazolam or dexmedetomidine on emotional reactivity, as well as the effects on learning and memory in adult rats at least 48 h after anaesthesia. The evaluation of the potential influence of 100 mg/kg ketamine administered alone and in combination with midazolam (5 mg/kg), or dexmedetomidine (0.25 mg/kg) on spatial learning and recognition memory was studied in adult Wistar rats using the radial maze as well as object recognition and location tests. The influence of these combinations on emotional reactivity was investigated using the new exploration test and the elevated plus maze. Results showed that ketamine alone or in combination with midazolam or dexmedetomidine affected neither spatial and recognition memory, nor emotional reactivity. These results reinforce the safe clinical use of ketamine and its combinations in rats in a research context since the administration of these anaesthetic combinations did not produce significant changes with regard to spatial and recognition memory or emotional reactivity. Furthermore, these results indicate that the quality of scientific data produced in adult rat neurobehavioural research is not jeopardized by the use of these anaesthetic protocols.

  16. Chronic nicotine differentially alters cocaine-induced locomotor activity in adolescent vs. adult male and female rats.

    PubMed

    Collins, Stephanie L; Izenwasser, Sari

    2004-03-01

    Tobacco use is prevalent in the adolescent population. It is a major concern because tobacco is highly addictive and has also been linked to illicit drug use. There is not much research, however, on the interaction between nicotine and other stimulant drugs in animal models of early adolescence. This study examined the effects of chronic nicotine alone and on cocaine-stimulated activity in male and female periadolescent rats compared to male and female adult rats. During the seven-day nicotine pretreatment period, nicotine increased locomotor activity in all groups compared to vehicle controls. Male and female adult rats and female periadolescent rats developed sensitization to the locomotor-activating effects of nicotine over the 7-day treatment period, while male periadolescent rats did not. All groups treated with nicotine, however, exhibited sensitization to nicotine-induced repetitive motion over the 7-day nicotine treatment period. On day 8, male periadolescent rats pretreated with nicotine were more markedly sensitized to the locomotor-activating effects of cocaine than male adult rats, while female rats pretreated with nicotine were not sensitized to cocaine. In contrast, male and female periadolescent rats, but not adult rats, had increased amounts of repetitive beam breaks induced by cocaine after nicotine pretreatment. Overall, it appears that cross-sensitization to cocaine is greater in periadolescent than in adult rats, and that males are more sensitized than females. Thus, it may be that nicotine use during adolescence carries a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of cocaine abuse after nicotine use. This information should be taken into account so as to help us better understand the development of drug addiction in adolescents compared to adults.

  17. Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons.

    PubMed

    Bargas, J; Howe, A; Eberwine, J; Cao, Y; Surmeier, D J

    1994-11-01

    Ca2+ currents in acutely isolated, adult rat neostriatal neurons were studied with whole-cell voltage-clamp techniques. In the vast majority of neurons (approximately 90%, n > 250), currents were exclusively of the high-voltage-activated (HVA) type. HVA currents activated near -40 mV and reached their maximum amplitude near 0 mV. Quasi-steady-state inactivation curves in many neurons were well fitted only with a sum of Boltzmann functions, suggesting that the HVA currents were heterogeneous. Although the block of whole-cell current by Cd2+ was well fitted with a single isotherm having an IC50 of near 1 microM, experiments with organic channel antagonists suggested that at least four types of HVA channels were expressed by most cells. On average, the L-channel antagonist nifedipine (5-10 microM) blocked 31 +/- 10% of the whole-cell current (n = 20), the N-channel antagonist omega-conotoxin GVIA (omega-CgTx) (2-5 microM) blocked 27 +/- 11% (n = 20), and the P-channel antagonist omega-agatoxin IVA (100-500 nM) blocked 21 +/- 10% (n = 18). In many neurons, the block by omega-CgTx was partially or completely reversible. In cells tested with a combination of these antagonists, 34 +/- 17% of the peak Ca2+ current remained unblocked (n = 13). Single-cell expression profiling of medium-sized neurons revealed the presence of rbA and rbB Ca2+ channel alpha 1 subunit mRNAs but low or undetectable levels of rbC mRNA (n = 12). These findings suggest that although adult neostriatal projection neurons do not express significant levels of LVA Ca2+ current, they do express a pharmacologically and structurally heterogeneous population of HVA currents.

  18. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring

    PubMed Central

    Voiculescu, SE; Rosca, AE; Zeca, V; Zagrean, L; Zagrean, AM

    2015-01-01

    Melatonin is an essential hormone, which regulates circadian rhythms and has antioxidative and anticarcinogenic effects. As melatonin secretion is suppressed by light, this effect was examined on the offspring of the Wistar rat females exposed to continuous light (500 lux) during the second half of the pregnancy (day 12 to 21). Control rats were kept under a 12:12 light-dark cycle. The resulted male offspring have been behaviorally assessed for depression after postnatal day 60 by using Forced Swim Test (FST) and Tail Suspension Test (TST). Animals resulted from the melatonin deprived pregnancies have developed an abnormal response in the TST, but a normal FST behavior. Also, TST active movement was different in the melatonin suppression group compared to the control group. These findings suggest that intrauterine melatonin deprivation might be linked to the depressive like behavior in adult male offspring. PMID:25866579

  19. Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny.

    PubMed

    Garoui, El Mouldi; Troudi, Afef; Fetoui, Hamadi; Soudani, Nejla; Boudawara, Tahia; Zeghal, Najiba

    2012-11-01

    The aim of this study was to evaluate the biochemical changes in cobalt-exposed rats and to investigate the potential role of Tunisian propolis against the cobalt-induced renal damages. Twenty-four pregnant Wistar rats were divided into four groups and were treated as follows: group 1 (control) received distilled water; group 2 received 350 ppm of CoCl(2) in drinking water; group 3 received 350 ppm CoCl(2) in drinking water and a propolis-supplemented diet (1 g/100 g of diet); group 4 received a propolis-supplemented diet (1 g/100 g of diet) without cobalt. In the cobalt group, a significant decrease in body, absolute and relative weights was noted when compared to controls. The administration of cobalt to pregnant rats from the 14th day of pregnancy until day 14 after delivery resulted in an increased level of renal malondialdehyde, a decreased renal content of glutathione and antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase in lactating rats and their pups. A statistically significant increase in plasma urea and creatinine serum levels was seen in treated female rats and their pups. Histopathologically, the cobalt-administration induced degenerative changes in the kidney of lactating rats and their pups. When compared with cobalt-treated rats, those receiving the propolis supplementation (along with cobalt-treatment) had lower malondialdehyde levels, higher antioxidant activities and the cobalt-related histopathological changes in the kidneys were at lower severity. Our results suggested that the propolis might be a potential candidate agent against cobalt-induced nephrotoxicity in adult and juvenile rats when administered to female rats during the late pregnancy and the early postnatal period.

  20. Noise exposure during early development influences the acoustic startle reflex in adult rats.

    PubMed

    Rybalko, Natalia; Bureš, Zbyněk; Burianová, Jana; Popelář, Jiří; Grécová, Jolana; Syka, Josef

    2011-03-28

    Noise exposure during the critical period of postnatal development in rats results in anomalous processing of acoustic stimuli in the adult auditory system. In the present study, the behavioral consequences of an acute acoustic trauma in the critical period are assessed in adult rats using the acoustic startle reflex (ASR) and prepulse inhibition (PPI) of ASR. Rat pups (strain Long-Evans) were exposed to broad-band noise of 125 dB SPL for 8 min on postnatal day 14; at the age of 3-5 months, ASR and PPI of ASR were examined and compared with those obtained in age-matched controls. In addition, hearing thresholds were measured in all animals by means of auditory brainstem responses. The results show that although the hearing thresholds in both groups of animals were not different, a reduced strength of the startle reflex was observed in exposed rats compared with controls. The efficacy of PPI in exposed and control rats was also markedly different. In contrast to control rats, in which an increase in prepulse intensity was accompanied by a consistent increase in the efficacy of PPI, the PPI function in the exposed animals was characterized by a steep increase in inhibitory efficacy at low prepulse intensities of 20-30 dB SPL. A further increase of prepulse intensity up to 60-70 dB SPL caused only a small and insignificant change of PPI. Our findings demonstrate that brief noise exposure in rat pups results in altered behavioral responses to sounds in adulthood, indicating anomalies in intensity coding and loudness perception.

  1. Effects of enriched housing on functional recovery after spinal cord contusive injury in the adult rat.

    PubMed

    Lankhorst, A J; ter Laak, M P; van Laar, T J; van Meeteren, N L; de Groot, J C; Schrama, L H; Hamers, F P; Gispen, W H

    2001-02-01

    To date, most research performed in the area of spinal cord injury focuses on treatments designed to either prevent spreading lesion (secondary injury) or to enhance outgrowth of long descending and ascending fiber tracts around or through the lesion. In the last decade, however, several authors have shown that it is possible to enhance locomotor function after spinal cord injury in both animals and patients using specific training paradigms. As a first step towards combining such training paradigms with pharmacotherapy, we evaluated recovery of function in adult rats sustaining a spinal cord contusion injury (MASCIS device, 12.5 mm at T8), either housed in an enriched environment or in standard cages (n = 15 in both groups). The animals in the enriched environment were stimulated to increase their locomotor activity by placing water and food on opposite sides of the cage. As extra stimuli, a running wheel and several other objects were added to the cage. We show that exposure to the enriched environment improves gross and fine locomotor recovery as measured by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, the BBB subscale, the Gridwalk, and the Thoracolumbar height test. However, no group differences were found on our electrophysiological parameters nor on the amount of spared white matter. These data justify further studies on enriched housing and more controlled exercise training, with their use as potential additive to pharmacological intervention.

  2. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    PubMed Central

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  3. Lower risk taking and exploratory behavior in alcohol-preferring sP rats than in alcohol non-preferring sNP rats in the multivariate concentric square field (MCSF) test.

    PubMed

    Roman, Erika; Colombo, Giancarlo

    2009-12-14

    The present investigation continues previous behavioral profiling studies of selectively bred alcohol-drinking and alcohol non-drinking rats. In this study, alcohol-naïve adult Sardinian alcohol-preferring (sP) and non-preferring (sNP) rats were tested in the multivariate concentric square field (MCSF) test. The MCSF test has an ethoexperimental approach and measures general activity, exploration, risk assessment, risk taking, and shelter seeking in laboratory rodents. The multivariate design enables behavioral profiling in one and the same test situation. Age-matched male Wistar rats were included as a control group. Five weeks after the first MCSF trial, a repeated testing was done to explore differences in acquired experience. The results revealed distinct differences in exploratory strategies and behavioral profiles between sP and sNP rats. The sP rats were characterized by lower activity, lower exploratory drive, higher risk assessment, and lower risk taking behavior than in sNP rats. In the repeated trial, risk-taking behavior was almost abolished in sP rats. When comparing the performance of sP and sNP rats with that of Wistar rats, the principal component analysis revealed that the sP rats were the most divergent group. The vigilant behavior observed in sP rats with low exploratory drive and low risk-taking behavior is interpreted here as high innate anxiety-related behaviors and may be related to their propensity for high voluntary alcohol intake and preference. We suggest that the different lines of alcohol-preferring rats with different behavioral characteristics constitute valuable animal models that mimic the heterogeneity in human alcohol dependence.

  4. Wingate Anaerobic Test Percentile Norms in Colombian Healthy Adults.

    PubMed

    Ramírez-Vélez, Robinson; López-Albán, Carlos A; La Rotta-Villamizar, Diego R; Romero-García, Jesús A; Alonso-Martinez, Alicia M; Izquierdo, Mikel

    2016-01-01

    The Wingate Anaerobic Test (WAnT) became one of the most convenient tests used to evaluate anaerobic capacity and the effectiveness of anaerobic training programs for a variety of power sports. However, its use and interpretation as an evaluative measurement are limited because there are few published reference values derived from large numbers of subjects in nonathletic populations. We present reference values for the WAnT in Colombian healthy adults (aged 20-80 years old). The sample comprised 1,873 subjects (64% men) from Cali, Colombia, who were recruited for the study between 2002 and 2012. The 30-second WAnT was performed on a Monark ergometer. The WAnT resistance was set at 0.075 kp · kg(-1) body mass (BM). The mean absolute peak power (PP), relative PP normalized to the BM, and the fatigue index (FI%) were calculated using the LMS method (L [curve Box-Cox], M [curve median], and S [curve coefficient of variation]) and expressed as tabulated percentiles from 3 to 97 and as smoothed centile curves (P3, P10, P25, P50, P75, P90, P97). Mean ± SD values for the patients' anthropometric data were 38.1 ± 11.7 years of age, 72.7 ± 14.2 kg weight, 1.68 ± 0.09 m height, and 25.6 ± 4.2 body mass index. Our results show that mean absolute PP value, relative PP relative values normalized to BM, and FI were 527.4 ± 131.7 W, 7.6 ± 2.3 W · kg(-1), and 29.0 ± 15.7%, respectively. Men performed better than women in terms of PP and FI values. Nevertheless, the mean PP decreased with age and sex. Age-specific PP and FI normative values among healthy Colombian adults are defined. A more specific set of reference values is useful for clinicians and researchers studying anaerobic capacity in healthy adults.

  5. Comparison of the General Ability Measure for Adults and the Kaufman Adolescent and Adult Intelligence Test with College Students.

    ERIC Educational Resources Information Center

    Lassiter, Kerry S.; Matthews, T. Darin; Bell, Nancy L.; Maher, Carrie M.

    2002-01-01

    Ninety-four college students were administered the General Ability Measure for Adults (GAMA) and Kaufman Adolescent and Adult Intelligence Test (KAIT). GAMA IQs were significantly and moderately correlated with KAIT Fluid, Crystallized and Composite IQs, supporting the convergent validity of this instrument. Although significant correlations…

  6. Development and Data for UK Versions of an Author and Title Recognition Test for Adults

    ERIC Educational Resources Information Center

    Masterson, Jackie; Hayes, Maureen

    2007-01-01

    Author and book title recognition tests have been used extensively in reading-related research with both children and adults. The present paper reports the development of a book title and author recognition test and data from a UK sample of adults. Higher scores were obtained on the Author test than on the Title test. It is suggested that the…

  7. Social isolation in adolescence alters behaviors in the forced swim and sucrose preference tests in female but not in male rats

    PubMed Central

    Hong, Suzie; Flashner, Bess; Chiu, Melissa; Hoeve, Elizabeth ver; Luz, Sandra; Bhatnagar, Seema

    2011-01-01

    Social interactions in rodents are rewarding and motivating and social isolation is aversive. Accumulating evidence suggests that disruption of the social environment in adolescence has long-term effects on social interactions, on anxiety-like behavior and on stress reactivity. In previous work we showed that adolescent isolation produced increased reactivity to acute and to repeated stress in female rats, whereas lower corticosterone responses to acute stress and decreased anxiety-related behavior were noted in isolated males. These results indicate a sex specific impact on the effects of social stress in adolescence. However, little is known about whether social isolation impacts behaviors related to affect and whether it does so differently in male and female rats. The present study investigated the impact of adolescent social isolation from day 30-50 of age in male and female Sprague Dawley rats on behavior in the forced swim test at the end of adolescence and in adulthood and on behavior in the sucrose preference test in adulthood. Adult female rats that were isolated in adolescence exhibited increased climbing on the first and second day of the forced swim test and showed an increased preference for sucrose compared to adult females that were group-housed in adolescence. There were no effects in male rats. The results indicate that social isolation in adolescence produces a stable and active behavioral phenotype in adult female rats. PMID:21907226

  8. Effect of the antioxidant dibunol on adrenocortical, thyroid, and adenohypopyseal function in adult and old rats

    SciTech Connect

    Gorban', E.N.

    1986-04-01

    This paper studies the effect of dibunol (4-methyl-2,6-di-tert-butylphenol) (D) on the function of the adrenal cortex, thyroid gland, and adenhypophysis, which produces trophic hormones for the other two glands. Experiments were carried out on adult rats. After injection of D concentrations of corticosterone (CS), triodothyronine (T/sub 3/), ACTH, and thyrotrophin (TSH) in the blood plasma and the CS concentration in tssue of the adenohypophysis were determined. It is shown that injection of D caused biphasic changes in the CS concentration in both tissues studied in adult and old animals.

  9. Effects of cyclophosphamide on the kaolin consumption (pica behavior) in five strains of adult male rats.

    PubMed

    Tohei, Atsushi; Kojima, Shu-ichi; Ikeda, Masashi; Hokao, Ryoji; Shinoda, Motoo

    2011-07-01

    It is known that pica, the consumption of non-nutritive substances such as kaolin, can be induced by administration of toxins or emetic agents in rats. In the present study, we examined the effects of intraperitoneal (i.p.) administration of cyclophosphamide on pica behavior and on the concentration of 5-hydroxyindoleacetic acids (5HIAA) in cerebrospinal fluid (CSF) in the following five strains of adult male rats: Sprague Dawley (SD), Wistar, Fischer 344 (F344), Wistar-Imamichi (WI) and Long Evans (LE). Cyclophosphamide (25 mg or 50 mg/kg) was injected (i.p.) into the rats and kaolin and food intake were measured at 24 hr after injection. The animals were anesthetized with urethane (1 g/kg) at 3 hr after injection of cyclophosphamide, and CSF was collected from the cisterna magna. WI and LE rats clearly showed pica behavior as compared with the other strains. In LE rats, the concentration of 5HIAA in CSF also increased in a dose-dependent manner of cyclophosphamide. The pretreatment with ondansetron (5-HT(3) antagonist) restored both changes (kaolin consumption and 5HIAA levels) induced by cyclophosphamide. These results suggest that the LE rat is sensitive to cyclophosphamide, that pica induced by cyclophosphamide mimics many aspects of emesis including the serotonergic response in the central nervous system and that use of the pica model would be a practical method for evaluating the effects of antiemetic drugs in addition to the mechanism of emesis.

  10. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala.

    PubMed

    McCoy, Chelsea R; Jackson, Nateka L; Day, Jeremy; Clinton, Sarah M

    2017-03-01

    Understanding biological mechanisms that shape vulnerability to emotional dysfunction is critical for elucidating the neurobiology of psychiatric illnesses like anxiety and depression. To elucidate molecular and epigenetic alterations in the brain that contribute to individual differences in emotionality, our laboratory utilized a rodent model of temperamental differences. Rats bred for low response to novelty (Low Responders, LRs) are inhibited in novel situations and display high anxiety, helplessness, and diminished sociability compared to High Novelty Responder (HR) rats. Our current transcriptome profiling experiment identified widespread gene expression differences in the amygdala of adult HR/LR rats; we hypothesize that HR/LR gene expression and downstream behavioral differences stem from distinct epigenetic (specifically DNA methylation) patterning in the HR/LR brain. Although we found similar levels of DNA methyltransferase proteins in the adult HR/LR amygdala, next-generation sequencing analysis of the methylome revealed 793 differentially methylated genomic sites between the groups. Most of the differentially methylated sites were hypermethylated in HR versus LR, so we next tested the hypothesis that enhancing DNA methylation in LRs would improve their anxiety/depression-like phenotype. We found that increasing DNA methylation in LRs (via increased dietary methyl donor content) improved their anxiety-like behavior and decreased their typically high levels of Forced Swim Test (FST) immobility; however, dietary methyl donor depletion exacerbated LRs' high FST immobility. These data are generally consistent with findings in depressed patients showing that treatment with DNA methylation-promoting agents improves depressive symptoms, and highlight epigenetic mechanisms that may contribute to individual differences in risk for emotional dysfunction.

