Science.gov

Sample records for adult rodent models

  1. Evaluating social defeat as a model for psychopathology in adult female rodents.

    PubMed

    Solomon, Matia B

    2017-01-02

    Social conflict is a predominant stressor in humans and is associated with increased risk for developing psychological illnesses including depression and anxiety. Overwhelmingly, more women suffer from these disorders, which may be due to increased stress sensitivity. Like humans, rodents experience a myriad of physiological and behavioral sequelae due to prolonged stress exposure. Although the motivation for social conflict may differ between humans and rodents, female rodents may provide an opportunity to explore the underlying mechanisms by which stress confers risk for psychopathology in women. Because most female rodents do not express spontaneous aggression, the majority of basic research examines the physiological and behavioral outcomes of social conflict in male rodents. However, there are instances where female rodents exhibit territorial (California mice and Syrian hamsters) and maternal aggression (rats, mice, and hamsters) creating a venue to examine sex differences in physiology and behavior in response to stress. While many studies rely upon nonsocial behavioral assays (e.g., elevated plus maze, forced swim test) to assess the impact of stress on emotionality, here we primarily focus on behavioral outcomes in social-based assays in rodents. This is critically important given that disruptions in social relationships can be a cause and consequence of neuropsychiatric diseases. Next, we briefly discuss how sex differences in the recruitment of neural circuitry and/or neurochemistry in response to stress may underlie sex differences in neuroendocrine and behavioral stress responses. Finally, the translational value of females in rodent stress models and considerations regarding behavioral interpretations of these models are discussed. © 2016 Wiley Periodicals, Inc.

  2. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    PubMed

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi.

  3. Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle.

    PubMed

    Kirby, Tyler J; McCarthy, John J; Peterson, Charlotte A; Fry, Christopher S

    2016-01-01

    In adult skeletal muscles, satellite cells are the primary myogenic stem cells involved in myogenesis. Normally, they remain in a quiescent state until activated by a stimulus, after which they proliferate, differentiate, and fuse into an existing myofiber or form a de novo myofiber. To study satellite cell dynamics in adult murine models, most studies utilize regeneration models in which the muscle is severely damaged and requires the participation from satellite cells in order to repair. Here, we describe a model to study satellite cell behavior in muscle hypertrophy that is independent of muscle regeneration.Synergist ablation surgery involves the surgical removal of the gastrocnemius and soleus muscles resulting in functional overload of the remaining plantaris muscle. This functional overload results in myofiber hypertrophy, as well as the activation, proliferation, and fusion of satellite cells into the myofibers. Within 2 weeks of functional overload, satellite cell content increases approximately 275 %, an increase that is accompanied with a ~60 % increase in the number of myonuclei. Therefore, this can be used as an alternative model to study satellite cell behavior in adulthood that is different from regeneration, and capable of revealing new satellite cell functions in regulating muscle adaptation.

  4. Rodent models of sleep apnea.

    PubMed

    Davis, Eric M; O'Donnell, Christopher P

    2013-09-15

    Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.

  5. Rodent models for human diseases.

    PubMed

    Vandamme, Thierry F

    2015-07-15

    One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. Except in the case of highly controlled and regulated clinical trials, geneticists and scientists do not use humans for their experimental investigations because of the obvious risk to life. Instead, they use various animal, fungal, bacterial, and plant species as model organisms for their studies. Amongst these model organisms, rodent models are the most used due to the easiness for the experiments and the possibility to modify genetically these model animals. Nevertheless, due to the fact that animal models typically do not contract the same genetic diseases as people, so scientists must alter their genomes to induce human disease states and to know what kind of mutation causes the disease. In this brief review, we will discuss the interests of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM) models, we will review some of the current genetic strategies for modeling diseases.

  6. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Boehme, Fanny; Gil-Mohapel, Joana; Cox, Adrian; Patten, Anna; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-05-01

    Alcohol consumption during pregnancy can result in a myriad of health problems in the affected offspring ranging from growth deficiencies to central nervous system impairments that result in cognitive deficits. Adult hippocampal neurogenesis is thought to play a role in cognition (i.e. learning and memory) and can be modulated by extrinsic factors such as alcohol consumption and physical exercise. We examined the impact of voluntary physical exercise on adult hippocampal neurogenesis in a rat model of fetal alcohol spectrum disorders (FASD). Intragastric intubation was used to deliver ethanol to rats in a highly controlled fashion through all three trimester equivalents (i.e. throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed animals and their pair-fed and ad libitum controls were left undisturbed until they reached a young adult stage at which point they had free access to a running wheel for 12 days. Prenatal and early postnatal ethanol exposure altered cell proliferation in young adult female rats and increased early neuronal maturation without affecting cell survival in the dentate gyrus (DG) of the hippocampus. Voluntary wheel running increased cell proliferation, neuronal maturation and cell survival as well as levels of brain-derived neurotrophic factor in the DG of both ethanol-exposed female rats and their pair-fed and ad libitum controls. These results indicate that the capacity of the brain to respond to exercise is not impaired in this model of FASD, highlighting the potential therapeutic value of physical exercise for this developmental disorder.

  7. Modeling panic disorder in rodents.

    PubMed

    Moreira, Fabrício A; Gobira, Pedro H; Viana, Thércia G; Vicente, Maria A; Zangrossi, Hélio; Graeff, Frederico G

    2013-10-01

    Panic disorder (PD) is a subtype of anxiety disorder in which the core phenomenon is the spontaneous occurrence of panic attacks. Although studies with laboratory animals have been instrumental for the understanding of its neurobiology and treatment, few review articles have focused on the validity of the currently used animal models for studying this psychopathology. Therefore, the aim of the present paper is to discuss the strengths and limits of these models in terms of face, construct and predictive validity. Based on the hypothesis that panic attacks are related to defensive responses elicited by proximal threat, most animal models measure the escape responses induced by specific stimuli. Some apply electrical or chemical stimulation to brain regions proposed to modulate fear and panic responses, such as the dorsal periaqueductal grey or the medial hypothalamus. Other models focus on the behavioural consequences caused by the exposure of rodents to ultrasound or natural predators. Finally, the elevated T-maze associates a one-way escape response from an open arm with panic attacks. Despite some limitations, animal models are essential for a better understanding of the neurobiology and pharmacology of PD and for discovering more effective treatments.

  8. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment.

    PubMed

    Rincón-Cortés, M; Sullivan, R M

    2016-10-25

    Disrupted social behavior is a core symptom of multiple psychiatric and neurodevelopmental disorders. Many of these disorders are exacerbated by adverse infant experiences, including maltreatment and abuse, which negatively affect amygdala development. Although a link between impaired social behavior, abnormal amygdala function and depressive-like behavior following early adversity has been demonstrated in humans and animal models, the developmental emergence of maltreatment-related social deficits and associated amygdala neural activity are unknown. We used a naturalistic rodent model of maternal maltreatment during a sensitive period, postnatal days 8-12 (PN8-12), which produces social behavior deficits that precede adolescent depressive-like behavior and amygdala dysfunction, to examine social behavior in infancy, periweaning and adolescence. Neural activity in response to the social behavior test was assessed via c-Fos immunohistochemistry at these ages. A separate group of animals was tested for adult depressive-like behavior in the forced swim test. Maltreatment spared infant (PN16-18) social behavior but disrupted periweaning (PN20-22) and adolescent (PN42-48) social behavior. Maltreated rats exhibited blunted neural activation in the amygdala and other areas implicated in social functioning, including the medial prefrontal cortex and nucleus accumbens, at these ages and increased adult depressive-like behavior. These findings may suggest corticolimbic involvement in the emergence of maltreatment-induced social deficits that are linked to adult depressive-like behavior, thereby highlighting potential targets for therapeutic intervention. Understanding how infant experiences influence social behavior and age-specific expression across development may provide insights into basic neural mechanisms of social behaviors and disease-relevant social dysfunction exacerbated by early-life stress.

  9. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment

    PubMed Central

    Rincón-Cortés, M; Sullivan, R M

    2016-01-01

    Disrupted social behavior is a core symptom of multiple psychiatric and neurodevelopmental disorders. Many of these disorders are exacerbated by adverse infant experiences, including maltreatment and abuse, which negatively affect amygdala development. Although a link between impaired social behavior, abnormal amygdala function and depressive-like behavior following early adversity has been demonstrated in humans and animal models, the developmental emergence of maltreatment-related social deficits and associated amygdala neural activity are unknown. We used a naturalistic rodent model of maternal maltreatment during a sensitive period, postnatal days 8–12 (PN8–12), which produces social behavior deficits that precede adolescent depressive-like behavior and amygdala dysfunction, to examine social behavior in infancy, periweaning and adolescence. Neural activity in response to the social behavior test was assessed via c-Fos immunohistochemistry at these ages. A separate group of animals was tested for adult depressive-like behavior in the forced swim test. Maltreatment spared infant (PN16–18) social behavior but disrupted periweaning (PN20–22) and adolescent (PN42–48) social behavior. Maltreated rats exhibited blunted neural activation in the amygdala and other areas implicated in social functioning, including the medial prefrontal cortex and nucleus accumbens, at these ages and increased adult depressive-like behavior. These findings may suggest corticolimbic involvement in the emergence of maltreatment-induced social deficits that are linked to adult depressive-like behavior, thereby highlighting potential targets for therapeutic intervention. Understanding how infant experiences influence social behavior and age-specific expression across development may provide insights into basic neural mechanisms of social behaviors and disease-relevant social dysfunction exacerbated by early-life stress. PMID:27779623

  10. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.

  11. The MAM rodent model of schizophrenia

    PubMed Central

    Lodge, Daniel J.

    2013-01-01

    Rodent models of human disease are essential to obtain a better understanding of disease pathology, the mechanism of action underlying conventional treatments, as well as for the generation of novel therapeutic approaches. There are a number of rodent models of schizophrenia based on either genetic manipulations, acute or sub-chronic drug administration, or developmental disturbances. The prenatal methylazoxymethanol acetate (MAM) rodent model is a developmental disruption model gaining increased attention because it displays a number of histological, neurophysiological and behavioral deficits analogous to those observed in schizophrenia patients. This unit describes the procedures required to safely induce the MAM phenotype in rats. In addition, we describe a simple behavioral procedure, amphetamine-induced hyper-locomotion, which can be utilized to verify the MAM phenotype. PMID:23559309

  12. Telomerase protects adult rodent olfactory ensheathing glia from early senescence.

    PubMed

    Llamusí, María-Beatriz; Rubio, Mari-Paz; Ramón-Cueto, Almudena

    2011-05-01

    Adult olfactory bulb ensheathing glia (OB-OEG) promote the repair of acute, subacute, and chronic spinal cord injuries and autologous transplantation is a feasible approach. There are interspecies differences between adult rodent and primate OB-OEG related to their longevity in culture. Whereas primate OB-OEG exhibit a relatively long life span, under the same culture conditions rodent OB-OEG divide just three to four times, are sensitive to oxidative stress and become senescent after the third week in vitro. Telomerase is a "physiological key regulator" of the life span of normal somatic cells and also has extratelomeric functions such as increased resistance to oxidative stress. To elucidate whether telomerase has a role in the senescence of rodent OB-OEG, we have introduced the catalytic subunit of telomerase mTERT into cultures of these cells by retroviral infection. Native and modified adult rat OB-OEG behaved as telomerase-competent cells as they divided while expressing mTERT but entered senescence once the gene switched off. After ectopic expression of mTERT, OB-OEG resumed division at a nonsenescent rate, expressed p75 and other OEG markers, and exhibited the morphology of nonsenescent OB-OEG. The nonsenescent period of mTERT-OEG lasted 9weeks and then ectopic mTERT switched off and cells entered senescence again. Our results suggest a role of telomerase in early senescence of adult rodent OB-OEG cultures and a protection from oxidative damage. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.

  13. Rodent models of TDP-43: Recent advances

    PubMed Central

    Tsao, William; Jeong, Yun Ha; Lin, Sophie; Ling, Jonathan; Price, Donald L.; Chiang, Po-Min; Wong, Philip C.

    2013-01-01

    Recently, missense mutations in the gene TARDBP encoding TDP-43 have been linked to familial ALS. The discovery of genes encoding these RNA binding proteins, such as TDP-43 and FUS/TLS, raised the notion that altered RNA metabolism is a major factor underlying the pathogenesis of ALS. To begin to unravel how mutations in TDP-43 cause dysfunction and death of motor neurons, investigators have employed both gain- and loss-of-function studies in rodent model systems. Here, we will summarize major findings from the initial sets of TDP-43 transgenic and knockout rodent models, identify their limitations, and point to future directions toward clarification of disease mechanism(s) and testing of therapeutic strategies that ultimately may lead to novel therapy for this devastating disease. PMID:22608070

  14. MRI of neuronal plasticity in rodent models.

    PubMed

    Pelled, Galit

    2011-01-01

    Modifications in the behavior and architecture of neuronal networks are well documented to occur in association with learning and memory, as well as following injury. These plasticity mechanisms are crucial to ensure adequate processing of stimuli, and they also dictate the degree of recovery following peripheral or central nervous system injury. Nevertheless, the underlying neuronal mechanisms that determine the degree of plasticity of neuronal pathways are not fully understood. Recent developments in animal-dedicated magnetic resonance imaging (MRI) scanners and related hardware afford a high spatial and temporal resolution, making functional MRI and manganese-enhanced MRI emerging tools for studying reorganization of neuronal pathways in rodent models. Many of the observed changes in neuronal functions in rodent's brains following injury discussed here agree with clinical human fMRI findings. This demonstrates that animal model imaging can have a significant clinical impact in the neuronal plasticity and rehabilitation arenas.

  15. Gait Analysis Methods for Rodent Models of Osteoarthritis

    PubMed Central

    Jacobs, Brittany Y.; Kloefkorn, Heidi E.; Allen, Kyle D.

    2014-01-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models. PMID:25160712

  16. Gait analysis methods for rodent models of osteoarthritis.

    PubMed

    Jacobs, Brittany Y; Kloefkorn, Heidi E; Allen, Kyle D

    2014-10-01

    Patients with osteoarthritis (OA) primarily seek treatment due to pain and disability, yet the primary endpoints for rodent OA models tend to be histological measures of joint destruction. The discrepancy between clinical and preclinical evaluations is problematic, given that radiographic evidence of OA in humans does not always correlate to the severity of patient-reported symptoms. Recent advances in behavioral analyses have provided new methods to evaluate disease sequelae in rodents. Of particular relevance to rodent OA models are methods to assess rodent gait. While obvious differences exist between quadrupedal and bipedal gait sequences, the gait abnormalities seen in humans and in rodent OA models reflect similar compensatory behaviors that protect an injured limb from loading. The purpose of this review is to describe these compensations and current methods used to assess rodent gait characteristics, while detailing important considerations for the selection of gait analysis methods in rodent OA models.

  17. Rodent models of treatment-resistant depression

    PubMed Central

    Caldarone, Barbara J.; Zachariou, Venetia; King, Sarah L

    2015-01-01

    Major depression is a prevalent and debilitating disorder and a substantial proportion of patients fail to reach remission following standard antidepressant pharmacological treatment. Limited efficacy with currently available antidepressant drugs highlights the need to develop more effective medications for treatment resistant patients and emphasizes the importance of developing better preclinical models that focus on treatment resistant populations. This review discusses methods to adapt and refine rodent behavioral models that are predictive of antidepressant efficacy to identify populations that show reduced responsiveness or are resistant to traditional antidepressants. Methods include separating antidepressant responders from non-responders, administering treatments that render animals resistant to traditional pharmacological treatments, and identifying genetic models that show antidepressant resistance. This review also examines pharmacological and non-pharmacological treatments regimes that have been effective in refractory patients and how some of these approaches have been used to validate animal models of treatment-resistant depression. The goals in developing rodent models of treatment-resistant depression are to understand the neurobiological mechanisms involved in antidepressant resistance and to develop valid models to test novel therapies that would be effective in patients that do not respond to traditional monoaminergic antidepressants. PMID:25460020

  18. Rodent Models of Amyotrophic Lateral Sclerosis.

    PubMed

    Philips, Thomas; Rothstein, Jeffrey D

    2015-06-01

    Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease affecting upper and lower motor neurons in the central nervous system. Patients with ALS develop extensive muscle wasting and atrophy leading to paralysis and death 3 to 5 years after disease onset. The condition may be familial (fALS 10%) or sporadic ALS (sALS, 90%). The large majority of fALS cases are due to genetic mutations in the Superoxide dismutase 1 gene (SOD1, 15% of fALS) and repeat nucleotide expansions in the gene encoding C9ORF72 (∼ 40% to 50% of fALS and ∼ 10% of sALS). Studies suggest that ALS is mediated through aberrant protein homeostasis (i.e., ER stress and autophagy) and/or changes in RNA processing (as in all non-SOD1-mediated ALS). In all of these cases, animal models suggest that the disorder is mediated non-cell autonomously, i.e., not only motor neurons are involved, but glial cells including microglia, astrocytes, and oligodendrocytes, and other neuronal subpopulations are also implicated in the pathogenesis. Provided in this unit is a review of ALS rodent models, including discussion of their relative advantages and disadvantages. Emphasis is placed on correlating the model phenotype with the human condition and the utility of the model for defining the disease process. Information is also presented on RNA processing studies in ALS research, with particular emphasis on the newest ALS rodent models.

  19. Rodent models of neuroinflammation for Alzheimer's disease.

    PubMed

    Nazem, Amir; Sankowski, Roman; Bacher, Michael; Al-Abed, Yousef

    2015-04-17

    Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.

  20. Hindlimb unloading rodent model: technical aspects

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Globus, Ruth K.

    2002-01-01

    Since its inception at the National Aeronautics and Space Administration (NASA) Ames Research Center in the mid-1970s, many laboratories around the world have used the rat hindlimb unloading model to simulate weightlessness and to study various aspects of musculoskeletal loading. In this model, the hindlimbs of rodents are elevated to produce a 30 degrees head-down tilt, which results in a cephalad fluid shift and avoids weightbearing by the hindquarters. Although several reviews have described scientific results obtained with this model, this is the first review to focus on the technical aspects of hindlimb unloading. This review includes a history of the technique, a brief comparison with spaceflight data, technical details, extension of the model to mice, and other important technical considerations (e.g., housing, room temperature, unloading angle, the potential need for multiple control groups, age, body weight, the use of the forelimb tissues as internal controls, and when to remove animals from experiments). This paper is intended as a reference for researchers, reviewers of manuscripts, and institutional animal care and use committees. Over 800 references, related to the hindlimb unloading model, can be accessed via the electronic version of this article.

  1. PREDICTIVE SIMULATION MODELING FOR ANTIANDROGEN IMPACTS ON RODENT PROSTATE

    EPA Science Inventory

    Predictive simulation modeling for antiandrogen impacts on rodent prostate
    HA Barton1, RW Setzer1, LK Potter1,2
    1US EPA, ORD, NHEERL, ETD, PKB, Research Triangle Park, NC and 2Curriculum in Toxicology, UNC, Chapel Hill, NC

    Changes in rodent prostate weight and functi...

  2. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  3. Rodent models of diabetic nephropathy: their utility and limitations

    PubMed Central

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease. Therefore, novel therapies for the suppression of diabetic nephropathy must be developed. Rodent models are useful for elucidating the pathogenesis of diseases and testing novel therapies, and many type 1 and type 2 diabetic rodent models have been established for the study of diabetes and diabetic complications. Streptozotocin (STZ)-induced diabetic animals are widely used as a model of type 1 diabetes. Akita diabetic mice that have an Ins2+/C96Y mutation and OVE26 mice that overexpress calmodulin in pancreatic β-cells serve as a genetic model of type 1 diabetes. In addition, db/db mice, KK-Ay mice, Zucker diabetic fatty rats, Wistar fatty rats, Otsuka Long-Evans Tokushima Fatty rats and Goto-Kakizaki rats serve as rodent models of type 2 diabetes. An animal model of diabetic nephropathy should exhibit progressive albuminuria and a decrease in renal function, as well as the characteristic histological changes in the glomeruli and the tubulointerstitial lesions that are observed in cases of human diabetic nephropathy. A rodent model that strongly exhibits all these features of human diabetic nephropathy has not yet been developed. However, the currently available rodent models of diabetes can be useful in the study of diabetic nephropathy by increasing our understanding of the features of each diabetic rodent model. Furthermore, the genetic background and strain of each mouse model result in differences in susceptibility to diabetic nephropathy with albuminuria and the development of glomerular and tubulointerstitial lesions. Therefore, the validation of an animal model reproducing human diabetic nephropathy will significantly facilitate our understanding of the underlying genetic mechanisms that contribute to the development of diabetic nephropathy. In this review, we focus on rodent models of diabetes and discuss the utility and limitations of these models for the study of diabetic

  4. Rodent models of diabetic nephropathy: their utility and limitations.

    PubMed

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease. Therefore, novel therapies for the suppression of diabetic nephropathy must be developed. Rodent models are useful for elucidating the pathogenesis of diseases and testing novel therapies, and many type 1 and type 2 diabetic rodent models have been established for the study of diabetes and diabetic complications. Streptozotocin (STZ)-induced diabetic animals are widely used as a model of type 1 diabetes. Akita diabetic mice that have an Ins2+/C96Y mutation and OVE26 mice that overexpress calmodulin in pancreatic β-cells serve as a genetic model of type 1 diabetes. In addition, db/db mice, KK-Ay mice, Zucker diabetic fatty rats, Wistar fatty rats, Otsuka Long-Evans Tokushima Fatty rats and Goto-Kakizaki rats serve as rodent models of type 2 diabetes. An animal model of diabetic nephropathy should exhibit progressive albuminuria and a decrease in renal function, as well as the characteristic histological changes in the glomeruli and the tubulointerstitial lesions that are observed in cases of human diabetic nephropathy. A rodent model that strongly exhibits all these features of human diabetic nephropathy has not yet been developed. However, the currently available rodent models of diabetes can be useful in the study of diabetic nephropathy by increasing our understanding of the features of each diabetic rodent model. Furthermore, the genetic background and strain of each mouse model result in differences in susceptibility to diabetic nephropathy with albuminuria and the development of glomerular and tubulointerstitial lesions. Therefore, the validation of an animal model reproducing human diabetic nephropathy will significantly facilitate our understanding of the underlying genetic mechanisms that contribute to the development of diabetic nephropathy. In this review, we focus on rodent models of diabetes and discuss the utility and limitations of these models for the study of diabetic

  5. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.

    PubMed

    Imajo, Kento; Yoneda, Masato; Kessoku, Takaomi; Ogawa, Yuji; Maeda, Shin; Sumida, Yoshio; Hyogo, Hideyuki; Eguchi, Yuichiro; Wada, Koichiro; Nakajima, Atsushi

    2013-11-04

    Research in nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), has been limited by the availability of suitable models for this disease. A number of rodent models have been described in which the relevant liver pathology develops in an appropriate metabolic context. These models are promising tools for researchers investigating one of the key issues of NASH: not so much why steatosis occurs, but what causes the transition from simple steatosis to the inflammatory, progressive fibrosing condition of steatohepatitis. The different rodent models can be classified into two large groups. The first includes models in which the disease is acquired after dietary or pharmacological manipulation, and the second, genetically modified models in which liver disease develops spontaneously. To date, no single rodent model has encompassed the full spectrum of human disease progression, but individual models can imitate particular characteristics of human disease. Therefore, it is important that researchers choose the appropriate rodent models. The purpose of the present review is to discuss the metabolic abnormalities present in the currently available rodent models of NAFLD, summarizing the strengths and weaknesses of the established models and the key findings that have furthered our understanding of the disease's pathogenesis.

  6. Strontium biokinetic model for mouse-like rodent.

    PubMed

    Malinovsky, Georgy; Yarmoshenko, Ilia; Zhukovsky, Michael; Starichenko, Vera; Modorov, Makar

    2013-04-01

    Model describing the biokinetics of strontium for murine rodent is suggested. The model represents modification of the ICRP model for reference human with reduced number of compartments: Blood, Gastrointestinal tract, Soft tissues, Skeleton, Urinary bladder. To estimate transfer rates of the model the published experimental data on strontium retention in body of laboratory and wild mice were analyzed. A set of eleven transfer rates suggested for the strontium biokinetic model for murine rodent satisfactorily describes both the laboratory experiments (relative standard error of 9.5%) and data on radiostrontium content available for wild animals. Application of the model allows estimation of strontium distribution by organs and tissues both in the cases of acute and chronic exposure with assessment of strontium activity in organs with time since beginning of exposure. The developed strontium biokinetic model will be used for internal dose assessment for murine rodents inhabiting East-Ural Radioactive Trace, where (90)Sr intake is a significant source of contemporary internal exposure.

  7. NEUROMUSCULAR ELECTRICAL STIMULATION OF THE HINDLIMB MUSCLES FOR MOVEMENT THERAPY IN A RODENT MODEL

    PubMed Central

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J.; Jung, Ranu

    2009-01-01

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy. PMID:18848960

  8. Excitation-inhibition discoordination in rodent models of mental disorders

    PubMed Central

    Fenton, André A.

    2015-01-01

    Animal models of mental illness provide a foundation for evaluating hypotheses for the mechanistic causes of mental illness. Neurophysiological investigations of neural network activity in rodent models of mental dysfunction are reviewed from the conceptual framework of the discoordination hypothesis, which asserts that failures of neural coordination cause cognitive deficits in the judicious processing and use of information. Abnormal dynamic coordination of excitatory and inhibitory neural discharge in pharmacological and genetic rodent models support the discoordination hypothesis. These observations suggest excitation-inhibition discoordination and aberrant neural circuit dynamics as causes of cognitive impairment as well as therapeutic targets for cognition-promoting treatments. PMID:25895430

  9. Experimental osteonecrosis: development of a model in rodents administered alendronate.

    PubMed

    Conte, Nicolau; Spolidorio, Luis Carlos; Andrade, Cleverton Roberto de; Esteves, Jônatas Caldeira; Marcantonio, Elcio

    2016-08-22

    The main objective of this study was to cause bisphosphonate-related osteonecrosis of the jaws to develop in a rodent model. Adult male Holtzman rats were assigned to one of two experimental groups to receive alendronate (AL; 1 mg/kg/week; n = 6) or saline solution (CTL; n = 6). After 60 days of drug therapy, all animals were subjected to first lower molar extraction, and 28 days later, animals were euthanized. All rats treated with alendronate developed osteonecrosis, presenting as ulcers and necrotic bone, associated with a significant infection process, especially at the inter-alveolar septum area and crestal regions. The degree of vascularization, the levels of C-telopeptide cross-linked collagen type I and bone-specific alkaline phosphatase, as well as the bone volume were significantly reduced in these animals. Furthermore, on radiographic analysis, animals treated with alendronate presented evident sclerosis of the lamina dura of the lower first molar alveolar socket associated with decreased radiographic density in this area. These findings indicate that the protocol developed in the present study opens new perspectives and could be a good starting model for future property design.

  10. Developmental genetics in emerging rodent models: case studies and perspectives.

    PubMed

    Mallarino, Ricardo; Hoekstra, Hopi E; Manceau, Marie

    2016-08-01

    For decades, mammalian developmental genetic studies have focused almost entirely on two laboratory models: Mus and Rattus, species that breed readily in the laboratory and for which a wealth of molecular and genetic resources exist. These species alone, however, do not capture the remarkable diversity of morphological, behavioural and physiological traits seen across rodents, a group that represents >40% of all mammal species. Due to new advances in molecular tools and genomic technologies, studying the developmental events underlying natural variation in a wide range of species for a wide range of traits has become increasingly feasible. Here we review several recent studies and discuss how they not only provided technical resources for newly emerging rodent models in developmental genetics but also are instrumental in further encouraging scientists, from a wide range of research fields, to capitalize on the great diversity in development that has evolved among rodents.

  11. Revisiting rodent models: Octodon degus as Alzheimer's disease model?

    PubMed

    Steffen, Johannes; Krohn, Markus; Paarmann, Kristin; Schwitlick, Christina; Brüning, Thomas; Marreiros, Rita; Müller-Schiffmann, Andreas; Korth, Carsten; Braun, Katharina; Pahnke, Jens

    2016-08-26

    Alzheimer's disease primarily occurs as sporadic disease and is accompanied with vast socio-economic problems. The mandatory basic research relies on robust and reliable disease models to overcome increasing incidence and emerging social challenges. Rodent models are most efficient, versatile, and predominantly used in research. However, only highly artificial and mostly genetically modified models are available. As these 'engineered' models reproduce only isolated features, researchers demand more suitable models of sporadic neurodegenerative diseases. One very promising animal model was the South American rodent Octodon degus, which was repeatedly described as natural 'sporadic Alzheimer's disease model' with 'Alzheimer's disease-like neuropathology'. To unveil advantages over the 'artificial' mouse models, we re-evaluated the age-dependent, neurohistological changes in young and aged Octodon degus (1 to 5-years-old) bred in a wild-type colony in Germany. In our hands, extensive neuropathological analyses of young and aged animals revealed normal age-related cortical changes without obvious signs for extensive degeneration as seen in patients with dementia. Neither significant neuronal loss nor enhanced microglial activation were observed in aged animals. Silver impregnation methods, conventional, and immunohistological stains as well as biochemical fractionations revealed neither amyloid accumulation nor tangle formation. Phosphoepitope-specific antibodies against tau species displayed similar intraneuronal reactivity in both, young and aged Octodon degus.In contrast to previous results, our study suggests that Octodon degus born and bred in captivity do not inevitably develop cortical amyloidosis, tangle formation or neuronal loss as seen in Alzheimer's disease patients or transgenic disease models.

  12. Rodent laparoscopy: refinement for rodent drug studies and model development, and monitoring of neoplastic, inflammatory and metabolic diseases.

