Science.gov

Sample records for adult retinal pigment

  1. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells

    PubMed Central

    QIU, CHUN; LI, PENG; BI, JIANJUN; WU, QING; LU, LINNA; QIAN, GUANXIANG; JIA, RENBING; JIA, RONG

    2016-01-01

    Uveal melanoma (UM) is the most frequently occurring primary intraocular malignancy in adults. Tyrosinase (TYR) is a copper-containing enzyme and a type I membrane protein that is involved in the generation of melanin, the main pigment in vertebrates. TYR-related protein 1 (TYRP1) is regarded to have a crucial role in the immunotherapy of melanoma. As biomarkers, the TYR-related proteins, TYRP1 and TYRP2, exhibit specific expression in melanocytes, while also contributing to melanin synthesis within melanosomes. In the present study, the differential expression of TYRP1 was investigated at the mRNA, protein and morphological levels in four human UM cell lines (SP6.5, OM431, OCM1 and OCM290) and the human retinal pigment epithelium (RPE) cell line, using polymerase chain reaction, western blotting, immunocytochemistry and immunofluorescence staining. It was found that SP6.5 cells expressed the highest level of TYRP1, in comparison to SP6.5 OCM1 and OM431 cells, which produced less TYRP1, and OCM290 cells, which produced almost no TYRP1. No TYRP1 protein expression was identified in the RPE cell line. These findings indicate the potential use of TYRP1 in the development of therapy for UM. PMID:27073483

  2. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-08

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population.

  3. Retinal pigment epithelial hamartoma--unusual manifestations.

    PubMed Central

    Rosenberg, P. R.; Walsh, J. B.

    1984-01-01

    Hamartoma of the retinal pigment epithelium is an uncommon tumour of young adults. We have seen 2 patients with this clinical diagnosis, both with unusual manifestations. In one patient growth of the tumour was observed over a 5-year period. In the second patient arterial-arterial anastomoses were detected at a site distal to the tumour. Images PMID:6722077

  4. Expression and Role of VEGF in the Adult Retinal Pigment Epithelium

    PubMed Central

    Ford, Knatokie M.; Saint-Geniez, Magali; Walshe, Tony; Zahr, Alisar

    2011-01-01

    Purpose. Despite a lack of active angiogenesis, VEGF is expressed in nearly every adult tissue, and recent evidence suggests that VEGF may serve as a survival factor for both vascular and nonvascular tissues. VEGF blockade is a widely used treatment for neovascular diseases such as wet age-related macular degeneration (AMD). Therefore, it was sought in this study to evaluate the expression and role of endogenous VEGF in RPE. Methods. VEGF and VEGFR2 expression in the murine retina were assessed during development. Bevacizumab was used to neutralize VEGF in ARPE-19 cells, and the effects on cell survival and apical microvill were assessed by TUNEL and SEM, respectively. VEGF was systemically neutralized in vivo by adenoviral-mediated overexpression of soluble VEGFR1 (sFlt). RPE and choriocapillaris were analyzed by transmission electron microscopy (TEM). Changes in gene expression were evaluated by quantitative real-time PCR. Results. VEGF expression was detected in the developing RPE as early as embryonic day (E) 9.5, whereas VEGFR2 expression by RPE began nonuniformly between postnatal (P) day 6.5 and P8.5. VEGF neutralization in vitro led to increased apoptosis and reduced microvilli density and length. Systemic VEGF neutralization led to transient degenerative changes; RPE were vacuolated and separated from photoreceptor outer segments, and choriocapillaris fenestrations were decreased. VEGF levels were elevated in RPE of Ad-sFlt1 mice at day 4 postinfection, and there was increased expression of the neurotrophic factor CD59a at day 14. Conclusions. These results indicate that VEGF plays a critical role in survival and maintenance of RPE integrity. Potential undesired off-target effects should be considered with chronic use of anti-VEGF agents. PMID:22058334

  5. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  6. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  7. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  8. Reprogramming of the chick retinal pigmented epithelium after retinal injury

    PubMed Central

    2014-01-01

    Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during

  9. Distributions of elements in the human retinal pigment epithelium.

    PubMed

    Ulshafer, R J; Allen, C B; Rubin, M L

    1990-01-01

    Distributions of elements above the atomic number of sodium were mapped in the retinal pigment epithelia of eight human eyes. X-ray energy spectra and maps were collected from cryofixed, freeze-dried, and epoxy-embedded tissues using energy-dispersive x-ray microanalysis. All eyes had high concentrations of phosphorus in the nuclei of retinal pigment epithelial cells. Melanosomes were rich in sulfur, zinc, calcium, and iron. Lipofuscin and cytoplasm contained only phosphorus and sulfur in detectable amounts. Drusen, when present, contained phosphorus and calcium. Six eyes had a prominent aluminum peak recorded from melanosomes, nuclei, and Bruch's membrane. In one pair of 90-year-old eyes, small, electron-dense deposits surrounded many melanosomes and contained mercury and selenium. Retinal pigment epithelial melanosomes may bind and accumulate metals and other potentially toxic ions over time, preventing them from reaching the neural retina.

  10. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  11. Detachments of the retinal pigment epithelium at the posterior pole.

    PubMed

    Noble, K G; Levitzky, M J; Carr, R E

    1976-08-01

    Multiple vitelliform cysts of the retina, a disorder of unknown cause in which there are multiple detachments of the retinal pigment epithelium at the posterior pole, occurred in five patients. In four patients all lesions were located outside the parafoveal area while one patient showed bilateral foveal elevations associated with more eccentric detachments. Several patients showed slow resolution of some of the detachments with mild disturbances of the pigment epithelium.

  12. Study on the autofluorescence profiles of iris pigment epithelium and retinal pigment epithetlium

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Qu, Junle; Chen, Danni; Sun, Yiwen; Zhao, Lingling; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    Transplantation technique of retinal pigment epithelium has been noticeable in recent years and gradually put into clinical practice in treatment of retinal degenerative diseases. Generally, immunological, histochemical, and physical methods are used to study the iris pigment epithelium (IPE) and retinal pigment epithelium (RPE) cells, which need complex sample preparation. In this paper, we provided a simple autofluorescence microscopy to investigate the fresh porcine IPE and RPE cells without any pretreatment. The results showed that the morphology and size of both were similar, round and about 15 μm. The main flourophore in both cells was similar, i.e. lipofuscin. In additional, the autofluorescence spectrum of RPE shifted blue after light-induced damage by laser illuminating. Because it was easier for IPE to be damaged by laser than for RPE, and the power of one scanning operation to get a full image was strong enough to damage IPE sample, we hadn't get any satisfied autofluorescence spectrum of IPE.

  13. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations

    PubMed Central

    Fronk, Aaron H; Vargis, Elizabeth

    2016-01-01

    The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included. PMID:27493715

  14. Kinetics of Lipofuscin Formation in Aging Retinal Pigment Epithelium Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, Hans E.

    2010-03-01

    Lipofuscin is a deposit that is formed over time by aggregation and clustering of incompletely degraded membrane material in various types of cells. Lipofuscin is made of free-radical-damaged protein and fat and is known to be present in age- related macular dgeneration (AMD), Alzheimer disease, and Parkinson disease. AMD is the leading cause of blindness in adults. The degradation of retinal pigment epithelium cells (RPE) through accumulation of lipsofuscin is considered a significant pathogenic factor in the development of AMD. We will present the results of a study of the kinetics of lipofuscin growth in RPE cells using Kinetic Monte Carlo simulations and scaling theory on a cluster aggregation model. The model captures the essential physics of lipofuscin growth in the cells. A remarkable feature is that small particles may be removed from the cells while the larger ones become fixed and grow by aggregation. We compare our results with the number of lipofuscin granules in eyes with early age-related degeneration.

  15. [Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts].

    PubMed

    Grigorian, E N

    2015-01-01

    Retinal pigment epithelium (RPE) cells that have the unique ability to reprogram retinal cells @in vivo@ were analyzed in the adult newt. Our own data and that available in the literature on the peculiarities of the biology of these cells (from morphology to molecular profile, which can be associated with the capability of phenotype change) were summarized: It was established that the molecular traits of specialized and poorly differentiated cells are combined in RPE of the adult newt. It was registered that persistent (at a low level) proliferation and rapid change of specific cytoskeleton proteins can contribute to the success of RPE cell reprogramming in the neuronal direction. Each of the considered factors of competence for reprogramming can be found for animal RPE, whose cells are not able @in vivo@ to change the phenotype to a neuronal one; however, their totality (supported by the epigenetic state permissive for conversion) is probably an internal property of only newt RPE.

  16. Vitiligo and disorders of the retinal pigment epithelium.

    PubMed Central

    Albert, D M; Wagoner, M D; Pruett, R C; Nordlund, J J; Lerner, A B

    1983-01-01

    The association of vitiligo with inflammation of the uveal tract is well established. The relationship between vitiligo and hypopigmentation and/or degeneration of the retinal pigment epithelium (RPE) not secondary to ocular inflammation has not been adequately investigated. Sixty (27%) of 223 consecutive patients with vitiligo were found to have some evidence of RPE hypopigmentation ranging from mild, focal areas of involvement in most cases to extensive RPE degeneration with a retinitis pigmentosa-like syndrome in one patient. Fifteen (25%) patients complained of night blindness. Only 6 (4%) of 148 patients in a control group had similar funduscopic findings (p less than 0.001). None of these patients were symptomatic. There have been isolated reports of vitiligo occurring with tapetoretinal degeneration. We report 2 patients with both vitiligo and retinitis pigmentosa. Images PMID:6824621

  17. [Classification signs of end-stage pigmented retinitis].

    PubMed

    Zhukova, S I; Shchuko, A G; Malyshev, V V

    2007-01-01

    Identification of objective criteria for early-stage pigmented retinitis (PR) remains urgent today. Visual system changes reflecting retinal metabolic and structural disturbances (a change in the time and amplitude parameters of ERG, an increase in dark adaptation, changes in the color palette and the thickness of layers of photoreceptors and pigment epithelium of the retina on the OST scans) were detected in 31% of the examined relatives of patients with PR. The authors show the diagnostic value of retinal optic coherent tomography in the diagnosis of PR and the expediency of its use for objective estimation of retinal structural changes along with functional studies. The statistical studies including descriptive, regression, and discriminant analyses have provided evidence that the characteristics of the visual system in patients with end-stage PR differ from those in the controls. Studies that can determine differences in the state of the visual system of the groups under study and significantly discriminate persons with the normally functioning visual system from patients with PR have been identified.

  18. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  19. Force dependence of phagosome trafficking in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Daniel, Rebekah; Koll, Andrew T.; Altman, David

    2014-09-01

    Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.

  20. Retinal Pigment Epithelium Tears: Risk Factors, Mechanism and Therapeutic Monitoring.

    PubMed

    Clemens, Christoph R; Eter, Nicole

    2016-01-01

    Tears of the retinal pigment epithelium (RPE) are most commonly associated with vascularised RPE detachment due to age-related macular degeneration (AMD), and they usually involve a deleterious loss in visual acuity. Recent studies suggest an increase in RPE tear incidences since the introduction of anti-vascular endothelial growth factor (anti-VEGF) therapies as well as a temporal association between the tear event and the intravitreal injection. As the number of AMD patients and the number of administered anti-VEGF injections increase, both the challenge of RPE tear prevention and the treatment after RPE tear formation have become more important. At the same time, the evolution of retinal imaging has significantly contributed to a better understanding of RPE tear development in recent years. This review summarises the current knowledge on RPE tear development, predictive factors, and treatment strategies before and after RPE tear formation.

  1. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects

    PubMed Central

    Alexander, P; Thomson, H A J; Luff, A J; Lotery, A J

    2015-01-01

    The retinal pigment epithelium (RPE) is a single layer of cells that supports the light-sensitive photoreceptor cells that are essential for retinal function. Age-related macular degeneration (AMD) is a leading cause of visual impairment, and the primary pathogenic mechanism is thought to arise in the RPE layer. RPE cell structure and function are well understood, the cells are readily sustainable in laboratory culture and, unlike other cell types within the retina, RPE cells do not require synaptic connections to perform their role. These factors, together with the relative ease of outer retinal imaging, make RPE cells an attractive target for cell transplantation compared with other cell types in the retina or central nervous system. Seminal experiments in rats with an inherited RPE dystrophy have demonstrated that RPE transplantation can prevent photoreceptor loss and maintain visual function. This review provides an update on the progress made so far on RPE transplantation in human eyes, outlines potential sources of donor cells, and describes the technical and surgical challenges faced by the transplanting surgeon. Recent advances in the understanding of pluripotent stem cells, combined with novel surgical instrumentation, hold considerable promise, and support the concept of RPE transplantation as a regenerative strategy in AMD. PMID:26043704

  2. Role of the 9-methyl group of retinal in cone visual pigments.

    PubMed

    Das, Joydip; Crouch, Rosalie K; Ma, Jian-xing; Oprian, Daniel D; Kono, Masahiro

    2004-05-11

    In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.

  3. The Phototoxicity of ’Blue Light’ on the Functional Properties of the Retinal Pigment Epithelium

    DTIC Science & Technology

    1990-10-15

    RETINAL PIGMENT P - AF EPITHELIUM PE - 61102F IL PR - 2312 S. AUTNOIS) ITA - A5 Dr Pautler 7. PIRIPORMING ORGANIATION NAMIES) ANO AOOR!SS(ES) L...SUEMENTARY NOTES E C7 D2 E 26 99 12a. OISTRJSUTJTOAVAILAUIT STATEMENT Mr L 0ISTRIBUjTMO cow Irradiation of the isolated bovine retinal pigment epithelium...light filter.- Blue light depolarized the transepithelial potential of pigment epithelium, an action spectrum established that a hemoprotein(s) is one

  4. Functional annotation of the human retinal pigment epithelium transcriptome

    PubMed Central

    Booij, Judith C; van Soest, Simone; Swagemakers, Sigrid MA; Essing, Anke HW; Verkerk, Annemieke JMH; van der Spek, Peter J; Gorgels, Theo GMF; Bergen, Arthur AB

    2009-01-01

    Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years) were laser dissected and used for 22k microarray studies (Agilent technologies). Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194) expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776) genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194) of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM) composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the RPE, and is useful for

  5. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  6. Blue light effect on retinal pigment epithelial cells by display devices.

    PubMed

    Moon, Jiyoung; Yun, Jieun; Yoon, Yeo Dae; Park, Sang-Il; Seo, Young-Jun; Park, Won-Sang; Chu, Hye Yong; Park, Keun Hong; Lee, Myung Yeol; Lee, Chang Woo; Oh, Soo Jin; Kwak, Young-Shin; Jang, Young Pyo; Kang, Jong Soon

    2017-04-07

    Blue light has high photochemical energy and induces cell apoptosis in retinal pigment epithelial cells. Due to its phototoxicity, retinal hazard by blue light stimulation has been well demonstrated using high intensity light sources. However, it has not been studied whether blue light in the displays, emitting low intensity light, such as those used in today's smartphones, monitors, and TVs, also causes apoptosis in retinal pigment epithelial cells. We attempted to examine the blue light effect on human adult retinal epithelial cells using display devices with different blue light wavelength ranges, the peaks of which specifically appear at 449 nm, 458 nm, and 470 nm. When blue light was illuminated on A2E-loaded ARPE-19 cells using these displays, the display with a blue light peak at a shorter wavelength resulted in an increased production of reactive oxygen species (ROS). Moreover, the reduction of cell viability and induction of caspase-3/7 activity were more evident in A2E-loaded ARPE-19 cells after illumination by the display with a blue light peak at a shorter wavelength, especially at 449 nm. Additionally, white light was tested to examine the effect of blue light in a mixed color illumination with red and green lights. Consistent with the results obtained using only blue light, white light illuminated by display devices with a blue light peak at a shorter wavelength also triggered increased cell death and apoptosis compared to that illuminated by display devices with a blue light peak at longer wavelength. These results show that even at the low intensity utilized in the display devices, blue light can induce ROS production and apoptosis in retinal cells. Our results also suggest that the blue light hazard of display devices might be highly reduced if the display devices contain less short wavelength blue light.

  7. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  8. 'Shadow sign' in congenital hypertrophy of the retinal pigment epithelium of young myopic pigmented patients.

    PubMed

    Chang, M Y; McBeath, J B; McCannel, C A; McCannel, T A

    2016-01-01

    PURPOSE Congenital hypertrophy of the retinal pigment epithelium (CHRPE) may simulate choroidal melanoma in certain cases. We report unique clinical features we have observed in cases of CHRPE in young myopic pigmented patients.METHODS Patients who were referred for evaluation of a suspicious choroidal lesion and found to have a CHRPE lesion with the clinical appearance of lesion elevation and a subretinal fluid-like 'shadow sign' were included. Patient and lesion characteristics were tabulated. Available images, including fundus photography, ultrasonography, optical coherence tomography (OCT), and fluorescein angiography (FA) were reviewed.ResultsSix patients were included. The 'shadow sign' was anterior to the CHRPE lesion in all cases. The mean age of the patients was 27.3 years. The ethnicities of the patients were Chinese (n=1), Hispanic (n=3), or African-American (n=2). Five of six patients were myopic.CONCLUSIONS Although most CHRPE lesions appear flat on ophthalmoscopy, lesions in young myopic patients of pigmented ethnicities may appear elevated with a 'shadow sign' due to 'dark without pressure.' This new finding may be related to the vitreoretinal interface in young myopic pigmented patients and must be distinguished from true subretinal fluid and lesion thickness, which are often observed in choroidal melanoma.

  9. Mouse Slc9a8 Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction

    PubMed Central

    Jadeja, Shalini; Barnard, Alun R.; McKie, Lisa; Cross, Sally H.; White, Jacqueline K.; Robertson, Morag; Budd, Peter S.; MacLaren, Robert E.; Jackson, Ian J.

    2015-01-01

    Purpose. As part of a large scale systematic screen to determine the effects of gene knockout mutations in mice, a retinal phenotype was found in mice lacking the Slc9a8 gene, encoding the sodium/hydrogen ion exchange protein NHE8. We aimed to characterize the mutant phenotype and the role of sodium/hydrogen ion exchange in retinal function. Methods. Detailed histology characterized the pathological consequences of Slc9a8 mutation, and retinal function was assessed by electroretinography (ERG). A conditional allele was used to identify the cells in which NHE8 function is critical for retinal function, and mutant cells analyzed for the effect of the mutation on endosomes. Results. Histology of mutant retinas reveals a separation of photoreceptors from the RPE and infiltration by macrophages. There is a small reduction in photoreceptor length and a mislocalization of visual pigments. The ERG testing reveals a deficit in rod and cone pathway function. The RPE shows abnormal morphology, and mutation of Slc9a8 in only RPE cells recapitulates the mutant phenotype. The NHE8 protein localizes to endosomes, and mutant cells have much smaller recycling endosomes. Conclusions. The NHE8 protein is required in the RPE to maintain correct regulation of endosomal volume and/or pH which is essential for the cellular integrity and subsequent function of RPE. PMID:25736793

  10. The Retinal Pigment Epithelium in Health and Disease

    PubMed Central

    Sparrrow, J.R.; Hicks, D.; Hamel, C.P.

    2014-01-01

    Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells. PMID:21091424

  11. Retinal pigment epithelium engineering using synthetic biodegradable polymers.

    PubMed

    Lu, L; Yaszemski, M J; Mikos, A G

    2001-12-01

    Retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina, especially photoreceptors. Alteration in RPE structure and function is implicated in a variety of ocular disorders. Tissue engineering strategies using synthetic biodegradable polymers as temporary substrates for RPE cell culture and subsequent transplantation may provide a promising new therapy. In this review article, the manufacture of thin biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) films and their degradation behavior in vitro are discussed. RPE cell proliferation and differentiation on these PLGA films are reviewed. The fabrication of model substrates with desired chemical micropatterns in the micrometer scale is discussed and the effects of surface patterning on RPE morphology and function are assessed. Finally. the preparation of biodegradable micropatterns with adhesive PLGA and non-adhesive poly(ethylene glycol)/PLA domains to modulate RPE cell adhesion is presented.

  12. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice

    PubMed Central

    Zhao, Chen; Yasumura, Douglas; Li, Xiyan; Matthes, Michael; Lloyd, Marcia; Nielsen, Gregory; Ahern, Kelly; Snyder, Michael; Bok, Dean; Dunaief, Joshua L.; LaVail, Matthew M.; Vollrath, Douglas

    2010-01-01

    Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress. PMID:21135502

  13. An improved method of isolating fetal human retinal pigment epithelium.

    PubMed

    Castillo, B V; Little, C W; del Cerro, C; del Cerro, M

    1995-08-01

    The purpose of this study was to develop an improved method of isolating fetal human retinal pigment epithelium (RPE) for tissue culture or transplantation. Fetal human eyes ranging from 8 to 20 wks of gestation were collected and stored in Optisol solution. Under a dissecting microscope, an incision was made behind the ora serrata and extended circumferentially to remove the anterior segment. The vitreous was withdrawn, and the neural retina was carefully detached from the RPE. The sclera then was teased away from the choroid-RPE. The choroid-RPE was treated with 2% dispase in DMEM + 20 mM HEPES at 37 degrees C for 25 min. While still in dispase, the RPE was separated from the choroid using a pair of fine tipped jeweler's forceps under dark-field. An intact sheet of RPE could be separated from the choroid after treatment with dispase. No choroidal contamination was present as determined by light microscopy or cell culture. In vitro, the isolated RPE cells demonstrated classic cobblestone phenotype and expressed cytokeratin. This technique provides an easy and reliable method for isolating pure sheets of fetal human RPE. It also allows utilization of the neural retina of the same eye for other purposes, as the neural retina is not exposed to the enzymatic digestion. These features make this method especially useful for RPE and retinal transplantation; such an application is already underway.

  14. Chloroquine and Hydroxychloroquine Increase Retinal Pigment Epithelial Layer Permeability.

    PubMed

    Korthagen, Nicoline M; Bastiaans, Jeroen; van Meurs, Jan C; van Bilsen, Kiki; van Hagen, P Martin; Dik, Willem A

    2015-07-01

    Antimalarials chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used as antiinflammatory drugs, but side effects include retinopathy and vision loss. The objective of this study was to examine the effect of CQ and HCQ on the barrier integrity of retinal pigment epithelial (RPE) cell monolayers in vitro. Permeability of ARPE-19 cell monolayers was determined using Fluorescein isothiocyanate (FITC)-labeled dextran. The influence of CQ and HCQ on cell death and the expression tight junction molecules was examined. CQ and HCQ significantly increased ARPE-19 monolayer permeability after 3 and 18 h, respectively, and enhanced mRNA levels for claudin-1 and occludin. Cytotoxicity was only observed after 18 h exposure. Thus, CQ and HCQ rapidly enhance RPE barrier permeability in vitro, independent of cytotoxicity or loss of zonula occludens-1, claudin-1, and occludin expression. Our findings suggest that CQ/HCQ-induced permeability of the RPE layer may contribute to blood-retinal barrier breakdown in case of CQ/HCQ-induced retinopathy.

  15. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis

    PubMed Central

    Guo, Feiye; Ding, Ying; Caberoy, Nora; Alvarado, Gabriela; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition. PMID:25904329

  16. Paraoxonase Enzyme Protects Retinal Pigment Epithelium from Chlorpyrifos Insult

    PubMed Central

    Jasna, Jagan Mohan; Anandbabu, Kannadasan; Bharathi, Subramaniam Rajesh; Angayarkanni, Narayanasamy

    2014-01-01

    Retinal pigment epithelium (RPE) provides nourishment and protection to the eye. RPE dysfunction due to oxidative stress and inflammation is one of the major reason for many of the retinal disorders. Organophosphorus pesticides are widely used in the agricultural, industrial and household activities in India. However, their effects on the eye in the context of RPE has not been studied. In this study the defense of the ARPE19 cells exposed to Chlorpyrifos (1 nM to 100 µM) in terms of the enzyme paraoxonase (PON) was studied at 24 hr and 9 days of treatment. Chlorpyrifos was found to induce oxidative stress in the ARPE19 cells as seen by significant increase in ROS and decrease in glutathione (GSH) levels without causing cell death. Tissue resident Paraoxonase 2 (PON2) mRNA expression was elevated with chlorpyrifos exposure. The three enzymatic activities of PON namely, paraoxonase (PONase), arylesterase (PON AREase) and thiolactonase (PON HCTLase) were also found to be significantly altered to detoxify and as an antioxidant defense. Among the transcription factors regulating PON2 expression, SP1 was significantly increased with chlorpyrifos exposure. PON2 expression was found to be crucial as ARPE19 cells showed a significant loss in their ability to withstand oxidative stress when the cells were subjected to chlorpyrifos after silencing PON2 expression. Treatment with N-acetyl cysteine positively regulated the PON 2 expression, thus promoting the antioxidant defense put up by the cells in response to chlorpyrifos. PMID:24979751

  17. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    PubMed

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment.

  18. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  19. Protective responses to sublytic complement in the retinal pigment epithelium

    PubMed Central

    Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna

    2016-01-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  20. Macular pigment optical density is related to serum lutein in retinitis pigmentosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To determine whether macular pigment optical density (MPOD) is related to the degree of cystoid macular edema (CME) in patients with retinitis pigmentosa. Methods: We measured MPOD with heterochromatic flicker photometry and central foveal retinal thickness with optical coherence tomography...

  1. Histone Deacetylase Inhibition Restores Retinal Pigment Epithelium Function in Hyperglycemia

    PubMed Central

    Desjardins, Danielle; Liu, Yueying; Crosson, Craig E.; Ablonczy, Zsolt

    2016-01-01

    In diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE) is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE). Here we provide evidence that acute administration of the RAGE agonist, glycated-albumin (gAlb) or vascular endothelial growth factor (VEGF), increased histone deacetylase (HDAC) activity in RPE cells. The administration of the class I/II HDAC inhibitor, trichostatin-A (TSA), suppressed gAlb-induced reductions in RPE transepithelial resistance (in vitro) and fluid transport (in vivo). Systemic TSA also restored normal RPE fluid transport in rats with subchronic hyperglycemia. Both gAlb and VEGF increased HDAC activity and reduced acetyl-α-tubulin levels. Tubastatin-A, a relatively specific antagonist of HDAC6, inhibited gAlb-induced changes in RPE cell resistance. These data are consistent with the idea that RPE dysfunction following exposure to gAlb, VEGF, or hyperglycemia is associated with increased HDAC6 activity and decreased acetyl-α-tubulin. Therefore, we propose inhibiting HDAC6 in the RPE as a potential therapy for preserving normal fluid homeostasis in the hyperglycemic retina. PMID:27617745

  2. Lyar Is a New Ligand for Retinal Pigment Epithelial Phagocytosis.

    PubMed

    Guo, Feiye; Ding, Ying; Caberoy, Nora B; Alvarado, Gabriela; Liu, Robert; Shen, Chen; Yu, Jisu; Zhou, Yixiong; Salero, Enrique; LeBlanc, Michelle E; Wang, Weiwen; Li, Wei

    2015-10-01

    Phagocytosis is critical to tissue homeostasis, as highlighted by phagocytosis defect of retinal pigment epithelial (RPE) cells with debris accumulation, photoreceptor degeneration and blindness. Phagocytosis ligands are the key to delineating molecular mechanisms and functional roles of phagocytes, but are traditionally identified in individual cases with technical challenges. We recently developed open reading frame phage display (OPD) for phagocytosis-based functional cloning (PFC) to identify unknown ligands. One of the identified ligands was Ly-1 antibody reactive clone (Lyar) with functions poorly defined. Herein, we characterized Lyar as a new ligand to stimulate RPE phagocytosis. In contrast to its reported nucleolar expression, immunohistochemistry showed that Lyar was highly expressed in photoreceptor outer segments (POSs) of the retina. Cytoplasmic Lyar was released from apoptotic cells, and selectively bound to shed POSs and apoptotic cells, but not healthy cells. POS vesicles engulfed through Lyar-dependent pathway were targeted to phagosomes and colocalized with phagosome marker Rab7. These results suggest that Lyar is a genuine RPE phagocytosis ligand, which in turn supports the validity of OPD/PFC as the only available approach for unbiased identification of phagocytosis ligands with broad applicability to various phagocytes.

  3. Retinal pigment epithelial cell necroptosis in response to sodium iodate

    PubMed Central

    Hanus, J; Anderson, C; Sarraf, D; Ma, J; Wang, S

    2016-01-01

    Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly in developed countries. The late stage of dry AMD, or geographic atrophy (GA), is characterized by extensive retinal pigment epithelium (RPE) degeneration. The underlying molecular mechanism for RPE cell death in GA remains unclear. Our previous study has established that RPE cells die predominantly from necroptosis in response to oxidative stress in vitro. Here, we extend our study and aim to characterize the nature of RPE cell death in response to sodium iodate (NaIO3) in vitro and in a NaIO3-induced retina degeneration mouse model. We found that NaIO3 induces RPE necroptosis in vitro by using a combination of molecular hallmarks. By using TUNEL assays, active caspase-3 and HMGB1 immunostaining, we confirmed that photoreceptor cells die mainly from apoptosis and RPE cells die mainly from necroptosis in response to NaIO3 in vivo. RPE necroptosis in this model is also supported by use of the RIPK1 inhibitor, Necrostatin-1. Furthermore, using novel RIPK3-GFP transgenic mouse lines, we detected RIPK3 aggregation, a hallmark of necroptosis, in the RPE cells in vivo after NaIO3 injection. Our findings suggest the necessity of re-evaluating RPE cell death mechanism in AMD models and have the potential to influence therapeutic development for dry AMD, especially GA. PMID:27551542

  4. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  5. Controlled exosome release from the retinal pigment epithelium in situ.

    PubMed

    Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S

    2014-12-01

    Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE.

  6. Retinal pigment epithelium cell alignment on nanostructured collagen matrices.

    PubMed

    Ulbrich, Stefan; Friedrichs, Jens; Valtink, Monika; Murovski, Simo; Franz, Clemens M; Müller, Daniel J; Funk, Richard H W; Engelmann, Katrin

    2011-01-01

    We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.

  7. Retinal Pigment Epithelial Cells Suppress Phagolysosome Activation in Macrophages

    PubMed Central

    Wang, Eric; Choe, Yoona; Ng, Tat Fong; Taylor, Andrew W.

    2017-01-01

    Purpose The eye is an immune-privileged microenvironment that has adapted several mechanisms of immune regulation to prevent inflammation. One of these potential mechanisms is retinal pigment epithelial cells (RPE) altering phagocytosis in macrophages. Methods The conditioned media of RPE eyecups from eyes of healthy mice and mice with experimental autoimmune uveitis (EAU) were used to treat primary macrophage phagocytizing pHrodo bacterial bioparticles. In addition, the neuropeptides were depleted from the conditioned media of healthy RPE eyecups and used to treat phagocytizing macrophages. The conditioned media from healthy and EAU RPE eyecups were assayed for IL-6, and IL-6 was added to the healthy conditioned media, and neutralized in the EAU conditioned media. The macrophages were treated with the conditioned media and assayed for fluorescence. The macrophages were imaged, and the fluorescence intensity, relative to active phagolysosomes, was measured. Also, the macrophages were assayed using fluorescent viability dye staining. Results The conditioned media from healthy, but not from EAU RPE eyecups suppressed phagolysosome activation. Depletion of the neuropeptides alpha-melanocyte–stimulating hormone and neuropeptide Y from the healthy RPE eyecup conditioned media resulted in macrophage death. In the EAU RPE eyecup conditioned media was 0.96 ± 0.18 ng/mL of IL-6, and when neutralized the conditioned media suppressed phagolysosome activation. Conclusions The healthy RPE through soluble molecules, including alpha-melanocyte–stimulating hormone and neuropeptide Y, suppresses the activation of the phagolysosome in macrophages. In EAU, the IL-6 produced by the RPE promotes the activation of phagolysosomes in macrophages. These results demonstrate that under healthy conditions, RPE promotes an altered pathway of phagocytized material in macrophages with implications on antigen processing and clearance. PMID:28241314

  8. Effect of cadmium chloride on the distal retinal pigment cells of the fiddler crab, Uca pugilator

    SciTech Connect

    Reddy, P.S.; Fingerman, M.; Nguyen, L.K.; Obih, P.

    1997-03-01

    Crustaceans have two sets of pigmentary effectors, chromatophores and retinal pigment cells. Retinal pigments control the amount of light striking the rhabdom, the photosensitive portion of each ommatidium, screening the rhabdom in bright light and uncovering it in darkness or dim light. Migration of the distal pigment in the fiddler crab, Uca pugilalor, is regulated by a light-adapting hormone and a dark-adapting hormone. The black chromatophores of this crab are also controlled by a pair of hormones. Both pigmentary effectors exhibit circadian rhythms. The effects of some organic and inorganic pollutants on the ability of Uca pugilator to change color have been described. Exposure of this crab to naphthalene or cadmium results in decreased ability to disperse the pigment in their black chromatophores, the exposed crabs becoming paler than the unexposed crabs. Norepinephrine triggers release of both the black pigment-dispersing hormone and the light-adapting hormone. In view of the facts that (a) these hormones which regulate the black chromatophores and distal pigment are synthesized in and released from the eyestalk neuroendocrine complex, (b) the black pigment-dispersing hormone and the light-adapting hormone may actually be the same hormone. having two different activities and (c) release of both the black pigment-dispersing hormone and the light-adapting hormone is triggered by norepinephrine, the present investigation was carried out to determine the effect of cadmium on distal pigment migration in Uca pugilator. More specifically, for comparison with the previously reported effect of cadmium on pigment migration in the black chromatophores, we wished to determine whether the distal pigment of fiddler crabs exposed to cadmium chloride is capable of as wide a range of movement as in unexposed crabs, and if not what might be the explanation. This is the first report of the effect of a pollutant on a retinal pigment of any crustacean. 12 refs., 3 tabs.

  9. Intrachoroidal Neovascularization in Transgenic Mice Overexpressing Vascular Endothelial Growth Factor in the Retinal Pigment Epithelium

    PubMed Central

    Schwesinger, Catherine; Yee, Charles; Rohan, Richard M.; Joussen, Antonia M.; Fernandez, Antonio; Meyer, Tobias N.; Poulaki, Vassiliki; Ma, Joseph J. K.; Redmond, T. Michael; Liu, Suyan; Adamis, Anthony P.; D’Amato, Robert J.

    2001-01-01

    Choroidal neovascularization in age-related macular degeneration is a frequent and poorly treatable cause of vision loss in elderly Caucasians. This choroidal neovascularization has been associated with the expression of vascular endothelial growth factor (VEGF). In current animal models choroidal neovascularization is induced by subretinal injection of growth factors or vectors encoding growth factors such as VEGF, or by disruption of the Bruch’s membrane/retinal pigment epithelium complex with laser treatment. We wished to establish a transgenic murine model of age-related macular degeneration, in which the overexpression of VEGF by the retinal pigment epithelium induces choroidal neovascularization. A construct consisting of a tissue-specific murine retinal pigment epithelium promoter (RPE65 promoter) coupled to murine VEGF164 cDNA with a rabbit β-globin-3′ UTR was introduced into the genome of albino mice. Transgene mRNA was expressed in the retinal pigment epithelium at all ages peaking at 4 months. The expression of VEGF protein was increased in both the retinal pigment epithelium and choroid. An increase of intravascular adherent leukocytes and vessel leakage was observed. Histopathology revealed intrachoroidal neovascularization that did not penetrate through an intact Bruch’s membrane. These results support the hypothesis that additional insults to the integrity of Bruch’s membrane are required to induce growth of choroidal vessels into the subretinal space as seen in age-related macular degeneration. This model may be useful to screen for inhibitors of choroidal vessel growth. PMID:11238064

  10. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods.

    PubMed

    Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin; Chakrabarti, Kalyan S; Koutalos, Yiannis; Crouch, Rosalie K; Oprian, Daniel; Cornwall, M Carter

    2012-06-01

    We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.

  11. Sectoral iris heterochromia and retinal pigment variation in 13q-syndrome.

    PubMed

    Kutzbach, Beth; Mendelsohn, Nancy; Rath, Pamela; Summers, C Gail

    2007-10-01

    Chromosome 13q deletion syndrome is characterized by growth retardation, cognitive delays, and organ and musculoskeletal deformities. Typical ocular associations include retinoblastoma, microphthalmia, and colobomas. We report a case of bilateral iris heterochromia and retinal pigment abnormalities in a child with 13q-syndrome.

  12. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  13. Retinal Pigment Epithelium Differentiation of Stem Cells: Current Status and Challenges

    PubMed Central

    Uygun, Basak E.; Sharma, Nripen; Yarmush, Martin

    2015-01-01

    Degeneration and loss of retinal pigment epithelium (RPE) is the cause of a number of degenerative retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, leading to blindness that affects three million Americans as of now. Transplantation of RPE aims to restore retinal structure and the interaction between the RPE and photoreceptors, which is fundamental to sight. Although a significant amount of progress has been made in the past 20 years in autologous RPE transplantation, sources for RPE cells are limited. Recent advances in stem cell culture and differentiation techniques have allowed the generation of RPE cells from pluripotent stem cells. In this review, we discuss strategies for generating functional RPE cells from human embryonic stem cells and induced pluripotent stem cells, and summarize transplantation studies of these derived RPEs. We conclude with challenges in cell-replacement therapies using human embryonic and induced pluripotent stem cell-derived RPEs. PMID:20528731

  14. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    SciTech Connect

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W. ); Pandey, S. )

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha} protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.

  15. Effect of chloride channel activity on retinal pigment cell proliferation and migration.

    PubMed

    Zhao, Jing; Zhong, Wei; Sun, Lixia; Yin, Yuan; Zheng, Yajuan

    2017-04-01

    The present study aimed to investigate the effects of chloride channels (ClC) on the proliferation and migration of retinal pigment epithelial (RPE) cells, a primary component of proliferative vitreoretinopathy (PVR) membranes. An RPE cell model of phagocytosis was established using fibronectin‑coated latex beads. Cell proliferation was measured by live cell counting. The cell cycle and phagocytosis index was assessed by flow cytometry. Intracellular calcium concentration was quantified using Fura‑2‑acetoxymethyl ester. ClCs were blocked using 5‑nitro‑2‑(3‑phenylpropylamino) benzoic acid (NPPB) and tamoxifen (TAM). NPPB and TAM were identified to inhibit the proliferation of ARPE‑19 human adult RPE cells by arresting them in the G0/G1 phase, inhibit the phagocytosis of fibronectin, and decrease intracellular calcium levels, in a dose‑dependent manner. ClCs serve important roles in mediating human RPE cell proliferation and migration. The underlying mechanisms of action of ClCs are associated with the regulation of calcium. Targeting ClCs may provide a novel strategy to inhibit PVR formation.

  16. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation.

    PubMed

    Cia, David; Cubizolle, Aurélie; Crauste, Céline; Jacquemot, Nathalie; Guillou, Laurent; Vigor, Claire; Angebault, Claire; Hamel, Christian P; Vercauteren, Joseph; Brabet, Philippe

    2016-09-01

    Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.

  17. Expression of pigment epithelium‐derived factor and thrombospondin‐1 regulate proliferation and migration of retinal pigment epithelial cells

    PubMed Central

    Farnoodian, Mitra; Kinter, James B.; Yadranji Aghdam, Saeed; Zaitoun, Ismail; Sorenson, Christine M.; Sheibani, Nader

    2015-01-01

    Abstract Age‐related macular degeneration (AMD) is the leading cause of vision loss among elderly. Although the pathogenesis of AMD is associated with retinal pigmented epithelium (RPE) dysfunction and abnormal neovascularization the detailed mechanisms remain unresolved. RPE is a specialized monolayer of epithelial cells with important functions in ocular homeostasis. Pathological RPE damage contributes to major ocular conditions including retinal degeneration and irreversible loss of vision in AMD. RPE cells also assist in the maintenance of the ocular angiogenic balance by production of positive and negative regulatory factors including vascular endothelial growth factor (VEGF), thrombospondin‐1 (TSP1), and pigment epithelium‐derived factor (PEDF). The altered production of PEDF and TSP1, as endogenous inhibitors of angiogenesis and inflammation, by RPE cells have been linked to pathogenesis of AMD and choroidal and retinal neovascularization. However, lack of simple methods for isolation and culture of mouse RPE cells has resulted in limited knowledge regarding the cell autonomous role of TSP1 and PEDF in RPE cell function. Here, we describe a method for routine isolation and propagation of RPE cells from wild‐type, TSP1, and PEDF‐deficient mice, and have investigated their impact on RPE cell function. We showed that expression of TSP1 and PEDF significantly impacted RPE cell proliferation, migration, adhesion, oxidative state, and phagocytic activity with minimal effect on their basal rate of apoptosis. Together, our results indicated that the expression of PEDF and TSP1 by RPE cells play crucial roles not only in regulation of ocular vascular homeostasis but also have significant impact on their cellular function. PMID:25602019

  18. Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells.

    PubMed Central

    Elner, V. M.; Strieter, R. M.; Elner, S. G.; Baggiolini, M.; Lindley, I.; Kunkel, S. L.

    1990-01-01

    The neural-derived retinal pigment epithelium (RPE) underlies the sensory retina and is central to both retinal homeostasis and many common retinal diseases. Retinal pigment epithelium cells are actively phagocytic and share several features with macrophages that have recently been shown to produce a neutrophil chemotactic factor (NCF), also known as interleukin-8, after cytokine stimulation. Because RPE cell responses to cytokines are largely unknown, human RPE cell NCF production was monitored after interleukin-1-beta (IL-1 beta), tumor necrosis factor-alpha, or lipopolysaccharide stimulation. RPE NCF mRNA expression and RPE production of biologically active NCF was time and concentration dependent. Maximal NCF mRNA expression occurred at 20 ng/ml for IL-1 beta. Messenger RNA expression in RPE cells and biologically active NCF in RPE cell supernatants were found 1 hour after stimulation and were maintained for 24 hours. These findings demonstrate that cytokine-stimulated RPE cells may evoke or augment neutrophil-mediated inflammation by synthesizing NCF, a cytokine that may be important in ocular disease mechanisms. Images Figure 1 Figure 3 PMID:2183623

  19. Otx but not Mitf transcription factors are required for zebrafish retinal pigment epithelium development.

    PubMed

    Lane, Brandon M; Lister, James A

    2012-01-01

    Otx and Mitf transcription factors have been implicated in the development of the retinal pigmented epithelium (RPE), but the relationship between these factors and their specific roles in the development of the RPE have not been fully defined. The role of the three Otx transcription factors (Otx1a, Otx1b, and Otx2) and two Mitf transcription factors (Mitfa and Mitfb) in the development of the zebrafish RPE was explored in these experiments. The loss of Otx activity through morpholino knockdown produced variable eye defects, ranging from delayed RPE pigmentation to severe coloboma, depending on the combination of Otx factors that were targeted. Expression analysis through in situ hybridization demonstrates that otx transcription factors are necessary for the proper expression of mitfa and mitfb while Mitf transcription factors are not required for the expression of otx genes. Surprisingly, the loss of Mitf activity in mitfa, mitfb, or double mitf mutant zebrafish had no effect on RPE pigmentation or development. Moreover, histological analysis revealed that retinal lamination is unaffected in mitf mutants, as well as in otx morphants, even in regions lacking RPE. Otx and Mitf combined loss of function experiments suggest that mitfa and mitfb may still influence zebrafish RPE development. This is further supported by the ability of mitfa to induce pigmentation in the zebrafish retina when misexpressed. These findings suggest that one or more Otx targets in addition to mitfa and mitfb, possibly another mitf family member, are necessary for development of the RPE in zebrafish.

  20. Evolution of geographic atrophy of the retinal pigment epithelium.

    PubMed

    Sarks, J P; Sarks, S H; Killingsworth, M C

    1988-01-01

    The aim of this study was to trace the evolution of geographic atrophy (GA) by clinical documentation and by clinico-morphological correlation in representative eyes. Geographic atrophy commonly commenced within a parafoveal band of incipient atrophy of varying width, characterised by semisolid drusen and a microreticular pigment pattern. Progression of atrophy mostly skirted fixation and visual acuity was a poor guide to the functional impact, an estimate of the percentage of fovea involved proving a more useful clinical parameter. The rate of progression slowed once GA had involved all the retina affected by incipient atrophy and the risk of choroidal neovascularization appeared to decline. An earlier histological classification of the evolution of GA is revised according to the ultrastructural findings. Membranous debris was not previously recognised and its contribution to the findings in incipient atrophy and to dot-like drusen is described.

  1. Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease.

    PubMed

    Leach, Lyndsay L; Clegg, Dennis O

    2015-08-01

    Stem cells provide a potentially unlimited source of cells for treating a plethora of human diseases. Regenerative therapies for retinal degenerative diseases are at the forefront of translation to the clinic, with stem cell-derived retinal pigment epithelium (RPE)-based treatments for age-related macular degeneration (AMD) already showing promise in human patients. Despite our expanding knowledge of stem cell biology, methods for deriving cells, including RPE have remained inefficient. Thus, there has been a push in recent years to develop more directed approaches to deriving cells for therapy. In this concise review, we summarize recent efforts that have been successful in improving RPE derivation efficiency by directing differentiation from human pluripotent stem cells using developmental cues important for normal RPE specification and maturation in vivo. In addition, potential obstacles for clinical translation are discussed. Finally, we review how derivation of RPE from human induced pluripotent stem cells (hiPSCs) provides in vitro models for studying mechanisms of retinal disease and discovering new avenues for treatment.

  2. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    SciTech Connect

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  3. Hydrophilic prodrug approach for reduced pigment binding and enhanced transscleral retinal delivery of celecoxib.

    PubMed

    Malik, Pradip; Kadam, Rajendra S; Cheruvu, Narayan P S; Kompella, Uday B

    2012-03-05

    Transscleral retinal delivery of celecoxib, an anti-inflammatory and anti-VEGF agent, is restricted by its poor solubility and binding to the melanin pigment in choroid-RPE. The purpose of this study was to develop soluble prodrugs of celecoxib with reduced pigment binding and enhanced retinal delivery. Three hydrophilic amide prodrugs of celecoxib, celecoxib succinamidic acid (CSA), celecoxib maleamidic acid (CMA), and celecoxib acetamide (CAA) were synthesized and characterized for solubility and lipophilicity. In vitro melanin binding to natural melanin (Sepia officinalis) was estimated for all three prodrugs. In vitro transport studies across isolated bovine sclera and sclera-choroid-RPE (SCRPE) were performed. Prodrug with the highest permeability across SCRPE was characterized for metabolism and cytotoxicity and its in vivo transscleral delivery in pigmented rats. Aqueous solubilities of CSA, CMA, and CAA were 300-, 182-, and 76-fold higher, respectively, than celecoxib. Melanin binding affinity and capacity were significantly lower than for celecoxib for all three prodrugs. Rank order for the % in vitro transport across bovine sclera and SCRPE was CSA > CMA ~ CAA ~ celecoxib, with the transport being 8-fold higher for CSA than celecoxib. CSA was further assessed for its metabolic stability and in vivo delivery. CSA showed optimum metabolic stability in all eye tissues with only 10-20% conversion to parent celecoxib in 30 min. Metabolic enzymes responsible for bioconversion included amidases, esterase, and cytochrome P-450. In vivo delivery in pigmented BN rats showed that CSA had 4.7-, 1.4-, 3.3-, 6.0-, and 4.5-fold higher delivery to sclera, choroid-RPE, retina, vitreous, and lens than celecoxib. CSA has no cytotoxicity in ARPE-19 cells in the concentration range of 0.1 to 1000 μM. Celecoxib succinamidic acid, a soluble prodrug of celecoxib with reduced melanin binding, enhances transscleral retinal delivery of celecoxib.

  4. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-Hours Post-Exposure to 532 nm, 120 ps Pulsed Laser Light

    DTIC Science & Technology

    2004-04-01

    years or younger, either sex, with no mitigating ocular or retinal pathology such as glaucoma, diabetic retinopathy, retinitis pigmentosa , etc. Donor: The...USAFA TR 2004-01 Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 120 ps Pulsed...TR 2004-01 This article, "Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 120 ps

  5. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat.

    PubMed

    Carr, Amanda-Jayne; Vugler, Anthony A; Hikita, Sherry T; Lawrence, Jean M; Gias, Carlos; Chen, Li Li; Buchholz, David E; Ahmado, Ahmad; Semo, Ma'ayan; Smart, Matthew J K; Hasan, Shazeen; da Cruz, Lyndon; Johnson, Lincoln V; Clegg, Dennis O; Coffey, Pete J

    2009-12-03

    Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs). These induced pluripotent stem (iPS) cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD), the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE). As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS) dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.