  11. 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence.

    PubMed

    Adriani, W; Canese, R; Podo, F; Laviola, G

    2007-01-01

    Administration of methylphenidate (MPH, Ritalin) to children affected by attention deficit hyperactivity disorder (ADHD) is an elective therapy, which however raises concerns for public health, due to possible persistent neuro-behavioral alterations. We investigated potential long-term consequences at adulthood of MPH exposure during adolescence, by means of behavioral and brain MRS assessment in drug-free state. Wistar adolescent rats (30- to 44-day-old) were treated with MPH (0 or 2 mg/kg once/day for 14 days) and then left undisturbed until adulthood. Levels of impulsive behavior were assessed in the intolerance-to-delay task: Food-restricted rats were tested in operant chambers with two nose-poking holes, delivering one food pellet immediately, or five pellets after a delay whose length was increased over days. MPH-exposed animals showed a less marked shifting profile from the large/late to the small/soon reward, suggesting reduced basal levels of impulsivity, compared to controls. In vivo MRI-guided 1H MRS examinations at 4.7 T in anaesthetised animals revealed long-term biochemical changes in the dorsal striatum (STR), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of MPH-exposed rats. Notably, total creatine and taurine, metabolites respectively involved in bioenergetics and synaptic efficiency, were up-regulated in the STR and conversely down-regulated in the NAcc of MPH-exposed rats. A strong correlation was evident between non-phosphorylated creatine in the STR and behavioral impulsivity. Moreover, unaltered total creatine and increased phospho-creatine/creatine ratio were detected in the PFC, suggesting improved cortical energetic performance. Because of this enduring rearrangement in the forebrain function, MPH-exposed animals may be more efficient when faced with delay of reinforcement. In summary, MPH exposure during adolescence produced enduring MRS-detectable biochemical modifications in brain reward-related circuits, which may account for

  12. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats.

    PubMed

    López-Doval, S; Salgado, R; Pereiro, N; Moyano, R; Lafuente, A

    2014-10-01

    Perfluorooctane sulfonate (PFOS) is a neurotoxic agent and it can disrupt the endocrine system activity. This work was undertaken to evaluate the possible effects of PFOS exposure on the hypothalamic-pituitary-testicular axis (HPT) in adult male rats, and to evaluate the possible morphological alterations induced by PFOS in the endocrine tissues of this axis. Adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0 mg of PFOS/kg/day for 28 days. After PFOS exposure, hypothalamic noradrenaline concentration increased in the anterior hypothalamus and in the median eminence, not changing in the mediobasal hypothalamus. PFOS treated rats presented a decrease of the gonadotropin releasing hormone (GnRH) gene expression, increasing the mRNA levels of the luteinizing hormone (LH) in rats treated with all doses administered except with the dose of 6 mg/kg/day. PFOS also induced a raise of the follicle stimulating hormone (FSH) gene expression in the animals exposed to 0.5 and 1.0 mg of PFOS/kg/day. After PFOS exposure, hypothalamic GnRH concentration was modified, LH and testosterone release was inhibited and FSH secretion was stimulated. Moreover, PFOS induced several histopathological alterations in the hypothalamus, pituitary gland and testis. The results obtained in the present study suggest in general terms that PFOS can inhibit the physiological activity of the reproductive axis in adult male rats, which could be explained, at least in part, by the structural alterations showed in the animals exposed to this chemical: very dense chromatin, condensed ribosomes and a loss of the morphology in the hypothalamus; a degeneration of the gonadotrophic cells, as well as a loss and degeneration of the spermatozoids and a very marked edema in the testis.

  13. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  14. Different forms of oestrogen rapidly upregulate cell proliferation in the dentate gyrus of adult female rats.

    PubMed

    Barha, C K; Lieblich, S E; Galea, L A M

    2009-03-01

    Oestrogens are known to exert significant structural and functional effects in the hippocampus of adult rodents. The dentate gyrus of the hippocampus retains the ability to produce neurones throughout adulthood and 17beta-oestradiol has been shown to influence hippocampal neurogenesis in adult female rats. The effects of other oestrogens, such as oestrone and 17alpha-oestradiol, on neurogenesis have not been investigated. The present study aimed to investigate the effects of 17beta-oestradiol, oestradiol benzoate, oestrone, and 17alpha-oestradiol on cell proliferation in ovariectomised adult female rats at two different time points. Young ovariectomised female rats were injected with one of the oestrogens at one of three doses. In Experiment 1, rats were exposed to the hormone for 4 h and, in Experiment 2, rats were exposed to the hormone for 30 min prior to 5-bromo-2-deoxyuridine injection to label proliferating cells and their progeny. We found that young ovariectomised females responded with increased cell proliferation to most oestrogens, except oestradiol benzoate, after 30 min of exposure. However, administration of oestrogens for a longer time interval was ineffective at increasing cell proliferation. After 30 min, 17beta-oestradiol and oestrone increased cell proliferation at low (0.3 microg) and high (10 microg) doses, whereas 17alpha-oestradiol increased cell proliferation at medium (1 microg) and high doses. The results of the present study indicate that different oestrogens rapidly increase cell proliferation in a dose-dependent manner, possibly through a nonclassical, nongenomic mechanism. Future experiments should focus on further elucidating the specific pathways utilised by each oestrogen. These results have important therapeutic implications because it may be possible to use 17alpha-oestradiol and lower doses of oestrogens in hormone replacement therapies.

  15. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test.

    PubMed

    Bravo, Gabriela; Maswood, Sharmin

    2006-10-01

    The effects of tropisetron, a 5-HT3 receptor antagonist, were evaluated in adult Fischer female rats exposed to the Forced Swim Test (FST). Rats selected on the days of proestrus or estrus was immersed in a cylinder of water for 2 consecutive days. Rats were exposed to the FST for 15 min on day 1 (pretest), followed by a 5-min session (test), 24 h later. The proestrous-estrous group consisted of rats that were exposed to the FST on their proestrous stage (pretest); then 24 h later the same rats were exposed to the FST on their estrous stage (test). Rats in the estrous-diestrous group were exposed to the FST on their estrous stage (pretest) and 24 h later on their diestrous stage (test). Rats were injected intraperitoneally with saline or 1.0 or 2.0 mg/kg tropisetron 30 min prior to exposure to the cylinder on the test day. Immobility, swimming, and struggling behaviors were scored for 5 min. There was a significant decline in immobility after treatment with 2.0 mg/kg tropisetron in both groups. In addition, a significant decline in swimming was observed in the estrous rats (proestrous-estrous group) after treatment with 2.0 mg/kg tropisetron. There were no significant effects of tropisetron on struggling in any groups examined.

  16. Neuroanatomical distribution of galectin-3 in the adult rat brain.

    PubMed

    Yoo, Hong-Il; Kim, Eu-Gene; Lee, Eun-Jin; Hong, Sung-Young; Yoon, Chi-Sun; Hong, Min-Ju; Park, Sang-Jin; Woo, Ran-Sook; Baik, Tai-Kyoung; Song, Dae-Yong

    2017-04-01

    Galectin-3 is a member of the lectin subfamily that enables the specific binding of β-galactosides. It is expressed in a broad spectrum of species and organs, and is known to have various functions related to cell adhesion, signal transduction, and proinflammatory responses. Although, expression of galectin-3 in some activated neuroglia under neuroinflammation has been well documented in the central nervous system, little is known about the neuronal expression and distribution of galectin-3 in normal brain. To describe the cellular and neuroanatomical expression map of galectin-3, we performed galectin-3 immunohistochemistry on the entire normal rat brain and subsequently analyzed the neuronal distribution. Galectin-3 expression was observed not only in some neuroglia but also in neurons. Neuronal expression of galectin-3 was observed in many functional parts of the cerebral cortex and various other subcortical nuclei in the hypothalamus and brainstem. Neuroanatomical analysis revealed that robust galectin-3 immuno-signals were present in many hypothalamic nuclei related to a variety of physiological functions responsible for mediating anxiety responses, energy balance, and neuroendocrine regulation. In addition, the regions highly connected with these hypothalamic nuclei also showed intense galectin-3 expression. Moreover, multiple key regions involved in regulating autonomic functions exhibited high levels of galectin-3 expression. In contrast, the subcortical nuclei responsible for the control of voluntary motor functions and limbic system exhibited no galectin-3 immunoreactivity. These observations suggest that galectin-3 expression in the rat brain seems to be regulated by developmental cascades, and that functionally and neuroanatomically related brain nuclei constitutively express galectin-3 in adulthood.

  17. Neurones in the adult rat anterior medullary velum.

    PubMed

    Ibrahim, M; Menoud, P A; Celio, M R

    2000-03-27

    The presence of neurones in the rat anterior medullary velum (AMV) has been investigated by using antibodies to the calcium-binding proteins, parvalbumin (PV), calretinin (CR), and calbindin-D28k (CB). Disparate populations of mainly GABAergic neurones were located in the rostral and caudal regions of the AMV. The rostral region of the AMV was characterised by GABAergic CR-labelled or PV-labelled neurones. CR-labelled neurones were bipolar or multipolar with round to ovoid somata (diameters between 8 and 12 microm), and rostrocaudally running dendrites forming a network. PV-labelled neurones had round somata (diameters between 6 and 10 microm) and were bi-tufted, with beaded dendrites. Both CR-labelled and PV-labelled dendrites formed punctate pericellular associations with unlabelled somatic profiles. In the caudal region of the AMV, PV-labelled neurones were GABAergic, multipolar cells, having round somata (diameters between 9 and 12 microm), with either beaded or nonbeaded dendrites forming a network of interconnecting dendrites. PV-labelled pericellular associations were made around both PV-labelled and unlabelled somatic profiles. CR labelled unipolar brush cells (UBCs) were not GABAergic. UBCs were characterised by a round to oval somata (10-15 microm in diameter) from which a single primary dendrite emerged to form a distal expansion having small terminal dendrites. From the distal expansion, there also appeared to be CR-labelled processes emanating and extending for up to 250 microm. CB occasionally labelled "Purkinje-like cells" (PLCs). The rat AMV is a more complex structure than first envisaged with the presence of predominantly inhibitory neurones expressing different calcium-binding proteins. Functional and anatomic aspects of this circuitry are further discussed.

  18. CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rats.

    PubMed

    Das, Sutapa; Guha, Debjani

    2008-03-01

    Treatment with Spinacia oleracea extract (SO; 400 mg/kg body weight) decreased the locomotor activity, grip strength, increased pentobarbitone induced sleeping time and also markedly altered pentylenetetrazole induced seizure status in Holtzman strain adult male albino rats. SO increased serotonin level and decreased both norepinephrine and dopamine levels in cerebral cortex, cerebellum, caudate nucleus, midbrain and pons and medulla. Result suggests that SO exerts its CNS depressive effect in PTZ induced seizure by modulating the monoamines in different brain areas.

  19. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  20. Attitudes of deaf adults toward genetic testing for hereditary deafness.

    PubMed

    Middleton, A; Hewison, J; Mueller, R F

    1998-10-01

    Recent advances within molecular genetics to identify the genes for deafness mean that it is now possible for genetic-counseling services to offer genetic testing for deafness to certain families. The purpose of this study is to document the attitudes of deaf adults toward genetic testing for deafness. A structured, self-completion questionnaire was given to delegates at an international conference on the "Deaf Nation," held at the University of Central Lancashire in 1997. The conference was aimed at well-educated people, with an emphasis on Deaf culture issues. Eighty-seven deaf delegates from the United Kingdom returned completed questionnaires. The questionnaire had been designed to quantitatively assess attitudes toward genetics, interest in prenatal diagnosis (PND) for deafness, and preference for having deaf or hearing children. The results from this study provide evidence of a predominantly negative attitude toward genetics and its impact on deaf people, in a population for whom genetic-counseling services are relevant. Fifty-five percent of the sample thought that genetic testing would do more harm than good, 46% thought that its potential use devalued deaf people, and 49% were concerned about new discoveries in genetics. When asked about testing in pregnancy, 16% of participants said that they would consider having PND, and, of these, 29% said that they would prefer to have deaf children. Geneticists need to appreciate that some deaf persons may prefer to have deaf children and may consider the use of genetic technology to achieve this. Any genetic-counseling service set up for families with deafness can only be effective and appropriate if clinicians and counselors take into consideration the beliefs and values of the deaf community at large.

  1. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    PubMed

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  2. Biochemical effect of a ketogenic diet on the brains of obese adult rats.

    PubMed

    Mohamed, Hoda E; El-Swefy, Sahar E; Rashed, Leila A; Abd El-Latif, Sally K

    2010-07-01

    Excess weight, particularly abdominal obesity, can cause or exacerbate cardiovascular and metabolic disease. Obesity is also a proven risk factor for Alzheimer's disease (AD). Various studies have demonstrated the beneficial effects of a ketogenic diet (KD) in weight reduction and in modifying the disease activity of neurodegenerative disorders, including AD. Therefore, in this study we examined the metabolic and neurodegenerative changes associated with obesity and the possible neuroprotective effects of a KD in obese adult rats. Compared with obese rats fed a control diet, obese rats fed a KD showed significant weight loss, improvement in lipid profiles and insulin resistance, and upregulation of adiponectin mRNA expression in adipose tissue. In addition, the KD triggered significant downregulation of brain amyloid protein precursor, apolipoprotein E and caspase-3 mRNA expression, and improvement of brain oxidative stress responses. These findings suggest that a KD has anti-obesity and neuroprotective effects.

  3. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    PubMed

    Favero, Morgana; Cangiano, Alberto; Busetto, Giuseppe

    2015-01-01

    Gap junctions (GJs) between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i) fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii) slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons) no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  4. Reproductive toxicity of a single dose of 1,3-dinitrobenzene in two ages of young adult male rats

    EPA Science Inventory

    These studies evaluated the reproductive response and the possible influence of testicular maturation on the reproductive parameters, in male rats treated with 1,3-dinitrobenzene (m-DNB). Young adult male rats (75 or 105 days of age) were given a single oral dose of 0, 8, 16, 24,...

  5. Leptin Attenuates the Contractile Function of Adult Rat Cardiomyocytes Involved in Oxidative Stress and Autophagy

    PubMed Central

    Luo, Liu-Jin; Liu, Ying-Ping; Yuan, Xun; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Background Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. Methods Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. Results The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. Conclusions Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy. PMID:27899860

  6. A new protocol for cultivation of predegenerated adult rat Schwann cells.

    PubMed

    Pietrucha-Dutczakv, Marita; Marcol, Wiesław; Francuz, Tomasz; Gołka, Dariusz; Lewin-Kowalik, Joanna

    2014-09-01

    The purpose of this study was to optimize the methodology of cultivation of predegenerated Schwann cells (SCs). SCs were isolated from 7-day-predegenerated sciatic nerves of adult rats. We applied commercially available culture medium for cultivation of endothelial cells endothelial cell culture medium (EBM-2) instead of Dulbecco's Modified Eagle's Medium commonly used to culture adult Schwann cells. Additionally, cell culture medium was supplemented with factors specifically supporting SCs growth as: bovine pituitary extract (5 μg/ml), heregulin (40 ng/ml) and insulin (2.5 ng/ml). Similarly to the reports of others authors, we did not observe any beneficial effects of Forskolin application, so we didn't supplement our medium with it. Cell culture purity was determined by counting the ratio of GFAP, N-Cadherin and NGFR p75-positive cells to total number of cells. About 94-97 % of cells were confirmed as Schwann cells. As a result, we obtained sufficient number and purity of Schwann cells to be applied in different experimental models in rats. EBM-2 medium coated with fibronectin was the best for cultivation of adult rat Schwann cells.

  7. Antipsychotic-induced suppression of locomotion in juvenile, adolescent and adult rats.

    PubMed

    Wiley, Jenny L

    2008-01-14

    Schizophrenia is a serious psychiatric disorder that is most frequently treated with the administration of antipsychotics. Although onset of schizophrenia typically occurs in late adolescence, the majority of preclinical research on the behavioral effects of antipsychotics and their mechanism(s) of action has been conducted on adult male animals. In this study, the acute effects of haloperidol (0.03-0.3 mg/kg, i.p.) and clozapine (1-10 mg/kg, i.p.) on locomotor activity were examined in juvenile [postnatal day 22 (PN22)], adolescent (PN40), and adult (>PN70) rats of both sexes. Subsequently, in order to determine whether tolerance to the activity suppressive effects of these drugs would occur in adolescents, PN40 rats were dosed and assessed for an additional nine days. While all groups exhibited some degree of suppression following acute administration of both drugs, juvenile rats were considerably more sensitive to this effect. With sub-chronic administration during late adolescent development (PN40-PN49), tolerance failed to develop. These results emphasize the importance of age in pharmacological characterization of antipsychotics and suggest that pre-adolescents may have enhanced sensitivity to the motor effects of these drugs. Further, they suggest that, similar to adults, older adolescents may not develop tolerance to the activity suppression induced by these two antipsychotics.