    PubMed

    Baran, Szczepan W; Perret-Gentil, Marcel I; Johnson, Elizabeth J; Miedel, Emily L; Kehler, James

    2011-10-01

    The refinement of surgical techniques represents a key opportunity to improve the welfare of laboratory rodents, while meeting legal and ethical obligations. Current methods used for monitoring intra-abdominal disease progression in rodents usually involve euthanasia at various time-points for end of study, one-time individual tissue collections. Most rodent organ tumour models are developed by the introduction of tumour cells via laparotomy or via ultrasound-guided indirect visualization. Ischaemic rodent models are often generated using laparotomies. This approach requires a high number of rodents, and in some instances introduces high degrees of morbidity and mortality, thereby increasing study variability and expense. Most importantly, most laparotomies do not promote the highest level of rodent welfare. Recent improvements in laparoscopic equipment and techniques have enabled the adaptation of laparoscopy for rodent procedures. Laparoscopy, which is considered the gold standard for many human abdominal procedures, allows for serial biopsy collections from the same animal, results in decreased pain and tissue trauma as well as quicker postsurgical recovery, and preserves immune function in comparison to the same procedures performed by laparotomy. Laparoscopy improves rodent welfare, decreases inter-animal variability, thereby reducing the number of required animals, allows for the replacement of larger species, decreases expense and improves data yield. This review article compares rodent laparotomy and laparoscopic surgical methods, and describes the utilization of laparoscopy for the development of cancer models and assessment of disease progression to improve data collection and animal welfare. In addition, currently available rodent laparoscopic equipment and instrumentation are presented.

  13. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents.

    PubMed

    Cavegn, Nicole; van Dijk, R Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups.

  14. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    PubMed Central

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T.; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups. PMID:23616743

  15. Animal models and biomarkers of neuropathy in diabetic rodents

    PubMed Central

    Shaikh, A.S.; Somani, R.S.

    2010-01-01

    Diabetic neuropathy (DN) is a multifactor complication of diabetes. It is a late finding in type 1 diabetes, but can be an early finding in type 2 diabetes. The cause of DN is still unclear and, like other complications of diabetes, it may be the result of various pathological conditions. Animal models and biomarkers of DN have been extensively used in neuropathic research. The most useful model of DN should exhibit the key feature present in human pathology. Diabetic rodents show behavioral, functional, structural and molecular biomarkers and they are widely used as models to investigate the etiology of DN as well as to screen the efficacy of the potential therapeutic interventions. We have reviewed the different animal models and biomarkers of neuropathy in diabetic rodents of either type 1 or type 2 diabetes. PMID:20871761

  16. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes.

    PubMed

    Sepúlveda, Maria; Armangue, Thaís; Martinez-Hernandez, Eugenia; Arrambide, Georgina; Sola-Valls, Nuria; Sabater, Lidia; Téllez, Nieves; Midaglia, Luciana; Ariño, Helena; Peschl, Patrick; Reindl, Markus; Rovira, Alex; Montalban, Xavier; Blanco, Yolanda; Dalmau, Josep; Graus, Francesc; Saiz, Albert

    2016-07-01

    The aim of this study was to report the clinical spectrum associated with antibodies to myelin oligodendrocyte glycoprotein (MOG) in adult patients, and to assess whether phenotypic variants are dependent on recognition of rodent MOG epitopes. We retrospectively analyzed the features, course and outcome of 56 patients whose samples were investigated by brain tissue immunohistochemistry and cell-based assays using human and rodent MOG. The median age at symptom onset was 37 years (range 18-70); 35 patients (63 %) were female. After a median follow-up of 43 months (range 4-554), only 14 patients (25 %) developed a neuromyelitis optica spectrum disorder (NMOSD), 27 patients (47 %) retained the initial diagnosis of isolated optic neuritis, 7 (12 %) of longitudinally extensive transverse myelitis, and 2 (4 %) of acute disseminated encephalomyelitis; 6 patients (11 %) developed atypical demyelinating syndromes (4 had relapsing episodes of short myelitis lesions which in one occurred with optic neuritis; 1 had relapsing brainstem symptoms, and 1 relapsing demyelinating encephalomyelitis). The course was frequently associated with relapses (71 %) and good outcome. Twenty-seven patients (49 %) had antibodies that recognized rodent MOG epitopes, and 9 of them (16 %) showed a myelin staining pattern in rodent tissue. Only the myelin staining pattern was linked to NMOSD (p = 0.005). In conclusion, MOG autoimmunity in adult patients associates with a clinical spectrum wider than the one expected for patients with suspected NMOSD and overall good outcome. Antibodies to rodent MOG epitopes do not associate with any phenotypic variant.

  17. Optimizing cardiovascular benefits of exercise: a review of rodent models.

    PubMed

    Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer

    2013-03-01

    Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health.

  18. Experimental models of renal calcium stones in rodents

    PubMed Central

    Bilbault, Héloïse; Haymann, Jean-Philippe

    2016-01-01

    In human nephrolithiasis, most stones are containing calcium and are located within urinary cavities; they may contain monohydrate calcium oxalate, dihydrate calcium oxalate and/or calcium phosphates in various proportion. Nephrolithiasis may also be associated with nephrocalcinosis, i.e., crystal depositions in tubular lumen and/or interstitium, an entity which suggests specific pathological processes. Several rodents models have been developed in order to study the pathophysiology of intrarenal crystal formation. We review here calcium rodent models classified upon the presence of nephrolithiasis and/or nephrocalcinosis. As rodents are not prone to nephrolithiasis, models require the induction of a long standing hypercalciuria or hyperoxaluria (thus explaining the very few studies reported), conversely to nephrocalcinosis which may occur within hours or days. Whereas a nephrotoxicity leading to tubular injury and regeneration appears as a critical event for crystal retention in nephrocalcinosis models, surprisingly very little is known about the physiopathology of crystal attachment to urothelium in nephrolithiasis. Creating new models of nephrolithiasis especially in different genetic mice strains appears an important challenge in order to unravel the early mechanisms of urinary stone formation in papilla and fornices. PMID:26981444

  19. Rodent models for resolving extremes of exercise and health

    PubMed Central

    North, Kathryn N.; Koch, Lauren G.; Britton, Steven L.; Nogales-Gadea, Gisela; Lucia, Alejandro

    2015-01-01

    The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the “energy transfer hypothesis.” Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease. PMID:26395598

  20. Rodent models for resolving extremes of exercise and health.

    PubMed

    Garton, Fleur C; North, Kathryn N; Koch, Lauren G; Britton, Steven L; Nogales-Gadea, Gisela; Lucia, Alejandro

    2016-02-01

    The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.

  1. Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis

    PubMed Central

    Rosen, Andrew M.; Spellman, Timothy; Gordon, Joshua A.

    2015-01-01

    Schizophrenia is caused by a diverse array of risk factors, and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms, and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate. PMID:25910423

  2. Rodent Models of Depression: Neurotrophic and Neuroinflammatory Biomarkers

    PubMed Central

    Stepanichev, Mikhail; Dygalo, Nikolay N.; Grigoryan, Grigory; Shishkina, Galina T.; Gulyaeva, Natalia

    2014-01-01

    Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states. PMID:24999483

  3. Towards an integrative model of sociality in caviomorph rodents

    PubMed Central

    Hayes, Loren D.; Burger, Joseph Robert; Soto-Gamboa, Mauricio; Sobrero, Raúl; Ebensperger, Luis A

    2012-01-01

    In the late 1990s and early 2000s it was recognized that behavioral ecologists needed to study the sociality of caviomorph rodents (New World hystricognaths) before generalizations about rodent sociality could be made. Researchers identified specific problems facing individuals interested in caviomorph sociality, including a lack of information on the proximate mechanisms of sociality, role of social environment in development, and geographical or intraspecific variation in social systems. Since then researchers have described the social systems of many previously understudied species, including some with broad geographical ranges. Researchers have done a good job of determining the role of social environments in development and identifying the costs and benefits of social living. However, relatively little is known about the proximate mechanisms of social behavior and fitness consequences, limiting progress toward the development of integrative (evolutionary-mechanistic) models for sociality. To develop integrative models behavioral ecologists studying caviomorph rodents must generate information on the fitness consequences of different types of social organization, brain mechanisms, and endocrine substrates of sociality. We review our current understanding and future directions for research in these conceptual areas. A greater understanding of disease ecology, particularly in species carrying Old World parasites, is needed before we can identify potential links between social phenotypes, mechanism, and fitness. PMID:22328791

  4. Rodent Models of Genetic Contributions to Motivation to Abuse Alcohol

    PubMed Central

    Crabbe, John C.

    2016-01-01

    The distinction between alcohol use (normative) and abuse (unfortunately common) implies dysregulation of motivation directed toward the drug. Genetic contributions to abuse risk are mediated through personality differences, other predispositions to drink excessively, and differences in sensitivity to the acute and chronic consequences of the drug. How to assess motivation in laboratory animals is not straightforward but risk factors for and consequences of alcohol abuse can be modeled with reasonable fidelity in laboratory rodents. Remarkably few rodent studies focus on the genetic contributions to alcohol’s reinforcing value: almost all examine preferential drinking of unflavored alcohol over water. Such studies will likely never avoid the confounding role of taste preferences and most often yield intake levels insufficient to yield a pharmacologically significant blood alcohol level. Genotypes that avoid alcohol probably do so based on pre-ingestive sensory cues; however, post-ingestive consequences are also important. Thus, the quest for improved measures of reinforcing value continues. We have genetic differences aplenty, but still lack evidence that any genotype will readily self-administer alcohol to the devastating extent that many alcoholics will. Encouraging results that are emerging include improved behavioral methods for elevating alcohol intake and inferring alcohol reinforcement, as well as new genetic animal models. Several ingenious assays to index alcohol’s motivational effects have been used extensively. Alcoholic drinking that attempts to prevent or to alleviate withdrawal symptoms has been modeled. Another characteristic of alcoholic drinking is its persistence despite abundant evidence to the drinker of the damaging effects of the excessive drinking on work, relationships, and/or health. Modeling such persistence in rodents has been uncommon to date. New genetic animal models include lines of mice selectively bred for chronic high drinking

  5. Tests and models of nociception and pain in rodents.

    PubMed

    Barrot, M

    2012-06-01

    Nociception and pain is a large field of both neuroscience and medical research. Over time, various tests and models were developed in rodents to provide tools for fundamental and translational research on the topic. Tests using thermal, mechanical, and chemical stimuli, measures of hyperalgesia and allodynia, models of inflammatory or neuropathic pain, constitute a toolbox available to researchers. These tests and models allowed rapid progress on the anatomo-molecular basis of physiological and pathological pain, even though they have yet to translate into new analgesic drugs. More recently, a growing effort has been put forth trying to assess pain in rats or mice, rather than nociceptive reflexes, or at studying complex states affected by chronic pain. This aids to further improve the translational value of preclinical research in a field with balanced research efforts between fundamental research, preclinical work, and human studies. This review describes classical tests and models of nociception and pain in rodents. It also presents some recent and ongoing developments in nociceptive tests, recent trends for pain evaluation, and raises the question of the appropriateness between tests, models, and procedures.

  6. Rodent spinal cord injury models for studies of axon regeneration.

    PubMed

    Steward, Oswald; Willenberg, Rafer

    2017-01-01

    For over a century, axon regeneration has been considered the Holy Grail for spinal cord injury (SCI) repair. Although there are other factors that could contribute to improving function, restoring the long motor and sensory tracts that are interrupted by SCI has the greatest potential for actually reversing paralysis, restoring the brain's control of autonomic functions mediated by sympathetic and parasympathetic circuits of the spinal cord and restoring sensation. Accordingly and in keeping with the overall theme of this special issue, this review focuses narrowly on rodent SCI models for studies of axon regeneration.

  7. Spontaneous and transgenic rodent models of inflammatory bowel disease

    PubMed Central

    Jurjus, Abdo

    2015-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder with many different putative influences mediating disease onset, severity, progression and diminution. Spontaneous natural IBD is classically expressed as Crohn's Disease (CD) and Ulcerative Colitis (UC) commonly found in primates; lymphoplasmocytic enteritis, eosinophilic gastritis and colitis, and ulcerative colitis with neuronal hyperplasia in dogs; and colitis in horses. Spontaneous inflammatory bowel disease has been noted in a number of rodent models which differ in genetic strain background, induced mutation, microbiota influences and immunopathogenic pathways. Histological lesions in Crohn's Disease feature noncaseating granulomatous inflammation while UC lesions typically exhibit ulceration, lamina propria inflammatory infiltrates and lack of granuloma development. Intestinal inflammation caused by CD and UC is also associated with increased incidence of intestinal neoplasia. Transgenic murine models have determined underlying etiological influences and appropriate therapeutic targets in IBD. This literature review will discuss current opinion and findings in spontaneous IBD, highlight selected transgenic rodent models of IBD and discuss their respective pathogenic mechanisms. It is very important to provide accommodation of induced putative deficits in activities of daily living and to assess discomfort and pain levels in the face of significant morbidity and/or mortality in these models. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis, and evaluating ways in which they influence disease expression represent potential investigative approaches with the greatest potential for new discoveries. PMID:26155200

  8. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    PubMed

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast.

  9. Modelling cognitive affective biases in major depressive disorder using rodents.

    PubMed

    Hales, Claire A; Stuart, Sarah A; Anderson, Michael H; Robinson, Emma S J

    2014-10-01

    Major depressive disorder (MDD) affects more than 10% of the population, although our understanding of the underlying aetiology of the disease and how antidepressant drugs act to remediate symptoms is limited. Major obstacles include the lack of availability of good animal models that replicate aspects of the phenotype and tests to assay depression-like behaviour in non-human species. To date, research in rodents has been dominated by two types of assays designed to test for depression-like behaviour: behavioural despair tests, such as the forced swim test, and measures of anhedonia, such as the sucrose preference test. These tests have shown relatively good predictive validity in terms of antidepressant efficacy, but have limited translational validity. Recent developments in clinical research have revealed that cognitive affective biases (CABs) are a key feature of MDD. Through the development of neuropsychological tests to provide objective measures of CAB in humans, we have the opportunity to use 'reverse translation' to develop and evaluate whether similar methods are suitable for research into MDD using animals. The first example of this approach was reported in 2004 where rodents in a putative negative affective state were shown to exhibit pessimistic choices in a judgement bias task. Subsequent work in both judgement bias tests and a novel affective bias task suggest that these types of assay may provide translational methods for studying MDD using animals. This review considers recent work in this area and the pharmacological and translational validity of these new animal models of CABs.

  10. Spatial memory tasks in rodents: what do they model?

    PubMed

    Morellini, Fabio

    2013-10-01

    The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

  11. Early Origins of Adult Disease: Approaches for Investigating the Programmable Epigenome in Humans, Nonhuman Primates, and Rodents

    PubMed Central

    Ganu, Radhika S.; Harris, R. Alan; Collins, Kiara; Aagaard, Kjersti M.

    2012-01-01

    According to the developmental origins of health and disease hypothesis, in utero experiences reprogram an individual for immediate adaptation to gestational perturbations, with the sequelae of later-in-life risk of metabolic disease. An altered gestational milieu with resultant adult metabolic disease has been observed in instances of both in utero constraint (e.g., from famine or uteroplacental insufficiency) and overt caloric abundance (e.g., from a maternal high-fat, caloric-dense diet). The commonality of the adult metabolic phenotype begs the question of how diverse in utero experiences (i.e., reprogramming events) converge on common metabolic pathways and how the memory of these events is maintained across the lifespan. We and others have investigated the molecular mechanisms underlying fetal programming and observed that epigenetic modifications to the fetal and placental epigenome accompany these reprogramming events. Based on several lines of emerging data in human and nonhuman primates, it is now felt that modified epigenetic signature—and the histone code in particular—underlies alterations in postnatal gene expression and metabolic pathways central to accurate functioning and maintenance of health. Because of the tissue lineage specificity of many of these modifications, nonhuman primates serve as an apt model system for the capacity to recapitulate human gene expression and regulation during development. This review summarizes recent epigenetic advances using rodent and primate (both human and nonhuman) models during in utero development and contributing to adult diseases later in life. PMID:23744969

  12. Prevention of chemotherapy-induced alopecia in rodent models

    PubMed Central

    Jimenez, Joaquin J.; Roberts, Stephen M.; Mejia, Jessica; Mauro, Lucia M.; Munson, John W.; Elgart, George W.; Connelly, Elizabeth Alvarez; Chen, Qingbin; Zou, Jiangying; Goldenberg, Carlos

    2008-01-01

    Alopecia (hair loss) is experienced by thousands of cancer patients every year. Substantial-to-severe alopecia is induced by anthracyclines (e.g., adriamycin), taxanes (e.g., taxol), alkylating compounds (e.g., cyclophosphamide), and the topisomerase inhibitor etoposide, agents that are widely used in the treatment of leukemias and breast, lung, ovarian, and bladder cancers. Currently, no treatment appears to be generally effective in reliably preventing this secondary effect of chemotherapy. We observed in experiments using different rodent models that localized administration of heat or subcutaneous/intradermal injection of geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin induced a stress protein response in hair follicles and effectively prevented alopecia from adriamycin, cyclophosphamide, taxol, and etoposide. Model tumor therapy experiments support the presumption that such localized hair-saving treatment does not negatively affect chemotherapy efficacy. PMID:18347939

  13. Rodent models in neuroscience research: is it a rat race?

    PubMed

    Ellenbroek, Bart; Youn, Jiun

    2016-10-01

    Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders.

  14. Photoreceptor organisation and phenotypic characterization in retinas of two diurnal rodent species: potential use as experimental animal models for human vision research.

    PubMed

    Bobu, Corina; Lahmam, Mohamed; Vuillez, Patrick; Ouarour, Ali; Hicks, David

    2008-02-01

    To characterize rod and cone distribution and composition in two diurnal mouse-like rodents, retinas from adult Arvicanthis ansorgei and Lemniscomys barbarus were processed for immunohistochemistry using multiple rod- and cone-specific antibodies. Antibodies tested included rhodopsin, cone opsins, pan-arrestin and cone arrestin, recoverin, and cGMP dependent ion channel. In both species, retinas were composed of approximately 33% cones, and most antibodies gave similar staining patterns. Data show these two diurnal rodents possess large numbers of cones, organised in a strict anatomical array. This suggests that diurnal rodents in general possess elevated cone numbers and could constitute valuable models for investigating cone pathophysiology.

  15. Rodent models of ischemic stroke lack translational relevance... are baboon models the answer?

    PubMed

    Kwiecien, Timothy D; Sy, Christopher; Ding, Yuchuan

    2014-05-01

    Rodent models of ischemic stroke are associated with many issues and limitations, which greatly diminish the translational potential of these studies. Recent studies demonstrate that significant differences exist between rodent and human ischemic stroke. These differences include the physical characteristics of the stroke, as well as changes in the subsequent inflammatory and molecular pathways following the acute ischemic insult. Non-human primate (NHP) models of ischemic stroke, however, are much more similar to humans. In addition to evident anatomical similarities, the physiological responses that NHPs experience during ischemic stroke are much more applicable to the human condition and thus make it an attractive model for future research. The baboon ischemic stroke model, in particular, has been studied extensively in comparison to other NHP models. Here we discuss the major shortcomings associated with rodent ischemic stroke models and provide a comparative overview of baboon ischemic stroke models. Studies have shown that baboons, although more difficult to obtain and handle, are more representative of ischemic events in humans and may have greater translational potential that can offset these deficiencies. There remain critical issues within these baboon stroke studies that need to be addressed in future investigations. The most critical issue revolves around the size and the variability of baboon ischemic stroke. Compared to rodent models, however, issues such as these can be addressed in future studies. Importantly, baboon models avoid many drawbacks associated with rodent models including vascular variability and inconsistent inflammatory responses - issues that are inherent to the species and cannot be avoided.

  16. Modelling cognitive affective biases in major depressive disorder using rodents

    PubMed Central

    Hales, Claire A; Stuart, Sarah A; Anderson, Michael H; Robinson, Emma S J

    2014-01-01

    Major depressive disorder (MDD) affects more than 10% of the population, although our understanding of the underlying aetiology of the disease and how antidepressant drugs act to remediate symptoms is limited. Major obstacles include the lack of availability of good animal models that replicate aspects of the phenotype and tests to assay depression-like behaviour in non-human species. To date, research in rodents has been dominated by two types of assays designed to test for depression-like behaviour: behavioural despair tests, such as the forced swim test, and measures of anhedonia, such as the sucrose preference test. These tests have shown relatively good predictive validity in terms of antidepressant efficacy, but have limited translational validity. Recent developments in clinical research have revealed that cognitive affective biases (CABs) are a key feature of MDD. Through the development of neuropsychological tests to provide objective measures of CAB in humans, we have the opportunity to use ‘reverse translation’ to develop and evaluate whether similar methods are suitable for research into MDD using animals. The first example of this approach was reported in 2004 where rodents in a putative negative affective state were shown to exhibit pessimistic choices in a judgement bias task. Subsequent work in both judgement bias tests and a novel affective bias task suggest that these types of assay may provide translational methods for studying MDD using animals. This review considers recent work in this area and the pharmacological and translational validity of these new animal models of CABs. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24467454

  17. Melanocortin control of energy balance: evidence from rodent models.

    PubMed

    De Jonghe, Bart C; Hayes, Matthew R; Bence, Kendra K

    2011-08-01

    Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.

  18. Protracted brain development in a rodent model of extreme longevity

    PubMed Central

    Penz, Orsolya K.; Fuzik, Janos; Kurek, Aleksandra B.; Romanov, Roman; Larson, John; Park, Thomas J.; Harkany, Tibor; Keimpema, Erik

    2015-01-01

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development. PMID:26118676

  19. Protracted brain development in a rodent model of extreme longevity.

    PubMed

    Penz, Orsolya K; Fuzik, Janos; Kurek, Aleksandra B; Romanov, Roman; Larson, John; Park, Thomas J; Harkany, Tibor; Keimpema, Erik

    2015-06-29

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development.

  20. Liver carcinogenesis: Rodent models of hepatocarcinoma and cholangiocarcinoma

    PubMed Central

    Minicis, Samuele De; Kisseleva, Tatiana; Francis, Heather; Baroni, Gianluca Svegliati; Benedetti, Antonio; Brenner, David; Alvaro, Domenico; Alpini, Gianfranco; Marzioni, Marco

    2013-01-01

    Hepatocellular carcinoma and cholangiocarcinoma are primary liver cancers, both represent a growing challenge for clinicians due to their increasing morbidity and mortality. In the last few years a number of in vivo models of hepatocellular carcinoma and cholangiocarcinoma have been developed. The study of these models is providing a significant contribution in unveiling the pathophysiology of primary liver malignancies. They are also fundamental tools to evaluate newly designed molecules to be tested as new potential therapeutic agents in a pre-clinical set. Technical aspects of each model are critical steps, and they should always be considered in order to appropriately interpret the findings of a study or its planning. The purpose of this review is to describe the technical and experimental features of the most significant rodent models, highlighting similarities or differences between the corresponding human diseases. The first part is dedicated to the discussion of models of hepatocellular carcinoma, developed using toxic agents, or through dietary or genetic manipulations. In the second we will address models of cholangiocarcinoma developed in rats or mice by toxin administration, genetic manipulation and/or bile duct incannulation or surgery. Xenograft or syngenic models are also proposed. PMID:23177172

  1. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  2. Noradrenergic regulation of plasticity marker expression in the adult rodent piriform cortex.

    PubMed

    Vadodaria, Krishna C; Yanpallewar, Sudhirkumar U; Vadhvani, Mayur; Toshniwal, Devyani; Liles, L Cameron; Rommelfanger, Karen S; Weinshenker, David; Vaidya, Vidita A

    2017-02-23

    The adult rodent piriform cortex has been reported to harbor immature neurons that express markers associated with neurodevelopment and plasticity, namely polysialylated neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX). We characterized the expression of PSA-NCAM and DCX across the rostrocaudal axis of the rat piriform cortex and observed higher numbers of PSA-NCAM and DCX positive cells in the posterior subdivision. As observed in the rat piriform cortex, Nestin-GFP reporter mice also revealed a similar gradient of GFP-positive cells with an increasing rostro-caudal gradient of expression. Given the extensive noradrenergic innervation of the piriform cortex and its role in regulating piriform cortex function and synaptic plasticity, we addressed the influence of norepinephrine (NE) on piriform cortex plasticity marker expression. Depletion of NE by treatment with the noradrenergic neurotoxin DSP-4 significantly increased the number of DCX and PSA-NCAM immunopositive cells in the piriform cortex of adult rats. Similarly, DSP-4 treated Nestin-GFP reporter mice revealed a robust induction of GFP-positive cells within the piriform cortex following NE depletion. Genetic loss of NE in dopamine β-hydroxylase knockout (Dbh -/-) mice phenocopied the effects of DSP-4, with an increase noted in PSA-NCAM and DCX positive cells in the piriform cortex. Further, chronic α2-adrenergic receptor stimulation with the agonist guanabenz increased PSA-NCAM and DCX positive cells in the piriform cortex of adult rats and GFP-positive cells in the piriform cortex of Nestin-GFP mice. By contrast, chronic α2-adrenergic receptor blockade with the antagonist yohimbine reduced PSA-NCAM and DCX positive cells in the piriform cortex of adult rats. Our results provide novel evidence for a role of NE in regulating the expression of plasticity markers, including PSA-NCAM, DCX, and nestin, within the adult mouse and rat piriform cortex.

  3. Rodent models in depression research: classical strategies and new directions.

    PubMed

    Pollak, Daniela D; Rey, Carlos E; Monje, Francisco J

    2010-05-06

    Depression, among other mood disorders, represents one of the most common health problems worldwide, with steadily increasing incidence and major socio-economic consequences. However, since the knowledge about the underlying pathophysiological principles is still very scanty, depression and other mood disorders are currently diagnosed solely on clinical grounds. Currently used treatment modalities would therefore benefit enormously from the development of alternative therapeutic interventions. The implementation of proper animal models is a prerequisite for increasing the understanding of the neurobiological basis of mood disorders and is paving the way for the discovery of novel therapeutic targets. In the past thirty years, since the seminal description of the Forced Swim Test as a system to probe antidepressant activity in rodents, the use of animals to model depression and antidepressant activity has come a long way. In this review we describe some of the most commonly used strategies, ranging from screening procedures, such as the Forced Swim Test and the Tail Suspension Test and animal models, such as those based upon chronic stress procedures, to genetic approaches. Finally we also discuss some of the inherent limitations and caveats that need to be considered when using animals as models for mental disorders in basic research.

  4. Relationships between gene expression and brain wiring in the adult rodent brain.

    PubMed

    French, Leon; Pavlidis, Paul

    2011-01-06

    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain "connectome" from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.

  5. Traumatic Brain Injury – Modeling Neuropsychiatric Symptoms in Rodents

    PubMed Central

    Malkesman, Oz; Tucker, Laura B.; Ozl, Jessica; McCabe, Joseph T.

    2013-01-01

    Each year in the US, ∼1.5 million people sustain a traumatic brain injury (TBI). Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms – and why some patients experience differing assortments of persistent maladies – are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory, and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential. PMID:24109476

  6. DEVELOPING A PREDICTIVE SIMULATION MODEL FOR ANTIANDROGEN IMPACTS ON RODENT PROSTATE

    EPA Science Inventory

    Developing a predictive simulation model for antiandrogen impacts on rodent prostate
    HA Barton1, RW Setzer1, LK Potter1,2
    1US EPA, ORD, NHEERL, ETD, PKB, Research Triangle Park, NC and 2Curriculum in Toxicology, UNC, Chapel Hill, NC

    Alterations in rodent prostate wei...

  7. Estimation of Wildlife Hazard Levels Using Interspecies Correlation Models and Standard Laboratory Rodent Toxicity Data

    EPA Science Inventory

    Toxicity data from laboratory rodents are widely available and frequently used in human health assessments as an animal model. We explore the possibility of using single rodent acute toxicity values to predict chemical toxicity to a diversity of wildlife species and to estimate ...

  8. Translating Research from Animal Models: Does It Matter that Our Rodents are So Cold?

    EPA Science Inventory

    Does it matter that preclinical rodent models are routinely housed below their thermoneutral zone and are thereby cold-stressed? We compile evidence showing that rodents housed below their thermoneutral zone are cold-stressed, hypermetalbolic, hypertensive, sleep-deprived, obesi...

  9. Rodent models in neuroscience research: is it a rat race?

    PubMed Central

    2016-01-01

    ABSTRACT Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders. PMID:27736744

  10. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models.

    PubMed

    Bowe, James E; Franklin, Zara J; Hauge-Evans, Astrid C; King, Aileen J; Persaud, Shanta J; Jones, Peter M

    2014-09-01

    The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasis in vivo has become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designing in vivo experiments for the measurement of glucose homeostasis are also discussed.

  11. Rodent models of genetic contributions to motivation to abuse alcohol.

    PubMed

    Crabbe, John C

    2014-01-01

    In summary, there are remarkably few studies focused on the genetic contributions to alcohol's reinforcing values. Almost all such studies examine the two-bottle preference test. Despite the deficiencies I have raised in its interpretation, a rodent genotype's willingness to drink ethanol when water is freely available offers a reasonable aggregate estimate of alcohol's reinforcing value relative to other genotypes (Green and Grahame 2008). As indicated above, however, preference drinking studies will likely never avoid the confounding role of taste preferences and most often yield intake levels not sufficient to yield a pharmacologically significant BAL. Thus, the quest for improved measures of reinforcing value continues. Of the potential motivational factors considered by McClearn in his seminal review in this series, we can safely conclude that rodent alcohol drinking is not primarily directed at obtaining calories. The role of taste (and odor) remains a challenge. McClearn appears to have been correct that especially those genotypes that avoid alcohol are probably doing so based on preingestive sensory cues; however, postingestive consequences are also important. Cunningham's intragastric model shows the role of both preingestional and postingestional modulating factors for the best known examples, the usually nearly absolutely alcohol-avoiding DBA/2J and HAP-2 mice. Much subsequent data reinforce McClearn's earlier conclusion that C57BL/6J mice, at least, do not regulate their intake around a given self-administered dose of alcohol by adjusting their intake. This leaves us with the puzzle of why nearly all genotypes, even those directionally selectively bred for high voluntary intake for many generations, fail to self-administer intoxicating amounts of alcohol. Since McClearn's review, many ingenious assays to index alcohol's motivational effects have been used extensively, and new methods for inducing dependence have supplanted the older ones prevalent in

  12. Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations.