  6. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment

    PubMed Central

    Arteni, Ana-Andreea; Fradot, Mathias; Galzerano, Denise; Mendes-Pinto, Maria M.; Sahel, José-Alain; Picaud, Serge; Robert, Bruno; Pascal, Andrew A.

    2015-01-01

    Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health–specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy. PMID:26313550

  7. Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment.

    PubMed

    Arteni, Ana-Andreea; Fradot, Mathias; Galzerano, Denise; Mendes-Pinto, Maria M; Sahel, José-Alain; Picaud, Serge; Robert, Bruno; Pascal, Andrew A

    2015-01-01

    Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health-specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy.

  8. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  9. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    PubMed

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  10. Planar microdevices enhance transport of large molecular weight molecules across retinal pigment epithelial cells.

    PubMed

    Wade, Jennifer S; Desai, Tejal A

    2014-08-01

    Large molecular weight drug delivery to the posterior eye is challenging due to cellular barriers that hinder drug transport. Understanding how to enhance transport across the retinal barrier is important for the design of new drug delivery systems. A novel mechanism to enhance drug transport is the use of geometric properties, which has not been extensively explored in the retina. Planar SU-8/Poly(ethyleneglycol)dimethacrylate microdevices were constructed using photolithography to deliver FITC dextran across an in vitro retinal model. The model consists of retinal pigment epithelial (RPE) cells grown to confluence on transwell inserts, which provides an environment to investigate the influence of geometry on paracellular and transcellular delivery of encapsulated large molecules. Planar microdevices enhanced transport of large molecular weight dextrans across different models of RPE in a size dependent fashion. Increased drug permeation across the RPE was observed with the addition of microdevices as compared to a traditional bolus of FITC dextran. This phenomena was initiated by a non-toxic interaction between the microdevices and the retinal tight junction proteins. Suggesting that increased drug transport occurs via a paracellular pathway. These experiments provide evidence to support the future use of planar unidirectional microdevices for delivery of biologics in ocular applications.

  11. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy.

    PubMed

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  12. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  13. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.

  14. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy

    PubMed Central

    Shu, Xiao; Liu, Wenzhong; Zhang, Hao F.

    2015-01-01

    Abstract. The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo. PMID:26469564

  15. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities.

    PubMed

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  16. Early Events in Retinal Degeneration Caused by Rhodopsin Mutation or Pigment Epithelium Malfunction: Differences and Similarities

    PubMed Central

    Di Pierdomenico, Johnny; García-Ayuso, Diego; Pinilla, Isabel; Cuenca, Nicolás; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, María P.

    2017-01-01

    To study the course of photoreceptor cell death and macro and microglial reactivity in two rat models of retinal degeneration with different etiologies. Retinas from P23H-1 (rhodopsin mutation) and Royal College of Surgeon (RCS, pigment epithelium malfunction) rats and age-matched control animals (Sprague-Dawley and Pievald Viro Glaxo, respectively) were cross-sectioned at different postnatal ages (from P10 to P60) and rhodopsin, L/M- and S-opsin, ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acid protein (GFAP), and proliferating cell nuclear antigen (PCNA) proteins were immunodetected. Photoreceptor nuclei rows and microglial cells in the different retinal layers were quantified. Photoreceptor degeneration starts earlier and progresses quicker in P23H-1 than in RCS rats. In both models, microglial cell activation occurs simultaneously with the initiation of photoreceptor death while GFAP over-expression starts later. As degeneration progresses, the numbers of microglial cells increase in the retina, but decreasing in the inner retina and increasing in the outer retina, more markedly in RCS rats. Interestingly, and in contrast with healthy animals, microglial cells reach the outer nuclei and outer segment layers. The higher number of microglial cells in dystrophic retinas cannot be fully accounted by intraretinal migration and PCNA immunodetection revealed microglial proliferation in both models but more importantly in RCS rats. The etiology of retinal degeneration determines the initiation and pattern of photoreceptor cell death and simultaneously there is microglial activation and migration, while the macroglial response is delayed. The actions of microglial cells in the degeneration cannot be explained only in the basis of photoreceptor death because they participate more actively in the RCS model. Thus, the retinal degeneration caused by pigment epithelium malfunction is more inflammatory and would probably respond better to interventions

  17. Quantum-classical model of retinal photoisomerization reaction in visual pigment rhodopsin.

    PubMed

    Lakhno, V D; Shigaev, A S; Feldman, T B; Nadtochenko, V A; Ostrovsky, M A

    2016-11-01

    A quantum-classical model of photoisomerization of the visual pigment rhodopsin chromophore is proposed. At certain (and more realistic) parameter value combinations, the model is shown to accurately reproduce a number of independent experimental data on the photoreaction dynamics: the quantum yield, the time to reach the point of conical intersection of potential energy surfaces, the termination time of the evolution of quantum subsystem, as well as the characteristic low frequencies of retinal molecular lattice fluctuations during photoisomerization. In addition, the model behavior is in good accordance with experimental data about coherence and local character of quantum transition.

  18. Novel Localization of Peripherin 2, the Photoreceptor-Specific Retinal Degeneration Slow Protein, in Retinal Pigment Epithelium

    PubMed Central

    Uhl, Patrizia B.; Amann, Barbara; Hauck, Stefanie M.; Deeg, Cornelia A.

    2015-01-01

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU), is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis. PMID:25629227

  19. Novel localization of peripherin 2, the photoreceptor-specific retinal degeneration slow protein, in retinal pigment epithelium.

    PubMed

    Uhl, Patrizia B; Amann, Barbara; Hauck, Stefanie M; Deeg, Cornelia A

    2015-01-26

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye. Since one typical feature of the autoimmune disease, equine recurrent uveitis (ERU), is the breakdown of this barrier, we recently performed comparative analysis of healthy and uveitic RPE. We identified for the first time peripherin 2, which is responsible for visual perception and retina development, to be localized in RPE. The purpose of this study was therefore to validate our findings by characterizing the expression patterns of peripherin 2 in RPE and retina. We also investigated whether peripherin 2 expression changes in ERU and if it is expressed by the RPE itself. Via immunohistochemistry, significant downregulation of peripherin 2 in uveitic RPE compared to the control was detectable, but there was no difference in healthy and uveitic retina. A further interesting finding was the clear distinction between peripherin 2 and the phagocytosis marker, rhodopsin, in healthy RPE. In conclusion, changes in the expression pattern of peripherin 2 selectively affect RPE, but not retina, in ERU. Moreover, peripherin 2 is clearly detectable in healthy RPE due to both phagocytosis and the expression by the RPE cells themselves. Our novel findings are very promising for better understanding the molecular mechanisms taking place on RPE in uveitis.

  20. Distribution of melanosomes across the retinal pigment epithelium of a hooded rat: implications for light damage

    SciTech Connect

    Howell, W.L.; Rapp, L.M.; Williams, T.P.

    1982-02-01

    Distribution of melanosomes across the retinal pigment epithelium of hooded rats (Long-Evans) is studied at the light microscopic and electron microscopic levels. This distribution is shown to be nonuniform: more melanosomes exist in the periphery than elsewhere and, importantly, there are very few melanosomes in a restricted area of the central portion of the superior hemisphere compared with the corresponding part of the inferior hemisphere. The region with fewest melanosomes is precisely the one that is highly susceptible to light damage. Because this region is the same in both pigmented and albino eyes, the paucity of melanin in this region is not the cause of its great sensitivity to light damage. Nor does light cause the nonuniform distribution of melanin. A possible explanation, involving a proposed vestigial tapetum, is given in order to explain the correlation of melanosome counts and sensitivity to light damage.

  1. A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development.

    PubMed

    Bharti, Kapil; Gasper, Melanie; Ou, Jingxing; Brucato, Martha; Clore-Gronenborn, Katharina; Pickel, James; Arnheiter, Heinz

    2012-07-01

    The separation of the optic neuroepithelium into future retina and retinal pigment epithelium (RPE) is a critical event in early eye development in vertebrates. Here we show in mice that the transcription factor PAX6, well-known for its retina-promoting activity, also plays a crucial role in early pigment epithelium development. This role is seen, however, only in a background genetically sensitized by mutations in the pigment cell transcription factor MITF. In fact, a reduction in Pax6 gene dose exacerbates the RPE-to-retina transdifferentiation seen in embryos homozygous for an Mitf null allele, and it induces such a transdifferentiation in embryos that are either heterozygous for the Mitf null allele or homozygous for an RPE-specific hypomorphic Mitf allele generated by targeted mutation. Conversely, an increase in Pax6 gene dose interferes with transdifferentiation even in homozygous Mitf null embryos. Gene expression analyses show that, together with MITF or its paralog TFEC, PAX6 suppresses the expression of Fgf15 and Dkk3. Explant culture experiments indicate that a combination of FGF and DKK3 promote retina formation by inhibiting canonical WNT signaling and stimulating the expression of retinogenic genes, including Six6 and Vsx2. Our results demonstrate that in conjunction with Mitf/Tfec Pax6 acts as an anti-retinogenic factor, whereas in conjunction with retinogenic genes it acts as a pro-retinogenic factor. The results suggest that careful manipulation of the Pax6 regulatory circuit may facilitate the generation of retinal and pigment epithelium cells from embryonic or induced pluripotent stem cells.

  2. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    PubMed

    Higdon, Charles W; Mitra, Robi D; Johnson, Stephen L

    2013-01-01

    In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  3. Origin of adult-type pigment cells forming the asymmetric pigment pattern, in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Yamada, Toshiyuki; Okauchi, Masanori; Araki, Kazuo

    2010-12-01

    The flatfish-specific asymmetric pigment pattern depends on the asymmetric appearance of adult-type pigment cells after the late metamorphic stages. To understand the mechanism enabling the formation of this asymmetric pattern, we investigated the behavior of pigment cell latent precursors in postembryonic Japanese flounder, Paralichthys olivaceus, by analysis of the expression patterns of pigment lineage markers (colony stimulating factor 1 receptor, dopachrome tautomerase, kit) and the DiI (DiO) labeling test for latent precursors. We found that, throughout the larval stages, pigment cell latent precursors were predominantly localized along the dorsal and ventral margins of the flank symmetrically and migrated continuously from these regions to the lateral sides symmetrically, and after late metamorphic stages these precursors differentiated into adult-type pigment cells on the lateral side asymmetrically. We conclude that adult-type pigment cells that form the asymmetric pigment pattern are continuously derived from the dorsal and ventral margins of the flank during larval development.

  4. Evolution of focal choroidal excavation underlying combined hamartoma of the retina and retinal pigment epithelium in a child.

    PubMed

    Sivalingam, Meera D; Say, Emil Anthony T; Shields, Carol L

    2015-08-01

    Combined hamartoma of the retina and retinal pigment epithelium (RPE) is a benign tumor seen mostly in children. Enhanced-depth imaging optical coherence tomography (OCT) of these tumors often shows an epiretinal membrane, tangential traction, disorganization of the retinal layers, and underlying uniform choroidal thinning. We describe the evolution over 9 years of focal choroidal excavation, a novel finding on OCT characterized as a "microstaphyloma," in a girl with combined hamartoma of the retina and RPE.

  5. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms.

    PubMed

    Ceinos, Rosa M; Guillot, Raúl; Kelsh, Robert N; Cerdá-Reverter, José M; Rotllant, Josep

    2015-03-01

    Dorso-ventral pigment pattern differences are the most widespread pigmentary adaptations in vertebrates. In mammals, this pattern is controlled by regulating melanin chemistry in melanocytes using a protein, agouti-signalling peptide (ASIP). In fish, studies of pigment patterning have focused on stripe formation, identifying a core striping mechanism dependent upon interactions between different pigment cell types. In contrast, mechanisms driving the dorso-ventral countershading pattern have been overlooked. Here, we demonstrate that, in fact, zebrafish utilize two distinct adult pigment patterning mechanisms - an ancient dorso-ventral patterning mechanism, and a more recent striping mechanism based on cell-cell interactions; remarkably, the dorso-ventral patterning mechanism also utilizes ASIP. These two mechanisms function largely independently, with resultant patterns superimposed to give the full pattern.

  6. Establishment of a blue light damage model of human retinal pigment epithelial cells in vitro.

    PubMed

    Su, G; Cai, S J; Gong, X; Wang, L L; Li, H H; Wang, L M

    2016-06-24

    To establish a blue-light damage model of human retinal pigment epithelium (RPE). Fourth-generation human RPE cells were randomly divided into two groups. In group A, cells were exposed to blue light (2000 ± 500 lux) for 0 (control), 3, 6, 9, and 12 h, and cell culture was stopped after 12 h. In group B, cells were exposed to blue light at the same intensity and time periods, but cell culture was stopped after 24 h. TdT-mediated dUTP nick-end labeling (TUNEL) assay was performed to determine the most suitable illuminating time with apoptotic index. Flow cytometry was used to determine apoptotic ratio of RPEs. In group A, the apoptotic index of cells that received 6, 9 and 12 h of blue light was higher than that of control. The apoptotic index of cells receiving 9 and 12 h was higher than that of 6 h (P = 0.000). In group B, the apoptotic index and RPE cell apoptosis ratio of cells exposed to 6, 9 and 12 h of blue light were higher than that of 3 h (P = 0.000); and cells receiving 9 and 12 h had higher values than that of 6 h. This study demonstrated that the best conditions to establish a blue light damage model of human retinal pigment epithelial cells in vitro are 2000 ± 500 lux light intensity for 6 h, with 24 h of cell culture post-exposure.

  7. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis

    PubMed Central

    Liu, Lian; Lao, Wei; Ji, Qing-Shan; Yang, Zhi-Hao; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2015-01-01

    AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction (RT-PCR) technique. RSULTS LBP significantly reduced the H2O2-induced ARPE-19 cells' apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSION LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP. PMID:25709900

  8. Diacylglycerol O-Acyltransferase Type-1 Synthesizes Retinyl Esters in the Retina and Retinal Pigment Epithelium

    PubMed Central

    Kaylor, Joanna J.; Radu, Roxana A.; Bischoff, Nicholas; Makshanoff, Jacob; Hu, Jane; Lloyd, Marcia; Eddington, Shannan; Bianconi, Tran; Bok, Dean; Travis, Gabriel H.

    2015-01-01

    Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE. PMID:25974161

  9. β-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment.

    PubMed

    Cai, Jun; Qi, Xiaoping; Kociok, Norbert; Skosyrski, Sergej; Emilio, Alonso; Ruan, Qing; Han, Song; Liu, Li; Chen, Zhijuan; Bowes Rickman, Catherine; Golde, Todd; Grant, Maria B; Saftig, Paul; Serneels, Lutgarde; de Strooper, Bart; Joussen, Antonia M; Boulton, Michael E

    2012-09-01

    β-Secretase (BACE1) is a major drug target for combating Alzheimer's disease (AD). Here we show that BACE1(-/-) mice develop significant retinal pathology including retinal thinning, apoptosis, reduced retinal vascular density and an increase in the age pigment, lipofuscin. BACE1 expression is highest in the neural retina while BACE2 was greatest in the retinal pigment epithelium (RPE)/choroid. Pigment epithelial-derived factor, a known regulator of γ-secretase, inhibits vascular endothelial growth factor (VEGF)-induced in vitro and in vivo angiogenesis and this is abolished by BACE1 inhibition. Moreover, intravitreal administration of BACE1 inhibitor or BACE1 small interfering RNA (siRNA) increases choroidal neovascularization in mice. BACE1 induces ectodomain shedding of vascular endothelial growth factor receptor 1 (VEGFR1) which is a prerequisite for γ-secretase release of a 100 kDa intracellular domain. The increase in lipofuscin following BACE1 inhibition and RNAI knockdown is associated with lysosomal perturbations. Taken together, our data show that BACE1 plays a critical role in retinal homeostasis and that the use of BACE inhibitors for AD should be viewed with extreme caution as they could lead to retinal pathology and exacerbate conditions such as age-related macular degeneration.

  10. Hemi-central retinal artery occlusion in young adults.

    PubMed

    Rishi, Pukhraj; Rishi, Ekta; Sharma, Tarun; Mahajan, Sheshadri

    2010-01-01

    Amongst the clinical presentations of retinal artery occlusion, hemi-central retinal artery occlusion (Hemi-CRAO) is rarely described. This case series of four adults aged between 22 and 36 years attempts to describe the clinical profile, etiology and management of Hemi-CRAO. Case 1 had an artificial mitral valve implant. Polycythemia and malignant hypertension were noted in Case 2. The third patient had Leiden mutation while the fourth patient had Eisenmenger's syndrome. Clinical examination and fundus fluorescein angiography revealed a bifurcated central retinal artery at emergence from the optic nerve head, in all cases. Color Doppler examination of the central retinal artery confirmed branching of the artery behind the lamina cribrosa. It is hypothesized that bifurcation of central retinal artery behind the lamina cribrosa may predispose these hemi-trunks to develop an acute occlusion if associated with underlying risk factors. The prognosis depends upon arterial recanalisation and etiology of the thromboembolic event.

  11. N-Ethylmaleimide–Sensitive Factor b (nsfb) Is Required for Normal Pigmentation of the Zebrafish Retinal Pigment Epithelium

    PubMed Central

    Hanovice, Nicholas J.; Daly, Christina M. S.; Gross, Jeffrey M.

    2015-01-01

    Purpose Despite the number of albinism-causing mutations identified in human patients and animal models, there remain a significant number of cases for which no mutation has been identified, suggesting that our understanding of melanogenesis is incomplete. Previously, we identified two oculocutaneous albinism mutations in zebrafish, au13 and au18. Here, we sought to identify the mutated loci and determine how the affected proteins contribute to normal pigmentation of the retinal pigment epithelium (RPE). Methods Complementation analyses revealed that au13 and au18 belonged to a single complementation group, suggesting that they affected the same locus. Whole-genome sequencing and single nucleotide polymorphism (SNP) analysis was performed to identify putative mutations, which were confirmed by cDNA sequencing and mRNA rescue. Transmission electron microscopy (TEM) and image quantification were used to identify the cellular basis of hypopigmentation. Results Whole-genome sequencing and SNP mapping identified a nonsense mutation in the N-ethylmaleimide–sensitive factor b (nsfb) gene in au18 mutants. Complementary DNA sequencing confirmed the presence of the mutation (C893T), which truncates the nsfb protein by roughly two-thirds (Y297X). No coding sequence mutations were identified in au13, but quantitative PCR revealed a significant decrease in nsfb expression, and nsfb mRNA injection rescued the hypopigmentation phenotype, suggesting a regulatory mutation. In situ hybridization revealed that nsfb is broadly expressed during embryonic development, including in the RPE. Transmission electron microscopy analyses indicated that average melanosome density and maturity were significantly decreased in nsfb mutants. Conclusions au18 and au13 contain mutations in nsfb, which encodes a protein that is required for the maturation of melanosomes in zebrafish RPE. PMID:26618645

  12. Associations Between Retinal Pigment Epithelium and Drusen Volume Changes During the Lifecycle of Large Drusenoid Pigment Epithelial Detachments

    PubMed Central

    Balaratnasingam, Chandrakumar; Yannuzzi, Lawrence A.; Curcio, Christine A.; Morgan, William H.; Querques, Giuseppe; Capuano, Vittorio; Souied, Eric; Jung, Jesse; Freund, K. Bailey

    2016-01-01

    Purpose Drusenoid pigment epithelial detachments (PEDs) are a defined path to atrophy in age-related macular degeneration (AMD). We analyzed the relationships between retinal pigment epithelium (RPE) and drusen volume changes during the PED lifecycle, using spectral-domain optical coherence tomography (SD-OCT). Methods Twenty-one cases of drusenoid PED tracked using SD-OCT through periods of growth and collapse were evaluated. Volumetric calculations and piece-wise linear regression analysis were used to determine the breakpoint between growth and collapse. Spectral-domain OCT scans were independently evaluated for the appearance of intraretinal hyperreflective foci, acquired vitelliform lesions (AVLs), and disruptions to the RPE+basal lamina band. Timing of these events with respect to the breakpoint was statistically evaluated. Morphometric characteristics of drusenoid PEDs were correlated with rate of PED collapse and final visual acuity. Results Mean age of subjects was 75.3 years and mean period of follow up was 4.1 years (median 4.5 years; range, 0.6–6.6 years). The lifecycle of drusenoid PEDs was asymmetric, in that the rate of collapse (0.199 mm3/month) is significantly faster (P < 0.001) than the rate of growth (0.022 mm3/month). Appearance of intraretinal hyperreflective foci and AVLs preceded the breakpoint (both P < 0.001). The timing of disruptions to the RPE+basal lamina band did not differ from the breakpoint (P = 0.510). Maximal height, volume, and diameter of drusenoid PEDs were inversely correlated with final visual acuity (all P < 0.001) and positively correlated with the rate of PED collapse (all P < 0.001). Conclusions Spectral-domain OCT signatures, plausibly attributable to anteriorly migrated RPE and disintegration of the RPE layer, precede or occur simultaneously with changes in volume of drusenoid PED during the lifecycle of this lesion. PMID:27760262

  13. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  14. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy

    PubMed Central

    Ishikawa, Keijiro; He, Shikun; Terasaki, Hiroto; Nazari, Hossein; Zhang, Huiming; Spee, Christine; Kannan, Ram; Hinton, David R

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-β2(TGF-β2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-β2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE. PMID:26552368

  15. Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium

    PubMed Central

    Nociari, Marcelo M.; Lehmann, Guillermo L.; Perez Bay, Andres E.; Radu, Roxana A.; Jiang, Zhichun; Goicochea, Shelby; Schreiner, Ryan; Warren, J. David; Shan, Jufang; Adam de Beaumais, Ségolène; Ménand, Mickaël; Sollogoub, Matthieu; Maxfield, Frederick R.; Rodriguez-Boulan, Enrique

    2014-01-01

    Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs. PMID:24706818

  16. Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium.

    PubMed

    Nociari, Marcelo M; Lehmann, Guillermo L; Perez Bay, Andres E; Radu, Roxana A; Jiang, Zhichun; Goicochea, Shelby; Schreiner, Ryan; Warren, J David; Shan, Jufang; Adam de Beaumais, Ségolène; Ménand, Mickaël; Sollogoub, Matthieu; Maxfield, Frederick R; Rodriguez-Boulan, Enrique

    2014-04-08

    Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.

  17. Applying photoacoustics to quantification of melanin concentration in retinal pigment epithelium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Zhang, Hao F.; Liu, Wenzhong

    2016-03-01

    The melanin in the retinal pigment epithelium (RPE) protects retina and other ocular tissues by photo-screening and acting as antioxidant and free radical scavenger. It helps maintain normal visual functions since human eye is subjected to lifelong high oxygen stress and photon exposure. Loss of the RPE melanin weakens the protection mechanism and jeopardizes ocular health. Local decrease in the RPE melanin concentration is believed to be both a cause and a sign of early-stage age-related macular degeneration (AMD), the leading blinding disease in developed world. Current technology cannot quantitatively measure the RPE melanin concentration which might be a promising marker in early AMD screening. Photoacoustic ophthalmoscopy (PAOM), as an emerging optical absorption-based imaging technology, can potentially be applied to measure the RPE melanin concentration if the dependence of the detectable photoacoustic (PA) signal amplitudes on the RPE melanin concentrations is verified. In this study, we tested the feasibility of using PA signal ratio from RPE melanin and the nearby retinal blood vessels as an indicator of the RPE melanin variation. A novel whole eye optical model was designed and Monte Carlo modeling of light (MCML) was employed. We examined the influences on quantification from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness. The results show that the scheme is robust to individual histological and illumination variations. This study suggests that PAOM is capable of quantitatively measuring the RPE melanin concentration in vivo.

  18. Minimizing the influence of fundus pigmentation on retinal vessel oximetry measurements

    NASA Astrophysics Data System (ADS)

    Smith, Matthew H.; Denninghoff, Kurt R.; Lompado, Arthur; Woodruff, Jacob B.; Hillman, Lloyd W.

    2001-06-01

    The goal of making calibrated oxygen saturation measurements of blood in retinal arteries and veins via a noninvasive spectroscopic technique has nearly been realized. Semi-continuous advancement in the field of retinal vessel oximetry over the last three decades has resulted in several technologies that seem poised for commercialization. In this paper, we present our instrumentation and technique for making well-calibrated saturation measurements of the blood in retinal vessels. The Eye Oximeter (EOX) is a confocal scanning laser ophthalmoscope capable of acquiring multi-spectral images. Analysis of these spectral vessel images allows spectroscopic determination of the oxygen saturation of blood within each vessel. The primary emphasis of this paper is to illustrate the effect of fundus pigmentation on these oximetric measurements. We show that decreasing fundus reflectivity is mathematically similar to decreasing the vessel thickness. The apparent decreased vessel thickness is a direct consequence of scattering by red blood cells. We present in vitro and in vivo measurements that demonstrate an instrument calibration that is nearly independent of vessel diameter and fundus reflectivity.

  19. Necrosis-Induced Sterile Inflammation Mediated by Interleukin-1α in Retinal Pigment Epithelial Cells

    PubMed Central

    Liu, Yang; Kimura, Kazuhiro; Orita, Tomoko; Sonoda, Koh-Hei

    2015-01-01

    Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina. PMID:26641100

  20. Quantitative Autofluorescence and Cell Density Maps of the Human Retinal Pigment Epithelium

    PubMed Central

    Ach, Thomas; Huisingh, Carrie; McGwin, Gerald; Messinger, Jeffrey D.; Zhang, Tianjiao; Bentley, Mark J.; Gutierrez, Danielle B.; Ablonczy, Zsolt; Smith, R. Theodore; Sloan, Kenneth R.; Curcio, Christine A.

    2014-01-01

    Purpose. Lipofuscin (LF) accumulation within RPE cells is considered pathogenic in AMD. To test whether LF contributes to RPE cell loss in aging and to provide a cellular basis for fundus autofluorescence (AF) we created maps of human RPE cell number and histologic AF. Methods. Retinal pigment epithelium–Bruch's membrane flat mounts were prepared from 20 donor eyes (10 ≤ 51 and 10 > 80 years; postmortem: ≤4.2 hours; no retinal pathologies), preserving foveal position. Phalloidin-binding RPE cytoskeleton and LF-AF (488-nm excitation) were imaged at up to 90 predefined positions. Maps were assembled from 83,330 cells in 1470 locations. From Voronoi regions representing each cell, the number of neighbors, cell area, and total AF intensity normalized to an AF standard was determined. Results. Highly variable between individuals, RPE-AF increases significantly with age. A perifoveal ring of high AF mirrors rod photoreceptor topography and fundus-AF. Retinal pigment epithelium cell density peaks at the fovea, independent of age, yet no net RPE cell loss is detectable. The RPE monolayer undergoes considerable lifelong re-modeling. The relationship of cell size and AF, a surrogate for LF concentration, is orderly and linear in both groups. Autofluorescence topography differs distinctly from the topography of age-related rod loss. Conclusions. Digital maps of quantitative AF, cell density, and packing geometry provide metrics for cellular-resolution clinical imaging and model systems. The uncoupling of RPE LF content, cell number, and photoreceptor topography in aging challenges LF's role in AMD. PMID:25034602

  1. A c-myc antisense oligonucleotide inhibits human retinal pigment epithelial cell proliferation.

    PubMed

    Capeáns, C; Piñeiro, A; Domínguez, F; Loidi, L; Buceta, M; Carneiro, C; Garcia-Caballero, T; Sanchez-Salorio, M

    1998-05-01

    The purpose of this work was to investigate if MYC-dependent intracellular mitogenic pathway is active in cultures of human retinal pigment epithelial (hRPE) cells and whether myc antisense phosphorotioate oligonucleotides (c-myc-AS-ODN) are useful tools for inhibiting the proliferation of hRPE cells. Cultures of hRPE cells were established from adult human corneal donors. These cells were positively stained for cytokeratins and vimentin. Myc mRNA expression was determined by Northern blot analysis and it was determined by means of immunofluorescence if MYC was expressed. C-myc-AS-ODN effect on cell proliferation was estimated by evaluating the incorporation of 5-bromo-2'-deoxy-uridine into cellular DNA. Cell number was estimated by using a tetrazolium bromide based colorimetric method. Human RPE cells in culture expressed MYC and myc mRNA as well as prothymosin alpha mRNA--a gene whose transcription is under MYC control--indicating that MYC-dependent intracellular mitogenic pathway is active in these cells. In accordance with this, we found that blocking the expression of myc by the addition of c-myc-AS-ODN to the culture medium inhibited hRPE cell proliferation. The effect of the c-myc-AS-ODN was found to be sequence specific (the use of a control oligonucleotide with the same sequence but in an opposite direction had no effect) and dose-dependent (4 microM was the lowest effective dose tested). By using RT-PCR we found that the c-myc-AS-ODN inhibition of cell proliferation was related to a diminution in c-myc mRNA expression, and by immunofluorescence we detected a diminution in c-MYC protein staining in RPE cells after 48 hr of treatment with c-myc-AS-ODN. Furthermore, growth inhibition remained for at least 5 days after addition of a single dose of the c-myc-AS-ODN to the culture. We conclude that hRPE cell proliferation is under MYC control. Blocking the expression of myc by c-myc-AS-ODN inhibited hRPE cell proliferation. These findings establish a rationale

  2. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    PubMed

    Wavre-Shapton, Silène T; Tolmachova, Tanya; Lopes da Silva, Mafalda; da Silva, Mafalda Lopes; Futter, Clare E; Seabra, Miguel C

    2013-01-01

    The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox), Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox), Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  3. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy

    PubMed Central

    Simó, Rafael; Villarroel, Marta; Corraliza, Lídia; Hernández, Cristina; Garcia-Ramírez, Marta

    2010-01-01

    The retinal pigment epithelium (RPE) is an specialized epithelium lying in the interface between the neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB). The main functions of the RPE are the following: (1) transport of nutrients, ions, and water, (2) absorption of light and protection against photooxidation, (3) reisomerization of all-trans-retinal into 11-cis-retinal, which is crucial for the visual cycle, (4) phagocytosis of shed photoreceptor membranes, and (5) secretion of essential factors for the structural integrity of the retina. An overview of these functions will be given. Most of the research on the physiopathology of diabetic retinopathy has been focused on the impairment of the neuroretina and the breakdown of the inner BRB. By contrast, the effects of diabetes on the RPE and in particular on its secretory activity have received less attention. In this regard, new therapeutic strategies addressed to modulating RPE impairment are warranted. PMID:20182540

  4. Pattern of inner retinal layers involvement in pigmented paravenous retinochoroidal atrophy as determined by SD-OCT: case report.

    PubMed

    Junqueira, Daniela Laura Melo; Lopes, Flavio Siqueira Santos; Biteli, Luís Gustavo; Prata, Tiago Santos

    2013-01-01

    Pigmented paravenous retinochoroidal atrophy is an ocular disease characterized by outer retina and choroidal atrophy often with overlying intraretinal bone spicule pigment deposition along the retinal veins. As a rare condition, there is scant information in the literature regarding the pattern of inner retinal layers involvement. We present a case of a 41-year-old white man initially referred for a glaucoma evaluation. Fundoscopy revealed patches of retinochoroidal atrophy and light pigmentation extending from the optic nerve head along the inferior-temporal retinal veins in both eyes. Using different spectral-domain optical coherence tomography (SD-OCT) protocols we identified a significant thinning of the inner retinal layers along the inferior-temporal veins, but with a lucid interval surrounding the optic nerve head. Standard automated perimetry revealed a superior absolute arcuate scotoma sparing the central fixation (good structure-functional correlation). This pattern of inner retinal layers involvement was not previously described. We believe SD-OCT added significantly to the anatomical description of this case. Physicians should consider these new anatomical findings and correlate them with functional status while assessing these patients.

  5. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin; Kannan, Rangaramanujam M.

    2015-02-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE

  6. JAM-C maintains VEGR2 expression to promote retinal pigment epithelium cell survival under oxidative stress.

    PubMed

    Jia, Xin; Zhao, Chen; Chen, Qishan; Du, Yuxiang; Huang, Lijuan; Ye, Zhimin; Ren, Xiangrong; Wang, Shasha; Lee, Chunsik; Tang, Zhongshu; Li, Xuri; Ju, Rong

    2017-04-03

    Junctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.

  7. Cell Models to Study Regulation of Cell Transformation in Pathologies of Retinal Pigment Epithelium

    PubMed Central

    Kuznetsova, Alla V.; Aleksandrova, Maria A.

    2014-01-01

    The retinal pigment epithelium (RPE) plays a key role in the development of many eye diseases leading to visual impairment and even blindness. Cell culture models of pathological changes in the RPE make it possible to study factors responsible for these changes and signaling pathways coordinating cellular and molecular mechanisms of cell interactions under pathological conditions. Moreover, they give an opportunity to reveal target cells and develop effective specific treatment for degenerative and dystrophic diseases of the retina. In this review, data are presented on RPE cell sources for culture models, approaches to RPE cell culturing, phenotypic changes of RPE cells in vitro, the role of signal pathways, and possibilities for their regulation in pathological processes. PMID:25177495

  8. The effect of retinal pigment epithelial cell patch size on growth factor expression

    SciTech Connect

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; Retterer, Scott T.; Collier, Charles Patrick

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function that occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.

  9. Retinal pigment epithelium development, plasticity, and tissue homeostasis (Invited review for Experimental Eye Research)

    PubMed Central

    Fuhrmann, Sabine; Zou, ChangJiang; Levine, Edward M.

    2014-01-01

    The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation. PMID:24060344

  10. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells.

    PubMed

    Ruiz-Loredo, Ariadna Yolanda; López-Colomé, Ana María

    2012-01-01

    The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.

  11. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function

    PubMed Central

    Marneros, Alexander G; Keene, Douglas R; Hansen, Uwe; Fukai, Naomi; Moulton, Karen; Goletz, Patrice L; Moiseyev, Gennadiy; Pawlyk, Basil S; Halfter, Willi; Dong, Sucai; Shibata, Masao; Li, Tiansen; Crouch, Rosalie K; Bruckner, Peter; Olsen, Bjorn R

    2004-01-01

    Age-related macular degeneration (ARMD) with abnormal deposit formation under the retinal pigment epithelium (RPE) is the major cause of blindness in the Western world. basal laminar deposits are found in early ARMD and are composed of excess basement membrane material produced by the RPE. Here, we demonstrate that mice lacking the basement membrane component collagen XVIII/endostatin have massive accumulation of sub-RPE deposits with striking similarities to basal laminar deposits, abnormal RPE, and age-dependent loss of vision. The progressive attenuation of visual function results from decreased retinal rhodopsin content as a consequence of abnormal vitamin A metabolism in the RPE. In addition, aged mutant mice show photoreceptor abnormalities and increased expression of glial fibrillary acidic protein in the neural retina. Our data demonstrate that collagen XVIII/endostatin is essential for RPE function, and suggest an important role of this collagen in Bruch's membrane. Consistent with such a role, the ultrastructural organization of collagen XVIII/endostatin in basement membranes, including Bruch's membrane, shows that it is part of basement membrane molecular networks. PMID:14685281

  12. Spermidine Oxidation-Mediated Degeneration of Retinal Pigment Epithelium in Rats

    PubMed Central

    Kageyama, Masaaki; Shinomiya, Katsuhiko; Fujita-Koyama, Yukie; Hirai, Shin-ichiro; Katsuta, Osamu; Nakamura, Masatsugu

    2017-01-01

    Retinal pigment epithelium (RPE) degeneration is a crucial event in dry age-related macular degeneration and gyrate atrophy. The polyamine spermidine has been shown to induce RPE cell death in vitro. The present study aimed to establish a novel in vivo model of spermidine-induced RPE degeneration and to determine whether spermidine-induced RPE cell death involves oxidative mechanisms. In this study, spermidine caused ARPE-19 cell death in a concentration-dependent manner. This effect was prevented by removal of serum from the culture medium or treatment with amine oxidase inhibitors, N-acetylcysteine (NAC), or aldehyde dehydrogenase (ALDH). Intravitreal injection of spermidine into rats significantly increased the permeability of the blood-retinal barrier and decreased the amplitudes of scotopic electroretinogram a- and b-waves. Histological analysis revealed that spermidine induced vacuolation, atrophy, and dropout of RPE cells, leading to the disruption of photoreceptor outer segments. Simultaneous intravitreal administration of NAC and ALDH with spermidine prominently inhibited the functional and morphological changes induced by spermidine. In conclusion, this study demonstrated that the intravitreal administration of spermidine induced RPE cell dysfunction and death followed by photoreceptor degeneration in rats. These effects of spermidine are thought to be mediated by oxidative stress and a toxic aldehyde generated during spermidine oxidation. PMID:28367269

  13. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    PubMed Central

    Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.

    2013-01-01

    OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516

  14. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.

    PubMed

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F

    2015-05-19

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.

  15. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells.

    PubMed

    Said, Toihiri; Tremblay-Mercier, Jennifer; Berrougui, Hicham; Rat, Patrice; Khalil, Abdelouahed

    2013-10-01

    The aim of this study was to investigate the effect of vegetable oil enrichment of retinal pigment epithelial (RPE) cells on their biochemical and biophysical properties. For this, RPE cells were incubated with 4 different vegetables oils (olive oil, corn oil, argan oil, and camelina oil). The cytotoxicity of these vegetable oils was assessed in vivo on 8-week-old mice and in vitro by using the neutral red and YO-PRO-1 tests. Membrane fluidity was evaluated by fluorescence anisotropy using the fluorescent probe diphenylhexatriene, and membrane fatty acid composition was assessed by gas chromatography. None of the oils tested displayed cytotoxic effects. In vitro, omega-3 rich oils improved membrane fluidity by 47% compared with the control cells. The omega-3 PUFA content within membranes decreased by 38% to 55% when cells were incubated separately with olive oil, corn oil, or argan oil, and increased when cells were incubated with a mixture of those oils, or with camelina oil alone (50% and 103% increase, respectively). Our results show that the fatty acids in vegetable oil incorporate into retinal cells and increase the plasma membrane fluidity.

  16. The effect of retinal pigment epithelial cell patch size on growth factor expression

    DOE PAGES

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less

  17. Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf

    2007-07-01

    Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.

  18. Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium.

    PubMed

    Tsuboi, S

    1987-11-01

    The isolated dog retinal pigment epithelium (RPE)-choroid was gently stretched on the inner surface of a spherical stainless mesh, retinal side upward, and clamped between half-chambers made of Kel-F. The volume flow across the tissue was monitored by the movement of water in capillary tubes connected to both chambers. With zero pressure difference across the RPE-choroid, retina-to-choroid fluid flow was determined to be 6.4 microliters/hr/cm2 (absorption). Removal of HCO-3 from the solution did not affect the fluid flow. However, the flow was reduced 88% in Cl- -free medium, indicating a coupling between water and Cl- absorption. The flow was also inhibited by ouabain (10(-5) M) and furosemide (10(-4) M). Hydraulic conductivity (Lp) of the RPE-choroid was determined to be 0.0126 microliters/min/cm2/mm Hg which places the dog RPE-choroid in the category of a "leaky" epithelium.

  19. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells

    PubMed Central

    Kambhampati, Siva P.; Mishra, Manoj K.; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A.; Kannan, Rangaramanujam M.

    2016-01-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (~21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ~100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  20. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells†

    PubMed Central

    Mastorakos, Panagiotis; Kambhampati, Siva P.; Mishra, Manoj K.; Wu, Tony; Song, Eric; Hanes, Justin

    2016-01-01

    Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform. PMID:25213606

  1. Phototoxicity and cytotoxicity of fullerol in human retinal pigment epithelial cells

    SciTech Connect

    Wielgus, Albert R.; Zhao, Baozhong; Chignell, Colin F.; Hu, Dan-Ning; Roberts, Joan E.

    2010-01-01

    The water-soluble nanoparticle hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have previously found that fullerol is both cytotoxic and phototoxic to human lens epithelial cells (HLE B-3) and that the endogenous antioxidant lutein blocked some of this phototoxicity. In the present study we have found that fullerol induces cytotoxic and phototoxic damage to human retinal pigment epithelial cells. Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm, and cell viability, cell metabolism and membrane permeability were estimated using trypan blue, MTS and LDH assays, respectively. Fullerol was cytotoxic toward hRPE cells maintained in the dark at concentrations higher than 10 muM. Exposure to an 8.5 J.cm{sup -2} dose of visible light in the presence of > 5 muM fullerol induced TBARS formation and early apoptosis, indicating phototoxic damage in the form of lipid peroxidation. Pretreatment with 10 and 20 muM lutein offered some protection against fullerol photodamage. Using time resolved photophysical techniques, we have now confirmed that fullerol produces singlet oxygen with a quantum yield of PHI = 0.05 in D{sub 2}O and with a range of 0.002-0.139 in various solvents. As our previous studies have shown that fullerol also produces superoxide in the presence of light, retinal phototoxic damage may occur through both type I (free radical) and type II (singlet oxygen) mechanisms. In conclusion, ocular exposure to fullerol, particularly in the presence of sunlight, may lead to retinal damage.

  2. Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium.

    PubMed

    Chaum, Edward; Winborn, Christina S; Bhattacharya, Sujoy

    2015-06-01

    The tumor suppressor p53 is a major regulator of genes important for cell cycle arrest, senescence, apoptosis, and innate immunity, and has recently been implicated in retinal aging. In this study we sought to identify the genetic networks that regulate p53 function in the retina using quantitative trait locus (QTL) analysis. First we examined age-associated changes in the activation and expression levels of p53; known p53 target proteins and markers of innate immune system activation in primary retinal pigment epithelial (RPE) cells that were harvested from young and aged human donors. We observed increased expression of p53, activated caspase-1, CDKN1A, CDKN2A (p16INK4a), TLR4, and IFNα in aged primary RPE cell lines. We used the Hamilton Eye Institute (HEI) retinal dataset ( www.genenetwork.org ) to identify genomic loci that modulate expression of genes in the p53 pathway in recombinant inbred BXD mouse strains using a QTL systems biology-based approach. We identified a significant trans-QTL on chromosome 1 (region 172-177 Mb) that regulates the expression of Cdkn1a. Many of the genes in this QTL locus are involved in innate immune responses, including Fc receptors, interferon-inducible family genes, and formin 2. Importantly, we found an age-related increase in FCGR3A and FMN2 and a decrease in IFI16 levels in RPE cultures. There is a complex multigenic innate immunity locus that controls expression of genes in the p53 pathway in the RPE, which may play an important role in modulating age-related changes in the retina.

  3. The influence of substrate elastic modulus on retinal pigment epithelial cell phagocytosis.

    PubMed

    Boochoon, Kieran S; Manarang, Joseph C; Davis, Joshua T; McDermott, Alison M; Foster, William J

    2014-09-22

    To better understand if a complex process such as phagocytosis is influenced by substrate stiffness, we investigated the influence of substrate elastic modulus on phagocytosis in the retinal pigment epithelial (RPE) cell line ARPE-19. RPE cells lie on Bruch's membrane, directly under the retina, and phagocytose the shed photoreceptor outer segments. Bruch's membrane is known to increase in stiffness by an order of magnitude with age and thus, this study has potential relevance in explaining retinal changes in age-related macular degeneration. ARPE-19 cells were plated on laminin-coated polyacrylamide substrates of varying elastic modulus. After 14 days in culture, a solution of latex fluorescent beads suspended in PBS was placed in each well. After an incubation time of 4h, flow cytometry was performed to determine the number of cells that phagocytosed a bead. The number of ARPE-19 cells that phagocytosed a bead decreased continuously as a function of increasing substrate elastic modulus (p=0.0135), and this was found to be a linear relationship (slope=-0.03305 ± 0.01104, R2=0.4726 per 10,000 cells). Our results suggest that RPE cells display decreased phagocytosis when grown on firmer substrates, and thus, RPE cells in older eyes, in which Bruch's membrane is stiffer, may demonstrate decreased phagocytosis. Impaired phagocytosis by RPE cells may contribute to impaired metabolism of photoreceptor outer segments and to development of macular degeneration. Material stiffness may be a critical parameter in the development of neural therapies, including retinal prosthetics and stem cell therapies.

  4. AGEs Promote Oxidative Stress and Induce Apoptosis in Retinal Pigmented Epithelium Cells RAGE-dependently.

    PubMed

    Wang, Xin-Ling; Yu, Tao; Yan, Qi-Chang; Wang, Wei; Meng, Nan; Li, Xue-Jiao; Luo, Ya-Hong

    2015-06-01

    Advanced glycation end products (AGEs) are extremely accumulated in diabetes mellitus, particularly in retinal vascular and epithelium cells, and are confirmed to contribute to diabetic retinopathy (DR). In the present study, we determined the promotion by AGEs to the oxidative stress and mitochondrial dysfunction in retinal pigmented epithelium ARPE-19 cells and investigated the influence by the knockdown or the overexpression of receptor for AGEs (RAGE) on the AGE-promoted oxidative stress and mitochondrial dysfunction. Furthermore, we determined the induction by AGEs to the cell apoptosis and to the activation of B-cell lymphoma 2 (Bcl-2) families in the AGE-BSA-induced apoptosis, and examined the RAGE-dependence in such induction. Results demonstrated that AGE-BSA upregulated the hydrogen peroxide production and induced mitochondrial dysfunction in ARPE-19 cells, dose-dependently. And the further investigation indicated that the AGE-RAGE interaction was required for the induction of oxidative stress and mitochondrial dysfunction. Moreover, the AGE-BSA treatment promoted a significantly high level of apoptotic cells, and the Bcl-2 family was implicated in the AGE-BSA-induced apoptosis, there was a significant high level of Cyt c release, Bcl-2-associated X protein (Bax) induction, Bcl-2 reduction, and caspase 9 activation in the AGE-BSA-treated cells. In conclusion, the present study recognized the apoptosis induction by AGE-BSAs in the retinal epithelium ARPE-19 cells, RAGE-dependently. The mitochondrial dysfunction was induced, and the Bcl-2 family was deregulated during the AGE-BSA-induced ARPE-19 cell apoptosis.

  5. Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration.

    PubMed

    Katz, Martin L

    2002-01-01

    Age-related macular degeneration (AMD) is a leading cause of severe visual impairment in developed countries. The vision loss associated with AMD is the result of degenerative changes in the central region of the retina called the macula. Maintenance of normal structure and function of the macular retina, and of the remainder of the retina as well, is critically dependent on the supporting role of the adjacent retinal pigment epithelium (RPE). Impairment of normal RPE functions is known to result in retinal degeneration and loss of visual function. Thus, it has been hypothesized that the retinal degeneration that characterizes AMD is secondary to age-related deterioration in RPE support functions. Like many other postmitotic cell types, the RPE accumulates autofluorescent lysosomal storage bodies (lipofuscin) during senescence. In human eyes, lipofuscin comes to occupy a substantial fraction of the RPE cytoplasmic volume in the elderly. Does this lipofuscin accumulation contribute to the development of AMD? This question is a specific case of the broader question of whether lipofuscin accumulation in general is detrimental to cells. Unfortunately, definitive data do not exist to allow these questions to be answered. Although a correlation between RPE lipofuscin content and AMD has been reported, a cause-and-effect relationship between RPE lipofuscin accumulation and the development of this disease has not been established. It has been reported that a mutation in a gene encoding a photoreceptor-specific protein results in massive RPE lipofuscin accumulation and early-onset macular degeneration. However, again the accelerated RPE lipofuscin accumulation has not been shown to be the cause of the accompanying macular degeneration. The lack of a definitive link between RPE lipofuscin accumulation and AMD illustrates one of the biggest challenges remaining in lipofuscin research-determining whether lipofuscin accumulation per se has an impact on cell function.

  6. Light-Evoked Responses of the Retinal Pigment Epithelium: Changes Accompanying Photoreceptor Loss in the Mouse

    PubMed Central

    Sturgill, Gwen M.; Grossman, Gregory H.; Rayborn, Mary E.; Hollyfield, Joe G.; Peachey, Neal S.

    2010-01-01

    Mutations in genes expressed in the retinal pigment epithelium (RPE) underlie a number of human inherited retinal disorders that manifest with photoreceptor degeneration. Because light-evoked responses of the RPE are generated secondary to rod photoreceptor activity, RPE response reductions observed in human patients or animal models may simply reflect decreased photoreceptor input. The purpose of this study was to define how the electrophysiological characteristics of the RPE change when the complement of rod photoreceptors is decreased. To measure RPE function, we used an electroretinogram (dc-ERG)-based technique. We studied a slowly progressive mouse model of photoreceptor degeneration (PrphRd2/+), which was crossed onto a Nyxnob background to eliminate the b-wave and most other postreceptoral ERG components. On this background, PrphRd2/+ mice display characteristic reductions in a-wave amplitude, which parallel those in slow PIII amplitude and the loss of rod photoreceptors. At 2 and 4 mo of age, the amplitude of each dc-ERG component (c-wave, fast oscillation, light peak, and off response) was larger in PrphRd2/+ mice than predicted by rod photoreceptor activity (RmP3) or anatomical analysis. At 4 mo of age, the RPE in PrphRd2/+ mice showed several structural abnormalities including vacuoles and swollen, hypertrophic cells. These data demonstrate that insights into RPE function can be gained despite a loss of photoreceptors and structural changes in RPE cells and, moreover, that RPE function can be evaluated in a broader range of mouse models of human retinal disease. PMID:20484527

  7. The Influence of Substrate Elastic Modulus on Retinal Pigment Epithelial Cell Phagocytosis

    PubMed Central

    Boochoon, Kieran S.; Manarang, Joseph C.; Davis, Joshua T.; McDermott, Alison M.; Foster, William J.