  8. Effects of Estradiol and Methoxychlor on Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-01-01

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7–15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms. PMID:24806340

  9. Neonatal Maternal Separation Augments Carotid Body Response to Hypoxia in Adult Males but Not Female Rats

    PubMed Central

    Soliz, Jorge; Tam, Rose; Kinkead, Richard

    2016-01-01

    Perinatal exposure to adverse experiences disrupts brain development, including the brainstem network that regulates breathing. At adulthood, rats previously subjected to stress (in the form of neonatal maternal separation; NMS) display features reported in patients suffering from sleep disordered breathing, including an increased hypoxic ventilatory response and hypertension. This effect is also sex-specific (males only). Based on these observations, we hypothesized that NMS augments the carotid body's O2-chemosensitivity. Using an isolated and perfused ex vivo carotid body preparation from adult rats we compared carotid sinus nerve (CSN) responses to hypoxia and hypercapnia in carotid bodies harvested from adult rats that either experienced control conditions (no experimental manipulation) or were subjected to NMS (3 h/day from postnatal days 3 to 12). In males, the CSN response to hypoxia measured in preparations from NMS males was 1.5 fold higher than controls. In control rats, the female's response was similar to that of males; however, the increase in CSN activity measured in NMS females was 3.0 times lower than controls. The CSN response to hypercapnia was not influenced by stress or sex. We conclude that NMS is sufficient to have persistent and sex-specific effects on the carotid body's response to hypoxia. Because NMS also has sex-specific effects on the neuroendocrine response to stress, we propose that carotid body function is influenced by stress hormones. This, in turn, leads to a predisposition toward cardio-respiratory disorders. PMID:27729873

  10. Distribution of constitutively expressed MEF-2A in adult rat and human nervous systems.

    PubMed

    Ruffle, Rebecca A; Mapley, Andrew C; Malik, Manmeet K; Labruzzo, Salvatore V; Chabla, Janet M; Jose, Riya; Hallas, Brian H; Yu, Han-Gang; Horowitz, Judith M; Torres, German

    2006-06-15

    Myocyte enhancer factor 2A (MEF-2A) is a calcium-regulated transcription factor that promotes cell survival during nervous system development. To define and further characterize the distribution pattern of MEF-2A in the adult mammalian brain, we used a specific polyclonal antiserum against human MEF-2A to identify nuclear-localized MEF-2A protein in hippocampal and frontal cortical regions. Western blot and immunocytochemical analyses showed that MEF-2A was expressed not only in laminar structures but also in blood vessels of rat and human brains. MEF-2A was colocalized with doublecortin (DCX), a microtubule-associated protein expressed by migrating neuroblasts, in CA1 and CA2 boundaries of the hippocampus. MEF-2A was expressed heterogeneously in additional structures of the rat brain, including the striatum, thalamus, and cerebellum. Furthermore, we found a strong nuclear and diffuse MEF-2A labeling pattern in spinal cord cells of rat and human material. Finally, the neurovasculature of adult rats and humans not only showed a strong expression of MEF-2A but also labeled positive for hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels. This study further characterizes the distribution pattern of MEF-2A in the mammalian nervous system, demonstrates that MEF-2A colocalizes with DCX in selected neurons, and finds MEF-2A and HCN1 proteins in the neurovasculature network.

  11. Electroconvulsive stimulation, but not chronic restraint stress, causes structural alterations in adult rat hippocampus--a stereological study.

    PubMed

    Olesen, Mikkel V; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number of newly formed neurons in the hippocampal subgranular zone. Also estimated were the total number of neurons and the volume of the granule cell layer in adult rats subjected to chronic restraint stress and electroconvulsive stimulation either alone or in combination. We found that chronic restraint stress induces depression-like behavior, without significantly changing neurogenesis, the total number of neurons or the volume of the hippocampus. Further, electroconvulsive stimulation prevents stress-induced depression-like behavior and increases neurogenesis. The total number of neurons and the granule cell layer volume was not affected by electroconvulsive stimulation.

  12. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    PubMed

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring.

  13. Effect of medroxyprogesterone acetate on thyrotropin secretion in adult and old female rats.

    PubMed

    Moreira, R M; Borges, P P; Lisboa, P C; Curty, F H; Moura, E G; Pazos-Moura, C C

    2000-09-01

    Steroid hormones have been implicated in the modulation of TSH secretion; however, there are few and controversial data regarding the effect of progesterone (Pg) on TSH secretion. Medroxyprogesterone acetate (MPA) is a synthetic alpha-hydroxyprogesterone analog that has been extensively employed in therapeutics for its Pg-like actions, but that also has some glucocorticoid and androgen activity. Both hormones have been shown to interfere with TSH secretion. The objective of the present study was to investigate the effects of MPA or Pg administration to ovariectomized (OVX) rats on in vivo and in vitro TSH release and pituitary TSH content. The treatment of adult OVX rats with MPA (0. 25 mg/100 g body weight, sc, daily for 9 days) induced a significant (P<0.05) increase in the pituitary TSH content, which was not observed when the same treatment was used with a 10 times higher MPA dose or with Pg doses similar to those of MPA. Serum TSH was similar for all groups. MPA administered to OVX rats at the lower dose also had a stimulatory effect on the in vitro basal and TRH-induced TSH release. The in vitro basal and TRH-stimulated TSH release was not significantly affected by Pg treatment. Conversely, MPA had no effect on old OVX rats. However, in these old rats, ovariectomy alone significantly reduced (P<0.05) basal and TRH-stimulated TSH release in vitro, as well as pituitary TSH content. The results suggest that in adult, but not in old OVX rats, MPA but not Pg has a stimulatory effect on TSH stores and on the response to TRH in vitro.

  14. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    PubMed Central

    Eweka, Andrew Osayame; Eweka, Abieyuwa

    2010-01-01

    Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24), with average weight of 220g were randomly assigned into two treatments (A & B) of (n=16) and Control (c) (n=8) groups. The rats in the treatment groups (A & B) received 0.1g (500mg/kg body weight) and 0.2g (1000mg/kg body weight) of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c) received equal amount of feeds daily without nutmeg added for forty-two days. The growers’ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings. PMID:22624138

  15. A spaceflight study of synaptic plasticity in adult rat vestibular maculas

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1994-01-01

    Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but

  16. Chronic intermittent hypoxia promotes expression of 3-mercaptopyruvate sulfurtransferase in adult rat medulla oblongata.

    PubMed

    Li, Mingqiang; Nie, Lihong; Hu, Yajie; Yan, Xiang; Xue, Lian; Chen, Li; Zhou, Hua; Zheng, Yu

    2013-12-01

    The present experiments were carried out to investigate the expression of 3-mercaptopyruvate sulfurtransferase (3MST) in medulla oblongata of rats and effects of chronic intermittent hypoxia (CIH) on its expression. Sprague Dawley adult rats were randomly divided into two groups, including control (Con) group and CIH group. The endogenous production of hydrogen sulfide (H2S) in medulla oblongata tissue homogenates was measured using the methylene blue assay method, 3MST mRNA and protein expression were analyzed by RT-PCR and Western blotting, respectively, and the expression of 3MST in the neurons of respiratory-related nuclei in medulla oblongata of rats was investigated with immunohistochemical technique. CIH elevated the endogenous H2S production in rat medulla oblongata (P<0.01). The RT-PCR and Western blotting analyses showed that 3MST mRNA and protein were expressed in the medulla oblongata of rats and CIH promoted their expression (P<0.01). Immunohistochemical staining indicated that 3MST existed in the neurons of pre-Bötzinger complex (pre-BötC), hypoglossal nucleus (12N), ambiguous nucleus (Amb), facial nucleus (FN) and nucleus tractus solitarius (NTS) in the animals and the mean optical densities of 3MST-positive neurons in the pre-BötC, 12N and Amb, but not in FN and NTS, were significantly increased in CIH group (P<0.05). In conclusion, 3MST exists in the neurons of medullary respiratory nuclei and its expression can be up-regulated by CIH in adult rat, suggesting that 3MST-H2S pathway may be involved in regulation of respiration and protection on medullary respiratory centers from injury induced by CIH.

  17. IGF-I redirects doublecortin-positive cell migration in the normal adult rat brain.

    PubMed

    Maucksch, C; McGregor, A L; Yang, M; Gordon, R J; Yang, M; Connor, B

    2013-06-25

    The migration of subventricular zone (SVZ)-derived neural precursor cells through the rostral migratory stream (RMS) to the olfactory bulb is tightly regulated by local micro-environmental cues. Insulin-like Growth Factor-I (IGF-I) can stimulate the migration of several neuronal cell types and acts as a 'departure' factor in the avian SVZ. To establish whether IGF-I can also act as a migratory factor for adult neuronal precursor cells in vivo, in addition to its well established role in precursor cell proliferation and differentiation, we used AAV2-mediated gene transfer to produce ectopic expression of IGF-I in the normal adult rat striatum. We then assessed whether the expression of IGF-I would recruit SVZ-derived neuronal precursor cells from the RMS into the striatum. Ectopic expression of IGF-I in the normal adult rat brain significantly increased the number of doublecortin (Dcx)-positive cells and the extent of their migration into the striatum 4 and 8 weeks after AAV2-IGF-I injection but did not promote neuronal differentiation. In vitro migration assays confirmed that IGF-I is an inducer of migration and directs SVZ-derived adult neuronal precursor cell migration by both chemotaxis and chemokinesis. These results demonstrate that overexpression of IGF-I in the normal adult rat brain can override the normal cues directing precursor cell migration along the RMS and can redirect precursor cell migration into a non-neurogenic region. Enhanced expression of IGF-I following brain injury may therefore act as a diffusible factor mediating precursor cell migration to areas of neuronal cell damage.

  18. Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test.

    PubMed

    Possamai, Fernanda; dos Santos, Juliano; Walber, Thais; Marcon, Juliana C; dos Santos, Tiago Souza; Lino de Oliveira, Cilene

    2015-04-03

    Repeated forced swimming test (rFST) may detect gradual effects of antidepressants in adult rats. Antidepressants, as enrichment, affected behavior and neurogenesis in rats. However, the influence of enrichment on behavioral and neurogenic effects of antidepressants is unknown. Here, effects of antidepressants on rFST and hippocampal neurogenesis were investigated in rats under enriched conditions. Behaviors of male Wistar rats, housed from weaning in standard (SE) or enriched environment (EE), were registered during rFST. The rFST consisted of 15min of swimming (pretest) followed by 5min of swimming in the first (test), seventh (retest 1) and fourteenth (retest 2) days after pretest. One hour before the test, rats received an intraperitoneal injection of saline (1ml/kg), fluoxetine (2.5mg/kg) or imipramine (2.5 or 5mg/kg). These treatments were performed daily until the day of the retest 2. After retest 2, rats were euthanized for the identification of markers for neurogenesis in the hippocampus. Fluoxetine or imipramine decreased immobility in retests 1 and 2, as compared to saline. EE abolished these differences. In EE, fluoxetine or imipramine (5mg/kg) reduced immobility time in retest 2, as compared to the test. Independent of the housing conditions, fluoxetine and imipramine (5mg/kg) increased the ratio of immature neurons per progenitor cell in the hippocampus. In summary, antidepressants or enrichment counteracted the high immobility in rFST. Enrichment changed the effects of antidepressants in rFST depending on the type, and the dose of a substance but failed to change neurogenesis in control or antidepressant treated-rats. Effects of antidepressants and enrichment on rFST seemed neurogenesis-independent.

  19. Deaf Adults' Reasons for Genetic Testing Depend on Cultural Affiliation: Results from a Prospective, Longitudinal Genetic Counseling and Testing Study

    ERIC Educational Resources Information Center

    Boudreault, Patrick; Baldwin, Erin E.; Fox, Michelle; Dutton, Loriel; Tullis, LeeElle; Linden, Joyce; Kobayashi, Yoko; Zhou, Jin; Sinsheimer, Janet S.; Sininger, Yvonne; Grody, Wayne W.; Palmer, Christina G. S.

    2010-01-01

    This article examines the relationship between cultural affiliation and deaf adults' motivations for genetic testing for deafness in the first prospective, longitudinal study to examine the impact of genetic counseling and genetic testing on deaf adults and the deaf community. Participants (n = 256), classified as affiliating with hearing, Deaf,…

  20. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats.

    PubMed

    Fernandez, Gina M; Lew, Brandon J; Vedder, Lindsey C; Savage, Lisa M

    2017-04-21

    Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.

  1. Sexual dimorphism in thyroid function and type 1 iodothyronine deiodinase activity in pre-pubertal and adult rats.

    PubMed

    Marassi, Michelle P; Fortunato, Rodrigo S; da Silva, Alba C Matos; Pereira, Valmara S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia M Corrêa

    2007-01-01

    Iodothyronine deiodinase activities are regulated by sex steroids; however, the mechanisms underlying the reported sexual dimorphism are poorly defined. In the present report, we aimed to investigate whether type 1 deiodinase (D1) sexual dimorphism exists early in sexual development by studying pre-pubertal male (Pm) and female (Pf) rats, as well as adult controls (C) and gonadectomized male and females rats. Adult male Wistar rats were studied 21 days after orchiectomy (Tex), and adult females were studied 21 days after ovariectomy (Ovx), and after estradiol benzoate (Eb) replacement. Serum total triiodothyronine (T3) was higher in pre-pubertal (P) rats than in the matching adults, with no difference between genders, although in adult males T3 was significantly lower than in females. There were no sex or age differences in serum total T4. Serum TSH in pre-pubertal (P) rats was within the adult female range, and both were significantly lower than in adult males. D1 activity in liver was greater in Pm than in Pf. In adult females, liver D1 activity was lower, while in adult males it was higher than in P rats. The same pattern of D1 activity was found in kidney. In thyroid and pituitary, D1 activity was similar in Pm, Pf, and adult females, which were all significantly lower than in the adult male. There were no differences in serum T3 and T4 between C and Tex males, but serum TSH was significantly decreased in Tex rats. Hepatic and renal D1 activities were lower in Tex than in C, but no changes were detected in thyroid and pituitary. In Ovx females, T3 was significantly lower than in the C group. Serum T4 was significantly decreased by estradiol replacement therapy in Ovx rats, in both doses used, whereas TSH was unchanged. Eb replacement increased liver and thyroid D1 activity, but in the kidney, only the highest estradiol dose promoted a significant D1 increase. In conclusion, in males, hepatic and renal D1 activity appears to be significantly influenced by

  2. Chronic intermittent ethanol exposure in adolescent and adult male rats: Effects on tolerance, social behavior and ethanol intake

    PubMed Central

    Broadwater, Margaret; Varlinskaya, Elena I.; Spear, Linda P.

    2010-01-01

    Background Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of the present study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Methods Adolescent and adult male Sprague-Dawley rats were assigned to one of five 10 day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), non-manipulated/acutely challenged with ethanol (4 g/kg on day 10) or non-manipulated. For assessment of tolerance development, loss of righting reflex was tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and non-manipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hrs after the last ethanol exposure, with ethanol-naïve chronic saline and non-manipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and non-manipulated animals using an 8 day 2 bottle choice, limited access ethanol intake procedure. Results Adolescents were less sensitive to the sedative effects of ethanol than adults. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults. Adolescents drank significantly more ethanol than adults on a g/kg basis, with intake uninfluenced by prior ethanol exposure at both ages. Conclusion Adolescents and adults may differ in

  3. Excitation and inhibition jointly regulate cortical reorganization in adult rats.

    PubMed

    Benali, Alia; Weiler, Elke; Benali, Youssef; Dinse, Hubert R; Eysel, Ulf T

    2008-11-19

    The primary somatosensory cortex (SI) retains its capability for cortical reorganization after injury or differential use into adulthood. The plastic response of SI cells to peripheral stimulation is characterized by extension of cortical representations accompanied by changes of the receptive field size of neurons. We used intracortical microstimulation that is known to enforce local, intracortical synchronous activity, to induce cortical reorganization and applied immunohistochemical methods in the same individual animals to investigate how plasticity in the cortical topographic maps is linked to changes in the spatial layout of the inhibitory and excitatory neurotransmitter systems. The results reveal a differential spatiotemporal pattern of upregulation and downregulation of specific factors for an excitatory (glutamatergic) and an inhibitory (GABAergic) system, associated with changes of receptive field size and reorganization of the somatotopic map in the rat SI. Predominantly local mechanisms are the specific reduction of the calcium-binding protein parvalbumin in inhibitory neurons and the low expression of the activity marker c-Fos. Reorganization in the hindpaw representation and in the adjacent SI cortical areas (motor cortex and parietal cortex) is accompanied by a major increase of the excitatory transmitter glutamate and c-Fos. The spatial extent of the reorganization appears to be limited by an increase of glutamic acid decarboxylase and the inhibitory transmitter GABA. The local and medium-range net effects are excitatory and can facilitate receptive field enlargements and cortical map expansion. The longer-range increase of inhibition appears suited to limit these effects and to prevent neurons from pathological hyperexcitability.

  4. Chronic alcoholism-mediated metabolic disorders in albino rat testes

    PubMed Central

    Bondarenko, Larysa B.; Matvienko, Anatoliy V.; Kovalenko, Valentina M.

    2014-01-01

    There is good evidence for impairment of spermatogenesis and reductions in sperm counts and testosterone levels in chronic alcoholics. The mechanisms for these effects have not yet been studied in detail. The consequences of chronic alcohol consumption on the structure and/or metabolism of testis cell macromolecules require to be intensively investigated. The present work reports the effects of chronic alcoholism on contents of free amino acids, levels of cytochrome P450 3A2 (CYP3A2) mRNA expression and DNA fragmentation, as well as on contents of different cholesterol fractions and protein thiol groups in rat testes. Wistar albino male rats were divided into two groups: I – control (intact animals), II – chronic alcoholism (15% ethanol self-administration during 150 days). Following 150 days of alcohol consumption, testicular free amino acid content was found to be significantly changed as compared with control. The most profound changes were registered for contents of lysine (–53%) and methionine (+133%). The intensity of DNA fragmentation in alcohol-treated rat testes was considerably increased, on the contrary CYP3A2 mRNA expression in testis cells was inhibited, testicular contents of total and etherified cholesterol increased by 25% and 45% respectively, and protein SH-groups decreased by 13%. Multidirectional changes of the activities of testicular dehydrogenases were detected. We thus obtained complex assessment of chronic alcoholism effects in male gonads, affecting especially amino acid, protein, ATP and NADPH metabolism. Our results demonstrated profound changes in testes on the level of proteome and genome. We suggest that the revealed metabolic disorders can have negative implication on cellular regulation of spermatogenesis under long-term ethanol exposure. PMID:26109895

  5. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults.

  6. Factors influencing extract of Hibiscus sabdariffa staining of rat testes.

    PubMed

    Bassey, R B; Bakare, A A; Peter, A I; Oremosu, A A; Osinubi, A A

    2012-08-01

    Some plant extracts can be used in biology and medicine to reveal or identify cellular components and tissues. We investigated the effects of time and concentration on staining of histological sections of rat testes by an acidified extract of Hibiscus sabdariffa. An ethanolic extract of H. sabdariffa was diluted using 1% acetic acid in 70% ethanol to stain histological sections of testes at concentrations of 0.2, 0.1 and 0.05 g/ml for 5, 10, 15, 30, 45 and 60 min. The sections of testes were stained deep red. The staining efficiency of H. sabdariffa was greater at a high concentration and required less time to achieve optimal staining. H. sabdariffa is a strongly basic dye that can be used for various diagnostic purposes. Staining time and concentration must be considered to achieve optimal results.

  7. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats

    PubMed Central

    Wulsin, Aynara C.; Wick-Carlson, Dayna; Packard, Benjamin A.; Morano, Rachel; Herman, James P.

    2016-01-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45–58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood. PMID:26751968

  8. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats.

    PubMed

    Wulsin, Aynara C; Wick-Carlson, Dayna; Packard, Benjamin A; Morano, Rachel; Herman, James P

    2016-03-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45-58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood.