    PubMed

    Lakes, E H; Allen, K D

    2016-11-01

    Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future.

  13. Stress induced obesity: lessons from rodent models of stress

    PubMed Central

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  14. OCT-aided anastomosis platform study in the rodent model

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-02-01

    Anastomosis is one of the most commonly performed procedure in the clinical environment that involves tubular structures, such as blood vessel, lymphatic vessel, seminal duct and ureter. Suture based anastomosis is still the foundation for most basic surgical training and clinical operation, although alternate techniques have been developed and under development. For those tubular-structure-anastomosis, immediate real-time post-operative evaluation of the surgical outcome is critical to the success of surgery. Previously evaluation is mostly based on surgeons' experience. Fourier-domain optical coherence tomography is high-speed, high-resolution noninvasive 3D imaging modality that has been widely used in the biomedical research and clinical study. In this study we used Fourier-domain optical coherence tomography as an evaluation tool for anastomosis of lymphatic vessels, ureter and seminal duct in rodent model. Immediate post-operative and long term surgical site data were collected and analyzed. Critical clinical parameters such as lumen patency, anastomosed site narrowing and suture error detection are provided to surgeons.

  15. Long-term Continuous EEG Monitoring in Small Rodent Models of Human Disease Using the Epoch Wireless Transmitter System

    PubMed Central

    Zayachkivsky, Andrew; Lehmkuhle, Mark J.; Dudek, F. Edward

    2015-01-01

    Many progressive neurologic diseases in humans, such as epilepsy, require pre-clinical animal models that slowly develop the disease in order to test interventions at various stages of the disease process. These animal models are particularly difficult to implement in immature rodents, a classic model organism for laboratory study of these disorders. Recording continuous EEG in young animal models of seizures and other neurological disorders presents a technical challenge due to the small physical size of young rodents and their dependence on the dam prior to weaning. Therefore, there is not only a clear need for improving pre-clinical research that will better identify those therapies suitable for translation to the clinic but also a need for new devices capable of recording continuous EEG in immature rodents. Here, we describe the technology behind and demonstrate the use of a novel miniature telemetry system, specifically engineered for use in immature rats or mice, which is also effective for use in adult animals. PMID:26274779

  16. Large Animal Stroke Models vs. Rodent Stroke Models, Pros and Cons, and Combination?

    PubMed

    Cai, Bin; Wang, Ning

    2016-01-01

    Stroke is a leading cause of serious long-term disability worldwide and the second leading cause of death in many countries. Long-time attempts to salvage dying neurons via various neuroprotective agents have failed in stroke translational research, owing in part to the huge gap between animal stroke models and stroke patients, which also suggests that rodent models have limited predictive value and that alternate large animal models are likely to become important in future translational research. The genetic background, physiological characteristics, behavioral characteristics, and brain structure of large animals, especially nonhuman primates, are analogous to humans, and resemble humans in stroke. Moreover, relatively new regional imaging techniques, measurements of regional cerebral blood flow, and sophisticated physiological monitoring can be more easily performed on the same animal at multiple time points. As a result, we can use large animal stroke models to decrease the gap and promote translation of basic science stroke research. At the same time, we should not neglect the disadvantages of the large animal stroke model such as the significant expense and ethical considerations, which can be overcome by rodent models. Rodents should be selected as stroke models for initial testing and primates or cats are desirable as a second species, which was recommended by the Stroke Therapy Academic Industry Roundtable (STAIR) group in 2009.

  17. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research.

    PubMed

    Renner, Simone; Dobenecker, Britta; Blutke, Andreas; Zöls, Susanne; Wanke, Rüdiger; Ritzmann, Mathias; Wolf, Eckhard

    2016-07-01

    The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed.

  18. Analysis of Adult Neurogenesis: Evidence for a Prominent “Non-Neurogenic” DCX-Protein Pool in Rodent Brain

    PubMed Central

    Kremer, Thomas; Jagasia, Ravi; Herrmann, Annika; Matile, Hugues; Borroni, Edilio; Francis, Fiona; Kuhn, Hans Georg; Czech, Christian

    2013-01-01

    Here, we have developed a highly sensitive immunoassay for Dcx to characterize expression in brain and cerebrospinal fluid (CSF) of rodents. We demonstrate that Dcx is widely expressed during development in various brain regions and as well can be detected in cerebrospinal fluid of rats (up to 30 days postnatal). While Dcx protein level decline in adulthood and were detectable in neurogenic regions of the adult rodent brain, similar levels were also detectable in brain regions expected to bear no neurogenesis including the cerebral cortex and CA1/CA3 enriched hippocampus. We monitored DCX protein levels after paradigms to increase or severely decrease adult hippocampal neurogenesis, namely physical activity and cranial radiation, respectively. In both paradigms, Dcx protein- and mRNA-levels clearly reflected changes in neurogenesis in the hippocampus. However, basal Dcx-levels are unaffected in non-neurogenic regions (e.g. CA1/CA3 enriched hippocampus, cortex). These data suggest that there is a substantial “non-neurogenic” pool of Dcx- protein, whose regulation can be uncoupled from adult neurogenesis suggesting caution for the interpretation of such studies. PMID:23690918

  19. Integrative rodent models for assessing male reproductive toxicity of environmental endocrine active substances

    PubMed Central

    Auger, Jacques; Eustache, Florence; Rouiller-Fabre, Virginie; Canivenc-Lavier, Marie Chantal; Livera, Gabriel

    2014-01-01

    In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS) exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA) of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach) for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction. PMID:24369134

  20. Effects of Hypericum Perforatum, in a rodent model of periodontitis

    PubMed Central

    2010-01-01

    Background Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely flavonoids and phenolic acids. In this study we evaluate the effect of Hypericum perforatum in animal model of periodontitis. Methods Periodontitis was induced in adult male Sprague-Dawley rats by placing a nylon thread ligature around the lower 1st molars. Hypericum perforatum was administered at the dose of 2 mg/kg os, daily for eight days. At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. Results Periodontitis in rats resulted in an inflammatory process characterized by edema, neutrophil infiltration and cytokine production that was followed by the recruitment of other inflammatory cells, production of a range of inflammatory mediators such as NF-κB and iNOS expression, the nitration of tyrosine residues and activation of the nuclear enzyme poly (ADP-ribose) polymerase; apoptosis and the degree of gingivomucosal tissues injury. We report here that Hypericum perforatum exerts potent anti-inflammatory effects significantly reducing all of the parameters of inflammation as described above. Conclusions Taken together, our results clearly demonstrate that treatment with Hypericum reduces the development of inflammation and tissue injury, events associated with periodontitis. PMID:21092263

  1. Modeling susceptible infective recovered dynamics and plague persistence in California rodent-flea communities.

    PubMed

    Foley, Patrick; Foley, Janet

    2010-01-01

    Plague persists as an enzootic in several very different rodent-flea communities around the world. In California, a diversity of rodent-flea communities maintains the disease, and a single-host reservoir seems unlikely. Logistic regression of plague presence on climate and topographic variables predicts plague in many localities where it is absent. Thus, a dynamic community-based analysis was needed. Deterministic Susceptible Infective Recovered (SIR) models were adapted for plague and analyzed with an eye for insights concerning disease persistence. An R simulation program, Plaguesirs, was developed incorporating multihost and multivector SIR dynamics, demographic and environmental stochasticity, density dependence, and seasonal variation in birth and death. Flea-rodent utilization matrices allowed us to get transmission rates as well as flea carrying capacities. Rodent densities allowed us to estimate host carrying capacities, while maximum birth rates were mainly approximated through an examination of litter phenology and demography. We ran a set of simulations to assess the role of community structure in maintaining plague in a simulated version of Chuchupate campground in Ventura County. Although the actual campground comprises 10 rodent and 19 flea species, we focused on a subset suspected to act as a reservoir community. This included the vole Microtus californicus, the deer mouse Peromyscus maniculatus, the Ceratophyllid fleas Aetheca wagneri and Malareus telchinum, and the Leptopsyllid flea Peromyscopsylla hesperomys. The dynamics of 21 subsets of this community were simulated for 20 years. Single-rodent communities showed much lower disease persistence than two-rodent communities. However, so long as Malareus was present, endemicity was enhanced; removal of the other two fleas slightly increased disease persistence. Two critical features improved disease persistence: (1) host breeding season heterogeneity and (2) host population augmentation (due to two

  2. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model

    PubMed Central

    Stefano, J.T.; Pereira, I.V.A.; Torres, M.M.; Bida, P.M.; Coelho, A.M.M.; Xerfan, M.P.; Cogliati, B.; Barbeiro, D.F.; Mazo, D.F.C.; Kubrusly, M.S.; D'Albuquerque, L.A.C.; Souza, H.P.; Carrilho, F.J.; Oliveira, C.P.

    2015-01-01

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH. PMID:25714891

  3. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain.

    PubMed

    Vo, Tam; Carulli, Daniela; Ehlert, Erich M E; Kwok, Jessica C F; Dick, Gunnar; Mecollari, Vasil; Moloney, Elizabeth B; Neufeld, Gera; de Winter, Fred; Fawcett, James W; Verhaagen, Joost

    2013-09-01

    In the adult rodent brain, subsets of neurons are surrounded by densely organised extracellular matrix called perineuronal nets (PNNs). PNNs consist of hyaluronan, tenascin-R, chondroitin sulphate proteoglycans (CSPGs), and the link proteins Crtl1 and Bral2. PNNs restrict plasticity at the end of critical periods and can be visualised with Wisteria floribunda agglutinin (WFA). Using a number of antibodies raised against the different regions of semaphorin3A (Sema3A) we demonstrate that this secreted chemorepulsive axon guidance protein is localised to WFA-positive PNNs around inhibitory interneurons in the cortex and several other PNN-bearing neurons throughout the brain and co-localises with aggrecan, versican, phosphacan and tenascin-R. Chondroitinase ABC (ChABC) was injected in the cortex to degrade glycosaminoglycans (GAGs) from the CSPGs, abolishing WFA staining of PNNs around the injection site. Sema3A-positive nets were no longer observed in the area devoid of WFA staining. In mice lacking the link protein Crtl1 in the CNS only vestigial PNNs are present, and in these mice there were no Sema3A-positive PNN structures. A biochemical analysis shows that Sema3A protein binds with high-affinity to CS-GAGs and aggrecan and versican extracted from PNNs in the adult rat brain, and a significant proportion of Sema3A is retrieved in brain extracts that are enriched in PNN-associated GAGs. The Sema3A receptor components PlexinA1 and A4 are selectively expressed by inhibitory interneurons in the cortex that are surrounded by Sema3A positive PNNs. We conclude that the chemorepulsive axon guidance molecule Sema3A is present in PNNs of the adult rodent brain, bound to the GAGs of the CSPGs. These observations suggest a novel concept namely that chemorepulsive axon guidance molecules like Sema3A may be important functional attributes of PNNs in the adult brain.

  4. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems.

    PubMed

    Meyer, Urs

    2014-02-15

    It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic-polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multi-faceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a "neurodevelopmental disease primer" that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.

  5. Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and Subfertility: Insights into Polycystic Ovary Syndrome

    PubMed Central

    Huang-Doran, Isabel; Franks, Stephen

    2016-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women and a leading cause of female infertility worldwide. Defined clinically by the presence of hyperandrogenemia and oligomenorrhoea, PCOS represents a state of hormonal dysregulation, disrupted ovarian follicle dynamics, and subsequent oligo- or anovulation. The syndrome’s prevalence is attributed, at least partly, to a well-established association with obesity and insulin resistance (IR). Indeed, the presence of severe PCOS in human genetic obesity and IR syndromes supports a causal role for IR in the pathogenesis of PCOS. However, the molecular mechanisms underlying this causality, as well as the important role of hyperandrogenemia, remain poorly elucidated. As such, treatment of PCOS is necessarily empirical, focusing on symptom alleviation. The generation of knockout and transgenic rodent models of obesity and IR offers a promising platform in which to address mechanistic questions about reproductive dysfunction in the context of metabolic disease. Similarly, the impact of primary perturbations in rodent gonadotrophin or androgen signaling has been interrogated. However, the insights gained from such models have been limited by the relatively poor fidelity of rodent models to human PCOS. In this mini review, we evaluate the ovarian phenotypes associated with rodent models of obesity and IR, including the extent of endocrine disturbance, ovarian dysmorphology, and subfertility. We compare them to both human PCOS and other animal models of the syndrome (genetic and hormonal), explore reasons for their discordance, and consider the new opportunities that are emerging to better understand and treat this important condition. PMID:27375552

  6. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH.

    PubMed

    Ryan, J; Bloch, K; Archer, S L

    2011-08-01

    The WHO classification of pulmonary hypertension (PH) recognises five distinct groups, all sharing a mean, resting, pulmonary artery pressure (PAP) > 25 mmHg. The aetiology of PH varies by group (1-pulmonary vascular disease, 2-high left heart filling pressures, 3-hypoxia, 4-unresolved pulmonary embolism and 5-miscellaneous). Inclusion in a group reflects shared histological, haemodynamic and pathophysiological features and has therapeutic implications. Advantages of using rodent models to understand the pathophysiology of human PH and to test experimental therapies include the economy, safety and mechanistic certainty they provide. As rodent models are meant to reflect human PH, they should be categorised by a parallel PH classification and limitations in achieving this ideal recognised. Challenges with rodent models include: accurate phenotypic characterisation (haemodynamics, histology and imaging), species and strain variations in the natural history of PH, and poor fidelity to the relevant human PH group. Rat models of group 1 PH include: monocrotaline (± pneumonectomy), chronic hypoxia + SU-5416 (a VEGF receptor inhibitor) and the fawn-hooded rat (FHR). Mouse models of group 1 PH include: transgenic mice overexpressing the serotonin transporter or dominant-negative mutants of bone morphogenetic protein receptor-2. Group 1 PH is also created by infecting S100A4/Mts1 mice with γ-herpesvirus. The histological features of group 1 PH, but not PH itself, are induced by exposure to Schistosoma mansoni or Stachybotrys chartarum. Group 3 PH is modelled by exposure of rats or mice to chronic hypoxia. Rodent models of groups 2, 4 and 5 PH are needed. Comprehensive haemodynamic, histological and molecular phenotyping, coupled with categorisation into WHO PH groups, enhances the utility of rodent models.

  7. A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models.

    PubMed

    Hansen, Axel Kornerup; Krych, Łukasz; Nielsen, Dennis Sandris; Hansen, Camilla Hartmann Friis

    2015-01-01

    The gut microbiota (GM) affects numerous human diseases, as well as rodent models for these. We will review this impact and summarize ways to handle this challenge in animal research. The GM is complex, with the largest fractions being the gram-positive phylum Firmicutes and the gram-negative phylum Bacteroidetes. Other important phyla are the gram-negative phyla Proteobacteria and Verrucomicrobia, and the gram-positive phylum Actinobacteria. GM members influence models for diseases, such as inflammatory bowel diseases, allergies, autoimmunity, cancer, and neuropsychiatric diseases. GM characterization of all individual animals and incorporation of their GM composition in data evaluation may therefore be considered in future protocols. Germfree isolator-housed rodents or rodents made virtually germ free by antibiotic cocktails can be used to study diverse microbial influences on disease expression. Through subsequent inoculation with selected strains or cocktails of microbes, new "defined flora" models can yield valuable knowledge on the impact of the GM, and of specific GM members and their interactions, on important disease phenotypes and mechanisms. Rodent husbandry and microbial quality assurance practices will be important to ensure and confirm appropriate and research relevant GM.

  8. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system

    PubMed Central

    Bing, Chenchen; Nofiele, Joris; Staruch, Robert; Ladouceur-Wodzak, Michelle; Chatzinoff, Yonatan; Ranjan, Ashish; Chopra, Rajiv

    2015-01-01

    Purpose Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. Material and methods The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. Results 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41–45 °C was 31.1 min within the ROI. Conclusions The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min. PMID:26540488

  9. Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis

    PubMed Central

    Burke, Andrew R.; Miczek, Klaus A.

    2014-01-01

    Rationale Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. Objectives Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic pituitary adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. Results and Conclusions Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse. PMID:24370534

  10. Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model.

    PubMed

    Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F

    2015-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4  h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of

  11. Rodent models of cardiopulmonary disease: their potential applicability in studies of air pollutant susceptibility.

    PubMed Central

    Kodavanti, U P; Costa, D L; Bromberg, P A

    1998-01-01

    The mechanisms by which increased mortality and morbidity occur in individuals with preexistent cardiopulmonary disease following acute episodes of air pollution are unknown. Studies involving air pollution effects on animal models of human cardiopulmonary diseases are both infrequent and difficult to interpret. Such models are, however, extensively used in studies of disease pathogenesis. Primarily they comprise those developed by genetic, pharmacologic, or surgical manipulations of the cardiopulmonary system. This review attempts a comprehensive description of rodent cardiopulmonary disease models in the context of their potential application to susceptibility studies of air pollutants regardless of whether the models have been previously used for such studies. The pulmonary disease models include bronchitis, emphysema, asthma/allergy, chronic obstructive pulmonary disease, interstitial fibrosis, and infection. The models of systemic hypertension and congestive heart failure include: those derived by genetics (spontaneously hypertensive, Dahl S. renin transgenic, and other rodent models); congestive heart failure models derived by surgical manipulations; viral myocarditis; and cardiomyopathy induced by adriamycin. The characteristic pathogenic features critical to understanding the susceptibility to inhaled toxicants are described. It is anticipated that this review will provide a ready reference for the selection of appropriate rodent models of cardiopulmonary diseases and identify not only their pathobiologic similarities and/or differences to humans but also their potential usefulness in susceptibility studies. Images Figure 2 PMID:9539009

  12. Rodent models of impulsive-compulsive behaviors in Parkinson's disease: How far have we reached?

    PubMed

    Cenci, M Angela; Francardo, Veronica; O'Sullivan, Sean S; Lindgren, Hanna S

    2015-10-01

    There is increasing awareness that the medications used to treat the motor symptoms of Parkinson's disease (PD) contribute to the development of behavioral addictions, which have been clinically defined as impulsive-compulsive behaviors (ICBs). These features include pathological gambling, compulsive sexual behavior, binge eating, compulsive shopping, excessive hobbyism or punding, and the excessive use of dopaminergic medication. ICBs frequently have devastating effects on the social and occupational function of the affected individuals as well as their families. Although ICBs are an important clinical problem in PD, the number of studies in which these symptoms have been modeled in rodents is still limited. This may depend on uncertainties regarding, on one hand, the pathophysiology of these behaviors and, on the other hand, the experimental paradigms with which similar features can be induced in rodents. To help compose these uncertainties, we will here review the characteristics of ICBs in PD patients and then describe behavioral methods to approximate them in rodents. We will discuss both the challenges and the possibilities of applying these methods to animals with PD-like lesions, and review the recent progress made to this end. We will finally highlight important questions deserving further investigation. Rodent models having both face validity and construct validity to parkinsonian ICBs will be essential to further pathophysiological and therapeutic studies into this important area.

  13. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability.

    PubMed

    Fitch, R Holy; Alexander, Michelle L; Threlkeld, Steven W

    2013-10-21

    Most researchers in the field of neural plasticity are familiar with the "Kennard Principle," which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate-both developmentally and functionally-with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human "term," but only transient deficits (undetectable in adulthood) when induced in a "preterm" window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human

  14. Enhanced loading of Fura-2/AM calcium indicator dye in adult rodent brain slices via a microfluidic oxygenator.

    PubMed

    Mauleon, Gerardo; Lo, Joe F; Peterson, Bethany L; Fall, Christopher P; Eddington, David T

    2013-06-15

    A microfluidic oxygenator is used to deliver constant oxygen to rodent brain slices, enabling the loading of the cell-permeant calcium indicator Fura-2/AM into cells of adult brain slices. When compared to traditional methods, our microfluidic oxygenator improves loading efficiency, measured by the number of loaded cells per unit area, for all tested age groups. Loading in slices from 1-year-old mice was achieved, which has not been possible with current bulk loading methods. This technique significantly expands the age range for which calcium studies are possible without cellular injection. This technique will facilitate opportunities for the study of calcium signaling of aging and long term stress related diseases. Moreover, it should be applicable to other membrane-permeant physiological indicator varieties.

  15. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    NASA Astrophysics Data System (ADS)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  16. Preclinical imaging and treatment of cancer: the use of animal models beyond rodents.

    PubMed

    Axiak-Bechtel, S M; Maitz, C A; Selting, K A; Bryan, J N

    2015-09-01

    The development of novel radiopharmaceutical agents for imaging and therapy of neoplastic diseases relies on accurate and reproducible animal models. Rodent models are often used to demonstrate the proof-of-principle tracer and therapeutic agent development, but their small size can make tissue sampling challenging. The dosimetry of decay emissions in the much smaller rodent tumors do not model dosimetry in human tumors well. In addition, rodent models of cancer represent a simplified version of a very complex process. Spontaneous tumors are heterogenous and the response to intervention can be unpredictable; tumor cells can adopt alternate signaling pathways and modify their interaction with the microenvironment. These inconsistencies, while present in humans, are difficult to fully reproduce in a genetically-engineered rodent model. Companion animals, primarily dogs and cats, offer translational models that more accurately reflect the intricate nature of spontaneous neoplasia in humans. Their larger size facilitates tissue and blood sampling when needed, and allows radiopharmaceutical tracers to be studied on human-scale imaging systems to better mimic the clinical application of the agent. This article will review the growing body of literature surrounding the use of radiopharmaceutical agents for both imaging and therapy in companion dogs and cats. Previous investigations have been performed both for the advancement of routine, high-level veterinary care, and in the context of translational research from which the results of imaging and treatment can be readily applied to people. Studies utilizing the spontaneously occurring cancer model in companion animals involving positron emission tomography, radiotracers, dosimetry, theranostics, targeted radiopharmaceuticals, brachytherapy, and boron neutron capture therapy are discussed.

  17. Rodent models of attention-deficit/hyperactivity disorder.

    PubMed

    Sagvolden, Terje; Russell, Vivienne A; Aase, Heidi; Johansen, Espen Borgå; Farshbaf, Mehdi

    2005-06-01

    An ideal animal model should be similar to the disorder it models in terms of etiology, biochemistry, symptomatology, and treatment. Animal models provide several advantages over clinical research: simpler nervous systems, easily interpreted behaviors, genetic homogeneity, easily controlled environment, and a greater variety of interventions. Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of childhood onset that is characterized by inattentiveness, hyperactivity, and impulsiveness. Its diagnosis is behaviorally based; therefore, the validation of an ADHD model must be based in behavior. An ADHD model must mimic the fundamental behavioral characteristics of ADHD (face validity), conform to a theoretical rationale for ADHD (construct validity), and predict aspects of ADHD behavior, genetics, and neurobiology previously uncharted in clinical settings (predictive validity). Spontaneously hypertensive rats (SHR) fulfill many of the validation criteria and compare well with clinical cases of ADHD. Poor performers in the five-choice serial reaction time task and Naples high-excitability rats (NHE) are useful models for attention-deficit disorder. Other animal models either focus on the less important symptom of hyperactivity and might be of limited value in ADHD research or are produced in ways that would not lead to a clinical diagnosis of ADHD in humans, even if ADHD-like behavior is displayed.

  18. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors.

    PubMed

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.

  19. Vibration acceleration promotes bone formation in rodent models

    PubMed Central

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki

    2017-01-01

    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  20. A novel rodent model of severe renal ischemia reperfusion injury.

    PubMed

    Whalen, Henry; Shiels, Paul; Littlejohn, Marc; Clancy, Marc

    2016-11-01

    Renal ischemia reperfusion injury (IRI) is a major problem, currently without treatments in clinical use. This reflects the failure of animal models to mimic the severity of IRI observed in clinical practice. Most described models lack both the ability to inflict a permanent reduction in renal function and the sensitivity to demonstrate the protective efficacy of different therapies in vivo. To test novel cell-based therapies, we have developed a model of renal IRI in Fisher 344 rats. Animals were subjected to 120 min of unilateral warm ischemia, during which they underwent an intra-renal artery infusion of therapeutic agents or vehicle. At either 2 or 6 weeks post-surgery, animals underwent terminal glomerular filtration rate (GFR) studies by inulin clearance to most accurately quantify renal function. Harvested kidneys underwent histological analysis. Compared to sham operations, saline treated animals suffered a long-term reduction in GFR of ≈50%. Histology revealed short- and long-term disruption of renal architecture. Despite the injury severity, post-operative animal losses are <5%. This model produces a severe, consistent renal injury that closely replicates the pathological processes encountered in clinical medicine. Renal artery infusion mimics the route likely employed in clinical transplantation, where the renal artery is accessible. Inulin clearance characterizes GFR, allowing full assessment of therapeutic intervention. This model is useful for screening therapeutic agents prior to testing in a transplant model. This reduces animal numbers needed to test drugs for clinical transplantation and allows for refinement of dosing schedules.

  1. Discrimination Learning and Reversal of the Conditioned Eyeblink Reflex in a Rodent Model of Autism

    PubMed Central

    Stanton, Mark E.; Peloso, Elizabeth; Brown, Kevin L.; Rodier, Patricia

    2007-01-01

    Offspring of rats exposed to valproic acid (VPA) on Gestational Day (GD) 12 have been advocated as a rodent model of autism because they show neuron loss in brainstem nuclei and the cerebellum resembling that seen in human autistic cases [20, 37]. Studies of autistic children have reported alterations in acquisition of classical eyeblink conditioning [40] and in reversal of instrumental discrimination learning [9]. Acquisition of discriminative eyeblink conditioning depends on known brainstem-cerebellar circuitry whereas reversal depends on interactions of this circuitry with the hippocampus and prefrontal cortex. In order to explore behavioral parallels of the VPA rodent model with human autism, the present study exposed pregnant Long-Evans rats to 600 mg/kg VPA on GD12 [cf. 37] and tested their offspring from PND26-31 on discriminative eyeblink conditioning and reversal. VPA rats showed faster eyeblink conditioning, consistent with studies in autistic children [40]. This suggests that previously reported parallels between human autism and the VPA rodent model with respect to injury to brainstem-cerebellar circuitry [37] are accompanied by behavioral parallels when a conditioning task engaging this circuitry is used. VPA rats also showed impaired reversal learning, but this likely reflected “carry-over” of enhanced conditioning during acquisition rather than a reversal learning deficit like that seen in human autism. Further studies of eyeblink conditioning in human autism and in various animal models may help to identify the etiology of this developmental disorder. PMID:17137645

  2. Age-related Dysregulation of Inflammation and Innate Immunity: Lessons Learned from Rodent Models

    PubMed Central

    Brubaker, Aleah L.; Palmer, Jessica L.; Kovacs, Elizabeth J.

    2011-01-01

    In the elderly patient population, it has become increasingly evident that immune dysregulation is a contributing factor to age-related pathologies and their associated morbidity and mortality. In particular, elderly subjects are plagued by poor responses to infectious challenge and immunization and are at heightened risk for the development of autoimmune, neuroinflammatory and tumor-associated pathologies. Rodent models of aging and age-related disorders have been utilized to better describe how innate immune cell dysfunction contributes to these clinical scenarios. As the elderly population continues to increase in size, use of these aging rodent models to study immune dysregulation may translate into increased healthy living years for these individuals. PMID:22396887

  3. Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia.

    PubMed

    Perez, S M; Lodge, D J

    2013-11-01

    Schizophrenia patients exhibit increased hippocampal activity that is correlated with positive symptoms. Although the cause of this hippocampal hyperactivity has not been demonstrated, it likely involves a decrease in GABAergic signaling. Thus, we posit that restoring GABAergic function may provide a novel therapeutic approach for the treatment of schizophrenia. It has been demonstrated that transplanted GABAergic precursor cells from the medial ganglionic eminence (MGE) can migrate and differentiate into mature interneurons. Here, we demonstrate that ventral hippocampal MGE transplants can restore hippocampal function and normalize downstream dopamine neuron activity in a rodent model of schizophrenia. Furthermore, MGE transplants also reverse the hyper-responsive locomotor response to amphetamine. Taken together, these data demonstrate that restoring interneuron function reverses neurophysiological and behavioral deficits in a rodent model of schizophrenia and moreover, demonstrate the feasibility of a neuronal transplant procedure as a potential novel therapeutic approach for the treatment of schizophrenia.

  4. Insights revealed by rodent models of sugar binge eating.

    PubMed

    Murray, Susan M; Tulloch, Alastair J; Chen, Eunice Y; Avena, Nicole M

    2015-12-01

    Binge eating is seen across the spectrum of eating disorder diagnoses as well as among individuals who do not meet diagnostic criteria. Analyses of the specific types of foods that are frequently binged upon reveal that sugar-rich items feature prominently in binge-type meals, making the effects of binge consumption of sugar an important focus of study. One avenue to do this involves the use of animal models. Foundational and recent studies of animal models of sugar bingeing, both outlined here, lend insight into the various neurotransmitters and neuropeptides that may participate in or be altered by this behavior. Further, several preclinical studies incorporating sugar bingeing paradigms have explored the utility of pharmacological agents that target such neural systems for reducing sugar bingeing in an effort to enhance clinical treatment. Indeed, the translational implications of findings generated using animal models of sugar bingeing are considered here, along with potential avenues for further study.

  5. Recent advances using rodent models for predicting human allergenicity

    SciTech Connect

    Knippels, Leon M.J. . E-mail: Knippels@voeding.tno.nl; Penninks, Andre H.