    2014-01-01

    To better understand if a complex process such as phagocytosis is influenced by substrate stiffness, we investigated the influence of substrate elastic modulus on phagocytosis in the retinal pigment epithelial (RPE) cell line ARPE-19. RPE cells lie on Bruch’s membrane, directly under the retina, and phagocytose the shed photoreceptor outer segments. Bruch’s membrane is known to increase in stiffness by an order of magnitude with age and thus, this study has potential relevance in explaining retinal changes in age-related macular degeneration. ARPE-19 cells were plated on laminin-coated polyacrylamide substrates of varying elastic modulus. After 14 days in culture, a solution of latex fluorescent beads suspended in PBS was placed in each well. After an incubation time of 4 hours, flow cytometry was performed to determine the number of cells that phagocytosed a bead. The number of ARPE-19 cells that phagocytosed a bead decreased continuously as a function of increasing substrate elastic modulus (p=0.0135), and this was found to be a linear relationship (slope=−0.03305 ± 0.01104, R2 =0.4726 per 10,000 cells). Our results suggest that RPE cells display decreased phagocytosis when grown on firmer substrates, and thus, RPE cells in older eyes, in which Bruch’s membrane is stiffer, may demonstrate decreased phagocytosis. Impaired phagocytosis by RPE cells may contribute to impaired metabolism of photoreceptor outer segments and to development of macular degeneration. Material stiffness may be a critical parameter in the development of neural therapies, including retinal prosthetics and stem cell therapies. PMID:25016484

  8. Differentiation of Lens Tissue from the Progeny of Chick Retinal Pigment Cells Cultured In Vitro: A Demonstration of a Switch of Cell Types in Clonal Cell Culture

    PubMed Central

    Eguchi, Goro; Okada, T. S.

    1973-01-01

    Clonal cell lines isolated from the pigmented retina of 8.5-day chick embryos initially retained the capacity to form pigment. After several passages, however, many cells lost pigment granules and differentiated into lens-like structures. The lens-specific nature of the structures formed in cultures originally derived from retinal pigment cells was established by both ultrastructural and immunological studies. Images PMID:4576021

  9. Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E

    PubMed Central

    Saadat, Khandakar A.S.M.; Murakami, Yusuke; Tan, Xue; Nomura, Yoko; Yasukawa, Tsutomu; Okada, Eiichi; Ikeda, Yasuhiro; Yanagi, Yasuo

    2014-01-01

    In this study, we show augmented autophagy in the retinal pigment epithelial cell line ARPE-19 when cultured in the presence of the lipofuscin pigment A2E. A2E alone does not induce RPE cell death, but cell death was induced in the presence of A2E with the autophagy inhibitor 3-methyladenine (3MA), with a concomitant increase in the generation of mitochondrial reactive oxygen species. On the other hand, the ATP production capacity of mitochondria was decreased in the presence of A2E, and pharmacological inhibition of autophagy had no additional effects. The altered mRNA expression level of mitochondrial function markers was confirmed by real-time polymerase chain reaction, which showed that the antioxidant enzymes SOD1 and SOD2 were not reduced in the presence of A2E alone, but significantly suppressed with the addition of 3MA. Furthermore, transmission electron micrography revealed autophagic vacuole formation in the presence of A2E, and inhibition of autophagy resulted in the accumulation of abnormal mitochondria with loss of cristae. Spheroid culture of human RPE cells demonstrated debris accumulation in the presence of A2E, and this accumulation was accelerated in the presence of 3MA. These results indicate that autophagy in RPE cells is a vital cytoprotective process that prevents the accumulation of damaged cellular molecules. PMID:25473597

  10. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo.

    PubMed

    Fontaine, Valérie; Monteiro, Elodie; Brazhnikova, Elena; Lesage, Laëtitia; Balducci, Christine; Guibout, Louis; Feraille, Laurence; Elena, Pierre-Paul; Sahel, José-Alain; Veillet, Stanislas; Lafont, René

    2016-01-01

    The accumulation of N-retinylidene-N-retinylethanolamine (A2E, a toxic by-product of the visual pigment cycle) in the retinal pigment epithelium (RPE) is a major cause of visual impairment in the elderly. Photooxidation of A2E results in retinal pigment epithelium degeneration followed by that of associated photoreceptors. Present treatments rely on nutrient supplementation with antioxidants. 9'-cis-Norbixin (a natural diapocarotenoid, 97% purity) was prepared from Bixa orellana seeds. It was first evaluated in primary cultures of porcine retinal pigment epithelium cells challenged with A2E and illuminated with blue light, and it provided an improved photo-protection as compared with lutein or zeaxanthin. In Abca4-/- Rdh8-/- mice (a model of dry AMD), intravitreally-injected norbixin maintained the electroretinogram and protected photoreceptors against light damage. In a standard rat blue-light model of photodamage, norbixin was at least equally as active as phenyl-N-tert-butylnitrone, a free radical spin-trap. Chronic experiments performed with Abca4-/- Rdh8-/- mice treated orally for 3 months with norbixin showed a reduced A2E accumulation in the retina. Norbixin appears promising for developing an oral treatment of macular degeneration. A drug candidate (BIO201) with 9'-cis-norbixin as the active principle ingredient is under development, and its potential will be assessed in a forthcoming clinical trial.

  11. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo

    PubMed Central

    Monteiro, Elodie; Brazhnikova, Elena; Lesage, Laëtitia; Balducci, Christine; Guibout, Louis; Feraille, Laurence; Elena, Pierre-Paul; Sahel, José-Alain; Veillet, Stanislas; Lafont, René

    2016-01-01

    The accumulation of N-retinylidene-N-retinylethanolamine (A2E, a toxic by-product of the visual pigment cycle) in the retinal pigment epithelium (RPE) is a major cause of visual impairment in the elderly. Photooxidation of A2E results in retinal pigment epithelium degeneration followed by that of associated photoreceptors. Present treatments rely on nutrient supplementation with antioxidants. 9’-cis-Norbixin (a natural diapocarotenoid, 97% purity) was prepared from Bixa orellana seeds. It was first evaluated in primary cultures of porcine retinal pigment epithelium cells challenged with A2E and illuminated with blue light, and it provided an improved photo-protection as compared with lutein or zeaxanthin. In Abca4-/- Rdh8-/- mice (a model of dry AMD), intravitreally-injected norbixin maintained the electroretinogram and protected photoreceptors against light damage. In a standard rat blue-light model of photodamage, norbixin was at least equally as active as phenyl-N-tert-butylnitrone, a free radical spin-trap. Chronic experiments performed with Abca4-/- Rdh8-/- mice treated orally for 3 months with norbixin showed a reduced A2E accumulation in the retina. Norbixin appears promising for developing an oral treatment of macular degeneration. A drug candidate (BIO201) with 9’-cis-norbixin as the active principle ingredient is under development, and its potential will be assessed in a forthcoming clinical trial. PMID:27992460

  12. Retbindin is an extracellular riboflavin-binding protein found at the photoreceptor/retinal pigment epithelium interface.

    PubMed

    Kelley, Ryan A; Al-Ubaidi, Muayyad R; Naash, Muna I

    2015-02-20

    Retbindin is a novel retina-specific protein of unknown function. In this study, we have used various approaches to evaluate protein expression, localization, biochemical properties, and function. We find that retbindin is secreted by the rod photoreceptors into the inter-photoreceptor matrix where it is maintained via electrostatic forces. Retbindin is predominantly localized at the interface between photoreceptors and retinal pigment epithelium microvilli, a region critical for retinal function and homeostasis. Interestingly, although it is associated with photoreceptor outer segments, retbindin's expression is not dependent on their presence. In vitro, retbindin is capable of binding riboflavin, thus implicating the protein as a metabolite carrier between the retina and the retinal pigment epithelium. Altogether, our data show that retbindin is a novel photoreceptor-specific protein with a unique localization and function. We hypothesize that retbindin is an excellent candidate for binding retinal flavins and possibly participating in their transport from the extracellular space to the photoreceptors. Further investigations are warranted to determine the exact function of retbindin in retinal homeostasis and disease.

  13. Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    PubMed Central

    Szober, Christoph M.; Hauck, Stefanie M.; Euler, Kerstin N.; Fröhlich, Kristina J. H.; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A.

    2012-01-01

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies. PMID:23203049

  14. Immunological crossreactivity between a cloned antigen of Onchocerca volvulus and a component of the retinal pigment epithelium

    PubMed Central

    1991-01-01

    Onchocerciasis (river blindness) is a major blinding disease in Africa, Central America, and South America. Loss of vision can be due to corneal change, optic atrophy, or chorioretinal disease. It has been suggested that autoimmunological reactions resulting from crossreactivity between parasite antigens and components of eye tissues contribute to development of ocular pathology. Using sera collected from onchocerciasis patients as a screening reagent, a cDNA clone (Ov39) has been isolated from a lambda gt11 expression library of Onchocerca volvulus. This antigen exhibits immunological crossreactivity with a component of retinal pigment epithelium cells (RPE). Antiserum raised against this recombinant peptide immunoprecipitates a 22,000 Mr antigen of adult O. volvulus and recognizes a 44,000 Mr component of bovine RPE by Western blotting. A 44,000 Mr antigen of cultured human RPE metabolically labeled with 35S- methionine can be immunoprecipitated with the same antiserum. An antigen of the same size is recognized by a rabbit antiserum raised against whole O. volvulus extract. Immunocytochemical studies on cryostat sections of the bovine eye using the antirecombinant sera localizes this antigen to the RPE. PMID:2056276

  15. Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase.

    PubMed Central

    Elner, Susan G

    2002-01-01

    PURPOSE: To show (1) human retinal pigment epithelial (HRPE) expression of functional urokinase plasminogen activator receptor (uPAR; CD87), (2) HRPE secretion of collagenase and elastase, (3) uPAR-dependent HRPE migration, and (4) uPAR expression in diseased human retinal tissue. METHODS: Immunohistochemistry for uPAR was performed on cultured HRPE cells and in sections of human retina. Double-immunofluorescent staining of live human RPE cells with anti-CR3 antibody (CD11b) was performed to demonstrate the physical proximity of this beta 2 integrin with uPAR and determine whether associations were dependent on RPE confluence and polarity. Extracellular proteolysis by HRPE uPAR was evaluated using fluorescent bodipy-BSA and assessed for specificity by plasminogen activator inhibitor-1 (PAI-1) inhibition. The effect of interleukin-1 beta (IL-1 beta) on uPAR expression was assessed. Collagenase and elastase secretion by unstimulated and IL-1-stimulated HRPE cells was measured by 3H-labelled collagen and elastin cleavage. HRPE-associated collagenase was also assessed by cleavage of fluorescent DQ-collagen and inhibited by phenanthroline. Using an extracellular matrix assay, the roles of uPAR and collagenase in HRPE migration were assessed. RESULTS: Immunoreactive uPAR was detected on cultured HRPE cells and increased by IL-1. On elongated, live HRPE cells, uPAR dissociated from CD11b (CR3) and translocated to anterior poles of migrating cells. Extracellular proteolysis was concentrated at sites of uPAR expression and specifically inhibited by PAI-1. Cultured HRPE cells secreted substantial, functional collagenase and elastase. IL-1 upregulated uPAR, collagenase, and elastase activities. Specific inhibition of uPAR, and to a lesser degree collagenase, reduced HRPE migration in matrix/gel assays. Immunoreactive uPAR was present along the HRPE basolateral membrane in retinal sections and in sections of diseased retinal tissue. CONCLUSIONS: HRPE cells express functional u

  16. Enhanced Retinal Pigment Epithelium Regeneration After Injury in MRL/MpJ Mice

    PubMed Central

    Xia, Huiming; Krebs, Mark P.; Kaushal, Shalesh; Scott, Edward W.

    2011-01-01

    Regenerative medicine holds the promise of restoring cells and tissues that are destroyed in human disease, including degenerative eye disorders. However, development of this approach in the eye has been limited by a lack of animal models that show robust regeneration of ocular tissue. Here, we test whether MRL/MpJ mice, which exhibit enhanced wound healing, can efficiently regenerate the retinal pigment epithelium (RPE) after an injury that mimics the loss of this tissue in age-related macular degeneration. The RPE of MRL/MpJ and control AKR/J mice was injured by retro-orbital injection of sodium iodate at 20 mg/kg body weight, which titration studies indicated was optimal for highlighting strain differences in the response to injury. Five days after sodium iodate injection at this dose, electroretinography of both strains revealed equivalent retinal responses that were significantly reduced compared to untreated mice. At one and two months post-injection, retinal responses were restored in MRL/MpJ but not AKR/J mice. Brightfield and fluorescence microscopy of eyecup cryosections indicated an initial central loss of RPE cells and RPE65 immunostaining in MRL/MpJ and AKR/J mice, with preservation of peripheral RPE. Phalloidin staining of posterior eye wholemounts confirmed this pattern of RPE loss, and revealed a transition region characterized by RPE cell shedding and restructuring in both strains, suggesting a similar initial response to injury. At one month post-injection, central RPE cells, RPE65 immunostaining and phalloidin staining were restored in MRL/MpJ but not AKR/J mice. BrdU incorporation was observed throughout the RPE of MRL/MpJ but not AKR/J mice after one month of administration following sodium iodate treatment, consistent with RPE proliferation. These findings provide evidence for a dramatic regeneration of the RPE after injury in MRL/MpJ mice that supports full recovery of retinal function, which has not been observed previously in mammalian eyes

  17. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  18. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat.

    PubMed

    Duisit, Ghislaine; Conrath, Hervé; Saleun, Sylvie; Folliot, Sebastien; Provost, Nathalie; Cosset, François-Loïc; Sandrin, Virginie; Moullier, Philippe; Rolling, Fabienne

    2002-10-01

    The purpose of our study was to evaluate lentiviral vector-mediated rat retinal transduction using simian immunodeficiency virus (SIV) pseudotyped with envelope proteins from vesicular stomatitis virus G glycoprotein (VSV-G), Mokola virus G protein (MK-G), amphotropic murine leukemia virus envelope (4070A-Env), influenza A virus hemagglutinin (HA), lymphocytic choriomeningitis virus G protein (LCMV-G), and RD114 retrovirus envelope (RD114-Env). The six pseudotyped lentivirus vectors carried CMV-driven green fluorescent protein (GFP) or beta-galactosidase (beta-gal) reporter genes. Intravitreal and subretinal injections of each pseudotyped recombinant SIV were performed in cohorts of Wistar rats. Our results showed that no transgene expression was detected after intravitreal injection of each pseudotyped SIV vector. Also, no transduction could be detected following subretinal injection of RD114 pseudotyped SIV vectors. However, selective transduction of retinal pigment epithelium (RPE) cells was repeatedly obtained after subretinal delivery of VSV-G, MK-G, 4070A-Env, HA, and LCMV-G pseudotyped SIV. GFP expression was maximum as soon as 4 days postadministration for VSV-G, MK-G, 4070A-Env, and HA pseudotypes, with no evidence of pseudotransduction for VSV-G. Maximum transgene expression was observed 3 weeks postinjection for LCMV-6. Importantly, HA and VSV-G pseudotyped SIV lead to such a high level of transgene expression that GFP-related toxicity occurred. Therefore, when a high level of GFP synthesis is achieved, replacement of enhanced GFP (egfp, Aequorea victoria) by a low-toxicity GFP (Renilla reniformis) cDNA is necessary to allow long-term expression.

  19. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    SciTech Connect

    Bridges, Christy C. . E-mail: bridges_cc@mercer.edu; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-06-01

    Inorganic mercury (Hg{sup 2+}) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg{sup 2+} exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg{sup 2+} to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg{sup 2+}, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg{sup 2+} utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg{sup 2+}, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg{sup 2+}: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na{sup +}-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B{sup 0,+} and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B{sup 0,+} and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.

  20. The human fetal retinal pigment epithelium: A target tissue for thyroid hormones.

    PubMed

    Duncan, K G; Bailey, K R; Baxter, J D; Schwartz, D M

    1999-01-01

    Thyroid hormone (T(3)) has previously been shown to regulate visual function in experimental animals and humans. To determine if T(3) exerts direct effects on retinal function, cultured human fetal retinal pigment epithelial (RPE) cells were tested for the presence of thyroid hormone receptors (TRs) and T(3) responses. Using TR-isoform-specific reverse-transcriptase polymerase chain reaction techniques, mRNA was detected for alpha1, alpha2 and beta1 TR isoforms. Immunohistochemistry using a polyclonal antibody that simultaneously recognizes alpha1, alpha2 and beta1 TRs showed nuclear staining of the fetal RPE. Specific binding of (125)I-T(3) to RPE cell nuclear extracts was detected, and Scatchard analysis revealed a K(d) of 110 pM. To determine if RPE cells can respond to T(3), hyaluronic acid (HA) levels in cell culture media were measured after 2, 4 or 6 days of growth in medium containing 10(-7) M T(3). T(3) inhibited accumulation of HA in the cell culture medium of RPE cells. This effect was not evident at 2 days, but at 4 days there was 42.8% less HA in cell culture medium of RPE cells grown in 10(-7) M T(3) (p < 0.01, t test). The effect persisted through 6 days, when there was 46.3% less HA in cell culture medium of RPE cells grown in 10(-7) M T(3) (p < 0.001, t test). The data indicate that human fetal RPE cells are a direct target for thyroid hormones.

  1. Trichostatin A Inhibits Retinal Pigmented Epithelium Activation in an In Vitro Model of Proliferative Vitreoretinopathy

    PubMed Central

    Greene, Whitney A.; Burke, Teresa A.; Wang, Heuy-Ching

    2016-01-01

    Abstract Purpose: Proliferative vitreoretinopathy (PVR) is a blinding disorder that develops after a retinal tear or detachment. Activation of the retinal pigmented epithelium (RPE) is implicated in PVR; however, the mechanisms leading to enhanced RPE proliferation, migration, and contraction remain largely unknown. This study utilized an in vitro model of PVR to investigate the role of acetylation in RPE activation and its contribution to the progression of this disease. Methods: ARPE-19 cells, primary cultures of porcine RPE, and induced pluripotent stem cell-derived RPE (iPS-RPE) were utilized for cellular and molecular analyses. Cells treated with transforming growth factor beta 2 (TGFβ2; 10 ng/mL) alone or in the presence of the broad-spectrum histone deacetylase (HDAC) inhibitor, trichostatin A (TSA; 0.1 μM), were assessed for contraction and migration through collagen contraction and scratch assays, respectively. Western blotting and immunofluorescence analysis were performed to assess α-smooth muscle actin (α-SMA) and β-catenin expression after TGFβ2 treatment alone or in combination with TSA. Results: TGFβ2 significantly increased RPE cell contraction in collagen matrix and this effect was inhibited in the presence of TSA (0.1 μM). In agreement with these data, immunofluorescence analysis of TSA-treated iPS-RPE wounded monolayers revealed decreased α-SMA as compared with control. Scratch assays to assess wound healing revealed TSA inhibited TGFβ2-mediated iPS-RPE cell migration. Conclusions: Our findings indicate a role of acetylation in RPE activation. Specifically, the HDAC inhibitor TSA decreased RPE cell proliferation and TGFβ2-mediated cell contraction and migration. Further investigation of pharmacological compounds that modulate acetylation may hold promise as therapeutic agents for PVR. PMID:27494828

  2. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium.

    PubMed

    Yao, Jingyu; Jia, Lin; Khan, Naheed; Lin, Chengmao; Mitter, Sayak K; Boulton, Michael E; Dunaief, Joshua L; Klionsky, Daniel J; Guan, Jun-Lin; Thompson, Debra A; Zacks, David N

    2015-01-01

    Autophagy regulates cellular homeostasis and response to environmental stress. Within the retinal pigment epithelium (RPE) of the eye, the level of autophagy can change with both age and disease. The purpose of this study is to determine the relationship between reduced autophagy and age-related degeneration of the RPE. The gene encoding RB1CC1/FIP200 (RB1-inducible coiled-coil 1), a protein essential for induction of autophagy, was selectively knocked out in the RPE by crossing Best1-Cre mice with mice in which the Rb1cc1 gene was flanked with Lox-P sites (Rb1cc1(flox/flox)). Ex vivo and in vivo analyses, including western blot, immunohistochemistry, transmission electron microscopy, fundus photography, optical coherence tomography, fluorescein angiography, and electroretinography were performed to assess the structure and function of the retina as a function of age. Deletion of Rb1cc1 resulted in multiple autophagy defects within the RPE including decreased conversion of LC3-I to LC3-II, accumulation of autophagy-targeted precursors, and increased numbers of mitochondria. Age-dependent degeneration of the RPE occurred, with formation of atrophic patches, subretinal migration of activated microglial cells, subRPE deposition of inflammatory and oxidatively damaged proteins, subretinal drusenoid deposits, and occasional foci of choroidal neovascularization. There was secondary loss of photoreceptors overlying the degenerated RPE and reduction in the electroretinogram. These observations are consistent with a critical role of autophagy in the maintenance of normal homeostasis in the aging RPE, and indicate that disruption of autophagy leads to retinal phenotypes associated with age-related degeneration.

  3. Upregulation of GADD45α in light-damaged retinal pigment epithelial cells

    PubMed Central

    Gao, M-L; Deng, W-L; Huang, N; Wang, Y-Y; Lei, X-L; Xu, Z-Q; Hu, D-N; Cai, J-Q; Lu, F; Jin, Z-B

    2016-01-01

    To better understand the molecular mechanisms responsible for light-induced damage in retinal pigmented epithelial (RPE) cells, we developed an automated device to recapitulate intense light exposure. When compared with human fibroblasts, ARPE-19 cells that had been exposed to blue-rich light-emitting diode-light of 10 000 Lux at 37 °C for 9 h displayed dramatic cellular apoptosis. Collectively, gene expression profiling and qPCR demonstrated that growth arrest and DNA damage-45α (GADD45α) expression was markedly upregulated. Transient knockdown of GADD45α partially attenuated light-damage-induced apoptosis in ARPE-19 cells, whereas GADD45α overexpression dramatically increased it. These results demonstrate the critical function of GADD45α in light-induced RPE cellular apoptosis. Quantitative reverse transcription-PCR and western blotting revealed that the upregulation of GADD45α was under direct control of p53. Moreover, treatment with Ly294002, an inhibitor of AKT phosphorylation, further promoted GADD45α gene transcription in both non-light and light-damaged ARPE-19 cells. Treatment also exacerbated RPE cellular apoptosis after light exposure, confirming that inhibition of Akt phosphorylation increases GADD45α expression. Collectively, our findings reveal that light irrigation induces human RPE cellular apoptosis through upregulation of GADD45α expression mediated through both the p53 and phosphatidylinositol 3-kinase-AKT signaling pathways. These results provide new insights into human retinal diseases elicited by light damage and open a new avenue for disease prevention and treatment. PMID:27551507

  4. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  5. Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study

    PubMed Central

    Roider, J.; Brinkmann, R.; Wirbelauer, C.; Laqua, H.; Birngruber, R.

    2000-01-01

    BACKGROUND—Subthreshold (retinal pigment epithelium) photocoagulation is a new photocoagulation method, which treats the retinal pigment epithelium (RPE) and avoids damage to the neural retina. The initial results in this prospective pilot study on various macular diseases are presented.
METHODS—12 patients with diabetic maculopathy (group I), 10 with soft drusen (group II), and four with central serous retinopathy (CSR) (group III) were treated and followed up for 1 year. Treatment was achieved using a train of repetitive short laser pulses (1.7 µs) of a green Nd:YLF laser (parameters: 527 nm, 100 and 500 pulses, repetition rate: 500 Hz, spot size: 160 µm, energies: 70-100 µJ). Laser energy was based on the visibility of test lesions on fluorescein angiography (50-130 µJ). Patients were examined at various times by ophthalmoscopy, fluorescein and ICG angiography, and infrared imaging.
RESULTS—After 6 months hard exudates disappeared in six out of nine patients in group I and leakage disappeared in six out of 12 diabetic patients. In group II drusen were less in seven out of 10 patients. In group III serous detachment disappeared in three out of four cases. Visual acuity was stable in all cases. None of the laser lesions was clinically visible immediately. After 1 day most lesions were visible as yellowish RPE depigmentation. After 3 months some of the lesions were visible as hyperpigmented areas but most were not. Fluorescein angiography showed leakage only in the first week. Infrared imaging showed that most lesions can be visualised in groups I and II after a period longer than 1 week as hyperreflective areas.
CONCLUSION—This study showed that subthreshold (RPE) photocoagulation is effective in some cases of diabetic maculopathy, drusens, and in CSR. Visibility of laser burns is not always necessary in the treatment of macular diseases presented here. Infrared imaging is an effective and non-invasive way of visualising

  6. Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells

    PubMed Central

    Fuma, Shinichiro; Murase, Hiromi; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu

    2015-01-01

    Purpose Photobiomodulation is the treatment with light in the far-red to near-infrared region of the spectrum and has been reported to have beneficial effects in various animal models of disease, including an age-related macular degeneration (AMD) mouse model. Previous reports have suggested that phagocytosis is reduced by age-related increased oxidative stress in AMD. Therefore, we investigated whether photobiomodulation improves phagocytosis caused by oxidative stress in the human retinal pigment epithelial (ARPE-19) cell line. Methods ARPE-19 cells and human primary retinal pigment epithelium (hRPE) cells were incubated and irradiated with near-infrared light (670 nm LED light, 2,500 lx, twice a day, 250 s/per time) for 4 d. Next, hydrogen peroxide (H2O2) and photoreceptor outer segments (POS) labeled using a pH-sensitive fluorescent dye were added to the cell culture, and phagocytosis was evaluated by measuring the fluorescence intensity. Furthermore, cell death was observed by double staining with Hoechst33342 and propidium iodide after photobiomodulation. CM-H2DCFDA, JC-1 dye, and CCK-8 were added to the cell culture to investigate the reactive oxygen species (ROS) production, mitochondrial membrane potential, and cell viability, respectively. We also investigated the expression of phagocytosis-related proteins, such as focal adhesion kinase (FAK) and Mer tyrosine kinase (MerTK). Results Oxidative stress inhibited phagocytosis, and photobiomodulation increased the oxidative stress-induced hypoactivity of phagocytosis in ARPE-19 cells and hRPE cells. Furthermore, H2O2 and photobiomodulation did not affect cell death in this experimental condition. Photobiomodulation reduced ROS production but did not affect cell viability or mitochondrial membrane potential. The expression of phosphorylated MerTK increased, but phosphorylated FAK was not affected by photobiomodulation. Conclusions These findings indicate that near-infrared light photobiomodulation (670 nm) may

  7. Effect of cytokeratin 17 on retinal pigment epithelium degeneration and choroidal neovascularization

    PubMed Central

    Shen, Yi; Zhuang, Pei; Xiao, Tao; Chiou, George CY

    2016-01-01

    AIM To study the effects of cytokeratin 17 (CK17) on sodium iodate (NaIO3) induced rat retinal pigment epithelium (RPE) degeneration, laser induced rat choroidal neovascularization (CNV), and oxidative stress of human retinal pigment epithelium cells (ARPE-19) and human umbilical vein endothelial cell (HUVEC). METHODS Thirty 8-week-old male Brown Norway rats were randomly divided into 3 groups, 10 rats in control group treated with solvent alone; 10 rats in NaIO3 group treated with solvent and 35 mg/kg NaIO3 injection through hypoglossal vein and 10 rats in CK17+NaIO3 group treated with 1% CK17 eye drop 3 times a day for 1wk before and 4wk after NaIO3 injection. RPE function was measured with c-wave of electroretinogram (ERG). Another 20 rats were randomly divided into 2 groups. Of them 10 rats in CK17 group were anesthetized to receive Nd:YAG laser and given 1% CK17 eye drop before same as above; 10 rats in control were received Nd:YAG and treated with solvent. The development of choroidal neovascularization (CNV) was determined by fundus fluorescein angiography (FFA) performed on 4wk after laser. Methylthiazoly tetrazolium (MTT) assay was used to study effect of CK17 on various oxidants induced injury in ARPE-19 and HUVEC in vitro. RESULTS Four weeks after NaIO3 injection, the c-wave amplitude of ERG was 0.393±0.02 V in the control group, 0.184±0.018 V in NaIO3 group and 0.3±0.01 V in CK17+NaIO3 group. There was a significant reversal of the c-wave by CK17 as compared to NaIO3 group (P<0.01). Four weeks after laser, the size of the CNV lesion was 2.57±0.27 mm2 in control group and 1.64±0.08 mm2 in CK17 group. The lesion size significantly diminished in CK17 group (P<0.01). The in vitro results showed CK17 also reversed the various oxidants induced injuries in ARPE-19 at the dose of 100 µg/mL and enhanced the injury in HUVECs at different concentrations. CONCLUSION CK17 can significantly protect RPE from NaIO3 induced degeneration in vivo and in vitro and

  8. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    PubMed

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  9. Transferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton.

    PubMed

    Hunt, R C; Dewey, A; Davis, A A

    1989-04-01

    Retinal pigment epithelial cells, derived from human donor eyes, have been grown in culture as monolayers on membrane filters or plastic surfaces and shown to possess transferrin receptors with a monomeric molecular mass of 93,000. These receptors internalize 125I-labelled transferrin and recycle it to the surrounding medium in a similar manner to other cell types. Scatchard analyses show that there are about 100,000 high-affinity receptors on the surface of each cell and most of these receptors are associated with the cytoskeleton. In total cell extracts, there are additional low-affinity binding sites that do not appear to be strongly associated with the cytoskeleton. The apparent interaction of transferrin receptors with the cytoskeleton was confirmed in two ways: first, using 200 kV electron microscopy for stereo analyses, skeleton-associated transferrin receptors were detected by a monoclonal anti-receptor antibody and a colloidal gold-conjugated second antibody after Triton X-100 extraction of pigment epithelial cells grown directly on laminin-coated gold grids; and, second, when cell surface receptors were labelled with radioiodinated transferrin and then incubated for various periods of time, the labelled transferrin was observed to move from a Triton X-100-insoluble fraction (a putative cytoskeletal compartment) to a Triton-soluble compartment that was not associated with the cytoskeleton. Using either horseradish peroxidase or colloidal gold-labelled transferrin, it has been shown that basolateral and apical surface-located receptors participate in receptor-mediated endocytosis via clathrin-coated pits, endosomes and tubular structures. Initially, transferrin internalized from the apical surface is observed in small endosomes that often appear to be embedded in an apical layer of microfilaments. From these peripheral regions of the cells, the labelled receptors move to larger endosomes and multivesicular bodies deeper in the cytoplasm. These structures

  10. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia

    PubMed Central

    Obry, Antoine; Santin, Mathieu D.; Ben-Yacoub, Sirine; Pâques, Michel; Amsellem-Levera, Sabine; Bribian, Ana; Simonutti, Manuel; Augustin, Sébastien; Debeir, Thomas; Sahel, José Alain; Christ, Annabel; de Castro, Fernando; Lehéricy, Stéphane; Cosette, Pascal; Kozyraki, Renata

    2015-01-01

    Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5) and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM. PMID:26107939

  11. Increased vascular density and vitreo-retinal membranes accompany vascularization of the pigment epithelium in the dystrophic rat retina.

    PubMed

    Caldwell, R B; Roque, R S; Solomon, S W

    1989-09-01

    Observations of vascularization of the retinal pigment epithelium (RPE) and formation of vitreo-retinal membranes (VRMs) in Royal College of Surgeons (RCS) rats with inherited retinal dystrophy suggest that vascular proliferation occurs in this model. To test this hypothesis, we studied the progression of vascular changes in RCS and age-matched control rats using quantitative light microscope morphometry and electron microscopy. At 2 weeks, prior to photoreceptor degeneration, the dystrophic retina is comparable with the control. By 2 months, extensive degeneration of photoreceptor cells results in significant thinning of the dystrophic retina as compared with the control. Signs of vascular degeneration are evident at the electron microscope level--"ghost" vessels consisting of acellular basal lamina surrounded by amorphous electron-dense material; degenerating endothelial cells and pericytes; and abnormal deposits of extracellular matrix (ECM) material around blood vessels. Vascular degeneration is accompanied by glial changes in the form of necrotic perivascular glial processes and abnormal ECM deposits among the altered Muller cell processes. At 2-4 months in the dystrophic retina, numbers of vessel profiles in dystrophic retinas are decreased as compared with controls. However, vascular degeneration is overshadowed by the formation of numerous capillary tufts within the RPE layer, which together with retinal thinning results in increased vessel density. Between 4-12 months, the retinal thickness diminishes further, vascularization of the RPE increases, vitreo-retinal membranes are formed, and vascular density increases. In summary, following an initial period of vascular degeneration, vascularization of the RPE is accompanied by an increase in retinal vessel density and by the formation of vitreo-retinal membranes.

  12. Protective Effect of Total Flavones from Hippophae rhamnoides L. against Visible Light-Induced Retinal Degeneration in Pigmented Rabbits.

    PubMed

    Wang, Yong; Huang, Fenghong; Zhao, Liang; Zhang, Di; Wang, Ou; Guo, Xiaoxuan; Lu, Feng; Yang, Xue; Ji, Baoping; Deng, Qianchun

    2016-01-13

    Sea buckthorn (Hippophae rhamnoides L.) flavones have been used as candidate functional food ingredients because of their bioactivities, such as treating cardiovascular disorders, lowering plasma cholesterol level, and regulating immune function. However, the protective effects of sea buckthorn flavones against retinal degeneration remain unclear to date. This study investigated the protective effects of total flavones from H. rhamnoides (TFH) against visible light-induced retinal damage and explored the related mechanisms in pigmented rabbits. Rabbits were treated with TFH (250 and 500 mg/kg) for 2 weeks pre-illumination and 1 week post-illumination until sacrifice. Retinal function was quantified by performing electroretinography 1 day before and 1, 3, and 7 days after light exposure (18000 lx for 2 h). Retinal degeneration was evaluated by measuring the thickness of the outer nuclear layer (ONL) and performing the TUNEL assay 7 days after light exposure. Enzyme-linked immunosorbent assay, Western blot analysis, and immunohistochemistry were used to explore the antioxidant, anti-inflammatory, and anti-apoptotic mechanisms of TFH during visible light-induced retinal degeneration. Light exposure produced a degenerative effect primarily on the ONL, inner nuclear layer (INL), and ganglion cell layer (GCL). TFH significantly attenuated the destruction of electroretinograms caused by light damage, maintained ONL thickness, and decreased the number of TUNEL-positive cells in the INL and GCL. TFH ameliorated the retinal oxidative stress (GSH-Px, CAT, T-AOC, and MDA), inflammation (IL-1β and IL-6), angiogenesis (VEGF), and apoptosis (Bax, Bcl2, and caspase-3) induced by light exposure. Therefore, TFH exhibited protective effects against light-induced retinal degeneration by increasing the antioxidant defense mechanisms, suppressing pro-inflammatory and angiogenic cytokines, and inhibiting retinal cell apoptosis.

  13. Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging

    PubMed Central

    Ben Ami, Tal; Tong, Yuehong; Bhuiyan, Alauddin; Huisingh, Carrie; Ablonczy, Zsolt; Ach, Thomas; Curcio, Christine A.; Smith, R. Theodore

    2016-01-01

    Purpose Discovery of candidate spectra for abundant fluorophore families in human retinal pigment epithelium (RPE) by ex vivo hyperspectral imaging. Methods Hyperspectral autofluorescence emission images were captured between 420 and 720 nm (10-nm intervals), at two excitation bands (436–460, 480–510 nm), from three locations (fovea, perifovea, near-periphery) in 20 normal RPE/Bruch's membrane (BrM) flatmounts. Mathematical factorization extracted a BrM spectrum (S0) and abundant lipofuscin/melanolipofuscin (LF/ML) spectra of RPE origin (S1, S2, S3) from each tissue. Results Smooth spectra S1 to S3, with perinuclear localization consistent with LF/ML at all three retinal locations and both excitations in 14 eyes (84 datasets), were included in the analysis. The mean peak emissions of S0, S1, and S2 at λex 436 nm were, respectively, 495 ± 14, 535 ± 17, and 576 ± 20 nm. S3 was generally trimodal, with peaks at either 580, 620, or 650 nm (peak mode, 650 nm). At λex 480 nm, S0, S1, and S2 were red-shifted to 526 ± 9, 553 ± 10, and 588 ± 23 nm, and S3 was again trimodal (peak mode, 620 nm). S1 often split into two spectra, S1A and S1B. S3 strongly colocalized with melanin. There were no significant differences across age, sex, or retinal location. Conclusions There appear to be at least three families of abundant RPE fluorophores that are ubiquitous across age, retinal location, and sex in this sample of healthy eyes. Further molecular characterization by imaging mass spectrometry and localization via super-resolution microscopy should elucidate normal and abnormal RPE physiology involving fluorophores. Translational Relevance Our results help establish hyperspectral autofluorescence imaging of the human retinal pigment epithelium as a useful tool for investigating retinal health and disease. PMID:27226929

  14. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    PubMed Central

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  15. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction

    PubMed Central

    Zhang, Xiao-Yu; Ng, Tsz Kin; Brelén, Mårten Erik; Wu, Di; Wang, Jian Xiong; Chan, Kwok Ping; Yung, Jasmine Sum Yee; Cao, Di; Wang, Yumeng; Zhang, Shaodan; Chan, Sun On; Pang, Chi Pui

    2016-01-01

    Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2–10 mM) of sodium iodate for 5 days. Low doses (2–5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD. PMID:27849035

  16. Uptake and esterification of vitamin A by RCS rat retinal pigment epithelial cells in primary culture.

    PubMed

    Cia, David; Bonhomme, Brigitte; Azaïs-Braesco, Véronique; Cluzel, Jacques; Doly, Michel

    2004-02-01

    We investigated the capacity of Royal College of Surgeons (RCS) rat retinal pigment epithelial (RPE) cells to take up all-trans-retinol (ROL) (vitamin A) and to metabolize it into retinyl esters (RE). Cultures of RPE cells were established from RCS and control newborn rats. All-trans-ROL was delivered to the apical surface of the RPE monolayer. Retinoids were analyzed by high-performance liquid chromatography. The cellular retinol-binding protein type I (CRBP-I) was assessed by Western blotting. Before supplementation with ROL, RE were lower in RCS rats. After ROL supplementation, esters increased and reached values that were similar in the two strains, but the increase, expressed relative to the initial value, was higher in RCS rats. The uptake of ROL and the level of CRBP-I were greater in RCS rats. Our results provide evidence of a functional retinol esterifying enzyme in cultured RCS RPE cells and suggest that CRBP-I could play a role in the uptake and esterification of ROL in the RPE cells.

  17. Hyperosmotic stress induces cell cycle arrest in retinal pigmented epithelial cells

    PubMed Central

    Arsenijevic, T; Vujovic, A; Libert, F; Op de Beeck, A; Hébrant, A; Janssens, S; Grégoire, F; Lefort, A; Bolaky, N; Perret, J; Caspers, L; Willermain, F; Delporte, C

    2013-01-01

    Osmotic changes occur in many tissues and profoundly influence cell function. Herein, we investigated the effect of hyperosmotic stress on retinal pigmented epithelial (RPE) cells using a microarray approach. Upon 4-h exposure to 100 mM NaCl or 200 mM sucrose, 79 genes were downregulated and 72 upregulated. Three gene ontology categories were significantly modulated: cell proliferation, transcription from RNA polymerase II promoter and response to abiotic stimulus. Fluorescent-activated cell sorting analysis further demonstrated that owing to hyperosmotic stimulation for 24 h, cell count and cell proliferation, as well as the percentage of cells in G0/G1 and S phases were significantly decreased, whereas the percentage of cells in G2/M phases increased, and apoptosis and necrosis remained unaffected. Accordingly, hyperosmotic conditions induced a decrease of cyclin B1 and D1 expression, and an activation of the p38 mitogen-activated protein kinase. In conclusion, our results demonstrate that hypertonic conditions profoundly affect RPE cell gene transcription regulating cell proliferation by downregulation cyclin D1 and cyclin B1 protein expression. PMID:23744362

  18. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration

    PubMed Central

    Ibrahim, Ahmed S.; Mander, Suchreet; Hussein, Khaled A.; Elsherbiny, Nehal M.; Smith, Sylvia B.; Al-Shabrawey, Mohamed; Tawfik, Amany

    2016-01-01

    The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-β-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE–photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features. PMID:26885895

  19. Electric impedance of human embryonic stem cell-derived retinal pigment epithelium.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Juuti-Uusitalo, Kati; Vaajasaari, Hanna; Skottman, Heli; Hyttinen, Jari

    2012-02-01

    The barrier properties of epithelium are conventionally defined by transepithelial resistance (TER). TER provides information about the tightness of the epithelium. Electrical impedance spectroscopy (EIS) provides additional information regarding cell membrane properties, such as changes in electric capacitance and possible parallel or serial pathways that may correlate with the morphology of the cell layer. This study presents EIS of retinal pigment epithelial (RPE) cell model of the putative RPE differentiated from human embryonic stem cells (hESC-RPE). The generally utilized RPE cell model, ARPE-19, was used as immature control. The measured EIS was analyzed by fitting an equivalent electrical circuit model describing the resistive and capacitive properties of the RPE. Our results indicated that TER of hESC-RPE cells was close to the values of human RPE presented in the literature. This provides evidence that the stem cell-derived RPE in vitro can reach high-barrier function. Furthermore, hESC-RPE cells produced impedance spectra that can be modeled by the equivalent circuit of one time constant. ARPE-19 cells produced low-barrier properties, that is, an impedance spectra that suggested poor maturation of ARPE-19 cells. To conclude, EIS could give us means for non-invasively estimating the functionality and maturation of differentiated-RPE cells.

  20. Retinal pigment epithelial cells undergoing mitotic catastrophe are vulnerable to autophagy inhibition.

    PubMed

    Lee, S Y; Oh, J S; Rho, J H; Jeong, N Y; Kwon, Y H; Jeong, W J; Ryu, W Y; Ahn, H B; Park, W C; Rho, S H; Yoon, Y G; Jeong, S-Y; Choi, Y H; Kim, H Y; Yoo, Y H

    2014-06-26

    The increased mitochondrial DNA damage leads to altered functional capacities of retinal pigment epithelial (RPE) cells. A previous study showed the increased autophagy in RPE cells caused by low concentrations of rotenone, a selective inhibitor of mitochondrial complex I. However, the mechanism by which autophagy regulates RPE cell death is still unclear. In the present study, we examined the mechanism underlying the regulation of RPE cell death through the inhibition of mitochondrial complex I. We report herein that rotenone induced mitotic catastrophe (MC) in RPE cells. We further observed an increased level of autophagy in the RPE cells undergoing MC (RPE-MC cells). Importantly, autophagy inhibition induced nonapoptotic cell death in RPE-MC cells. These findings indicate that autophagy has a pivotal role in the survival of RPE-MC cells. We next observed PINK1 accumulation in the mitochondrial membrane and parkin translocation into the mitochondria from the cytosol in the rotenone-treated RPE-MC cells, which indicates that increased mitophagy accompanies MC in ARPE-19 cells. Noticeably, the mitophagy also contributed to the cytoprotection of RPE-MC cells. Although there might be a significant gap in the roles of autophagy and mitophagy in the RPE cells in vivo, our in vitro study suggests that autophagy and mitophagy presumably prevent the RPE-MC cells from plunging into cell death, resulting in the prevention of RPE cell loss.

  1. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium

    PubMed Central

    Koirala, Adarsha; Conley, Shannon M.; Naash, Muna I.

    2013-01-01

    Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE. PMID:23796578

  2. cAMP-activated chloride currents in amphibian retinal pigment epithelial cells.

    PubMed Central

    Hughes, B A; Segawa, Y

    1993-01-01

    1. The effect of cAMP on whole-cell currents in isolated retinal pigment epithelial (RPE) cells of the bullfrog and marine toad was investigated by means of the perforated patch clamp technique. 2. Superfusing cells with either cAMP or forskolin led to the development of a time-independent current that had a linear current-voltage (I-V) relationship. The reversal potential of (Vrev) of the cAMP-activated current was unaffected by the removal of either Na+ or HCO3- from the external and internal solutions or by the addition of extracellular barium, but it was near the Cl- equilibrium potential (ECl) over a wide range of extracellular Cl- concentrations, suggesting the presence of a Cl(-)-selective channel. 3. The anion permeability sequence of the cAMP-activated conductance calculated from biionic reversal potentials was NO3- = I- > Br- > Cl- >> HCO3- > methanesulphonate. 4. The conductance was blocked by a variety of Cl- transport inhibitors, including 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), 4,4'-dinitro-2,2'- stilbene disulphonic acid (DNDS), frusemide, N-phenylanthranilic acid (DPC) and niflumic acid. 5. The present study demonstrates that cAMP activates a Cl(-)-selective channel that most probably resides in the basolateral membrane. PMID:8410715

  3. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    SciTech Connect

    Lengyel,I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.

  4. Impairing autophagy in retinal pigment epithelium leads to inflammasome activation and enhanced macrophage-mediated angiogenesis

    PubMed Central

    Liu, Jian; Copland, David A.; Theodoropoulou, Sofia; Chiu, Hsi An Amy; Barba, Miriam Durazo; Mak, Ka Wang; Mack, Matthias; Nicholson, Lindsay B.; Dick, Andrew D.

    2016-01-01

    Age-related decreases in autophagy contribute to the progression of age-related macular degeneration (AMD). We have now studied the interaction between autophagy impaired in retinal pigment epithelium (RPE) and the responses of macrophages. We find that dying RPE cells can activate the macrophage inflammasome and promote angiogenesis. In vitro, inhibiting rotenone-induced autophagy in RPE cells elicits caspase-3 mediated cell death. Co-culture of damaged RPE with macrophages leads to the secretion of IL-1β, IL-6 and nitrite oxide. Exogenous IL-6 protects the dysfunctional RPE but IL-1β causes enhanced cell death. Furthermore, IL-1β toxicity is more pronounced in dysfunctional RPE cells showing reduced IRAK3 gene expression. Co-culture of macrophages with damaged RPE also elicits elevated levels of pro-angiogenic proteins that promote ex vivo choroidal vessel sprouting. In vivo, impaired autophagy in the eye promotes photoreceptor and RPE degeneration and recruitment of inflammasome-activated macrophages. The degenerative tissue environment drives an enhanced pro-angiogenic response, demonstrated by increased size of laser-induced choroidal neovascularization (CNV) lesions. The contribution of macrophages was confirmed by depletion of CCR2+ monocytes, which attenuates CNV in the presence of RPE degeneration. Our results suggest that the interplay between perturbed RPE homeostasis and activated macrophages influences key features of AMD development. PMID:26847702

  5. Retinal Development and Ommin Pigment in the Cranchiid Squid Teuthowenia pellucida (Cephalopoda: Oegopsida).

    PubMed

    Evans, Aaron B; Acosta, Monica L; Bolstad, Kathrin S

    2015-01-01

    The cranchiid Teuthowenia pellucida, like many deep-sea squid species, possesses large eyes that maximise light sensitivity in a nearly aphotic environment. To assess ontogenetic changes in the visual system, we conducted morphometric and histological analyses of the eyes using specimens from New Zealand collections. While the ratio between eye diameter and mantle length maintained a linear relationship throughout development, histological sections of the retina revealed that the outer photoreceptor layer became proportionally longer as the animal aged, coincident with a habitat shift into deeper, darker ocean strata. Other retinal layers maintained the same absolute thickness as was observed in paralarvae. Granules of the pigment ommin, normally located in the screening layer positioned at the base of the photoreceptors, were also observed at the outer end of the photoreceptor segments throughout the retina in young and mid-sized specimens. Early developmental stages of this species, dwelling in shallow waters, may therefore rely on migratory ommin to help shield photoreceptors from excess light and prevent over-stimulation. The oldest, deeper-dwelling specimens of T. pellucida examined had longer photoreceptors, and little or no migrated ommin was observed; we suggest therefore that short-term adaptive mechanisms for bright light conditions may be used primarily during epipelagic, early life stages in this species.