  9. Exploration of Older and Younger British Adults' Performance on the Awareness of Social Inference Test (TASIT)

    ERIC Educational Resources Information Center

    Burdon, Paul; Dipper, Lucy; Cocks, Naomi

    2016-01-01

    Background: Social perception is an important skill. One assessment that is commonly used to assess social perception abilities is The Awareness of Social Inference Test (TASIT). The only normative data available for this test are for Australian younger adults. Despite no normative data being available for British adults, the test is widely used…

  10. Measuring Adult Literacy Students' Reading Skills Using the Gray Oral Reading Test

    ERIC Educational Resources Information Center

    Greenberg, Daphne; Pae, Hye Kyeong; Morris, Robin D.; Calhoon, Mary Beth; Nanda, Alice O.

    2009-01-01

    There are not enough reading tests standardized on adults who have very low literacy skills, and therefore tests standardized on children are frequently administered. This study addressed the complexities and problems of using a test normed on children to measure the reading comprehension skills of 193 adults who read at approximately third…

  11. Ginkgo biloba extract facilitates recovery from penetrating brain injury in adult male rats.

    PubMed

    Attella, M J; Hoffman, S W; Stasio, M J; Stein, D G

    1989-07-01

    Adult, male Sprague-Dawley rats received 100 mg/kg Ginkgo biloba extract (GBE) intraperitoneally for 30 days. GBE reduced overall activity and decreased sensitivity to light in the open field maze. The rats were also less responsive to noxious stimuli after 13 days of treatment with GBE. After the last injection, all subjects were trained on a delayed-spatial alternation task. Subsequent to acquisition of the spatial task, the rats received either sham operations and saline or bilateral frontal cortex lesions treated with either saline or GBE. Thirty additional days of treatment began on the day of injury, and open field behavior, analgesia, and metabolic activity measurements were again measured. The rats with lesions treated with saline were more active than their GBE-treated counterparts and sham controls but there were no differences in response to illumination or noxious stimuli. Retention of the delayed-spatial alternation indicated that rats with lesions treated with GBE were less impaired than brain-injured subjects receiving saline treatment. Histological examination showed that GBE reduced the extent of brain swelling in response to the injury.

  12. Effect of restraint and copper deficiency on blood pressure and mortality of adult rats

    SciTech Connect

    Klevay, L.M.; Halas, E.S. )

    1989-02-01

    The etiology of most hypertension is unknown; stress is thought to elevate blood pressure. Male, weanling Sprague-Dawley rats were fed a purified diet plus a drinking solution containing 10{mu}g Zn and 2{mu}g Cu/ml (acetate sulfate, respectively). Systolic blood pressure was measured without anesthesia. After being matched by mean weight (280g) and blood pressure into 4 groups of 15, groups 1 and 2 received a drinking solution without copper. After 24 days rats in groups 2 and 4 were restrained for 45 min. daily (A.M.) for 23 days in a small plastic cage (19{times}6{times}6 cm). Final pressures were affected both by stress and dietary Cu: group 1, 119; group 2, 131; group 3, 114; group 4, 123 mm Hg. One rat in each of groups 1, 3, 4 and 10 rats in group 2, died. Among these latter hemorrhage was prominent, blood being found in bladder (2), gut (2), peritoneum (2) and scrotum (1). Copper deficiency decreased cooper in both adrenal gland and liver by 58% and in heart by 29% restraint was without effect. Cardiac sodium was increased 6% only by deficiency. Results confirm the hypertensive effect of copper deficiency in adult rats and reveal that the stress of restraint increases blood pressure. Copper deficiency plus stress is harmful.

  13. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure

    PubMed Central

    Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.

    2014-01-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150

  14. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure.

    PubMed

    Gigante, Eduardo D; Santerre, Jessica L; Carter, Jenna M; Werner, David F

    2014-08-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults.

  15. Circadian rhythm of intraocular pressure in the adult rat.

    PubMed

    Lozano, Diana C; Hartwick, Andrew T E; Twa, Michael D

    2015-05-01

    Ocular hypertension is a risk factor for developing glaucoma, which consists of a group of optic neuropathies characterized by progressive degeneration of retinal ganglion cells and subsequent irreversible vision loss. Our understanding of how intraocular pressure damages the optic nerve is based on clinical measures of intraocular pressure that only gives a partial view of the dynamic pressure load inside the eye. Intraocular pressure varies over the course of the day and the oscillator regulating these daily changes has not yet been conclusively identified. The purpose of this study was to compare and contrast the circadian rhythms of intraocular pressure and body temperature in Brown Norway rats when these animals are housed in standard light-dark and continuous dim light (40-90 lux) conditions. The results from this study show that the temperature rhythm measured in continuous dim light drifted forward relative to external time, indicating that the rhythm was free running and being regulated by an internal biological clock. Also, the results show that there is a persistent, but dampened, circadian rhythm of intraocular pressure in continuous dim light and that the circadian rhythms of temperature and intraocular pressure are not synchronized by the same central oscillator. We conclude that once- or twice-daily clinical measures of intraocular pressure are insufficient to describe intraocular pressure dynamics. Similarly, our results indicate that, in experimental animal models of glaucoma, the common practice of housing animals in constant light does not necessarily eliminate the potential influence of intraocular pressure rhythms on the progression of nerve damage. Future studies should aim to determine whether an oscillator within the eye regulates the rhythm of intraocular pressure and to better characterize the impact of glaucoma on this rhythm.

  16. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  17. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats

    PubMed Central

    Antonio-Santos, José; Ferreira, Diórginis José S.; Gomes Costa, Gizelle L.; Matos, Rhowena Jane B.; Toscano, Ana E.; Manhães-de-Castro, Raul

    2016-01-01

    Abstract Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531–3538, 2016—Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors. PMID:27870699

  18. Efficacy of Retigabine on Acute Limbic Seizures in Adult Rats

    PubMed Central

    Friedman, LK; Slomko, AM; Wongvravit, JP; Naseer, Z; Hu, S; Wan, WY; Ali, SS

    2015-01-01

    Background and Purpose: The efficacy of retigabine (RGB), a positive allosteric modulator of K+ channels indicated for adjunct treatment of partial seizures, was studied in two adult models of kainic acid (KA)-induced status epilepticus to determine it’s toleratbility. Methods: Retigabine was administered systemiclly at high (5 mg/kg) and low (1–2 mg/kg) doses either 30 min prior to or 2 hr after KA-induced status epilepticus. High (1 µg/µL) and low (0.25 µg/µL) concentrations of RGB were also delivered by intrahippocampal microinjection in the presence of KA. Results: Dose-dependent effects of RGB were observed with both models. Lower doses increased seizure behavior latency and reduced the number of single spikes and synchronized burst events in the electroencephalogram (EEG). Higher doses worsened seizure behavior, produced severe ataxia, and increased spiking activity. Animals treated with RGB that were resistant to seizures did not exhibit significant injury or loss in GluR1 expression; however if stage 5–6 seizures were reached, typical hippocampal injury and depletion of GluR1 subunit protein in vulernable pyramidal fields occurred. Conclusions: RGB was neuroprotective only if seizures were significantly attenuated. GluR1 was simultaneously suppressed in the resistant granule cell layer in presence of RGB which may weaken excitatory transmission. Biphasic effects observed herein suggest that the human dosage must be carefully scrutinized to produce the optimal clinical response. PMID:26819936

  19. Individual Differences in Male Rats in a Behavioral Test Battery: A Multivariate Statistical Approach

    PubMed Central

    Feyissa, Daniel D.; Aher, Yogesh D.; Engidawork, Ephrem; Höger, Harald; Lubec, Gert; Korz, Volker

    2017-01-01

    Animal models for anxiety, depressive-like and cognitive diseases or aging often involve testing of subjects in behavioral test batteries. The large number of test variables with different mean variations and within and between test correlations often constitute a significant problem in determining essential variables to assess behavioral patterns and their variation in individual animals as well as appropriate statistical treatment. Therefore, we applied a multivariate approach (principal component analysis) to analyse the behavioral data of 162 male adult Sprague-Dawley rats that underwent a behavioral test battery including commonly used tests for spatial learning and memory (holeboard) and different behavioral patterns (open field, elevated plus maze, forced swim test) as well as for motor abilities (Rota rod). The high dimensional behavioral results were reduced to fewer components associated with spatial cognition, general activity, anxiety-, and depression-like behavior and motor ability. The loading scores of individual rats on these different components allow an assessment and the distribution of individual features in a population of animals. The reduced number of components can be used also for statistical calculations like appropriate sample sizes for valid discriminations between experimental groups, which otherwise have to be done on each variable. Because the animals were intact, untreated and experimentally naïve the results reflect trait patterns of behavior and thus individuality. The distribution of animals with high or low levels of anxiety, depressive-like behavior, general activity and cognitive features in a local population provides information of the probability of their appeareance in experimental samples and thus may help to avoid biases. However, such an analysis initially requires a large cohort of animals in order to gain a valid assessment. PMID:28261069

  20. Individual Differences in Male Rats in a Behavioral Test Battery: A Multivariate Statistical Approach.

    PubMed

    Feyissa, Daniel D; Aher, Yogesh D; Engidawork, Ephrem; Höger, Harald; Lubec, Gert; Korz, Volker

    2017-01-01

    Animal models for anxiety, depressive-like and cognitive diseases or aging often involve testing of subjects in behavioral test batteries. The large number of test variables with different mean variations and within and between test correlations often constitute a significant problem in determining essential variables to assess behavioral patterns and their variation in individual animals as well as appropriate statistical treatment. Therefore, we applied a multivariate approach (principal component analysis) to analyse the behavioral data of 162 male adult Sprague-Dawley rats that underwent a behavioral test battery including commonly used tests for spatial learning and memory (holeboard) and different behavioral patterns (open field, elevated plus maze, forced swim test) as well as for motor abilities (Rota rod). The high dimensional behavioral results were reduced to fewer components associated with spatial cognition, general activity, anxiety-, and depression-like behavior and motor ability. The loading scores of individual rats on these different components allow an assessment and the distribution of individual features in a population of animals. The reduced number of components can be used also for statistical calculations like appropriate sample sizes for valid discriminations between experimental groups, which otherwise have to be done on each variable. Because the animals were intact, untreated and experimentally naïve the results reflect trait patterns of behavior and thus individuality. The distribution of animals with high or low levels of anxiety, depressive-like behavior, general activity and cognitive features in a local population provides information of the probability of their appeareance in experimental samples and thus may help to avoid biases. However, such an analysis initially requires a large cohort of animals in order to gain a valid assessment.

  1. The effects of different levels of peppermint alcoholic extract on body-weight gain and blood biochemical parameters of adult male Wistar rats

    PubMed Central

    Mesbahzadeh, Behzad; Akbari, Mohsen; kor, Nasroallah Moradi; Zadeh, Jalal Bayati

    2015-01-01

    Introduction Peppermint is an efficient medicinal plant for the treatment of diseases, and it also can be used to produce raw materials in the pharmaceutical industry. The purpose of the current study was to evaluate the effects of various levels of peppermint alcoholic extract on body-weight gain and blood biochemical parameters in adult male Wistar rats. Methods This experiment was conducted using a completely randomized design (CRD). Fifty adult, healthy, male Wistar rats (ages of 2.5–3 months; weights of 190–210 g) were allocated randomly into five groups. T1 was the control group in which the rats received 0.3 ml of distilled water). Groups T2, T3, T4, and T5 received 75, 150, 300, and 600 mg/kg of peppermint extract, respectively. The rats received daily pretreatment by oral gavages for 21 days. We recorded body weights at the beginning and at the end of the study to determine the changes in the body weights. Blood samples were collected for the measurement of glucose, cholesterol, triglycerides, HDL, LDL, albumin, globulin, and total protein. Statistical analysis of the data was done by SAS software. The data statistically analyzed using one-way analysis of variance (ANOVA), which was conducted through Dennett’s multiple comparison post-test. Results The results indicated that the rats treated with peppermint gained more weight (p < 0.05) and also decreased the serum concentrations of triglycerides, total cholesterol, LDL, and glucose in T3, T4 and T5 than the other groups (p < 0.05). Conclusion Peppermint extract had a positive effect on body-weight gain and some blood parameters in adult male Wistar rats. The findings showed that peppermint is a crucial substance at high temperature, and future research should be focused on determining the details of the mechanisms involved in producing the observed effects of peppermint extract. PMID:26516445

  2. Noise exposure during early development impairs the processing of sound intensity in adult rats.

    PubMed

    Bures, Zbynek; Grécová, Jolana; Popelár, Jirí; Syka, Josef

    2010-07-01

    During the early postnatal development of rats, the structural and functional maturation of the central auditory nuclei strongly relies on the natural character of the incoming neural activity. Even a temporary deprivation in the critical period results in a deterioration of neuronal responsiveness in adult animals. We demonstrate that besides the poorer frequency selectivity of neurons in the impaired animals reported previously [Grecova et al. (2009)Eur. J. Neurosci. 29, 1921-1930], the neuronal representation of sound intensity is significantly affected. Rate-intensity functions of inferior colliculus neurons were recorded in anaesthetized adult rats that were exposed to intense noise at postnatal day 14, and compared with those obtained in age-matched controls. Although the response thresholds were similar in the exposed and control rats, the neurons in the exposed animals had a longer first-spike latency, a narrower dynamic range, lower maximum response magnitudes and a steeper slope of the rate-intensity functions. The percentage of monotonic neurons was significantly lower in the exposed animals. The observed anomalies were confined to the mid- and high-frequency regions, whereas no significant changes were found in the low-frequency neurons. The altered parameters of the individual rate-intensity functions led also to differences in the cumulative responses. We conclude that a brief noise exposure during the critical period leads to a frequency-dependent alteration of the sound intensity representation in the inferior colliculus of adult rats. The results suggest that such impairments may appear in individuals with normal hearing thresholds, but with a history of noise exposure very early in childhood.

  3. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters.

    PubMed

    Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G

    2007-04-15

    Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8 microg 100 g(-1) day(-1), s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases.

  4. Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression?

    PubMed

    Hansen, H H; Sánchez, C; Meier, E

    1997-12-01

    Chronic administration of the tricyclic antidepressant clomipramine to neonatal rats from postnatal days 8 to 21 is reported to induce several behavioral changes in adult life, and it may serve as an animal model of human depressive disorder. Findings include increased immobility time in the forced swim test and locomotor hyperactivity in the open field test. Clomipramine is a serotonergic reuptake inhibitor, which suggests that altered development of the serotonergic system could account for the observed behavioral changes in the adult rat. The present study was carried out with a selective serotonin reuptake inhibitor (SSRI) to investigate whether the serotonin system, in particular, is involved in the neonatal animal model. The substance, Lu 10-134-C (LU), was characterized in monoamine reuptake and receptor binding assays and found to be an SSRI. Rats received LU during postnatal days 8 to 21 (2.5-15 mg/kg b. i.d.), and they were assessed in open field, forced swim and social interaction tests at the age of 4 months. Behavior of LU-treated rats and saline controls did not differ in the open field and social interaction tests. However, in the forced swim tests LU-treated neonates showed prolonged immobility time compared with saline controls. In conclusion, chronic LU treatment during neonatal life produces long-term changes in the forced swim test, but not in the open field and social interaction tests. The behavioral changes in the forced swim test suggest that the central serotonergic system may be involved in the putative neonatal animal model of depression.

  5. Adult reference values of the computerized diplopia test

    PubMed Central

    Zhou, Ling-Yun; Liu, Tie-Juan; Li, Xue-Mei

    2016-01-01

    AIM To estimate the adult reference values for measured deviations by a computerized diplopia test and testify the validity. METHODS Totally 391 participants were recruited and taken the computerized diplopia test. The plots and amplitude of deviations were recorded. The differences in different gender, age and visual acuity groups were analyzed respectively. Of 30 subjects were enrolled to testify the interobserver reliability. Another 46 subjects (including 26 normal subjects and 20 patients) were taken the test and theirs deviations were recorded to testify the validity of the reference value. RESULTS The max horizontal and vertical deviations were 2.55° and 0.76° with normal corrected visual acuity while 3.88° and 1.46° for subjects with poor corrected vision. The differences between age groups was insignificant (Z=3.615, 4.758; P=0.461, 0.313 for horizontal and vertical respectively). The max horizontal deviation of female was smaller than male (Z=-2.177; P=0.029), but the difference in max vertical deviation was insignificant (Z=-1.296; P=0.195). The mean difference between observers were both -0.1°, with 95% confidence limits (CI) of -1.4° and 1.6° in max horizontal deviations while -2.1° and 1.8° in max vertical deviation. The mean deviation of 26 normal subjects was 1.02°±0.84° for horizontal and 0.47°±0.30° for vertical which both within the range of reference values. The mean deviation of 20 patients was 13.51°±11.69° for horizontal and 8.34°±8.58° for vertical which both beyond the reference range. CONCLUSION The max amplitude of horizontal and vertical deviation is pointed as the numerical parameters of computerized diplopia test. The reference values are different between normal corrected visual acuity and poor corrected vision. These values may useful for evaluating patients with diplopia in veriety conditions during clinical practice. PMID:27990370

  6. Impact of chronic nicotine administration on bone mineral content in young and adult rats: a comparative study.

    PubMed

    Farag, Mahmoud M; Selima, Eman A; Salama, Mona A

    2013-11-15

    The aim of this study was to evaluate the effects of chronic nicotine administration on bone mineral homeostasis in rapidly growing young rats in comparison to effects in adult male rats. Two doses of nicotine (3 and 4.5mg/kg/day, as nicotine hydrogen tartrate) were used and rat treatment was continued for 6 months. In this study, all nicotine-treated rats weighed less than control rats and the effect was dose-dependent. Also, rats treated with nicotine had lower femoral wet weight and showed a significant reduction in femoral mid-shaft cortical width and femoral and lumbar vertebral ash weights. These effects were associated with a significant reduction of ash calcium and phosphorus contents of the femora and lumbar vertebrae. The bone mineral-lowering effects of nicotine were more severe in the lumbar vertebral spongy bone than in the femoral compact bone and these changes were more marked in adult rats than in young rats. An additional interesting observation was that the femora of young rats treated with nicotine were significantly shorter than those of control young rats. Also, the values of the femoral ash weight per unit length were significantly decreased in nicotine-treated adult rats but not in nicotine-treated young rats. Thus, these results show that nicotine-induced changes in bone vary with age. The clinical relevance of this study is that it may provide justification to insist that all people in general and the risky young group in particular should be warned against the hazards of the negative effects of nicotine on bone.

  7. Adults' Engagement in Reading: A Test of Engagement Theory.

    ERIC Educational Resources Information Center

    Smith, M. Cecil

    A study examined the extent to which adults engage in reading tasks to meet a variety of personal purposes and needs, asking when engaged reading is most likely to occur for types of text sources, reading purposes, reading settings, educational attainment groups, and occupational groups. Subjects included 159 adults who represented a wide range of…

  8. Histological correlates of N40 auditory evoked potentials in adult rats after neonatal ventral hippocampal lesion: animal model of schizophrenia.