    2005-09-01

    The potential allergenicity of newly introduced proteins in genetically engineered foods has become an important safety evaluation issue. However, to evaluate the potential allergenicity and the potency of new proteins in our food, there are still no widely accepted and reliable test systems. The best-known allergy assessment proposal for foods derived from genetically engineered plants was the careful stepwise process presented in the so-called ILSI/IFBC decision tree. A revision of this decision tree strategy was proposed by a FAO/WHO expert consultation. As prediction of the sensitizing potential of the novel introduced protein based on animal testing was considered to be very important, animal models were introduced as one of the new test items, despite the fact that non of the currently studied models has been widely accepted and validated yet. In this paper, recent results are summarized of promising models developed in rat and mouse.

  6. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    DTIC Science & Technology

    2015-09-01

    neurological changes that increase vulnerability for drug abuse and addiction. Consequently, we have been evaluating the effects of TBI on both the...rewarding effects of opioid drugs as well as the development of tolerance and physical dependence in well-established rat models of abuse-related drug ...brain injured rats have a greater sensitivity to the rewarding effects of oxycodone and will self-administer greater total doses of drug compared to

  7. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance.

    PubMed

    Remacle, Claude; Bieswal, Florence; Bol, Vanesa; Reusens, Brigitte

    2011-12-01

    Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.

  8. Molecular imaging of neuroinflammation in preclinical rodent models using positron emission tomography.

    PubMed

    Gargiulo, Sara; Coda, Anna R; Panico, Mariarosaria; Gramanzini, Matteo; Moresco, Rosa M; Chalon, Sylvie; Pappatà, Sabina

    2017-03-01

    Neuroinflammation (NI) is an adaptive response to different noxious stimuli, involving microglia, astrocytes and peripheral immune cells. NI is a hallmark of several acute and chronic diseases of central nervous system (CNS) and contributes to both damage and repair of CNS tissue. Interventional or genetically modified rodent models mimicking human neuropathologies may provide valuable insights on basic mechanisms of NI, but also for improving the development of new diagnostic and therapeutic strategies. Preclinical positron emission tomography (PET) allows to investigate noninvasively the inflammatory response in CNS of rodent models at a molecular level, validating innovative probes for early diagnosis, and characterizing the time course of neuroinflammatory changes and their relationship with disease progression, as well as the effects of experimental treatments with high translational potential. In particular, recent efforts of preclinical PET field are intended to develop specific and selective radiotracers that target the activation of innate immune system in CNS. Here, we have reviewed the state of art for PET in relevant rodent models of acute and chronic neuropathologies associated with NI, with particular regard on imaging of activated microglia and astrocytes.

  9. Traumatic Neuroma in Continuity Injury Model in Rodents

    PubMed Central

    Kemp, Stephen William Peter; Khu, Kathleen Joy Ong Lopez; Kumar, Ranjan; Webb, Aubrey A.; Midha, Rajiv

    2012-01-01

    Abstract Traumatic neuroma in continuity (NIC) results in profound neurological deficits, and its management poses the most challenging problem to peripheral nerve surgeons today. The absence of a clinically relevant experimental model continues to handicap our ability to investigate ways of better diagnosis and treatment for these disabling injuries. Various injury techniques were tested on Lewis rat sciatic nerves. Optimal experimental injuries that consistently resulted in NIC combined both intense focal compression and traction forces. Nerves were harvested at 0, 5, 13, 21, and 65 days for histological examination. Skilled locomotion and ground reaction force (GRF) analysis were performed up to 9 weeks on the experimental (n=6) and crush-control injuries (n=5). Focal widening, disruption of endoneurium and perineurium with aberrant intra- and extrafascicular axonal regeneration and progressive fibrosis was consistently demonstrated in 14 of 14 nerves with refined experimental injuries. At 8 weeks, experimental animals displayed a significantly greater slip ratio in both skilled locomotor assessments, compared to nerve crush animals (p<0.01). GRFs of the crush- injured animals showed earlier improvement compared to the experimental animals, whose overall GRF patterns failed to recover as well as the crush group. We have demonstrated histological features and poor functional recovery consistent with NIC formation in a rat model. The injury mechanism employed combines traction and compression forces akin to the physical forces at play in clinical nerve injuries. This model may serve as a tool to help diagnose this injury earlier and to develop intervention strategies to improve patient outcomes. PMID:22011082

  10. Validation of a rodent model of episodic memory

    PubMed Central

    Zhou, Wenyi

    2011-01-01

    Episodic memory consists of representations of specific episodes that happened in the past. Modeling episodic memory in animals requires careful examination of alternative explanations of performance. Putative evidence of episodic-like memory may be based on encoding failure or expectations derived from well-learned semantic rules. In Experiment 1, rats were tested in a radial maze with study and test phases separated by a retention interval. The replenishment of chocolate (at its study-phase location) depended on two factors: time of day (morning vs. afternoon) and the presence or absence of chocolate pellets at the start of the test phase. Because replenishment could not be decoded until the test phase, rats were required to encode the study episode. Success in this task rules out encoding failure. In Experiment 2, two identical mazes in different rooms were used. Chocolate replenishment was trained in one room, and then they were asked to report about a recent event in a different room, where they had no expectation that the memory assessment would occur. Rats successfully answered the unexpected question, ruling out use of expectations derived from well-learned semantic rules. Our behavioral methods for modeling episodic memory may have broad application for assessments of genetic, neuroanatomical, neurochemical, and neurophysiological bases of both episodic memory and memory disorders such as those that occur in Alzheimer’s disease. PMID:21165663

  11. Exploring Theranostic Potentials of Radioiodinated Hypericin in Rodent Necrosis Models

    PubMed Central

    Li, Junjie; Cona, Marlein Miranda; Chen, Feng; Feng, Yuanbo; Zhou, Lin; Yu, Jie; Nuyts, Johan; de Witte, Peter; Zhang, Jian; Himmelreich, Uwe; Verbruggen, Alfons; Ni, Yicheng

    2012-01-01

    Objectives: The present animal experiments were conducted to evaluate radioiodinated Hypericin (Hyp) for its regional distribution as well as theranostic potentials. Materials and Methods: Rat models of reperfused liver infarction (RLI) and hepatic rhabdomyosarcoma (R1) were surgically induced. R1 models received Combretastatin A4 phosphate (CA4P) intravenously at 10 mg/kg 24 h prior to radioiodinated Hyp. Three groups of 6 rats each containing 3 RLI and 3 R1 models received iv injections of 123I-Hyp at 37, 74, and 185 MBq/kg respectively and followed by 0.1 ml of 1% Evans blue solution were sacrificed at 4, 24 and 48 hour post injection immediately after in vivo examination of MRI and planar gamma scintigraphy. Besides, two groups of 6 R1 models that received either 300 MBq/kg of 131I-Hyp or vehicle intravenously were examined using MRI to compare tumor growth for 12 days. Autoradiography, gamma counting, and histopathology were performed for postmortem verifications and quantification. Results: Necrosis as seen in vivo on contrast-enhanced MRI corresponded well with the hot spots on planar scintigraphy. Autoradiography and gamma counting revealed intense accumulation of 123I-Hyp in necrotic liver (3.94 ± 1.60, 5.38 ± 1.04, and 6.03 ± 2.09 %ID/g ± SD) and necrotic tumor (4.27 ± 0.76, 5.57 ± 0.76, and 5.68 ± 1.33 %ID/g ± SD) relative to normal liver (1.76 ± 0.54, 0.41 ± 0.18, and 0.16 ± 0.07 %ID/g ± SD), with a high necrosis-to-liver ratio of 2.3, 14.0, and 37.0 at 4, 24 and 48 h respectively. Tumor volumes in R1 models that received 131I-Hyp and vehicle changed from 0.45 ± 0.09, and 0.47 ± 0.12 cm3 (p > 0.05) on day 0 to1.32 ± 0.76 and 3.63 ± 0.72 cm3 (p < 0.001) on day 12, with the corresponding necrosis ratios from 73 ± 12 %, and 76 ± 17 % to 47 ± 18% and 17 ± 13 % (p < 0.01), and with the tumor DT of 7.3 ± 1.0 and 4.2 ± 0.7 days, respectively. Conclusions: Radioiodinated Hyp as a necrosis avid tracer appears promising for non

  12. Reinforcement, dopamine and rodent models in drug development for ADHD.

    PubMed

    Tripp, Gail; Wickens, Jeff

    2012-07-01

    Attention deficit hyperactivity disorder (ADHD) presents special challenges for drug development. Current treatment with psychostimulants and nonstimulants is effective, but their mechanism of action beyond the cellular level is incompletely understood. We review evidence suggesting that altered reinforcement mechanisms are a fundamental characteristic of ADHD. We show that a deficit in the transfer of dopamine signals from established positive reinforcers to cues that predict such reinforcers may underlie these altered reinforcement mechanisms, and in turn explain key symptoms of ADHD. We argue that the neural substrates controlling the excitation and inhibition of dopamine neurons during the transfer process are a promising target for future drug development. There is a need to develop animal models and behavioral paradigms that can be used to experimentally investigate these mechanisms and their effects on sensitivity to reinforcement. More specific and selective targeting of drug development may be possible through this approach.

  13. Nefopam and ketoprofen synergy in rodent models of antinociception.

    PubMed

    Girard, Philippe; Verniers, Danielle; Coppé, Marie-Claude; Pansart, Yannick; Gillardin, Jean-Marie

    2008-04-28

    Combinations of analgesics with different mechanisms of action offer the possibility of efficient analgesia with a decrease in side effects as a result of reduced dosages of one or both compounds. Based on a clinical observation of synergism between nefopam, a centrally acting non-opioid that inhibits monoamines reuptake, and ketoprofen, a non-steroidal anti-inflammatory drug, the objective of this study was to further explore this antinociceptive synergy in four distinct animal models of pain (both drugs were administered subcutaneously). Strong antinociceptive properties were observed in the mouse writhing abdominal test with ED50 values of 2.56+/-0.38 and 1.41+/-0.41 mg/kg for nefopam and ketoprofen, respectively. In the inflammatory phase of the mouse formalin test, both compounds significantly inhibited the licking time of the injected hind-paw with ED50 of 4.32+/-0.17 mg/kg for nefopam and 49.56+/-15.81 mg/kg for ketoprofen. Isobolographic analysis revealed that this drug combination is synergistic in the formalin test and additive in the writhing test. In rat carrageenan-induced tactile allodynia, single administration of nefopam or ketoprofen only partially reduced allodynia. Combination of low analgesic doses of nefopam (10 or 30 mg/kg) with low analgesic doses of ketoprofen (30 or 100 mg/kg) significantly reduced or reversed allodynia, with a more pronounced anti-allodynic effect and a longer duration efficacy. In a rat model of postoperative thermal hyperalgesia induced by incision, co-administration of nefopam at a low analgesic dose (10 mg/kg) with ketoprofen at non-analgesic doses (30 or 100 mg/kg) showed the appearance of a strong anti-hyperalgesic effect, maintained during at least 3 h. In conclusion, co-administration of nefopam with ketoprofen is synergistic, and should allow either to increase their analgesic efficacy and/or to reduce their side effects.

  14. Curriculum Models in Adult Education.

    ERIC Educational Resources Information Center

    Langenbach, Michael

    This book describes several curriculum models currently used in the field of adult education in an effort to assist adult educators who develop curricula as a routine part of their jobs. The book is divided into 14 chapters that are grouped into 7 sections. Each section covers a type of educational program, and each chapter describes a specific…

  15. Predictive Modeling in Adult Education

    ERIC Educational Resources Information Center

    Lindner, Charles L.

    2011-01-01

    The current economic crisis, a growing workforce, the increasing lifespan of workers, and demanding, complex jobs have made organizations highly selective in employee recruitment and retention. It is therefore important, to the adult educator, to develop models of learning that better prepare adult learners for the workplace. The purpose of…

  16. Assessment Models for Adult Education.

    ERIC Educational Resources Information Center

    Snow, Ellen; And Others

    This handbook was developed to provide adult educators in Texas with sufficient background in assessment models to ensure confidence in recognizing and/or selecting appropriate measurement techniques and in using evaluation results to individualize and improve instruction for adult students. The handbook is based on information derived from a…

  17. Two new rodent models for actinide toxicity studies. [/sup 237/Pu, /sup 241/Am

    SciTech Connect

    Taylor, G.N.; Jones, C.W.; Gardner, P.A.; Lloyd, R.D.; Mays, C.W.; Charrier, K.E.

    1981-04-01

    Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus), have tenacious and high retention in the liver and skeleton of plutonium and americium following intraperitoneal injection of Pu and Am in citrate solution. Liver retention of Pu and Am in the grasshopper mouse is higher than liver retention in the deer mouse. Both of these rodents are relatively long-lived, breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium retention is high and prolonged in both the skeleton and liver, as it is in man, may be useful animal models for actinide toxicity studies.

  18. Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains.

    PubMed

    Batailler, M; Mullier, A; Sidibe, A; Delagrange, P; Prévot, V; Jockers, R; Migaud, M

    2012-05-01

    GPR50, formerly known as melatonin-related receptor, is one of three subtypes of the melatonin receptor subfamily, together with the MT(1) and MT(2) receptors. By contrast to these two high-affinity receptor subtypes and despite its high identity with the melatonin receptor family, GPR50 does not bind melatonin or any other known ligand. Specific and reliable immunological tools are therefore needed to be able to elucidate the physiological functions of this orphan receptor that are still largely unknown. We have generated and validated a new specific GPR50 antibody against the ovine GPR50 and used it to analyse the neuroanatomical distribution of the GPR50 in sheep, rat and mouse whole brain. We demonstrated that GPR50-positive cells are widely distributed in various regions, including the hypothalamus and the pars tuberalis of the pituitary, in all the three species studied. GPR50 expressing cells are abundant in the dorsomedial nucleus of the hypothalamus, the periventricular nucleus and the median eminence. In rodents, immunohistochemical studies revealed a broader distribution pattern for the GPR50 protein. GPR50 immunoreactivity is found in the medial preoptic area (MPA), the lateral septum, the lateral hypothalamic area, the bed nucleus of the stria terminalis, the vascular organ of the laminae terminalis and several regions of the amygdala, including the medial nuclei of amygdala. Additionally, in the rat brain, GPR50 protein was localised in the CA1 pyramidal cell layer of the dorsal hippocampus. In mice, moderate to high numbers of GPR50-positive cells were also found in the subfornical organ. Taken together, these results provide an enlarged distribution of GPR50 protein, give further insight into the organisation of the melatoninergic system, and may lay the framework for future studies on the role of the GPR50 in the brain.

  19. A rodent model of schizophrenia derived from postmortem studies.

    PubMed

    Berretta, Sabina; Gisabella, Barbara; Benes, Francine M

    2009-12-07

    There is compelling postmortem evidence that GABA cell dysfunction plays a role in the pathophysiology of schizophrenia (SZ). Based on a unique distribution of postmortem abnormalities in layer II of the anterior cingulate cortex and sectors CA3/2 of the hippocampus, we postulated that afferent fibers from the basolateral amygdala to these sites may contribute to diminished GABAergic modulation in these disorders. To test this hypothesis, picrotoxin (PICRO), a non-competitive antagonist of the GABA-A receptor, is stereotaxically infused the basolateral complex of the amygdala (BLA) to increase the flow of excitatory activity into stratum oriens (SO) of sectors CA3/2 of the hippocampus. This pharmacological manipulation results in a selective reduction of GABAergic interneurons containing parvalbumin, calbindin and calretinin in CA3/2. Using single cell recordings in a hippocampal slide preparation, these changes in PICRO-treated rats seem to be associated with a reduction in evoked and spontaneous inhibitory post-synaptic potentials (sIPSCs) recorded from pyramidal neurons in sector CA3/2, but not CA1. A lower resting membrane potential and an increased action potential firing rate have been recorded in interneurons in the SO of CA2/3, but not CA1. Additionally, currents associated with hyperpolarization-activated cationic channels (Ih), which help to control neuronal firing rates of GABA cells in the hippocampus, were also increased. Overall, these studies support the view that postmortem studies contribute information for the development of empiric models of SZ, ones that can be used as translational tools for elucidating the functional changes that may be present in GABA cell subtypes their molecular regulatory mechanisms in this disorder.

  20. Antinociception induced by acute oral administration of sweet substance in young and adult rodents: the role of endogenous opioid peptides chemical mediators and μ(1)-opioid receptors.

    PubMed

    de Freitas, Renato Leonardo; Kübler, João Marcus Lopes; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2012-04-01

    The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the μ(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 μL of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4 mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective μ(1)-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and μ(1)-opioid receptor actions.

  1. Computational models of adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  2. Modeling menopause: The utility of rodents in translational behavioral endocrinology research.

    PubMed

    Koebele, Stephanie V; Bimonte-Nelson, Heather A

    2016-05-01

    The human menopause transition and aging are each associated with an increase in a variety of health risk factors including, but not limited to, cardiovascular disease, osteoporosis, cancer, diabetes, stroke, sexual dysfunction, affective disorders, sleep disturbances, and cognitive decline. It is challenging to systematically evaluate the biological underpinnings associated with the menopause transition in the human population. For this reason, rodent models have been invaluable tools for studying the impact of gonadal hormone fluctuations and eventual decline on a variety of body systems. While it is essential to keep in mind that some of the mechanisms associated with aging and the transition into a reproductively senescent state can differ when translating from one species to another, animal models provide researchers with opportunities to gain a fundamental understanding of the key elements underlying reproduction and aging processes, paving the way to explore novel pathways for intervention associated with known health risks. Here, we discuss the utility of several rodent models used in the laboratory for translational menopause research, examining the benefits and drawbacks in helping us to better understand aging and the menopause transition in women. The rodent models discussed are ovary-intact, ovariectomy, and 4-vinylcylohexene diepoxide for the menopause transition. We then describe how these models may be implemented in the laboratory, particularly in the context of cognition. Ultimately, we aim to use these animal models to elucidate novel perspectives and interventions for maintaining a high quality of life in women, and to potentially prevent or postpone the onset of negative health consequences associated with these significant life changes during aging.

  3. Modeling human colon cancer in rodents using a food-borne carcinogen, PhIP.

    PubMed

    Nakagama, Hitoshi; Nakanishi, Masako; Ochiai, Masako

    2005-10-01

    Animal models provide researchers with powerful tools to elucidate multistage mechanisms for cancer development and to gain further insights into the biological roles of various cancer-related genes in in vivo situations. As for colon cancer models in rodents, Apc-disrupted mice, including ApcMin, have been one of the most widely utilized animal models to dissect the molecular events implicated in the development of intestinal tumors. In rats, several models have been established using chemical carcinogens, including azoxymethane and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP). The former is a representative colon carcinogenic alkylating agent, and the latter a heterocyclic amine produced while cooking meat and fish, which people are exposed to in ordinary life. It is of great importance to note that PhIP preferentially targets the colon and prostate gland in male rats, and the mammary glands in female rats. Cancers in these three organs are common in Western countries and are currently increasing in Japan, where modern dietary habits are rapidly becoming more like those of the West. In the present article, the history of PhIP-induced colon cancer models in rodents, activation/detoxification mechanisms of PhIP with regard to the formation of PhIP-DNA adducts, mechanistic approaches to dissect the molecular events involved in the development of colon cancer by PhIP, and epidemiological evidence of human exposure to PhIP are overviewed. The induction of Paneth cell maturation/differentiation in PhIP-induced colon cancers, genetic traits affecting susceptibility to colon carcinogenesis, and the biological relevance of colon cancer models in rodents to studying human colon carcinogenesis are also discussed.

  4. Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex.

    PubMed

    Shapiro, Lee A; Ng, Kwan L; Kinyamu, Richard; Whitaker-Azmitia, Patricia; Geisert, Eldon E; Blurton-Jones, Mathew; Zhou, Qun-Yong; Ribak, Charles E

    2007-09-01

    Newly generated neurons are continuously added to the olfactory epithelium and olfactory bulbs of adult mammals. Studies also report newly generated neurons in the piriform cortex, the primary cortical projection site of the olfactory bulbs. The current study used BrdU-injection paradigms, and in vivo and in vitro DiI tracing methods to address three fundamental issues of these cells: their origin, migratory route and fate. The results show that 1 day after a BrdU-injection, BrdU/DCX double-labeled cells appear deep to the ventricular subependyma, within the white matter. Such cells appear further ventral and caudal in the ensuing days, first appearing in the rostral piriform cortex of mice at 2 days after the BrdU-injection, and at 4 days in the rat. In the caudal piriform cortex, BrdU/DCX labeled cells first appear at 4 days after the injection in mice and 7 days in rats. The time it takes for these cells to appear in the piriform cortex and the temporal distribution pattern suggest that they migrate from outside this region. DiI tracing methods confirmed a migratory route to the piriform cortex from the ventricular subependyma. The presence of BrdU/NeuN labeled cells as early as 7 days after a BrdU injection in mice and 10 days in the rat and lasting as long as 41 days indicates that some of these cells have extended survival durations in the adult piriform cortex.

  5. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis.

    PubMed

    Prabhu, Sridurga Mithra; Meistrich, Marvin L; McLaughlin, Eileen A; Roman, Shaun D; Warne, Sam; Mendis, Sirisha; Itman, Catherine; Loveland, Kate Lakoski

    2006-03-01

    Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.

  6. Mild Sensory Stimulation Completely Protects the Adult Rodent Cortex from Ischemic Stroke

    PubMed Central

    Chen-Bee, Cynthia H.; Frostig, Ron D.

    2010-01-01

    Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential. PMID:20585659

  7. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats.

    PubMed

    Hargus, Gunnar; Cooper, Oliver; Deleidi, Michela; Levy, Adam; Lee, Kristen; Marlow, Elizabeth; Yow, Alyssa; Soldner, Frank; Hockemeyer, Dirk; Hallett, Penelope J; Osborn, Teresia; Jaenisch, Rudolf; Isacson, Ole

    2010-09-07

    Recent advances in deriving induced pluripotent stem (iPS) cells from patients offer new possibilities for biomedical research and clinical applications, as these cells could be used for autologous transplantation. We differentiated iPS cells from patients with Parkinson's disease (PD) into dopaminergic (DA) neurons and show that these DA neurons can be transplanted without signs of neurodegeneration into the adult rodent striatum. The PD patient iPS (PDiPS) cell-derived DA neurons survived at high numbers, showed arborization, and mediated functional effects in an animal model of PD as determined by reduction of amphetamine- and apomorphine-induced rotational asymmetry, but only a few DA neurons projected into the host striatum at 16 wk after transplantation. We next applied FACS for the neural cell adhesion molecule NCAM on differentiated PDiPS cells before transplantation, which resulted in surviving DA neurons with functional effects on amphetamine-induced rotational asymmetry in a 6-OHDA animal model of PD. Morphologically, we found that PDiPS cell-derived non-DA neurons send axons along white matter tracts into specific close and remote gray matter target areas in the adult brain. Such findings establish the transplantation of human PDiPS cell-derived neurons as a long-term in vivo method to analyze potential disease-related changes in a physiological context. Our data also demonstrate proof of principle of survival and functional effects of PDiPS cell-derived DA neurons in an animal model of PD and encourage further development of differentiation protocols to enhance growth and function of implanted PDiPS cell-derived DA neurons in regard to potential therapeutic applications.

  8. The Feasibility of HIFU Liver Ablation Through the Ribcage and Cartilage in a Rodent Model

    NASA Astrophysics Data System (ADS)

    King, Randy; Rieke, Viola; Pauly, Kim Butts

    2009-04-01

    We examined the feasibility of the rat model for the study of HIFU treatment of liver cancer. Significance: HIFU is being developed for the minimally invasive treatment of primary and metastatic liver cancer. In patients, obstruction of the ultrasound by the ribs poses a significant problem, and current studies are under way which investigate the efficacy of focusing around or sonicating between the ribs. Such techniques show promise for patient treatments, but are not feasible when using rodent models. Results: Six recently euthanized (within the hour) Sprague-Dewey rats were used. The hair over the anterior surface was removed. Sonications were performed with the InSightec ExAblate system at 0.95 MHz, 1.1 MHz, and 1.35MHz through the rib cage. Temperature rise was monitored with MRI-based thermometry. Lesions were created in the livers of 5/6 rats. In the five rats, energy levels between 572-1194 Joules produced lesions every time. With energies greater than 1393 Joules, skin damaged was observed which prevented the ultrasound from propagating to the liver on subsequent sonications, accounting for the one study that failed to produce lesions. No thermal damage was observed at the skin with sonications that resulted in liver lesions, and no significant heating was observed at or near the skin in the MRI temperature maps. Conclusions: It is possible to ignore the effect of ribs and sternum in rodents and create lesions within the rat liver. This technique opens the door to using hepatocellular carcinoma rodent models in HIFU studies.

  9. Rodent Control

    ERIC Educational Resources Information Center

    Indian Journal of Adult Education, 1975

    1975-01-01

    Strategies for rodent control in crop fields, threshing yards, and rural residential areas are presented together with an operational plan for implementing a program for rodent control at the national level. Training personnel in rodent control procedures and procedures for educating the public in the necessity for control are covered. (EC)

  10. The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.

    PubMed

    Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah

    2017-03-01

    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia.NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN.

  11. Nephrilin peptide modulates a neuroimmune stress response in rodent models of burn trauma and sepsis

    PubMed Central

    Mascarenhas, Desmond D; ElAyadi, Amina; Singh, Baljit K; Prasai, Anesh; Hegde, Sachin D; Herndon, David N; Finnerty, Celeste C

    2013-01-01

    Sepsis occurs three times more often in burns than in other types of trauma, suggesting an overlap or synergy between underlying immune mechanisms in burn trauma and sepsis. Nephrilin peptide, a designed inhibitor of mTORC2, has previously been shown to modulate a neuroimmune stress response in rodent models of xenobiotic and metabolic stress. Here we investigate the effect of nephrilin peptide administration in different rodent models of burn trauma and sepsis. In a rat scald burn model, daily subcutaneous bolus injection of 4 mg/kg nephrilin significantly reduced the elevation of kidney tissue substance P, S100A9 gene expression, PMN infiltration and plasma inflammatory markers in the acute phase, while suppressing plasma CCL2 and insulin C-peptide, kidney p66shc-S36 phosphorylation and PKC-beta and CGRP in dorsal root ganglia at 14 days (chronic phase). In the mouse cecal ligation and puncture model of sepsis, nephrilin fully protected mice from mortality between surgery and day 7, compared to 67% mortality in saline-treated animals, while significantly reducing elevated CCL2 in plasma. mTORC2 may modulate important neuroimmune responses in both burn trauma and sepsis. PMID:24273694

  12. A simple method to obtain pure cultures of multiciliated ependymal cells from adult rodents.

    PubMed

    Grondona, J M; Granados-Durán, P; Fernández-Llebrez, P; López-Ávalos, M D

    2013-01-01

    Ependymal cells form an epithelium lining the ventricular cavities of the vertebrate brain. Numerous methods to obtain primary culture ependymal cells have been developed. Most of them use foetal or neonatal rat brain and the few that utilize adult brain hardly achieve purity. Here, we describe a simple and novel method to obtain a pure non-adherent ependymal cell culture from explants of the striatal and septal walls of the lateral ventricles. The combination of a low incubation temperature followed by a gentle enzymatic digestion allows the detachment of most of the ependymal cells from the ventricular wall in a period of 6 h. Along with ependymal cells, a low percentage (less than 6 %) of non-ependymal cells also detaches. However, they do not survive under two restrictive culture conditions: (1) a simple medium (alpha-MEM with glucose) without any supplement; and (2) a low density of 1 cell/µl. This purification method strategy does not require cell labelling with antibodies and cell sorting, which makes it a simpler and cheaper procedure than other methods previously described. After a period of 48 h, only ependymal cells survive such conditions, revealing the remarkable survival capacity of ependymal cells. Ependymal cells can be maintained in culture for up to 7-10 days, with the best survival rates obtained in Neurobasal supplemented with B27 among the tested media. After 7 days in culture, ependymal cells lose most of the cilia and therefore the mobility, while acquiring radial glial cell markers (GFAP, BLBP, GLAST). This interesting fact might indicate a reprogramming of the cell identity.

  13. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly-used analgesics

    PubMed Central

    Flatters, Sarah J.L.

    2016-01-01

    Purpose of review Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. Recent findings We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically-available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on anti-depressants, opioids and gabapentinoids given their broad usage. Summary This review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain and gender. Preclinical data supports many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem. PMID:27054288

  14. Behavioural methods used in rodent models of autism spectrum disorders: current standards and new developments.

    PubMed

    Wöhr, Markus; Scattoni, Maria Luisa

    2013-08-15

    Autism is a behaviourally defined disorder including attenuated or abnormal social interaction and communication, as well as aberrant repetitive behaviour, with symptoms emerging early in childhood. Although the cause of autism has not been discovered, several data strongly support the role of genetic factors in autism aetiology. For this reason, preclinical research is now focusing on generating transgenic and knockout mice, and more recently also rats, with mutations in genes identified in autistic children, with the main aim of understanding the role of those genes in autism aetiology, discovering the biological mechanisms underlying autistic behaviours detected in these mutant lines and evaluating potential treatments. Over the last years, a huge number of behavioural phenotyping assays for rodent models of autism and related disorders have been designed. In the first part of our review, we focus on current standards, i.e. state-of-the-art behavioural phenotyping tasks to assess autism core symptoms in rodent models. The second part is devoted to some few, in our view, very promising examples of new developments, namely an autism severity score, scent marking behaviour as an additional, ethologically valid measure for communication, plus a number of new developments in the behavioural domains of social facilitation, observational learning, and empathy. Finally, we will highlight the huge potential impact of newly generated rat knockout models of autism.

  15. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    PubMed Central

    Golden, Joseph W.; Hammerbeck, Christopher D.; Mucker, Eric M.; Brocato, Rebecca L.

    2015-01-01

    Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs. PMID:26266264

  16. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses.