  6. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro.

    PubMed

    Chamorro, Eva; Bonnin-Arias, Cristina; Pérez-Carrasco, María Jesús; Muñoz de Luna, Javier; Vázquez, Daniel; Sánchez-Ramos, Celia

    2013-01-01

    Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.

  7. Age and disease-related structural changes in the retinal pigment epithelium

    PubMed Central

    Bonilha, Vera L

    2008-01-01

    As the retinal pigment epithelium (RPE) ages, a number of structural changes occur, including loss of melanin granules, increase in the density of residual bodies, accumulation of lipofuscin, accumulation of basal deposits on or within Bruch’s membrane, formation of drusen (between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane), thickening of Bruch’s membrane, microvilli atrophy and disorganization of the basal infoldings. Although these changes are well known, the basic mechanisms involved in them are frequently poorly understood. These age-related changes progress slowly and vary in severity in different individuals. These changes are also found in age-related macular degeneration (AMD), a late onset disease that severely impacts the RPE, but they are much more pronounced than during normal aging. However, the changes in AMD lead to severe loss of vision. Given the many supporting functions which the RPE serves for the retina, it is important to decipher the age-related changes in this epithelium in order to understand age-related changes in vision. PMID:19668732

  8. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells.

    PubMed

    Xiang, Ping; Wu, Kun-Chao; Zhu, Ying; Xiang, Lue; Li, Chong; Chen, Deng-Long; Chen, Feng; Xu, Guotong; Wang, Aijun; Li, Min; Jin, Zi-Bing

    2014-12-01

    Various artificial membranes have been used as scaffolds for retinal pigment epithelium cells (RPE) for monolayer reconstruction, however, long-term cell viability and functionality are still largely unknown. This study aimed to construct an ultrathin porous nanofibrous film to mimic Bruch's membrane, and in particular to investigate human RPE cell responses to the resultant substrates. An ultrathin porous nanofibrous membrane was fabricated by using regenerated wild Antheraea pernyi silk fibroin (RWSF), polycaprolactone (PCL) and gelatin (Gt) and displayed a thickness of 3-5 μm, with a high porosity and an average fiber diameter of 166 ± 85 nm. Human RPE cells seeded on the RWSF/PCL/Gt membranes showed a higher cell growth rate (p < 0.05), and a typical expression pattern of RPE signature genes, with reduced expression of inflammatory mediators. With long-term cultivation on the substrates, RPE cells exhibited characteristic polygonal morphology and development of apical microvilli. Immunocytochemisty demonstrated RPE-specific expression profiles in cells after 12-weeks of co-culture on RWSF/PCL/Gt membranes. Interestingly, the cells on the RWSF/PCL/Gt membranes functionally secreted polarized PEDF and phagocytosed labeled porcine POS. Furthermore, RWSF/PCL/Gt membranes transplanted subsclerally exhibited excellent biocompatibility without any evidence of inflammation or rejection. In conclusion, we established a novel RWSF-based substrate for growth of RPE cells with excellent cytocompatibility in vitro and biocompatibility in vivo for potential use as a prosthetic Bruch's membrane for RPE transplantation.

  9. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.

    PubMed

    Zhang, Pingbo; Kirby, David; Dufresne, Craig; Chen, Yan; Turner, Randi; Ferri, Sara; Edward, Deepak P; Van Eyk, Jennifer E; Semba, Richard D

    2016-04-01

    The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false-positive rates of <0.1% and <1%, respectively. Forty-three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four "missing proteins" were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194.

  10. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells.

    PubMed

    Kaarniranta, Kai; Ryhänen, Tuomas; Karjalainen, Hannu M; Lammi, Mikko J; Suuronen, Tiina; Huhtala, Anne; Kontkanen, Matti; Teräsvirta, Markku; Uusitalo, Hannu; Salminen, Antero

    Development of age-related macular degeneration (AMD) is associated with functional abnormalities and cell death in retinal pigment epithelial (RPE) cells attributable to oxidative stress. To minimize the adverse effects of oxidative stress, cells activate their defence systems, e.g., via increased expression of heat shock protein (Hsp), activation of stress sensitive AP-1 and NF-kappaB transcription factors. In this study, we examined the accumulation of Hsp70 protein, activation of AP-1 and NF-kappaB transcription factors in human ARPE-19 cells subjected to a 4-hydroxynonenal (HNE)-induced oxidative stress. In addition, the influence of Hsp90 inhibitor geldanamycin (GA) was studied in HNE-treated cells. Mitochondrial metabolic activity and apoptosis were determined to evaluate cell death in the ARPE-19 cells. The ARPE-19 cells showed increased accumulation of Hsp70 protein before of the cytotoxic hallmarks appearing in response to HNE. In contrast, increased DNA-binding activities of AP-1 or NF-kappaB transcription factors were not seen under HNE insults. Interestingly, GA significantly increased cell death in the HNE-treated cells, which was involved in caspase-3 independent apoptosis. This study reveals that the Hsps have an important role in the cytoprotection of RPE cells subjected to HNE-derived oxidative stress.

  11. The embryology of the retinal pigmented epithelium in dwarf geckos (Gekkota: Sphaerodactylinae): a unique developmental pattern

    PubMed Central

    2014-01-01

    Background The retinal pigmented epithelium (RPE) is a rounded shaped structure in almost all lizards. In the New World dwarf geckos, this structure shows an unusual morphology. In addition to this ocular character, we describe notable differences in the development of these geckos in comparison with available developmental staging tables for other geckos and squamate reptiles. Results We identified two main patterns of development of the RPE for squamates. These patterns were mapped onto a metatree of concordant hypotheses of squamates based on molecular data. During post-ovopositional stages the representative species of sphaerodactyls exhibit a RPE layer that transforms gradually from an ovoid form into the generalized spherical form. Sphaerodactyls are the only group of squamates in which this pattern is known. Conclusions This transition might be circumstantial evidence that the accessory RPE plays a role in providing additional protection for their apomorphic concaviclivate temporal fovea. We also report the presence of conjunctival papillae in a developmental stage prior to the formation of scleral ossicles. This developmental progression is similar to that of birds and turtles. PMID:24974837

  12. Retinal pigment epithelial cell adhesion on novel micropatterned surfaces fabricated from synthetic biodegradable polymers.

    PubMed

    Lu, L; Nyalakonda, K; Kam, L; Bizios, R; Göpferich, A; Mikos, A G

    2001-02-01

    Novel synthetic biodegradable polymer substrates with specific chemical micropatterns were fabricated from poly(DL-lactic-coglycolic acid) (PLGA) and diblock copolymers of poly(ethylene glycol) and poly(DL-lactic acid) (PEG/PLA). Thin films of PLGA and PEG/PLA supported and inhibited, respectively, retinal pigment epithelial (RPE) cell proliferation, with a corresponding cell density of 352,900 and 850 cells/cm2 after 7 days (from an initial seeding density of 15,000 cells/cm2). A microcontact printing technique was used to define arrays of circular (diameter of 50 microm) PLGA domains surrounded and separated by regions (width of 50 microm) of PEG/PLA. Reversed patterns composed of PEG/PLA circular domains surrounded by PLGA regions were also fabricated. Both micropatterned surfaces were shown to affect initial RPE cell attachment, limit cell spreading, and promote the characteristic cuboidal cell morphology during the 8-h period of the experiments. In contrast, RPE cells on plain PLGA (control films) were elongated and appeared fibroblast-like. The reversed patterns had continuous PLGA regions that allowed cell-cell interactions and thus higher cell adhesion. These results demonstrate the feasibility of fabricating micropatterned synthetic biodegradable polymer surfaces to control RPE cell morphology.

  13. Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films.

    PubMed

    Lu, L; Garcia, C A; Mikos, A G

    1998-01-01

    Thin films of 50:50 and 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) were manufactured with a controlled thickness of less than 10 microm. The effect of PLGA copolymer ratio on in vitro cell attachment, proliferation, morphology, and tight junction formation was evaluated using a human D407 retinal pigment epithelium (RPE) cell line. Almost complete cell attachment was achieved on both PLGA films after 8 h of cell seeding, which was comparable to that on tissue culture polystyrene (TCPS) controls. The initial cell seeding density affected attachment, and the optimal value for 50:50 PLGA was 25000 cells cm(-2). After 7 days of in vitro culture, cell density on 50:50 and 75:25 PLGA films increased 45 and 40 folds, respectively, and a 34-fold increase was observed on TCPS. The RPE cells cultured on PLGA films at confluence had a characteristic cobblestone morphology. Confluent RPE cells also developed normal tight junctions in vitro which were concentrated mainly at the apical surfaces of cell-cell junctions. These results demonstrated that thin biodegradable PLGA films can provide suitable substrates for human RPE cell culture, and may serve as temporary carriers for subretinal implantation of organized sheets of RPE.

  14. Monocarboxylate transporter mediated uptake of moxifloxacin on human retinal pigmented epithelium cells

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.

    2015-01-01

    Objectives This work was aim to determine in vitro interaction of moxifloxacin with monocarboxylate transporter (MCT) using a human retinal pigment epithelium cells (ARPE-19). Methods In vitro moxifloxacin uptakes were performed at 37°C across ARPE-19 cells. Concentration-dependent uptake of moxifloxacin was performed to delineate moxifloxacin kinetics with MCT. Effects of MCT substrates, MCT inhibitors, pH and metabolic inhibitors on moxifloxacin uptake were conducted to delineate mechanism of moxifloxacin influx via MCT. Key findings Moxifloxacin uptake was found to exhibit saturable kinetics (Km = 1.56 ± 0.32 μM and Vmax = 0.58 ± 0.16 μM/min/mg protein). Higher uptake of moxifloxacin was observed at acidic pH. MCT substrates such as salisylic acid, ofloxacin and L-lactic acid significantly inhibited the uptake of moxifloxacin. Furthermore, moxifloxacin uptake was significantly reduced in the presence of metabolic and MCT inhibitors. Overall, this study demonstrated an interaction of moxifloxacin with Na+ and H+-coupled transporter, most likely MCT1. Conclusions Apart from the lipophilicity, we anticipate that lowest vitreal half-life of intravitreal moxifloxacin compared with other fluoroquinolones may be due to its interaction with MCT. This information might be crucial in clinical settings and can be further explored to improve vitreous half-life and therapeutic efficacy of moxifloxacin. PMID:24102496

  15. Retinal Development and Ommin Pigment in the Cranchiid Squid Teuthowenia pellucida (Cephalopoda: Oegopsida)

    PubMed Central

    Evans, Aaron B.; Acosta, Monica L.; Bolstad, Kathrin S.

    2015-01-01

    The cranchiid Teuthowenia pellucida, like many deep-sea squid species, possesses large eyes that maximise light sensitivity in a nearly aphotic environment. To assess ontogenetic changes in the visual system, we conducted morphometric and histological analyses of the eyes using specimens from New Zealand collections. While the ratio between eye diameter and mantle length maintained a linear relationship throughout development, histological sections of the retina revealed that the outer photoreceptor layer became proportionally longer as the animal aged, coincident with a habitat shift into deeper, darker ocean strata. Other retinal layers maintained the same absolute thickness as was observed in paralarvae. Granules of the pigment ommin, normally located in the screening layer positioned at the base of the photoreceptors, were also observed at the outer end of the photoreceptor segments throughout the retina in young and mid-sized specimens. Early developmental stages of this species, dwelling in shallow waters, may therefore rely on migratory ommin to help shield photoreceptors from excess light and prevent over-stimulation. The oldest, deeper-dwelling specimens of T. pellucida examined had longer photoreceptors, and little or no migrated ommin was observed; we suggest therefore that short-term adaptive mechanisms for bright light conditions may be used primarily during epipelagic, early life stages in this species. PMID:25970484

  16. Melissa Officinalis L. Extracts Protect Human Retinal Pigment Epithelial Cells against Oxidative Stress-Induced Apoptosis

    PubMed Central

    Jeung, In Cheul; Jee, Donghyun; Rho, Chang-Rae; Kang, Seungbum

    2016-01-01

    Background: We evaluated the protective effect of ALS-L1023, an extract of Melissa officinalis L. (Labiatae; lemon balm) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells (ARPE-19 cells). Methods: ARPE-19 cells were incubated with ALS-L1023 for 24 h and then treated with hydrogen peroxide (H2O2). Oxidative stress-induced apoptosis and intracellular generation of reactive oxygen species (ROS) were assessed by flow cytometry. Caspase-3/7 activation and cleaved poly ADP-ribose polymerase (PARP) were measured to investigate the protective role of ALS-L1023 against apoptosis. The protective effect of ALS-L1023 against oxidative stress through activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) was evaluated by Western blot analysis. Results: ALS-L1023 clearly reduced H2O2-induced cell apoptosis and intracellular production of ROS. H2O2-induced oxidative stress increased caspase-3/7 activity and apoptotic PARP cleavage, which were significantly inhibited by ALS-L1023. Activation of the PI3K/Akt pathway was associated with the protective effect of ALS-L1023 on ARPE-19 cells. Conclusions: ALS-L1023 protected human RPE cells against oxidative damage. This suggests that ALS-L1023 has therapeutic potential for the prevention of dry age-related macular degeneration. PMID:26941573

  17. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration

    PubMed Central

    Kurihara, Toshihide; Westenskow, Peter D; Gantner, Marin L; Usui, Yoshihiko; Schultz, Andrew; Bravo, Stephen; Aguilar, Edith; Wittgrove, Carli; Friedlander, Mollie SH; Paris, Liliana P; Chew, Emily; Siuzdak, Gary; Friedlander, Martin

    2016-01-01

    Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI: http://dx.doi.org/10.7554/eLife.14319.001 PMID:26978795

  18. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  19. PTEN Reduced UVB-Mediated Apoptosis in Retinal Pigment Epithelium Cells

    PubMed Central

    He, Jia; Long, Chongde; Huang, Zixin; Zhou, Xin; Kuang, Xielan; Liu, Lanying; Liu, Huijun; Tang, Yan; Fan, Yuting; Ning, Jie; Ma, Xinqi; Zhang, Qingjiong

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness and progressive loss of central vision in the elderly population. The important factor of AMD pathogenesis is the degeneration of retinal pigment epithelial (RPE) cells by oxidative stress. Inactivation of PTEN can disrupt intercellular adhesion in the RPE cells, but the mechanism of oxidative stress is less known. Here we presented evidence that UVB-mediated oxidative stress induced apoptosis in ARPE-19 cells. Downregulation of the expression of PTEN in UVB-irradiative RPE cells triggered DNA damage and increased the level of UVB-induced apoptosis by activating p53-dependent pathway. However, overexpression of PTEN increased cell survival by suppressing p-H2A in response to DNA damage and apoptosis. When using Pifithrin-α (one of p53 inhibitors), the level of p53-dependent apoptosis was significantly lower than untreated, which suggested that p53 was possibly involved in PTEN-dependent apoptosis. Thus, it elucidated the molecular mechanisms of UVB-induced damage in RPE cells and may offer an alternative therapeutic target in dry AMD. PMID:28321407

  20. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  1. Receptor mediated disruption of retinal pigment epithelium function in acute glycated-albumin exposure

    PubMed Central

    Dahrouj, Mohammad; Desjardins, Danielle M.; Liu, Yueying; Crosson, Craig E.; Ablonczy, Zsolt

    2015-01-01

    Diabetic macular edema (DME) is a major cause of visual impairment. Although DME is generally believed to be a microvascular disease, dysfunction of the retinal pigment epithelium (RPE) can also contribute to its development. Advanced glycation end-products (AGE) are thought to be one of the key factors involved in the pathogenesis of diabetes in the eye, and we have previously demonstrated a rapid breakdown of RPE function following glycated-albumin (Glyc-alb, a common AGE mimetic) administration in monolayer cultures of fetal human RPE cells. Here we present new evidence that this response is attributed to apically oriented AGE receptors (RAGE). Moreover, time-lapse optical coherence tomography in Dutch-belted rabbits 48 hours post intravitreal Glyc-alb injections demonstrated a significant decrease in RPE-mediated fluid resorption in vivo. In both the animal and tissue culture models, the response to Glyc-alb was blocked by the relatively selective RAGE antagonist, FPS-ZM1 and was also inhibited by ZM323881, a relatively selective vascular endothelial growth factor receptor 2 (VEGF-R2) antagonist. Our data establish that the Glyc-alb-induced breakdown of RPE function is mediated via specific RAGE and VEGF-R2 signaling both in vitro and in vivo. These results are consistent with the notion that the RPE is a key player in the pathogenesis of DME. PMID:26070987

  2. Biocompatibility of the vital dye Acid Violet-17 on retinal pigment epithelial cells

    PubMed Central

    Tura, Ayşegül; Alt, Aizhan; Lüke, Julia; Grisanti, Salvatore; Haritoglou, Christos; Meyer, Carsten H; Nassar, Khaled; Lüke, Matthias

    2016-01-01

    Purpose To examine the viability and differentiation of retinal pigment epithelial (RPE) cells after exposure to the vital dye Acid Violet-17 (AV-17). Methods Bovine RPE cells were incubated with AV-17 (0.0625–0.5 mg/mL) for 30 seconds or 5 minutes. Viability was determined by live/dead staining, cleaved CASP3 immunostainings, and MTT test. Actin cytoskeleton was visualized by Alexa 488-phalloidin. Immunocytochemistry was performed to determine the levels of ZO-1, CTNNB1, and KRT19. Results Exposure to AV-17 at the concentrations of 0.25–0.5 mg/mL resulted in a dose-dependent decrease in viability, the loss of ZO-1 from tight junctions, translocation of CTNNB1 into the cytoplasm and nucleus, disarrangement of the actin cytoskeleton, and a slight increase in KRT19. Conclusion AV-17 at a concentration <0.125 mg/mL is likely to be well tolerated by the RPE cells, whereas the concentrations from 0.25 mg/mL onward can reduce viability and induce dedifferentiation particularly after long-term exposure. PMID:27536056

  3. Pharmacology of the retinal pigment epithelium, the interface between retina and body system.

    PubMed

    Strauß, Olaf

    2016-09-15

    The retinal pigment epithelium (RPE) is a close, interactive partner to the photoreceptors as well as an interface with the endothelium of the choroid and thus with the body's circulatory system. To fulfill these roles, the RPE communicates with neighboring tissue by secretion of a large variety of factors and is able to react to secreted factors via a plethora of transmembrane receptors. Clinically relevant local pharmacological effects are caused by anti-VEGF-A treatment in choroidal neovascularization or by carboanhydrase inhibitors reducing fluid accumulation in the macula. Being exposed to the bloodstream, the RPE reacts to systemic disease, such as diabetes or hypertension, but also to systemic pharmacological intervention, for example to hypotensive drugs acting on the renin-angiotensin-system. Sustained pharmacological treatments, in particular, cause side effects at the RPE with consequences for both RPE function and photoreceptor survival. Among these are systemic inhibition of angiotensin-converting enzyme, insulin treatment in diabetes and anti-VEGF-A therapy. Given the special anatomical and functional relationships of the RPE, pharmacological intervention targeting either the eye or the body systemically should take potential alteration of RPE and subsequently photoreceptor function into account.

  4. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  5. PHAGOCYTOSIS BY RETINAL PIGMENT EPITHELIAL CELLS IN VITRO IS AFFECTED BY EXPOSURE TO PESTICIDES.

    EPA Science Inventory

    Purpose:Agricultural and occupational exposures to the fungicides benomyl and captan and the insecticide fenthion have been associated with retinal degeneration. Exposure to insecticides has also been associated with pigmentary changes of the retina. Because retinal degeneration ...

  6. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium

    PubMed Central

    Kinnick, Tyson R.; Stanton, J. Brett; Johnson, Adiv A.; Lynch, Ronald M.; Marmorstein, Lihua Y.

    2015-01-01

    Purpose Mutations in BEST1, encoding Bestrophin-1 (Best1), cause Best vitelliform macular dystrophy (BVMD) and other inherited retinal degenerative diseases. Best1 is an integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium (RPE). Data from numerous in vitro and in vivo models have demonstrated that Best1 regulates intracellular Ca2+ levels. Although it is known from in vitro and crystal structure data that Best1 is also a calcium-activated anion channel, evidence for Best1 functioning as a channel in human RPE is lacking. To assess Best1-associated channel activity in the RPE, we examined the transepithelial electrical properties of fetal human RPE (fhRPE) cells, which express endogenous Best1. Methods Using adenovirus-mediated gene transfer, we overexpressed Best1 and the BVMD mutant Best1W93C in fhRPE cells and assessed resting transepithelial potential (TEP), transepithelial resistance, short circuit current (Isc), and intracellular Ca2+ levels. Cl- currents were directly measured in transfected HEK293 cells using whole-cell patch clamp. Results Best1W93C showed ablated Cl- currents and, when co-expressed, suppressed the channel activity of Best1 in HEK293 cells. In fhRPE, overexpression of Best1 increased TEP and Isc, while Best1W93C diminished TEP and Isc. Substitution of Cl- in the bath media resulted in a significant reduction of Isc in monolayers overexpressing Best1, but no significant Isc change in monolayers expressing Best1W93C. We removed Ca2+ as a limit on transepithelial electrical properties by treating cells with ionomycin, and found that changes in Isc and TEP for monolayers expressing Best1 were absent in monolayers expressing Best1W93C. Similarly, inhibition of calcium-activated anion channels with niflumic acid reduced both Isc and TEP of control and Best1 monolayers, but did not notably affect Best1W93C monolayers. Stimulation with extracellular ATP induced an increase in TEP in control

  7. CO2-induced ion and fluid transport in human retinal pigment epithelium.

    PubMed

    Adijanto, Jeffrey; Banzon, Tina; Jalickee, Stephen; Wang, Nam S; Miller, Sheldon S

    2009-06-01

    In the intact eye, the transition from light to dark alters pH, [Ca2+], and [K] in the subretinal space (SRS) separating the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE). In addition to these changes, oxygen consumption in the retina increases with a concomitant release of CO2 and H2O into the SRS. The RPE maintains SRS pH and volume homeostasis by transporting these metabolic byproducts to the choroidal blood supply. In vitro, we mimicked the transition from light to dark by increasing apical bath CO2 from 5 to 13%; this maneuver decreased cell pH from 7.37 +/- 0.05 to 7.14 +/- 0.06 (n = 13). Our analysis of native and cultured fetal human RPE shows that the apical membrane is significantly more permeable (approximately 10-fold; n = 7) to CO2 than the basolateral membrane, perhaps due to its larger exposed surface area. The limited CO2 diffusion at the basolateral membrane promotes carbonic anhydrase-mediated HCO3 transport by a basolateral membrane Na/nHCO3 cotransporter. The activity of this transporter was increased by elevating apical bath CO2 and was reduced by dorzolamide. Increasing apical bath CO2 also increased intracellular Na from 15.7 +/- 3.3 to 24.0 +/- 5.3 mM (n = 6; P < 0.05) by increasing apical membrane Na uptake. The CO2-induced acidification also inhibited the basolateral membrane Cl/HCO3 exchanger and increased net steady-state fluid absorption from 2.8 +/- 1.6 to 6.7 +/- 2.3 microl x cm(-2) x hr(-1) (n = 5; P < 0.05). The present experiments show how the RPE can accommodate the increased retinal production of CO2 and H(2)O in the dark, thus preventing acidosis in the SRS. This homeostatic process would preserve the close anatomical relationship between photoreceptor outer segments and RPE in the dark and light, thus protecting the health of the photoreceptors.

  8. Microphthalmia-associated transcription factor regulates the visual cycle genes Rlbp1 and Rdh5 in the retinal pigment epithelium

    PubMed Central

    Wen, Bin; Li, Shuang; Li, Huirong; Chen, Yu; Ma, Xiaoyin; Wang, Jing; Lu, Fan; Qu, Jia; Hou, Ling

    2016-01-01

    Regeneration of the visual pigment by cells of the retinal pigment epithelium (RPE) is fundamental to vision. Here we show that the microphthalmia-associated transcription factor, MITF, which plays a central role in the development and function of RPE cells, regulates the expression of two visual cycle genes, Rlbp1 which encodes retinaldehyde binding protein-1 (RLBP1), and Rdh5, which encodes retinol dehydrogenase-5 (RDH5). First, we found that Rlbp1 and Rdh5 are downregulated in optic cups and presumptive RPEs of Mitf-deficient mouse embryos. Second, experimental manipulation of MITF levels in human RPE cells in culture leads to corresponding modulations of the endogenous levels of RLBP1 and RDH5. Third, the retinal degeneration associated with the disruption of the visual cycle in Mitf-deficient mice can be partially corrected both structurally and functionally by an exogenous supply of 9-cis-retinal. We conclude that the expression of Rlbp1 and Rdh5 critically depends on functional Mitf in the RPE and suggest that MITF has an important role in controlling retinoid processing in the RPE. PMID:26876013

  9. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  10. Intercellular Ca(2+) wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation.

    PubMed

    Abu Khamidakh, A E; Juuti-Uusitalo, K; Larsson, K; Skottman, H; Hyttinen, J

    2013-03-01

    Ca(2+) signaling is vitally important in cellular physiological processes and various drugs also affect Ca(2+) signaling. Thus, knowledge of Ca(2+) dynamics is important toward understanding cell biology, as well as the development of drug-testing assays. ARPE-19 cells are widely used for modeling human retinal pigment epithelium functions and drug-testing, but intercellular communication has not been assessed in these cells. In this study, we investigated intercellular Ca(2+) communication induced by mechanical stimulation in ARPE-19 cells. An intercellular Ca(2+) wave was induced in ARPE-19 monolayer by point mechanical stimulation of a single cell. Dynamic changes of intracellular Ca(2+) concentration ([Ca(2+)](i)) in the monolayer were tracked with fluorescence microscopy imaging using Ca(2+)-sensitive fluorescent dye fura-2 in presence and absence of extracellular Ca(2+), after depletion of intracellular Ca(2+) stores with thapsigargin, and after application of gap junction blocker α-glycyrrhetinic acid and P2-receptor blocker suramin. Normalized fluorescence values, reflecting amplitude of [Ca(2+)](i) increase, and percentage of responsive cells were calculated to quantitatively characterize Ca(2+) wave propagation. Mechanical stimulation of a single cell within a confluent monolayer of ARPE-19 cells initiated an increase in [Ca(2+)](i), which propagated to neighboring cells in a wave-like manner. Ca(2+) wave propagated to up to 14 cell tiers in control conditions. The absence of extracellular Ca(2+) reduced [Ca(2+)](i) increase in the cells close to the site of mechanical stimulation, whereas the depletion of intracellular Ca(2+) stores with thapsigargin blocked the wave spreading to distant cells. The gap junction blocker α-glycyrrhetinic acid reduced [Ca(2+)](i) increase in the cell tiers close to the site of mechanical stimulation, indicating involvement of gap junctions in Ca(2+) wave propagation. The P2-receptor blocker suramin reduced the percentage

  11. Notch signaling modulates proliferative vitreoretinopathy via regulating retinal pigment epithelial-to-mesenchymal transition.

    PubMed

    Zhang, Jingjing; Yuan, Gongqiang; Dong, Muchen; Zhang, Ting; Hua, Gao; Zhou, Qingjun; Shi, Weiyun

    2016-09-07

    Elevated Notch signaling has been verified in a large range of fibrotic diseases developed in the kidney, liver, and lung, inducing the development of the epithelial-mesenchymal transition (EMT). The aim of this study was to observe the involvement of Notch signaling in the EMT of retinal pigment epithelial (RPE) cells and the pathogenesis of proliferative vitreoretinopathy (PVR). In vitro cultivated human RPE cells (ARPE-19) were treated with 10 ng/mL transforming growth factor (TGF)-β1 for 24, 48, and 72 h. The expression levels of ZO-1, α-SMA, vimentin, Notch1 intracellular domain (NICD1), and Hes-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining or Western blot. TGF-β1 induced EMT and the activation of Notch signaling in ARPE-19 cells. To examine the effect of Notch inhibition on TGF-β1-induced EMT and PVR formation, ARPE-19 cells were preincubated with γ-secretase inhibitor LY411575 before TGF-β1 treatment. Mouse PVR model was used for in vivo study. ARPE-19 cells were injected intravitreously with or without the LY411575 to examine the effect of Notch inhibition on PVR formation. LY411575 significantly attenuated EMT by inhibiting the Notch signaling activation in vitro. PVR was induced by intravitreal injections of ARPE-19 cells, while LY411575 inhibited mouse PVR formation in vivo. Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR. The specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of PVR.

  12. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  13. Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells.

    PubMed

    Bose, Karthikeyan; Lakshminarasimhan, Harini; Sundar, Krishnan; Kathiresan, Thandavarayan

    2016-11-01

    The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.

  14. Detection of oxidative stress biomarker-induced assembly of gold nanoparticles in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Yasmin, Z.; Lee, Y.; Maswadi, S.; Glickman, R.; Nash, K. L.

    2013-02-01

    Oxidative stress (OS) is increasingly implicated as an underlying pathogenic mechanism in a wide range of diseases, resulting from an imbalance between the production of reactive oxygen species (ROS) and the system's ability to detoxify the reactive intermediates or repair the resulting damage. ROS can be difficult to detect directly; however, they can be detected indirectly from the effects on oxidative stress biomarkers (OSB), such as glutathione (GSH), 3-nitrotyrosine, homocysteine, and cysteine. Moreover the reaction of transition metals with thiol-containing amino acids (for example GSH) oxidized by ROS can yield reactive products that accumulate with time and contribute to aging and diseases. The study of the interaction between OSB using functionalized nanoparticles (fNPs) has attracted interest because of potential applications in bio-sensors and biomedical diagnostics. A goal of the present work is to use fNPs to detect and ultimately quantitate OS in retinal pigment epithelial (RPE) cells subjected to external stressors, e.g. nonionizing (light) and ionizing (gamma) radiation. Specifically, we are investigating the assembly of gold fNPs mediated by the oxidation of GSH in irradiated RPE cells. The dynamic interparticle interactions had been characterized in previously reported work by monitoring the evolution of the surface plasmon resonance band using spectroscopic analysis (UV-VIS absorption). Here we are comparing the dynamic evolution of fNP assembly using photoacoustic spectroscopy (PAS). We expect that PAS will provide a more sensitive measure allowing these fNP sensors to measure OS in cell-based models without the artifacts limiting the use of current methods, such as fluorescent indicators.

  15. Geldanamycin and its analog induce cytotoxicity in cultured human retinal pigment epithelial cells.

    PubMed

    Wu, Wen-Chuan; Wu, Meng-Hsien; Chang, Yo-Chen; Hsieh, Ming-Chu; Wu, Horng-Jiun; Cheng, Kai-Chun; Lai, Yu-Hung; Kao, Ying-Hsien

    2010-08-01

    Geldanamycin (GA), a benzoquinone ansamycin, was originally isolated as a natural product with anti-fungal activity. GA and its analogs, including 17-allylamino-demethoxy geldanamycin (17-AAG), are also known to block the function of a molecular chaperone, heat shock protein 90 (Hsp90). In light of their anti-tumor properties through direct cytotoxicity and anti-angiogenicity, GA has been previously demonstrated to suppress hypoxia-induced VEGF production in retinal pigment epithelium (RPE) cells, implicating its applicability in treating intraocular neovascularization. This study aimed at investigating the effectiveness of Hsp90 inhibitor treatment in suppressing proliferation of cultured human RPE cells and elucidating its underlying mechanism. Cultured RPE cells were treated with GA or 17-AAG and subjected for cell proliferation assay and cell cycle analysis. Expression of apoptotic regulators and survival signaling activity were monitored by Western blotting. The results showed that both GA and 17-AAG significantly inhibited RPE cell proliferation at micromolar levels. Treatment with GA and 17-AAG led to growth arrests in G1 and S phases, increased sub-G1 hypodipoid cell population, induced apoptotic cell death, and upregulated P53 and P21 expression, although the drug-induced Bcl-2 upregulation cannot prevent cell death. Additionally, GA and 17-AAG significantly suppressed constitutive contents of phosphorylated ERK1/2 and total Akt proteins, and completely abrogated wortmannin-sensitized Akt phosphorylation. In conclusion, GA and 17-AAG inhibit RPE cell proliferation and induce cytotoxicity, possibly through downregulating Akt- and ERK1/2-mediated signaling activities. They might potentially constitute a therapeutic agent for ocular disorders with RPE over proliferation, such as proliferative vitreoretinopathy.

  16. Regulation of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision*

    PubMed Central

    Sethna, Saumil; Chamakkala, Tess; Gu, Xiaowu; Thompson, Timothy C.; Cao, Guangwen; Elliott, Michael H.; Finnemann, Silvia C.

    2016-01-01

    Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, RPECAV1−/− mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. RPECAV1−/− RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo. PMID:26814131

  17. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  18. Computational Model of Ca2+ Wave Propagation in Human Retinal Pigment Epithelial ARPE-19 Cells

    PubMed Central

    Vainio, Iina; Abu Khamidakh, Amna; Paci, Michelangelo; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari; Nymark, Soile

    2015-01-01

    Objective Computational models of calcium (Ca2+) signaling have been constructed for several cell types. There are, however, no such models for retinal pigment epithelium (RPE). Our aim was to construct a Ca2+ signaling model for RPE based on our experimental data of mechanically induced Ca2+ wave in the in vitro model of RPE, the ARPE-19 monolayer. Methods We combined six essential Ca2+ signaling components into a model: stretch-sensitive Ca2+ channels (SSCCs), P2Y2 receptors, IP3 receptors, ryanodine receptors, Ca2+ pumps, and gap junctions. The cells in our epithelial model are connected to each other to enable transport of signaling molecules. Parameterization was done by tuning the above model components so that the simulated Ca2+ waves reproduced our control experimental data and data where gap junctions were blocked. Results Our model was able to explain Ca2+ signaling in ARPE-19 cells, and the basic mechanism was found to be as follows: 1) Cells near the stimulus site are likely to conduct Ca2+ through plasma membrane SSCCs and gap junctions conduct the Ca2+ and IP3 between cells further away. 2) Most likely the stimulated cell secretes ligand to the extracellular space where the ligand diffusion mediates the Ca2+ signal so that the ligand concentration decreases with distance. 3) The phosphorylation of the IP3 receptor defines the cell’s sensitivity to the extracellular ligand attenuating the Ca2+ signal in the distance. Conclusions The developed model was able to simulate an array of experimental data including drug effects. Furthermore, our simulations predict that suramin may interfere ligand binding on P2Y2 receptors or accelerate P2Y2 receptor phosphorylation, which may partially be the reason for Ca2+ wave attenuation by suramin. Being the first RPE Ca2+ signaling model created based on experimental data on ARPE-19 cell line, the model offers a platform for further modeling of native RPE functions. PMID:26070134

  19. Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells.

    PubMed

    Hanus, J; Zhang, H; Wang, Z; Liu, Q; Zhou, Q; Wang, S

    2013-12-12

    Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry

  20. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  1. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium.

    PubMed

    Croze, Roxanne H; Buchholz, David E; Radeke, Monte J; Thi, William J; Hu, Qirui; Coffey, Peter J; Clegg, Dennis O

    2014-09-01

    Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture.

  2. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells.

    PubMed

    Wang, Hua; Linetsky, Mikhail; Guo, Junhong; Yu, Annabelle O; Salomon, Robert G

    2016-07-18

    4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.

  3. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium

    PubMed Central

    1992-01-01

    Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina- facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o- aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP- induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology. PMID:1319462

  4. Expression of HB-EGF by retinal pigment epithelial cells in vitreoretinal proliferative disease.

    PubMed

    Hollborn, Margrit; Iandiev, Ianors; Seifert, Marlen; Schnurrbusch, Ute E K; Wolf, Sebastian; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2006-10-01

    The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.

  5. Cell-Deposited Matrix Improves Retinal Pigment Epithelium Survival on Aged Submacular Human Bruch's Membrane

    PubMed Central

    Sugino, Ilene K.; Gullapalli, Vamsi K.; Sun, Qian; Wang, Jianqiu; Nunes, Celia F.; Cheewatrakoolpong, Noounanong; Johnson, Adam C.; Degner, Benjamin C.; Hua, Jianyuan; Liu, Tong; Chen, Wei; Li, Hong

    2011-01-01

    Purpose. To determine whether resurfacing submacular human Bruch's membrane with a cell-deposited extracellular matrix (ECM) improves retinal pigment epithelial (RPE) survival. Methods. Bovine corneal endothelial (BCE) cells were seeded onto the inner collagenous layer of submacular Bruch's membrane explants of human donor eyes to allow ECM deposition. Control explants from fellow eyes were cultured in medium only. The deposited ECM was exposed by removing BCE. Fetal RPE cells were then cultured on these explants for 1, 14, or 21 days. The explants were analyzed quantitatively by light microscopy and scanning electron microscopy. Surviving RPE cells from explants cultured for 21 days were harvested to compare bestrophin and RPE65 mRNA expression. Mass spectroscopy was performed on BCE-ECM to examine the protein composition. Results. The BCE-treated explants showed significantly higher RPE nuclear density than did the control explants at all time points. RPE expressed more differentiated features on BCE-treated explants than on untreated explants, but expressed very little mRNA for bestrophin or RPE65. The untreated young (<50 years) and African American submacular Bruch's membrane explants supported significantly higher RPE nuclear densities (NDs) than did the Caucasian explants. These differences were reduced or nonexistent in the BCE-ECM-treated explants. Proteins identified in the BCE-ECM included ECM proteins, ECM-associated proteins, cell membrane proteins, and intracellular proteins. Conclusions. Increased RPE survival can be achieved on aged submacular human Bruch's membrane by resurfacing the latter with a cell-deposited ECM. Caucasian eyes seem to benefit the most, as cell survival is the worst on submacular Bruch's membrane in these eyes. PMID:21398292

  6. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium

    PubMed Central

    Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373

  7. The Role of IRE-XBP1 Pathway in Regulation of Retinal Pigment Epithelium Tight Junctions

    PubMed Central

    Ma, Jacey H.; Wang, Joshua J.; Li, Junhua; Pfeffer, Bruce A.; Zhong, Yiming; Zhang, Sarah X.

    2016-01-01

    Purpose The retinal pigment epithelium (RPE) tight junctions play a pivotal role in maintaining the homeostatic environment of the neural retina. Herein, we investigated the role of X-box binding protein 1 (XBP1), an endoplasmic reticulum (ER) stress-responsive transcription factor, in regulation of RPE tight junctions. Methods Human RPE cell line (ARPE-19) and primary primate RPE cells were used for in vitro experiments and RPE-specific XBP1 knockout (KO) mice were used for in vivo study. Endoplasmic reticulum stress was induced by a sublethal dose of thapsigargin or tunicamycin. XBP1 activation was manipulated by IRE inhibitor 4μ8C, which suppresses XBP1 mRNA splicing. The integrity of tight junctions and the involvement of calcium-dependent RhoA/Rho kinase pathway were examined. Results Induction of ER stress by thapsigargin, but not tunicamycin, disrupted RPE tight junctions in ARPE-19 cells. Inhibition of XBP1 activation by 4μ8C resulted in a remarkable downregulation of tight junction proteins (ZO-1 and occludin) and defects in tight junction formation in the presence or absence of ER stress inducers. Overexpression of active XBP1 partially reversed 4μ8C-induced anomalies in tight junctions. Mechanistically, XBP1 inhibition resulted in increased intracellular Ca2+ concentration, upregulation of RhoA expression, redistribution of F-actin, and tight junction damage, which was attenuated by Rho kinase inhibitor Y27632. In vivo, deletion of XBP1 in the RPE resulted in defective RPE tight junctions accompanied by increased VEGF expression. Conclusions Taken together, these results suggest a protective role of XBP1 in maintaining RPE tight junctions possibly through regulation of calcium-dependent RhoA/Rho kinase signaling and actin cytoskeletal reorganization. PMID:27701635

  8. 2-Phenyl-APB-144-Induced Retinal Pigment Epithelium Degeneration and Its Underlying Mechanisms

    PubMed Central

    Kurashima, Hiroaki; Nakamura, Daisuke; Komatsu, Tomoko; Yasuda, Yuki; Habashita-Obata, Sayo; Ichikawa, Sanae; Katsuta, Osamu; Iwawaki, Takao; Kohno, Kenji

    2015-01-01

    Abstract Purpose: To investigate the efficacy of 2-phenyl-APB-144 (APB)-induced retinopathy in a rat model and its underlying mechanisms, with a particular focus on retinal pigment epithelium (RPE) degeneration. Methods: Electroretinograms (ERGs) were evaluated in APB-administered rats. In ARPE-19 cells, cathepsin, and autophagy marker LC3 were analyzed by western blotting or immunohistochemistry. Organelle pH alterations were detected by Acridine Orange Staining. Endoplasmic reticulum stress-dependent or -independent cell death signaling was analyzed by reporter gene assays of activating transcription factor 4 (ATF4), immunoglobulin heavy-chain binding protein (BiP), inositol-requiring enzyme 1α (IRE1α), quantitative reverse transcription-polymerase chain reaction of CHOP mRNA, and the effects of pharmacological eukaryotic initiation factor 2α (eIF2α) dephosphorylation inhibitor, Salubrinal. The pharmacological effects of Salubrinal were examined by fluorophotometry, electrophysiology, and histopathology. Results: APB-induced ERG amplitude reduction and fluorescein permeability enhancement into the vitreous body of rats were determined. In ARPE-19 cells, APB-induced organelle pH alterations, imbalances of procathepsin and cathepsin expression, the time-dependent accumulation of LC3-II, and the translational activation of ATF4 were determined. Salubrinal protected against APB-induced cell death and inhibited ATF4 downstream factor CHOP mRNA induction. In APB-induced rat retinopathy, systemic Salubrinal alleviated the enhanced fluorescein permeability into the vitreous body from the RPE, the reductions in ERG amplitudes, and RPE degeneration. Conclusions: Organelle pH alterations and autophagy impairments are involved in APB-induced RPE cell death. Inhibition of eIF2α dephosphorylation protected the RPE in vivo and in vitro. These findings suggested that APB-induced retinopathy is a valuable animal model for exploring the mechanism of RPE-driven retinopathy

  9. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  10. Use of an Adult Rat Retinal Explant Model for Screening of Potential Retinal Ganglion Cell Neuroprotective Therapies

    PubMed Central

    Bull, Natalie D.; Johnson, Thomas V.; Welsapar, Guncha; DeKorver, Nicholas W.; Tomarev, Stanislav I.

    2011-01-01

    Purpose. To validate an established adult organotypic retinal explant culture system for use as an efficient medium-throughput screening tool to investigate novel retinal ganglion cell (RGC) neuroprotective therapies. Methods. Optimal culture conditions for detecting RGC neuroprotection in rat retinal explants were identified. Retinal explants were treated with various recognized, or purported, neuroprotective agents and cultured for either 4 or 7 days ex vivo. The number of cells surviving in the RGC layer (RGCL) was quantified using histologic and immunohistochemical techniques, and statistical analyses were applied to detect neuroprotective effects. Results. The ability to replicate previously reported in vivo RGC neuroprotection in retinal explants was verified by demonstrating that caspase inhibition, brain-derived neurotrophic factor treatment, and stem cell transplantation all reduced RGCL cell loss in this model. Further screening of potential neuroprotective pharmacologic agents demonstrated that betaxolol, losartan, tafluprost, and simvastatin all alleviated RGCL cell loss in retinal explants, supporting previous reports. However, treatment with brimonidine did not protect RGCL neurons from death in retinal explant cultures. Explants cultured for 4 days ex vivo proved most sensitive for detecting neuroprotection. Conclusions. The current adult rat retinal explant culture model offers advantages over other models for screening potential neuroprotective drugs, including maintenance of neurons in situ, control of environmental conditions, and dissociation from other factors such as intraocular pressure. Verification that neuroprotection by previously identified RGC-protective therapies could be replicated in adult retinal explant cultures suggests that this model could be used for efficient medium-throughput screening of novel neuroprotective therapies for retinal neurodegenerative disease. PMID:21345987

  11. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes

    PubMed Central

    Nickerson, John M.; Goodman, Penny; Chrenek, Micah A.; Johnson, Christiana J.; Berglin, Lennart; Redmond, T. Michael.; Boatright, Jeffrey H.

    2013-01-01

    Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 microliters in the human eye and less than 1 microliter in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past ten years (1). PMID:22688698

  12. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium.

    PubMed Central

    Joseph, D P; Miller, S S

    1991-01-01

    1. Intracellular voltage recordings using conventional and double-barrelled chloride-selective microelectrodes have been used to identify several transport mechanisms at the apical and basolateral membranes of the isolated bovine retinal pigment epithelium (RPE)-choroid preparation. Intracellular recordings were obtained from two cell populations, melanotic (pigmented) and amelanotic (non-pigmented). The electrical properties of these two populations are practically identical. For melanotic cells the average apical resting membrane potential (VA) is -61 +/- 2 mV (mean +/- S.E.M., n = 49 cells, thirty-three eyes). For these cells the ratio of apical to basolateral membrane resistance (a) was 0.22 +/- 0.02. The mean transepithelial voltage and resistance were 6 +/- 1 mV and 138 +/- 7 omega cm2, respectively. 2. The apical membrane, which faces the distal retina, contains a Ba(2+)-inhibitable K+ conductance and a ouabain-inhibitable, electrogenic Na(+)-K+ pump. In addition it contains a bumetanide-sensitive mechanism, the putative Na(+)-K(+)-Cl- cotransporter. The basolateral membrane contains a DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid)-inhibitable chloride channel. The relative conductances of the apical and basolateral membranes to K+ and Cl- are TK approximately 0.9 and TCl approximately 0.7, respectively. 3. The ouabain-induced fast phase of apical membrane depolarization (0-30 s) was used to calculate the equivalent resistances of the apical (RA) and basolateral (RB) cell membranes, as well as the paracellular or shunt resistance (RS). They are: 3190 +/- 400, 17920 +/- 2730 and 2550 +/- 200 omega (mean +/- S.E.M., n = 9 tissues), respectively. From these data the equivalent electromotive forces (EMF) at the apical (EA) and basolateral (EB) membranes were also calculated. They are: -69 +/- 5.0 and -24 +/- 5.0 mV, respectively. 4. Intracellular Cl- activity (aiCl) was measured using double-barreled ion-selective microelectrodes. In the steady state

  13. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration.

    PubMed

    Kay, Paul; Yang, Yit C; Paraoan, Luminita

    2013-07-01

    The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal-blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.

  14. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni; Haimi, Suvi; Verdoold, Vincent; Juuti-Uusitalo, Kati; Grijpma, Dirk; Skottman, Heli

    2017-01-04

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell therapies show tremendous potential for the treatment of retinal degenerative diseases. A tissue engineering approach, where cells are delivered to the subretinal space on a biodegradable carrier as a sheet, shows great promise for these RPE cell therapies. The aim of the present study was to assess whether a flexible, elastic and biodegradable poly(trimethylene carbonate) (PTMC) film promotes the formation of functional hESC-RPE and performs better than often used biodegradable poly(d,l-lactide) (PDLLA) film. Human ESC-RPE maturation and functionality on PTMC films was assessed by cell proliferation assays, RPE-specific gene and protein expression, phagocytic activity and growth factor secretion. It is demonstrated that the mechanical properties of PTMC films have close resemblance to those of the native Bruch's membrane and support the formation hESC-RPE monolayer in serum-free culture conditions with high degree of functionality. In contrast, use of PDLLA films did not lead to the formation of confluent monolayers of hESC-RPE cells and had unsuitable mechanical properties for retinal application. In conclusion, the present study indicates that flexible and elastic biodegradable PTMC films show potential for retinal tissue engineering applications. Copyright © 2017 John Wiley & Sons, Ltd.

  15. The Project MACULA Retinal Pigment Epithelium Grading System for Histology and Optical Coherence Tomography in Age-Related Macular Degeneration

    PubMed Central

    Zanzottera, Emma C.; Messinger, Jeffrey D.; Ach, Thomas; Smith, R. Theodore; Freund, K. Bailey; Curcio, Christine A.