    PubMed

    Romero-Pimentel, A L; Vázquez-Roque, R A; Camacho-Abrego, I; Hoffman, K L; Linares, P; Flores, G; Manjarrez, E

    2014-11-01

    The neonatal ventral hippocampal lesion (NVHL) is an established neurodevelopmental rat model of schizophrenia. Rats with NVHL exhibit several behavioral, molecular and physiological abnormalities that are similar to those found in schizophrenics. Schizophrenia is a severe psychiatric illness characterized by profound disturbances of mental functions including neurophysiological deficits in brain information processing. These deficits can be assessed by auditory evoked potentials (AEPs), where schizophrenics exhibit abnormalities in amplitude, duration and latency of such AEPs. The aim of the present study was to compare the density of cells in the temporal cerebral cortex and the N40-AEP of adult NVHL rats versus adult sham rats. We found that rats with NVHL exhibit significant lower amplitude of the N40-AEP and a significant lower number of cells in bilateral regions of the temporal cerebral cortex compared to sham rats. Because the AEP recordings were obtained from anesthetized rats, we suggest that NVHL leads to inappropriate innervation in thalamic-cortical pathways in the adult rat, leading to altered function of cortical networks involved in processing of primary auditory information.

  9. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex123

    PubMed Central

    Beshara, Simon; Beston, Brett R.; Pinto, Joshua G. A.

    2015-01-01

    Abstract Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  10. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex.

    PubMed

    Beshara, Simon; Beston, Brett R; Pinto, Joshua G A; Murphy, Kathryn M

    2015-01-01

    Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity.

  11. No harmful effect of different Coca-cola beverages after 6 months of intake on rat testes.

    PubMed

    Tóthová, Lubomíra; Hodosy, Július; Mettenburg, Kathryn; Fábryová, Helena; Wagnerová, Alexandra; Bábíčková, Janka; Okuliarová, Monika; Zeman, Michal; Celec, Peter

    2013-12-01

    Our laboratory recently reported that a 3-month exposure of rats to cola-like beverages induced sex hormone changes. The aim of the study was to investigate the effects of various types of Coca-cola intake with different composition for 6 months on oxidative status in testes and testosterone in adult male rats. Fifty adult male Wistar rats were divided into control group drinking water, and groups drinking different Coca-cola beverages (regular Coca-cola, Coca-cola caffeine-free, Coca-cola Light and Coca-cola Zero). Oxidative and carbonyl stress markers were measured in the testicular tissue to assess oxidative status together with testicular and plasma testosterone. StAR expression in testes as a marker of steroidogenesis was quantified. No significant differences were found between the groups in any of the measured parameters. In conclusion, oxidative and carbonyl stress in testicular tissue were not influenced by drinking any type of Coca-cola. Additionally, testosterone in testes and in plasma, as well as testicular StAR expression were comparable among the groups.

  12. The role of ketotifen in the prevention of testicular damage in rats with experimental unilateral undescended testes

    PubMed Central

    Acikgoz, Abdullah; Asci, Ramazan; Aydin, Oguz; Çavuş, Hikmet; Donmez, Gamze; Buyukalpelli, Recep

    2014-01-01

    The aims of this study conducted on rats were to determine mast cell (MC) proliferation on undescended testes (UDTs); whether there is a correlation between MC proliferation and testicular damage; and whether testicular damage can be prevented with administration of an MC blocker. Sixty-five newborn male rats were divided into three groups. During the neonatal period, unilateral UDTs were experimentally induced in Group 2 and Group 3. The rats in Group 3 were given 1 mg/kg/day ketotifen orally until the end of the study. Groups 2 (n=30) and 3 (n=15) were divided into groups of ten and five rats, respectively, each of which underwent bilateral orchiectomy in either the prepubertal, pubertal, or adult period. Group 1 (n=15) underwent a sham operation followed by bilateral orchiectomy, with five rats in each of the prepubertal, pubertal, and adult periods. Testicular MCs in the interstitial and subtubular areas, biopsy scores, interstitial connective tissue, seminiferous tubule (ST) diameters, and the basement membrane thickness of STs were evaluated. In Group 2 the ST diameters in the UDTs decreased, the number of MCs in the interstitial and subtubular areas increased, ST basement membranes thickened, and spermatogenesis decreased. The number of MCs in the interstitial and subtubular areas of the descended testes increased and spermatogenesis decreased. In Group 3, the number of MCs in the interstitial and subtubular areas decreased. In unilateral UDTs, the number of MCs in the interstitial and subtubular areas increased in both testes. Fibrosis developed in the ST basement membranes and interstitial areas, and spermatogenesis deteriorated. Testicular fibrosis may be prevented with administration of an MC blocker. PMID:25364234

  13. Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-methyl-D-aspartate receptor binding levels.

    PubMed

    Metaxas, A; Willems, R; Kooijman, E J M; Renjaän, V A; Klein, P J; Windhorst, A D; Donck, L Ver; Leysen, J E; Berckel, B N M van

    2014-11-01

    Although both the onset of schizophrenia and human phencyclidine (PCP) abuse typically present within the interval from adolescence to early adulthood, the majority of preclinical research employing the PCP model of schizophrenia has been conducted on neonatal or adult animals. The present study was designed to evaluate the behavioral and neurochemical sequelae of subchronic exposure to PCP in adolescence. Male 35-42-day-old Sprague Dawley rats were subcutaneously administered either saline (10 ml · kg(-1) ) or PCP hydrochloride (10 mg · kg(-1) ) once daily for a period of 14 days (n = 6/group). The animals were allowed to withdraw from treatment for 2 weeks, and their social and exploratory behaviors were subsequently assessed in adulthood by using the social interaction test. To examine the effects of adolescent PCP administration on the regulation of N-methyl-D-aspartate receptors (NMDARs), quantitative autoradiography was performed on brain sections of adult, control and PCP-withdrawn rats by using 20 nM (3) H-MK-801. Prior subchronic exposure to PCP in adolescence had no enduring effects on the reciprocal contact and noncontact social behavior of adult rats. Spontaneous rearing in response to the novel testing arena and time spent investigating its walls and floor were reduced in PCP-withdrawn animals compared with control. The long-term behavioral effects of PCP occurred in the absence of persistent deficits in spontaneous locomotion or self-grooming activity and were not mediated by altered NMDAR density. Our results document differential effects of adolescent PCP administration on the social and exploratory behaviors of adult rats, suggesting that distinct neurobiological mechanisms are involved in mediating these behaviors.

  14. Adolescent Δ(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats.

    PubMed

    Scherma, Maria; Dessì, Christian; Muntoni, Anna Lisa; Lecca, Salvatore; Satta, Valentina; Luchicchi, Antonio; Pistis, Marco; Panlilio, Leigh V; Fattore, Liana; Goldberg, Steven R; Fratta, Walter; Fadda, Paola

    2016-04-01

    Cannabis is the most commonly used illicit drug worldwide, and use is typically initiated during adolescence. The endocannabinoid system has an important role in formation of the nervous system, from very early development through adolescence. Cannabis exposure during this vulnerable period might lead to neurobiological changes that affect adult brain functions and increase the risk of cannabis use disorder. The aim of this study was to investigate whether exposure to Δ(9)-tetrahydrocannabinol (THC) in adolescent rats might enhance reinforcing effects of cannabinoids in adulthood. Male adolescent rats were treated with increasing doses of THC (or its vehicle) twice/day for 11 consecutive days (PND 45-55). When the animals reached adulthood, they were tested by allowing them to intravenously self-administer the cannabinoid CB1-receptor agonist WIN55,212-2. In a separate set of animals given the same THC (or vehicle) treatment regimen, electrophysiological and neurochemical experiments were performed to assess possible modifications of the mesolimbic dopaminergic system, which is critically involved in cannabinoid-induced reward. Behavioral data showed that acquisition of WIN55,212-2 self-administration was enhanced in THC-exposed rats relative to vehicle-exposed controls. Neurophysiological data showed that THC-exposed rats displayed a reduced capacity for WIN55,212-2 to stimulate firing of dopamine neurons in the ventral tegmental area and to increase dopamine levels in the nucleus accumbens shell. These findings-that early, passive exposure to THC can produce lasting alterations of the reward system of the brain and subsequently increase cannabinoid self-administration in adulthood-suggest a mechanism by which adolescent cannabis exposure could increase the risk of subsequent cannabis dependence in humans.

  15. Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD).

    PubMed

    Pires, Vanessa A; Pamplona, Fabrício A; Pandolfo, Pablo; Prediger, Rui D S; Takahashi, Reinaldo N

    2010-12-20

    The spontaneously hypertensive rat (SHR) is frequently used as an experimental model for the study of attention deficit hyperactivity disorder (ADHD) since it displays behavioural and neurochemical features of ADHD. Increasing evidence suggests that caffeine might represent an important therapeutic tool for the treatment of ADHD and we recently demonstrated that the acute administration of caffeine improves several learning and memory impairments in adult SHR rats. Here we further evaluated the potential of caffeine in ADHD therapy. Female Wistar (WIS) and SHR rats were treated with caffeine (3mg/kg, i.p.) or methylphenidate (MPD, 2mg/kg, i.p.) for 14 consecutive days during the prepubertal period (post-natal days 25-38) and they were tested later in adulthood in the object-recognition task. WIS rats discriminated all the objects used, whereas SHR were not able to discriminate pairs of objects with subtle structural differences. Chronic treatment with caffeine or MPD improved the object-recognition deficits in SHR rats. Surprisingly, these treatments impaired the short-term object-recognition ability in adult WIS rats. The present drug effects are independent of changes in locomotor activity, arterial blood pressure and body weight in both rat strains. These findings suggest that chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in discriminative learning impairments of SHR, suggesting caffeine as an alternative therapeutic strategy for the early management of ADHD symptoms. Nevertheless, our results also emphasize the importance of a correct diagnosis and the caution in the use of stimulant drugs such as caffeine and MPD during neurodevelopment since they can disrupt discriminative learning in non-ADHD phenotypes.

  16. Characterization of a Graded Cervical Hemicontusion Spinal Cord Injury Model in Adult Male Rats

    PubMed Central

    Dunham, Kelly A.; Siriphorn, Akkradate; Chompoopong, Supin

    2010-01-01

    Abstract Most experimental models of spinal cord injury (SCI) in rodents induce damage in the thoracic cord and subsequently examine hindlimb function as an indicator of recovery. In these models, functional recovery is most attributable to white-matter preservation and is less influenced by grey-matter sparing. In contrast, most clinical cases of SCI occur at the lower cervical levels, a region in which both grey-matter and white-matter sparing contribute to functional motor recovery. Thus experimental cervical SCI models are beginning to be developed and used to assess protective and pharmacological interventions following SCI. The objective of this study was to characterize a model of graded cervical hemicontusion SCI with regard to several histological and behavioral outcome measures, including novel forelimb behavioral tasks. Using a commercially available rodent spinal cord impactor, adult male rats received hemicontusion SCI at vertebral level C5 at 100, 200, or 300 kdyn force, to produce mild, moderate, or severe injury severities. Tests of skilled and unskilled forelimb and locomotor function were employed to assess functional recovery, and spinal cord tissue was collected to assess lesion severity. Deficits in skilled and unskilled forelimb function and locomotion relating to injury severity were observed, as well as decreases in neuronal numbers, white-matter area, and white-matter gliosis. Significant correlations were observed between behavioral and histological data. Taken together, these data suggest that the forelimb functional and locomotor assessments employed here are sensitive enough to measure functional changes, and that this hemicontusion model can be used to evaluate potential protective and regenerative therapeutic strategies. PMID:21087156

  17. The effect of methylphenidate and rearing environment on behavioral inhibition in adult male rats

    PubMed Central

    Hill, Jade C.; Covarrubias, Pablo; Terry, Joel; Sanabria, Federico

    2012-01-01

    Rationale The ability to withhold reinforced responses—behavioral inhibition—is impaired in various psychiatric conditions including Attention Deficit Hyperactivity Disorder (ADHD). Methodological and analytical limitations have constrained our understanding of the effects of pharmacological and environmental factors on behavioral inhibition. Objectives To determine the effects of acute methylphenidate (MPH) administration and rearing conditions (isolated vs. pair-housed) on behavioral inhibition in adult rats. Methods Inhibitory capacity was evaluated using two response-withholding tasks, differential reinforcement of low rates (DRL) and fixed minimum interval (FMI) schedules of reinforcement. Both tasks made sugar pellets contingent on intervals longer than 6 s between consecutive responses. Inferences on inhibitory and timing capacities were drawn from the distribution of withholding times (interresponse times, or IRTs). Results MPH increased the number of intervals produced in both tasks. Estimates of behavioral inhibition increased with MPH dose in FMI and with social isolation in DRL. Nonetheless, burst responding in DRL and the divergence of DRL data relative to past studies, among other limitations, undermined the reliability of DRL data as the basis for inferences on behavioral inhibition. Conclusions Inhibitory capacity was more precisely estimated from FMI than from DRL performance. Based on FMI data, MPH, but not a socially enriched environment, appears to improve inhibitory capacity. The highest dose of MPH tested, 8 mg/kg, did not reduce inhibitory capacity but reduced the responsiveness to waiting contingencies. These results support the use of the FMI schedule, complemented with appropriate analytic techniques, for the assessment of behavioral inhibition in animal models. PMID:22057663

  18. Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats.

    PubMed

    Takeuchi, Takashi; Kitagawa, Hiroshi; Harada, Etsumori

    2004-05-01

    Using adult rats, the characteristic transporting system for lactoferrin (LF) from intestinal lumen into the blood circulation was investigated. The rats were randomly divided into two groups, a non-collected thoracic lymph (NC) group and a collected thoracic lymph (LC) group. Peripheral blood and thoracic lymph were collected from a jugular vein and a thoracic lymph duct, respectively, under anaesthesia. Bovine LF (bLF) was infused into the duodenal lumen by needle over a 1-min period at a dose of 1 g kg(-1). The transported bLF in the plasma and lymph was assayed quantitatively by double-antibody enzyme-linked immunosorbent assay (ELISA). Morphological investigation was also carried out in the intestine, lymph node, and liver. Following intraduodenal administration of bLF, the transported bLF in the NC group was detected in the plasma, and reached a peak value at 2 h. Furthermore, the bLF concentration in the thoracic duct lymph fluid in the LC group increased significantly, and peaked 2 h after the administration. In addition, bLF was not detected in the plasma of the LC group. Immunohistochemical analysis clearly showed anti-bLF positive particles in the epithelial cells of the apical villi. The striated border and baso-lateral membrane were also bLF positive. These results suggest that intraduodenally infused bLF is transported into the blood circulation via the lymphatic pathway, not via portal circulation in adult rats.

  19. Variability in the distribution of callosal projection neurons in the adult rat parietal cortex.

    PubMed

    Ivy, G O; Gould, H J; Killackey, H P

    1984-07-23

    Previous reports have shown that the barrel field area of the parietal cortex of the adult rat contains relatively few callosal projection neurons, even though callosal projection neurons are abundant in this cortical region in the neonatal rat. Furthermore, it has been shown that many of the callosal neurons which seem to disappear as the animal matures do not die, but project to ipsilateral cortical areas. These findings rely on the ability of retrograde transport techniques which utilize injections of horseradish peroxidase (HRP) or of fluorescent dyes into one hemisphere. We now show that several technical modifications of the HRP technique yield a wider distribution of HRP-containing neurons in the contralateral barrel field area of the adult rat than previously reported. These include implants of HRP pellets into transected axons of the corpus callosum, the addition of DMSO and nonidet P40 to Sigma VI HRP, wheat germ agglutinin HRP and the use of tetramethyl benzidine as the chromogen in the reaction procedure. Our findings have implications for transport studies in general and for the development of the cortical barrel field in particular.

  20. Prolactin inhibition at the end of lactation programs for a central hypothyroidism in adult rat.

    PubMed

    Bonomo, Isabela Teixeira; Lisboa, Patrícia Cristina; Passos, Magna Cottini Fonseca; Alves, Simone Bezerra; Reis, Adelina Martha; de Moura, Egberto Gaspar

    2008-08-01

    Malnutrition during lactation is associated with hypoprolactinemia and failure in milk production. Adult rats whose mothers were malnourished presented higher body weight and serum tri-iodothyronine (T(3)). Maternal hypoprolactinemia at the end of lactation caused higher body weight in adult life, suggesting an association between maternal prolactin (PRL) level and programming of the offspring's adult body weight. Here, we studied the consequences of the maternal PRL inhibition at the end of lactation by bromocriptine (BRO) injection, a dopaminergic agonist, upon serum TSH and thyroid hormones, thyroid iodide uptake, liver mitochondrial alpha-glycerophosphate dehydrogenase (mGPD), liver and pituitary de-iodinase activities (D1 and/or D2), and in vitro post-TRH TSH release in the adult offspring. Wistar lactating rats were divided into BRO - injected with 1 mg/twice a day, daily for the last 3 days of lactation, and C - control, saline-injected with the same frequency. At 180 days of age, the offspring were injected with (125)I i.p. and after 2 h, they were killed. Adult animals whose mothers were treated with BRO at the end of lactation presented lower serum TSH (-51%), T(3) (-23%), and thyroxine (-21%), lower thyroid (125)I uptake (-41%), liver mGPD (-55%), and pituitary D2 (-51%) activities, without changes in the in vitro post-TRH TSH release. We show that maternal PRL suppression at the end of lactation programs a hypometabolic state in adulthood, in part due to a thyroid hypofunction, caused by a central hypothyroidism, probably due to decreased TRH secretion. We suggest that PRL during lactation can regulate the hypothalamus-pituitary-thyroid axis and programs its function.

  1. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise

    PubMed Central

    Merkley, Christina M.; Jian, Charles; Mosa, Adam; Tan, Yao-Fang; Wojtowicz, J. Martin

    2014-01-01

    Adult neurogenesis is highly responsive to environmental and physiological factors. The majority of studies to date have examined short-term consequences of enhancing or blocking neurogenesis but long-term changes remain less well understood. Current evidence for age-related declines in neurogenesis warrant further investigation into these long-term changes. In this report we address the hypothesis that early life experience, such as a period of voluntary running in juvenile rats, can alter properties of adult neurogenesis for the remainder of the animal's life. The results indicate that the number of proliferating and differentiating neuronal precursors is not altered in runners beyond the initial weeks post-running, suggesting homeostatic regulation of these processes. However, the rate of neuronal maturation and survival during a 4 week period after cell division was enhanced up to 11 months of age (the end of the study period). This study is the first to show that a transient period of physical activity at a young age promotes changes in neurogenesis that persist over the long-term, which is important for our understanding of the modulation of neurogenesis by exercise with age. Functional integration of adult-born neurons within the hippocampus that resist homeostatic regulation with aging, rather than the absolute number of adult-born neurons, may be an essential feature of adult neurogenesis that promotes the maintenance of neural plasticity in old age. PMID:25071426

  2. Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction.