    PubMed

    Golden, Joseph W; Hammerbeck, Christopher D; Mucker, Eric M; Brocato, Rebecca L

    2015-01-01

    Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.

  17. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioral analysis to etiological mechanisms

    PubMed Central

    Gidyk, Darryl C.; Deibel, Scott H.; Hong, Nancy S.; McDonald, Robert J.

    2015-01-01

    Sporadic Alzheimer's disease (AD) is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted, however, the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer potential solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa. PMID:26283893

  18. A review of bioeffects of static magnetic field on rodent models.

    PubMed

    Yu, Shuguang; Shang, Peng

    2014-01-01

    This review is aimed to summarize the experimental researches in the influences of static magnetic field on laboratory rodent models, reported by laboratory scientists, experimental technicians, clinical surgeons, animal veterinarians, and other researchers. Past studies suggested that static magnetic field-singly applied or used combined with other physical or chemical substances-significantly relieved some pains and ameliorated certain diseases in different organ systems, e.g. hypertension, osteoporosis, neuralgia, diabetes and leukemia etc. But on the other hand, some harmful events have also been observed in a number of investigations, from cellular level to fetal development. So exposure to static magnetic field might have dual effects on experimental rodent in various environments, viz. there are potentially therapeutic benefits, as well as adverse effects from it. The positive effect may relate to moderate intensities, while negative influence seems to be in connection with acute strong static magnetic fields. In addition, different orientations of static magnetic field exert different degrees of impact. Thus, the bioeffects of static magnetic field exposure on mice/rats depend on magnetic field intensities, durations and directions, though the exactly relationship between them is still vague. Further researches need to perform with appropriate methodologies, ingenious designs repeatedly and systemically, not only in animal models, but also in human volunteers and patients.

  19. Optical imaging of oxidative stress in retinitis pigmentosa (RP) in rodent model

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Maleki, Sepideh; Gopalakrishnan, Sandeep; Sepehr, Reyhaneh; Eells, Janis T.; Ranji, Mahsa

    2013-02-01

    Oxidative stress (OS), which increases during retinal degenerative disorders, contributes to photoreceptor cell loss. The objective of this study was to investigate the changes in the metabolic state of the eye tissue in rodent models of retinitis pigmentosa by using the cryofluorescence imaging technique. The mitochondrial metabolic coenzymes NADH and FADH2 are autofluorescent and can be monitored without exogenous labels using optical techniques. The NADH redox ratio (RR), which is the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), was used as a quantitative diagnostic marker. The NADH RR was examined in an established rodent model of retinitis pigmentosa (RP), the P23H rat, and compared to that of control Sprague-Dawley (SD) rats and P23H NIR treated rats. Our results demonstrated 24% decrease in the mean NADH RR of the eyes from P23H transgenic rats compared to normal rats and 20% increase in the mean NADH RR of the eyes from the P23H NIR treated rats compared to P23H non-treated rats.

  20. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    NASA Astrophysics Data System (ADS)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  1. Novel anticonvulsants for reducing alcohol consumption: A review of evidence from preclinical rodent drinking models.

    PubMed

    Padula, Ae; McGuier, Ns; Griffin, Wc; Lopez, Mf; Becker, Hc; Mulholland, Pj

    2013-02-01

    Alcohol use disorders (AUDs) are a major public health issue and have an enormous social and economic burden in developed, developing, and third-world countries. Current pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in preventing relapse in a subset of individuals. This signifies an essential need for improved medications to reduce heavy episodic drinking and alcohol-related problems. Growing literature has provided support for the use of anticonvulsants in suppressing symptoms induced by alcohol withdrawal. Emerging clinical and preclinical evidence suggests that a number of well-tolerated anticonvulsants may also decrease alcohol drinking. This review will focus on recent evidence supporting the efficacy of novel anticonvulsants in reducing voluntary alcohol consumption in rodent models. The data demonstrate that anticonvulsants reduce drinking in standard home cage two-bottle choice paradigms, self-administration of alcohol in operant chambers, and cue- and stress-induced reinstatement of alcohol seeking behaviors in rats and mice. This review also highlights evidence that some anticonvulsants were only moderately effective in reducing drinking in select strains of rodents or models. This suggests that genetics, possible neuroadaptations, or the pharmacological target affect the ability of anticonvulsants to attenuate alcohol consumption. Nonetheless, anticonvulsants are relatively safe, have little abuse potential, and can work in combination with other drugs. The results from these preclinical and clinical studies provide compelling evidence that anticonvulsants are a promising class of medication for the treatment of AUDs.

  2. Novel anticonvulsants for reducing alcohol consumption: A review of evidence from preclinical rodent drinking models

    PubMed Central

    Griffin, WC; Lopez, MF; Becker, HC; Mulholland, PJ

    2013-01-01

    Alcohol use disorders (AUDs) are a major public health issue and have an enormous social and economic burden in developed, developing, and third-world countries. Current pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in preventing relapse in a subset of individuals. This signifies an essential need for improved medications to reduce heavy episodic drinking and alcohol-related problems. Growing literature has provided support for the use of anticonvulsants in suppressing symptoms induced by alcohol withdrawal. Emerging clinical and preclinical evidence suggests that a number of well-tolerated anticonvulsants may also decrease alcohol drinking. This review will focus on recent evidence supporting the efficacy of novel anticonvulsants in reducing voluntary alcohol consumption in rodent models. The data demonstrate that anticonvulsants reduce drinking in standard home cage two-bottle choice paradigms, self-administration of alcohol in operant chambers, and cue- and stress-induced reinstatement of alcohol seeking behaviors in rats and mice. This review also highlights evidence that some anticonvulsants were only moderately effective in reducing drinking in select strains of rodents or models. This suggests that genetics, possible neuroadaptations, or the pharmacological target affect the ability of anticonvulsants to attenuate alcohol consumption. Nonetheless, anticonvulsants are relatively safe, have little abuse potential, and can work in combination with other drugs. The results from these preclinical and clinical studies provide compelling evidence that anticonvulsants are a promising class of medication for the treatment of AUDs. PMID:24432188

  3. Rodent Preclinical Models for Developing Novel Antiarthritic Molecules: Comparative Biology and Preferred Methods for Evaluating Efficacy

    PubMed Central

    Bolon, Brad; Stolina, Marina; King, Caroline; Middleton, Scot; Gasser, Jill; Zack, Debra; Feige, Ulrich

    2011-01-01

    Rodent models of immune-mediated arthritis (RMIA) are the conventional approach to evaluating mechanisms of inflammatory joint disease and the comparative efficacy of antiarthritic agents. Rat adjuvant-induced (AIA), collagen-induced (CIA), and streptococcal cell wall-induced (SCW) arthritides are preferred models of the joint pathology that occurs in human rheumatoid arthritis (RA). Lesions of AIA are most severe and consistent; structural and immunological changes of CIA best resemble RA. Lesion extent and severity in RMIA depends on experimental methodology (inciting agent, adjuvant, etc.) and individual physiologic parameters (age, genetics, hormonal status, etc.). The effectiveness of antiarthritic molecules varies with the agent, therapeutic regimen, and choice of RMIA. All RMIA are driven by overactivity of proinflammatory pathways, but the dominant molecules differ among the models. Hence, as with the human clinical experience, the efficacy of various antiarthritic molecules differs among RMIA, especially when the agent is a specific cytokine inhibitor. PMID:21253435

  4. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models

    PubMed Central

    Daniels, Michael J. D.; Rivers-Auty, Jack; Schilling, Tom; Spencer, Nicholas G.; Watremez, William; Fasolino, Victoria; Booth, Sophie J.; White, Claire S.; Baldwin, Alex G.; Freeman, Sally; Wong, Raymond; Latta, Clare; Yu, Shi; Jackson, Joshua; Fischer, Nicolas; Koziel, Violette; Pillot, Thierry; Bagnall, James; Allan, Stuart M.; Paszek, Pawel; Galea, James; Harte, Michael K.; Eder, Claudia; Lawrence, Catherine B.; Brough, David

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase-1 (COX-1) and COX-2 enzymes. The NLRP3 inflammasome is a multi-protein complex responsible for the processing of the proinflammatory cytokine interleukin-1β and is implicated in many inflammatory diseases. Here we show that several clinically approved and widely used NSAIDs of the fenamate class are effective and selective inhibitors of the NLRP3 inflammasome via inhibition of the volume-regulated anion channel in macrophages, independently of COX enzymes. Flufenamic acid and mefenamic acid are efficacious in NLRP3-dependent rodent models of inflammation in air pouch and peritoneum. We also show therapeutic effects of fenamates using a model of amyloid beta induced memory loss and a transgenic mouse model of Alzheimer's disease. These data suggest that fenamate NSAIDs could be repurposed as NLRP3 inflammasome inhibitors and Alzheimer's disease therapeutics. PMID:27509875

  5. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis.

    PubMed

    Scorza, Carla A; Marques, Marcia J G; Gomes da Silva, Sérgio; Naffah-Mazzacoratti, Maria da Graça; Scorza, Fulvio A; Cavalheiro, Esper A

    2017-02-22

    Mesial temporal lobe epilepsy is a serious brain disorder in adults that is often preceded by an initial brain insult, such as status epilepticus (SE), that after a latent period leads to recurrent seizures. Post-SE models are widely used for studies on epileptogenic processes. Previous findings of our laboratory suggested that the Neotropical rodents Proechimys exhibit endogenous antiepileptogenic mechanisms in post-SE models. Strong body of research supports that SE triggers a rapid and dramatic upregulation of inflammatory mediators and vascular endothelial growth factor (VEGF). In this work we found that, in the epilepsy-resistant Proechimys, hippocampal and cortical levels of inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α) and VEGF remained unchanged 24h after SE, strongly contrasting to the high levels of post-SE changes observed in Wistar rats. Furthermore, substantial differences in the brain baseline levels of these proteins were encountered between animal species studied. Since inflammatory cytokines and VEGF have been recognized as major orchestrators of the epileptogenic process, our results suggest their role in the antiepileptogenic mechanisms previously described in Proechimys.

  6. Serum-free bioprocessing of adult human and rodent skin-derived Schwann cells: implications for cell therapy in nervous system injury.

    PubMed

    Mirfeizi, Leila; Stratton, Jo Anne; Kumar, Ranjan; Shah, Prajay; Agabalyan, Natacha; Stykel, Morgan G; Midha, Rajiv; Biernaskie, Jeff; Kallos, Michael S

    2017-02-08

    Peripheral nerve injury affects 2.8% of trauma patients with severe cases often resulting in long-lived permanent disability, despite nerve repair surgery. Autologous Schwann cell (SC) therapy currently provides an exciting avenue for improved outcomes for these patients, particularly with the possibility to derive SCs from easily-accessible adult skin. However, due to current challenges regarding the efficient expansion of these cells, further optimization is required before they can be seriously considered for clinical application. Here, a microcarrier-based bioreactor system is proposed as a means to scale-up large numbers of adult skin-derived SCs for transplantation into the injured nerve. Bioprocessing parameters that allow for the expansion of adult rodent SCs have been identified, whilst maintaining similar rates of proliferation (as compared to static-grown SCs), expression of SC markers, and, importantly, their capacity to myelinate axons following transplant into the injured sciatic nerve. The same bioprocessing parameters can be applied to SCs derived from adult human skin, and like rodent cells, they sustain their proliferative potential and expression of SC markers. Taken together, this dataset demonstrates the basis for a scalable bioprocess for the production of SCs, an important step towards clinical use of these cells as an adjunct therapy for nerve repair. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Modeling Natural Photic Entrainment in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Flôres, Danilo E. F. L.; Tomotani, Barbara M.; Tachinardi, Patricia; Oda, Gisele A.; Valentinuzzi, Veronica S.

    2013-01-01

    Subterranean rodents spend most of the day inside underground tunnels, where there is little daily change in environmental variables. Our observations of tuco-tucos (Ctenomys aff. knighti) in a field enclosure indicated that these animals perceive the aboveground light-dark cycle by several bouts of light-exposure at irregular times during the light hours of the day. To assess whether such light-dark pattern acts as an entraining agent of the circadian clock, we first constructed in laboratory the Phase Response Curve for 1 h light-pulses (1000lux). Its shape is qualitatively similar to other curves reported in the literature and to our knowledge it is the first Phase Response Curve of a subterranean rodent. Computer simulations were performed with a non-linear limit-cycle oscillator subjected to a simple model of the light regimen experienced by tuco-tucos. Results showed that synchronization is achieved even by a simple regimen of a single daily light pulse scattered uniformly along the light hours of the day. Natural entrainment studies benefit from integrated laboratory, field and computational approaches. PMID:23874562

  8. Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease

    PubMed Central

    Gulino, Rosario

    2016-01-01

    Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named “molecular neurosurgery” because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed. PMID:26862439

  9. Stem cell derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model

    PubMed Central

    Donegan, Jennifer J.; Tyson, Jennifer A.; Branch, Sarah Y.; Beckstead, Michael J.; Anderson, Stewart A.; Lodge, Daniel J.

    2016-01-01

    An increasing literature suggests that schizophrenia is associated with a reduction in hippocampal interneuron function. Thus, we posit that stem cell-derived interneuron transplants may be an effective therapeutic strategy to reduce hippocampal hyperactivity and attenuate behavioral deficits in schizophrenia. Here we used a dual-reporter embryonic stem cell line to generate enriched populations of parvalbumin (PV)- or somatostatin (SST)-positive interneurons, which were transplanted into the ventral hippocampus of the methylazoxymethanol (MAM) rodent model of schizophrenia. These interneuron transplants integrate within the existing circuitry, reduce hippocampal hyperactivity, and normalize aberrant dopamine neuron activity. Further, interneuron transplants alleviate behaviors that model negative and cognitive symptoms, including deficits in social interaction and cognitive inflexibility. Interestingly, PV- and SST-enriched transplants produced differential effects on behavior, with PV-enriched populations effectively normalizing all the behaviors examined. These data suggest that stem cell-derived interneuron transplants may represent a novel therapeutic strategy for schizophrenia. PMID:27480492

  10. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain

    PubMed Central

    Krzyzanowska, Agnieszka; Avendaño, Carlos

    2012-01-01

    Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic. PMID:23139912

  11. Integrative strategies to identify candidate genes in rodent models of human alcoholism.

    PubMed

    Treadwell, Julie A

    2006-01-01

    The search for genes underlying alcohol-related behaviours in rodent models of human alcoholism has been ongoing for many years with only limited success. Recently, new strategies that integrate several of the traditional approaches have provided new insights into the molecular mechanisms underlying ethanol's actions in the brain. We have used alcohol-preferring C57BL/6J (B6) and alcohol-avoiding DBA/2J (D2) genetic strains of mice in an integrative strategy combining high-throughput gene expression screening, genetic segregation analysis, and mapping to previously published quantitative trait loci to uncover candidate genes for the ethanol-preference phenotype. In our study, 2 genes, retinaldehyde binding protein 1 (Rlbp1) and syntaxin 12 (Stx12), were found to be strong candidates for ethanol preference. Such experimental approaches have the power and the potential to greatly speed up the laborious process of identifying candidate genes for the animal models of human alcoholism.

  12. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  13. Neurobehavioural sequelae of social deprivation in rodents revisited: Modelling social adversity for developmental neuropsychiatric disorders.

    PubMed

    Robbins, T W

    2016-11-01

    The significance of investigating effects of deprivation of social experience in rodents is reviewed in the context of the review by Robbins et al. (1996) in the Journal of Psychopharmacology (10: 39-47). The early development of the paradigm by which rats were reared post-weaning in social isolation is described and compared with other early experience manipulations. The specification of the neural and behavioural phenotype of the isolate is brought up-to-date, focusing on changes in motivation and cognitive function, as well as on contrasting changes in the dopamine and serotonin systems, and in cortical (including hippocampal) structure and function. The relevance of the isolate for animal models of psychiatric disorders such as attention deficit hyperactivity disorder and schizophrenia is reviewed, and it is considered that the paradigm best exemplifies a manipulation that can be applied to test effects of certain forms of social adversity during adolescence on brain development and behaviour.

  14. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    NASA Astrophysics Data System (ADS)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  15. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam.

  16. The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy.

    PubMed

    Moore, Holly

    2010-11-01

    The strategies used in preclinical research in schizophrenia have evolved from experiments focused on the pharmacology of existing antipsychotic or psychotomimetic drugs to the broader study of pharmacological modulation of the neurobehavioral systems affected in schizophrenia. As an additional approach, neurodevelopmental, including genetic, manipulations have become increasingly used to model disease risk factors or to induce schizophrenia-relevant neuropathology. In the vast majority of these models, behavioral testing paradigms are used to test the effects of the drugs or developmental manipulations on psychomotor, cognitive and affective processes hypothesized to be affected in schizophrenia. The term "animal model of schizophrenia" is now applied to any combination of these strategies. The expansion in animal modeling strategies has led to significant innovation in identifying novel neural mechanisms that may contribute not only to psychosis but also to the cognitive and negative symptoms of schizophrenia. Yet one cost of innovation in the discovery of truly novel treatment targets is a higher risk for false positives--drugs that have shown promise in animal models but not in clinical trials. The goals of this commentary are to first provide a brief history and conceptualization of rodent models in preclinical research and then examine the issues to be addressed in order to increase the predictive power of animal models in the identification of new treatment targets and, ultimately, new effective treatments for schizophrenia.

  17. Using the Activity-based Anorexia Rodent Model to Study the Neurobiological Basis of Anorexia Nervosa.

    PubMed

    Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye

    2015-10-22

    Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.

  18. What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease?

    PubMed Central

    Magnard, R; Vachez, Y; Carcenac, C; Krack, P; David, O; Savasta, M; Boulet, S; Carnicella, S

    2016-01-01

    In addition to classical motor symptoms, Parkinson's disease (PD) patients display incapacitating neuropsychiatric manifestations, such as apathy, anhedonia, depression and anxiety. These hitherto generally neglected non-motor symptoms, have gained increasing interest in medical and scientific communities over the last decade because of the extent of their negative impact on PD patients' quality of life. Although recent clinical and functional imaging studies have provided useful information, the pathophysiology of apathy and associated affective impairments remains elusive. Our aim in this review is to summarize and discuss recent advances in the development of rodent models of PD-related neuropsychiatric symptoms using neurotoxin lesion-based approaches. The data collected suggest that bilateral and partial lesions of the nigrostriatal system aimed at inducing reliable neuropsychiatric-like deficits while avoiding severe motor impairments that may interfere with behavioral evaluation, is a more selective and efficient strategy than medial forebrain bundle lesions. Moreover, of all the different classes of pharmacological agents, D2/D3 receptor agonists such as pramipexole appear to be the most efficient treatment for the wide range of behavioral deficits induced by dopaminergic lesions. Lesion-based rodent models, therefore, appear to be relevant tools for studying the pathophysiology of the non-motor symptoms of PD. Data accumulated so far confirm the causative role of dopaminergic depletion, especially in the nigrostriatal system, in the development of behavioral impairments related to apathy, depression and anxiety. They also put forward D2/D3 receptors as potential targets for the treatment of such neuropsychiatric symptoms in PD. PMID:26954980

  19. N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress

    PubMed Central

    Chen, Fangping; Hadfield, Jessalyn M.; Berzingi, Chalak; Hollander, John M.; Miller, Diane B.; Nichols, Cody E.

    2013-01-01

    Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of prenatal and postnatal behavioral stresses (Stress). We previously reported a decrease in percent fractional shortening by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the β-adrenergic agonist, isoproterenol (ISO) in Stress rats compared with matched controls (Kan H, Birkle D, Jain AC, Failinger C, Xie S, Finkel MS. J Appl Physiol 98: 77–82, 2005). We now report enhanced catecholamine responses to behavioral stress, as evidenced by increased circulating plasma levels of norepinephrine (P < 0.01) and epinephrine (P < 0.01) in Stress rats vs. controls. Cardiac myocytes isolated from Stress rats also reveal evidence of oxidative stress, as indicated by decreased ATP, increased GSSG, and decreased GSH-to-GSSG ratio in the presence of increased GSH peroxidase and catalase activities (P < 0.01, for each). We also report blunted inotropic and intracellular Ca2+ concentration responses to extracellular Ca2+ (P < 0.05), as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20 mM; P < 0.01). Treatment of cardiac myocytes with N-acetylcysteine (NAC) (10−3 M) normalized calcium handling in response to ISO and extracellular Ca2+ concentration and inotropic response to caffeine (P < 0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca2+ (P < 0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG, or GSH-to-GSSG ratio. These data support a GSH-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy. PMID:23722706

  20. Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation.

    PubMed

    Aguilar-Valles, Argel; Jung, Suna; Poole, Stephen; Flores, Cecilia; Luheshi, Giamal N

    2012-07-01

    Maternal inflammation during critical stages of gestation is thought to underlie the link between prenatal infection and several neurodevelopmental psychiatric disorders in the offspring, including schizophrenia. Increased activity of mesolimbic dopamine (DA) neurons, a hallmark of psychosis, is found in offspring of rodents exposed to a prenatal inflammatory challenge but it is unclear how this effect is elicited. Using an experimental model of localized aseptic inflammation with turpentine oil (TURP) we sought to establish whether circulating interleukin-6 (IL-6) and leptin play a role in the effects of prenatal inflammation on DA neurons. Both mediators are involved in the systemic inflammatory response to immunogens, with IL-6 mediating the early phase, followed by leptin in the late phase of the response. Maternal treatment with TURP at gestational day (GD) 15 enhanced the locomotor response to the DA indirect agonist, amphetamine (AMPH), increased the expression of tyrosine hydroxylase (TH), an enzyme involved in DA synthesis, DA levels and the expression of the post-synaptic protein spinophilin in the nucleus accumbens (NAcc) in the adult offspring. All of these alterations were totally abolished by co-treating the pregnant dams with a neutralizing IL-6 antiserum. Neutralization of maternal leptin prevented the enhanced behavioral sensitization and elevation of DA and spinophilin in the NAcc but spared other changes regulated by IL-6, such as increased NAcc TH levels and acute locomotor response to AMPH. Our results provide novel evidence to suggest that prenatal surges in both maternal circulating IL-6 and leptin contribute to the appearance of sensitized DA function in the adult offspring.

  1. Precocial rodents as new experimental model to study the effects of altered gravitational conditions on fetal development

    NASA Astrophysics Data System (ADS)

    Sekulić, Slobodan; Božić, Ksenija; Bozić, Aleksandar; Borota, Jelena; Ćulić, Milka

    2006-09-01

    So far the experiments in altered gravitational conditions on the prenatal development have used altricial rodent species. The aim of this study is to explore the differences in the intrauterine development of locomotor system in precocial (guinea pig, spiny mouse) and altricial (rat, mouse, and golden hamster) rodent species and to determine which of these mammalian groups represent a better study model to conduct research on the influence of altered gravitational conditions on human fetal development. Findings suggest that the influence of altered gravitational conditions on development of locomotor system significantly vary according to the maturity of mammals. By the characteristics of maturity at birth precocial rodents are more similar to a human than altricial species. Since precocial species have similar maturity of locomotor system to human, the changes caused by altered gravity among them should be similar as opposed to altricial species.

  2. Histopathological Evaluation of Contrast-Induced Acute Kidney Injury Rodent Models

    PubMed Central

    2016-01-01

    Contrast-induced acute kidney injury (CI-AKI) can occur in 3–25% of patients receiving radiocontrast material (RCM) despite appropriate preventive measures. Often patients with an atherosclerotic vasculature have to receive large doses of RCM. Thus, animal studies to uncover the exact pathomechanism of CI-AKI are needed. Sensitive and specific histologic end-points are lacking; thus in the present review we summarize the histologic appearance of different rodent models of CI-AKI. Single injection of RCM causes overt renal damage only in rabbits. Rats and mice need an additional insult to the kidney to establish a clinically manifest CI-AKI. In this review we demonstrate that the concentrating ability of the kidney may be responsible for species differences in sensitivity to CI-AKI. The most commonly held theory about the pathomechanism of CI-AKI is tubular cell injury due to medullary hypoxia. Thus, the most common additional insult in rats and mice is some kind of ischemia. The histologic appearance is tubular epithelial cell (TEC) damage; however severe TEC damage is only seen if RCM is combined by additional ischemia. TEC vacuolization is the first sign of CI-AKI, as it is a consequence of RCM pinocytosis and lysosomal fusion; however it is not sensitive as it does not correlate with renal function and is not specific as other forms of TEC damage also cause vacuolization. In conclusion, histopathology alone is insufficient and functional parameters and molecular biomarkers are needed to closely monitor CI-AKI in rodent experiments. PMID:27975052

  3. Rodent models of obsessive compulsive disorder: Evaluating validity to interpret emerging neurobiology.

    PubMed

    Zike, Isaac; Xu, Tim; Hong, Natalie; Veenstra-VanderWeele, Jeremy

    2017-03-14

    Obsessive Compulsive Disorder (OCD) is a common neuropsychiatric disorder with unknown molecular underpinnings. Identification of genetic and non-genetic risk factors has largely been elusive, primarily because of a lack of power. In contrast, neuroimaging has consistently implicated the cortico-striatal-thalamo-cortical circuits in OCD. Pharmacological treatment studies also show specificity, with consistent response of OCD symptoms to chronic treatment with serotonin reuptake inhibitors; although most patients are left with residual impairment. In theory, animal models could provide a bridge from the neuroimaging and pharmacology data to an understanding of pathophysiology at the cellular and molecular level. Several mouse models have been proposed using genetic, immunological, pharmacological, and optogenetic tools. These experimental model systems allow testing of hypotheses about the origins of compulsive behavior. Several models have generated behavior that appears compulsive-like, particularly excessive grooming, and some have demonstrated response to chronic serotonin reuptake inhibitors, establishing both face validity and predictive validity. Construct validity is more difficult to establish in the context of a limited understanding of OCD risk factors. Our current models may help us to dissect the circuits and molecular pathways that can elicit OCD-relevant behavior in rodents. We can hope that this growing understanding, coupled with developing technology, will prepare us when robust OCD risk factors are better understood.

  4. Opportunities for improving animal welfare in rodent models of epilepsy and seizures.

    PubMed

    Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J

    2016-02-15

    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).

  5. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    SciTech Connect

    Valerio, Luis G. . E-mail: luis.valerio@FDA.HHS.gov; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-07-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  6. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research

    PubMed Central

    Fritz, Brandon M; Boehm, Stephen L

    2015-01-01

    Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed. PMID:26021391

  7. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  8. The dolognawmeter: a novel instrument and assay to quantify nociception in rodent models of orofacial pain.

    PubMed

    Dolan, John C; Lam, David K; Achdjian, Stacy H; Schmidt, Brian L

    2010-03-30

    Rodent pain models play an important role in understanding the mechanisms of nociception and have accelerated the search for new treatment approaches for pain. Creating an objective metric for orofacial nociception in these models presents significant technical obstacles. No animal assay accurately measures pain-induced orofacial dysfunction that is directly comparable to human orofacial dysfunction. We developed and validated a high throughput, objective, operant, nociceptive animal assay, and an instrument to perform the assay termed the dolognawmeter, for evaluation of conditions known to elicit orofacial pain in humans. Using the device our assay quantifies gnawing function in the mouse. We quantified a behavioral index of nociception and demonstrated blockade of nociception in three models of orofacial pain: (1) TMJ inflammation, (2) masticatory myositis, and (3) head and neck cancer. This assay will be useful in the study of nociceptive mediators involved in the development and progression of orofacial pain conditions and it will also provide a unique tool for development and assessment of new therapeutic approaches.

  9. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    PubMed

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor.

  10. A rodent model of human organophosphate exposure producing status epilepticus and neuropathology.

    PubMed

    Pouliot, W; Bealer, S L; Roach, B; Dudek, F E

    2016-09-01

    Exposure to organophosphates (OPs) often results in seizures and/or status epilepticus (SE) that produce neural damage within the central nervous system (CNS). Early control of SE is imperative for minimizing seizure-related CNS neuropathology. Although standard therapies exist, more effective agents are needed to reduce OP-induced SE and neuronal loss, particularly therapies with efficacy when administered 10's of minutes after the onset of SE. To evaluate novel antiseizure compounds, animal models should simulate the CNS effects of OP exposure observed in humans. We characterized in rats the effects of the OP, diisopropyl flourophosphate (DFP) as a function of dose and route of administration of supporting agents (pyridostigmine, 2-PAM, atropine); outcome measures were mortality, electrographic seizure activity during SE, and subsequent CNS neuropathology. Doses of DFP between 3 and 7mg/kg consistently caused SE, and the latency to behavioral tremors and to subsequent initiation of SE were dose related. In distinction, all doses of DFP that resulted in electrographic SE (3-7mg/kg) produced seizures of similar intensity and duration, and similar CNS neuropathology (i.e., the effects were all-or-none). Although SE was similar across doses, mortality progressively increased with higher doses of DFP. Mortality was significantly lower when the route of administration of therapeutic agents was intramuscular compared to intraperitoneal. This rodent model of OP poisoning demonstrates pathological characteristics similar to those observed in humans, and thus begins to validate this model for investigating potential new therapeutic approaches.

  11. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.

    PubMed

    Zambelli, Vanessa O; Gross, Eric R; Chen, Che-Hong; Gutierrez, Vanessa P; Cury, Yara; Mochly-Rosen, Daria

    2014-08-27

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

  12. Stimulant and motivational effects of alcohol: lessons from rodent and primate models.

    PubMed

    Brabant, Christian; Guarnieri, Douglas J; Quertemont, Etienne

    2014-07-01

    In several animal species including humans, the acute administration of low doses of alcohol increases motor activity. Different theories have postulated that alcohol-induced hyperactivity is causally related to alcoholism. Moreover, a common biological mechanism in the mesolimbic dopamine system has been proposed to mediate the stimulant and motivational effects of alcohol. Numerous studies have examined whether alcohol-induced hyperactivity is related to alcoholism using a great variety of animal models and several animal species. However, there is no review that has summarized this extensive literature. In this article, we present the various experimental models that have been used to study the relationship between the stimulant and motivational effects of alcohol in rodents and primates. Furthermore, we discuss whether the theories hypothesizing a causal link between alcohol-induced hyperactivity and alcoholism are supported by published results. The reviewed findings indicate that animal species that are stimulated by alcohol also exhibit alcohol preference. Additionally, the role of dopamine in alcohol-induced hyperactivity is well established since blocking dopaminergic activity suppresses the stimulant effects of alcohol. However, dopamine transmission plays a much more complex function in the motivational properties of alcohol and the neuronal mechanisms involved in alcohol stimulation and reward are distinct. Overall, the current review provides mixed support for theories suggesting that the stimulant effects of alcohol are related to alcoholism and highlights the importance of animal models as a way to gain insight into alcoholism.