    2015-01-01

    Purpose. To seek pathways of retinal pigment epithelium (RPE) fate in age-related macular degeneration via a morphology grading system; provide nomenclature, visualization targets, and metrics for clinical imaging and model systems. Methods. Donor eyes with geographic atrophy (GA) or choroidal neovascularization (CNV) and one GA eye with previous clinical spectral-domain optical coherence tomography (SDOCT) imaging were processed for histology, photodocumented, and annotated at predefined locations. Retinal pigment epithelial cells contained spindle-shaped melanosomes, apposed a basal lamina or basal laminar deposit (BLamD), and exhibited recognizable morphologies. Thicknesses and unbiased estimates of frequencies were obtained. Results. In 13 GA eyes (449 locations), ‘Shedding,’ ‘Sloughed,’ and ‘Dissociated’ morphologies were abundant; 22.2% of atrophic locations had ‘Dissociated’ RPE. In 39 CNV eyes (1363 locations), 37.3% of locations with fibrovascular/fibrocellular scar had ‘Entombed’ RPE; ‘Sloughed,’ ‘Dissociated,’ and ‘Bilaminar’ morphologies were abundant. Of abnormal RPE, CNV and GA both had ∼35% ‘Sloughed’/‘Intraretinal,’ with more Intraretinal in CNV (9.5% vs. 1.8%). ‘Shedding’ cells associated with granule aggregations in BLamD. The RPE layer did not thin, and BLamD remained thick, with progression. Granule-containing material consistent with three morphologies correlated to SDOCT hyperreflective foci in the previously examined GA patient. Conclusions. Retinal pigment epithelium morphology indicates multiple pathways in GA and CNV. Atrophic/scarred areas have numerous cells capable of transcribing genes and generating imaging signals. Shed granule aggregates, possibly apoptotic, are visible in SDOCT, as are ‘Dissociated’ and ‘Sloughed’ cells. The significance of RPE phenotypes is addressable in longitudinal, high-resolution imaging in clinic populations. Data can motivate future molecular phenotyping

  16. Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery

    PubMed Central

    Lundh von Leithner, Peter; Ciurtin, Coziana

    2010-01-01

    Purpose The vertebrate retina develops from the center to the periphery. In amphibians and fish the retinal margin continues to proliferate throughout life, resulting in retinal expansion. This does not happen in mammals. However, some mammalian peripheral retinal pigment epithelial (RPE) cells continue to divide, perhaps as a vestige of this mechanism. The RPE cells are adjacent to the ciliary margin, a known stem cell source. Here we test the hypothesis that peripheral RPE is fundamentally different from central RPE by challenging different regions with microscopic laser burns and charting differential responses in terms of levels of proliferation and the regions over which this proliferation occurs. Methods Microscopic RPE lesions were undertaken in rats at different eccentricities and the tissue stained for proliferative markers Ki67 and bromodeoxyuridine (BrdU) and the remodeling metalloproteinase marker 2 (MMP2). Results All lesions produced local RPE proliferation and tissue remodeling. Significantly more mitosis resulted from peripheral than central lesions. Unexpectedly, single lesions also resulted in RPE cells proliferating across the entire retina. Their number did not increase linearly with lesion number, indicating that they may be a specific population. All lesions repaired and formed apparently normal relations with the neural retina. Repaired RPE was albino. Conclusions These results highlight regional RPE differences, revealing an enhanced peripheral repair capacity. Further, all lesions have a marked impact on both local and distant RPE cells, demonstrating a pan retinal signaling mechanism triggering proliferation across the tissue plane. The RPE cells may represent a distinct population as their number did not increase with multiple lesions. The fact that repairing cells were hypopigmented is of interest because reduced pigment is associated with enhanced proliferative capacities in the developing neural retina. PMID:20360994

  17. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo

    PubMed Central

    Jhan, Yong-Yu; Chien, Ke-Hung; Chung, Yu-Chien; Hung, Kuo-Hsuan; Chang, Chia-Ching; Lee, Chao-Kuei; Tseng, Wei-Lien; Hwang, De-Kuang; Hsu, Chia-Hsien; Lin, Tai-Chi; Chiou, Shih-Hwa; Chen, Shih-Jen

    2016-01-01

    Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo. PMID:27564261

  18. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  19. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.

    PubMed

    Yoshii, Chika; Ueda, Yoko; Okamoto, Mitumasa; Araki, Masasuke

    2007-03-01

    In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.

  20. Anatomical and Gene Expression Changes in the Retinal Pigmented Epithelium Atrophy 1 (rpea1) Mouse: A Potential Model of Serous Retinal Detachment

    PubMed Central

    Luna, Gabriel; Lewis, Geoffrey P.; Linberg, Kenneth A.; Chang, Bo; Hu, Quiri; Munson, Peter J.; Maminishkis, Arvydas; Miller, Sheldon S.; Fisher, Steven K.

    2016-01-01

    Purpose The purpose of this study was to examine the rpea1 mouse whose retina spontaneously detaches from the underlying RPE as a potential model for studying the cellular effects of serous retinal detachment (SRD). Methods Optical coherence tomography (OCT) was performed immediately prior to euthanasia; retinal tissue was subsequently prepared for Western blotting, microarray analysis, immunocytochemistry, and light and electron microscopy (LM, EM). Results By postnatal day (P) 30, OCT, LM, and EM revealed the presence of small shallow detachments that increased in number and size over time. By P60 in regions of detachment, there was a dramatic loss of PNA binding around cones in the interphotoreceptor matrix and a concomitant increase in labeling of the outer nuclear layer and rod synaptic terminals. Retinal pigment epithelium wholemounts revealed a patchy loss in immunolabeling for both ezrin and aquaporin 1. Anti-ezrin labeling was lost from small regions of the RPE apical surface underlying detachments at P30. Labeling for tight-junction proteins provided a regular array of profiles outlining the periphery of RPE cells in wild-type tissue, however, this pattern was disrupted in the mutant as early as P30. Microarray analysis revealed a broad range of changes in genes involved in metabolism, signaling, cell polarity, and tight-junction organization. Conclusions These data indicate changes in this mutant mouse that may provide clues to the underlying mechanisms of SRD in humans. Importantly, these changes include the production of multiple spontaneous detachments without the presence of a retinal tear or significant degeneration of outer segments, changes in the expression of proteins involved in adhesion and fluid transport, and a disrupted organization of RPE tight junctions that may contribute to the formation of focal detachments. PMID:27603725

  1. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ

    PubMed Central

    Ji, Xiaojie; Liu, Ye; Hurd, Ron; Wang, Jieping; Fitzmaurice, Bernie; Nishina, Patsy M.; Chang, Bo

    2016-01-01

    Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse

  2. Complement expression in retinal pigment epithelial cells is modulated by activated macrophages.

    PubMed

    Luo, Chang; Zhao, Jiawu; Madden, Angelina; Chen, Mei; Xu, Heping

    2013-07-01

    Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1β, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2-3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10-30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b

  3. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool

    PubMed Central

    Iwasaki, Yuko; Sugita, Sunao; Mandai, Michiko; Yonemura, Shigenobu; Onishi, Akishi; Ito, Shin-ichiro; Mochizuki, Manabu; Ohno-Matsui, Kyoko; Takahashi, Masayo

    2016-01-01

    Purpose To establish a novel protocol for differentiation of retinal pigment epithelium (RPE) with high purity from mouse induced pluripotent stem cells (iPSC). Methods Retinal progenitor cells were differentiated from mouse iPSC, and RPE differentiation was then enhanced by activation of the Wnt signaling pathway, inhibition of the fibroblast growth factor signaling pathway, and inhibition of the Rho-associated, coiled-coil containing protein kinase signaling pathway. Expanded pigmented cells were purified by plate adhesion after Accutase® treatment. Enriched cells were cultured until they developed a cobblestone appearance with cuboidal shape. The characteristics of iPS-RPE were confirmed by gene expression, immunocytochemistry, and electron microscopy. Functions and immunologic features of the iPS-RPE were also evaluated. Results We obtained iPS-RPE at high purity (approximately 98%). The iPS-RPE showed apical-basal polarity and cellular structure characteristic of RPE. Expression levels of several RPE markers were lower than those of freshly isolated mouse RPE but comparable to those of primary cultured RPE. The iPS-RPE could form tight junctions, phagocytose photoreceptor outer segments, express immune antigens, and suppress lymphocyte proliferation. Conclusion We successfully developed a differentiation/purification protocol to obtain mouse iPS-RPE. The mouse iPS-RPE can serve as an attractive tool for functional and morphological studies of RPE. PMID:27385038

  4. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca2+ signaling in human retinal pigment epithelial cells

    PubMed Central

    Ikarashi, Rina; Akechi, Honami; Kanda, Yuzuki; Ahmad, Alsawaf; Takeuchi, Kouhei; Morioka, Eri; Sugiyama, Takashi; Ebisawa, Takashi; Ikeda, Masaaki; Ikeda, Masayuki

    2017-01-01

    Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks. PMID:28276525

  5. Ginsenoside Rg-1 protects retinal pigment epithelium (RPE) cells from cobalt chloride (CoCl2) and hypoxia assaults.

    PubMed

    Li, Ke-Ran; Zhang, Zhi-Qing; Yao, Jin; Zhao, Yu-Xia; Duan, Jing; Cao, Cong; Jiang, Qin

    2013-01-01

    Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.

  6. Ultrathin Polyimide Membrane as Cell Carrier for Subretinal Transplantation of Human Embryonic Stem Cell Derived Retinal Pigment Epithelium

    PubMed Central

    Ilmarinen, Tanja; Hiidenmaa, Hanna; Kööbi, Peeter; Nymark, Soile; Sorkio, Anni; Wang, Jing-Huan; Stanzel, Boris V.; Thieltges, Fabian; Alajuuma, Päivi; Oksala, Olli; Kataja, Marko; Uusitalo, Hannu; Skottman, Heli

    2015-01-01

    In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation. PMID:26606532

  7. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Bretz, Colin A; Becker, Silke; Gambhir, Deeksha; Smith, George W; Samulski, R Jude; Wittchen, Erika S; Quilliam, Lawrence A; Chrzanowska-Wodnicka, Magdalena; Hartnett, M Elizabeth

    2016-01-01

    To test the hypothesis that increased Rap1a activity specifically in retinal pigment epithelial cells resists choroidal neovascularization (CNV), self-complementary adeno-associated virus 2 (scAAV2) with RPE65-promoter-driven GFP vectors were generated and introduced subretinally into Rap1b-deficient mice. Six-week-old mice that received subretinal control (scAAV2-Con) or constitutively active Rap1a (scAAV2-CARap1a) showed strong GFP at the 5 × 108 viral particle/µl dose 5 weeks later without altering retinal morphology or function. Compared to scAAV2-Con- or phosphate-buffered saline (PBS)-injected, eyes injected with scAAV2-CARap1a had increased Rap1 in retinal pigment epithelial (RPE)/choroidal lysates and a significant reduction in CNV volume 7 days after laser, comparable to eyes that received intravitreal anti-VEGF versus IgG control. scAAV2-CARap1a-, but not anti-VEGF-, injected eyes had increased pan-cadherin in RPE/choroids. In cultured RPE cells, increased active Rap1a inhibited TNFα-induced disassociation of junctional pan-cadherin/β-catenin complexes, increased transepithelial electrical resistance through an interaction of β-catenin with phosphorylated scaffold protein, IQGAP1, and inhibited choroidal endothelial cell (CEC) transmigration of an RPE monolayer. This evidence shows that increased Rap1a activity specifically in RPE cells is sufficient to reduce CEC transmigration and CNV and involves IQGAP1-mediated protection of RPE junctional complexes. PMID:27606349

  8. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells.

    PubMed

    Cheng, Li-Bo; Li, Ke-Ran; Yi, Nan; Li, Xiu-Miao; Wang, Feng; Xue, Bo; Pan, Ying-Shun; Yao, Jin; Jiang, Qin; Wu, Zhi-Feng

    2017-01-04

    Activation of NF-E2-related factor 2 (Nrf2) signaling could protect cells from ultra violet (UV) radiation. We aim to provoke Nrf2 activation via downregulating its inhibitor Keap1 by microRNA-141 ("miR-141"). In both human retinal pigment epithelium cells (RPEs) and retinal ganglion cells (RGCs), forced-expression of miR-141 downregulated Keap1, causing Nrf2 stabilization, accumulation and nuclear translocation, which led to transcription of multiple antioxidant-responsive element (ARE) genes (HO1, NOQ1 and GCLC). Further, UV-induced reactive oxygen species (ROS) production and cell death were significantly attenuated in miR-141-expressing RPEs and RGCs. On the other hand, depletion of miR-141 via expressing its inhibitor antagomiR-141 led to Keap1 upregulation and Nrf2 degradation, which aggravated UV-induced death of RPEs and RGCs. Significantly, Nrf2 shRNA knockdown almost abolished miR-141-mediated cytoprotection against UV in RPEs. These results demonstrate that miR-141 targets Keap1 to activate Nrf2 signaling, which protects RPEs and RGCs from UV radiation.

  9. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration

    PubMed Central

    Kay, Paul; Yang, Yit C; Paraoan, Luminita

    2013-01-01

    The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD. PMID:23663427

  10. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells.

    PubMed

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.

  11. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells.

    PubMed

    Sorkio, Anni; Porter, Patrick J; Juuti-Uusitalo, Kati; Meenan, Brian J; Skottman, Heli; Burke, George A

    2015-09-01

    Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.

  12. Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis

    PubMed Central

    Nasonkin, Igor O.; Merbs, Shannath L.; Lazo, Kevin; Oliver, Verity F.; Brooks, Matthew; Patel, Krushangi; Enke, Raymond A.; Nellissery, Jacob; Jamrich, Milan; Le, Yun Z.; Bharti, Kapil; Fariss, Robert N.; Rachel, Rivka A.; Zack, Donald J.; Rodriguez-Boulan, Enrique J.; Swaroop, Anand

    2013-01-01

    Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease. PMID:23406904

  13. Alpha Crystallins in the Retinal Pigment Epithelium and Implications for the Pathogenesis and Treatment of Age-Related Macular Degeneration

    PubMed Central

    Kannan, Ram; Sreekumar, Parameswaran G.; Hinton, David R.

    2015-01-01

    Background αA- and αB crystallins are principal members of the small heat shock protein family and elicit both a cell protective function and a chaperone function. α-Crystallins have been found to be prominent proteins in normal and pathological retina emphasizing the importance for in-depth understanding of their function and significance. Scope of Review Retinal pigment epithelial cells (RPE) play a vital role in the pathogenesis of age-related macular degeneration (AMD). This review addresses a number of cellular functions mediated by α-crystallins in the retina. Prominent expression of αB crystallin in mitochondria may serve to protect cells from oxidative injury. αB crystallin as secretory protein via exosomes can offer neuroprotection to adjacent RPE cells and photoreceptors. The availability of chaperone-containing minipeptides of αB crystallin could prove to be a valuable new tool for therapeutic treatment of retinal disorders. Major Conclusions α-Crystallins are expressed in cytosol and mitochondria of RPE cells and are regulated during oxygen-induced retinopathy and during development. α-Crystallins protect RPE from oxidative-and ER stress-induced injury and autophagy. αB-Crystallin is a modulator of angiogenesis and vascular endothelial growth factor. αB Crystallin is secreted via exosomal pathway. Minichaperone peptides derived from αB Crystallin prevent oxidant induced cell death and have therapeutic potential. General Significance Overall, this review summarizes several novel properties of α-crystallins and their relevance to maintaining normal retinal function. In particular, the use of α-crystallin derived peptides is a promising therapeutic strategy to combat retinal diseases such as AMD. PMID:26026469

  14. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration.

    PubMed

    Vigneswara, Vasanthy; Esmaeili, Maryam; Deer, Louise; Berry, Martin; Logan, Ann; Ahmed, Zubair

    2015-09-01

    Axotomised retinal ganglion cells (RGCs) die rapidly by apoptosis and fail to regenerate because of the limited availability of neurotrophic factors and a lack of axogenic stimuli. However, we have recently showed that pigment epithelium-derived factor (PEDF) promotes RGC survival and axon regeneration after optic nerve crush injury. PEDF has multiple fragments of the native peptide that are neuroprotective, anti-angiogenic and anti-inflammatory. Here we investigated the neuroprotective and axogenic properties of a fragment of PEDF, PEDF-34, in retinal neurons in vitro and when delivered by intravitreal injection and eye drops in vivo. We found that PEDF-34 was 43% more neuroprotective and 52% more neuritogenic than PEDF-44 in vitro. Moreover, in vivo, intravitreal delivery of 1.88nM PEDF-34 was 71% RGC neuroprotective at 21days after optic nerve crush compared to intact controls, whilst daily eye drops containing 1.88nM PEDF-34 promoted 87% RGC survival. After topical eye drop delivery, PEDF-34 was detected in the vitreous body within 30min and attained physiologically relevant concentrations in the retina by 4h peaking at 1.4±0.05nM by 14days. In eye drop- compared to intravitreal-treated PEDF-34 animals, 55% more RGC axons regenerated 250μm beyond the optic nerve lesion. We conclude that daily topical eye drop application of PEDF-34 is superior to weekly intravitreal injections in promoting RGC survival and axon regeneration through both direct effects on retinal neurons and indirect effects on other retinal cells.

  15. A Multiplex High-Throughput Gene Expression Assay to Simultaneously Detect Disease and Functional Markers in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium

    PubMed Central

    Ferrer, Marc; Corneo, Barbara; Davis, Janine; Wan, Qin; Miyagishima, Kiyoharu Joshua; King, Rebecca; Maminishkis, Arvydas; Marugan, Juan; Sharma, Ruchi; Shure, Michael; Temple, Sally; Miller, Sheldon

    2014-01-01

    There is continuing interest in the development of lineage-specific cells from induced pluripotent stem (iPS) cells for use in cell therapies and drug discovery. Although in most cases differentiated cells show features of the desired lineage, they retain fetal gene expression and do not fully mature into “adult-like” cells. Such cells may not serve as an effective therapy because, once implanted, immature cells pose the risk of uncontrolled growth. Therefore, there is a need to optimize lineage-specific stem cell differentiation protocols to produce cells that no longer express fetal genes and have attained “adult-like” phenotypes. Toward that goal, it is critical to develop assays that simultaneously measure cell function and disease markers in high-throughput format. Here, we use a multiplex high-throughput gene expression assay that simultaneously detects endogenous expression of multiple developmental, functional, and disease markers in iPS cell-derived retinal pigment epithelium (RPE). We optimized protocols to differentiate iPS cell-derived RPE that was then grown in 96- and 384-well plates. As a proof of principle, we demonstrate differential expression of eight genes in iPS cells, iPS cell-derived RPE at two different differentiation stages, and primary human RPE using this multiplex assay. The data obtained from the multiplex gene expression assay are significantly correlated with standard quantitative reverse transcription-polymerase chain reaction-based measurements, confirming the ability of this high-throughput assay to measure relevant gene expression changes. This assay provides the basis to screen for compounds that improve RPE function and maturation and target disease pathways, thus providing the basis for effective treatments of several retinal degenerative diseases. PMID:24873859

  16. MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells.

    PubMed Central

    Shattuck, R L; Wood, L D; Jaffe, G J; Richmond, A

    1994-01-01

    We have characterized constitutive and cytokine-regulated MGSA/GRO alpha, -beta, and -gamma gene expression in normal retinal pigment epithelial (RPE) cells and a malignant melanoma cell line (Hs294T) to discern the mechanism for MGSA/GRO constitutive expression in melanoma. In RPE cells, constitutive MGSA/GRO alpha, -beta, and -gamma mRNAs are not detected by Northern (RNA) blot analysis although nuclear runoff experiments show that all three genes are transcribed. In Hs294T cells, constitutive MGSA/GRO alpha expression is detectable by Northern blot analysis, and the level of basal MGSA/GRO alpha transcription is 8- to 30-fold higher than in RPE cells. In contrast, in Hs294T cells, basal MGSA/GRO beta and -gamma transcription is only twofold higher than in RPE cells and no beta or gamma mRNA is detected by Northern blot. These data suggest that the constitutive MGSA/GRO alpha mRNA in Hs294T cells is due to increased basal MGSA/GRO alpha gene transcription. The cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) significantly increase the mRNA levels for all three MGSA/GRO isoforms in Hs294T and RPE cells, and both transcriptional and posttranscriptional mechanisms are operational. Nuclear runoff assays indicate that in RPE cells, a 1-h IL-1 treatment induces a 10- to 20-fold increase in transcription of MGSA/GRO alpha, -beta and -gamma but only a 2-fold increase in Hs294T cells. Similarly, chloramphenicol acetyltransferase (CAT) reporter gene analysis using the MGSA/GRO alpha, -beta, and -gamma promoter regions demonstrates that IL-1 treatment induces an 8- to 14-fold increase in CAT activity in RPE cells but only a 2-fold increase in Hs294T cells. The effect of deletion or mutation of the MGSA/GRO alpha NF-kappa B element, combined with data from gel mobility shift analyses, indicates that the NF-kappa B p50/p65 heterodimer in RPE cells plays an important role in IL-1- and TNF alpha-enhanced gene transcription. In Hs294T cells, gel shift

  17. Component characteristics of the vectorial transport system for taurine in isolated bovine retinal pigment epithelium.

    PubMed Central

    Kundaiker, S; Hussain, A A; Marshall, J

    1996-01-01

    1. A wide range of substrate concentrations (5-1600 microM) were used to screen for the presence of systems capable of transporting taurine into isolated and free-floating samples of bovine retinal pigment epithelium (RPE). Both high and low affinity systems displaying Michaelis-Menten saturation kinetics were identified. The high affinity system was characterized by a K(m) of 23 microM and a V(max) of 86.7 pmol (5 min)(-1) (4 mm disc of tissue sample)(-1). Similarly, the low affinity system was characterized by a K(m) of 507 microM and a V(max) of 344 pmol (5 min)(-1)(4 mm disc)(-1). 2. Ussing-type incubation chambers and double-label radiotracer techniques were used to assess the presence of specific taurine carriers on apical and basolateral surfaces of the RPE. High affinity carriers were shown to be present on both surfaces and the kinetic constants (K(m) and V(max)) for apical and basolateral systems were determined as 23.2 microM and 34.8 pmol (5 min)(-1) (4 mm disc)(-1) and 29 microM and 54.7 pmol (5 min)(-1)(4 mm disc)(-1), respectively. Both these high affinity systems were sodium dependent with a Hill coefficient of about 2.0 indicating that two sodium ions are required for the translocation of one molecule of taurine. The low affinity system was unevenly distributed over the two surfaces of the RPE, basolateral capacities being roughly twofold higher. The basolateral system was totally insensitive to sodium whereas the apical one with 50% sodium sensitivity suggested the presence of low affinity carrier heterogeneity. 3. A temperature-dependent mechanism for the release of pre-loaded taurine from bovine RPF was also demonstrated. 4. The effect of [K+]o trans-RPF gradients on the vectorial transport of taurine across the isolated preparation was also investigated. The results demonstrated that the direction and magnitude of taurine transport could be controlled by physiological variations in the extracellular concentration of potassium. 5. The determined

  18. Adult Limbal Neurosphere Cells: A Potential Autologous Cell Resource for Retinal Cell Generation

    PubMed Central

    Chen, Xiaoli; Thomson, Heather; Cooke, Jessica; Scott, Jennifer; Hossain, Parwez; Lotery, Andrew

    2014-01-01

    The Corneal limbus is a readily accessible region at the front of the eye, separating the cornea and sclera. Neural colonies (neurospheres) can be generated from adult corneal limbus in vitro. We have previously shown that these neurospheres originate from neural crest stem/progenitor cells and that they can differentiate into functional neurons in vitro. The aim of this study was to investigate whether mouse and human limbal neurosphere cells (LNS) could differentiate towards a retinal lineage both in vivo and in vitro following exposure to a developing retinal microenvironment. In this article we show that LNS can be generated from adult mice and aged humans (up to 97 years) using a serum free culture assay. Following culture with developing mouse retinal cells, we detected retinal progenitor cell markers, mature retinal/neuronal markers and sensory cilia in the majority of mouse LNS experiments. After transplantation into the sub-retinal space of neonatal mice, mouse LNS cells expressed photoreceptor specific markers, but no incorporation into host retinal tissue was seen. Human LNS cells also expressed retinal progenitor markers at the transcription level but mature retinal markers were not observed in vitro or in vivo. This data highlights that mouse corneal limbal stromal progenitor cells can transdifferentiate towards a retinal lineage. Complete differentiation is likely to require more comprehensive regulation; however, the accessibility and plasticity of LNS makes them an attractive cell resource for future study and ultimately therapeutic application. PMID:25271851

  19. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration)

    PubMed Central

    Su, Ching-Chieh; Chan, Chi-Ming; Chen, Han-Min; Wu, Chia-Chun; Hsiao, Chien-Yu; Lee, Pei-Lan; Lin, Victor Chia-Hsiang; Hung, Chi-Feng

    2014-01-01

    During the course of proliferative vitreoretinopathy (PVR), the retinal pigment epithelium (RPE) cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF) can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation. PMID:25110866

  20. Effects of increasing numbers of phagocytic inclusions on human retinal pigment epithelial cells in culture: a model for aging.

    PubMed Central

    Boulton, M; Marshall, J

    1986-01-01

    Cultures of human retinal pigment epithelial cells have been challenged with a number of biological (lipofuscin, melanin, and rod outer segments) and non-biological (latex microspheres) particles at a variety of concentrations. The particles were chosen to include examples of both degradable and non-degradable systems. A range of morphological changes were observed by phase contrast microscopy, and these became more atypical with increasing concentration. At the highest concentration cells had ingested so many particles that many had died and others had ruptured. The time course of these changes indicated a relationship between cellular lytic activity and the capacity of the particle to degrade. The potential of this system as a model for studying senescence is discussed. Images PMID:3790481

  1. [Study of blue light induced DNA damage of retinal pigment epithelium(RPE) cells and the protection of vitamin C].

    PubMed

    Zhou, Jian Wei; Ren, Guo Liang; Zhang, Xiao Ming; Zhu, Xi; Lin, Hai Yan; Zhou, Ji Lin

    2003-10-01

    To evaluate protection of vitamin C on blue light-induced DNA damage of human retinal pigment epithelium (RPE) cells. The cultured RPE cells were divided into 3 groups: Control group (no blue light exposure), blue light exposure group (blue light exposure for 20 minutes) and blue light exposure + vitamin C group (blue light exposure + 100 mumol/L vitamin C). Travigen's comet assay kit and Euclid comet assay software were used to assay the DNA damage levels. The DNA percentage in the tail of electrophoretogram in the three groups were 18.44%, 54.42% and 32.43% respectively (p < 0.01). Tail moments were 8.2, 48.3, and 18.4 respectively (p < 0.01). Blue light could induce DNA damage to RPE cells but vitamin C could protect the RPE cells from the blue light-induced DNA damage.

  2. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    PubMed Central

    Sugimoto, Masahiko; Kondo, Mineo

    2016-01-01

    Aim. We investigated whether lecithin-bound iodine (LBI) can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19) cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs) of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1) intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation). But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1). The levels of monocyte chemoattractant protein-1 (MCP-1) and Chemokine (C-C Motif) Ligand 11 (CCL-11) were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1) and 5.46 ± 1.9 pg/mL for CCL-11). Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia. PMID:27340563

  3. Cytoplasmic and Nuclear Anti-Apoptotic Roles of αB-Crystallin in Retinal Pigment Epithelial Cells

    PubMed Central

    Yoo, Seung Hee; Jeong, Na Young; Ryu, Won Yeol; Ahn, Hee Bae; Park, Woo Chan; Rho, Sae Heun; Yoon, Hee Seong; Choi, Yung Hyun; Yoo, Young Hyun

    2012-01-01

    In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis. PMID:23049853

  4. Lipofuscin Redistribution and Loss Accompanied by Cytoskeletal Stress in Retinal Pigment Epithelium of Eyes With Age-Related Macular Degeneration

    PubMed Central

    Ach, Thomas; Tolstik, Elen; Messinger, Jeffrey D.; Zarubina, Anna V.; Heintzmann, Rainer; Curcio, Christine A.

    2015-01-01

    Purpose. Lipofuscin (LF) and melanolipofuscin (MLF) of the retinal pigment epithelium (RPE) are the principal sources of autofluorescence (AF) signals in clinical fundus–AF imaging. Few details about the subcellular distribution of AF organelles in AMD are available. We describe the impact of aging and AMD on RPE morphology revealed by the distribution of AF LF/MLF granules and actin cytoskeleton in human tissues. Methods. Thirty-five RPE-Bruch's membrane flatmounts from 35 donors were prepared (postmortem: ≤4 hours). Ex vivo fundus examination at the time of accession revealed either absence of chorioretinal pathologies (10 tissues; mean age: 83.0 ± 2.6 years) or stages of AMD (25 tissues; 85.0 ± 5.8 years): early AMD, geographic atrophy, and late exudative AMD. Retinal pigment epithelium cytoskeleton was labeled with AlexaFluor647-Phalloidin. Tissues were imaged on a spinning-disk fluorescence microscope and a high-resolution structured illumination microscope. Results. Age-related macular degeneration impacts individual RPE cells by (1) lipofuscin redistribution by (i) degranulation (granule-by-granule loss) and/or (ii) aggregation and apparent shedding into the extracellular space; (2) enlarged RPE cell area and conversion from convex to irregular and sometimes concave polygons; and (3) cytoskeleton derangement including separations and breaks around subretinal deposits, thickening, and stress fibers. Conclusions. We report an extensive and systematic en face analysis of LF/MLF-AF in AMD eyes. Redistribution and loss of AF granules are among the earliest AMD changes and could reduce fundus AF signal attributable to RPE at these locations. Data can enhance the interpretation of clinical fundus–AF and provide a basis for future quantitative studies. PMID:25758814

  5. Tunicamycin-induced Endoplasmic Reticulum Stress Upregulates the Expression of Pentraxin 3 in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hwang, Narae; Kwon, Min-Young; Cha, Jae Bong; Chung, Su Wol

    2016-01-01

    Purpose To investigate the production of long pentraxin 3 (PTX3) in response to tunicamycin-induced endoplasmic reticulum (ER) stress and its role in ER stress-associated cell death, PTX3 expression was evaluated in the human retinal pigment epithelial cell line, ARPE-19. Methods PTX3 production in ARPE-19 cells was analyzed in the absence or presence of tunicamycin treatment by enzyme-linked immunosorbent assay. PTX3 protein and mRNA levels were estimated using western blot analysis and real-time reverse transcription-polymerase chain reaction, respectively. Protein and mRNA levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and ARPE-19 cell viability were measured in the presence of tunicamycin-induced ER stress in control or PTX3 small hairpin RNA (shRNA)-transfected ARPE-19 cells. Results The protein and mRNA levels of PTX3 were found to be significantly increased by tunicamycin treatment. PTX3 production was significantly decreased in inositol-requiring enzyme 1α shRNA-transfected ARPE-19 cells compared to control shRNA-transfected cells. Furthermore, pretreatment with the NF-κB inhibitor abolished tunicamycin-induced PTX3 production. Decreased cell viability and prolonged protein and mRNA expression of CHOP were observed under tunicamycin-induced ER stress in PTX3 shRNA transfected ARPE-19 cells. Conclusions These results suggest that PTX3 production increased in the presence of tunicamycin-induced ER stress. Therefore, PTX3 could be an important protector of ER stress-induced cell death in human retinal pigment epithelial cells. Inositol-requiring enzyme 1α and the NF-κB signaling pathway may serve as potential targets for regulation of PTX3 expression in the retina. Therefore, their role in PTX3 expression needs to be further investigated. PMID:27980366

  6. In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy

    PubMed Central

    Tam, Johnny; Liu, Jianfei; Dubra, Alfredo; Fariss, Robert

    2016-01-01

    Purpose The purpose of this study was to establish that retinal pigment epithelial (RPE) cells take up indocyanine green (ICG) dye following systemic injection and that adaptive optics enhanced indocyanine green ophthalmoscopy (AO-ICG) enables direct visualization of the RPE mosaic in the living human eye. Methods A customized adaptive optics scanning light ophthalmoscope (AOSLO) was used to acquire high-resolution retinal fluorescence images of residual ICG dye in human subjects after intravenous injection at the standard clinical dose. Simultaneously, multimodal AOSLO images were also acquired, which included confocal reflectance, nonconfocal split detection, and darkfield. Imaging was performed in 6 eyes of three healthy subjects with no history of ocular or systemic diseases. In addition, histologic studies in mice were carried out. Results The AO-ICG channel successfully resolved individual RPE cells in human subjects at various time points, including 20 minutes and 2 hours after dye administration. Adaptive optics-ICG images of RPE revealed detail which could be correlated with AO dark-field images of the same cells. Interestingly, there was a marked heterogeneity in the fluorescence of individual RPE cells. Confirmatory histologic studies in mice corroborated the specific uptake of ICG by the RPE layer at a late time point after systemic ICG injection. Conclusions Adaptive optics-enhanced imaging of ICG dye provides a novel way to visualize and assess the RPE mosaic in the living human eye alongside images of the overlying photoreceptors and other cells. PMID:27564519

  7. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy

    PubMed Central

    Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases. PMID:27009841

  8. A Simple and Scalable Process for the Differentiation of Retinal Pigment Epithelium From Human Pluripotent Stem Cells

    PubMed Central

    Maruotti, Julien; Wahlin, Karl; Gorrell, David; Bhutto, Imran; Lutty, Gerard

    2013-01-01

    Age-related macular degeneration (AMD), the leading cause of irreversible vision loss and blindness among the elderly in industrialized countries, is associated with the dysfunction and death of the retinal pigment epithelial (RPE) cells. As a result, there has been significant interest in developing RPE culture systems both to study AMD disease mechanisms and to provide substrate for possible cell-based therapies. Because of their indefinite self-renewal, human pluripotent stem cells (hPSCs) have the potential to provide an unlimited supply of RPE-like cells. However, most protocols developed to date for deriving RPE cells from hPSCs involve time- and labor-consuming manual steps, which hinder their use in biomedical applications requiring large amounts of differentiated cells. Here, we describe a simple and scalable protocol for the generation of RPE cells from hPSCs that is less labor-intensive. After amplification by clonal propagation using a myosin inhibitor, differentiation was induced in monolayers of hPSCs, and the resulting RPE cells were purified by two rounds of whole-dish single-cell passage. This approach yields highly pure populations of functional hPSC-derived RPE cells that display many characteristics of native RPE cells, including proper pigmentation and morphology, cell type-specific marker expression, polarized membrane and vascular endothelial growth factor secretion, and phagocytic activity. This work represents a step toward mass production of RPE cells from hPSCs. PMID:23585288

  9. Bystander effects elicited by single-cell photo-oxidative blue-light stimulation in retinal pigment epithelium cell networks

    PubMed Central

    Ishii, Masaaki; Rohrer, Bärbel

    2017-01-01

    ‘Bystander effect’ refers to the induction of biological effects in cells not directly targeted. The retinal pigment epithelium consists of hexagonal cells, forming a monolayer interconnected by gap junctions (GJs). Oxidative stress initiated in an individual cell by photostimulation (488 nm) triggered changes in reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (ψm). The Ca2+ signal was transmitted to neighboring cells slowly and non-uniformly; the ROS signal spread fast and radially. Increased Ca2+ levels were associated with a loss in ψm. GJ blockers prevented the spreading of the Ca2+, but not the ROS-related signal. The GJ-mediated Ca2+ wave was associated with cell death by 24 h, requiring endoplasmic reticulum–mitochondria Ca2+ transfer. Ensuing cell death was correlated with baseline Ca2+ levels, and baseline Ca2+ levels were correlated with pigmentation. Hence, local oxidative stress in a donor cell can trigger changes in certain connected recipient cells, a signal that required GJ communication and an ROS-Ca2+ dual-hit. Finally, damage apparently occurred in susceptible cells, which correlated with baseline Ca2+ levels. PMID:28179989

  10. Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation

    PubMed Central

    Collin, Gayle B.; Hubmacher, Dirk; Charette, Jeremy R.; Hicks, Wanda L.; Stone, Lisa; Yu, Minzhong; Naggert, Jürgen K.; Krebs, Mark P.; Peachey, Neal S.; Apte, Suneel S.; Nishina, Patsy M.

    2015-01-01

    Human gene mutations have revealed that a significant number of ADAMTS (a disintegrin-like and metalloproteinase (reprolysin type) with thrombospondin type 1 motifs) proteins are necessary for normal ocular development and eye function. Mutations in human ADAMTSL4, encoding an ADAMTS-like protein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL et pupillae. Here, we report the first ADAMTSL4 mouse model, tvrm267, bearing a nonsense mutation in Adamtsl4. Homozygous Adamtsl4tvrm267 mice recapitulate the EL phenotype observed in humans, and our analysis strongly suggests that ADAMTSL4 is required for stable anchorage of zonule fibers to the lens capsule. Unexpectedly, homozygous Adamtsl4tvrm267 mice exhibit focal retinal pigment epithelium (RPE) defects primarily in the inferior eye. RPE dedifferentiation was indicated by reduced pigmentation, altered cellular morphology and a reduction in RPE-specific transcripts. Finally, as with a subset of patients with ADAMTSL4 mutations, increased axial length, relative to age-matched controls, was observed and was associated with the severity of the RPE phenotype. In summary, the Adamtsl4tvrm267 model provides a valuable tool to further elucidate the molecular basis of zonule formation, the pathophysiology of EL and ADAMTSL4 function in the maintenance of the RPE. PMID:26405179

  11. A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish

    PubMed Central

    Thomas, Jennifer L.; Thummel, Ryan

    2013-01-01

    Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies. PMID:24192580

  12. Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility.

    PubMed

    Hammer, Martin; Vilser, Walthard; Riemer, Thomas; Schweitzer, Dietrich

    2008-01-01

    The purpose of this study was to measure the hemoglobin oxygenation in retinal vessels and to evaluate the sensitivity and reproducibility of the measurement. Using a fundus camera equipped with a special dual wavelength transmission filter and a color charge-coupled device camera, two monochromatic fundus images at 548 and 610 nm were recorded simultaneously. The optical densities of retinal vessels for both wavelengths and their ratio, which is known to be proportional to the oxygen saturation, were calculated. From 50-deg images, the used semiautomatic vessel recognition and tracking algorithm recognized and measured vessels of 100 microm or more in diameter. On average, arterial and venous oxygen saturations were measured at 98+/-10.1% and 65+/-11.7%, respectively. For measurements in the same vessel segments from the five images per subject, standard deviations of 2.52% and 3.25% oxygen saturation were found in arteries and veins, respectively. Respiration of 100% oxygen increased the mean arterial and venous oxygen saturation by 2% and 7% respectively. A simple system for noninvasive optical oximetry, consisting of a special filter in a fundus camera and software, was introduced. It is able to measure the oxygen saturation in retinal branch vessels with reproducibility and sensitivity suitable for clinical investigations.

  13. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    PubMed Central

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  14. Kinetic properties and Na+ dependence of rheogenic Na(+)-HCO3- co-transport in frog retinal pigment epithelium.

    PubMed Central

    la Cour, M

    1991-01-01

    1. Na(+)-HCO3- co-transport across the retinal membrane of the frog retinal pigment epithelium was studied by means of double-barrelled pH-selective microelectrodes. Transient changes in the intracellular pH were monitored in response to abrupt changes in the Na+ concentration on the retinal side of the epithelium. 2. The experiments were performed as follows. The Na(+)-HCO3- co-transport was inhibited by perfusing the retinal side of the epithelium with a Na(+)-free solution. The co-transport was then stimulated by changing the perfusate from the Na(+)-free solution to a solution which contained from 5 to 110 mM-Na+. The resulting inward Na(+)-HCO3- co-transport produced an intracellular alkalinization, the initial rate of which was used to calculate the initial rate of Na(+)-HCO3- co-transport, JHCO3-. 3. The Na+ dependence of the Na(+)-HCO3- co-transport was studied at two different values of extracellular pH (7.40 and 7.10), at constant extracellular HCO3- concentration (27.5 mM) and at two different extracellular HCO3- concentrations (27.5 mM and 55 mM) at constant extracellular pH (7.40). In these experiments, the calculated values of JHCO3- followed single Michaelis-Menten kinetics with respect to the extracellular Na+ concentration. 4. The data are consistent with a model in which the co-transporter has a single binding site for the Na+ ion with an apparent affinity constant (apparent Km) of 37 mM. The apparent affinity constant for Na+ was independent of the extracellular concentration of CO3(2-) in the range of 16-65 microM, and of the extracellular HCO3- concentration in the range 27.5-55 mM. 5. The NaCO3- ion-pair hypothesis, in which sodium binds to the co-transporter and is translocated across the cell membrane as the NaCO3- ion pair, was analysed. For stoichiometries 1:2 and 1:3 of the Na(+)-HCO3- co-transport, the NaCO3- ion-pair hypothesis was found incompatible with the data. 6. The intracellular buffer capacity as measured by the CO2 method was

  15. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway.

    PubMed

    Eidet, J R; Reppe, S; Pasovic, L; Olstad, O K; Lyberg, T; Khan, A Z; Fostad, I G; Chen, D F; Utheim, T P

    2016-03-04

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin's potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.

  16. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway

    PubMed Central

    Eidet, J. R.; Reppe, S.; Pasovic, L.; Olstad, O. K.; Lyberg, T.; Khan, A. Z.; Fostad, I. G.; Chen, D. F.; Utheim, T. P.

    2016-01-01

    Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated. PMID:26940175

  17. Action spectrum for photochemical retinal pigment epithelium (RPE) disruption in an in vivo monkey model

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.

    2016-03-01

    Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.

  18. Retinal thinning is uniquely associated with medial temporal lobe atrophy in neurologically normal older adults.

    PubMed

    Casaletto, Kaitlin B; Ward, Michael E; Baker, Nicholas S; Bettcher, Brianne M; Gelfand, Jeffrey M; Li, Yaqiao; Chen, Robert; Dutt, Shubir; Miller, Bruce; Kramer, Joel H; Green, Ari J

    2017-03-01

    Given the converging pathologic and epidemiologic data indicating a relationship between retinal integrity and neurodegeneration, including Alzheimer's disease (AD), we aimed to determine if retinal structure correlates with medial temporal lobe (MTL) structure and function in neurologically normal older adults. Spectral-domain optical coherence tomography, verbal and visual memory testing, and 3T-magnetic resonance imaging of the brain were performed in 79 neurologically normal adults enrolled in a healthy aging cohort study. Retinal nerve fiber thinning and reduced total macular and macular ganglion cell volumes were each associated with smaller MTL volumes (ps < 0.04). Notably, these markers of retinal structure were not associated with primary motor cortex or basal ganglia volumes (regions relatively unaffected in AD) (ps > 0.70), or frontal, precuneus, or temporoparietal volumes (regions affected in later AD Braak staging ps > 0.20). Retinal structure was not significantly associated with verbal or visual memory consolidation performances (ps > 0.14). Retinal structure was associated with MTL volumes, but not memory performances, in otherwise neurologically normal older adults. Given that MTL atrophy is a neuropathological hallmark of AD, retinal integrity may be an early marker of ongoing AD-related brain health.

  19. Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration.

    PubMed

    Dwyer, Mary A; Kazmin, Dmitri; Hu, Peng; McDonnell, Donald P; Malek, Goldis

    2011-02-01

    Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood-retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD.

  20. Multi-nucleate retinal pigment epithelium cells of the human macula exhibit a characteristic and highly specific distribution

    PubMed Central

    Starnes, Austin C; Huisingh, Carrie; McGwin, Gerald; Sloan, Kenneth R; Ablonczy, Zsolt; Smith, R. Theodore; Curcio, Christine A; Ach, Thomas

    2016-01-01

    Background The human retinal pigment epithelium (RPE) is reportedly 3% bi-nucleated. The importance to human vision of multi-nucleated (MN)-RPE cells could be clarified with more data about their distribution in central retina. Methods Nineteen human RPE-flatmounts (9≤51years, 10>80 years) were imaged at 12 locations: 3 eccentricities (fovea, perifovea, near periphery) in 4 quadrants (superior, inferior, temporal, nasal). Image stacks of lipofuscin-attributable autofluorescence and phalloidin labeled F-actin cytoskeleton were obtained using a confocal fluorescence microscope. Nuclei were devoid of autofluorescence and were marked using morphometric software. Cell areas were approximated by Voronoi regions. Mean number of nuclei per cell among eccentricity/quadrant groups and by age were compared using Poisson and binominal regression models. Results A total of 11403 RPE cells at 200 locations were analyzed: 94.66 % mono-, 5.31% bi-, 0.02% tri-nucleate, and 0.01% with 5 nuclei. Age had no effect on number of nuclei. There were significant regional differences: highest frequencies of MN-cells were found at the perifovea (9.9%) and near periphery (6.8%). The fovea lacked MN-cells almost entirely. The nasal quadrant had significantly more MN-cells compared to other quadrants, at all eccentricities. Conclusion This study demonstrates MN-RPE cells in human macula. MN-cells may arise due to endoreplication, cell fusion, or incomplete cell division. The topography of MN-RPE cells follows the topography of photoreceptors; with near-absence at the fovea (cones only) and high frequency at perifovea (highest rod density). This distribution might reflect specific requirements of retinal metabolism or other mechanisms addressable in further studies. PMID:26923500

  1. Large-scale purification of porcine or bovine photoreceptor outer segments for phagocytosis assays on retinal pigment epithelial cells.

    PubMed

    Parinot, Célia; Rieu, Quentin; Chatagnon, Jonathan; Finnemann, Silvia C; Nandrot, Emeline F

    2014-12-12

    Analysis of one of the vital functions of retinal pigment epithelial (RPE) cells, the phagocytosis of spent aged distal fragments of photoreceptor outer segments (POS) can be performed in vitro. Photoreceptor outer segments with stacks of membranous discs containing the phototransduction machinery are continuously renewed in the retina. Spent POS are eliminated daily by RPE cells. Rodent, porcine/bovine and human RPE cells recognize POS from various species in a similar manner. To facilitate performing large series of experiments with little variability, a large stock of POS can be isolated from porcine eyes and stored frozen in aliquots. This protocol takes advantage of the characteristic of photopigments that display an orange color when kept in the dark. Under dim red light, retinae are collected in a buffer from opened eyecups cut in halves. The retinal cell suspension is homogenized, filtered and loaded onto a continuous sucrose gradient. After centrifugation, POS are located in a discrete band in the upper part of the gradient that has a characteristic orange color. POS are then collected, spun, resuspended sequentially in wash buffers, counted and aliquoted. POS obtained this way can be used for phagocytosis assays and analysis of protein activation, localization or interaction at various times after POS challenge. Alternatively, POS can be labeled with fluorophores, e.g., FITC, before aliquoting for subsequent fluorescence quantification of POS binding or engulfment. Other possible applications include the use of modified POS or POS challenge combined with stress conditions to study the effect of oxidative stress or aging on RPE cells.

  2. Large-Scale Purification of Porcine or Bovine Photoreceptor Outer Segments for Phagocytosis Assays on Retinal Pigment Epithelial Cells

    PubMed Central

    Parinot, Célia; Rieu, Quentin; Chatagnon, Jonathan; Finnemann, Silvia C.; Nandrot, Emeline F.

    2014-01-01

    Analysis of one of the vital functions of retinal pigment epithelial (RPE) cells, the phagocytosis of spent aged distal fragments of photoreceptor outer segments (POS) can be performed in vitro. Photoreceptor outer segments with stacks of membranous discs containing the phototransduction machinery are continuously renewed in the retina. Spent POS are eliminated daily by RPE cells. Rodent, porcine/bovine and human RPE cells recognize POS from various species in a similar manner. To facilitate performing large series of experiments with little variability, a large stock of POS can be isolated from porcine eyes and stored frozen in aliquots. This protocol takes advantage of the characteristic of photopigments that display an orange color when kept in the dark. Under dim red light, retinae are collected in a buffer from opened eyecups cut in halves. The retinal cell suspension is homogenized, filtered and loaded onto a continuous sucrose gradient. After centrifugation, POS are located in a discrete band in the upper part of the gradient that has a characteristic orange color. POS are then collected, spun, resuspended sequentially in wash buffers, counted and aliquoted. POS obtained this way can be used for phagocytosis assays and analysis of protein activation, localization or interaction at various times after POS challenge. Alternatively, POS can be labeled with fluorophores, e.g., FITC, before aliquoting for subsequent fluorescence quantification of POS binding or engulfment. Other possible applications include the use of modified POS or POS challenge combined with stress conditions to study the effect of oxidative stress or aging on RPE cells. PMID:25548986

  3. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells.