    PubMed

    Hill, D L; Phillips, L M

    1994-05-01

    Unilateral chorda tympani nerve sectioning was combined with institution of a sodium-restricted diet in adult rats to determine the role that environment has on the functional properties of regenerating taste receptor cells. Rats receiving chorda tympani sectioning but no dietary manipulation (cut controls) and rats receiving only the dietary manipulation (diet controls) had normal responses to a concentration series of NaCl, sodium acetate (NaAc), and NH4Cl. However, responses from the regenerated nerve in NaCl-restricted rats (40-120 d postsectioning) to NaCl and NaAc were reduced by as much as 30% compared to controls, indicating that regenerating taste receptors are influenced by environmental (dietary) factors. Responses to NH4Cl were normal; therefore, the effect appears specific to sodium salts. Surprisingly, in the same rats, NaCl responses from the contralateral, intact chorda tympani were up to 40% greater than controls. Thus, in the same rat, there was over a twofold difference in sodium responses between the right and left chorda tympani nerves. A study of the time course of the functional alterations in the intact nerve revealed that responses to NaCl were extremely low immediately following sectioning (about 20% of the normal response), and then increased monotonically during the following 50 d until relative response magnitudes became supersensitive. This function occurred even when the cut chorda tympani was prevented from reinnervating lingual epithelia, demonstrating that events related to regeneration do not play a role in the functional properties of the contralateral side of the tongue.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Behavioural and biochemical effects in the adult rat after prolonged postnatal administration of clozapine.

    PubMed

    Cuomo, V; Cagiano, R; Mocchetti, I; Coen, E; Cattabeni, F; Racagni, G

    1983-01-01

    Rats were administered 10 mg/kg SC of clozapine (C) or vehicle solution (S) daily from day 1 after birth until 20 days of age. At 60 days of age (40 days after the postnatal treatment with C or S was interrupted) the stereotyped behaviour and the effects on locomotor activity elicited by apomorphine in S- and C-pretreated rats were investigated. The intensity of stereotyped behaviour as well as the decrement in locomotion induced by apomorphine (0.5--1 mg/kg SC) were not influenced by chronic C administration during development. Finally, at 80 days of age (60 days after the postnatal treatment with C or S was interrupted) rats were subjected to a differential reinforcement of low rates schedule (DRL15s). The results indicate that the acquisition of the DRL task performance criterion (Rs/Rf less than or equal to 2.5) was significantly more rapid in S-pretreated rats than in C-pretreated ones. In parallel biochemical experiments, homovanillic acid (HVA) content was measured in striatum in rats at 60 days of age (40 days after the postnatal treatment with C or S was interrupted). The results indicate that even if an acute challenge dose of 10 mg/kg C shows a certain degree of tolerance a single dose of 20 mg/kg C is still able to increase striatal HVA concentration in chronic C-pretreated animals. These data indicate that early postnatal administration of a non-cataleptogenic neuroleptic, like C, induces, in the adult rat, behavioural and biochemical changes which significantly differ from those elicited by a cataleptogenic neuroleptic, like haloperidol.

  4. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats

    PubMed Central

    Shepherd, Daniel J.; Tsai, Shih-Yen; O'Brien, Timothy E.; Farrer, Robert G.; Kartje, Gwendolyn L.

    2016-01-01

    Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis. PMID:27803646

  5. GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla

    PubMed Central

    Li, Ming-Hua; Suchland, Katherine L; Ingram, Susan L

    2015-01-01

    Neurons in the rostral ventromedial medulla (RVM) play critical and complex roles in pain modulation. Recent studies have shown that electrical stimulation of the RVM produces pain facilitation in young animals (postnatal (PN) day < 21) but predominantly inhibits pain behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. This is in part because whole-cell patch-clamp studies in RVM to date have been in young (PN day < 18) animals because the organization and abundance of myelinated fibres in this region make the RVM a challenging area for whole-cell patch-clamp recording in adults. Several neurotransmitter systems, including GABAergic neurotransmission, undergo developmental changes that mature by PN day 21. Thus, we focused on optimizing whole-cell patch-clamp recordings for RVM neurons in animals older than PN day 30 and compared the results to animals at PN day 10–21. Our results demonstrate that the probability of GABA release is lower and that opioid and endocannabinoid effects are more evident in adult rats (mature) compared to early postnatal (immature) rats. Differences in these properties of RVM neurons may contribute to the developmental changes in descending control of pain from the RVM to the spinal cord. PMID:25556797

  6. Amphetamine-induced incentive sensitization of sign-tracking behavior in adolescent and adult female rats.

    PubMed

    Doremus-Fitzwater, Tamara L; Spear, Linda P

    2011-08-01

    Age-specific behavioral and neural characteristics may predispose adolescents to initiate and escalate use of alcohol and drugs. Adolescents may avidly seek novel experiences, including drugs of abuse, because of enhanced incentive motivation for drugs and natural rewards, perhaps especially when that incentive motivation is sensitized by prior drug exposure. Using a Pavlovian conditioned approach (PCA) procedure, sign-tracking (ST) and goal-tracking (GT) behavior was examined in amphetamine-sensitized and control adolescent and adult female Sprague-Dawley rats, with expression of elevated ST behavior used to index enhanced incentive motivation for reward-associated cues. Rats were first exposed to a sensitizing regimen of amphetamine injections (3.0 mg/kg/ml d-amphetamine per day) or given saline (0.9% wt/vol) once daily for 4 days. Expression of ST and GT was then examined over 8 days of PCA training consisting of 25 pairings of an 8-s presentation of an illuminated lever immediately followed by response-independent delivery of a banana-flavored food pellet. Results showed that adults clearly displayed more ST behavior than adolescents, reflected via both more contacts with, and shorter latencies to approach, the lever. Prior amphetamine sensitization increased ST (but not GT) behaviors regardless of age. Thus, when indexed via ST, incentive motivation was found to be greater in adults than adolescents, with a prior history of amphetamine exposure generally sensitizing incentive motivation for cues predicting a food reward regardless of age.

  7. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    PubMed

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock.

  8. Spermatogenetic disorders in adult rats exposed to tributyltin chloride during puberty.

    PubMed

    Yu, Wook Joon; Lee, Beom Jun; Nam, Sang Yoon; Kim, Young Chul; Lee, Yong Soon; Yun, Young Won

    2003-12-01

    Adverse effects of tributyltin (TBT) chloride were investigated on the reproductive system in male adult rats as exposed during puberty. Fifty Sprague-Dawley rats at the age of 35 days were assigned to five different groups: negative control receiving vehicle, methyltestosterone (10 mg/kg B.W.), and TBT chloride treatments (5, 10, and 20 mg/kg B.W.). Animals were treated by oral gavage for ten consecutive days and sacrificed at 5 weeks after final treatment. The treatment of TBT chloride at the high dose of 20 mg/kg B.W. significantly decreased homogenization-resistant testicular sperm counts (p<0.05). The TBT chloride treatment at the doses of 10 and 20 mg/kg B.W. also significantly decreased caudal epididymal sperm counts (p<0.01). Some of motion kinematic parameters (motility, mean angular displacement, lateral head displacement, and dance) of sperms retrieved from vasa deference were significantly decreased in rats treated with the TBT chloride at the dose of 20 mg/kg B.W. (p<0.05). These results provide a further evidence that an exposure to TBT chloride during pubertal period in male rats produces spermatogenic disorders characterized by decreasing testicular and epididymal sperm counts and some motion parameters of sperms in the vasa deference.

  9. Neonatal DSP-4 treatment modifies GABAergic neurotransmission in the prefrontal cortex of adult rats.

    PubMed

    Bortel, Aleksandra; Nowak, Przemyslaw; Brus, Ryszard

    2008-01-01

    N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a noradrenergic neurotoxin which selectively damages noradrenergic projections originating from the locus coeruleus (LC). DSP-4 treatment of rats on the first and third days after birth produces a long-lasting lesion of noradrenergic neurons in the prefrontal cortex (PFC). In DSP-4-lesioned rats, studied as adults, we observed a decrease in norepinephrine content, with no significant change in the levels of dopamine, 5-hydroxytryptamine, and gamma-aminobutyric acid (GABA). There is now a well established interaction between noradrenergic and GABAergic systems, whereby the noradrenergic system is involved in the regulation of basal GABA release, while GABAergic neurons simultaneously exert tonic inhibitory regulation of LC norepinephrine neurons. We examined GABAergic neurotransmission in the norepinephrine-denervated PFC for a better appreciation of the interaction between these two systems. Treatment with the GABA transaminase inhibitor vigabatrine (VGB) increased the GABA level of PFC (tissue content) in both intact and lesioned groups. Additionally, VGB increased extracellular GABA concentration in the PFC in both control and DSP-4-lesioned animals, but the elevation of GABA was 2-fold higher in DSP-4 lesioned rats. These findings indicate that neonatal DSP-4 treatment increases GABAergic neurotransmission in the PFC of rats in adulthood, perhaps by decreasing reactivity of central GABA(A) receptors.

  10. Effects of estradiol and progesterone on vertebral collagen, glycosaminoglycans and phosphatases in ovariectomized adult rats.

    PubMed

    Gopala Krishnan, V; Arunakaran, J; Govindarajulu, P; Srinivasan, N

    2003-03-01

    Vertebral collagen, glycosaminoglycans (GAGs), tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were measured in ovariectomized (ovx) adult Wistar rats treated with estradiol (E 2 ) (10 micro g/kg BW for 35 days on alternate days, and progesterone (P 4 ) (140 micro g/kg BW for 35 days on alternate days) in E 2 + P 4 treated rats. P 4 given alone or in combination with E 2 significantly increased the levels of collagen in the vertebral bone. Neither ovx nor E 2 treatment altered the concentration of collagen in these rats. Administration of E 2 or P 4 significantly decreased the concentration of hyaluronic acid (HA), but remaining unaffected when a combination of these steroids was given. In contrast to their effect on HA, E 2 and P 4 each significantly increased the levels of chondroitin sulfate (CS) in the vertebral bone. The specific activity of ALP was decreased after ovx. E 2 and P 4 alone or in combination also registered a significant decrease in the activities of ALP and TRAP. The results suggest that E 2 and P 4 each exert definite effects on vertebral bone turnover in ovariectomized rats.

  11. Tianeptine facilitates spreading depression in well-nourished and early-malnourished adult rats.

    PubMed

    Amancio-Dos-Santos, Angela; Maia, Luciana Maria Silva de Seixas; Germano, Paula Catirina Pereira da Silva; Negrão, Yleana Danielle Dos Santos; Guedes, Rubem Carlos Araújo

    2013-04-15

    Nutritional status during development can modify the brain's electrophysiological properties and its response to drugs that reduce the serotonin availability in the synaptic cleft. Here we used cortical spreading depression (CSD) in the rat as a neurophysiological parameter to investigate the interaction between nutritional status and treatment with tianeptine, a serotonin uptake enhancer. From postnatal day 2 to 24, well-nourished and early-malnourished rat pups were s.c. injected with tianeptine (5 or 10mg/kg; 10 ml/kg) or equivalent volume of saline solution (control group). When the animals were 25-30 days old, CSD was recorded on the brain cortical surface. In the well-nourished rats, but not in the malnourished group, systemic tianeptine dose-dependently increased the CSD propagation velocity, with 10mg/kg producing a significant (P<0.05) effect. An experiment in adult rats showed that cortical topical application of tianeptine solutions (5mg/ml, 10mg/ml, and 20mg/ml) increased the CSD propagation in both the well-nourished and early-malnourished conditions. In well-nourished animals, 0.5mg/ml topical tianeptine did not affect CSD propagation, and 2mg/ml produced a small, but significant CSD acceleration. Our results indicate a facilitating action of tianeptine on CSD propagation, probably via tianeptine's pharmacological action on the serotonin system. These findings support previous data suggesting an antagonistic role of the serotoninergic system on CSD.

  12. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons

    PubMed Central

    2010-01-01

    Background Oxaliplatin chemotherapy induced neuropathy is a dose related cumulative toxicity that manifests as tingling, numbness, and chronic pain, compromising the quality of life and leading to discontinued chemotherapy. Patients report marked hypersensitivity to cold stimuli at early stages of treatment, when sensory testing reveals cold and heat hyperalgesia. This study examined the morphological and functional effects of oxaliplatin treatment in cultured adult rat DRG neurons. Results 48 hour exposure to oxaliplatin resulted in dose related reduction in neurite length, density, and number of neurons compared to vehicle treated controls, using Gap43 immunostaining. Neurons treated acutely with 20 μg/ml oxaliplatin showed significantly higher signal intensity for cyclic AMP immunofluorescence (160.5 ± 13 a.u., n = 3, P < 0.05), compared to controls (120.3 ± 4 a.u.). Calcium imaging showed significantly enhanced capsaicin (TRPV1 agonist), responses after acute 20 μg/ml oxaliplatin treatment where the second of paired capsaicin responses increased from 80.7 ± 0.6% without oxaliplatin, to 171.26 ± 29% with oxaliplatin, (n = 6 paired t test, P < 0.05); this was reduced to 81.42 ± 8.1% (P < 0.05), by pretretreatment with the cannabinoid CB2 receptor agonist GW 833972. Chronic oxaliplatin treatment also resulted in dose related increases in capsaicin responses. Similarly, second responses to icilin (TRPA1/TRPM8 agonist), were enhanced after acute (143.85 ± 7%, P = 0.004, unpaired t test, n = 3), and chronic (119.7 ± 11.8%, P < 0.05, n = 3) oxaliplatin treatment, compared to control (85.3 ± 1.7%). Responses to the selective TRPM8 agonist WS-12 were not affected. Conclusions Oxaliplatin treatment induces TRP sensitization mediated by increased intracellular cAMP, which may cause neuronal damage. These effects may be mitigated by co-treatment with adenylyl cyclase inhibitors, like CB2 agonists, to alleviate the neurotoxic effects of oxaliplatin. PMID:21106058

  13. Evaluation of the repeated-dose liver micronucleus assay using N-nitrosomorpholine in young adult rats: report on collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study (MMS) Group.

    PubMed

    Hayashi, Aya; Kosaka, Mizuki; Kimura, Aoi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    The present study was conducted to evaluate the suitability of a repeated-dose liver micronucleus (LMN) assay in young adult rats as a collaborative study by the Mammalian mutagenicity study (MMS) group. All procedures were performed in accordance with the standard protocols of the MMS Group. Six-week-old male Crl:CD(SD) rats (5 animals/group) received oral doses of the hepatocarcinogen N-nitrosomorpholine (NMOR) at 0 (control), 5, 10, and 30mg/kg/day (10mL/kg) for 14 days. Control animals received vehicle (water). Hepatocytes were collected from the liver 24h after the last dose, and the number of micronucleated hepatocytes (MNHEPs) was determined by microscopy. The number of micronucleated immature erythrocytes (MNIMEs) in the femoral bone marrow was also determined. The liver was examined using histopathologic methods after formalin fixation. The results showed statistically significant and dose-dependent increases in the number of MNHEPs in the liver at doses of 10mg/kg and greater when compared with the vehicle control. However, no significant increase was noted in the number of MNIMEs in the bone marrow at doses of up to 30mg/kg. Histopathology of the liver revealed hypertrophy and single cell necrosis of hepatocytes at doses of 5mg/kg and above. These results showed that the induction of micronuclei by NMOR was detected by the repeated-dose LMN assay, but not by the repeated-dose bone marrow micronucleus assay.

  14. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study

    PubMed Central

    Saunders, Norman R.; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Habgood, Mark D.; Wakefield, Matthew J.; Lindsay, Helen; Stratzielle, Nathalie; Ghersi-Egea, Jean-Francois; Liddelow, Shane A.

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve) with expression levels 2–98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15). In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g., Slc16a10, a thyroid hormone transporter) gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients. PMID:25972776

  15. Constituent ratio of motor fibers from the C5-C7 spinal nerves in the radial nerve is greater in pup rats than in adult rats.

    PubMed

    Nie, Mingbo; Chen, Liang; Gu, Yudong

    2012-06-01

    Clinically, injuries of C5-C7 of the brachial plexus cause falling of the wrist and fingers in infants but not in adults unless 4 consecutive spinal nerves are injured. The purpose of this study was to compare the constituent difference of spinal nerves in the radial nerve between pup and adult rats.A group of 16 pup rats and a group of 16 adult rats were each divided into 2 groups of 8 (P1 and A1 groups, C5-C6 were divided; P2 and A2 groups, C5-C7 were divided]). A nerve conduction study and histological examination were performed to evaluate radial nerve innervation to the extensor digitorum communis muscle after dividing the spinal nerves. Retrograde tracing with 5% cholera toxin B for anterior horn motoneurons of the spinal cord innervating the radial nerve was performed in 8 pup rats and 8 adult rats. Results showed that the division of C5-C7 caused more significant damage to radial nerve innervation to the extensor digitorum communis in pups than in adults, although the division of C5-C6 did not. In pups, the percentages (median with interquartile) of anterior horn motoneurons of the spinal cord innervating the radial nerve were 36.4 (28.3-38.5) in C5-C6, 28.1 (24.5-32.5) in C7, and 37.5 (36.5-39.3) in C8-T1. In adults, they were 24.2 (23.6-27.8) in C5-C6, 21.8 (19.5-26.3) in C7, and 50.7 (48.7-55.5) C8-T1.This study implies that C7 innervation in the radial nerve in humans may be more critical to the function of this nerve in infants than in adults.

  16. Moderate prenatal alcohol exposure and quantification of social behavior in adult rats.

    PubMed

    Hamilton, Derek A; Magcalas, Christy M; Barto, Daniel; Bird, Clark W; Rodriguez, Carlos I; Fink, Brandi C; Pellis, Sergio M; Davies, Suzy; Savage, Daniel D

    2014-12-14

    Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE(1), and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.

  17. Intestinal mast cells and eosinophils in relation to Strongyloides ratti adult expulsion from the small and large intestines of rats.

    PubMed

    Shintoku, Y; Kadosaka, T; Kimura, E; Takagi, H; Kondo, S; Itoh, M

    2013-04-01

    Mucosal mast cells (MMC) play a crucial role in the expulsion of Strongyloides ratti adults from the small intestine of mice. We reported the large intestinal parasitism of S. ratti in rats, and there has been no report on MMC in the large intestine of the natural host. We studied kinetics of MMC, together with eosinophils, in the upper and lower small intestines, caecum and colon of infected rats. Two distinct phases of mastocytosis were revealed: one in the upper small intestine triggered by stimulation of 'ordinary' adults, and the other in the colon stimulated by 'immune-resistant' adults that started parasitizing the colon around 19 days post-infection. In all 4 intestinal sites, the MMC peaks were observed 5-7 days after the number of adult worms became the maximum and the height of MMC peaks appeared to be dependent on the number of parasitic adults, suggesting an important role played by worms themselves in the MMC buildup.