  13. The behavioral actions of lithium in rodent models: leads to develop novel therapeutics.

    PubMed

    O'Donnell, Kelley C; Gould, Todd D

    2007-01-01

    For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium.

  14. About a Snail, a Toad, and Rodents: Animal Models for Adaptation Research

    PubMed Central

    Roubos, Eric W.; Jenks, Bruce G.; Xu, Lu; Kuribara, Miyuki; Scheenen, Wim J. J. M.; Kozicz, Tamás

    2010-01-01

    Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models. PMID:22649351

  15. Care of rodent models used for preclinical evaluation of tissue-engineered/regenerative medicine product candidates.

    PubMed

    Mihalko, Kim L

    2013-01-01

    The pre-, peri-, and postoperative care of animal surgical models used for testing tissue engineering/regenerative medicine product candidates includes the thoughtful consideration of several important factors. It must ensure the health and comfort of the animals and the success and reproducibility of the model. In order to reduce the number of animals needed in creating the model and to reduce costs, a preliminary evaluation of surgical procedures and instruments should be performed on cadavers. Once a minimal level of proficiency has been acquired, non-survival surgeries should be executed successfully before attempting survival surgeries. Planning ahead is crucial and will involve all aspects of the animal's care such as allowing the animal to become accustomed to soft foods (as in the case of gastrointestinal surgeries), planning appropriate pain management, and the use of positive reinforcement. We present specific examples of pre-, peri- and post-operative care of rodents using our experiences in developing tissue engineering products for kidney, esophagus, small intestine and lung.

  16. Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach

    PubMed Central

    Shahjouei, Shima; Cai, Peter Y.; Ansari, Saeed; Sharififar, Sharareh; Azari, Hassan; Ganji, Sarah; Zand, Ramin

    2016-01-01

    Stroke is one of the leading causes of morbidity and mortality in developed countries and an immense amount of medical care resources are devoted to combat the poststroke debilitating consequences. The key to develop effective and clinically applicable treatment methodologies is a better understanding of the pathophysiology of the disease, including the root causes and targets for pharmacology. Developing these foundations requires the use of standard animal models that mimic the physicochemical process of the diseases that can reliably replicate results in order to test and fine-tune therapeutic modalities. Middle cerebral artery occlusion (MCAO), endothelin-1-induced ischemic stroke, photothrombosis, devascularization, embolization, and spontaneous infarction using hemorrhage are some examples of different animal models. Reliability of MCAO has been proved and due to the ability to induce reperfusion similar to tissue plasminogen activator (tPA) therapy, this model is widely used in preclinical studies. Here, we describe a detailed methodology on how to develop MCAO stroke in rodents using intra-arterial insertion of filament to occlude the middle cerebral artery. This approach allows for the study of a wide array of basic pathophysiology mechanisms, regenerative medicine and rehabilitation therapy. PMID:26958146

  17. Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson's disease.

    PubMed

    Anvret, Anna; Ran, Caroline; Westerlund, Marie; Gellhaar, Sandra; Lindqvist, Eva; Pernold, Karin; Lundströmer, Karin; Duester, Gregg; Felder, Michael R; Galter, Dagmar; Belin, Andrea Carmine

    2012-02-01

    Alcohol dehydrogenases (ADH) catalyze the reversible metabolism of many types of alcohols and aldehydes to prevent the possible toxic accumulation of these compounds. ADHs are of interest in Parkinson's disease (PD) since these compounds can be harmful to dopamine (DA) neurons. Genetic variants in ADH1C and ADH4 have been found to associate with PD and lack of Adh4 gene activity in a mouse model has recently been reported to induce changes in the DA system. Adh1 knockout (Adh1-/-) and Adh1/4 double knockout (Adh1/4-/-) mice were investigated for possible changes in DA system related activity, biochemical parameters and olfactory function compared to wild-type (WT) mice. Locomotor activity was tested at ∼7 (adult) and >15 months of age to mimic the late onset of PD. Adh1-/- and Adh1/4-/- mice displayed a significantly higher spontaneous locomotor activity than WT littermates. Both apomorphine and d-amphetamine increased total distance activity in Adh1-/- mice at both age intervals and in Adh1/4-/- mice at 7 months of age compared to WT mice. No significant changes were found regarding olfactory function, however biochemical data showed decreased 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in the olfactory bulb and decreased homovanillic acid (HVA)/DA ratios in the olfactory bulb, frontal cortex and striatum of Adh1/4-/- mice compared to WT mice. Our results suggest that lack of Adh1 alone or Adh1 and Adh4 together lead to changes in DA system related behavior, and that these knockout mice might be possible rodent models to study presymptomatic PD.

  18. A rodent model to advance the field treatment of crush muscle injury during earthquakes and other natural disasters.

    PubMed

    Speck, Kirsten; Schneider, Barbara St Pierre; Deashinta, Nadia

    2013-01-01

    Approximately 170 earthquakes of 6.0 or higher magnitude occur annually worldwide. Victims often suffer crush muscle injuries involving impaired blood flow to the affected muscle and damage to the muscle fiber membrane. Current rescue efforts are directed toward preventing acute kidney injury (AKI), which develops upon extrication and muscle reperfusion. But field-usable, muscle-specific interventions may promote muscle regeneration and prevent or minimize the pathologic changes of reperfusion. Although current rodent crush injury models involve reperfusion upon removal of the crush stimulus, an analysis of their methodological aspects is needed to ensure adequate simulation of the earthquake-related crush injury. The objectives of this systematic review are to (a) describe rodent crush muscle injury models, (b) discuss the benefits and limitations of these models, and (c) offer a recommendation for animal models that would increase our understanding of muscle recovery processes after an earthquake-induced crush muscle injury. The most commonly used rodent model uses a clamping or pressing crush stimulus directly applied to murine hindlimb muscle. This model has increased our understanding of muscle regeneration but its open approach does not adequately represent the earthquake-related crush injury. The model we recommend for developing field-usable, muscle-specific interventions is a closed approach that involves a nonclamping crush stimulus. Findings from studies employing this recommended model may have greater relevance for developing interventions that lessen the earthquake's devastating impact on individual and community health and quality of life, especially in developing countries.

  19. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models

    PubMed Central

    Jupp, B; Dalley, J W

    2014-01-01

    Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24866553

  20. Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models.

    PubMed

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A; Vincent, Jason A; Dell, Katherine M; Drumm, Mitchell L; Brady-Kalnay, Susann M; Griswold, Mark A; Flask, Chris A; Lu, Lan

    2015-03-01

    High-field preclinical MRI scanners are now commonly used to quantitatively assess disease status and the efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical 7.0-T MRI implementation of the highly novel MR fingerprinting (MRF) methodology which has been described previously for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a fast imaging with steady-state free precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 min. This initial high-field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for the quantification of numerous MRI parameters for a wide variety of preclinical imaging applications.

  1. Insignificant effect of secretin in rodent models of polycystic kidney and liver disease

    PubMed Central

    Wang, Xiaofang; Ye, Hong; Ward, Christopher J.; Chu, Jessica Y. S.; Masyuk, Tatyana V.; LaRusso, Nicholas F.; Harris, Peter C.; Chow, Billy K. C.

    2012-01-01

    Polycystic kidney (PKD) and liver (PLD) diseases cause significant morbidity and mortality. A large body of evidence indicates that cyclic AMP plays an important role in their pathogenesis. Clinical trials of drugs that reduce cyclic AMP levels in target tissues are now in progress. Secretin may contribute to adenylyl cyclase-dependent urinary concentration and is a major agonist of adenylyl cyclase in cholangiocytes. To investigate the role of secretin in PKD and PLD, we have studied the expression of secretin and the secretin receptor in rodent models orthologous to autosomal recessive (PCK rat) and dominant (Pkd2−/WS25 mouse) PKD; the effects of exogenous secretin administration to PCK rats, PCK rats lacking circulating vasopressin (PCKdi/di), and Pkd2−/WS25 mice; and the impact of a nonfunctional secretin receptor on disease development in Pkd2−/WS25:SCTR−/− double mutants. Renal and hepatic secretin and secretin receptor mRNA and plasma secretin were increased in both models, and secretin receptor protein was increased in the kidneys and liver of Pkd2−/WS25 mice. However, exogenous secretin administered subcutaneously via osmotic pumps had minimal or negligible effects and the absence of a functional secretin receptor had no influence on the severity of PKD or PLD. Therefore, it is unlikely that by itself secretin plays a significant role in the pathogenesis of PKD and/or PLD. PMID:22811488

  2. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models.

    PubMed

    de Oliveira, Camila Aparecida Machado; Latorraca, Márcia Queiroz; de Mello, Maria Alice Rostom; Carneiro, Everardo Magalhães

    2011-04-01

    Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.

  3. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.

    PubMed

    Chang, Jing-Yu; Shi, Li-Hong; Luo, Fei; Zhang, Wang-Ming; Woodward, Donald J

    2007-01-01

    Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low-frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real-time computation of ensemble neural activity.

  4. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.

    PubMed

    Chang, Jing-Yu; Shi, Li-Hong; Luo, Fei; Zhang, Wang-Ming; Woodward, Donald J

    2008-01-01

    Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real time computation of ensemble neural activity.

  5. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism.

    PubMed

    Nakasato, Akane; Nakatani, Yasushi; Seki, Yoshinari; Tsujino, Naohisa; Umino, Masahiro; Arita, Hideho

    2008-02-08

    Several clinical reports have suggested that there is a hyperactivation of the dopaminergic system in people with autism. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we measured dopamine (DA) levels in samples collected from the frontal cortex (FC) using in vivo microdialysis and HPLC. The basal DA level in FC was significantly higher in VPA-exposed rats relative to controls. Since the mesocortical DA system is known to be sensitive to physical and psychological stressors, we measured DA levels in FC before, during, and after a 60-min forced swim test (FST). There were further gradual increases in FC DA levels during the FST in the VPA-exposed rats, but not in the control rats. Behavioral analysis during the last 10 min of the FST revealed a significant decrease in active, escape-oriented behavior and an increase in immobility, which is thought to reflect the development of depressive behavior that disengages the animal from active forms of coping with stressful stimuli. These results suggest that this rodent model of autism exhibits a hyperactive mesocortical DA system, which is exaggerated by swim stress. This abnormality may be responsible for depressive and withdrawal behavior observed in autism.

  6. The Neuroprotective Effects of Carnosine in Early Stage of Focal Ischemia Rodent Model

    PubMed Central

    Park, Hui-Seung; Han, Kyung-Hoon; Shin, Jeoung-A; Park, Joo-Hyun; Song, Kwan-Young

    2014-01-01

    Objective This study was conducted to elucidate neuroprotective effect of carnosine in early stage of stroke. Methods Early stage of rodent stroke model and neuroblastoma chemical hypoxia model was established by middle cerebral artery occlusion and antimycin A. Neuroprotective effect of carnosine was investigated with 100, 250, and 500 mg of carnosine treatment. And antioxidant expression was analyzed by enzyme linked immunosorbent assay (ELISA) and western blot in brain and blood. Results Intraperitoneal injection of 500 mg carnosine induced significant decrease of infarct volume and expansion of penumbra (p<0.05). The expression of superoxide dismutase (SOD) showed significant increase than in saline group in blood and brain (p<0.05). In the analysis of chemical hypoxia, carnosine induced increase of neuronal cell viability and decrease of reactive oxygen species (ROS) production. Conclusion Carnosine has neuroprotective property which was related to antioxidant capacity in early stage of stroke. And, the oxidative stress should be considered one of major factor in early ischemic stroke. PMID:24851146

  7. A comparison of automated anatomical–behavioural mapping methods in a rodent model of stroke☆

    PubMed Central

    Crum, William R.; Giampietro, Vincent P.; Smith, Edward J.; Gorenkova, Natalia; Stroemer, R. Paul; Modo, Michel

    2013-01-01

    Neurological damage, due to conditions such as stroke, results in a complex pattern of structural changes and significant behavioural dysfunctions; the automated analysis of magnetic resonance imaging (MRI) and discovery of structural–behavioural correlates associated with these disorders remains challenging. Voxel lesion symptom mapping (VLSM) has been used to associate behaviour with lesion location in MRI, but this analysis requires the definition of lesion masks on each subject and does not exploit the rich structural information in the images. Tensor-based morphometry (TBM) has been used to perform voxel-wise structural analyses over the entire brain; however, a combination of lesion hyper-intensities and subtle structural remodelling away from the lesion might confound the interpretation of TBM. In this study, we compared and contrasted these techniques in a rodent model of stroke (n = 58) to assess the efficacy of these techniques in a challenging pre-clinical application. The results from the automated techniques were compared using manually derived region-of-interest measures of the lesion, cortex, striatum, ventricle and hippocampus, and considered against model power calculations. The automated TBM techniques successfully detect both lesion and non-lesion effects, consistent with manual measurements. These techniques do not require manual segmentation to the same extent as VLSM and should be considered part of the toolkit for the unbiased analysis of pre-clinical imaging-based studies. PMID:23727124

  8. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig.

    PubMed

    Lossi, Laura; D'Angelo, Livia; De Girolamo, Paolo; Merighi, Adalberto

    2016-03-01

    The anatomical features distinctive to each of the very large array of species used in today's biomedical research must be born in mind when considering the correct choice of animal model(s), particularly when translational research is concerned. In this paper we take into consideration and discuss the most important anatomical and histological features of the commonest species of laboratory rodents (rat, mouse, guinea pig, hamster, and gerbil), rabbit, and pig related to their importance for applied research.

  9. Critical thoughts on current rodent models for evaluating potential treatments of alcohol addiction and withdrawal

    PubMed Central

    Ripley, Tamzin L; Stephens, David N

    2011-01-01

    Despite years of neurobiological research that have helped to identify potential therapeutic targets, we do not have a reliable pharmacological treatment for alcoholism. There are a range of possible explanations for this failure, including arguments that alcoholism is a spectrum disorder and that different population subtypes may respond to different treatments. This view is supported by categorisations such as early- and late-onset alcoholism, whilst multifactorial genetic factors may also alter responsivity to pharmacological agents. Furthermore, experience of alcohol withdrawal may play a role in future drinking in a way that may distinguish alcoholism from other forms of addiction. Additionally, our neurobiological models, based largely upon results from rodent studies, may not mimic specific aspects of the human condition and may reflect different underlying phenomena and biological processes from the clinical pattern. As a result, potential treatments may be targeting inappropriate aspects of alcohol-related behaviours. Instead, we suggest a more profitable approach is (a) to identify well-defined intermediate behavioural phenotypes in human experimental models that reflect defined aspects of the human clinical disorder and (b) to develop animal models that are homologous with those phenotypes in terms of psychological processes and underlying neurobiological mechanisms. This review describes an array of animal models currently used in the addiction field and what they tell us about alcoholism. We will then examine how established pharmacological agents have been developed using only a limited number of these models, before describing some alternative novel approaches to achieving homology between animal and human experimental measures. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21470204

  10. Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate Urban Air Pollutants in Vivo and in Vitro

    PubMed Central

    Morgan, Todd E.; Davis, David A.; Iwata, Nahoko; Tanner, Jeremy A.; Snyder, David; Ning, Zhi; Kam, Winnie; Hsu, Yu-Tien; Winkler, Jeremy W.; Chen, Jiu-Chiuan; Petasis, Nicos A.; Baudry, Michel; Sioutas, Constantinos

    2011-01-01

    Background: Inhalation of airborne particulate matter (PM) derived from urban traffic is associated with pathology in the arteries, heart, and lung; effects on brain are also indicated but are less documented. Objective: We evaluated rodent brain responses to urban nanoscale (< 200 nm) PM (nPM). Methods: Ambient nPM collected near an urban freeway was transferred to aqueous suspension and reaerosolized for 10-week inhalation exposure of mice or directly applied to rat brain cell cultures. Results: Free radicals were detected by electron paramagnetic resonance in the nPM 30 days after initial collection. Chronic inhalation of reaerosolized nPM altered selected neuronal and glial activities in mice. The neuronal glutamate receptor subunit (GluA1) was decreased in hippocampus, whereas glia were activated and inflammatory cytokines were induced [interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα)] in cerebral cortex. Two in vitro models showed effects of nPM suspensions within 24–48 hr of exposure that involved glutamatergic functions. In hippocampal slice cultures, nPM increased the neurotoxicity of NMDA (N-methyl-d-aspartic acid), a glutamatergic agonist, which was in turn blocked by the NMDA antagonist AP5 [(2R)-amino-5-phosphonopentanoate]. In embryonic neuron cultures, nPM impaired neurite outgrowth, also blocked by AP5. Induction of IL-1α and TNFα in mixed glia cultures required higher nPM concentrations than did neuronal effects. Because conditioned media from nPM-exposed glia also impaired outgrowth of embryonic neurites, nPM can act indirectly, as well as directly, on neurons in vitro. Conclusions: nPM can affect embryonic and adult neurons through glutamatergic mechanisms. The interactions of nPM with glutamatergic neuronal functions suggest that cerebral ischemia, which involves glutamatergic excitotoxicity, could be exacerbated by nPM. PMID:21724521

  11. Milnacipran is active in models of irritable bowel syndrome and abdominal visceral pain in rodents.

    PubMed

    Depoortère, Ronan; Meleine, Mathieu; Bardin, Laurent; Aliaga, Monique; Muller, Emilie; Ardid, Denis; Newman-Tancredi, Adrian

    2011-12-15

    The role of antidepressants in the treatment of visceral pain has not been extensively examined. Milnacipran, a serotonin/noradrenalin reuptake inhibitor, has recently been approved in the USA for fibromyalgia, a chronic pathology characterized by diffused/chronic musculoskeletal pain, and a high prevalence of irritable bowel syndrome. Here, we determined its antinociceptive efficacy in two visceral pain tests in rodents: the acetic acid-induced writhing model in mice and the butyrate/colonic distension assay in rats, a model of irritable bowel syndrome. Acute milnacipran (5-40 mg/kgi.p.) significantly and dose-dependently reduced writhing (72.2 ± 3.2 versus 17.0 ± 4.1 writhes at 40 mg/kg). Following repeated administration (40 m/kgi.p. for 5 days), milnacipran preserved its ability to significantly reduce writhing (76 ± 8.3 versus 21.1 ± 6.7 writhes). Similarly, in the butyrate model, acute milnacipran (17.5 and 35 mg/kg, i.p.) significantly and dose-dependently increased cramps induction thresholds (from 45.7 ± 5.7 to 66.3 ± 4.8 and 75.6 ± 2.9 mm Hg, for 17.5 and 35 mg/kg, respectively) and reduced the number of cramps (from 3.0 ± 0.8 to 1.2 ± 0.8 and 0.3 ± 0.3 following inflation of an intra-rectal balloon. To summarise, milnacipran was efficacious in the writhing test, after acute and semi-chronic administration. This effect was confirmed after acute administration in a more specific model of colonic hypersensitivity induced by butyrate. This suggests that milnacipran has potential clinical application in the treatment of visceral pain, such as in irritable bowel syndrome, highly co-morbid with fibromyalgia.

  12. Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-Ketamine.

    PubMed

    Fukumoto, Kenichi; Toki, Hidetoh; Iijima, Michihiko; Hashihayata, Takashi; Yamaguchi, Jun-Ichi; Hashimoto, Kenji; Chaki, Shigeyuki

    2017-04-01

    The rapid-acting and long-lasting antidepressant effects of (R,S)-ketamine have recently gained much attention. Although (S)-ketamine has been studied as an active isomer, recent evidence suggests that (R)-ketamine exhibits longer-lasting antidepressant effects than (S)-ketamine in rodents. However, the antidepressant potential of (R)-ketamine has not been fully addressed. In the present study, we compared the antidepressant effects of (R)-ketamine with those of (S)-ketamine in animal models of depression, including a model that is refractory to current medications. Both (R)-ketamine and (S)-ketamine exhibited antidepressant effects at 30 minutes as well as at 24 hours after administration in forced-swimming and tail-suspension tests in mice. At 48 hours after administration, however, (R)-ketamine still exerted a significant antidepressant effect in the tail-suspension test, whereas the effect of (S)-ketamine was no longer observed. Moreover, (R)-ketamine, but not (S)-ketamine, significantly reversed the depressive-like behavior induced by repeated treatments with corticosterone in rats at 24 hours after a single administration. This effect was attenuated by an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist, suggesting the involvement of AMPA receptor stimulation in the effects. Both (R)-ketamine and (S)-ketamine exhibited practically the same exposure levels in plasma, brain, and cerebrospinal fluid in mice and rats, and both compounds were rapidly eliminated from plasma (<4-8 hours). The present results confirmed the previous findings that (R)-ketamine exerted longer-lasting antidepressant effects than (S)-ketamine in animal models of depression. Moreover, our study is the first to demonstrate that (R)-ketamine exerted a sustained antidepressant effect even in a model that is refractory to currently prescribed antidepressants.

  13. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models.

    PubMed

    Lieber, Gissela B; Fernandez, Xiomara; Mingo, Garfield G; Jia, Yanlin; Caniga, Michael; Gil, Malgorzata A; Keshwani, Shanil; Woodhouse, Janice D; Cicmil, Milenko; Moy, Lily Y; Kelly, Nancy; Jimenez, Johanna; Crawley, Yvette; Anthes, John C; Klappenbach, Joel; Ma, Yu-Lu; McLeod, Robbie L

    2013-10-15

    Accumulating evidence indicates protective actions of mineralocorticoid antagonists (MR antagonists) on cardiovascular pathology, which includes blunting vascular inflammation and myocardial fibrosis. We examined the anti-inflammatory and anti-fibrotic potential of MR antagonists in rodent respiratory models. In an ovalbumin allergic and challenged Brown Norway rat model, the total cell count in nasal lavage was 29,348 ± 5451, which was blocked by spironolactone (0.3-60 mg/kg, p.o.) and eplerenone (0.3-30 mg/kg, p.o.). We also found that MR antagonists attenuated pulmonary inflammation in the Brown Norway rat. A series of experiments were conducted to determine the actions of MR blockade in acute/chronic lung injury models. (1) Ex vivo lung slice rat experiments found that eplerenone (0.01 and 10 µM) and spironolactone (10 µM) diminished lung hydroxyproline concentrations by 55 ± 5, 122 ± 9, and 83 ± 8%. (2) In in vivo studies, MR antagonists attenuated the increases in bronchioalveolar lavage (BAL) neutrophils and macrophages caused by lung bleomycin exposure. In separate studies, bleomycin (4.0 U/kg, i.t.) increased lung levels of hydroxyproline by approximately 155%, which was blocked by spironolactone (10-60 mg/kg, p.o.). In a rat Lipopolysaccharide (LPS) model, spironolactone inhibited acute increases in BAL cytokines with moderate effects on neutrophils. Finally, we found that chronic LPS exposure significantly increased end expiratory lung and decreased lung elastance in the mouse. These functional effects of chronic LPS were improved by MR antagonists. Our results demonstrate that MR antagonists have significant pharmacological actions in the respiratory system.

  14. Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model

    PubMed Central

    Xiao, Xiao-Yu; Zhu, Ying-Xian; Bu, Ju-Yuan; Li, Guo-Wei; Zhou, Jian-Hui

    2016-01-01

    The purpose of the present study was to evaluate the neuroprotective efficacy of optimized thymoquinone loaded PLGA-chitosan nanoparticles delivered via nose to brain route in the rodent cerebral ischemia-reperfusion model. The neuroprotective efficacy of the optimized thymoquinone loaded PLGA-chitosan nanoparticles was evaluated in middle cerebral artery occluded rats by various pharmacodynamic and biochemical studies. The pharmacokinetics of thymoquinone loaded PLGA-chitosan nanoparticles in the brain and blood plasma together with qualitative localization of florescent labelled PLGA-chitosan nanoparticles in brain tissues were also determined. Intranasal delivery of optimized thymoquinone loaded PLGA-chitosan nanoparticles (183.5 ± 8.2 nm, 33.63 ± 2.25 mV) to brain significantly reduced the ischemia infarct volume and enhanced the locomotor activity and grip strength in the middle cerebral artery occluded rats. Biochemical studies showed that intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles significantly reduced the lipid peroxidation but elevated the glutathione, catalase, and superoxide dismutase in the brain of middle cerebral artery occluded rats. The pharmacokinetic and localization studies showed that thymoquinone loaded PLGA-chitosan nanoparticles facilitated the delivery of thymoquinone to brain by intranasal nose to brain transport pathways and enhanced their pharmacokinetic profile in brain tissues. Thus, intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles to brain could be potentially used for the neuroprotection and treatment of cerebral ischemia. PMID:27725936

  15. Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model.

    PubMed

    Xiao, Xiao-Yu; Zhu, Ying-Xian; Bu, Ju-Yuan; Li, Guo-Wei; Zhou, Jian-Hui; Zhou, Shao-Peng

    2016-01-01

    The purpose of the present study was to evaluate the neuroprotective efficacy of optimized thymoquinone loaded PLGA-chitosan nanoparticles delivered via nose to brain route in the rodent cerebral ischemia-reperfusion model. The neuroprotective efficacy of the optimized thymoquinone loaded PLGA-chitosan nanoparticles was evaluated in middle cerebral artery occluded rats by various pharmacodynamic and biochemical studies. The pharmacokinetics of thymoquinone loaded PLGA-chitosan nanoparticles in the brain and blood plasma together with qualitative localization of florescent labelled PLGA-chitosan nanoparticles in brain tissues were also determined. Intranasal delivery of optimized thymoquinone loaded PLGA-chitosan nanoparticles (183.5 ± 8.2 nm, 33.63 ± 2.25 mV) to brain significantly reduced the ischemia infarct volume and enhanced the locomotor activity and grip strength in the middle cerebral artery occluded rats. Biochemical studies showed that intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles significantly reduced the lipid peroxidation but elevated the glutathione, catalase, and superoxide dismutase in the brain of middle cerebral artery occluded rats. The pharmacokinetic and localization studies showed that thymoquinone loaded PLGA-chitosan nanoparticles facilitated the delivery of thymoquinone to brain by intranasal nose to brain transport pathways and enhanced their pharmacokinetic profile in brain tissues. Thus, intranasal delivery of thymoquinone loaded PLGA-chitosan nanoparticles to brain could be potentially used for the neuroprotection and treatment of cerebral ischemia.

  16. Set-Shifting in a Rodent Model of Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Chess, Amy C.; Raymond, Brittany E.; Gardner-Morse, Ira G.; Stefani, Mark R.; Green, John T.

    2011-01-01

    Two experiments compared Spontaneously Hypertensive Rats (SHRs; a rodent model of attention-deficit/hyperactivity disorder) and Wistars (a normoactive control strain), on the acquisition of a set-shifting strategy. In Experiment 1, SHRs and Wistars were equivalent in trials to criterion to learn a brightness or a texture discrimination but SHRs were faster than Wistars in shifting to the opposite discrimination when there was one or two days between the initial discrimination and the shift. In Experiment 2, SHRs and Wistars were equivalent in shifting when the shift between discriminations occurred immediately after a criterion had been met in the first discrimination. The results are discussed in terms of a failure of SHRs to store or retrieve an initial discrimination and/or latent inhibition over a delay, leading to faster acquisition of a set-shift. This failure in storage or retrieval may be the result of a hypoactive dopamine system in the prefrontal cortex and nucleus accumbens shell as well as abnormalities in entorhinal cortex in SHRs. PMID:21500882

  17. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  18. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers

    PubMed Central

    Wang, I-Ming; Zhang, Bin; Yang, Xia; Zhu, Jun; Stepaniants, Serguei; Zhang, Chunsheng; Meng, Qingying; Peters, Mette; He, Yudong; Ni, Chester; Slipetz, Deborah; Crackower, Michael A; Houshyar, Hani; Tan, Christopher M; Asante-Appiah, Ernest; O'Neill, Gary; Jane Luo, Mingjuan; Thieringer, Rolf; Yuan, Jeffrey; Chiu, Chi-Sung; Yee Lum, Pek; Lamb, John; Boie, Yves; Wilkinson, Hilary A; Schadt, Eric E; Dai, Hongyue; Roberts, Christopher

    2012-01-01

    Common inflammatome gene signatures as well as disease-specific signatures were identified by analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent inflammatory disease models. The inflammatome signature significantly overlaps with known drug targets and co-expressed gene modules linked to metabolic disorders and cancer. A large proportion of genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from multiple independent mouse and human cohorts. Both the inflammatome signature and the corresponding consensus BNs are highly enriched for immune response-related genes supported as causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome signature with the BNs uncovered 151 key drivers that appeared to be more biologically important than the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome signature, its network architecture, and key drivers not only highlights the shared etiology but also pinpoints potential targets for intervention of various common diseases. PMID:22806142

  19. Parental buffering of fear and stress neurobiology: Reviewing parallels across rodent, monkey, and human models.

    PubMed

    Gunnar, Megan R; Hostinar, Camelia E; Sanchez, Mar M; Tottenham, Nim; Sullivan, Regina M

    2015-01-01

    It has been long recognized that parents exert profound influences on child development. Dating back to at least the seventeenth-century Enlightenment, the ability for parents to shape child behavior in an enduring way has been noted. Twentieth-century scholars developed theories to explain how parenting histories influence psychological development, and since that time, the number of scientific publications on parenting influences in both human and nonhuman animal fields has grown at an exponential rate, reaching numbers in the thousands by 2015. This special issue describes a symposium delivered by Megan Gunnar, Regina Sullivan, Mar Sanchez, and Nim Tottenham in the Fall of 2014 at the Society for Social Neuroscience. The goal of the symposium was to describe the emerging knowledge on neurobiological mechanisms that mediate parent-offspring interactions across three different species: rodent, monkey, and human. The talks were aimed at designing testable models of parenting effects on the development of emotional and stress regulation. Specifically, the symposium aimed at characterizing the special modulatory (buffering) effects of parental cues on fear- and stress-relevant neurobiology and behaviors of the offspring and to discuss examples of impaired buffering when the parent-infant relationship is disrupted.