    PubMed

    Long, Qin; Cao, Xiaoguang; Bian, Ailing; Li, Ying

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  4. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis. PMID:27747237

  5. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    PubMed Central

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  6. Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: Involvement of NFAT5

    PubMed Central

    Vogler, Stefanie; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2015-01-01

    Purpose High intake of dietary salt increases extracellular osmolarity, which results in hypertension, a risk factor of neovascular age-related macular degeneration. Neovascular retinal diseases are associated with edema. Various factors and channels, including vascular endothelial growth factor (VEGF) and aquaporins (AQPs), influence neovascularization and the development of edema. Therefore, we determined whether extracellular hyperosmolarity alters the expression of VEGF and AQPs in cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA. Results Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. Conclusions Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and

  7. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    PubMed

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  8. Cloned pigmented retinal epiehtlium. The role of microfilaments in the differentiation of cell shape

    PubMed Central

    1979-01-01

    3-wk-old clones of pigmented epithelial cells from chick retina can be divided into four zones on the basis of cellular morphology and pigmentation. These zones appear to represent different stages in the re-expression of differentiation: those cells with essentially no differentiated characteristics are at the outer edge and those with the greatest number are at the center. Cells of the colony exhibit three different types of movement when analyzed by time-lapse cinephotomicrography: focal contractions, extension and retraction of apical protrusions, and undulations of the lateral membranes. All the cells of the colony contain microfilaments, 4--7 nm in Diam, which are primarily arranged as apical and basal webs. In addition, less well defined filamentous networks are found in the apical protrusions and lateral interdigitations. When colonies are treated with 10 micrograms/ml of the drug cytochalasin B (CCB), the apical microfilament arrays are disrupted and movement stops. Both phenomena are reversible upon removal of the drug. During the process of redifferentiation, the cells change their shape from squamous to cuboidal, and the greatest change is found where the colony exhibits the greatest number of focal contractions. The evidence suggests that the apical microfilament arrays are directly responsible for the observed movements, particularly the focal contractions, and that focal contractions contribute to the development of the differentiated cellular shape. Possible roles for the other movements are discussed. PMID:572829

  9. Synergy in the spectral tuning of retinal pigments: complete accounting of the opsin shift in bacteriorhodopsin.

    PubMed Central

    Hu, J; Griffin, R G; Herzfeld, J

    1994-01-01

    UV-visible and solid-state NMR studies of a series of 6-s-trans protonated Schiff bases of retinal with aniline show that the bathochromic shift induced by weakening the imine counterion is significantly greater in the 6-s-trans conformation than in the 6-s-cis conformation. Based on the observed magnitude of this coupling between the electronic effects of 6-s isomerization and imine counterion strength in the model compounds, the large opsin shift and unusual chemical shifts in light-adapted bacteriorhodopsin can be fully explained. These phenomena therefore do not require a negative point charge or polarizability effects in the chromophore binding pocket. The results are consistent with an effective center-to-center distance between the Schiff base and its counterion of about 4 A in light-adapted bacteriorhodopsin. PMID:8090738

  10. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    SciTech Connect

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin Yan, Biao

    2013-09-06

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.

  11. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway.

    PubMed

    Sivagurunathan, Suganya; Palanisamy, Karthikka; Arunachalam, Jayamuruga Pandian; Chidambaram, Subbulakshmi

    2017-03-01

    PIWI subfamily of proteins is shown to be primarily expressed in germline cells. They maintain the genomic integrity by silencing the transposable elements. Although the role of PIWI proteins in germ cells has been documented, their presence and function in somatic cells remains unclear. Intriguingly, we detected all four members of PIWI-like proteins in human ocular tissues and somatic cell lines. When HIWI2 was knocked down in retinal pigment epithelial cells, the typical honeycomb morphology was affected. Further analysis showed that the expression of tight junction (TJ) proteins, CLDN1, and TJP1 were altered in HIWI2 knockdown. Moreover, confocal imaging revealed disrupted TJP1 assembly at the TJ. Previous studies report the role of GSK3β in regulating TJ proteins. Accordingly, phospho-kinase proteome profiler array indicated increased phosphorylation of Akt and GSK3α/β in HIWI2 knockdown, suggesting that HIWI2 might affect TJ proteins through Akt-GSK3α/β signaling axis. Moreover, treating the HIWI2 knockdown cells with wortmannin increased the levels of TJP1 and CLDN1. Taken together, our study demonstrates the presence of PIWI-like proteins in somatic cells and the possible role of HIWI2 in preserving the functional integrity of epithelial cells probably by modulating the phosphorylation status of Akt.

  12. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  13. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration.

    PubMed

    Kearns, Victoria; Mistry, Anita; Mason, Sharon; Krishna, Yamini; Sheridan, Carl; Short, Robert; Williams, Rachel L

    2012-08-01

    Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells grown on a synthetic substrate is a potential treatment for age-related macular degeneration (AMD), a common cause of irreversible vision loss in developed countries. Plasma polymers give the opportunity to tailor the surface chemistry of the artificial substrate whilst maintaining the bulk properties. In this study, plasma polymers with different functionalities were investigated in terms of their effect on RPE attachment and growth. Plasma polymers of acrylic acid (AC), allyl amine (AM) and allyl alcohol (AL) were fabricated and characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Octadiene (OD) hydrocarbon films and tissue culture polystyrene were used as controls. Wettability varied from hydrophobic OD to relatively hydrophilic AC. XPS demonstrated four very different surfaces with the expected functionalities. Attachment, proliferation and morphological examination of an RPE cell line and primary RPE cells were investigated. Both cell types grew on all surfaces, with the exception of OD, although the proliferation rate of primary cells was low. Good epithelial morphology was also demonstrated. Plasma polymerised films show potential as cell carrier surfaces for RPE cells in the treatment of AMD.

  14. DKK1 inhibits proliferation and migration in human retinal pigment epithelial cells via the Wnt/β-catenin signaling pathway.

    PubMed

    Zhou, Jinzi; Jiang, Jian; Wang, Shuhong; Xia, Xiaobo

    2016-08-01

    Retinal pigment epithelial (RPE) cells play important roles in diabetic retinopathy (DR). Dickkopf 1 (DKK1) has been reported to be important in the regulation of cell proliferation and migration. However, there are few previous studies regarding DKK1 in RPE cells. Therefore, in the present study, we investigated the effect of DKK1 on the proliferation and migration of human RPE cells, and the signaling mechanisms underlying these effects. The results showed that the overexpression of DKK1 significantly inhibited the proliferation and migration of ARPE-19 cells. In addition, overexpression of DKK1 markedly inhibited the expression of β-catenin and cyclin D1 in ARPE-19 cells. Collectively, the present findings suggest that the overexpression of DKK1 inhibited the proliferation and migration of RPE cells by suppressing the Wnt/β-catenin signaling pathway. Therefore, DKK1 are able to augment the growth of human RPE, and further studies are warranted to investigate the effects of DKK1 effects on DR.

  15. The influence of hypotonicity on large-conductance calcium-activated potassium channels in human retinal pigment epithelial cells.

    PubMed

    Sheu, Shwu-Jiuan; Wu, Sheng-Nan; Hu, Dan-Ning; Chen, Jane-Fane

    2004-12-01

    The aim of this study was to characterize the effects of hypotonicity on the activity of large-conductance Ca(2+)-activated K+ (BK(Ca)) channels in human retinal pigment epithelial (RPE R-50) cells. Effects of hypotonicity on ion currents were investigated with the aid of the patch-clamp technique. A regulatory volume decrease in response to a hypotonic solution (200 mOsm/L) was observed that could be blunted by paxilline. In whole-cell current recordings, a hypotonic solution (200 mOsm/L) reversibly increased the amplitude of K+ outward currents (I(K)). The increase of I(K) could be reversed by iberiotoxin (200 nM), paxilline (1 microM), or tetrandrine (5 microM), but not by glibenclamide (10 microM), disulphonic acid (DIDS) (100 microM), or dequalinium dichloride (10 microM). In RPE R-50 cells pretreated with thapsigargin, aristolochic acid, or pertussis toxin, the increased amplitude of I(K) in response to hypotonicity was unaltered. In cell-attached patches, an increase in BK(Ca)-channel activity was observed during hypotonicity-induced cell swelling. The enhanced channel activity elicited under this condition was mainly mediated by an increase in the number of long-lived openings. These findings support the evidence for the coupling of volume swelling to the functional activity of BK(Ca) channels.

  16. Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL

    PubMed Central

    Burgoyne, Thomas; O'Connor, Marie N.; Seabra, Miguel C.; Cutler, Daniel F.; Futter, Clare E.

    2015-01-01

    ABSTRACT Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also known as GPR143), mutations in the human homologue of which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for the generation of cylindrical melanosomes in zebrafish, which in turn is required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together, our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localisation in the apical processes. PMID:25690007

  17. Light-induced damage and its diagnosis in two-photon excited autofluorescence imaging of retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Chen, Danni; Qu, Junle; Xu, Gaixia; Zhao, Lingling; Niu, Hanben

    2007-05-01

    In this paper, a novel method for the differentiation of the retinal pigment epithelium (RPE) cells after light-induced damage by two-photon excitation is presented. Fresh samples of RPE cells of pig eyes are obtained from local slaughterhouse. Light-induced damage is produced by the output from Ti: sapphire laser which is focused onto the RPE layer. We study the change of the autofluorescence properties of RPE after two-photon excitation with the same wavelength. Preliminary results show that after two-photon excitation, there are two clear changes in the emission spectrum. The first change is the blue-shift of the emission peak. The emission peak of the intact RPE is located at 592nm, and after excitation, it shifts to 540nm. It is supposed that the excitation has led to the increased autofluorescence of flavin whose emission peak is located at 540nm. The second change is the increased intensity of the emission peak, which might be caused by the accelerated aging because the autofluorescence of RPE would increase during aging process. Experimental results indicate that two-photon excitation could not only lead to the damage of the RPE cells in multiphoton RPE imaging, but also provide an evaluation of the light-induced damage.

  18. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling.

    PubMed

    Gong, Yi-Qing; Huang, Wei; Li, Ke-Ran; Liu, Yuan-Yuan; Cao, Guo-Fan; Cao, Cong; Jiang, Qin

    2016-09-13

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis.

  19. Differential autophagic effects of vital dyes in retinal pigment epithelial ARPE-19 and photoreceptor 661W cells

    PubMed Central

    Sheu, Shwu-Jiuan; Chen, Jiunn-Liang; Bee, Youn-Shen; Chen, Yi-An; Lin, Shi-Han; Shu, Chih-Wen

    2017-01-01

    Indocyanine green (ICG) and brilliant blue G (BBG) are commonly used vital dyes to remove internal limiting membrane (ILM) in vitreoretinal surgery. The vital dyes have shown cytotoxic effects in ocular cells. Autophagy is a stress responsive pathway for either protecting cells or promoting cell death. However, the role of autophagy in ocular cells in response to the vital dyes remains unknown. In this study, we found that ICG and BBG reduced cell viability in both human retinal pigment epithelial ARPE-19 and mouse photoreceptor 661W cells. ICG and BBG induced lipidated GFP-LC3-II and LC3-II in ARPE-19 and 661W cells. Combination treatment with the autophagy inhibitor chloroquine indicated that ICG and BBG reduced autophagic flux in ARPE-19 cells, whereas the vital dyes induced autophagic flux in 661W cells. Moreover, genetic and pharmacological ablation of autophagy enhanced vital dyes-induced cytotoxicity in ocular cells. Dietary supplements, including resveratrol, lutein, and CoQ10, induced autophagy and diminished the cytotoxic effects of ICG and BBG in ocular cells. These results suggest that autophagy may protect ARPE-19 and 661W cells from vital dyes-induced damage. PMID:28358857

  20. iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study

    PubMed Central

    Westenskow, Peter D.; Bucher, Felicitas; Bravo, Stephen; Kurihara, Toshihide; Feitelberg, Daniel; Paris, Liliana P.; Aguilar, Edith; Lin, Jonathan H.; Friedlander, Martin

    2016-01-01

    Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE) cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD), a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE) viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes. PMID:26880994

  1. Inhibition or Stimulation of Autophagy Affects Early Formation of Lipofuscin-Like Autofluorescence in the Retinal Pigment Epithelium Cell.

    PubMed

    Lei, Lei; Tzekov, Radouil; Li, Huapeng; McDowell, J Hugh; Gao, Guangping; Smith, W Clay; Tang, Shibo; Kaushal, Shalesh

    2017-03-29

    The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is dependent on the effectiveness of photoreceptor outer segment material degradation. This study explored the role of autophagy in the fate of RPE lipofuscin degradation. After seven days of feeding with either native or modified rod outer segments, ARPE-19 cells were treated with enhancers or inhibitors of autophagy and the autofluorescence was detected by fluorescence-activated cell sorting. Supplementation with different types of rod outer segments increased lipofuscin-like autofluorescence (LLAF) after the inhibition of autophagy, while the induction of autophagy (e.g., application of rapamycin) decreased LLAF. The effects of autophagy induction were further confirmed by Western blotting, which showed the conversion of LC3-I to LC3-II, and by immunofluorescence microscopy, which detected the lysosomal activity of the autophagy inducers. We also monitored LLAF after the application of several autophagy inhibitors by RNA-interference and confocal microscopy. The results showed that, in general, the inhibition of the autophagy-related proteins resulted in an increase in LLAF when cells were fed with rod outer segments, which further confirms the effect of autophagy in the fate of RPE lipofuscin degradation. These results emphasize the complex role of autophagy in modulating RPE autofluorescence and confirm the possibility of the pharmacological clearance of RPE lipofuscin by small molecules.

  2. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    PubMed Central

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  3. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport

    PubMed Central

    1990-01-01

    Changes in retinal pigment epithelial (RPE) cell volume were measured by monitoring changes in intracellular tetramethylammonium (TMA) using double-barreled K-resin microelectrodes. Hyperosmotic addition of 25 or 50 mM mannitol to the Ringer of the apical bath resulted in a rapid (approximately 30 s) osmometric cell shrinkage. The initial cell shrinkage was followed by a much slower (minutes) secondary shrinkage that is probably due to loss of cell solute. When apical [K+] was elevated from 2 to 5 mM during or before a hyperosmotic pulse, the RPE cell regulated its volume by reswelling towards control within 3-10 min. This change in apical [K+] is very similar to the increase in subretinal [K+]o that occurs after a transition from light to dark in the intact vertebrate eye. The K-dependent regulatory volume increase (RVI) was inhibited by apical Na removal, Cl reduction, or the presence of bumetanide. These results strongly suggest that a Na(K),Cl cotransport mechanism at the apical membrane mediates RVI in the bullfrog RPE. A unique aspect of this cotransporter is that it also functions at a lower rate under steady-state conditions. The transport requirements for Na, K, and Cl, the inhibition of RVI by bumetanide, and thermodynamic calculations indicate that this mechanism transports Na, K, and Cl in the ratio of 1:1:2. PMID:2286831

  4. Retinal pigment epithelium cell-derived exosomes: Possible relevance to CNV in wet-age related macular degeneration.

    PubMed

    Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-12-01

    Exosomes are small vesicles that are released by almost every cell type and play a crucial role in many physiological and pathological processes associated with different diseases. Specifically, they promote angiogenesis in the pathogenesis of some diseases. According to previous research, the proteins of exosomes taken from the aqueous humor (AH) of patients with wet-age related macular degeneration (AMD) may function as a new diagnostic biomarker of AMD, suggesting that exosomes may play an important role in the occurrence and development of choroidal neovascularization (CNV). Moreover, additional research has revealed that the levels of some protein makers of exosomes are up-regulated in aged retinal pigment epithelium (RPE) and that drusen and oxidative stress may promote the secretion of exosomes derived from RPE cells. Consequently, we hypothesize that RPE cell-derived exosomes may be relevant to CNV in wet AMD. If this hypothesis is proven correct, future studies based on this link may also help to elucidate the molecular mechanisms of wet AMD and to find new therapeutic targets for the treatment of AMD.

  5. Methylglyoxal, a reactive glucose metabolite, enhances autophagy flux and suppresses proliferation of human retinal pigment epithelial ARPE-19 cells.

    PubMed

    Chang, Yo-Chen; Hsieh, Ming-Chu; Wu, Horng-Jiun; Wu, Wen-Chuan; Kao, Ying-Hsien

    2015-10-01

    Methylglyoxal (MGO), a glycolytic metabolite, induces oxidative injury and apoptotic cell death that play a pathogenetic role in age-related macular degeneration (AMD). This study examined the impact of MGO on cell proliferation and autophagy flux in retinal pigment epithelium (RPE) ARPE-19 cells and elucidated the underlying mechanism. Short-term MGO exposure suppressed cell proliferation without induction of apoptotic cell death, increased production of reactive oxygen species, and potentiated H2O2-exhibited cytotoxicity in ARPE-19 cells. Conversely, pretreatment with N-acetylcysteine, a ROS scavenger, and aminoguanidine, an MGO blocker, prevented MGO-induced growth retardation. MGO significantly enhanced autophagy flux and increased intracellular accumulation of autophagosomes, which was functionally confirmed by addition of autophagy enhancer or inhibitors. Signaling kinetic observation indicated that MGO remarkably triggered phosphorylation of Akt, ERK1/2, p38 MAPK, and JNK1/2. Blockade of kinase activity demonstrated that the hyperphosphorylation of Akt, ERK1/2, JNK, and p38 MAPK were all involved in the MGO-enhanced autophagy and growth-arresting effect in ARPE-19 cells. Moreover, pretreatment with autophagic flux inhibitors including 3-methyladenine, bafilomycin A, and chloroquine effectively ameliorated MGO- but not H2O2-mediated ARPE-19 cytotoxicity. In conclusion, modulation of autophagy flux activity by using autophagic or kinase inhibitors may be an applicable modality to treat AMD.

  6. Apical Polarity of N-CAM and EMMPRIN in Retinal Pigment Epithelium Resulting from Suppression of Basolateral Signal Recognition

    PubMed Central

    Marmorstein, Alan D.; Gan, Yunbo C.; Bonilha, Vera L.; Finnemann, Silvia C.; Csaky, Karl G.; Rodriguez-Boulan, Enrique

    1998-01-01

    Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM's basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface. PMID:9700159

  7. Pathological Effects of Mutant C1QTNF5 (S163R) Expression in Murine Retinal Pigment Epithelium

    PubMed Central

    Dinculescu, Astra; Min, Seok-Hong; Dyka, Frank M.; Deng, Wen-Tao; Stupay, Rachel M.; Chiodo, Vince; Smith, W. Clay; Hauswirth, William W.

    2015-01-01

    Purpose The mutation S163R in complement C1q tumor necrosis factor–related protein-5 (C1QTNF5) causes an autosomal dominant disorder known as late-onset retinal degeneration (L-ORD). In this study, our goal is to evaluate the consequences of mutant S163R C1QTNF5 expression in mouse RPE following its delivery using an adeno-associated viral (AAV) vector. Methods We generated AAV vectors containing either human wild-type C1QTNF5 or mutant S163R C1QTNF5 driven by an RPE-specific BEST1 promoter, and delivered them subretinally into one eye of adult C57BL/6 mice. Transgene expression was detected by immunohistochemistry. Retinal function was assessed by full-field ERG. Pathological changes were further examined by digital fundus imaging and spectral-domain optical coherence tomography (SD-OCT). Results We show that the AAV-expressed mutant S163R leads to pathological effects similar to some of those found in patients with advanced L-ORD, including RPE thinning, RPE cell loss, and retinal degeneration. In addition, we provide in vivo evidence that mutant S163R C1QTNF5 can form large, transparent, spherical intracellular aggregates throughout the RPE, which are detectable by light microscopy. In contrast to AAV-expressed wild-type C1QTNF5, which is secreted apically from the RPE toward the photoreceptor cells and the outer limiting membrane, the S163R mutant is primarily routed toward the basal side of RPE, where it forms thick, extracellular deposits over time. Conclusions Adeno-associated viral–targeted expression of mutant S163R in the RPE represents a useful approach for quickly generating animal models that mimic pathological features of L-ORD and offers the potential to understand disease mechanisms and develop therapeutic strategies. PMID:26513502

  8. Retinal pigment epithelial fine structure in the great blue heron (Ardea herodias).

    PubMed

    Braekevelt, C R; Young, D L

    1994-09-01

    The fine structure of the retinal epithelium (RPE), choriocapillaris and Bruch's membrane (complexus basalis) has been studied by light and electron microscopy in the great blue heron (Ardea herodias). In this species the RPE consists of a single layer of cuboidal cells which display numerous basal (scleral) infoldings and plentiful apical (vitreal) processes which surround photoreceptor outer segments. These epithelial cells are joined laterally by a series of tight junctions located in the mid to basal region. Within the epithelial cells, smooth endoplasmic reticulum is very abundant while rough ER is not. Mitochondria (some of which are ring-shaped) and polysomes are abundant. In light-adaptation the RPE nuclei are large vesicular and basally located while the melanosomes of these cells are almost exclusively located within the apical processes. Myeloid bodies are large and numerous and often show ribosomes on their outer surface. Bruch's membrane (complexus basalis) shows the typical pentalaminate structure noted in the majority of vertebrates except teleosts. The choriocapillary endothelium is very thin facing Bruch's membrane but is only moderately fenestrated. The majority of these fenestrations show a single-layered diaphragm but double-layered diaphragms are also noted.

  9. A Simplified Mass-Transfer Model for Visual Pigments in Amphibian Retinal-Cone Outer Segments

    PubMed Central

    Weber, Paul W.; Howle, Laurens E.; Murray, Mark M.; Corless, Joseph M.

    2011-01-01

    When radiolabeled precursors and autoradiography are used to investigate turnover of protein components in photoreceptive cone outer segments (COSs), the labeled components—primarily visual pigment molecules (opsins)—are diffusely distributed along the COS. To further assess this COS labeling pattern, we derive a simplified mass-transfer model for quantifying the contributions of advective and diffusive mechanisms to the distribution of opsins within COSs of the frog retina. Two opsin-containing regions of the COS are evaluated: the core axial array of disks and the plasmalemma. Numerical solutions of the mass-transfer model indicate three distinct stages of system evolution. In the first stage, plasmalemma diffusion is dominant. In the second stage, the plasmalemma density reaches a metastable state and transfer between the plasmalemma and disk region occurs, which is followed by an increase in density that is qualitatively similar for both regions. The final stage consists of both regions slowly evolving to the steady-state solution. Our results indicate that autoradiographic and cognate approaches for tracking labeled opsins in the COS cannot be effective methodologies for assessing new disk formation at the base of the COS. PMID:21281566

  10. Progressive Early Breakdown of Retinal Pigment Epithelium Function in Hyperglycemic Rats

    PubMed Central

    Desjardins, Danielle M.; Yates, Phil W.; Dahrouj, Mohammad; Liu, Yueying; Crosson, Craig E.; Ablonczy, Zsolt

    2016-01-01

    Purpose Diabetic macular edema (DME), an accumulation of fluid in the subretinal space, is a significant cause of vision loss. The impact of diabetes on the breakdown of the inner blood–retina barrier (BRB) is an established event that leads to DME. However, the role of the outer BRB in ocular diabetes has received limited attention. We present evidence that the breakdown of normal RPE function in hyperglycemia facilitates conditions conducive to DME pathogenesis. Methods Brown Norway rats (130–150 g) were injected intraperitoneally with streptozotocin (STZ; 60 mg/kg) to induce hyperglycemia. After 4 weeks, Evans blue (EB) dye was injected intravenously to determine whether there was leakage of albumin into the retina. Subretinal saline blebs (0.5–1 μL) were placed 4 and 9 weeks after STZ injection, and time-lapse optical coherence tomography tracked the resorption rate. In a subset of rats, intravitreal bevacizumab, a humanized monoclonal antibody targeted to VEGF, was given at 5 weeks and resorption was measured at 9 weeks. Results The ability of the RPE to transport fluid was reduced significantly after 4 and 9 weeks of hyperglycemia with a reduction of over 67% at 9 weeks. No EB dye leakage from inner retinal vessels was measured in hyperglycemic animals compared to control. The intravitreal administration of bevacizumab at week 5 significantly increased the rate of fluid transport in rats subjected to hyperglycemia for 9 weeks. Conclusions These results demonstrate that chronic hyperglycemia altered RPE fluid transport, in part dependent on the actions of VEGF. These results support the idea that RPE dysfunction is an early event associated with hyperglycemia that contributes to fluid accumulation in DME. PMID:27191823

  11. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.; Jones, Melissa K.; Ferguson, Dave L.; Bryda, Elizabeth C.

    2015-01-01

    Purpose The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. Methods SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1rnu allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1rnu allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1rnu mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. Results After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. Conclusions This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression. PMID:24817311

  12. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    PubMed

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes.

  13. Identification and functional characterization of a dual GABA/taurine transporter in the bullfrog retinal pigment epithelium

    PubMed Central

    1995-01-01

    Intracellular microelectrodes, fluorescence imaging, and radiotracer flux techniques were used to investigate the physiological response of the retinal pigment epithelium (RPE) to the major retinal inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). GABA is released tonically in the dark by amphibian horizontal cells, but is not taken up by the nearby Muller cells. Addition of GABA to the apical bath produced voltage responses in the bullfrog RPE that were not blocked nor mimicked by any of the major GABA-receptor antagonists or agonists. Nipecotic acid, a substrate for GABA transport, inhibited the voltage effects of GABA. GABA and nipecotic acid also inhibited the voltage effects of taurine, suggesting that the previously characterized beta- alanine sensitive taurine carrier also takes up GABA. The voltage responses of GABA, taurine, nipecotic acid, and beta-alanine all showed first-order saturable kinetics with the following Km's: GABA (Km = 160 microM), beta-alanine (Km = 250 microM), nipecotic acid (Km = 420 microM), and taurine (Km = 850 microM). This low affinity GABA transporter is dependent on external Na, partially dependent on external Cl, and is stimulated in low [K]o, which approximates subretinal space [K]o during light onset. Apical GABA also produced a significant conductance increase at the basolateral membrane. These GABA-induced conductance changes were blocked by basal Ba2+, suggesting that GABA decreased basolateral membrane K conductance. In addition, the apical membrane Na/K ATPase was stimulated in the presence of GABA. A model for the interaction between the GABA transporter, the Na/K ATPase, and the basolateral membrane K conductance accounts for the electrical effects of GABA. Net apical-to-basal flux of [3H]-GABA was also observed in radioactive flux experiments. The present study shows that a high capacity GABA uptake mechanism with unique pharmacological properties is located at the RPE apical membrane and could play an

  14. The newt reprograms mature RPE cells into a unique multipotent state for retinal regeneration

    PubMed Central

    Islam, Md. Rafiqul; Nakamura, Kenta; Casco-Robles, Martin Miguel; Kunahong, Ailidana; Inami, Wataru; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2014-01-01

    The reprogramming of retinal pigment epithelium (RPE) cells in the adult newt immediately after retinal injury is an area of active research for the study of retinal disorders and regeneration. We demonstrate here that unlike embryonic/larval retinal regeneration, adult newt RPE cells are not directly reprogrammed into retinal stem/progenitor cells; instead, they are programmed into a unique state of multipotency that is similar to the early optic vesicle (embryo) but preserves certain adult characteristics. These cells then differentiate into two populations from which the prospective-neural retina and -RPE layers are formed with the correct polarity. Furthermore, our findings provide insight into the similarity between these unique multipotent cells in newts and those implicated in retinal disorders, such as proliferative vitreoretinopathy, in humans. These findings provide a foundation for biomedical approaches that aim to induce retinal self-regeneration for the treatment of RPE-mediated retinal disorders. PMID:25116407

  15. Identification of anthocyanin components of wild Chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries.

    PubMed

    Liu, Yixiang; Song, Xue; Han, Yong; Zhou, Feng; Zhang, Di; Ji, Baoping; Hu, Jimei; Lv, Yechun; Cai, Shengbao; Wei, Ying; Gao, Fengyi; Jia, Xiaonan

    2011-01-12

    Studies suggest that the consumption of berry fruits rich in anthocyanins may have beneficial effects on improving visual function. This study determined the total polyphenol and total anthocyanin contents in wild Chinese blueberries using the Folin-Ciocalteu reagent method and a pH differential method. Anthocyanin composition and quantity were characterized by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry coupled with mass selective detection. Total polyphenol and anthocyanin contents were 602.9 ± 9.2 and 177.8 ± 8.3 mg/100 g, respectively. Seventeen anthocyanins were discovered, and only 13 were tentatively identified in the wild blueberries. Anthocyanins of malvidin glycosylated with hexose or pentose accounted for >46% of total anthocyanin content. Furthermore, the effect of whole blueberries on retinal damage in pigmented rabbits upon light exposure was investigated, and the retinal functions were evaluated by electroretinogram (ERG). Pigmented rabbits were chosen for this experiment because of their large eyes, which facilitated the operative procedure and observation, and the similarity of their eyes to the human eye structure. Light-induced retinal damage was induced by exposure to white light at 15000 ± 1000 lx for 2 h. Feeding the rabbits with blueberries at a dosage of 1.2 or 4.9 g/kg/day for 4 weeks prior to light exposure effectively reduced photodamage to the retinas. This study adds to the growing body of data supporting the bioactivity of blueberries in improving mammal vision.

  16. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    PubMed Central

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular

  17. Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD

    PubMed Central

    Schütze, Christopher; Teleky, Katharina; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2016-01-01

    Background/aims To examine the reproducibility of lesion dimensions of the retinal pigment epithelium (RPE) in neovascular age-related macular degeneration (AMD) with polarisation-sensitive optical coherence tomography (PS-OCT), specifically imaging the RPE. Methods Twenty-six patients (28 eyes) with neovascular AMD were included in this study, and examined by a PS-OCT prototype. Each patient was scanned five times at a 1-day visit. The PS-OCT B-scan located closest to the macular centre presenting with RPE atrophy was identified, and the longitudinal diameter of the lesion was quantified manually using AutoCAD 2008. This procedure was followed for the identical B-scan position in all five scans per eye and patient. Reproducibility of qualitative changes in PS-OCT was evaluated. Interobserver variability was assessed. Results were compared with intensity-based spectral-domain OCT (SD-OCT) imaging. Results Mean variability of all atrophy lesion dimensions was 0.10 mm (SD±=0.06 mm). Coefficient of variation (SD±/mean) was 0.06 on average (SD±=0.03). Interobserver variability assessment showed a mean difference of 0.02 mm across all patients regarding RPE lesion size evaluation (paired t test: p=0.38). Spearman correlation coefficient was r=0.98, p<0.001. Results revealed a good overall reproducibility of ∼90%. PS-OCT specifically detected the RPE in all eyes compared with conventional intensity-based SD-OCT that was not capable to clearly identify RPE atrophy in 25 eyes (89.3%, p<0.01). Conclusions PS-OCT offers good reproducibility of RPE atrophy assessment in neovascular AMD, and may be suitable for precise RPE evaluation in clinical practice. PS-OCT unambiguously identifies RPE changes in choroidal neovascularisation compared with intensity-based SD-OCT that does not identify the RPE status reliably. PMID:26183936

  18. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN.

    PubMed

    Lin, Xiaohui; Zhou, Xiyuan; Liu, Danning; Yun, Lixia; Zhang, Lina; Chen, Xiaohai; Chai, Qinghe; Li, Langen

    2016-04-01

    Hyperglycemia or high-glucose (HG)-induced apoptosis in human retinal pigment epithelial (RPE) cells is a characteristic process in diabetic retinopathy. In our study, we examined whether microRNA-29 (miR-29) may regulate HG-induced RPE cell apoptosis. Human RPE cell line, ARPE-19 cells, was treated with various high concentration of glucose in vitro. HG-induced RPE cell apoptosis was examined by terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay and miR-29 gene expression by quantitative RT-PCR (qRT-PCR). miR-29 was then downregulated in RPE cells, and its effect on HG-induced apoptosis was examined by TUNEL assay and western blot assay on caspase-7 protein. Association of miR-29 on its downstream target, PTEN, in HG-induced RPE cell apoptosis was evaluated by dual-luciferase assay and qRT-PCR. PTEN was silenced in RPE cells. The effects of PTEN downregulation on miR-29-mediated HG-induced RPE cell apoptosis were also examined by TUNEL and western blot assays. HG induced significant apoptosis in RPE cells in a dose-dependent manner. miR-29 was upregulated by HG in RPE cells. miR-29 downregulation protected HG-induced apoptosis and reduced the production of caspase-7 protein in RPE cells. PTEN was shown to be directly downregulated by HG and then upregulated by miR-29 downregulation in RPE cells. Small interfering RNA (siRNA)-mediated PTEN downregulation reversed the protective effect of miR-29 downregulation on HG-induced RPE cell apoptosis. This study demonstrates that miR-29, through inverse association of PTEN, plays an important role in the process of HG-induced apoptosis in RPE cells.

  19. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    PubMed Central

    Sun, Min; Lu, Xiaoling; Hao, Lei; Wu, Tao; Zhao, Huanjiao; Wang, Chao

    2015-01-01

    Background Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L.) anthocyanin (PSPA), a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation) of human retinal pigment epithelial (RPE) cells, which perform essential functions for the visual process. Methods The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision. PMID:26070791

  20. αvβ5 Integrin/FAK/PGC-1α Pathway Confers Protective Effects on Retinal Pigment Epithelium

    PubMed Central

    Roggia, Murilo F.; Ueta, Takashi

    2015-01-01

    Purpose To elucidate the mechanism of the induction of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by photoreceptor outer segments (POS) and its effects on retinal pigment epithelium (RPE). Methods PGC-1α upregulation by POS was confirmed in ARPE-19 cells and in RPE ex vivo. To elucidate the mechanism, siRNAs against β5 integrin, CD36, Mer tyrosine kinase (MerTK), and Atg5, blocking antibodies against CD36 and MerTK, and a specific inhibitor for focal adhesion kinase (FAK) were used. We examined the effect of POS-induced PGC-1α upregulation on the levels of reactive oxygen species (ROS), mitochondrial biogenesis, senescence-associated β-galactosidase (SA-β-gal) after H2O2 treatment, and lysosomal activity. Lysosomal activity was evaluated through transcriptional factor EB and its target genes, and the activity of cathepsin D. Lipid metabolism after POS treatment was assessed using Oil Red O and BODIPY C11. RPE phenotypes of PGC-1α-deficient mice were examined. Results POS-induced PGC-1α upregulation was suppressed by siRNA against β5 integrin and a FAK inhibitor. siRNAs and blocking antibodies against CD36 and MerTK enhanced the effect of POS on PGC-1α. The upregulation of PGC-1α increased the levels of mRNA for antioxidant enzymes and stimulated mitochondrial biogenesis, decreased ROS levels, and reduced SA-β-gal staining in H2O2-treated ARPE-19 cells. PGC-1α was critical for lysosomal activity and lipid metabolism after POS treatment. PGC-1α-deficient mice demonstrated an accumulation of type 2 lysosomes in RPE, thickening of Bruch’s membrane, and poor choriocapillaris vasculature. Conclusions The binding, but not the internalization of POS confers protective effects on RPE cells through the αvβ5 integrin/FAK/PGC-1α pathway. PMID:26244551

  1. Profiling the microRNA Expression in Human iPS and iPS-derived Retinal Pigment Epithelium

    PubMed Central

    Wang, Heuy-Ching; Greene, Whitney A; Kaini, Ramesh R; Shen-Gunther, Jane; Chen, Hung-I H; Cai, Hong; Wang, Yufeng

    2014-01-01

    The purpose of this study is to characterize the microRNA (miRNA) expression profiles of induced pluripotent stem (iPS) cells and retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE). MiRNAs have been demonstrated to play critical roles in both maintaining pluripotency and facilitating differentiation. Gene expression networks accountable for maintenance and induction of pluripotency are linked and share components with those networks implicated in oncogenesis. Therefore, we hypothesize that miRNA expression profiling will distinguish iPS cells from their iPS-RPE progeny. To identify and analyze differentially expressed miRNAs, RPE was derived from iPS using a spontaneous differentiation method. MiRNA microarray analysis identified 155 probes that were statistically differentially expressed between iPS and iPS-RPE cells. Up-regulated miRNAs including miR-181c and miR-129–5p may play a role in promoting differentiation, while down-regulated miRNAs such as miR-367, miR-18b, and miR-20b are implicated in cell proliferation. Subsequent miRNA–target and network analysis revealed that these miRNAs are involved in cellular development, cell cycle progression, cell death, and survival. A systematic interrogation of temporal and spatial expression of iPS-RPE miRNAs and their associated target mRNAs will provide new insights into the molecular mechanisms of carcinogenesis, eye differentiation and development. PMID:25392691

  2. ROCK Inhibition Promotes Attachment, Proliferation, and Wound Closure in Human Embryonic Stem Cell–Derived Retinal Pigmented Epithelium

    PubMed Central

    Croze, Roxanne H.; Thi, William J.; Clegg, Dennis O.

    2016-01-01

    Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies. PMID:27917311

  3. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium

    PubMed Central

    1989-01-01

    Intracellular microelectrode techniques and intracellular pH (pHi) measurements using the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)- carboxyfluorescein (BCECF) were employed to characterize an electrogenic bicarbonate transport mechanism at the apical membrane of the frog retinal pigment epithelium (RPE). Reductions in apical concentrations of both [HCO3]o (at constant Pco2 or pHo) or [Na]o caused rapid depolarization of the apical membrane potential (Vap). Both of these voltage responses were inhibited when the concentration of the other ion was reduced or when 1 mM diisothiocyano-2-2 disulfonic acid stilbene (DIDS) was present in the apical bath. Reductions in apical [HCO3]o or [Na]o also produced a rapid acidification of the cell interior that was inhibited by apical DIDS. Elevating pHi at constant Pco2 (and consequently [HCO3]i) by the addition of apical NH4 (20 mM) produced an immediate depolarization of Vap. This response was much smaller when either apical [HCO3]o or [Na]o was reduced or when DIDS was added apically. These results strongly suggest the presence of an electrogenic NaHCO3 cotransporter at the apical membrane. Apical DIDS rapidly depolarized Vap by 2-3 mV and decreased pHi (and [HCO3]i), indicating that the transporter moves NaHCO3 and net negative charge into the cell. The voltage dependence of the transporter was assessed by altering Vap with transepithelial current and then measuring the DIDS-induced change in Vap. Depolarization of Vap increased the magnitude of the DIDS-induced depolarization, whereas hyperpolarization decreased it. Hyperpolarizing Vap beyond -114 mV caused the DIDS- induced voltage change to reverse direction. Based on this reversal potential, we calculate that the stoichiometry of the transporter is 1.6-2.4 (HCO3/Na). PMID:2553856

  4. The Human Ubiquitin Conjugating Enzyme, UBE2E3, Is Required for Proliferation of Retinal Pigment Epithelial Cells

    PubMed Central

    Plafker, Kendra S.; Farjo, Krysten M.; Wiechmann, Allan F.; Plafker, Scott M.

    2008-01-01

    Purpose Cell cycle progression is governed by the coordinated activities of kinases, phosphatases, and the ubiquitin system. The entire complement of ubiquitin pathway components that mediate this process in retinal pigment epithelial (RPE) cells remains to be identified. This study was undertaken to determine whether the human ubiquitin-conjugating enzyme, UBE2E3, is essential for RPE cell proliferation. Methods UBE2E3 expression and localization in telomerase-immortalized, human RPE cells was determined with a UBE2E3-specific antibody. The necessity for UBE2E3 in RPE proliferation was determined using small interfering (si)RNA to target the expression of the enzyme. Cell counts and immunolabeling for the proliferation marker Ki-67 and the cyclin-dependent kinase inhibitor p27Kip1 were performed to assess the consequences of UBE2E3 depletion. A mouse strain harboring a disrupted allele of UbcM2 (the mouse counterpart of UBE2E3) with the coding sequence for β-galactosidase was used to track the developmental expression of the enzyme in murine RPE cells. Results UBE2E3 localized in the nucleus of the immortalized RPE cells. Depletion of the enzyme by siRNA resulted in a cell-cycle exit accompanied by a loss of Ki-67, an increase in p27Kip1, and a doubling in cell area. Rescue experiments confirmed the specificity of the RNA interference. In vivo, UbcM2 was transcriptionally downregulated during RPE development in the mouse. Conclusions UBE2E3 is essential for the proliferation of RPE-1 cells and is downregulated during RPE layer maturation in the developing mouse eye. These findings indicate that UBE2E3 is a major enzyme in modulating the balance between RPE cell proliferation and differentiation. PMID:18614808

  5. [Role of the retinal pigment epithelium (RPE) in the pathogenesis and treatment of diabetic macular edema (DME)].

    PubMed

    Chmielewska, Katarzyna; Robaszkiewicz, Jacek; Kosatka, Mariusz

    2008-01-01

    Pigment epithelium-derived factor (PEDF) has recently been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, suggesting that loss of PEDF is involved in the pathogenesis of proliferative diabetic retinopathy. However, a protective role for PEDF in pericyte loss requires elucidation. Present studies suggest that PEDF proteins could protect against advanced glycation end product (AGE), which induce injury in retinal pericytes. Substitution of PEDF proteins may be a promising strategy in the treatment of patients with early diabetic retinopathy. Therefore, injury of RPE is the basic condition, not only of the progress of neovascularization, but initiation of early diabetic microangiopathy and macular edema as well. Recently new intravitreal drugs being used in the treatment of eye diseases with increased level of VEGE. Intravitreally administered a human, monoclonal anti-VEGF agent acts only as symptomatic treatment. It does not eliminate hypoxia and requires repeated administration. It is worth emphasizing, that VEGF functions are not limited to active angiogenesis, but also seems to require the maintenance and differentiation of mature blood vessels, such as the choriocapillaris. Therefore, delivery of these anti-VEGF treatments needs to be specific to sites of neovascularization or limited to a short duration, to prevent disruption of the normal vasculature. The effective method, which preserves RPE, improves oxygenation and release traction on the macula, leading to decreased permeability with subsequent resolution in DME, is pars plana vitrectomy with ILM peeling. There are several investigations that support the theoretical value of vitrectomy for the treatment of DME. Intraoperative administration of anti-VEGF agent and corticosteroids may additionally improve results of operative treatment.

  6. The effects of anti-vascular endothelial growth factor agents on human retinal pigment epithelial cells under high glucose conditions

    PubMed Central

    Oh, Jong Rok; Han, Jung Woo; Kim, Yoon Kyung; Ohn, Young-Hoon; Park, Tae Kwann

    2017-01-01

    AIM To investigate the effects of high glucose levels and anti-vascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab and aflibercept) on retinal pigment epithelium (RPE) cells. METHODS ARPE-19 cells were cultured at different glucose levels (5.5 mmol/L, 25 mmol/L, and 75 mmol/L). Cell viability was evaluated by MTT assay at 3d after treatment with D-glucose. Cell migration ability was measured by wound healing assay at 3d. A cell death detection kit was used to assess apoptosis at 3 and 14d. Cell proliferation was assessed by EdU assay at 3d. The culture medium was treated with anti-VEGF agents at clinically relevant concentrations. The experiment was then repeated at a different glucose level. RESULTS The viability and migration of ARPE-19 cells were significantly decreased in the presence of 75 mmol/L as compared to 5.5 mmol/L glucose. The percentage of TUNEL-positive cells was significantly increased and the proliferative potential was decreased with 75 mmol/L compared to 5.5 mmol/L glucose. There were no significant differences in the results between 25 mmol/L and 5.5 mmol/L glucose. In the presence of 75 mmol/L glucose, the groups treated with anti-VEGF showed decreased cell viability and proliferation and increased apoptosis. However, there were no significant differences between the anti-VEGF groups. CONCLUSION High glucose level decreases the viability, wound healing ability, and proliferation of RPE cells, while increasing apoptosis. Furthermore, anti-VEGF agents interfered with the physiological functions of RPE cells under high-glucose conditions, accompanied by decreases in cell viability and proliferation. PMID:28251077

  7. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3

    PubMed Central

    He, Hua; Kuriyan, Ajay E.; Su, Chen-Wei; Mahabole, Megha; Zhang, Yuan; Zhu, Ying-Ting; Flynn, Harry W.; Parel, Jean-Marie; Tseng, Scheffer C. G.

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is mediated by proliferation and epithelial mesenchymal transition (EMT) of retinal pigment epithelium (RPE). Because heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) purified from human amniotic membrane exerts anti-inflammatory and anti-scarring actions, we hypothesized that HC-HA/PTX3 could inhibit these PVR-related processes in vitro. In this study, we first optimized an ARPE-19 cell culture model to mimic PVR by defining cell density, growth factors, and cultivation time. Using this low cell density culture model and HA as a control, we tested effects of HC-HA/PTX3 on the cell viability (cytotoxicity), proliferation (EGF + FGF-2) and EMT (TGF-β1). Furthermore, we determined effects of HC-HA/PTX3 on cell migration (EGF + FGF-2 + TGF-β1) and collagen gel contraction (TGF-β1). We found both HA and HC-HA/PTX3 were not toxic to unstimulated RPE cells. Only HC-HA/PTX3 dose-dependently inhibited proliferation and EMT of stimulated RPE cells by down-regulating Wnt (β-catenin, LEF1) and TGF-β (Smad2/3, collagen type I, α-SMA) signaling, respectively. Additionally, HA and HC-HA/PTX3 inhibited migration but only HC-HA/PTX3 inhibited collagen gel contraction. These results suggest HC-HA/PTX3 is a non-toxic, potent inhibitor of proliferation and EMT of RPE in vitro, and HC-HA/PTX3’s ability to inhibit PVR formation warrants evaluation in an animal model. PMID:28252047

  8. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity.

    PubMed

    Hollborn, Margrit; Reichmuth, Konrad; Prager, Philipp; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2016-08-01

    One risk factor of neovascular age-related macular degeneration is systemic hypertension; hypertension is mainly caused by extracellular hyperosmolarity after consumption of dietary salt. In retinal pigment epithelial (RPE) cells, high extracellular osmolarity induces vascular endothelial growth factor (VEGF)-A (Hollborn et al. in Mol Vis 21:360-377, 2015). The aim of the present study was to determine whether extracellular hyperosmolarity and chemical hypoxia trigger the expression of further VEGF family members including placental growth factor (PlGF) in human RPE cells. Hyperosmotic media were made up by addition of 100 mM NaCl or sucrose. Chemical hypoxia was induced by CoCl2. Gene expression was quantified by real-time RT-PCR, and secretion of PlGF-2 was investigated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) was depleted using siRNA. Extracellular hyperosmolarity triggered expression of VEGF-A, VEGF-D, and PlGF genes, and secretion of PlGF-2. Hypoosmolarity decreased PlGF gene expression. Hypoxia induced expression of VEGF-A, VEGF-B, VEGF-D, and PlGF genes. Extracellular hyperosmolarity and hypoxia produced additive PlGF gene expression. Both hyperosmolarity and hypoxia induced expression of KDR and FLT-4 receptor genes, while hyperosmolarity caused neuropilin-2 and hypoxia neuropilin-1 gene expression. The hyperosmotic, but not the hypoxic, PlGF gene expression was in part mediated by NFAT5. The expression of PlGF in RPE cells depends on the extracellular osmolarity. The data suggest that high consumption of dietary salt may exacerbate the angiogenic response of RPE cells in the hypoxic retina via transcriptional activation of various VEGF family member genes.

  9. Hyperglycemia induces apoptosis via CB1 activation through the decrease of FAAH 1 in retinal pigment epithelial cells.

    PubMed

    Lim, Seul Ki; Park, Min Jung; Lim, Jae Cheong; Kim, Jong Choon; Han, Ho Jae; Kim, Gye-Yeop; Cravatt, Benjamin F; Woo, Chang Hoon; Ma, Seung Jin; Yoon, Kyung Cheol; Park, Soo Hyun

    2012-02-01

    Fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the main endocannabinoid, anandamide, and related fatty acid amides, has emerged as a regulator of endocannabinoid signaling. Retinal pigment epithelial (RPE) cells are believed to be important cells in the pathogenesis of diabetic retinopathy. However, the pathophysiology of FAAH in diabetic retinopathy has not been determined. Thus, we examined the effect of high glucose (HG) on the expression of FAAH and CB(1)R in the ARPE-19 human RPE cells. We found that HG downregulated the expression of FAAH 1 mRNA and protein in ARPE-19 cells. In contrast, it upregulated the expression of CB(1)R mRNA and protein. HG-induced internalization of CB(1)R in HEK 293 cells and ARPE-19 cells was blocked by overexpression of FAAH 1 and treatment with the CB(1)R blocker, AM 251. HG-induced generation of reactive oxygen species and lipid peroxide formation were blocked by the overexpression of FAAH 1. FAAH 1 overexpression also blocked HG-induced expression of CB(1)R in the cytosolic fraction. We also investigated whether the overexpression of FAAH 1 protected against HG-induced apoptosis. High glucose increased the Bax/Bcl-2 ratio and levels of cleaved PARP, cleaved caspase-9 and caspase-3, and reduced cell viability. HG-induced apoptotic effects were reduced by the overexpression of FAAH 1, treatment with the CB(1)R-specific antagonist AM 251 and CB(1)R siRNA transfection. In conclusion, HG-induced apoptosis in ARPE-19 cells by inducing CB(1)R expression through the downregulation of FAAH 1 expression. Our results provide evidence that CB(1)R blockade through the recovery of FAAH 1 expression may be a potential anti-diabetic therapy for the treatment of diabetic retinopathy.