  18. Long-term effects of repeated maternal separation and ethanol intake on HPA axis responsiveness in adult rats.

    PubMed

    Odeon, María Mercedes; Yamauchi, Laura; Grosman, Mauricio; Acosta, Gabriela Beatriz

    2017-02-15

    It has been shown that early life manipulations produce behavioral, neural, and hormonal effects. The long term consequences of repeated maternal separation (RMS) plus cold stress and ethanol intake were evaluated during adolescence and adult rats on hypothalamic-pituitary-adrenal (HPA) axis in male adult Wistar rats. RMS+ cold stress was applied from postnatal day (PD) 2 in which the pups were separated from their mothers and exposed to cold stress (4°C) 1h per day for 20days; controls remained with their mothers. Then they were exposed to either voluntary ethanol (6%) or dextrose (1%) intake for 7days: PD22-29 and PD59-66. Half of the animals were sacrificed, while the others were exposed to acute stress (AS) for 2h and then they were killed. RMS+ cold stress: a) increased voluntary ethanol intake in adolescent and adult rats; b) reduced protein expression (Western measurements) in corticotropin-releasing hormone (CRH) in hypothalamus (Hyp) and mineralocorticoid receptor (MR) in hippocampus (Hic) while increased glucocorticoid receptor (GR) in Hic; c) decreased plasmatic levels of adrenocorticotropic hormone (ACTH) and increased corticosterone (COR) levels in HPA axis, d) adult rats exposure a new AS incremented ACTH and COR levels. However, this modification did not alter the HPA axis capacity to respond to a new type of stressor. These results demonstrate the consequences of early life stress on the vulnerability of ethanol consumption and HPA axis responsiveness to a stressor in adult rats.

  19. Stress-induced suppression of hippocampal neurogenesis in adult male rats is altered by prenatal ethanol exposure

    PubMed Central

    SLIWOWSKA, J. H.; BARKER, J. M.; BARHA, C. K.; LAN, N.; WEINBERG, J.; GALEA, L. A. M.

    2016-01-01

    In adulthood, both alcohol (ethanol) and stress are known to suppress hippocampal neurogenesis in male rats. Similarly, most studies report that prenatal alcohol exposure (PAE) reduces cell proliferation and/or cell survival in the hippocampus of adult males. Furthermore, PAE is known to have marked effects on behavioral and hypothalamic–pituitary–adrenal (HPA) responsiveness to stressors. However, no studies have examined the modulation of adult hippocampal neurogenesis by stress in PAE animals. We hypothesized that, in accordance with previous data, PAE would suppress basal levels of adult hippocampal neurogenesis, and further that stress acting on a sensitized HPA axis would have greater adverse effects on adult hippocampal neurogenesis in PAE than in control rats. Adult male offspring from PAE, pair-fed (PF) control, and ad libitum-fed control (C) groups were subjected to restraint stress (9 days, 1 h/day) or left undisturbed. Rats were then injected with bromodeoxyuridine (BrdU) on day 10, perfused 24 h (proliferation) or 3 weeks (survival) later, and brains processed for BrdU immunohistochemistry. We found that (1) under non-stressed conditions, PAE rats had a small but statistically significant suppressive effect on levels of hippocampal neurogenesis and (2) unexpectedly, repeated restraint stress significantly reduced neurogenesis in C and PF, but not PAE rats. We speculate that the failure of PAE males to mount an appropriate (i.e. suppressive) neurogenic response to stressors, implies reduced plasticity and adaptability or resilience, which could impact negatively on hippocampal structure and function. PMID:20536332

  20. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  1. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats.

    PubMed

    Yucel, Atakan; Yucel, Nermin; Ozkanlar, Seckin; Polat, Elif; Kara, Adem; Ozcan, Halil; Gulec, Mustafa

    2016-04-01

    Agomelatine (AG) is an agonist of melatonin receptors and an antagonist of the 5-HT2C-receptor subtype. The chronobiotic properties of AG are of significant interest due to the disorganization of internal rhythms, which might play a role in the pathophysiology of depression. The present study was designed to assess the effects of the antidepressant-like activity of AG, a new antidepressant drug, on adult neurogenesis and apoptosis using stress-exposed rat brains. Over the period of 1 week, the rats were exposed to light stress twice a day for 1h. After a period of 1 week, the rats were given AG treatment at a dose of either 10mg/kg or 40mg/kg for 15 days. The animals were then scarified, and the obtained tissue sections were stained with immuno-histochemical anti-BrdU, Caspase-3, and Bcl-2 antibodies. Serum brain-derived neurotrophic factor (BDNF) concentrations were measured biochemically using a BDNF Elisa kit. Biochemical BDNF analysis revealed a high concentration of BDNF in the serum of the stress-exposed group, but the concentrations of BDNF were much lower those of the AG-treated groups. Immuno-histochemical analysis revealed that AG treatment decreased the BrdU-positive and Bcl-2-positive cell densities and increased the Caspase-3-positive cell density in the hippocampus of stress-induced rats as compared to those of the stress group. The results of the study demonstrated that AG treatment ameliorated the hippocampal apoptotic cells and increased hippocampal neurogenesis. These results also strengthen the possible relationship between depression and adult neurogenesis, which must be studied further.

  2. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  3. Daily patterns of ethanol drinking in adolescent and adult, male and female, high alcohol drinking (HAD) replicate lines of rats.

    PubMed

    Dhaher, Ronnie; McConnell, Kathleen K; Rodd, Zachary A; McBride, William J; Bell, Richard L

    2012-10-01

    The rationale for our study was to determine the pattern of ethanol drinking by the high alcohol-drinking (HAD) replicate lines of rats during adolescence and adulthood in both male and female rats. Rats were given 30 days of 24 h free-choice access to ethanol (15%, v/v) and water, with ad lib access to food, starting at the beginning of adolescence (PND 30) or adulthood (PND 90). Water and alcohol drinking patterns were monitored 22 h/day with a "lickometer" set-up. The results indicated that adolescent HAD-1 and HAD-2 males consumed the greatest levels of ethanol and had the most well defined ethanol licking binges among the age and sex groups with increasing levels of ethanol consumption throughout adolescence. In addition, following the first week of adolescence, male and female HAD-1 and HAD-2 rats differed in both ethanol consumption levels and ethanol licking behavior. Adult HAD-1 male and female rats did not differ from one another and their ethanol intake or licking behaviors did not change significantly over weeks. Adult HAD-2 male rats maintained a relatively constant level of ethanol consumption across weeks, whereas adult HAD-2 female rats increased ethanol consumption levels over weeks, peaking during the third week when they consumed more than their adult male counterparts. The results indicate that the HAD rat lines could be used as an effective animal model to examine the development of ethanol consumption and binge drinking in adolescent male and female rats providing information on the long-range consequences of adolescent alcohol drinking.

  4. COMPARING IMMUNOTOXICITY IN RATS AFTER IN UTERO VERSUS AN ADULT EXPOSURE: IS DEVELOPMENTAL EXPOSURE MORE SENSITIVE?

    EPA Science Inventory

    Using a known immunosuppresant, dexamethasone (DEX), pregnant Sprague Dawley (SD) rats were given subcutaneous (s.c.) injections of DEX (0.0, 0.0375, 0.075, 0.15, 0.3 mg/kg) during gestation days 6 to 21. Both male and female offspring were tested for immune dysfunction. In a ...

  5. Auto-catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons

    PubMed Central

    Das, Mainak; Patil, Swanand; Bhargava, Neelima; Kang, Jung-Fong; Riedel, Lisa M.; Seal, Sudipta; Hickman, James J.

    2007-01-01

    This paper describes the evaluation of the auto-catalytic anti-oxidant behavior and biocompatibility of Cerium oxide nanoparticles for applications in spinal cord repair and other diseases of the CNS. The application of a single dose of nano-Ceria at a nano-molar concentration is biocompatible, regenerative and provides a significant neuroprotective effect on adult rat spinal cord neurons. Retention of neuronal function is demonstrated from electrophysiological recordings and the possibility of its application to prevent ischemic insult is suggested from an oxidative injury assay. A mechanism is proposed to explain the auto-catalytic properties of these nanoparticles. PMID:17222903

  6. Differentiation in boron distribution in adult male and female rats' normal brain: a BNCT approach.

    PubMed

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Khojasteh, Nasrin Baghban

    2012-06-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection.

  7. The cortical response to sensory deprivation in adult rats is affected by gonadectomy.

    PubMed

    Mowery, Todd M; Elliott, Kevin S; Garraghty, Preston E

    2009-05-01

    The present study investigated the effects of adult-onset sensory deprivation and gonadectomy. Adult male and female rats underwent unilateral transection of the infraorbital nerve. Half of the subjects had been gonadectomized 1 week prior to the nerve injury. We found that the areas of deprived barrels were significantly reduced when compared to barrels in the contralateral control hemisphere, and that this shrinkage was independent of sex and gonadectomy. We also found significant reductions in cytochrome oxidase staining intensity in the deprived barrels. While there were no differences in the magnitude of this effect between males and females, this effect was substantially more pronounced in the gonadectomized subjects. That is, gonadal hormones appeared to play a significant neuroprotective role in the metabolic response of the barrel cortex to deprivation. Thus, either males and females have a common neuroprotective hormonal pathway, or each has a sex-specific hormone pathway that serves an equivalent neuroprotective function.

  8. Natural variation in maternal care shapes adult social behavior in rats.

    PubMed

    Starr-Phillips, Emily J; Beery, Annaliese K

    2014-07-01

    Features of the early postnatal environment profoundly shape later physical and behavioral phenotypes. The amount of licking/grooming that rat dams direct towards their offspring has durable consequences, including behavioral and physiological dimensions of stress reactivity, cognition, and reproductive behavior. We examined how natural variation in maternal care alters social behavior in adult offspring and how this relates to anxiety behavior and oxytocin receptor density. Male and female offspring of mothers who received high levels of licking spent significantly more time in social contact with unfamiliar individuals than did offspring whose dams provided less grooming. Reduced anxiety behavior was associated with greater social interaction. No differences in oxytocin receptor binding assessed by (125) I-OVTA autoradiography were detected between groups. The present investigation characterizes a novel impact of maternal care on adult social interaction behavior, replicates anxiety behavior differences, and illustrates connections between social behavior and anxiety in adulthood across maternal treatment groups.

  9. Prenatal exposure to SKF-38393 alters the response to light of adult rats.

    PubMed

    Ferguson, S A; Kennaway, D J

    2000-05-15

    The current study examined the consequences of prenatal SKF-38393 exposure on the cellular response in the adult suprachiasmatic nuclei to light. Pregnant rats were injected with the dopamine agonist SKF-38393 or vehicle daily from gestational day 15 to 21. Adult offspring received a light pulse (1 min/2 lux) 4 or 8 h after lights off (ZT16 or ZT20 where ZT=zeitgeber time). Brains were processed for c-FOS-like immunoreactivity in the SCN. At ZT20 the number of cells expressing c-FOS protein after a light pulse was the same in both groups. At ZT16 the number of cells in the SCN of SKF-38393-exposed animals was 58% lower than the vehicle-treated group. The data suggest that prenatal SKF-38393 treatment may have long-term consequences for SCN function.

  10. Reproducible isolation of type II pneumocytes from fetal and adult rat lung using nycodenz density gradients.

    PubMed

    Viscardi, R M; Ullsperger, S; Resau, J H

    1992-01-01

    Isolating fresh, relatively pure type II pneumocytes from the lung, particularly of fetal origin, is a difficult process. Separation by buoyant density gradient centrifugation has been used successfully to isolate adult type II cells. There is concern, however, that Percoll, a gradient medium that is commonly used for type II cell isolation, may be toxic to cells. We evaluated a new gradient medium, Nycodenz, that is (1) a true solution, (2) transparent, (3) not metabolized by cells, and (4) nontoxic to cells. Type II pneumocytes were isolated from 19- and 21-day gestation fetal and adult rat lung by elastase digestion and separated on preformed isotonic Nycodenz gradients (2 mL each of 27.6, 20.7, 13.8, and 4.6 (w/v) solutions). Type II pneumocytes were recovered from the density range 1.057-1.061 and identified by binding of FITC-conjugated and gold-complexed Maclura pomifera lectin. Cells derived from 19-day fetal lung contained abundant glycogen and reacted with a monoclonal antibody to the cytokeratins 8 and 18, which are markers of the fetal type II cell. Adult type II cells reacted with antibodies to cytokeratins 8, 18, and 19. Type II cell purity was 79.7 +/- 2.4%, 83.8 +/- 2.8%, and 82.6 +/- 1.8% (means +/- SEM) for 19- and 21-day gestation fetal and adult lung preparations, respectively. Cell viability was greater than 95%. The final cell yield for adult preparations was 17.8 +/- 2.7 x 10(6)/rat (means +/- SEM). To determine if the freshly isolated type II pneumocytes were functionally active, the incorporation of [3H]choline into phosphatidylcholine was measured. The percent saturation of phosphatidylcholine was high for both populations of freshly isolated cells. However, adult type II pneumocytes incorporated [3H]choline into phosphatidylcholine more rapidly than 21-day gestation fetal cells (5.97 x 10(-3) dpm/10(6) cells/h vs. 0.32 x 10(-3) dpm/10(6) cells/h, P less than .005). We have demonstrated that, using the Nycodenz isolation method, it is

  11. N-Methyl-D-Aspartate Receptor-Mediated Axonal Injury in Adult Rat Corpus Callosum

    PubMed Central

    Zhang, Jingdong; Liu, Jianuo; Fox, Howard S.; Xiong, Huangui

    2013-01-01

    Damage to white matter such as corpus callosum (CC) is a pathological characteristic in many brain disorders. Glutamate (Glut) excitotoxicity through AMPA receptors on oligodendrocyte (OL) was previously considered as a mechanism for white matter damage. Recent studies have shown that N-methyl-D-aspartate receptors (NMDARs) are expressed on myelin sheath of neonatal rat OL processes and that activation of these receptors mediated demyelization. Whether NMDARs are expressed in the adult CC and are involved in excitotoxic axonal injury remains to be determined. In this study, we demonstrate the presence of NMDARs in the adult rat CC and their distributions in myelinated nerve fibers and OL somata by means of immunocytochemical staining and Western blot. Incubation of the CC slices with Glut or NMDA induced axonal injury as revealed by analyzing amplitude of CC fiber compound action potentials (CAPs) and input–output response. Both Glut and NMDA decreased the CAP amplitude and input–output responses, suggesting an involvement of NMDARs in Glut- and NMDA-induced axonal injury. The involvement of NMDAR in Glut-induced axonal injury was further assayed by detection of β-amyloid precursor protein (β-APP) in the CC axonal fibers. Treatment of the CC slices with Glut resulted in β-APP accumulation in the CC fibers as detected by Western blot, reflecting an impairment of axonal transport function. This injurious effect of Glut on CC axonal transport was significantly blocked by MK801. Taken together, these results show that NMDARs are expressed in the adult CC and are involved in excitotoxic activity in adult CC slices in vitro. PMID:23161705

  12. Ethopharmacological evaluation of the rat exposure test: a prey-predator interaction test.

    PubMed

    Campos, Kelciane Ferreira Caetano; Amaral, Vanessa Cristiane Santana; Rico, Javier Leonardo; Miguel, Tarciso Tadeu; Nunes-de-Souza, Ricardo Luiz

    2013-03-01

    The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT(1A)/5-HT(2) receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs.

  13. Effects of pentoxifylline administration on histomorphological parameters of streptozotocin-induced diabetic rat testes

    PubMed Central

    Piryaei, Abbas; Najar, Azam

    2015-01-01

    The effect of pentoxifylline (PTX) administration on histomorphological parameters of streptozotocin (STZ)-induced type 1 diabetes mellitus (DM) in male rat testes were evaluated. We randomly divided 40 male rats into the following four groups: group 1: control or normal glycemic (NG) rats; group 2 or NG rats that received only normal saline (NS), (NG+NS); group 3 or diabetic rats which were not treated by PTX (DM+vehicle solution (NS)); and group 4 which comprised diabetic rats treated with 50 mg/kg of PTX (DM+PTX). Type 1 DM was induced by intraperitoneal injection of STZ (55 mg/kg). Rats were held for 30 days after which the experimental group received PTX twice daily (25 mg/kg) or NS. After 14 days of treatment by PTX or NS, the left testes from all rats were extracted and prpared for histological study. Apoptotic cells, blood vessel density, and spermatogenesis were evaluated. Data were analyzed by ANOVA test. PTX-treated-diabetic rats showed a significant decrease in number of apoptotic cells and decrease in blood vessel density compared to the DM+NS rats. A significant increase in spermatogenesis was observed in the PTX-treated diabetic group, compared to the DM+NS groups. It was concluded that PTX administration to STZ-induced type 1 DM rats affected apoptotic cell number positively. Moreover, blood vessel density significantly decreased and improvements were observed in spermatogenesis. PMID:26472963

  14. Structural changes in the adult rat auditory system induced by brief postnatal noise exposure.

    PubMed

    Ouda, Ladislav; Burianová, Jana; Balogová, Zuzana; Lu, Hui Pin; Syka, Josef

    2016-01-01

    In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. In addition, the numerical density of dendritic spines was decreased on the branches of neurons in the ventral division of the MGB in noise-exposed animals. In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.

  15. Neonatal stress alters LTP in freely moving male and female adult rats.

    PubMed

    Kehoe, P; Bronzino, J D

    1999-01-01

    We previously reported that neonatal isolation stress significantly changes measures of hippocampal long-term potentiation (LTP) in male and female juvenile rats, i.e., at 30 days of age. The changes in dentate granule population measures, i.e., excitatory postsynaptic potential (EPSP) and population spike amplitude (PSA), evoked by tetanization of the medial perforant pathway, indicated that juvenile rats exposed to neonatal isolation exhibit different enhancement profiles with respect to both the magnitude and duration of LTP in a sex-specific manner. Isolated males showed a significantly greater enhancement of LTP, while female "isolates" showed significantly longer LTP duration when compared to all other groups. The present study was designed to determine whether the effects of the neonatal isolation stress paradigm endures into adulthood. Rats isolated from their mothers for 1 h per day during postnatal days 2-9 were surgically prepared at 70-90 days of age, with stimulating and recording electrodes placed in the medial perforant pathway and the hippocampal dentate gyrus, respectively. Prior to tetanization, no significant effect of sex or treatment was obtained for baseline measures of EPSP slope or PSA. In order to rule out baseline differences in hippocampal cell excitability in female adult rats, we measured the response of dentate granule cells for one estrus cycle and found no pretetanization enhancement in the evoked response in either controls or previously stressed rats. Following tetanization, there was a significant treatment and sex effect. During the induction of LTP, PSA values were significantly enhanced in both isolated males and females and had significantly longer LTP duration when compared to the unhandled control group. Additionally, we observed that females took longer to reach baseline levels than males. Taken together, these results indicate that repeated infant isolation stress enhances LTP induction and duration in both males and

  16. Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia.