  20. LiGluR restores visual responses in rodent models of inherited blindness.

    PubMed

    Caporale, Natalia; Kolstad, Kathleen D; Lee, Trevor; Tochitsky, Ivan; Dalkara, Deniz; Trauner, Dirk; Kramer, Richard; Dan, Yang; Isacoff, Ehud Y; Flannery, John G

    2011-07-01

    Inherited retinal degeneration results from many different mutations in either photoreceptor-specific or nonphotoreceptor-specific genes. However, nearly all mutations lead to a common blinding phenotype that initiates with rod cell death, followed by loss of cones. In most retinal degenerations, other retinal neuron cell types survive for long periods after blindness from photoreceptor loss. One strategy to restore light responsiveness to a retina rendered blind by photoreceptor degeneration is to express light-regulated ion channels or transporters in surviving retinal neurons. Recent experiments in rodents have restored light-sensitivity by expressing melanopsin or microbial opsins either broadly throughout the retina or selectively in the inner segments of surviving cones or in bipolar cells. Here, we present an approach whereby a genetically and chemically engineered light-gated ionotropic glutamate receptor (LiGluR) is expressed selectively in retinal ganglion cells (RGCs), the longest-surviving cells in retinal blinding diseases. When expressed in the RGCs of a well-established model of retinal degeneration, the rd1 mouse, LiGluR restores light sensitivity to the RGCs, reinstates light responsiveness to the primary visual cortex, and restores both the pupillary reflex and a natural light-avoidance behavior.

  1. Degenerative Tissue Responses to Space-like Radiation Doses in a Rodent Model of Simulated Microgravity.

    PubMed

    Chowdhury, Parimal; Akel, Nisreen; Jamshidi-Parsian, Azemat; Gaddy, Dana; Griffin, Robert J; Yadlapalli, Jai Shankar K; Dobretsov, Maxim

    2016-01-01

    This study examines acute and degenerative tissue responses to space-like radiation doses in a rodent model of simulated microgravity. We have studied four groups of rats, control (CON), irradiated (IR), irradiated and hindlimb suspended (IR-HLS), and suspended (HLS) that were maintained for two weeks. IR and IR+HLS groups were exposed to five sessions of X-ray irradiation (1.2 Gy each, at 3-4 days intervals). Body weights, soleus muscle weights, and hindlimb bone mineral density (BMD) were measured. Results show that compared to CON animals, IR, HLS, and IR+HLS group reduced the body weight gain significantly. IR-associated growth retardation appeared to be closely linked to acute and transient post-IR 'anorexia' (a decrease in food intake). HLS but not IR induced major changes in the musculoskeletal system, consisting in decreases in soleus muscle mass and bone mineral density of distal femur and proximal tibia. Additional dosimetric studies showed that the effect of IR on weight is detectable at 0.3 Gy X-ray doses, while no threshold dose for the IR-produced decrease in food intake could be observed. This study suggests that space flight-associated anorexia and musculoskeletal degenerative changes may be driven by different, radiation- and microgravity-associated (respectively) mechanisms.

  2. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models.

    PubMed

    Jupp, B; Dalley, J W

    2014-10-01

    Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.

  3. Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    2016-01-01

    Physical exercise offers a highly effective health-endowering activity as has been evidence using rodent models of Parkinson's disease (PD). It is a particularly useful intervention in individuals employed in sedentary occupations or afflicted by a neurodegenerative disorder, such as PD. The several links between exercise and quality-of-life, disorder progression and staging, risk factors and symptoms-biomarkers in PD all endower a promise for improved prognosis. Nutrition provides a strong determinant for disorder vulnerability and prognosis with fish oils and vegetables with a mediterranean diet offering both protection and resistance. Three factors determining the effects of exercise on disorder severity of patients may be presented: (i) Exercise effects upon motor impairment, gait, posture and balance, (ii) Exercise reduction of oxidative stress, stimulation of mitochondrial biogenesis and up-regulation of autophagy, and (iii) Exercise stimulation of dopamine (DA) neurochemistry and trophic factors. Running-wheel performance, as measured by distance run by individual mice from different treatment groups, was related to DA-integrity, indexed by striatal DA levels. Finally, both nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering the dosage of L-Dopa required for a therapeutic effect.

  4. Body Size Variability and a Sangamonian Extinction Model for Amblyrhiza,a West Indian Megafaunal Rodent

    NASA Astrophysics Data System (ADS)

    McFarlane, Donald A.; MacPhee, Ross D. E.; Ford, Derek C.

    1998-07-01

    The megafaunal rodent Amblyrhiza inundatafrom Anguilla and St. Martin is often cited in lists of late Quaternary human-induced extinctions, but its date of disappearance has never been established. Here, we present a suite of uranium-series disequilibrium dates from three independent Amblyrhizasites in Anguilla, all of which cluster in marine isotope Stage 5. Thus, there is no indication that Amblyrhizasurvived into the late Holocene, when islands of the northern Lesser Antilles were first invaded by humans. We argue that the most probable cause of the extinction of Amblyrhizawas a failure of island populations to adjust to catastrophic reductions in available range which accompanied last interglacial sea-level maxima. We support this argument with quantitative extinction probability estimates drawn from persistence time models. Amblyrhizaexhibits body-size hypervariability, a common but underemphasized feature of island megafaunal species. We argue that hypervariability is a record of morphological response to oscillating natural selection, which in turn is driven by asymmetries in the relationship of population size, body mass, and persistence time. The fate of Amblyrhizastands in marked contrast to that of most other West Indian land mammals, whose losses increasingly appear to have been anthropogenically mediated.

  5. Effects and mechanisms of auricular electroacupuncture on gastric hypersensitivity in a rodent model of functional dyspepsia

    PubMed Central

    Zhou, Jingzhu; Li, Shiying; Wang, Yinping; Lei, Yong; Foreman, Robert D.; Yin, Jieyun; Chen, Jiande D. Z.

    2017-01-01

    Background Functional dyspepsia (FD) is a common functional gastrointestinal disease, and abdominal pain is one of the main symptoms. The aim of this study was to explore the effects and mechanisms of auricular electro-acupuncture (AEA) on gastric hypersensitivity in a rodent model of FD. Methods Ten-day-old pups were gavaged with 0.2 ml of 0.1% iodoacetamide daily for 6 days. AEA at the “stomach” point with different parameters or sham-EA was performed on 8-week-old animals. Gastric sensitivity to gastric distention was measured under different conditions. Autonomic functions were assessed from the spectral analysis of heart rate variability (HRV) derived from the electrocardiogram. Naloxone was injected intraperitoneally before AEA to explore the opioid mechanism. Gastric emptying was measured at the end of the study. Results 1) Gastric sensitivity to gastric distention was higher in the FD rats. AEA with parameters of 0.1s on, 0.4s off, 100Hz, 0.3ms and 0.4–0.5mA, but not other parameters or sham-EA, decreased gastric hypersensitivity in the FD rats. Naloxone did not block the effect of AEA. 2) Lower vagal activity and higher sympathovagal ratio were noted in the FD rats, compared with the controls. AEA increased vagal activity and improved sympathovagal imbalance. Conclusions AEA ameliorates gastric hypersensitivity in FD rats and this effect may be attributed to the improvement of sympathovagal balance. PMID:28350818

  6. Cross-species comparison of orthologous gene expression in human bladder cancer and carcinogen-induced rodent models

    PubMed Central

    Lu, Yan; Liu, Pengyuan; Wen, Weidong; Grubbs, Clinton J; Townsend, Reid R; Malone, James P; Lubet, Ronald A; You, Ming

    2011-01-01

    Genes differentially expressed by tumor cells represent promising drug targets for anti-cancer therapy. Such candidate genes need to be validated in appropriate animal models. This study examined the suitability of rodent models of bladder cancer in B6D2F1 mice and Fischer-344 rats to model clinical bladder cancer specimens in humans. Using a global gene expression approach cross-species analysis showed that 13-34% of total genes in the genome were differentially expressed between tumor and normal tissues in each of five datasets from humans, rats, and mice. About 20% of these differentially expressed genes overlapped among species, corresponding to 2.6 to 4.8% of total genes in the genome. Several genes were consistently dysregulated in bladder tumors in both humans and rodents. Notably, CNN1, MYL9, PDLIM3, ITIH5, MYH11, PCP4 and FM05 were found to commonly down-regulated; while T0P2A, CCNB2, KIF20A and RRM2 were up-regulated. These genes are likely to have conserved functions contributing to bladder carcinogenesis. Gene set enrichment analysis detected a number of molecular pathways commonly activated in both humans and rodent bladder cancer. These pathways affect the cell cycle, HIF-1 and MYC expression, and regulation of apoptosis. We also compared expression changes at mRNA and protein levels in the rat model and identified several genes/proteins exhibiting concordant changes in bladder tumors, including ANXA1, ANXA2, CA2, KRT14, LDHA, LGALS4, SERPINA1, KRT18 and LDHB. In general, rodent models of bladder cancer represent the clinical disease to an extent that will allow successful mining of target genes and permit studies on the molecular mechanisms of bladder carcinogenesis. PMID:21139803

  7. A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances.

    PubMed

    Nedelcovych, Michael T; Gould, Robert W; Zhan, Xiaoyan; Bubser, Michael; Gong, Xuewen; Grannan, Michael; Thompson, Analisa T; Ivarsson, Magnus; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2015-03-18

    Hyperarousal and sleep disturbances are common, debilitating symptoms of post-traumatic stress disorder (PTSD). PTSD patients also exhibit abnormalities in quantitative electroencephalography (qEEG) power spectra during wake as well as rapid eye movement (REM) and non-REM (NREM) sleep. Selective serotonin reuptake inhibitors (SSRIs), the first-line pharmacological treatment for PTSD, provide modest remediation of the hyperarousal symptoms in PTSD patients, but have little to no effect on the sleep-wake architecture deficits. Development of novel therapeutics for these sleep-wake architecture deficits is limited by a lack of relevant animal models. Thus, the present study investigated whether single prolonged stress (SPS), a rodent model of traumatic stress, induces PTSD-like sleep-wake and qEEG spectral power abnormalities that correlate with changes in central serotonin (5-HT) and neuropeptide Y (NPY) signaling in rats. Rats were implanted with telemetric recording devices to continuously measure EEG before and after SPS treatment. A second cohort of rats was used to measure SPS-induced changes in plasma corticosterone, 5-HT utilization, and NPY expression in brain regions that comprise the neural fear circuitry. SPS caused sustained dysregulation of NREM and REM sleep, accompanied by state-dependent alterations in qEEG power spectra indicative of cortical hyperarousal. These changes corresponded with acute induction of the corticosterone receptor co-chaperone FK506-binding protein 51 and delayed reductions in 5-HT utilization and NPY expression in the amygdala. SPS represents a preclinical model of PTSD-related sleep-wake and qEEG disturbances with underlying alterations in neurotransmitter systems known to modulate both sleep-wake architecture and the neural fear circuitry.

  8. Comparison of AMG 416 and cinacalcet in rodent models of uremia

    PubMed Central

    2014-01-01

    Background AMG 416 is a novel peptide agonist of the calcium-sensing receptor (CaSR). This report describes the activity of AMG 416 in two different rodent models of uremia, compared in each case to cinacalcet, an approved therapeutic for secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease on dialysis. Methods AMG 416 was administered as a single intravenous (IV) bolus in a severe, acute model of renal insufficiency (the “1K1C” model) and plasma parathyroid hormone (PTH) and serum calcium levels were monitored for 24 hours. In a chronic, less severe model of renal dysfunction, the 5/6 nephrectomy (5/6 Nx) model, AMG 416 was administered as a once-daily IV bolus for 28 days. Both studies included a control (vehicle) group and a comparison cinacalcet group (po dosing at 30 mg/kg and 10 mg/kg for the 1K1C and 5/6 Nx studies, respectively). Results Administration of AMG 416 by IV bolus injection into rats with acute renal dysfunction (1K1C model) resulted in a sustained reduction in plasma PTH from the initial elevated values. Following a single IV bolus (0.5 mg/kg), AMG 416 caused a substantial drop in PTH levels which remained approximately 50% below their initial level at 24 hrs. In the same model, oral treatment with cinacalcet (30 mg/kg) resulted in an acute drop in PTH which almost returned to the starting level by 24 hours after dosing. In the 5/6 Nx chronic uremia model, daily IV dosing of AMG 416 over 4 weeks (1 mg/kg) resulted in a sustained reduction in PTH, with approximately 50% of the initial level observed 48 hours post treatment throughout the study. Cinacalcet treatment (10 mg/kg) in the same model resulted in acutely lowered plasma PTH levels which returned to placebo levels by 24 hours post-dose. Consistent with the reductions in plasma PTH, reductions in serum calcium were observed in both AMG 416- and cinacalcet-treated animals. Conclusions As a long-acting CaSR agonist suitable for administration by the IV

  9. The Effects of Folate on the Development of Breast Cancer in a Chemical Rodent Model of Mammary Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    AD Award Number: DAMD17-01- 1 -0428 TITLE: The Effects of Folate on the Development of Breast Cancer in a Chemical Rodent Model of Mammary...DOCUMENTATION PAGE OMB No. 074-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including...Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 1 . AGENCY USE

  10. Assessment of depression in a rodent model of spinal cord injury.

    PubMed

    Luedtke, Kelsey; Bouchard, Sioui Maldonado; Woller, Sarah A; Funk, Mary Katherine; Aceves, Miriam; Hook, Michelle A

    2014-06-15

    Despite an increased incidence of depression in patients after spinal cord injury (SCI), there is no animal model of depression after SCI. To address this, we used a battery of established tests to assess depression after a rodent contusion injury. Subjects were acclimated to the tasks, and baseline scores were collected before SCI. Testing was conducted on days 9-10 (acute) and 19-20 (chronic) postinjury. To categorize depression, subjects' scores on each behavioral measure were averaged across the acute and chronic stages of injury and subjected to a principal component analysis. This analysis revealed a two-component structure, which explained 72.2% of between-subjects variance. The data were then analyzed with a hierarchical cluster analysis, identifying two clusters that differed significantly on the sucrose preference, open field, social exploration, and burrowing tasks. One cluster (9 of 26 subjects) displayed characteristics of depression. Using these data, a discriminant function analysis was conducted to derive an equation that could classify subjects as "depressed" on days 9-10. The discriminant function was used in a second experiment examining whether the depression-like symptoms could be reversed with the antidepressant, fluoxetine. Fluoxetine significantly decreased immobility in the forced swim test (FST) in depressed subjects identified with the equation. Subjects that were depressed and treated with saline displayed significantly increased immobility on the FST, relative to not depressed, saline-treated controls. These initial experiments validate our tests of depression, generating a powerful model system for further understanding the relationships between molecular changes induced by SCI and the development of depression.

  11. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia.

    PubMed

    Macrae, I M

    2011-10-01

    This review describes the most commonly used rodent models and outcome measures in preclinical stroke research and discusses their strengths and limitations. Most models involve permanent or transient middle cerebral artery occlusion with therapeutic agents tested for their ability to reduce stroke-induced infarcts and improve neurological deficits. Many drugs have demonstrated preclinical efficacy but, other than thrombolytics, which restore blood flow, none have demonstrated efficacy in clinical trials. This failure to translate efficacy from bench to bedside is discussed alongside achievable steps to improve the ability of preclinical research to predict clinical efficacy: (i) Improvements in study quality and reporting. Study design must include randomization, blinding and predefined inclusion/exclusion criteria, and journal editors have the power to ensure statements on these and mortality data are included in preclinical publications. (ii) Negative and neutral studies must be published to enable preclinical meta-analyses and systematic reviews to more accurately predict drug efficacy in man. (iii) Preclinical groups should work within networks and agree on standardized procedures for assessing final infarct and functional outcome. This will improve research quality, timeliness and translational capacity. (iv) Greater uptake and improvements in non-invasive diagnostic imaging to detect and study potentially salvageable penumbral tissue, the target for acute neuroprotection. Drug effects on penumbra lifespan studied serially, followed by assessment of behavioural outcome and infarct within in the same animal group, will increase the power to detect drug efficacy preclinically. Similar progress in detecting drug efficacy clinically will follow from patient recruitment into acute stroke trials based on evidence of remaining penumbra.

  12. Fluoxetine Administration Exacerbates Oral Tremor and Striatal Dopamine Depletion in a Rodent Pharmacological Model of Parkinsonism

    PubMed Central

    Podurgiel, Samantha J; Milligan, Meredith N; Yohn, Samantha E; Purcell, Laura J; Contreras-Mora, Hector M; Correa, Mercè; Salamone, John D

    2015-01-01

    The cardinal motor symptoms of Parkinson's disease (PD) include resting tremor, akinesia, bradykinesia, and rigidity, and these motor abnormalities can be modeled in rodents by administration of the VMAT-2 (type-2 vesicular monoamine transporter) inhibitor tetrabenazine (9,10-dimethoxy-3-(2-methylpropyl)-1,3,4,6,7, 11b hexahydrobenzo[a]quinolizin-2-one; TBZ). Depression is also commonly associated with PD, and clinical data indicate that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine ((±)-N-methyl-γ-[4-(trifluoromethyl)phenoxy]benzenepropanamine hydrochloride; FLX) are frequently used to treat depression in PD patients. The aim of the present study was to characterize the effect of FLX on the motor dysfunctions induced by a low dose of TBZ (0.75 mg/kg), and investigate the neural mechanisms involved. This low dose of TBZ was selected based on studies with rat models of depressive symptoms. In rats, coadministration of FLX (2.5, 5.0, and 10.0 mg/kg) increased TBZ-induced oral tremor (tremulous jaw movements), and decreased locomotor activity compared with administration of TBZ alone. Coadministration of the serotonin 5-HT2A/2C antagonist mianserin (2.5 and 5.0 mg/kg) attenuated the increase in oral tremor induced by coadministration of TBZ (0.75 mg/kg) with FLX (5.0 mg/kg). Consistent with these behavioral data, coadministration of TBZ and FLX decreased DA tissue levels in the rat ventrolateral neostriatum compared with TBZ alone, and coadministration of mianserin with TBZ and FLX attenuated this effect, increasing DA tissue levels compared with the TBZ/FLX condition. These data suggest that SSRI administration in PD patients may result in worsening of motor symptoms, at least in part, by exacerbating existing DA depletions through 5-HT2A/2C-mediated modulation of DA neurotransmission. PMID:25759301

  13. Stretching of the back improves gait, mechanical sensitivity and connective tissue inflammation in a rodent model.

    PubMed

    Corey, Sarah M; Vizzard, Margaret A; Bouffard, Nicole A; Badger, Gary J; Langevin, Helene M

    2012-01-01

    The role played by nonspecialized connective tissues in chronic non-specific low back pain is not well understood. In a recent ultrasound study, human subjects with chronic low back pain had altered connective tissue structure compared to human subjects without low back pain, suggesting the presence of inflammation and/or fibrosis in the low back pain subjects. Mechanical input in the form of static tissue stretch has been shown in vitro and in vivo to have anti-inflammatory and anti-fibrotic effects. To better understand the pathophysiology of lumbar nonspecialized connective tissue as well as potential mechanisms underlying therapeutic effects of tissue stretch, we developed a carrageenan-induced inflammation model in the low back of a rodent. Induction of inflammation in the lumbar connective tissues resulted in altered gait, increased mechanical sensitivity of the tissues of the low back, and local macrophage infiltration. Mechanical input was then applied to this model as in vivo tissue stretch for 10 minutes twice a day for 12 days. In vivo tissue stretch mitigated the inflammation-induced changes leading to restored stride length and intrastep distance, decreased mechanical sensitivity of the back and reduced macrophage expression in the nonspecialized connective tissues of the low back. This study highlights the need for further investigation into the contribution of connective tissue to low back pain and the need for a better understanding of how interventions involving mechanical stretch could provide maximal therapeutic benefit. This tissue stretch research is relevant to body-based treatments such as yoga or massage, and to some stretch techniques used with physical therapy.

  14. Behavioral and histological outcomes following neonatal HI injury in a preterm (P3) and term (P7) rodent model.

    PubMed

    Alexander, M; Garbus, H; Smith, A L; Rosenkrantz, T S; Fitch, R H

    2014-02-01

    Hypoxia-ischemia (HI) occurs when blood and/or oxygen delivery to the brain is compromised. HI injuries can occur in infants born prematurely (<37 weeks gestational age) or at very low birth weight (<1500 g), as well as in term infants with birth complications. In both preterm and term HI populations, brain injury is associated with subsequent behavioral deficits. Neonatal HI injury can be modeled in rodents (e.g., the Rice-Vannucci method, via cautery of right carotid followed by hypoxia). When this injury is induced early in life (between postnatal day (P)1-5), neuropathologies typical of human preterm HI are modeled. When injury is induced later (P7-12), neuropathologies typical of those seen in HI term infants are modeled. The current study sought to characterize the similarities/differences between outcomes following early (P3) and late (P7) HI injury in rats. Male rats with HI injury on P3 or P7, as well as sham controls, were tested on a variety of behavioral tasks in both juvenile and adult periods. Results showed that P7 HI rats displayed deficits on motor learning, rapid auditory processing (RAP), and other learning/memory tasks, as well as a reduction in volume in various neuroanatomical structures. P3 HI animals showed only transient deficits on RAP tasks in the juvenile period (but not in adulthood), yet robust deficits on a visual attention task in adulthood. P3 HI animals did not show any significant reductions in brain volume that we could detect. These data suggest that: (1) behavioral deficits following neonatal HI are task-specific depending on timing of injury; (2) P3 HI rats showed transient deficits on RAP tasks; (3) the more pervasive behavioral deficits seen following P7 HI injury were associated with substantial global tissue loss; and (4) persistent deficits in attention in P3 HI subjects might be linked to neural connectivity disturbances rather than a global loss of brain volume, given that no such pathology was found. These combined

  15. Testosterone Plus Finasteride Prevents Bone Loss Without Prostate Growth in a Rodent Spinal Cord Injury Model.

    PubMed

    Yarrow, Joshua F; Phillips, Ean G; Conover, Christine F; Bassett, Taylor E; Chen, Cong; Teurlings, Tyler; Vasconez, Andrea; Alerte, Jonathan; Prock, Hannah M; Jiron, Jessica M; Flores, Micah; Aguirre, J Ignacio; Borst, Stephen E; Ye, Fan

    2017-03-24

    We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN, type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week old male Sprague-Dawley rats received: (1) SHAM surgery (T9 laminectomy), (2) severe (250 kdyne) contusion SCI, (3) SCI+TE (7.0mg/week, i.m.) or (4) SCI+TE+FIN (5mg/kg/day, s.c.). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed via histomorphometry) were elevated after SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed via microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN co-administration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline after SCI.

  16. Combined drug and surgery treatment of plutonium-contaminated wounds: indications obtained using a rodent model.

    PubMed

    Griffiths, Nina M; Coudert, Sylvie; Wilk, Jean Claude; Renault, Daniel; Angulo, Jaime F; Van der Meeren, Anne

    2014-06-01

    There is an important requirement following accidental actinide contamination of wounds to limit the dissemination and retention of such alpha-emitting radionuclides. To reduce wound and systemic contamination, treatment approaches include chelation therapy with or without wound excision. However, it has been hypothesized that wound excision could lead to increased contaminant release and systemic organ retention. This study in the rat addresses this question. Anesthetized rats were contaminated with plutonium nitrate following wounding by deep incision of hind leg muscle. Excision of tissue at the contaminated site was performed 7 d later with or without Diethylene Triamine Pentaacetic Acid (DTPA) treatment (30 μmol kg⁻¹ i.v.). Pu urinary excretion was then measured for a further 3 d, and animals were euthanized at 14 d after contamination. Tissue samples were evaluated for Pu activity and histology. At 7 d after contamination, around 50% of the initial activity remained at the wound site. An average of 16% of this activity was then removed by surgery. Surgery alone resulted in increased urinary excretion, suggesting release from the wound site, but no subsequent increases in organ retention (bone, liver) were observed at 14 d. Indeed, organ Pu activity was slightly reduced. The combination of surgery and DTPA or DTPA treatment alone was much more effective than excision alone as shown by the markedly increased urinary Pu excretion and decreased tissue levels. This is the first report in an experimental rodent model of resection of Pu-contaminated wound. Urinary excretion data provide evidence for the release of activity as a result of surgery, but this does not appear to lead to further Pu organ retention. However, a combination of prior DTPA treatment with wound excision is particularly effective.

  17. Nicotinic modulation of auditory evoked potential electroencephalography in a rodent neurodevelopmental model of schizophrenia.

    PubMed

    Kohlhaas, Kathy L; Robb, Holly M; Roderwald, Victoria A; Rueter, Lynne E

    2015-10-15

    Schizophrenia is a chronic disease that has been hypothesized to be linked to neurodevelopmental abnormalities. Schizophrenia patients exhibit impairments in basic sensory processing including sensory gating deficits in P50 and mismatch negativity (MMN). Neuronal nicotinic acetylcholine receptor (nAChR) agonists have been reported to attenuate these deficits. Gestational exposure of rats to methylazoxymethanol acetate (MAM) at embryonic day 17 leads to developmental disruption of the limbic-cortical system. MAM exposed offspring show neuropathological and behavioral changes that have similarities with those seen in schizophrenia. In this study, we aimed to assess whether N40 auditory sensory gating (the rodent form of P50 gating) and MMN deficits as measures of auditory evoked potential (AEP) electroencephalography (EEG) are present in MAM rats and whether nAChR agonists could attend the deficit. E17 male MAM and sham rats were implanted with cortical electrodes at 2 months of age. EEG recordings evaluating N40 gating and MMN paradigms were done comparing effects of vehicle (saline), nicotine and the α7 agonist ABT-107. Deficits were seen for MAM rats compared to sham animals in both N40 auditory sensory gating and MMN AEP recordings. There was a strong trend for N40 deficits to be attenuated by both nicotine (0.16mg/kg i.p. base) and ABT-107 (1.0mg/kg i.p. base). MMN deficits were significantly attenuated by ABT-107 but not by nicotine. These data support the MAM model as a useful tool for translating pharmacodynamic effects in clinical medicine studies of novel therapeutic treatments for schizophrenia.

  18. Do changes in dietary chemistry during ontogeny affect digestive performance in adults of the herbivorous rodent Octodon degus?

    PubMed

    Sabat, Pablo; Bozinovic, Francisco

    2008-11-01

    We characterize the flexibility in digestive performance in degus (Octodon degus) an herbivorous rodent. We tested the hypothesis that dietary and physiological-digestive flexibility are correlated. Degus were fed with artificial diets of different chemical composition from weaning to adulthood and their digestive performance was measured through records of apparent digestibility. The starch content of the acclimation diet was not correlated with protein digestibility nor was it correlated with starch digestibility. In addition, digestive tract morphology was not affected by dietary treatments. Hence, an absence of morphological and physiological flexibility related to digestive traits was observed in degus. The lower flexibility in digestive performance given by our dietary experimental treatments of degus, may be an evolutionary constraint related to their specialized herbivorous food habits.

  19. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics.

    PubMed

    Lukas, Michael; Toth, Iulia; Veenema, Alexa H; Neumann, Inga D

    2013-06-01

    Brain oxytocin (OXT) plays an important role in short-term social memory in laboratory rodents. Here we monitored local release of OXT and its functional involvement in the maintenance and retrieval of social memory during the social discrimination test. We further assessed, if the local effects of OXT within the medial amygdala (MeA) and lateral septum (LS) on social discrimination abilities were dependent on the biological relevance of the social stimulus, thus comparing male juvenile versus adult female conspecifics. OXT release was increased in the LS of male rats during the retrieval, but not during the acquisition or maintenance, of social memory for male juvenile stimuli. Blockade of OXT activity by intracerebroventricular (ICV) administration of a specific OXT receptor antagonist (OXTR-A, rats: 0.75 μg/5 μl, mice: 2 μg/2 μl) immediately after acquisition of social memory impaired the maintenance of social memory, and consequently discrimination abilities during retrieval of social memory. In contrast, ICV OXTR-A was without effect when administered 20 min prior to retrieval of social memory in both species. Non-social memory measured in the object discrimination test was not affected by ICV OXTR-A in male mice, indicating that brain OXT is mainly required for memory formation in a social context. The biological relevance of the social stimulus seems to importantly determine social memory abilities, as male rats recognized a previously encountered female adult stimulus for at least 2h (versus 60 min for male juveniles), with a region-dependent contribution of endogenous OXT; while bilateral administration of OXTR-A into the MeA (0.1 μg/1 μl) impaired social memory for adult females only, administration of OXTR-A into the LS via retrodialysis (10 μg/ml, 1.0 μl/min) impaired social memory for both male juveniles and female adults. Overall, these results indicate that brain OXT is a critical mediator of social memory in male rodents and that, depending

  20. Functional assessment of long-term deficits in rodent models of traumatic brain injury.

    PubMed

    Gold, Eric M; Su, Diane; López-Velázquez, Luci; Haus, Daniel L; Perez, Harvey; Lacuesta, George A; Anderson, Aileen J; Cummings, Brian J

    2013-07-01

    Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such

  1. Between the primate and ‘reptilian’ brain: rodent models demonstrate the role of corticostriatal circuits in decision making

    PubMed Central

    Zador, Anthony; Wilbrecht, Linda

    2015-01-01

    Decision making can be defined as the flexible integration and transformation of information from the external world into action. Recently, the development of novel genetic tools and new behavioral paradigms has made it attractive to study behavior of all kinds in rodents. By some perspectives, rodents are not an acceptable model for the study of decision making due to their simpler behavior often attributed to their less extensive cortical development when compared to non-human primates. We argue that decision making can be approached with a common framework across species. We review insights from comparative anatomy that suggest the expansion of cortical-striatal connectivity is a key development in evolutionary increases in behavioral flexibility. We briefly review studies that establish a role for corticostriatal circuits in integrative decision making. Finally, we provide an overview of a few recent, highly complementary rodent decision making studies using genetic tools, revealing with new cellular and temporal resolution how, when and where information can be integrated and compared in striatal circuits to influence choice. PMID:25575943

  2. High-density Electroencephalographic Acquisition in a Rodent Model Using Low-cost and Open-source Resources

    PubMed Central

    Wasilczuk, Andrzej Z.; Proekt, Alexander; Kelz, Max B.; McKinstry-Wu, Andrew R.