  10. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration.

    PubMed

    Radu, Roxana A; Hu, Jane; Yuan, Quan; Welch, Darcy L; Makshanoff, Jacob; Lloyd, Marcia; McMullen, Stephen; Travis, Gabriel H; Bok, Dean

    2011-05-27

    Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.

  11. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour.

    PubMed

    Pérez i de Lanuza, Guillem; Font, Enrique

    2014-08-15

    Ultraviolet (UV) vision and UV colour patches have been reported in a wide range of taxa and are increasingly appreciated as an integral part of vertebrate visual perception and communication systems. Previous studies with Lacertidae, a lizard family with diverse and complex coloration, have revealed the existence of UV-reflecting patches that may function as social signals. However, confirmation of the signalling role of UV coloration requires demonstrating that the lizards are capable of vision in the UV waveband. Here we use a multidisciplinary approach to characterize the visual sensitivity of a diverse sample of lacertid species. Spectral transmission measurements of the ocular media show that wavelengths down to 300 nm are transmitted in all the species sampled. Four retinal oil droplet types can be identified in the lacertid retina. Two types are pigmented and two are colourless. Fluorescence microscopy reveals that a type of colourless droplet is UV-transmitting and may thus be associated with UV-sensitive cones. DNA sequencing shows that lacertids have a functional SWS1 opsin, very similar at 13 critical sites to that in the presumed ancestral vertebrate (which was UV sensitive) and other UV-sensitive lizards. Finally, males of Podarcis muralis are capable of discriminating between two views of the same stimulus that differ only in the presence/absence of UV radiance. Taken together, these results provide convergent evidence of UV vision in lacertids, very likely by means of an independent photopigment. Moreover, the presence of four oil droplet types suggests that lacertids have a four-cone colour vision system.

  12. Photobleaching of melanosomes from retinal pigment epithelium: II. Effects on the response of living cells to photic stress.

    PubMed

    Zareba, Mariusz; Sarna, Tadeusz; Szewczyk, Grzegorz; Burke, Janice M

    2007-01-01

    Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects

  13. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting; Wang, Tsu-Pin

    2010-01-01

    The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or S(N)2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases.

  14. [Vitro study on gene transfection efficiency of hyaluronic acid modified core-shell liponanoparticles in human retinal pigment epithelium cells].

    PubMed

    Zhao, Ya-Nan; Gan, Li; Wang, Jing; Chen, Xi; Jia, Zheng; Gan, Yong; Liu, Jian-Ping

    2014-05-01

    The aim of this study is to prepare hyaluronic acid (HA) modified core-shell liponanoparticles (pHA-LCS-NPs) as gene delivery system and investigate its gene transfection efficiency in human retinal pigment epithelium (ARPE-19) cells in vitro. The pHA-LCS-NPs was prepared by firstly hydrating dry lipid film with CS-NPs suspension to get LCS-NPs, then modifying the lipid bilayer with HA by amidation reaction between HA and dioleoyl phosphatidylethanolamine (DOPE). Its morphology, particle size and zeta potential were investigated. XTT assay was used to evaluate the cell safety of different vectors in vitro. The gene transfection efficiency of pHA-LCS-NPs modified with different contents of HA was investigated in ARPE-19 cells with green fluorescent protein (pEGFP) as the reporter gene. The results showed that the obtained pHA-LCS-NPs exhibited a clear core-shell structure with the average particles size of (214.9 +/- 7.2) nm and zeta potential of (-35 +/- 3.7) mV. The 24 h cumulative release of gene from pHA-LCS-NPs was less than 30%. After 48 h incubation, gene transfection efficiency of pHA-LCS-NPs/pEGFP was 1.81 times and 3.75 times higher than that of CS-NPs/pEGFP and naked pEGFP, respectively. Also no obvious cytotoxicity was observed on pHA-LCS-NPs. It suggested that the pHA-LCS-NPs might be promising non-viral gene delivery systems with high efficiency and low cytotoxicity.

  15. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation.

    PubMed

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-05-23

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.

  16. Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine from Lycium barbarum (Goji Berry) in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy.

    PubMed

    Song, M K; Roufogalis, B D; Huang, T H W

    2012-01-01

    Diabetic retinopathy is a preventable microvascular diabetic complication and a leading cause of vision loss. Retinal pigment epithelial cell apoptosis is an early event in diabetic retinopathy. Taurine is reportedly beneficial for diabetic retinopathy and is abundant in the fruit of Lycium barbarum (LB). We have investigated the effect of pure taurine and an extract of LB rich in taurine on a model of diabetic retinopathy, the retinal ARPE-19 cell line exposed to high glucose. We demonstrate for the first time that LB extract and the active ligand, taurine, dose dependently enhance cell viability following high glucose treatment in the ARPE-19 retinal epithelial cell line. This cytoprotective effect was associated with the attenuation of high glucose-induced apoptosis, which was shown by characteristic morphological staining and the dose-dependent decrease in the number of apoptotic cells, determined by flow cytometry. Moreover, we have shown that LB extract and taurine dose dependently downregulate caspase-3 protein expression and the enzymatic activity of caspase-3. We conclude that taurine, a major component of LB, and the LB extract, have a cytoprotective effect against glucose exposure in a human retinal epithelial cell line and may provide useful approaches to delaying diabetic retinopathy progression.

  17. Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine from Lycium barbarum (Goji Berry) in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy

    PubMed Central

    Song, M. K.; Roufogalis, B. D.; Huang, T. H. W.

    2012-01-01

    Diabetic retinopathy is a preventable microvascular diabetic complication and a leading cause of vision loss. Retinal pigment epithelial cell apoptosis is an early event in diabetic retinopathy. Taurine is reportedly beneficial for diabetic retinopathy and is abundant in the fruit of Lycium barbarum (LB). We have investigated the effect of pure taurine and an extract of LB rich in taurine on a model of diabetic retinopathy, the retinal ARPE-19 cell line exposed to high glucose. We demonstrate for the first time that LB extract and the active ligand, taurine, dose dependently enhance cell viability following high glucose treatment in the ARPE-19 retinal epithelial cell line. This cytoprotective effect was associated with the attenuation of high glucose-induced apoptosis, which was shown by characteristic morphological staining and the dose-dependent decrease in the number of apoptotic cells, determined by flow cytometry. Moreover, we have shown that LB extract and taurine dose dependently downregulate caspase-3 protein expression and the enzymatic activity of caspase-3. We conclude that taurine, a major component of LB, and the LB extract, have a cytoprotective effect against glucose exposure in a human retinal epithelial cell line and may provide useful approaches to delaying diabetic retinopathy progression. PMID:22567031

  18. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels.

    PubMed

    Pavan, Barbara; Capuzzo, Antonio; Forlani, Giuseppe

    2014-03-01

    Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.

  19. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation.

    PubMed

    Sparrow, Janet R; Vollmer-Snarr, Heidi R; Zhou, Jilin; Jang, Young P; Jockusch, Steffen; Itagaki, Yasuhiro; Nakanishi, Koji

    2003-05-16

    The autofluorescent pigments that accumulate in retinal pigment epithelial cells with aging and in some retinal disorders have been implicated in the etiology of macular degeneration. The major constituent is the fluorophore A2E, a pyridinium bisretinoid. Light-exposed A2E-laden retinal pigment epithelium exhibits a propensity for apoptosis with light in the blue region of the spectrum being most damaging. Efforts to understand the events precipitating the death of the cells have revealed that during irradiation (430 nm), A2E self-generates singlet oxygen with the singlet oxygen in turn reacting with A2E to generate epoxides at carbon-carbon double bonds. Here we demonstrate that A2E-epoxides, independent of singlet oxygen, exhibit reactivity toward DNA with oxidative base changes being at least one of these lesions. Mass spectrometry revealed that the antioxidants vitamins E and C, butylated hydroxytoluene, resveratrol, a trolox analogue (PNU-83836-E), and bilberry extract reduce A2E-epoxidation, whereas single cell gel electrophoresis and cell viability studies revealed a corresponding reduction in the incidence of DNA damage and cell death. Vitamin E, a lipophilic antioxidant, produced a more pronounced decrease in A2E-epoxidation than vitamin C, and treatment with both vitamins simultaneously did not confer additional benefit. Studies in which singlet oxygen was generated by endoperoxide in the presence of A2E revealed that vitamin E, butylated hydroxytoluene, resveratrol, the trolox analogue, and bilberry reduced A2E-epoxidation by quenching singlet oxygen. Conversely, vitamin C and ginkgolide B were not efficient quenchers of singlet oxygen under these conditions.

  20. [Molecular-physiological aspects of peptide regulation of function of the retina in retinitis pigmentosa].

    PubMed

    Khavinson, V Kh; Proniaeva, V E; Lin'kova, N S; Trofimova, S V; Umnpv, R S

    2014-01-01

    Peptide's bioregulators promotes restoration of the physiological activity of the retina in retinitis pigmentosa in older adults and in animal models. The molecular mechanism of physiological activity of peptides is connected with its ability to regulate synthesis of protein markers of differentiation of neurons and retinal pigment epithelium epigenetically.

  1. TNF-α mediates PKCδ/JNK1/2/c-Jun-dependent monocyte adhesion via ICAM-1 induction in human retinal pigment epithelial cells.

    PubMed

    Lee, I-Ta; Liu, Shiau-Wen; Chi, Pei-Ling; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Retinal inflammatory diseases induced by cytokines, such as tumor necrosis factor-α (TNF-α) are associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1) in the retinal pigment epithelial cells (RPECs). Retinal pigment epithelium (RPE) is a monolayer of epithelial cells that forms the outer blood-retinal barrier in the posterior segment of the eye, and is also implicated in the pathology of, such as neovascularization in age-related macular degeneration (AMD). However, the detailed mechanisms of TNF-α-induced ICAM-1 expression are largely unclear in human RPECs. We demonstrated that in RPECs, TNF-α could induce ICAM-1 protein and mRNA expression and promoter activity, and monocyte adhesion. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of PKCs (Ro318220), PKCδ (Rottlerin), MEK1/2 (U0126), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of TNFR1, TRAF2, JNK2, p42, or c-Jun. We showed that TNF-α could stimulate the TNFR1 and TRAF2 complex formation. TNF-α-stimulated JNK1/2 was also reduced by Rottlerin or SP600125. However, Rottlerin had no effect on TNF-α-induced p42/p44 MAPK phosphorylation. We observed that TNF-α induced c-Jun phosphorylation which was inhibited by Rottlerin or SP600125. On the other hand, TNF-α-stimulated ICAM-1 promoter activity was prominently lost in RPECs transfected with the point-mutated AP-1 ICAM-1 promoter plasmid. These results suggest that TNF-α-induced ICAM-1 expression and monocyte adhesion is mediated through a TNFR1/TRAF2/PKCδ/JNK1/2/c-Jun pathway in RPECs. These findings concerning TNF-α-induced ICAM-1 expression in RPECs imply that TNF-α might play an important role in ocular inflammation and diseases.

  2. Modulation of Abnormal Metabolic Brain Networks by Experimental Therapies in a Nonhuman Primate Model of Parkinson Disease: An Application to Human Retinal Pigment Epithelial Cell Implantation.

    PubMed

    Peng, Shichun; Ma, Yilong; Flores, Joseph; Cornfeldt, Michael; Mitrovic, Branka; Eidelberg, David; Doudet, Doris J

    2016-10-01

    Abnormal covariance pattern of regional metabolism associated with Parkinson disease (PD) is modulated by dopaminergic pharmacotherapy. Using high-resolution (18)F-FDG PET and network analysis, we previously derived and validated a parkinsonism-related metabolic pattern (PRP) in nonhuman primate models of PD. It is currently not known whether this network is modulated by experimental therapeutics. In this study, we examined changes in network activity by striatal implantation of human levodopa-producing retinal pigment epithelial (hRPE) cells in parkinsonian macaques and evaluated the reproducibility of network activity in a small test-retest study.

  3. The Self-Concept of Spanish Young Adults with Retinitis Pigmentosa

    ERIC Educational Resources Information Center

    Lopez-Justicia, Maria Dolores; Cordoba, Inmaculada Nieto

    2006-01-01

    Retinitis pigmentosa (RP) is a degenerative disease of the retina that causes the severe impairment of visual functioning similar to low vision, leading, in many cases, to blindness. Because the construct of self-concept plays a key role in personality, this study was designed to measure self-concept in a group of young adults with RP. The…

  4. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation

    PubMed Central

    Budi, Erine H.; Patterson, Larissa B.; Parichy, David M.

    2009-01-01

    SUMMARY Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorphosis. At this time, embryonic melanophores are replaced by newly differentiating metamorphic melanophores that form the adult stripes. Mutants with normal embryonic/early larval pigment patterns but defective adult patterns identify factors required uniquely to establish, maintain, or recruit the latent precursors to metamorphic melanophores. We show that one such mutant, picasso, lacks most metamorphic melanophores and results from mutations in the ErbB gene erbb3b, encoding an EGFR-like receptor tyrosine kinase. To identify critical periods for ErbB activities, we treated fish with pharmacological ErbB inhibitors and also knocked-down erbb3b by morpholino injection. These analyses reveal an embryonic critical period for ErbB signaling in promoting later pigment pattern metamorphosis, despite the normal patterning of embryonic/early larval melanophores. We further demonstrate a peak requirement during neural crest migration that correlates with early defects in neural crest pathfinding and peripheral ganglion formation. Finally, we show that erbb3b activities are both autonomous and non-autonomous to the metamorphic melanophore lineage. These data identify a very early, embryonic, requirement for erbb3b in the development of much later metamorphic melanophores, and suggest complex modes by which ErbB signals promote adult pigment pattern development. PMID:18508863

  5. Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari

    2016-01-01

    Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we

  6. Differential toxic effect of dissolved triamcinolone and its crystalline deposits on cultured human retinal pigment epithelium (ARPE19) cells.

    PubMed

    Szurman, Peter; Kaczmarek, Radoslaw; Spitzer, Martin S; Jaissle, Gesine B; Decker, Patrice; Grisanti, Salvatore; Henke-Fahle, Sigrid; Aisenbrey, Sabine; Bartz-Schmidt, Karl U

    2006-09-01

    The aim of the study was to evaluate the antiproliferative and cytotoxic properties of triamcinolone acetonide (TA) on human retinal pigment epithelium cells (ARPE19) and the role of epicellular crystalline deposits. Monolayer cultures of ARPE19 cells were used. Purified or unpurified crystalline TA suspension (0.01-1.0 mg/ml) or the vehicle alone (benzyl alcohol, 0.025%-0.00025%), diluted in culture medium, were added to the cells that were either grown on cell culture dishes covered by a protecting membrane filter insert or without a filter. After 1, 3, 5 and 7 days mitochondrial activity was measured using the MTT assay and the morphology assessed microscopically. Cellular proliferative activity was monitored by BrdU-incorporation into cellular DNA. For cytotoxicity assays ARPE19 cells were grown to confluence and then cultured in a serum-deficient medium to ensure a static milieu. Annexin V-FITC and propidium iodide co-staining was performed and analyzed by flow cytometry. Exposure to TA without direct cellular contact showed a moderate antiproliferative activity resulting in a dose-dependent suppression of DNA synthesis (maximum 42.7%), but not a cytotoxic effect. In contrast, adherent deposits of crystalline TA particles on top of the cell layer caused a rapid-progressive and dose-dependent cell death preceded by an early phosphatidylserine externalization to the outer leaflet of the plasma membrane. Within a healthy, confluent cell layer the number of viable cells decreased by 14.2, 20.8 and 68.8%, respectively, after one day of direct exposure. Exposure to the vehicle alone caused only a slight growth inhibitory effect in a proliferating cell layer, but early signs of cell death were detected even at the lowest concentration tested. In conclusion, the effect of the vehicle is less pronounced than formerly assumed, but not negligible, thus indicating a beneficial effect of purification. While non-adherent TA, if purified, appears to be safe in clinically

  7. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  8. THE ORGANOPHOSPHOROUS INSECTICIDE FENTHION DOES NOT AFFECT PHAGOCYTOSIS OF ROD OUTER SEGMENTS BY RETINAL PIGMENT EPITHELIUM CELLS IN CULTURE.

    EPA Science Inventory

    :
    Exposure to the organophosphorous insecticide fenthion has been associated with retinal degeneration in occupational studies. It has also been associated with pigmentary changes of the retina. Because retinal degeneration and pigmentary changes may be due to dysfunction of t...

  9. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    DTIC Science & Technology

    2004-06-01

    Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-hours Post-Exposure: Results Compendium John W. Obringer Martin D. Johnson Laser and Optics...Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Lightl2-hours...Explanted Human Retinal Pigment Epithelial USAFA F05611-02-P-0471 Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser-Light and 1064nm, 170 ps Pulsed

  10. Combined Hamartoma of the Retina and Retinal Pigment Epithelium in a Patient with Gorlin Syndrome: Spontaneous Partial Resolution of Traction Caused by Epiretinal Membrane

    PubMed Central

    Sánchez-Vicente, José L.; Rueda, Trinidad; Rodríguez de la Rúa-Franch, Enrique; Molina-Socola, Fredy E.; Vital-Berral, Cristina; Alfaro-Juárez, Asunción; López-Herrero, Fernando; Muñoz-Morales, Ana

    2016-01-01

    Purpose. To describe the case of spontaneous resolution of epiretinal membrane in a patient with Combined Hamartoma of the Retina and Retinal Pigment Epithelium (CHR-RPE), in the clinical context of Gorlin Syndrome (GS). Methods. Observational case report of a 12-year-old female patient is presented. The diagnosis of CHRRPE was made by OCT and fundus examination, which showed a mound of disorganized tissue originating from retina and retinal pigment epithelium. Epiretinal membrane (EM) was also detected. Genetic study was performed to confirm the diagnosis of GS. Results. The patient was observed for 39 months, showing spontaneous resolution of the traction caused by the EM and improvement in visual acuity (VA), which was 20/80 at initial presentation, rising to 20/40 after follow-up period. Conclusions. The presence of EM in CHR-REP is a cause of reduction of visual acuity. Management of this condition is controversial; however, we would like to highlight that spontaneous resolution of the traction caused by EM is possible, resulting in recovery of VA. PMID:27595027

  11. LGR4 Is a Direct Target of MicroRNA-34a and Modulates the Proliferation and Migration of Retinal Pigment Epithelial ARPE-19 Cells

    PubMed Central

    Hou, Qiang; Zhou, Linglin; Tang, Jiajia; Ma, Nan; Xu, Ancong; Tang, Jiang; Zheng, Dandan; Chen, Xiaogang; Chen, Feng; Dong, Xiang Da; Tu, LiLi

    2016-01-01

    The pathology of proliferative vitreoretinopathy and proliferative diabetic retinopathy is linked to proliferation, migration, and adhesion of the retinal pigment epithelium. MicroRNA-34a (miR-34a) expression modulates changes in proliferation and migration of retinal pigment epithelial cell line ARPE-19. In this study, we determined that miR-34a interacts with LGR4, identified by bioinformatics using TargetScan Human 5.0, to affect these changes. Double luciferase gene reporter assay confirmed miR-34a involvement in mediating control. miR-34a mimic transfection decreased LGR4 expression. Western blot analysis documented corresponding protein expression inhibition. MTS, Ki67 immunostaining, scratch and transwell testing, along with attachment assay showed that miR-34a upregulation inhibited ARPE-19 cell proliferation, migration and attachment partly through downregulation of LGR4 protein expression. Western blot analysis revealed that both miR-34a upregulation and LGR4 downregulation induced declines in E2F1, p-CDC2, CDK2, CDK4 and CDK6 protein expression. Taken together, miR-34a gene expression upregulation inhibits ARPE-19 cell proliferation, migration and adhesion partly by suppressing LGR4 expression. These results substantiate earlier indications that both miR-34a and LGR4 are potential drug targets to prevent fibrosis in a clinical setting. PMID:27977785

  12. Effects of glucose on sorbitol pathway activation, cellular redox, and metabolism of myo-inositol, phosphoinositide, and diacylglycerol in cultured human retinal pigment epithelial cells.

    PubMed Central

    Thomas, T P; Porcellati, F; Kato, K; Stevens, M J; Sherman, W R; Greene, D A

    1994-01-01

    Sorbitol (aldose reductase) pathway flux in diabetes perturbs intracellular metabolism by two putative mechanisms: reciprocal osmoregulatory depletion of other organic osmolytes e.g., myo-inositol, and alterations in NADPH/NADP+ and/or NADH/NAD+. The "osmolyte" and "redox" hypotheses predict secondary elevations in CDP-diglyceride, the rate-limiting precursor for phosphatidylinositol synthesis, but through different mechanisms: the "osmolyte" hypothesis via depletion of intracellular myo-inositol (the cosubstrate for phosphatidylinositol-synthase) and the "redox" hypothesis through enhanced de novo synthesis from triose phosphates. The osmolyte hypothesis predicts diminished phosphoinositide-derived arachidonyl-diacylglycerol, while the redox hypothesis predicts increased total diacylglycerol and phosphatidic acid. In high aldose reductase expressing retinal pigment epithelial cells, glucose-induced, aldose reductase inhibitor-sensitive CDP-diglyceride accumulation and inhibition of 32P-incorporation into phosphatidylinositol paralleled myo-inositol depletion (but not cytoplasmic redox, that was unaffected by glucose) and depletion of arachidonyl-diacylglycerol. 3 mM pyruvate added to the culture medium left cellular redox unaltered, but stimulated Na(+)-dependent myo-inositol uptake, accumulation, and incorporation into phosphatidylinositol. These results favor myo-inositol depletion rather than altered redox as the primary cause of glucose-induced aldose reductase-related defects in phospholipid metabolism in cultured retinal pigment epithelial cells. Images PMID:8201009

  13. Does the adult human ciliary body epithelium contain "true" retinal stem cells?

    PubMed

    Frøen, Rebecca; Johnsen, Erik O; Nicolaissen, Bjørn; Facskó, Andrea; Petrovski, Goran; Moe, Morten C

    2013-01-01

    Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.

  14. Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats

    PubMed Central

    Telegina, Darya V.; Kozhevnikova, Oyuna S.; Bayborodin, Sergey I.; Kolosova, Nataliya G.

    2017-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in developed countries, and the molecular pathogenesis of early events of AMD is poorly understood. It is known that age-related alterations of retinal pigment epithelium (RPE) cells and of glial reactivity are early hallmarks of AMD. Here we evaluated contributions of the age-related alterations of the RPE and of glia to the development of AMD-like retinopathy in OXYS rats. We showed that destructive alterations in RPE cells are a primary change during the development of retinopathy in OXYS rats. Furthermore, a defect of retinal maturation and decreased immune function at the preclinical stage of retinopathy were observed in OXYS rats in addition to the impairment of RPE cell proliferation and of their capacity for division. At the active stage of the disease, the atrophic alterations increased, and reactive gliosis was observed when disease progressed, but immune function stayed weakened. Unexpectedly, we did not observe migration of microglia and macrophages into the photoreceptor layer. These results and the wide spectrum of age-related retinal alterations in humans as well as individual differences in the risk of AMD may be attributed to genetic factors and to differences in the underlying molecular events. PMID:28134357

  15. Gremlin promotes retinal pigmentation epithelial (RPE) cell proliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling

    PubMed Central

    Liu, Yuan; Chen, Zhijun; Cheng, Haixia; Chen, Juan; Qian, Jing

    2017-01-01

    Retinopathy of prematurity (ROP) is characterized by late-phase pathologic retinal vasoproliferation. Gremlin is a novel vascular endothelial growth factors (VEGF) receptor 2 (VEGFR2) agonist and promotes angiogenic response. We demonstrated that gremlin expression was significantly increased in retinas of ROP model mice, which was correlated with VEGF upregulation. In retinal pigmentation epithelial (RPE) cells, gremlin activated VEGFR2-Akt-mTORC2 (mammalian target of rapamycin complex 2) signaling, and promoted cell proliferation, migration and VEGF production. VEGFR inhibition (by SU5416) or shRNA knockdown almost abolished gremlin-mediated pleiotropic functions in RPE cells. Further, pharmacological inhibition of Akt-mTOR, or shRNA knockdown of key mTORC2 component (Rictor or Sin1) also attenuated gremlin-exerted activities in RPE cells. We conclude that gremlin promotes RPE cell proliferation, migration and VEGF production possibly via activating VEGFR2-Akt-mTORC2 signaling. Gremlin could be a novel therapeutic target of ROP or other retinal vasoproliferation diseases. PMID:27894090

  16. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    PubMed Central

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  17. Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells

    PubMed Central

    Otani, Atsushi; Dorrell, Michael Ian; Kinder, Karen; Moreno, Stacey K.; Nusinowitz, Steven; Banin, Eyal; Heckenlively, John; Friedlander, Martin

    2004-01-01

    Inherited retinal degenerations afflict 1 in 3,500 individuals and are a heterogeneous group of diseases that result in profound vision loss, usually the result of retinal neuronal apoptosis. Atrophic changes in the retinal vasculature are also observed in many of these degenerations. While it is thought that this atrophy is secondary to diminished metabolic demand in the face of retinal degeneration, the precise relationship between the retinal neuronal and vascular degeneration is not clear. In this study we demonstrate that whenever a fraction of mouse or human adult bone marrow–derived stem cells (lineage-negative hematopoietic stem cells [Lin– HSCs]) containing endothelial precursors stabilizes and rescues retinal blood vessels that would ordinarily completely degenerate, a dramatic neurotrophic rescue effect is also observed. Retinal nuclear layers are preserved in 2 mouse models of retinal degeneration, rd1 and rd10, and detectable, albeit severely abnormal, electroretinogram recordings are observed in rescued mice at times when they are never observed in control-treated or untreated eyes. The normal mouse retina consists predominantly of rods, but the rescued cells after treatment with Lin– HSCs are nearly all cones. Microarray analysis of rescued retinas demonstrates significant upregulation of many antiapoptotic genes, including small heat shock proteins and transcription factors. These results suggest a new paradigm for thinking about the relationship between vasculature and associated retinal neuronal tissue as well as a potential treatment for delaying the progression of vision loss associated with retinal degeneration regardless of the underlying genetic defect. PMID:15372100

  18. Retina-specific nuclear receptor: A potential regulator of cellular retinaldehyde-binding protein expressed in retinal pigment epithelium and Müller glial cells.

    PubMed

    Chen, F; Figueroa, D J; Marmorstein, A D; Zhang, Q; Petrukhin, K; Caskey, C T; Austin, C P

    1999-12-21

    In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814-4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription-PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of approximately 7.5 kb, approximately 3.0 kb, and approximately 2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.

  19. Temsirolimus Inhibits Proliferation and Migration in Retinal Pigment Epithelial and Endothelial Cells via mTOR Inhibition and Decreases VEGF and PDGF Expression

    PubMed Central

    Siedlecki, Jakob; Haritoglou, Christos; Kampik, Anselm; Kernt, Marcus

    2014-01-01

    Due to their high prevalence, retinal vascular diseases including age related macular degeneration (AMD), retinal vein occlusions (RVO), diabetic retinopathy (DR) and diabetic macular edema have been major therapeutic targets over the last years. The pathogenesis of these diseases is complex and yet not fully understood. However, increased proliferation, migration and angiogenesis are characteristic cellular features in almost every retinal vascular disease. The introduction of vascular endothelial growth factor (VEGF) binding intravitreal treatment strategies has led to great advances in the therapy of these diseases. While the predominant part of affected patients benefits from the specific binding of VEGF by administering an anti-VEGF antibody into the vitreous cavity, a small number of non-responders exist and alternative or additional therapeutic strategies should therefore be evaluated. The mammalian target of rapamycin (mTOR) is a central signaling pathway that eventually triggers up-regulation of cellular proliferation, migration and survival and has been identified to play a key role in angiogenesis. In the present study we were able to show that both retinal pigment epithelial (RPE) cells as wells as human umbilical vein endothelial cells (HUVEC) are inhibited in proliferating and migrating after treatment with temsirolimus in non-toxic concentrations. Previous studies suggest that the production of VEGF, platelet derived growth factor (PDGF) and other important cytokines is not only triggered by hypoxia but also by mTOR itself. Our results indicate that temsirolimus decreases VEGF and PDGF expression on RNA and protein levels significantly. We therefore believe that the mTOR inhibitor temsirolimus might be a promising drug in the future and it seems worthwhile to evaluate complementary therapeutic effects with anti-VEGF drugs for patients not profiting from mono anti-VEGF therapy alone. PMID:24586308

  20. Mechanisms of the biphasic effects of peroxides on the retinal vasculature of newborn and adult pigs.

    PubMed

    Abran, D; Hardy, P; Varma, D R; Chemtob, S

    1995-09-01

    We tested whether the ontogenic differences in the constrictor effects of peroxides on the retinal vasculature were modulated by dilator cyclo-oxygenase products. Retinal arteriole (100-200 microns) vasomotor response to H2O2, t-butyl hydroperoxide, and cumene hydroperoxide were studied in isolated eyecup preparations using video camera monitoring of vessel diameter. A time- and dose-dependent biphasic retinal vasomotor response to all peroxides was observed on tissues of newborn and adult pigs. A rapid vasoconstriction (first 2 min) was followed by a relaxation which was greater in the adult than in the newborn tissues. The constrictor as well as the dilator response to peroxides and the observed increase in prostanoids were blocked by the cyclo-oxygenase inhibitor indomethacin. The peroxide-induced relaxation was inhibited or markedly attenuated by the prostaglandin I2 synthase blockers, trans-2-phenyl cyclopropylamine and minoxidil on tissues of newborn and adult animals. These agents also prevented the increase of the prostaglandin I2 receptor-coupled second messenger, cyclic 3',5'-adenosine monophosphate. Our data indicate that prostaglandin I2 plays a major role in counteracting the initial constrictor effects of peroxides in the retinal vasculature, and that the reversal of this constriction is greater in the adult than the newborn. These findings suggest that reduced reversal of vasoconstriction by the dilator prostaglandin I2 during an oxidative stress in the newborn may facilitate vasoconstriction by the dilator prostaglandin I2 during an oxidative stress in the newborn may facilitate neovascularization in retinopathy of prematurity.

  1. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    PubMed

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  2. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    PubMed Central

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  3. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells.

    PubMed

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.

  4. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  5. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells

    PubMed Central

    Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2014-01-01

    Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt

  6. Nestin Expression in the Adult Mouse Retina with Pharmaceutically Induced Retinal Degeneration

    PubMed Central

    2017-01-01

    The present study investigated the temporal pattern and cellular localization of nestin in the adult mouse retina with pharmaceutically induced retinal degeneration using N-methyl-N-nitrosourea (MNU). After a single intraperitoneal injection of MNU in 8-week-old C57BL/6 mice, the animals were sacrificed at 1, 3, 5, 7, and 21 days (n = 6, in each stage). The eyes were examined by means of immunohistochemical tests using nestin, ionized calcium-binding adaptor molecule (Iba-1), CD11b, F4/80, and glial fibrillary acidic protein (GFAP). Western blot analysis and manual cell counting were performed for quantification. Nestin expression was increased after MNU administration. Nestin+/Iba-1+ cells were migrated into outer nuclear layer (ONL) and peaked at day 3 post injection (PI). Nestin+/CD11b+ cells were also mainly identified in ONL at day 3 PI and peaked at day 5. Nestin+/F4/80+ cells were shown in the subretinal space and peaked at day 3 PI. Nestin+/GFAP+ cells were distinctly increased at day 1 PI and peaked at day 5 PI. The up-regulation of nestin expression after MNU administration in adult mouse retinal microglia, and monocyte/macrophage suggests that when retinal degeneration progresses, these cells may revert to a more developmentally immature state. Müller cells also showed reactive gliosis and differentiational changes. PMID:28049248

  7. Pneumatic displacement and intra-vitreal bevacizumab in management of sub-retinal and sub-retinal pigment epithelial hemorrhage at macula in polypoidal choroidal vasculopathy (PCV): rationale and outcome.

    PubMed

    Nayak, Sameera; Padhi, Tapas Ranjan; Basu, Soumyava; Das, Taraprasad

    2015-01-01

    We report three cases of submacular haemorrhage due to polypoidal choroidal vasculopathy (PCV) treated with intravitreal bevacizumab and pneumatic displacement with perfluoropropane (C3F8) gas. The patients were between 45 to 55 years and presented with reduction of vision (20/400 to 20/80) within two weeks of onset of symptoms. The submacular (sub-retinal plus sub-retinal pigment epithelium [RPE]) hemorrhages was confirmed as PCV on indocyanine green angiography and optical coherence tomography in all of them. They were treated with intravitreal bevacizumab (1.25 mg/0.05 ml) and 0.3 ml of 100% C3F8 gas in the affected eye followed by prone positioning for two weeks. The vision and macular anatomy started improving within a week and continued up to three months. These cases demonstrate that pneumatic displacement combined with intravitreal anti-VEGF injection could be a promising option in patients with PCV and sub-macular blood, even when the blood is beneath the RPE.

  8. Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress

    PubMed Central

    Kataoka, Keiko; Kimoto, Reona; Hwang, Shiang-Jyi; Nagasaka, Yosuke; Tsunekawa, Taichi; Nonobe, Norie; Ito, Yasuki; Terasaki, Hiroko

    2016-01-01

    Purpose. It is a matter of increasing concern that exposure to light-emitting diodes (LED), particularly blue light (BL), damages retinal cells. This study aimed to investigate the retinal pigment epithelium (RPE) damage caused by BL and to elucidate the role of nuclear factor (erythroid-derived)-related factor 2 (Nrf2) in the pathogenesis of BL-induced RPE damage. Methods. ARPE-19, a human RPE cell line, and mouse primary RPE cells from wild-type and Nrf2 knockout (Nrf2−/−) mice were cultured under blue LED exposure (intermediate wavelength, 450 nm). Cell death rate and reactive oxygen species (ROS) generation were measured. TUNEL staining was performed to detect apoptosis. Real-time polymerase chain reaction was performed on NRF2 mRNA, and western blotting was performed to detect Nrf2 proteins in the nucleus or cytoplasm of RPE cells. Results. BL exposure increased cell death rate and ROS generation in ARPE-19 cells in a time-dependent manner; cell death was caused by apoptosis. Moreover, BL exposure induced NRF2 mRNA upregulation and Nrf2 nuclear translocation in RPE. Cell death rate was significantly higher in RPE cells from Nrf2−/− mice than from wild-type mice. Conclusions. The Nrf2 pathway plays an important role in protecting RPE cells against BL-induced oxidative stress. PMID:27774118

  9. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways

    SciTech Connect

    Chan, Chi-Ming; Fang, Jia-You; Lin, Hsin-Huang; Yang, Chi-Yea; Hung, Chi-Feng

    2009-10-09

    Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.

  10. Down-regulation of pigment epithelium-derived factor in uveitic lesion associates with focal vascular endothelial growth factor expression and breakdown of the blood-retinal barrier.

    PubMed

    Deeg, Cornelia A; Altmann, Frank; Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Ueffing, Marius

    2007-05-01

    Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Identifying biological markers or pathways associated with this disease may allow the understanding of its pathogenesis at a molecular level. The vitreous is the body fluid closest to the disease-affected tissue and possibly also an effector of pathological processes relevant for ERU. Surgical removal of vitreous leads to cessation of relapses in spontaneous uveitis of both man and horse, therefore vitreous composites are likely to contribute to disease progression. Uveitic vitreous is likely to contain potential biomarkers in relatively undiluted quantities. With the goal to identify these markers, we systematically compared vitreous from healthy and disease-affected eyes by proteomic profiling. Nine differentially expressed proteins were identified, that are functionally related to immune response, inflammation, and maintenance of the blood-retinal barrier. One of these, pigment epithelium-derived factor, a protein involved in maintaining a proper blood-retina barrier as well as protecting from neoangiogenesis was additionally found to be down-regulated within uveitic retinal lesions whereas, conversely, vascular endothelial growth factor was found to be up-regulated at these sites. Together, these changes point to as of yet undiscovered biological pathways involved in the pathogenesis of this autoimmune disease.

  11. Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC)

    PubMed Central

    Carter, David A.; Smart, Matthew J. K.; Letton, William V. G.; Ramsden, Conor M.; Nommiste, Britta; Chen, Li Li; Fynes, Kate; Muthiah, Manickam N.; Goh, Pollyanna; Lane, Amelia; Powner, Michael B.; Webster, Andrew R.; da Cruz, Lyndon; Moore, Anthony T.; Coffey, Peter J.; Carr, Amanda-Jayne F.

    2016-01-01

    Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients. PMID:27653836

  12. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease)

    PubMed Central

    Wavre-Shapton, Silène T.; Calvi, Alessandra A.; Turmaine, Mark; Seabra, Miguel C.; Cutler, Daniel F.; Futter, Clare E.; Mitchison, Hannah M.

    2015-01-01

    Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3Δex1-6 null mice, revealing classic ‘fingerprint’ lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3Δex1-6 RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3Δex1-6-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3Δex1-6 RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE. PMID:26450516

  13. Human organic anion transporting polypeptide 1A2 (OATP1A2) mediates cellular uptake of all-trans-retinol in human retinal pigmented epithelial cells

    PubMed Central

    Chan, Ting; Zhu, Ling; Madigan, Michele C; Wang, Ke; Shen, Weiyong; Gillies, Mark C; Zhou, Fanfan

    2015-01-01

    Background and Purpose Vision depends on retinoid exchange between the retinal pigment epithelium (RPE) and photoreceptors. Defects in any step of the canonical visual cycle can lead to retinal degenerations. All-trans-retinol (atROL) plays an important role in visual signal transduction. However, how atROL enters human RPE from the apical membrane remains unclear. This study investigated the role of human organic anion transporting polypeptide 1A2 (OATP1A2) in atROL uptake in human RPE. Experimental Approach Immunoblotting and immunostaining elucidated the expression and localization of OATP1A2 in human RPE. Transporter functional studies were conducted to assess the interaction of OATP1A2 with atROL. Key Results Our study revealed OATP1A2 is expressed in human RPE, mainly at the apical membrane. Our data also indicated atROL inhibited the uptake of the typical OATP1A2 substrate, oestrone-3-sulfate (E3S), in over-expressing cells. Studies on the uptake of 3H-atROL in these over-expressing cells revealed atROL is a substrate of OATP1A2. We confirmed these findings in human primary RPE cells. The transport of E3S and atROL was significantly reduced in human primary RPE cells with OATP1A2 siRNA silencing. Conclusion and Implications Our data provides the first evidence of OATP1A2 expression in human RPE and more importantly, its novel role in the cellular uptake of atROL, which might be essential to the proper functioning of the canonical visual cycle. Our findings contribute to the understanding of the molecular mechanisms involved in retinoid transport between the RPE and photoreceptors and provide novel insights into potential pharmaceutical interventions for visual cycle disruption associated with retinal degenerations. PMID:25560245

  14. Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse Thalamus.

    PubMed

    Hammer, Sarah; Monavarfeshani, Aboozar; Lemon, Tyler; Su, Jianmin; Fox, Michael Andrew

    2015-09-08

    Activity-dependent refinement of neural circuits is a fundamental principle of neural development. This process has been well studied at retinogeniculate synapses-synapses that form between retinal ganglion cells (RGCs) and relay cells within the dorsal lateral geniculate nucleus. Physiological studies suggest that shortly after birth, inputs from ∼20 RGCs converge onto relay cells. Subsequently, all but just one to two of these inputs are eliminated. Despite widespread acceptance, this notion is at odds with ultrastructural studies showing numerous retinal terminals clustering onto relay cell dendrites in the adult. Here, we explored this discrepancy using brainbow AAVs and serial block face scanning electron microscopy (SBFSEM). Results with both approaches demonstrate that terminals from numerous RGCs cluster onto relay cell dendrites, challenging the notion that only one to two RGCs innervate each relay cell. These findings force us to re-evaluate our understanding of subcortical visual circuitry.

  15. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.

    PubMed

    Lorber, Barbara; Berry, Martin; Logan, Ann

    2005-04-01

    In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.

  16. Synthesis and migration of /sup 3/H-fucose-labeled glycoproteins in the retinal pigment epithelium of albino rats, as visualized by radioautography

    SciTech Connect

    Haddad, A.; Bennett, G.

    1987-03-01

    /sup 3/H-fucose was injected into the vitreous body of the eye(s) of 250-gm rats, which were then killed by means of an intracardiac perfusion with glutaraldehyde after intervals of 10 min, 1 and 4 hr, and 1 and 7 days. The eyes were removed and further fixed, and pieces of retina were processed for light and electron microscope radioautography. Light microscope radioautography showed that the pigment epithelial cells actively incorporated /sup 3/H-fucose label. The intensity of reaction peaked at 4 hr after injection of the label and then slowly declined. Quantitative electron microscope radioautography revealed that, at 10 min after /sup 3/H-fucose injection, over 70% of the label was localized to the Golgi apparatus, indicating that fucose residues are added to newly synthesized glycoproteins principally at this site. With time the proportion of label associated with the Golgi apparatus decreased, but that assigned to the infolded basal plasma membrane, the apical microvilli, and various apical lysosomes increased. These results indicate that in retinal pigment epithelial cells newly synthesized glycoproteins continuously migrate from the Golgi apparatus to lysosomes and to various regions of the plasma membrane. In this case, the membrane glycoproteins may play specific roles in receptor functions of the basal plasma membrane or phagocytic activities at the apical surface. Very little label migrated to Bruch's membrane, indicating either a very slow turnover or a paucity of fucose-containing glycoproteins at this site.

  17. Benzo(a)pyrene and X-rays induce reversions of the pink-eyed unstable mutation in the retinal pigment epithelium of mice.

    PubMed

    Bishop, A J; Kosaras, B; Sidman, R L; Schiestl, R H

    2000-12-20

    The pink-eyed unstable (p(un)) mutation is the result of a 70kb tandem duplication within the murine p gene. Homologous deletion/recombination of the locus to wild-type occurs spontaneously in embryos and results in pigmented spots in the fur and eye that persist for life. Such deletion events are also inducible by a variety of DNA damaging agents, as we have observed previously with the fur spot assay. Here, we describe the use of the retinal pigment epithelium (RPE) of the eye to detect reversion events induced with two differently acting agents. Benzo(a)pyrene (B(a)P) induces a high frequency, and X-ray exposure a more modest increase, of p(un) reversion in both the fur and the eye. The eye-spot assay requires fewer mice for significant results than the fur spot assay. Previous work had elucidated the cell proliferation pattern in the RPE and a position effect variegation phenotype in the pattern of p(un) reversions, which we have confirmed. Acute exposure to B(a)P or X-rays resulted in an increased frequency of reversion events. The majority of the spontaneous reversions lie toward the periphery of the RPE whereas induced events are found more centrally, closer to the optic nerve head. The induced distribution corresponds to the major sites of cell proliferation in the RPE at the time of exposure, and further advocates the proposal that dividing cells are at highest risk to develop deletions.

  18. Retinal Afferent Ingrowth to Neocortical Transplants in the Adult Rat Superior Colliculus is due to the Regeneration of Damaged Axons

    PubMed Central

    Ross, D. T.; Das, G. D.

    1994-01-01

    Retinal afferent ingrowth to embryonic neural transplants in the adult rat superior colliculus may represent either sprouting of intact axons or the regeneration of transected axons. If ingrowth represents regeneration of damaged retinofugai axons, then lesions that axotomize more retinofugal axons at the transplantation site should induce greater retinal afferent ingrowth. Alternately, if ingrowth represents terminal or collateral sprouting of intact retinofugal axons at or near the transplant/host optic layer interface, then the magnitude of retinal afferent ingrowth should be directly related to the total area of this interface. To test between these two hypotheses surgical knife wounds were made either parallel (in the sagittal plane) or perpendicular (in the transverse plane) to the course of axons in the stratum opticum, embryonic neocortical tissue was transplanted at the coordinates of these tectal slits, and retinal afferent ingrowth visualized 1-90 days after surgery using anterogradely transported HRP. A zone of traumatic reaction (ztr) in the optic layers was seen in every case, characterized by hypertrophied axons and swollen terminal clubs at 1 day. Between 30 and 90 days the damaged retinofugal axons in the zone formed dense fascicles and neuroma-like tangles. Retinal afferent ingrowth occurred only across transplant interface regions with the ztr. The magnitude of ingrowth was directly related to the area of the ztr interface and not the total optic layer interface area. Retinal afferent ingrowth appears to reflect the intrinsic regenerative capacity of adult mammalian retinal ganglion cells and not sprouting of undamaged axons. PMID:7703292

  19. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  20. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers

    PubMed Central

    Calford, M B; Wang, C; Taglianetti, V; Waleszczyk, W J; Burke, W; Dreher, B

    2000-01-01

    In eight adult cats intense, sharply circumscribed, monocular laser lesions were used to remove all cellular layers of the retina. The extents of the retinal lesions were subsequently confirmed with counts of α-ganglion cells in retinal whole mounts; in some cases these revealed radial segmental degeneration of ganglion cells distal to the lesion.Two to 24 weeks later, area 17 (striate cortex; V1) was studied electrophysiologically in a standard anaesthetized, paralysed (artificially respired) preparation. Recording single- or multineurone activity revealed extensive topographical reorganization within the lesion projection zone (LPZ).Thus, with stimulation of the lesioned eye, about 75 % of single neurones in the LPZ had ‘ectopic’ visual discharge fields which were displaced to normal retina in the immediate vicinity of the lesion.The sizes of the ectopic discharge fields were not significantly different from the sizes of the normal discharge fields. Furthermore, binocular cells recorded from the LPZ, when stimulated via their ectopic receptive fields, exhibited orientation tuning and preferred stimulus velocities which were indistinguishable from those found when the cells were stimulated via the normal eye.However, the responses to stimuli presented via ectopic discharge fields were generally weaker (lower peak discharge rates) than those to presentations via normal discharge fields, and were characterized by a lower-than-normal upper velocity limit.Overall, the properties of the ectopic receptive fields indicate that cortical mechanisms rather than a retinal ‘periphery’ effect underlie the topographic reorganization of area 17 following monocular retinal lesions. PMID:10767137

  1. Gender-Dependent Effects of Enriched Environment and Social Isolation in Ischemic Retinal Lesion in Adult Rats

    PubMed Central

    Kiss, Peter; Szabadfi, Krisztina; Horvath, Gabor; Tamas, Andrea; Farkas, Jozsef; Gabriel, Robert; Reglodi, Dora

    2013-01-01

    Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. Numerous studies have proven that enriched environment can reduce the lesion induced by toxic and traumatic injuries. Impoverished environment, on the other hand, can have deleterious effects on the outcome of neuronal injuries. We have previously shown that enriched conditions have protective effects in retinal injury in newborn rats. It is well-known that the efficacy of neuroprotective strategies can depend on age and gender. The aim of the present study, therefore, was to examine the effects of environmental enrichment and social isolation in retinal ischemia. We used bilateral common carotid artery occlusion to induce retinal hypoperfusion in adult Wistar rats of both genders. Groups were housed in standard, enriched or impoverished conditions. Impoverished environment was induced by social isolation. Retinas were processed for histological analysis after two weeks of survival. In the present study, we show that (1) enriched environment has protective effects in adult ischemic retinal lesion, while (2) impoverished environment further increases the degree of ischemic injury, and (3) that these environmental effects are gender-dependent: females are less responsive to the positive effects of environmental enrichment and more vulnerable to retinal ischemia in social isolation. In summary, our present study shows that the effects of both positive and negative environmental stimuli are gender-dependent in ischemic retinal lesions. PMID:23921682

  2. Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women

    PubMed Central

    Kim, Hee-Kyoung; Min, Kyoung-Ok; Choi, Jung-Hyun; Kim, Soon-Hee

    2016-01-01

    [Purpose] In this study, the effects of low-level laser therapy (LLLT), electroacupuncture (EA), and radiofrequency (RF), which are used in physical therapy, on the pigmentation and skin tone of adult women’s faces were investigated to provide basic data for skin interventions. [Subjects and Methods] Thirty adult females were assigned to either an LLLT group (n=10), an EA group (n=10), or an RF group (n=10). The intervention was performed in two 15-minute sessions per week for six weeks. Subjects’ skin tone and pigmentation were observed before and after the intervention. [Results] The EA group showed significant reductions in pigmentation in the left and right eye rims, as well as in the left cheek. The RF group showed significant post-intervention reductions in pigmentation under the left eye, as well as in the left and right eye rims and the left cheek. The LLLT group showed significant increases in skin tone in the forehead and both eye rims. The RF group showed significant increases in skin tone under both eyes. [Conclusion] The application of LLLT, EA, and RF had positive effects on pigmentation and skin tone of adult women’s faces. PMID:27313340

  3. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  4. MicroRNA-184 promotes differentiation of the retinal pigment epithelium by targeting the AKT2/mTOR signaling pathway

    PubMed Central

    Jiang, Chao; Qin, Bing; Liu, Guohua; Sun, Xiantao; Shi, Houxia; Ding, Sijia; Liu, Yuan; Zhu, Meidong; Chen, Xue; Zhao, Chen

    2016-01-01

    Dedifferentiation of retinal pigment epithelium (RPE) cells is a crucial contributing factor to the pathology of retinal degenerative diseases, including age-related macular degeneration (AMD). Herein, we aim to reveal the roles of microRNAs (miRNAs) in RPE dedifferentiation and seek for potential therapeutic targets. Based on the microarray data, miR-184 was sorted out as the most up-regulated signature along with the differentiation from human induced pluripotent stem cells (hiPSC) to RPE cells, suggesting its potential promotive role in RPE differentiation. In vitro study indicated that miR-184 insufficiency suppressed RPE differentiation, typified by reduction of RPE markers, and promoted cell proliferation and migration. The role of miR-184 in maintaining regular RPE function was further proved in zebrafish studies. We also noticed that miR-184 expression was reduced in the macular RPE-choroid from a donor with RPE dysfunction compared to a healthy control. We next demonstrated that RAC-beta serine/threonine-protein kinase (AKT2) was a direct target for miR-184. MiR-184 promoted RPE differentiation via suppression of AKT2/mammalian target of rapamycin (mTOR) signaling pathway. We also found that AKT2 was up-regulated in macular RPE-choroid of the donor with RPE dysfunction and dry AMD patients. Taken together, our findings suggest that miR-184 insufficiency is involved in the pathogenesis of dry AMD. MiR-184 promotes RPE differentiation via inhibiting the AKT2/mTOR signaling pathway. MiR-184 based supplementary therapeutics and mTOR blocker, like rapamycin, are prospective options for AMD treatment. PMID:27418134

  5. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    PubMed

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.