    PubMed

    Wang, Congmin; Zhang, Mingguang; Sun, Chifei; Cai, Yuqun; You, Yan; Huang, Liping; Liu, Fang

    2011-01-13

    It is known that the number of newly generated neurons is increased in the young and adult rodent subventricular zone (SVZ) and dentate gyrus (DG) after transient brain ischemia. However, it remains unclear whether increase in neurogenesis in the adult DG induced by ischemic stroke is transient or sustained. We here reported that from 2 weeks to 6 months after transient middle cerebral artery occlusion (MCAO), there were more doublecortin positive (DCX+) cells in the ipsilateral compared to the sham-control and contralateral DG of the adult rat. After the S-phase marker 5-bromo-2'-deoxyuridine (BrdU) was injected 2 days after MCAO to label newly generated cells, a large number of BrdU-labeled neuroblasts differentiated into mature granular neurons. These BrdU-labeled neurons survived for at least 6 months. When BrdU was injected 6 weeks after injury, there were still more newly generated neuroblasts differentiated into mature neurons in the ipsilateral DG. Altogether, our data indicate that transient brain ischemia initiates a prolonged increase in neurogenesis and promotes the normal development of the newly generated neurons in the adult DG.

  17. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    SciTech Connect

    Ronco, Ana Maria; Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel; Saez, Daniel; Hirsch, Sandra; Zepeda, Ramiro; Llanos, Miguel N.

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  18. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning.

    PubMed

    Hunt, Pamela S; Barnet, Robert C

    2016-02-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed.

  19. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  20. Ontogenesis of Ap-2γ expression in rat testes.

    PubMed

    Hou, M; Stukenborg, J-B; Nurmio, M; Andersson, M; Toppari, J; Söder, O; Jahnukainen, K

    2011-01-01

    Searching for useful markers of spermatogonial stem cells and their differentiation, we used rat testes from ages representing different stages of testicular maturation to investigate the expression profile of transcription factor activation protein-2γ (Ap-2γ). The immunohistochemical and immunocytochemical evaluation using Ap-2γ and promyelocytic leukemia zinc finger in combination with sorting of CD9 and CD90 positive cells (undifferentiated spermatogonia) by fluorescence-activated cell sorting was performed. Our experiments revealed that Ap-2γ is detectable in testes of late fetal age and up to 60 days postnatally and is expressed in gonocytes and spermatogonia from late fetal age throughout all maturational stages. Restricted nuclear expression of Ap-2γ to undifferentiated male germ cells was verified by coexpression of Ap-2γ with promyelocytic leukemia zinc finger in sections of paraffin-embedded testes as well as in cells sorted positive for CD9 and CD90 expression. Our study demonstrated clearly that nuclear expression of Ap-2γ is a useful marker for identifying undifferentiated male germ cells, although its functional role is yet to be fully explored.

  1. Early high-sodium solid diet does not affect sodium intake, sodium preference, blood volume and blood pressure in adult Wistar-Kyoto rats.

    PubMed

    Ufnal, Marcin; Drapala, Adrian; Sikora, Mariusz; Zera, Tymoteusz

    2011-07-01

    A high-Na diet may lead to the development of hypertension in both humans and rats; however, the causes of Na intake in amounts greater than physiologically needed as well as the mechanisms whereby high-Na food elevates blood pressure are not clear. Therefore, we decided to test the hypothesis that a high-Na diet introduced after suckling affects Na intake, food preference, resting blood pressure and blood volume in adult rats. Male Wistar-Kyoto (WKY) rats, 4 weeks old, were divided into three groups and placed on either a high-Na (3.28%), a medium-Na (0.82%) or a regular diet (0.22%) with the same energy content for 8 weeks. Subsequently, food preference, resting arterial blood pressure, blood volume, plasma osmolality and Na blood level were evaluated. When offered a choice of diets, all the groups preferred the regular chow, and there was no significant difference in total Na intake between the groups. When the rats experienced the change from their initial chow to a new one with different Na content, they continued to eat the same amount of food. Body weight, resting arterial blood pressure, blood volume, plasma osmolality and Na blood level were comparable between the groups. In conclusion, the results show that a high-Na diet introduced immediately after suckling does not affect Na preference and Na intake in adult WKY rats. Furthermore, the findings provide evidence that both blood volume and arterial blood pressure are highly protected in normotensive rats on a high-Na diet.

  2. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study.

    PubMed

    Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla

    2014-01-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory.

  3. Young-Adult Male Rats' Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors

    PubMed Central

    José Jaime, Herrera-Pérez; Venus, Benítez-Coronel; Graciela, Jiménez-Rubio; Tania, Hernández-Hernández Olivia

    2016-01-01

    In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors. PMID:27433469

  4. Long-term ethanol self-administration induces ΔFosB in male and female adolescent, but not in adult, Wistar rats.

    PubMed

    Wille-Bille, Aranza; de Olmos, Soledad; Marengo, Leonardo; Chiner, Florencia; Pautassi, Ricardo Marcos

    2017-03-06

    Early-onset ethanol consumption predicts later development of alcohol use disorders. Age-related differences in reactivity to ethanol's effects may underlie this effect. Adolescent rats are more sensitive and less sensitive than adults to the appetitive and aversive behavioral effects of ethanol, respectively, and more sensitive to the neurotoxic effects of experimenter-administered binge doses of ethanol. However, less is known about age-related differences in the neural consequences of self-administered ethanol. ΔFosB is a transcription factor that accumulates after chronic drug exposure and serves as a molecular marker of neural plasticity associated with the transition to addiction. We analyzed the impact of chronic (18 two-bottle choice intake sessions spread across 42days, session length: 18h) ethanol [or only vehicle (control group)] self-administration during adolescence or adulthood on the induction of ΔFosB in several brain areas, anxiety-like behavior, and ethanol-induced locomotor activity and conditioned place preference (CPP) in Wistar rats. Adolescent rats exhibited a progressive escalation of ethanol intake and preference, whereas adult rats exhibited a stable pattern of ingestion. Few behavioral differences in the open field or light-dark test were observed after the intake test. Furthermore, ethanol self-administration did not promote the expression of ethanol-induced CPP. There were, however, large age-related differences in the neural consequences of ethanol drinking: a significantly greater number of ethanol-induced ΔFosB-positive cells was found in adolescents vs. adults in the prelimbic cortex, dorsolateral striatum, nucleus accumbens core and shell, and central amygdala nucleus capsular and basolateral amygdala, with sex-related differences found at central amygdala. This greater ethanol-induced ΔFosB induction may represent yet another age-related difference in the sensitivity to ethanol that may put adolescents at higher risk for

  5. Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats.

    PubMed

    Ruocco, Lucia A; Romano, Emilia; Treno, Concetta; Lacivita, Enza; Arra, Claudio; Gironi-Carnevale, Ugo A; Travaglini, Domenica; Leopoldo, Marcello; Laviola, Giovanni; Sadile, Adolfo G; Adriani, Walter

    2014-04-01

    We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.

  6. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats.

    PubMed

    Nirmal, N K; Awasthi, K K; John, P J

    2017-01-01

    Carbon nanotubes (CNTs) are promising candidates for various applications including biomedical purposes. Owing to their remarkable physical, mechanical, electrical and chemical properties, CNTs have become an area of intense research and industrial activity in recent years. Therefore, toxicity and risk assessment studies are becoming increasingly important. The present study was designed to assess the effects of hydroxyl-functionalized multiwalled CNTs (OH-f MWCNTs) on sperm health and testes of adult Wistar rats. Animals were treated with different doses of OH-f MWCNTs (0.4, 2.0 and 10.0 mg/kg) along with a control group receiving only vehicle. Assessments after 15 alternate intraperitoneal doses revealed dose-related adverse effects on many endpoints tested. Results of the study showed significant impairment of sperm health at 2.0 and 10.0 mg/kg. Histology of testes demonstrated degeneration of germinal epithelium and loss of germ cells in the treatment groups. The exposure resulted in increased oxidative stress in testes in a dose-dependent manner. The findings of the study demonstrate that CNTs are potentially harmful for male reproductive health.

  7. Inhibition by dietary D-psicose of body fat accumulation in adult rats fed a high-sucrose diet.

    PubMed

    Ochiai, Masaru; Nakanishi, Yosuke; Yamada, Takako; Iida, Tetsuo; Matsuo, Tatsuhiro

    2013-01-01

    We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.

  8. DOPAMINE RECEPTOR INACTIVATION IN THE CAUDATE-PUTAMEN DIFFERENTIALLY AFFECTS THE BEHAVIOR OF PREWEANLING AND ADULT RATS

    PubMed Central

    DER-GHAZARIAN, T.; GUTIERREZ, A.; VARELA, F. A.; HERBERT, M. S.; AMODEO, L. R.; CHARNTIKOV, S.; CRAWFORD, C. A.; MCDOUGALL, S. A.

    2012-01-01

    The irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) has been used to study the ontogeny of dopamine (DA) receptor functioning in the young and adult rat. Most notably, systemic administration of EEDQ blocks the DA agonist-induced behaviors of adult rats, while leaving the behavior of preweanling rats unaffected. The purpose of the present study was to: (a) determine whether the age-dependent actions of EEDQ involve receptors located in the dorsal caudate-putamen (CPu) and (b) confirm that EEDQ's behavioral effects result from the inactivation of DA receptors rather than some other receptor type. In Experiment 1, EEDQ or DMSO were bilaterally infused into the CPu on PD 17 or PD 84. After 24 h, rats were given bilateral microinjections of the full DA agonist R(–)-propylnorapomorphine (NPA) or vehicle into the dorsal CPu and behavior was assessed for 40 min. In Experiment 2, preweanling rats were treated as just described, except that DA receptors were protected from EEDQ-induced alkylation by administering systemic injections of D1 (SCH23390) and D2 (sulpiride) receptor antagonists. As predicted, microinjecting EEDQ into the dorsal CPu attenuated the NPA-induced locomotor activity and stereotypy of adult rats. In contrast, rats given bilateral EEDQ infusions on PD 17 exhibited a potentiated locomotor response when treated with NPA. Experiment 2 showed that DA receptor inactivation was responsible for NPA's actions. A likely explanation for these results is that EEDQ inactivates a sizable percentage of DA receptors on PD 17, but leaves the remaining receptors in a supersensitive state. This receptor supersensitivity, which probably involves alterations in G protein coupling, could account for NPA-induced locomotor potentiation. Either adult rats do not show a similar EEDQ-induced change in receptor dynamics or DA receptor inactivation was more complete in older animals and effectively eliminated the expression of DA agonist

  9. Effects of testosterone on spatial learning and memory in adult male rats

    PubMed Central

    Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.

    2011-01-01

    A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035

  10. Maternal arachidonic acid supplementation improves neurodevelopment in young adult offspring from rat dams with and without diabetes.

    PubMed

    Zhao, Jinping; Del Bigio, Marc R; Weiler, Hope A

    2011-01-01

    Maternal diabetes may compromise infant arachidonic acid (AA) status and development. This study tested if maternal AA supplementation improves neurodevelopment in adult offspring. Rat dams were randomized into 6 groups: Saline-Placebo, streptozotocin-induced diabetes with glucose controlled at <13mmol/L, or poorly controlled at 13-20mmol/L using insulin; and fed either a Control or AA (0.5% fat) diet throughout reproduction. Weaned-offspring were fed regular chow to 12 weeks of age. Testing included exploratory behavior, rota rod and water maze (WM). Poorly controlled offspring showed longer (p≤0.018) escape-latency on testing-day 1 WM but not thereafter (p>0.05). Maternal glucose concentration positively correlated with (p=0.006) male offspring testing-day 1 WM latency. The AA-diet offspring performed better in WM and rota rod (p≤0.032) and showed higher exploratory behavior (p=0.008) than Control-diet offspring. These data suggest maternal hyperglycemia has longstanding consequences to initial stages of learning in the offspring. Maternal AA supplementation and training positively influence learning outcomes.

  11. Toward a model of impaired reality testing in rats.

    PubMed

    McDannald, Michael; Schoenbaum, Geoffrey

    2009-07-01

    Schizophrenia is a chronic brain disorder that affects about 1.1% of the adult US population annually. Hallucinations, delusions, and impaired reality testing are prominent symptoms of the disorder. Modeling these symptoms is difficult because it is unclear how to assess impaired reality testing in animals. Animals cannot discuss their beliefs; however, a century of learning experiments has shown us that they, like us, construct complex internal representations of their world. Presumably, these representations can become confused with reality for animals in much the same way that they do for schizophrenic patients. Indeed, there is evidence from studies of Pavlovian conditioning that this happens even in normal animals. For example, early in training a cue that has been paired with reward elicits a highly realistic, sensory representation of that reward, which is to some extent indistinguishable from reality. With further training, this sensory hallucination of reward is replaced by a more abstract representation, termed a reward expectancy. Reward expectancies reflect the sensory and other qualities of the impending reward but are distinguishable from the actual reward. Notably, the hallucinatory representations depend on subcortical regions, such as amygdala, whereas reward expectancies require the progressive involvement of prefrontal areas, such as orbitofrontal cortex. Abnormal prefrontal function is associated with schizophrenia; impaired reality testing may result from a failure of the normal shift from highly realistic, sensory representations to more abstract, prefrontal expectancies. The Pavlovian procedures discussed here could be applied to animal models and schizophrenic patients to test this hypothesis.

  12. Maternal prolactin inhibition during lactation affects physical performance evaluated by acute exhaustive swimming exercise in adult rat offspring.

    PubMed

    Casimiro-Lopes, G; Lisboa, P C; Koury, J C; Boaventura, G; Passos, M C F; Moura, E G

    2012-02-01

    Maternal prolactin inhibition at the end of lactation programs for metabolic syndrome and hypothyroidism in adult offspring, which could negatively affect exercise performance. We evaluated the effects of maternal hypoprolactinemia in late lactation on physical performance in adult progeny. Lactating Wistar rats were treated with bromocriptine (BRO, 1 mg per day) or saline on days 19, 20, and 21 of lactation and offspring were followed until 180 days old. Physical performance was recorded in untrained rats at 90 and 180 days by an acute exhaustive swimming test (exercise group-Ex). At day 90, BRO offspring showed higher visceral fat mass, higher plasma thiobarbituric acid reactive substances, lower total antioxidant capacity, higher liver glycogen, lower glycemia, and normal insulinemia. Although thyroid hormones (TH) levels were unchanged, mitochondrial glycerol phosphate dehydrogenase (mGPD) activity was lower in muscle and in brown adipose tissue (BAT). At this age, BRO-Ex offspring showed higher exercise capacity, lower blood lactate, higher serum T3, and higher muscle and BAT mGPD activities. At day 180, BRO offspring showed central obesity, hypothyroidism, insulin resistance, and lower EDL (extensor digitorum longus) muscle glycogen with unaltered plasma oxidative stress markers. This group showed no alteration of exercise capacity or blood lactate. After exercise, EDL and liver glycogen were lower, while T3 levels, BAT and muscle mGPD activities were normalized. Liver glycogen seem to be related with higher exercise capacity in younger BRO offspring, while the loss of this temporary advantage maybe related to the hypothyroidism and insulin resistance developed with age.

  13. Does Pilocarpine-Induced Epilepsy in Adult Rats Require Status epilepticus?

    PubMed Central

    Navarro Mora, Graciela; Bramanti, Placido; Osculati, Francesco; Chakir, Asmaa; Nicolato, Elena; Marzola, Pasquina; Sbarbati, Andrea; Fabene, Paolo Francesco

    2009-01-01

    Pilocarpine-induced seizures in rats provide a widely animal model of temporal lobe epilepsy. Some evidences reported in the literature suggest that at least 1 h of status epilepticus (SE) is required to produce subsequent chronic phase, due to the SE-related acute neuronal damage. However, recent data seems to indicate that neuro-inflammation plays a crucial role in epileptogenesis, modulating secondarily a neuronal insult. For this reason, we decided to test the following hypotheses: a) whether pilocarpine-injected rats that did not develop SE can exhibit long-term chronic spontaneous recurrent seizures (SRS) and b) whether acute neurodegeneration is mandatory to obtain chronic epilepsy. Therefore, we compared animals injected with the same dose of pilocarpine that developed or did not SE, and saline treated rats. We used telemetric acquisition of EEG as long-term monitoring system to evaluate the occurrence of seizures in non-SE pilocarpineinjected animals. Furthermore, histology and MRI analysis were applied in order to detect neuronal injury and neuropathological signs. Our observations indicate that non-SE rats exhibit SRS almost 8 (+/22) months after pilocarpine-injection, independently to the absence of initial acute neuronal injury. This is the first time reported that pilocarpine injected rats without developing SE, can experience SRS after a long latency period resembling human pathology. Thus, we strongly emphasize the important meaning of including these animals to model human epileptogenesis in pilocarpine induced epilepsy. PMID:19503612

  14. A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats.

    PubMed

    Shiga, Tatsuomi; Nakamura, Takahiro J; Komine, Chiaki; Goto, Yoshikuni; Mizoguchi, Yasushi; Yoshida, Midori; Kondo, Yasuhiko; Kawaguchi, Maiko

    2016-01-01

    Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15-17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17-19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus.

  15. A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats

    PubMed Central

    Shiga, Tatsuomi; Nakamura, Takahiro J.; Komine, Chiaki; Goto, Yoshikuni; Mizoguchi, Yasushi; Yoshida, Midori; Kondo, Yasuhiko; Kawaguchi, Maiko

    2016-01-01

    Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15–17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17–19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus. PMID:26741502

  16. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons.

    PubMed

    McCool, B A; Botting, S K

    2000-03-24

    Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine adult rats.

  17. Exposure to constant light during testis development increases daily sperm production in adult Wistar rats.

    PubMed

    Rocha, D C; Debeljuk, L; França, L R

    1999-06-01

    Testis histometry and daily sperm production (DSP) were evaluated in adult (160-day-old) Wistar rats exposed to constant light for the first 25 days after birth, and compared with control animals which were exposed to a 12 h-light-12 h-dark light regimen. Significantly greater (P < 0.05) numbers of Sertoli cell nucleoli and round spermatids per cross-section of seminiferous tubule were found in animals exposed to constant light. In addition, epididymis weight, DSP per testis and per gram of testis, as well as Leydig cell compartment volume, were significantly increased in treated animals. Although there was a clear trend toward an increased Sertoli cell population per testis in animals exposed to constant light, this difference was not statistically significant (P < 0.05). The number of round spermatids as expressed per Sertoli cell was the same in both groups. Surprisingly, the diameter and volume of round spermatid nucleus at stages I and VII of the cycle of seminiferous epithelium were significantly lower (P < 0.05) in treated animals. In conclusion, constant illumination during neonatal testis development increased sperm production and Leydig cell compartment volume in adult rats probably through a mechanism involving elevated follicle stimulating hormone and luteinizing hormone during the prepubertal period. To our knowledge, this is the first study showing that altering the light regimen can affect sperm production in non-seasonal breeders.

  18. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  19. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  20. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus.

    PubMed

    Wong-Goodrich, Sarah J E; Mellott, Tiffany J; Glenn, Melissa J; Blusztajn, Jan K; Williams, Christina L

    2008-05-01

    Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a control or SUP diet on embryonic days 12-17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, and hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function.