  6. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment.

    PubMed

    Song, M K; Salam, N K; Roufogalis, Basil D; Huang, T H W

    2011-11-01

    The peroxisome proliferator activated receptor-γ (PPAR-γ) is involved in the pathogenesis of diabetic retinopathy. Diabetic retinopathy is a preventable microvascular diabetic complication that damages human retinal pigment epithelial cells. Taurine is abundant in the fruit of Lycium barbarum (Goji Berry), and is reportedly beneficial for diabetic retinopathy. However, the mechanism of its action is unknown. Hence, we have investigated the mechanism of action of an extract from L. barbarum on a model of diabetic retinopathy, the retinal ARPE-19 cell line, and identified the receptor function of taurine, an active component of L. barbarum (Goji Berry) extract, which is potentially responsible for the protective effect on diabetic retinopathy. We demonstrate for the first time that L. barbarum extract and its taurine component dose-dependently enhance PPAR-γ luciferase activity in HEK293 cell line transfected with PPAR-γ reporter gene. This activity was significantly decreased by a selective PPAR-γ antagonist GW9662. Moreover, L. barbarum extract and taurine dose-dependently enhanced the expression of PPAR-γ mRNA and protein. In an inflammation model where ARPE-19 cells were exposed to high glucose L. barbarum extract and taurine down-regulated the mRNA of pro-inflammatory mediators encoding MMP-9, fibronectin and the protein expression of COX-2 and iNOS proteins. The predicted binding mode of taurine in the PPAR-γ ligand binding site mimics key electrostatic interactions seen with known PPAR-γ agonists. We conclude that PPAR-γ activation by L. barbarum extract is associated with its taurine content and may explain at least in part its use in diabetic retinopathy progression.

  7. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex.

    PubMed

    Bhutto, Imran; Lutty, Gerard

    2012-08-01

    There is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex that is lost in AMD. Which component in the photoreceptor/RPE/BrMb/CC complex is affected first appears to depend on the type of AMD. In atrophic AMD (~85-90% of cases), it appears that large confluent drusen formation and hyperpigmentation (presumably dysfunction in RPE) are the initial insult and the resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of geographic atrophy (GA). The death and dysfunction of photoreceptors and CC appear to be secondary events to loss in RPE. In neovascular AMD (~10-15% of cases), the loss of choroidal vasculature may be the initial insult to the complex. Loss of CC with an intact RPE monolayer in wet AMD has been observed. This may be due to reduction in blood supply because of large vessel stenosis. Furthermore, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of complement components as well as proinflammatory molecules like CRP during AMD. In this toxic milieu, CC die or become dysfunction making adjacent RPE hypoxic. These hypoxic cells then produce angiogenic substances like VEGF that stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). The loss of CC might also be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation. Therefore, the mutualistic symbiotic relationship within the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.

  8. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    PubMed

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  9. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  10. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies.

  11. [Present status on studies of differentiation into retinal neurons and pigmented cell from induced pluripotent stem cells].

    PubMed

    Meng, Feng-xi; Guo, Wen-yi

    2010-12-01

    Somatic cells could be induced into pluripotent stem (iPS) cells through transferring special genes (Oct4, Sox2, c-myc and Klf4). This has brought a revolutionary change in stem cell study and application. The generation of iPS cells has great potential and enormous significance as it can resolve some insurmountable problems in stem cells research, such as ethical dilemma, immune rejection, etc. Because of these characteristics, it plays an important role in the repair of various tissues and organs. Rapid progress in this field during the past 3 years convinced us that iPS cells will be more and more applicable in tissue engineering. The present paper reviews the progress of pre-clinical study on iPS cells in the treatment of retinal and optic nerve diseases.

  12. Lack of Correlation Between the Spatial Distribution of A2E and Lipofuscin Fluorescence in the Human Retinal Pigment Epithelium

    PubMed Central

    Ablonczy, Zsolt; Higbee, Daniel; Anderson, David M.; Dahrouj, Mohammad; Grey, Angus C.; Gutierrez, Danielle; Koutalos, Yiannis; Schey, Kevin L.; Hanneken, Anne; Crouch, Rosalie K.

    2013-01-01

    Purpose. The accumulation of lipofuscin in the RPE is a hallmark of aging in the eye. The best characterized component of lipofuscin is A2E, a bis-retinoid byproduct of the normal retinoid visual cycle, which exhibits a broad spectrum of cytotoxic effects in vitro. The purpose of our study was to correlate the distribution of lipofuscin and A2E across the human RPE. Methods. Lipofuscin fluorescence was imaged in flat-mounted RPE from human donors of various ages. The spatial distributions of A2E and its oxides were determined using matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS) on flat-mounted RPE tissue sections and retinal cross-sections. Results. Our data support the clinical observations of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. High-resolution MALDI-IMS of retinal cross-sections confirmed the A2E localization data obtained in RPE flat-mounts. Singly- and doubly-oxidized A2E had distributions similar to A2E, but represented <10% of the A2E levels. Conclusions. This report to our knowledge is the first description of the spatial distribution of A2E in the human RPE by imaging mass spectrometry. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging. PMID:23847313

  13. The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus).

    PubMed

    Wilkie, S E; Vissers, P M; Das, D; Degrip, W J; Bowmaker, J K; Hunt, D M

    1998-02-15

    Microspectrophotometric (msp) studies have shown that the colour-vision system of many bird species is based on four pigments with absorption peaks in the red, green, blue and UV regions of the spectrum. The existence of a fourth pigment (UV) is the major difference between the trichromacy of humans and the tetrachromacy of such birds, and recent studies have shown that it may play a determining role in such diverse aspects of behaviour as mate selection and detection of food. Avian visual pigments are composed of an opsin protein covalently bound via a Schiff-base linkage to the chromophore 11-cis-retinal. Here we report the cDNA sequence of a UV opsin isolated from an avian species, Melopsittacus undulatus (budgerigar or small parakeet). This sequence has been expressed using the recombinant baculovirus system; the pigment generated from the expressed protein on addition of 11-cis-retinal yielded an absorption spectrum typical of a UV photopigment, with lambdamax 365+/-3 nm. This is the first UV opsin from an avian species to be sequenced and expressed in a heterologous system. In situ hybridization of this sequence to budgerigar retinas selectively labelled a sub-set of UV cones, representing approx. 9% of the total cone population, that are distributed in a semi-regular pattern across the entire retina.

  14. Comparisons of the structural and chemical properties of melanosomes isolated from retinal pigment epithelium, iris and choroid of newborn and mature bovine eyes.

    PubMed

    Liu, Yan; Hong, Lian; Wakamatsu, Kazumasa; Ito, Shosuke; Adhyaru, Bhavin B; Cheng, Chi-Yuan; Bowers, Clifford R; Simon, John D

    2005-01-01

    Melanosomes were isolated from the retinal pigment epithelium (RPE), iris and choroid of mature (age >2 years) and newborn (age <1 week) bovine eyes. Scanning electron microscopy was utilized to analyze the morphology of the melanosomes, which were found to vary among different tissues and different ages. While the total content of amino acids differs slightly (ranging from 9% to 15% by mass), the distributions of the amino acids are similar. The pheomelanin content is low in the choroid and the RPE (0.1-0.5%), and moderate in the iris (<2%); therefore, the major melanin component of bovine eye melanosomes is eumelanin, independent of the shape of the melanosomes. The yields of pyrrole-2,3,5-tricarboxylic acid from melanosomes decrease in the following order: choroid > iris > RPE, and exhibit decreasing yields with age. 13C solid-state nuclear magnetic resonance (NMR) spectroscopic analysis of iris and choroid melanosomes indicates the same trends. These observations suggest that the 5,6-dihydroxyindole-2-carboxylic acid contents decrease in the following order: choroid > iris > RPE, and decrease with age. Moreover, the 13C solid-state NMR spectra show (1) for the same age samples, the CH:Cq ratio for choroid is larger than that for iris melanosomes; and (2) an increase in the concentration of carbonyl groups with age within each type of melanosome.

  15. Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium

    PubMed Central

    Ablonczy, Zsolt; Higbee, Daniel; Grey, Angus C.; Koutalos, Yiannis; Schey, Kevin L.; Crouch, Rosalie K.

    2013-01-01

    The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI-IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE. PMID:23969078

  16. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration.

    PubMed

    Kim, Sung Hwan; Kim, Hyunjin; Ku, Hyeong Jun; Park, Jung Hyun; Cha, Hanvit; Lee, Seoyoon; Lee, Jin Hyup; Park, Jeen-Woo

    2016-12-01

    Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF), secreted by the retinal pigment epithelium (RPE), in pathological angiogenesis and the development of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA) is a competitive inhibitor of NADP(+)-dependent isocitrate dehydrogenase (IDH), which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS). Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  17. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-05

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases.

  18. Concentration dependence of vitamin C in combinations with vitamin E and zeaxanthin on light-induced toxicity to retinal pigment epithelial cells.

    PubMed

    Różanowska, Małgorzata; Bakker, Linda; Boulton, Michael E; Różanowski, Bartosz

    2012-01-01

    The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α-tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE-19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell-reductive activity. A 20 min exposure to visible light and photosensitizer decreased cell viability to ca 42%. Lipophilic antioxidants increased viabilities to ca 70%, 61% and 75% for α-tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ca 70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mm ascorbate, respectively. A 45 min exposure increased cell death to ca 74% and >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α-Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate, but did not prevent from ascorbate-mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate-mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate, but do not ameliorate its deleterious effects.

  19. MicroRNA-182 Suppresses HGF/SF-Induced Increases in Retinal Pigment Epithelial Cell Proliferation and Migration through Targeting c-Met

    PubMed Central

    Wang, Lihua; Dong, Feng; Reinach, Peter S.; He, Dandan; Zhao, Xiaoting; Chen, Xiaoyan; Hu, Dan-Ning

    2016-01-01

    As increases in hepatocyte growth factor/scatter factor (HGF/SF) induce retinal pigment epithelial (RPE) migration and proliferation into the vitreous cavity and contribute to proliferative vitreoretinopathy (PVR) development, we determined if changes in miR-182 expression affect such behavioral changes. We found that miR-182 expression was less in PVR clinical samples than in primary RPE cells whereas c-Met was upregulated. Ectopic miR-182 inhibited RPE cell proliferation, cell cycle, and migration. Bioinformatic analysis identified c-Met as a miR-182 target, which was confirmed with the luciferase reporter assay. Transfection of miR-182 into RPE cells induced c-Met downregulation, which led to reduced cell proliferation and migration through declines in p-Akt formation. MiR-182 downregulation along with c-Met upregulation in PVR tissues suggest that these two opposing effects play important roles in PVR development. As ectopic miR-182 expression suppressed RPE cell proliferation and migration, strategies to selectively upregulate miR-182 expression in a clinical setting may provide a novel option to treat this disease. PMID:27936052

  20. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy.

    PubMed

    Zieger, Marina; Punzo, Claudio

    2016-03-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die.

  1. The Contribution of Melanoregulin to Microtubule-Associated Protein 1 Light Chain 3 (LC3) Associated Phagocytosis in Retinal Pigment Epithelium.

    PubMed

    Frost, Laura S; Lopes, Vanda S; Bragin, Alvina; Reyes-Reveles, Juan; Brancato, Jennifer; Cohen, Art; Mitchell, Claire H; Williams, David S; Boesze-Battaglia, Kathleen

    2015-12-01

    A main requisite in the phagocytosis of ingested material is a coordinated series of maturation steps which lead to the degradation of ingested cargo. Photoreceptor outer segment (POS) renewal involves phagocytosis of the distal disk membranes by the retinal pigment epithelium (RPE). Previously, we identified melanoregulin (MREG) as an intracellular cargo-sorting protein required for the degradation of POS disks. Here, we provide evidence that MREG-dependent processing links both autophagic and phagocytic processes in LC3-associated phagocytosis (LAP). Ingested POS phagosomes are associated with endogenous LC3 and MREG. The LC3 association with POSs exhibited properties of LAP; it was independent of rapamycin pretreatment, but dependent on Atg5. Loss of MREG resulted in a decrease in the extent of LC3-POS association. Studies using DQ-BSA suggest that loss of MREG does not compromise the association and fusion of LC3-positive phagosomes with lysosomes. Furthermore, the mechanism of MREG action is likely through a protein complex that includes LC3, as determined by colocalization and immunoprecipitation in both RPE cells and macrophages. We posit that MREG participates in coordinating the association of phagosomes with LC3 for content degradation with the loss of MREG leading to phagosome accumulation.

  2. Comparison of Progression Rate of Retinal Pigment Epithelium Loss in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Aflibercept

    PubMed Central

    Wirth, Magdalena A.; Graf, Nicole; Becker, Matthias D.; Michels, Stephan

    2017-01-01

    Purpose. Retinal pigment epithelium (RPE) loss in neovascular age-related macular degeneration (nAMD) seem to have a linear progression but might be influenced by the treatment. The purpose of the study is the comparison of RPE loss over three years in patients treated with intravitreal ranibizumab to patients who were switched to aflibercept. Methods. A retrospective analysis with 96 eyes switched to aflibercept was conducted. The progression rate of RPE loss was evaluated in patients who showed atrophy one year prior to switch (n = 17) or on switch date (n = 19). The RPE loss was evaluated by spectral domain optical coherence tomography (SD-OCT). Further, 22 eyes from patients treated with ranibizumab were compared. Results. The median yearly progression of RPE loss after square root transformation showed no significant difference in the year prior to switch compared to the year after switch (p = 0.854). In patients who received only ranibizumab, the median yearly progression of RPE loss was 0.15 mm/y, for aflibercept patients, 0.13 mm/y. This difference was not statistically significant (p = 0.172). Conclusions. There seems to be a linear progression rate of RPE loss in patients treated with ranibizumab as well as in patients with aflibercept. No significant increase of progression rate was found after switch to aflibercept. PMID:28316836

  3. [Apoptosis and differentiation in presumptive neural retina and presumptive retinal pigmented epithelium during early eye development in toad, Bufo raddei Strauch].

    PubMed

    Khan, V; Khan, I-P; Vang, Z-R

    2012-01-01

    Apoptosis and differentiation in presumptive neural retina (PNR) and presumptive retinal pigmented epithelium (PRPE) wert investigated during early retina development of toad, Bufo raddei Strauch. TUNEL staining was used to evaluate apoptotic cells and the immunohistochemistry was used to assess the expression levels ofglial fibrillary acidic protein (GFAP), RT97 and tyrosinase (Tyr) during early eye development respectively. The density of apoptotic cells and protein expression were quantitated with Image-Pro Plus 6.0. Apoptosis was found in both PNR and PRPE and the density of apoptotic profiles in PRPE was higher than that in PNR (most P<0.01) at the same stage during early eye development. The expression levels of GFAP and RT97 changed from low to high in PNR, but from high to low in PRPE, whereas the expression level of Tyr, was contrary to those of GFAP and RT97 in both PNR and PRPE. The point of intersection of these, increase and decrease respectively was found at 5-6 h after formation of optic vesicle (FOV). PRPE becomes thinner than PNR, one of the reasons might be due to higher density of apoptosis in PRPE than that in PNR during early eye development. Molecular differentiation, however, occurred after the contact of the optic vesicle outer wall with the overlying ectoderm which promotes the expression of specific molecules and inhibits the expression of non-specific molecules in PNR and PRPE respectively.

  4. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1).

    PubMed

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-11-03

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H₂O₂-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H₂O₂-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.

  5. APC-like congenital hypertrophy of the retinal pigment epithelium (CHRPE) in non-APC patients: Evidence for autosomal dominant transmission in one family

    SciTech Connect

    Thonney, E.; Munier, F.L. Pescia, G.

    1994-09-01

    The presence of congenital hypertrophy of the retinal pigment epithelium (CHRPE) is known to be the earliest phenotypic marker in carriers of a mutant allele of the adenomatous polyposis coli gene (APC). The specificity of CHRPE is known to be over 97%, provided that the lesions are bilateral and their total number higher than 4. In the present study, we describe 3 patients from 2 unrelated families with bilateral multiple asymptomatic CHRPE (8-17), normal visual function and no family history of APC. Clinical examination failed to detect other extracolonic signs of APC nor did a search for adenomatous polyps by colonscopy. In one family, the ocular phenotype was transmitted from a father to his only son. Mutation hot spots at codons 302, 622, 625, 1061 and 1309 of the APC gene (about 25% of germline mutations) were all tested normal. We postulate that these APC-free ocular findings reflect the allelic involvement of a mutant APC allele that remains to be characterized. However, involvement of another yet unrecognized autosomal dominant gene cannot be ruled out and additional families with this unique trait should be studied.

  6. Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response.

    PubMed

    Valapala, Mallika; Edwards, Malia; Hose, Stacey; Grebe, Rhonda; Bhutto, Imran A; Cano, Marisol; Berger, Thorsten; Mak, Tak W; Wawrousek, Eric; Handa, James T; Lutty, Gerard A; Samuel Zigler, J; Sinha, Debasish

    2014-12-01

    Although chronic inflammation is believed to contribute to the pathology of age-related macular degeneration (AMD), knowledge regarding the events that elicit the change from para-inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin-2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1-crystallin specifically in RPE, have defective lysosomal clearance. The age-related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C-C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD-like pathology.

  7. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration

    PubMed Central

    Geng, Zhouhui; Walsh, Patrick J.; Truong, Vincent; Hill, Caitlin; Ebeling, Mara; Kapphahn, Rebecca J.; Montezuma, Sandra R.; Yuan, Ching; Roehrich, Heidi; Ferrington, Deborah A.

    2017-01-01

    Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70–85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals. PMID:28282420

  8. Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells.

    PubMed

    Nakanishi-Ueda, T; Majima, H J; Watanabe, K; Ueda, T; Indo, H P; Suenaga, S; Hisamitsu, T; Ozawa, T; Yasuhara, H; Koide, R

    2013-10-01

    The effects of blue light emitter diode (LED) light exposure on retinal pigment epithelial cells (RPE cells) were examined to detect cellular damage or change and to clarify its mechanisms. The RPE cells were cultured and exposed by blue (470 nm) LED at 4.8 mW/cm(2). The cellular viability was determined by XTT assay and cellular injury was determined by the lactate dehydrogenase activity in medium. Intracellular reactive oxygen species (ROS) generation was determined by confocal laser microscope image analysis using dihydrorhodamine 123 and lipid peroxidation was determined by 4-hydroxy-2-nonenal protein-adducts immunofluorescent staining (HNE). At 24 h after 50 J/cm(2) exposures, cellular viability was significantly decreased to 74% and cellular injury was significantly increased to 365% of control. Immediately after the light exposure, ROS generation was significantly increased to 154%, 177%, and 395% of control and HNE intensity was increased to 211%, 359%, and 746% of control by 1, 10, and 50 J/cm(2), respectively. These results suggest, at least in part, that oxidative stress is an early step leading to cellular damage by blue LED exposure and cellular oxidative damage would be caused by the blue light exposure at even lower dose (1, 10 J/cm(2)).

  9. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.

  10. Suppression of the proliferation of hypoxia-Induced retinal pigment epithelial cell by rapamycin through the /mTOR/HIF-1α/VEGF/ signaling.

    PubMed

    Liu, Ning-Ning; Zhao, Ning; Cai, Na

    2015-06-01

    Rapamycin, a highly specific inhibitor of mammalian target of rapamycin (mTOR), exhibits significant antitumor/antiangiogenic activity in human cancer cells. Its effect on the retinal pigment epithelial (RPE) cells was rarely investigated. This study assessed the proliferation of hypoxia-induced RPE and the inhibitory effects of rapamycin using 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and examined the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in RPE cells with or without rapamycin under normoxic and hypoxic conditions using real-time PCR and Western blot. We found that hypoxia increased the levels of mTOR, HIF-1α, and VEGF. The suppression of HIF-1α and VEGF by rapamycin was associated with dephosphorylation of mTOR and the downstream effector ribosomal protein S6 kinase (P70S6K) and 4E-binding protein-1 (4E-BP1) of mTORC1. Rapamycin only inhibited the protein levels and did not change the mRNA expression of HIF-1α. No cytotoxicity to the RPE cells by rapamycin was caused under either normoxia or hypoxia. Our data suggest that rapamycin suppresses hypoxia-induced RPE cell proliferation through a mechanism related to the targeting of mTOR/HIF-1α/VEGF signaling. Rapamycin may potentially provide a safe and effective novel treatment for choroidal vascular disease.

  11. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  12. Clearance of autophagy-associated dying retinal pigment epithelial cells – a possible source for inflammation in age-related macular degeneration

    PubMed Central

    Szatmári-Tóth, M; Kristóf, E; Veréb, Z; Akhtar, S; Facskó, A; Fésüs, L; Kauppinen, A; Kaarniranta, K; Petrovski, G

    2016-01-01

    Retinal pigment epithelial (RPE) cells can undergo different forms of cell death, including autophagy-associated cell death during age-related macular degeneration (AMD). Failure of macrophages or dendritic cells (DCs) to engulf the different dying cells in the retina may result in the accumulation of debris and progression of AMD. ARPE-19 and primary human RPE cells undergo autophagy-associated cell death upon serum depletion and oxidative stress induced by hydrogen peroxide (H2O2). Autophagy was revealed by elevated light-chain-3 II (LC3-II) expression and electron microscopy, while autophagic flux was confirmed by blocking the autophago-lysosomal fusion using chloroquine (CQ) in these cells. The autophagy-associated dying RPE cells were engulfed by human macrophages, DCs and living RPE cells in an increasing and time-dependent manner. Inhibition of autophagy by 3-methyladenine (3-MA) decreased the engulfment of the autophagy-associated dying cells by macrophages, whereas sorting out the GFP-LC3-positive/autophagic cell population or treatment by the glucocorticoid triamcinolone (TC) enhanced it. Increased amounts of IL-6 and IL-8 were released when autophagy-associated dying RPEs were engulfed by macrophages. Our data suggest that cells undergoing autophagy-associated cell death engage in clearance mechanisms guided by professional and non-professional phagocytes, which is accompanied by inflammation as part of an in vitro modeling of AMD pathogenesis. PMID:27607582

  13. Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration.

    PubMed

    Marmorstein, Lihua Y; McLaughlin, Precious J; Peachey, Neal S; Sasaki, Takako; Marmorstein, Alan D

    2007-10-15

    Malattia leventinese (ML) is a dominantly inherited macular degenerative disease characterized by the presence of sub-retinal pigment epithelium (RPE) deposits. With the exception of an earlier age of onset, ML patients exhibit symptoms and histopathology compatible with the diagnosis of age-related macular degeneration (AMD), the most common cause of incurable blindness. ML is caused by a mutation (R345W) in the gene EFEMP1 which encodes fibulin-3, a protein of unknown function. We generated a knock-in mouse carrying the disease-associated mutation in the murine Efemp1 gene. Small, isolated sub-RPE deposits developed as early as 4 months of age in both heterozygous and homozygous knock-in mice. Over time these deposits increased in size and number eventually becoming continuous sheets. In older mice membranous debris was observed within the deposits and within Bruch's membrane, and was accompanied by general RPE and choroidal abnormalities including degeneration, vacuolation, loss or disruption of the RPE basal infoldings, choroidal atrophy, and focal thickening of and invasion of cellular processes into Bruch's membrane. Fibulin-3 was found to accumulate in the sub-RPE deposits. Thus, the Efemp1 knock-in mice reconstitute the most important histopathologic symptoms of both ML and AMD. We conclude that these mice are a valuable tool for studying the primary pathogenic course of basal deposits associated with macular degeneration and for testing prevention and treatment strategies for this class of diseases.

  14. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  15. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)

    PubMed Central

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-01-01

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892

  16. Culture of Adult Transgenic Zebrafish Retinal Explants for Live-cell Imaging by Multiphoton Microscopy.

    PubMed

    Lahne, Manuela; Gorsuch, Ryne A; Nelson, Craig M; Hyde, David R

    2017-02-24

    An endogenous regeneration program is initiated by Müller glia in the adult zebrafish (Danio rerio) retina following neuronal damage and death. The Müller glia re-enter the cell cycle and produce neuronal progenitor cells that undergo subsequent rounds of cell divisions and differentiate into the lost neuronal cell types. Both Müller glia and neuronal progenitor cell nuclei replicate their DNA and undergo mitosis in distinct locations of the retina, i.e. they migrate between the basal Inner Nuclear Layer (INL) and the Outer Nuclear Layer (ONL), respectively, in a process described as Interkinetic Nuclear Migration (INM). INM has predominantly been studied in the developing retina. To examine the dynamics of INM in the adult regenerating zebrafish retina in detail, live-cell imaging of fluorescently-labeled Müller glia/neuronal progenitor cells is required. Here, we provide the conditions to isolate and culture dorsal retinas from Tg[gfap:nGFP](mi2004) zebrafish that were exposed to constant intense light for 35 h. We also show that these retinal cultures are viable to perform live-cell imaging experiments, continuously acquiring z-stack images throughout the thickness of the retinal explant for up to 8 h using multiphoton microscopy to monitor the migratory behavior of gfap:nGFP-positive cells. In addition, we describe the details to perform post-imaging analysis to determine the velocity of apical and basal INM. To summarize, we established conditions to study the dynamics of INM in an adult model of neuronal regeneration. This will advance our understanding of this crucial cellular process and allow us to determine the mechanisms that control INM.

  17. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    PubMed Central

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  18. Temporal Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24 Hours Post-Exposure to 1064 nm, 3.6 ns Pulsed Laser Light

    DTIC Science & Technology

    2005-05-01

    USAFA TR 2005-05 Temporal Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24 Hours...AIR FORCE ACADEMY COLORADO 80840 20050630 417 USAFA TR 2005-05 This article, "Temporal Differential Gene Expression in Explanted Human Retinal ...Differential Gene Expression in Explanted Human Retinal Pigment USAFA F05611-02-P-0471 Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24-Hours Post-Exposure

  19. Pigmented Rice Bran and Plant Sterol Combination Reduces Serum Lipids in Overweight and Obese Adults

    PubMed Central

    Hongu, Nobuko; Kitts, David D.; Zawistowski, Jerzy; Dossett, Cynthia M.; Kopeć, Aneta; Pope, Benjamin T.; Buchowski, Maciej S.

    2015-01-01

    Objective This study investigated the dietary effect of including pigmented rice bran with or without plant sterols on lipid profiles during energy restriction–induced weight loss in overweight and obese adults not taking cholesterol-lowering medication. In addition, the study examined the effect of intervention on biomarkers of oxidative stress and inflammation. Methods A group of 24 overweight and obese adults (age: 43 ± 6 years, body mass index 32 ± 1 kg/m2, 18 females) were randomized to a 25% calorie-restricted diet containing either pigmented rice bran (RB) or the RB with addition of plant sterols (RB + PS) snack bars for 8 weeks. The individualized nutrient-balanced diet contained ~70% of daily energy needs assessed from indirect calorimetry measured resting energy expenditure (EE) and physical activity-related EE assessed using accelerometry. Anthropometrics, blood pressure, blood lipids, glucose, urinary F2-isoprostanes, C-reactive protein, insulin, and leptin were measured at baseline and after 8 weeks of intervention. Results Participants lost approximately 4.7 ± 2.2 kg (p < 0.001). Weight loss was not significant between the RB + PS and RB group (p = 0.056). Changes in body fat corresponded to changes in body weight. Average decrease in total cholesterol was significantly higher in the RB + PS group than in the RB group (difference 36 ± 25 g/dL vs 7 ± 16 g/dL; p = 0.044). A similar pattern was observed for the decrease in low-density lipoprotein (LDL) cholesterol (difference 22.3 ± 25.2 g/dL vs 4.4 ± 18.9 g/dL; p = 0.062). Changes in systolic blood pressure, serum levels of leptin, and F2-isoprostanes were significant between baseline values and after 8 weeks on the diet in both groups (p < 0.05) but did not differ between the 2 groups. Conclusions A nutrient-balanced and energy-restricted diet supplemented with rice bran and plant sterols resulted in a significant decrease in total and LDL cholesterol in overweight and obese adults. PMID

  20. Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles

    NASA Astrophysics Data System (ADS)

    van der Veen, Rob L. P.; Berendschot, Tos T. J. M.; Makridaki, Maria; Hendrikse, Fred; Carden, David; Murray, Ian J.

    2009-11-01

    A comparison of macular pigment optical density (MPOD) spatial profiles determined by an optical and a psychophysical technique is presented. We measured the right eyes of 19 healthy individuals, using fundus reflectometry at 0, 1, 2, 4, 6, and 8 deg eccentricity; and heterochromatic flicker photometry (HFP) at 0, 0.5, 1, 2, 3, 4, 5, 6, and 7 deg, and a reference point at 8 deg eccentricity. We found a strong correlation between the two techniques. However, the absolute estimates obtained by fundus reflectometry data were higher than by HFP. These differences could partly be explained by the fact that at 8 deg eccentricity the MPOD is not zero, as assumed in HFP. Furthermore, when performing HFP for eccentricities of <1 deg, we had to assume that subjects set flicker thresholds at 0.4 deg horizontal translation when using a 1-deg stimulus. MPOD profiles are very similar for both techniques if, on average, 0.05 DU is added to the HFP data at all eccentricities. An additional correction factor, dependent on the steepness of the MPOD spatial distribution, is required for 0 deg.

  1. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  2. Osmolarity and spectrophotometric property of brilliant blue green define the degree of toxicity on retinal pigment epithelial cells exposed to surgical endoilluminator

    PubMed Central

    Balaiya, Sankarathi; Sambhav, Kumar; Cook, William B; Chalam, Kakarla V

    2016-01-01

    Objective To evaluate the effect of varying concentrations of brilliant blue green (BBG) and their different biochemical characteristics on retinal pigment epithelial (RPE) cells under xenon light source illumination at varying distances to identify safe parameters for intraoperative use. Methods Human retinal RPE cells (ARPE-19) were exposed to two concentrations (0.25 and 0.50 mg/mL) of BBG and illuminated with a xenon surgical illuminator at varying distances (10 and 25 mm), intensity levels, and time intervals (1, 5, and 15 minutes). Additionally, the effect of osmolarity was examined by diluting BBG in different concentrations of glucose. Cytotoxicity of BBG and osmolarity effects on cell viability were evaluated using a WST-1 assay. Light absorption and emission characteristic of BBG in different solvents were measured using a plate reader at different wavelengths. Lastly, the activity of caspase-3 was also studied. Results Cell viability of ARPE-19 cells was 77.4%±12.7%, 78.7%±17.0%, and 65.0%±19.7% at 1, 5, and 15 minutes to exposure of high illumination xenon light at 10 mm (P<0.05) compared to controls. At both distances of illumination (10 and 25 mm), similar cell viabilities were seen between 1 and 5 minutes of exposure. However, there was a decline in viability when the illumination was carried out to 15 minutes in all groups (P<0.05). There was no significant reduction in cell viability in presence or absence of xenon light in different osmolar solutions concentrations of glucose (P>0.05). Maximal light absorption of BBG was noted between 540 and 680 nm. Activated caspase-3 level was not significant in both the concentrations of BBG (P>0.05). Conclusion Our findings suggest that BBG at 0.25 mg/mL during vitreoretinal surgery is safe and not toxic to RPE cells up to 5 minutes under focal high illumination (10 mm) and up to 15 minutes under medium diffuse illumination (25 mm). BBG was safe to be mixed with isotonic glucose solution at the

  3. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells

    PubMed Central

    Prager, Philipp; Hollborn, Margrit; Steffen, Anja; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Systemic hypertension is a risk factor of age-related macular degeneration (AMD), a chronic inflammatory disease. Acute hypertension is caused by increased extracellular osmolarity after intake of dietary salt (NaCl). We determined in cultured human retinal pigment epithelial (RPE) cells whether high extracellular NaCl alters the gene expression of inflammasome-associated proteins, and whether autocrine/paracrine purinergic (P2) receptor signaling contributes to the NaCl-induced NLRP3 gene expression. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Gene and protein expression levels were determined with real-time RT-PCR and Western blot analysis, respectively. IL-1β and IL-18 levels were evaluated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. High extracellular NaCl induced NLRP3 and pro-IL-1β gene expression, while the gene expression of further inflammasome-associated proteins (NLRP1, NLRP2, NLRP6, NLRP7, NLRP12, NLRC4, AIM2, ASC, procaspase-1, pro-IL-18) was not altered or below the detection threshold. The NaCl-induced NLRP3 gene expression was partially dependent on the activities of phospholipase C, IP3 receptors, protein kinase C, the serum and glucocorticoid-regulated kinase, p38 MAPK, ERK1/2, JNK, PI3K, and the transcription factors HIF-1 and NFAT5. Pannexin-dependent ATP release and P2Y1 receptor activation is required for the full induction of NLRP3 gene expression. High NaCl induced a transient increase of the NLRP3 protein level and a moderate NLRP3 inflammasome activation, as indicated by the transient increase of the cytosolic level of mature IL-1β. High NaCl also induced secretion of IL-18. Conclusion High extracellular NaCl induces priming of the NLRP3 inflammasome in RPE cells, in part via P2Y1 receptor signaling. The inflammasome priming effect of NaCl suggests that high intake of dietary salt may promote

  4. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  5. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    PubMed

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  6. Multiphoton absorption is probably not the primary threshold damage mechanism for femtosecond laser pulse exposures in the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Johnson, Thomas E.

    2004-07-01

    Laser induced breakdown has the lowest energy threshold in the femtosecond domain, and is responsible for production of threshold ocular lesions. It has been proposed that multiphoton absorption may also contribute to ultrashort-pulse tissue damage, based on the observation that 33 fs, 810 nm pulse laser exposures caused more DNA breakage in cultured, primary RPE cells, compared to CW laser exposures delivering the same average power. Subsequent studies, demonstrating two-photon excitation of fluorescence in isolated RPE melanosomes, appeared to support the role of multiphoton absorption, but mainly at suprathreshold irradiance. Additional experiments have not found a consistent difference in the DNA strand breakage produced by ultrashort and CW threshold exposures. DNA damage appears to be dependent on the amount of melanin pigmentation in the cells, rather than the pulsewidth of the laser; current studies have found that, at threshold, CW and ultrashort pulse laser exposures produce almost identical amounts of DNA breakage. A theoretical analysis suggest that the number of photons delivered to the RPE melanosome during a single 33-fsec pulse at the ED50 irradiance is insufficient to produce multiphoton excitation. This result appears to exclude the melanosome as a locus for two- or three-photon excitation; however, a structure with a larger effective absorption cross-section than the melanosome may interact with the laser pulses. One possibility is that the nuclear chromatin acts as a unit absorber of photons resulting in DNA damage, but this does not explain the near equivalence of ultrashort and CW exposures in the comet assay model. This equivalence indicated that multiphoton absorption is not a major contributor to the ultrashort pulse laser damage threshold in the near infrared.

  7. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    PubMed

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  8. The Apical Localization of Na(+), K(+)-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit.

    PubMed

    Lobato-Álvarez, Jorge A; Roldán, María L; López-Murillo, Teresa Del Carmen; González-Ramírez, Ricardo; Bonilla-Delgado, José; Shoshani, Liora

    2016-01-01

    Na(+), K(+)-ATPase, or the Na(+) pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na(+), K(+)-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na(+) pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na(+), K(+)-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na(+) pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na(+), K(+)-ATPase in RPE cells depends on the expression of the β2 subunit.

  9. Elevated amyloid β production in senescent retinal pigment epithelium, a possible mechanism of subretinal deposition of amyloid β in age-related macular degeneration.

    PubMed

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-06-22

    Age-related macular degeneration (AMD) is the most common cause of legal blindness in the elderly individuals in developed countries. Subretinally-deposited amyloid β (Aβ) is a main contributor of developing AMD. However, the mechanism causing Aβ deposition in AMD eyes is unknown. Aging is the most significant risk of AMD, thus, we examined the effect of aging on subretinal Aβ deposition. mRNAs and cell lysates were isolated from retinal pigment epithelial (RPE) cells derived from 24-month-old (24M RPE) and 2-month-old (2M RPE) C57BL/6 mice. Aβ concentration in culture supernatants was measured by ELISA. Activity and expression of proteins that regulate Aβ level were examined by activity assay and real time PCR. Effect of β-secretase (BACE) on Aβ production was examined by siRNA silencing. Aβ amounts in supernatants of 24M RPE were significantly higher than 2M RPE. Activity and mRNA levels of neprilysin, an Aβ degrading enzyme, were significantly decreased in 24M RPE compared to 2M RPE. PCR analysis found that BACE2 was significantly more abundantly expressed than BACE1 in RPE cells, however, inactivation of BACE2 gene did not affect Aβ production. BACE1 protein amounts did not differ between 24M and 2M RPE, however, BACE1 activity was significantly higher in 24M RPE compared to 2M RPE. There were no significant changes in the activities of α- or γ-secretase between 2M and 24M RPE. In conclusion, RPE cells produce more amounts of Aβ when they are senescent, and this is probably caused by a decrease in Aβ degradation due to a reduction in the expression and activity of neprilysin and an increase in Aβ synthesis due to increased activity of BACE1.

  10. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells.

    PubMed

    Paimela, Tuomas; Ryhänen, Tuomas; Mannermaa, Eliisa; Ojala, Johanna; Kalesnykas, Giedrius; Salminen, Antero; Kaarniranta, Kai

    2007-06-15

    Toll-like receptors (TLRs) and inflammatory cascades participate in the pathology of age-related macular degeneration (AMD). The effect of estrogens on the development of AMD is poorly understood, although many studies indicate that these compounds can modulate inflammatory responses. In this study, we investigated the regulatory role of TLR agonists and 17beta-estradiol (E(2)) on IL-6 expression and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells (ARPE-19). The inflammatory response of ARPE-19 cells to various TLR agonists, e.g. Pam, zymosan, flagellin, SLTA and lipopolysaccharide (LPS) exposures were examined via the secretion of IL-6 cytokine as analyzed by ELISA. In addition, the IL-6 responses to the estrogen-receptor agonist, E(2), and to the estrogen-receptor antagonist ICI 182.780 as well as to the NF-kappaB inhibitor helenalin were compared. The DNA-binding activity of NF-kappaB transcription factor of nuclear cell extracts was analyzed by the gel mobility shift assay (EMSA). TLR4 gene expression was studied by quantitave PCR. The TLR4 agonist, LPS, caused a clear IL-6 response that was attenuated by E(2) in ARPE-19-cells. The anti-inflammatory properties of E(2) were mediated through estrogen receptors and were associated with decreased NF-kappaB DNA-binding activity. The level of TLR4 gene expression was not affected by LPS exposure. Our results indicate that IL-6 expression is regulated through NF-kappaB transcription factor and stereoid-receptor signalling pathways in ARPE-19 cells.

  11. Angiotensin-2-Mediated Ca2+ Signaling in the Retinal Pigment Epithelium: Role of Angiotensin-Receptor- Associated-Protein and TRPV2 Channel

    PubMed Central

    Barro-Soria, Rene; Stindl, Julia; Müller, Claudia; Foeckler, Renate; Todorov, Vladimir; Castrop, Hayo; Strauß, Olaf

    2012-01-01

    Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation. PMID:23185387

  12. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

    PubMed Central

    Lobato-Álvarez, Jorge A.; Roldán, María L.; López-Murillo, Teresa del Carmen; González-Ramírez, Ricardo; Bonilla-Delgado, José; Shoshani, Liora

    2016-01-01

    Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit. PMID:27774068

  13. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.

    PubMed

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L

    2015-05-08

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation.

  14. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    PubMed

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  15. Myeloid Cells Expressing VEGF and Arginase-1 Following Uptake of Damaged Retinal Pigment Epithelium Suggests Potential Mechanism That Drives the Onset of Choroidal Angiogenesis in Mice

    PubMed Central

    Liu, Jian; Copland, David A.; Horie, Shintaro; Wu, Wei-Kang; Chen, Mei; Xu, Yunhe; Paul Morgan, B.; Mack, Matthias; Xu, Heping; Nicholson, Lindsay B.; Dick, Andrew D.

    2013-01-01

    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch’s membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF + Arg-1+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF + Arg-1+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain. PMID:23977372

  16. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  17. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  18. The effect of telomerase expression on the escape from M2 crisis in virus-transformed human retinal pigment epithelial cells.

    PubMed

    Park, Jae-Kyung; Kim, Byung-Ho; Han, Yo Seb; Park, In Kook

    2002-05-31

    Transformation with viral oncogene extends the lifespan of normal cells beyond replicative senescence called M1, but most of them eventually succumb to second crisis called M2 when telomeres become critically short. To acquire an infinite growth capacity, these cells have to overcome M2 crisis, which is known to follow telomerase activation. We have investigated if telomerase expression is required for virus-transformed pre-M2 cells to avert M2 crisis. Human retinal pigment epithelial (RPE) cells were transformed with simian virus 40 large T antigen and a VR3 clone in pre-M2 stage was obtained. Then, VR3 cells were transfected with a telomerase-containing vector and two cell lines that expressed telomerase temporarily or continuously were cloned and designated as ST1 and ST2, respectively. Normal RPE cells went into senescence after 36 population doublings. Although the lifespan was extended in the VR3 clone about 20 times more, it eventually underwent second crisis. The telomere length of VR3 decreased compared to that of normal RPE cells and the decrease continued during subculture. However, the ST1 and ST2 clones that expressed both T antigen and telomerase could avert this crisis. The initial telomere length of ST1 and ST2 was longer than that of normal cells. The ST1 underwent growth arrest again as telomerase expression faded out and elongated telomere was shortened, but the ST2 that maintained telomerase activity and telomere length proliferated continuously. In conclusion, telomerase activation is definitely required to overcome M2 crisis and acquire an infinite lifespan in human somatic epithelial cells and this mechanism is independent from M1 crisis escape in cell immortalization.

  19. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  20. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    PubMed

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-09

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  1. Efficient delivery of NF-κB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles.

    PubMed

    Liu, Zhenzhen; Gong, Haijun; Zeng, Rui; Liang, Xuan; Zhang, Li-Ming; Yang, Liqun; Lan, Yuqing

    2015-01-01

    A hyperbranched cationic polysaccharide derivative-mediated small interfering (si)RNA interference strategy was proposed to inhibit nuclear transcription factor-kappa B (NF-κB) activation in human retinal pigment epithelial (hRPE) cells for the gene therapy of diabetic retinopathy. Two hyperbranched cationic polysaccharide derivatives containing the same amount of cationic residues, but with different branching structures and molecular weights, including 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) and amylopectin (DMAPA-Amp) derivatives, were developed for the efficient delivery of NF-κB siRNA into hRPE cells. The DMAPA-Glyp derivative showed lower toxicity against hRPE cells. Furthermore, the DMAPA-Glyp derivative more readily condensed siRNA and then formed the nanoparticles attributed to its higher branching architecture when compared to the DMAPA-Amp derivative. Both DMAPA-Glyp/siRNA and DMAPA-Amp/siRNA nanoparticles were able to protect siRNA from degradation by nuclease in 25% fetal bovine serum. The particle sizes of the DMAPA-Glyp/siRNA nanoparticles (70-120 nm) were smaller than those of the DMAPA-Amp/siRNA nanoparticles (130-180 nm) due to the higher branching architecture and lower molecular weight of the DMAPA-Glyp derivative. In addition, the zeta potentials of the DMAPA-Glyp/siRNA nanoparticles were higher than those of the DMAPA-Glyp/siRNA nanoparticles. As a result, siRNA was much more efficiently transferred into hRPE cells using the DMAPA-Glyp/siRNA nanoparticles rather than the DMAPA-Amp/siRNA nanoparticles. This led to significantly high levels of suppression on the expression levels of NF-κB p65 messenger RNA and protein in the cells transfected with DMAPA-Glyp/siRNA nanoparticles. This work provides a potential approach to promote hyperbranched polysaccharide derivatives as nonviral siRNA vectors for the inhibition of NF-κB activation in hRPE cells.

  2. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    SciTech Connect

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  3. Efficient delivery of NF-κB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles

    PubMed Central

    Liu, Zhenzhen; Gong, Haijun; Zeng, Rui; Liang, Xuan; Zhang, Li-Ming; Yang, Liqun; Lan, Yuqing

    2015-01-01

    A hyperbranched cationic polysaccharide derivative-mediated small interfering (si)RNA interference strategy was proposed to inhibit nuclear transcription factor-kappa B (NF-κB) activation in human retinal pigment epithelial (hRPE) cells for the gene therapy of diabetic retinopathy. Two hyperbranched cationic polysaccharide derivatives containing the same amount of cationic residues, but with different branching structures and molecular weights, including 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) and amylopectin (DMAPA-Amp) derivatives, were developed for the efficient delivery of NF-κB siRNA into hRPE cells. The DMAPA-Glyp derivative showed lower toxicity against hRPE cells. Furthermore, the DMAPA-Glyp derivative more readily condensed siRNA and then formed the nanoparticles attributed to its higher branching architecture when compared to the DMAPA-Amp derivative. Both DMAPA-Glyp/siRNA and DMAPA-Amp/siRNA nanoparticles were able to protect siRNA from degradation by nuclease in 25% fetal bovine serum. The particle sizes of the DMAPA-Glyp/siRNA nanoparticles (70–120 nm) were smaller than those of the DMAPA-Amp/siRNA nanoparticles (130–180 nm) due to the higher branching architecture and lower molecular weight of the DMAPA-Glyp derivative. In addition, the zeta potentials of the DMAPA-Glyp/siRNA nanoparticles were higher than those of the DMAPA-Glyp/siRNA nanoparticles. As a result, siRNA was much more efficiently transferred into hRPE cells using the DMAPA-Glyp/siRNA nanoparticles rather than the DMAPA-Amp/siRNA nanoparticles. This led to significantly high levels of suppression on the expression levels of NF-κB p65 messenger RNA and protein in the cells transfected with DMAPA-Glyp/siRNA nanoparticles. This work provides a potential approach to promote hyperbranched polysaccharide derivatives as nonviral siRNA vectors for the inhibition of NF-κB activation in hRPE cells. PMID:25897219

  4. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS.

    PubMed

    Bähr, M

    2000-10-01

    Programmed cell death or apoptosis is a common and widespread phenomenon that is important for proper development of the nervous system. In the adult CNS, however, apoptosis contributes to secondary cell loss after various types of lesions. The retino-tectal system has been successfully used as a convenient model system to study the molecular mechanisms of neuronal apoptosis and survival during development and in the lesioned adult CNS. This review describes the current knowledge about the interactions of cell death and survival pathways in general and for retinal ganglion cells specifically.

  5. Engineering Retina from Human Retinal Progenitors (Cell Lines)

    PubMed Central

    Cao, Yang

    2009-01-01

    Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell

  6. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    PubMed Central

    Demontis, Gian Carlo; Aruta, Claudia; Comitato, Antonella; De Marzo, Anna; Marigo, Valeria

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells. PMID:22432014