    2016-01-01

    Advanced electroencephalographic analysis techniques requiring high spatial resolution, including electrical source imaging and measures of network connectivity, are applicable to an expanding variety of questions in neuroscience. Performing these kinds of analyses in a rodent model requires higher electrode density than traditional screw electrodes can accomplish. While higher-density electroencephalographic montages for rodents exist, they are of limited availability to most researchers, are not robust enough for repeated experiments over an extended period of time, or are limited to use in anesthetized rodents.1-3 A proposed low-cost method for constructing a durable, high-count, transcranial electrode array, consisting of bilaterally implantable headpieces is investigated as a means to perform advanced electroencephalogram analyses in mice or rats. Procedures for headpiece fabrication and surgical implantation necessary to produce high signal to noise, low-impedance electroencephalographic and electromyographic signals are presented. While the methodology is useful in both rats and mice, this manuscript focuses on the more challenging implementation for the smaller mouse skull. Freely moving mice are only tethered to cables via a common adapter during recording. One version of this electrode system that includes 26 electroencephalographic channels and 4 electromyographic channels is described below. PMID:27929470

  3. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    PubMed Central

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  4. Hyperbranched Polyglycerol Is an Efficacious and Biocompatible Novel Osmotic Agent in a Rodent Model of Peritoneal Dialysis

    PubMed Central

    Mendelson, Asher A.; Guan, Qiunong; Chafeeva, Irina; da Roza, Gerald A.; Kizhakkedathu, Jayachandran N.; Du, Caigan

    2013-01-01

    -independent necrotic cell death that was not seen with HPG solution. ♦ Conclusions: Our novel HPG PD solution demonstrated effective ultrafiltration and waste removal with reduced peritoneal injury in a rodent model of PD. PMID:23349194

  5. Evaluation of 2-[18F]fluoroacetate kinetics in rodent models of cerebral hypoxia–ischemia

    PubMed Central

    Ouyang, Yu; Tinianow, Jeff N; Cherry, Simon R; Marik, Jan

    2014-01-01

    Glia account for 90% of human brain cells and have a significant role in brain homeostasis. Thus, specific in vivo imaging markers of glial metabolism are potentially valuable. In the brain, 2-fluoroacetate is selectively taken up by glial cells and becomes metabolically trapped in the tricarboxylic acid cycle. Recent work in rodent brain injury models demonstrated elevated lesion uptake of 2-[18F]fluoroacetate ([18F]FACE), suggesting possible use for specifically imaging glial metabolism. To assess this hypothesis, we evaluated [18F]FACE kinetics in rodent models of cerebral hypoxia–ischemia at 3 and 24 hours post insult. Lesion uptake was significantly higher at 30 minutes post injection (P<0.05). An image-based method for input function estimation using cardiac blood was validated. Analysis of whole blood showed no significant metabolites and plasma activity concentrations of ∼50% that of whole blood. Kinetic models describing [18F]FACE uptake were developed and quantitatively compared. Elevated [18F]FACE uptake was found to be driven primarily by K1/k2 rather than k3, but changes in the latter were detectable. The two-tissue irreversible uptake model (2T3k) was found to be necessary and sufficient for modeling [18F]FACE uptake. We conclude that kinetic modeling of [18F]FACE uptake represents a potentially useful tool for interrogation of glial metabolism. PMID:24517980

  6. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research

    PubMed Central

    Tsang, Anthony H.; Astiz, Mariana; Leinweber, Brinja; Oster, Henrik

    2017-01-01

    The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo. PMID:28243224

  7. Quantitative Histologic Analysis of Muscle Micro-architecture Following Facial Nerve Injury in a Rodent Model

    PubMed Central

    Kim, Sang W; Knox, Christopher J; Weinberg, Julie; Heaton, James T

    2015-01-01

    Objective To describe denervation features of facial musculature following facial nerve injury in a rodent model. Methods Six female Wistar-Hannover rats underwent unilateral transection and immediate repair of the facial nerve. After 8 weeks, muscular bundles consisting of dilator naris and levator labii superioris from both sides were harvested. The specimens were fixed, cryo-cut, and stained with Masson's trichrome stain. Tissue sections were analyzed for average muscle cell diameter and the percentage of muscle specimen attributable to muscle cell cross-sectional area using Image J image processing software. The atrophic features of facial muscles ipsilateral to nerve transection and repair were quantified and compared to the contralateral, healthy side of the face. Results Weekly post-operative whisking assessment demonstrated the anticipated time course of whisking recovery, with all animals demonstrating the initiation of recovered movement by post-repair day 17, and progressing to approximately 25% recovered whisking amplitude (repaired side / healthy side) by the end of the 8 week survival period. We observed significant differences in the percentage of muscle specimen cross-sectional area (including connective tissues) attributable to muscle cell profiles (57% vs 29%; p=0.01), and total fiber counts (1,346 vs 794; p=0.02) for the normal side and the manipulated side, respectively. While the average cross-sectional area of individual muscle fibers was higher on the normal side (1,129µm2 vs 928µm2; p=0.39), this difference was not statistically significant. Conclusion Although reinnervation of rat facial muscles begins within three weeks after facial nerve transection and suture repair, after an 8-week survival period whisking remain substantially impaired and rats experience a substantial loss (approximately 40%) of muscle cells and a roughly parallel loss of muscle cell surface area (approximately 49%) in two facial muscles associated with the whisker

  8. Developmental rodent models of fear and anxiety: from neurobiology to pharmacology

    PubMed Central

    Ganella, Despina E; Kim, Jee Hyun

    2014-01-01

    Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic ‘unlearned’ fear are poorly understood, especially beyond the period of infancy. Models using ‘learned’ fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24527726

  9. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model

    PubMed Central

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-01-01

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia. PMID:27824163

  10. Mycobacterial lesions in fish, amphibians, reptiles, rodents, lagomorphs, and ferrets with reference to animal models.

    PubMed

    Reavill, Drury R; Schmidt, Robert E

    2012-01-01

    Mycobacteriosis is a serious disease across many animal species. Approximately more than 120 species are currently recognized in the genus Mycobacterium. This article describes the zoonotic potential of mycobacteria and mycobacteriosis in fish, amphibians, rodents, rabbits, and ferrets. It considers clinical signs; histology; molecular methods of identification, such as polymerase chain reaction and DNA sequencing; routes of infection; and disease progression. Studying the disease in animals may aid in understanding the pathogenesis of mycobacterial infections in humans and identify better therapy and preventative options such as vaccines.

  11. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    SciTech Connect

    Schlosser, Paul M. Sasso, Alan F.

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.

  12. Crossed Cerebellar Atrophy of the Lateral Cerebellar Nucleus in an Endothelin-1-Induced, Rodent Model of Ischemic Stroke

    PubMed Central

    Chan, Hugh H.; Cooperrider, Jessica L.; Park, Hyun-Joo; Wathen, Connor A.; Gale, John T.; Baker, Kenneth B.; Machado, Andre G.

    2017-01-01

    Crossed cerebellar diaschisis (CCD) is a functional deficit of the cerebellar hemisphere resulting from loss of afferent input consequent to a lesion of the contralateral cerebral hemisphere. It is manifested as a reduction of metabolism and blood flow and, depending on severity and duration, it can result in atrophy, a phenomenon known as crossed cerebellar atrophy (CCA). While CCA has been well-demonstrated in humans, it remains poorly characterized in animal models of stroke. In this study we evaluated the effects of cerebral cortical ischemia on contralateral cerebellar anatomy using an established rodent model of chronic stroke. The effects of cortical ischemia on the cerebellar hemispheres, vermis and deep nuclei were characterized. Intracortical microinjections of endothelin-1 (ET-1) were delivered to the motor cortex of Long Evans rats to induce ischemic stroke, with animals sacrificed 6 weeks later. Naive animals served as controls. Cerebral sections and cerebellar sections including the deep nuclei were prepared for analysis with Nissl staining. Cortical ischemia was associated with significant thickness reduction of the molecular layer at the Crus 1 and parafloccular lobule (PFL), but not in fourth cerebellar lobule (4Cb), as compared to the ipsilesional cerebellar hemisphere. A significant reduction in volume and cell density of the lateral cerebellar nucleus (LCN), the rodent correlate of the dentate nucleus, was also noted. The results highlight the relevance of corticopontocerebellar (CPC) projections for cerebellar metabolism and function, including its direct projections to the LCN. PMID:28261086

  13. Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory.

    PubMed

    Jacobs, Joshua

    2014-02-05

    The theta oscillation is a neuroscience enigma. When a rat runs through an environment, large-amplitude theta oscillations (4-10 Hz) reliably appear in the hippocampus's electrical activity. The consistency of this pattern led to theta playing a central role in theories on the neural basis of mammalian spatial navigation and memory. However, in fact, hippocampal oscillations at 4-10 Hz are rare in humans and in some other species. This presents a challenge for theories proposing theta as an essential component of the mammalian brain, including models of place and grid cells. Here, I examine this issue by reviewing recent research on human hippocampal oscillations using direct brain recordings from neurosurgical patients. This work indicates that the human hippocampus does indeed exhibit rhythms that are functionally similar to theta oscillations found in rodents, but that these signals have a slower frequency of approximately 1-4 Hz. I argue that oscillatory models of navigation and memory derived from rodent data are relevant for humans, but that they should be modified to account for the slower frequency of the human theta rhythm.

  14. The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment.

    PubMed

    Goodman, Anna L; Forbes, Emily K; Williams, Andrew R; Douglas, Alexander D; de Cassan, Simone C; Bauza, Karolis; Biswas, Sumi; Dicks, Matthew D J; Llewellyn, David; Moore, Anne C; Janse, Chris J; Franke-Fayard, Blandine M; Gilbert, Sarah C; Hill, Adrian V S; Pleass, Richard J; Draper, Simon J

    2013-01-01

    Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading merozoite antigens using protein-in-adjuvant or viral vectored vaccine delivery. No subunit vaccine approach showed efficacy in mice following immunization and challenge with the wild-type P. berghei strains ANKA or NK65, or against a chimeric parasite line encoding a merozoite antigen from P. falciparum. Protection was not improved in knockout mice lacking the inhibitory Fc receptor CD32b, nor against a Δsmac P. berghei parasite line with a non-sequestering phenotype. An improved understanding of the mechanisms responsible for protection, or failure of protection, against P. berghei merozoites could guide the development of an efficacious vaccine against P. falciparum.

  15. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves

    PubMed Central

    Andersen, Natalia D.; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V.

    2016-01-01

    We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables. PMID:27549422

  16. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves.

    PubMed

    Andersen, Natalia D; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V

    2016-08-23

    We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables.

  17. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma.

    PubMed

    Lambert, Wendi S; Carlson, Brian J; Formichella, Cathryn R; Sappington, Rebecca M; Ahlem, Clarence; Calkins, David J

    2017-01-01

    Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations.

  18. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma

    PubMed Central

    Lambert, Wendi S.; Carlson, Brian J.; Formichella, Cathryn R.; Sappington, Rebecca M.; Ahlem, Clarence; Calkins, David J.

    2017-01-01

    Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations. PMID:28223915

  19. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.

    PubMed

    Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J

    2016-07-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal

  20. Role Models - Peers or Adults.

    ERIC Educational Resources Information Center

    Hawkes, F. J.

    Proceeding on the assumption that humans learn behaviors by imitating the behavior of others, the author is concerned with the appropriate behavioral models needed in dealing with delinquent female adolescents in a group situation. Three potential models are discussed: (1) the group leader or leaders; (2) the group members; and (3) the invited…

  1. Does age matter? The impact of rodent age on study outcomes.

    PubMed

    Jackson, Samuel J; Andrews, Nick; Ball, Doug; Bellantuono, Ilaria; Gray, James; Hachoumi, Lamia; Holmes, Alan; Latcham, Judy; Petrie, Anja; Potter, Paul; Rice, Andrew; Ritchie, Alison; Stewart, Michelle; Strepka, Carol; Yeoman, Mark; Chapman, Kathryn

    2017-04-01

    Rodent models produce data which underpin biomedical research and non-clinical drug trials, but translation from rodents into successful clinical outcomes is often lacking. There is a growing body of evidence showing that improving experimental design is key to improving the predictive nature of rodent studies and reducing the number of animals used in research. Age, one important factor in experimental design, is often poorly reported and can be overlooked. The authors conducted a survey to assess the age used for a range of models, and the reasoning for age choice. From 297 respondents providing 611 responses, researchers reported using rodents most often in the 6-20 week age range regardless of the biology being studied. The age referred to as 'adult' by respondents varied between six and 20 weeks. Practical reasons for the choice of rodent age were frequently given, with increased cost associated with using older animals and maintenance of historical data comparability being two important limiting factors. These results highlight that choice of age is inconsistent across the research community and often not based on the development or cellular ageing of the system being studied. This could potentially result in decreased scientific validity and increased experimental variability. In some cases the use of older animals may be beneficial. Increased scientific rigour in the choice of the age of rodent may increase the translation of rodent models to humans.

  2. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain.

    PubMed

    Greenwood-Van Meerveld, Beverley; Mohammadi, Ehsan; Tyler, Karl; Pietra, Claudio; Bee, Lucy A; Dickenson, Anthony

    2014-10-01

    Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome.

  3. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia.

    PubMed

    Bikovsky, Lior; Hadar, Ravit; Soto-Montenegro, María Luisa; Klein, Julia; Weiner, Ina; Desco, Manuel; Pascau, Javier; Winter, Christine; Hamani, Clement

    2016-09-01

    Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Deep brain stimulation (DBS) is a surgical technique currently investigated for medically-refractory psychiatric disorders. Here, we use the poly I:C rat model of schizophrenia to study the effects of medial prefrontal cortex (mPFC) and nucleus accumbens (Nacc) DBS on two behavioral schizophrenia-like deficits, i.e. sensorimotor gating, as reflected by disrupted prepulse inhibition (PPI), and attentional selectivity, as reflected by disrupted latent inhibition (LI). In addition, the neurocircuitry influenced by DBS was studied using FDG PET. We found that mPFC- and Nacc-DBS alleviated PPI and LI abnormalities in poly I:C offspring, whereas Nacc- but not mPFC-DBS disrupted PPI and LI in saline offspring. In saline offspring, mPFC-DBS increased metabolism in the parietal cortex, striatum, ventral hippocampus and Nacc, while reducing it in the brainstem, cerebellum, hypothalamus and periaqueductal gray. Nacc-DBS, on the other hand, increased activity in the ventral hippocampus and olfactory bulb and reduced it in the septal area, brainstem, periaqueductal gray and hypothalamus. In poly I:C offspring changes in metabolism following mPFC-DBS were similar to those recorded in saline offspring, except for a reduced activity in the brainstem and hypothalamus. In contrast, Nacc-DBS did not induce any statistical changes in brain metabolism in poly I:C offspring. Our study shows that mPFC- or Nacc-DBS delivered to the adult progeny of poly I:C treated dams improves deficits in PPI and LI. Despite common behavioral responses, stimulation in the two targets induced different metabolic effects.

  4. A rodent model of HIV protease inhibitor indinavir induced peripheral neuropathy.

    PubMed

    Huang, Wenlong; Calvo, Margarita; Pheby, Tim; Bennett, David L H; Rice, Andrew S C

    2017-01-01

    HIV-associated sensory neuropathy (HIV-SN) is the most frequent manifestation of HIV disease. It often presents with significant neuropathic pain and is associated with previous exposure to neurotoxic nucleoside reverse transcriptase inhibitors. However, HIV-SN prevalence remains high even in resource-rich settings where these drugs are no longer used. Previous evidence suggests that exposure to indinavir, a protease inhibitor commonly used in antiretroviral therapy, may link to elevated HIV-SN risk. Here, we investigated whether indinavir treatment was associated with the development of a "dying back" axonal neuropathy and changes in pain-relevant limb withdrawal and thigmotactic behaviours. After 2 intravenous injections of indinavir (50 mg/kg, 4 days apart), adult rats developed hind paw mechanical hypersensitivity, which peaked around 2 weeks post first injection (44% reduction from baseline). At this time, animals also had (1) significantly changed thigmotactic behaviour (62% reduction in central zone entries) comparing with the controls and (2) a significant reduction (45%) in hind paw intraepidermal nerve fibre density. Treatment with gabapentin, but not amitriptyline, was associated with a complete attenuation of hind paw mechanical hypersensitivity observed with indinavir treatment. Furthermore, we found a small but significant increase in microglia with the effector morphology in the lumbar spinal dorsal horn in indinavir-treated animals, coupled with significantly increased expression of phospho-p38 in microglia. In summary, we have reported neuropathic pain-related sensory and behavioural changes accompanied by a significant loss of hind paw skin sensory innervation in a rat model of indinavir-induced peripheral neuropathy that is suitable for further pathophysiological investigation and preclinical evaluation of novel analgesics.

  5. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease.

    PubMed

    Guillot-Sestier, Marie-Victoire; Weitz, Tara M; Town, Terrence

    2016-12-26

    Neuroinflammation is now recognized as a major etiological factor in neurodegenerative disease. Mononuclear phagocytes are innate immune cells responsible for phagocytosis and clearance of debris and detritus. These cells include CNS-resident macrophages known as microglia, and mononuclear phagocytes infiltrating from the periphery. Light microscopy has generally been used to visualize phagocytosis in rodent or human brain specimens. However, qualitative methods have not provided definitive evidence of in vivo phagocytosis. Here, we describe quantitative 3D in silico modeling (q3DISM), a robust method allowing for true 3D quantitation of amyloid-β (Aβ) phagocytosis by mononuclear phagocytes in rodent Alzheimer's Disease (AD) models. The method involves fluorescently visualizing Aβ encapsulated within phagolysosomes in rodent brain sections. Large z-dimensional confocal datasets are then 3D reconstructed for quantitation of Aβ spatially colocalized within the phagolysosome. We demonstrate the successful application of q3DISM to mouse and rat brains, but this methodology can be extended to virtually any phagocytic event in any tissue.

  6. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices.

    PubMed

    Schlosser, Paul M; Sasso, Alan F

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model.

  7. Increases of Galectin-1 and its S-nitrosylated form in the Brain Tissues of Scrapie-Infected Rodent Models and Human Prion Diseases.

    PubMed

    Guo, Yan-Jun; Shi, Qi; Yang, Xiao-Dong; Li, Jian-Le; Ma, Yue; Xiao, Kang; Chen, Cao; Han, Jun; Dong, Xiao-Ping

    2016-05-23

    Galectin-1 (Gal-1) shows neuroprotective activity in brain ischemia, spinal cord injury, and autoimmune neuroinflammation. To evaluate the Gal-1 situation in the brains of prion disease, the brain levels of Gal-1 in several scrapie-infected experimental rodent models were tested by Western blot, including agents 263K-infected hamsters, 139A-, ME7-, and S15-infected mice. Remarkable increases of brain Gal-1 were observed in all tested scrapie-infected rodents at the terminal stage. The brain levels of Gal-1 showed time-dependent increases along with the prolonging of incubation times. Immunohistochemical assays illustrated much stronger stainings in the brain sections of scrapie-infected rodents. Quantitative RT-PCR of Gal-1 gene demonstrated increased transcription in the brains of scrapie-infected mice. Gal-1 was colocalized with GFAP- and NeuN-positive cells, but not with Iba-1-positive cells in immunofluorescent test. Increases of Gal-1 were also detected in the several postmortem cortex regions of human prion diseases. Moreover, the S-nitrosylated forms of Gal-1 in the brains of scrapie-infected rodents were significantly higher than those of normal ones. Our finding here demonstrates markedly increased brain Gal-1 and S-nitrosylated Gal-1 both in scrapie-infected rodents and human prion diseases.

  8. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit.

    PubMed

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-12-23

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.

  9. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit

    PubMed Central

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-01-01

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI: http://dx.doi.org/10.7554/eLife.18566.001 PMID:28009257

  10. Astrocytes show reduced support of motor neurons with aging that is accelerated in a rodent model of ALS.

    PubMed

    Das, Melanie M; Svendsen, Clive N

    2015-02-01

    Astrocytes play a crucial role in supporting motor neurons in health and disease. However, there have been few attempts to understand how aging may influence this effect. Here, we report that rat astrocytes show an age-dependent senescence phenotype and a significant reduction in their ability to support motor neurons. In a rodent model of familial amyotrophic lateral sclerosis (ALS) overexpressing mutant superoxide dismutase 1 (SOD1), the rate of astrocytes acquiring a senescent phenotype is accelerated and they subsequently provide less support to motor neurons. This can be partially reversed by glial cell line-derived neurotrophic factor (GDNF). Replacing aging astrocytes with young ones producing GDNF may therefore have a significant survival promoting affect on aging motor neurons and those lost through diseases such as ALS.

  11. An in-vitro–in-vivo model for the transdermal delivery of cholecalciferol for the purposes of rodent management

    PubMed Central

    Davies, J.; Ingham, A.

    2015-01-01

    The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as ‘sufficiently effective’ in line with the European Union’s Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h). PMID:25835266

  12. Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: a self-perpetuating crosstalk?

    PubMed

    Vairetti, Mariapia; Ferrigno, Andrea; Rizzo, Vittoria; Ambrosi, Giulia; Bianchi, Alberto; Richelmi, Plinio; Blandini, Fabio; Armentero, Marie-Therese

    2012-02-01

    In Parkinson's disease (PD), aside from the central lesion, involvement of visceral organs has been proposed as part of the complex clinical picture of the disease. The issue is still poorly understood and relatively unexplored. In this study we used a classic rodent model of nigrostriatal degeneration, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), to investigate whether and how a PD-like central dopaminergic denervation may influence hepatic functions. Rats received an intrastriatal injection of 6-OHDA or saline (sham), and blood, cerebrospinal fluid, liver and brain samples were obtained for up to 8 weeks after surgery. Specimens were analyzed for changes in cytokine and thyroid hormone levels, as well as liver mitochondrial alterations. Hepatic mitochondria isolated from animals bearing extended nigrostriatal lesion displayed increased ROS production, while membrane potential (ΔΨ) and ATP production were significantly decreased. Reduced ATP production correlated with nigral neuronal loss. Thyroid hormone levels were significantly increased in serum of PD rats compared to sham animals while steady expression of selected cytokines was detected in all groups. Hepatic enzyme functions were comparable in all animals. Our study indicates for the first time that in a rodent model of PD, hepatic mitochondria dysfunctions arise as a consequence of nigrostriatal degeneration, and that thyroid hormone represents a key interface in this CNS-liver interaction. Liver plays a fundamental detoxifying function and a better understanding of PD-related hepatic mitochondrial alterations, which might further promote neurodegeneration, may represent an important step for the development of novel therapeutic strategies.

  13. Inhibiting C-reactive protein for the treatment of cardiovascular disease: promising evidence from rodent models.

    PubMed

    Szalai, Alexander J; McCrory, Mark A; Xing, Dongqi; Hage, Fadi G; Miller, Andrew; Oparil, Suzanne; Chen, Yiu-Fai; Mazzone, Michelle; Early, Richard; Henry, Scott P; Zanardi, Thomas A; Graham, Mark J; Crooke, Rosanne M

    2014-01-01

    Raised blood C-reactive protein (CRP) level is a predictor of cardiovascular events, but whether blood CRP is causal in the disease process is unknown. The latter would best be defined by pharmacological inhibition of the protein in the context of a randomized case-control study. However, no CRP specific drug is currently available so such a prospective study cannot be performed. Blood CRP is synthesized primarily in the liver and the liver is an organ where antisense oligonucleotide (ASO) drugs accumulate. Taking advantage of this we evaluated the efficacy of CRP specific ASOs in rodents with experimentally induced cardiovascular damage. Treating rats for 4 weeks with a rat CRP-specific ASO achieved >60% reduction of blood CRP. Notably, this effect was associated with improved heart function and pathology following myocardial infarction (induced by ligation of the left anterior descending artery). Likewise in human CRP transgenic mice treated for 2 weeks with a human CRP-specific ASO, blood human CRP was reduced by >70% and carotid artery patency was improved (2 weeks after surgical ligation). CRP specific ASOs might pave the way towards a placebo-controlled trial that could clarify the role of CRP in cardiovascular disease.

  14. Use of Ultra-high Field MRI in Small Rodent Models of Polycystic Kidney Disease for In Vivo Phenotyping and Drug Monitoring

    PubMed Central

    Irazabal, Maria V.; Mishra, Prasanna K.; Torres, Vicente E.; Macura, Slobodan I.

    2015-01-01

    Several in vivo pre-clinical studies in Polycystic Kidney Disease (PKD) utilize orthologous rodent models to identify and study the genetic and molecular mechanisms responsible for the disease, and are very convenient for rapid drug screening and testing of promising therapies. A limiting factor in these studies is often the lack of efficient non-invasive methods for sequentially analyzing the anatomical and functional changes in the kidney. Magnetic resonance imaging (MRI) is the current gold standard imaging technique to follow autosomal dominant polycystic kidney disease (ADPKD) patients, providing excellent soft tissue contrast and anatomic detail and allowing Total Kidney Volume (TKV) measurements.A major advantage of MRI in rodent models of PKD is the possibility for in vivo imaging allowing for longitudinal studies that use the same animal and therefore reducing the total number of animals required. In this manuscript, we will focus on using Ultra-high field (UHF) MRI to non-invasively acquire in vivo images of rodent models for PKD. The main goal of this work is to introduce the use of MRI as a tool for in vivo phenotypical characterization and drug monitoring in rodent models for PKD. PMID:26132821

  15. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models.

    PubMed

    Shiraishi, Eri; Suzuki, Kazunori; Harada, Akina; Suzuki, Noriko; Kimura, Haruhide

    2016-03-01

    Cognitive deficits in various domains, including recognition memory, attention, impulsivity, working memory, and executive function, substantially affect functional outcomes in patients with schizophrenia. TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one] is a potent and selective phosphodiesterase 10A inhibitor that produces antipsychotic-like effects in rodent models of schizophrenia. We evaluated the effects of TAK-063 on multiple cognitive functions associated with schizophrenia using naïve and drug-perturbed rodents. TAK-063 at 0.1 and 0.3 mg/kg p.o. improved time-dependent memory decay in object recognition in naïve rats. TAK-063 at 0.1 and 0.3 mg/kg p.o. increased accuracy rate, and TAK-063 at 0.3 mg/kg p.o. reduced impulsivity in a five-choice serial reaction time task in naïve rats. N-methyl-d-aspartate receptor antagonists, such as phencyclidine and MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], were used to induce working memory deficits relevant to schizophrenia in animals. TAK-063 at 0.3 mg/kg p.o. attenuated both phencyclidine-induced working memory deficits in a Y-maze test in mice and MK-801-induced working memory deficits in an eight-arm radial maze task in rats. An attentional set-shifting task using subchronic phencyclidine-treated rats was used to assess the executive function. TAK-063 at 0.3 mg/kg p.o. reversed cognitive deficits in extradimensional shifts. These findings suggest that TAK-063 has a potential to ameliorate deficits in multiple cognitive domains impaired in schizophrenia.

  16. Identification of Novel Rosavirus Species That Infects Diverse Rodent Species and Causes Multisystemic Dissemination in Mouse Model

    PubMed Central

    Fan, Rachel Y. Y.; Zhang, Anna J. X.; Chan, Brandon C. C.; Lam, Carol S. F.; Yip, Cyril C. Y.; Chan, Kwok-Hung; Chen, Zhi-Wei; Yuen, Kwok-Yung

    2016-01-01

    While novel picornaviruses are being discovered in rodents, their host range and pathogenicity are largely unknown. We identified two novel picornaviruses, rosavirus B from the street rat, Norway rat, and rosavirus C from five different wild rat species (chestnut spiny rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) in China. Analysis of 13 complete genome sequences showed that “Rosavirus B” and “Rosavirus C” represent two potentially novel picornavirus species infecting different rodents. Though being most closely related to rosavirus A, rosavirus B and C possessed distinct protease cleavage sites and variations in Yn-Xm-AUG sequence in 5’UTR and myristylation site in VP4. Anti-rosavirus B VP1 antibodies were detected in Norway rats, whereas anti-rosavirus C VP1 and neutralizing antibodies were detected in Indochinese forest rats and Coxing's white-bellied rats. While the highest prevalence was observed in Coxing's white-bellied rats by RT-PCR, the detection of rosavirus C from different rat species suggests potential interspecies transmission. Rosavirus C isolated from 3T3 cells causes multisystemic diseases in a mouse model, with high viral loads and positive viral antigen expression in organs of infected mice after oral or intracerebral inoculation. Histological examination revealed alveolar fluid exudation, interstitial infiltration, alveolar fluid exudate and wall thickening in lungs, and hepatocyte degeneration and lymphocytic/monocytic inflammatory infiltrates with giant cell formation in liver sections of sacrificed mice. Since rosavirus A2 has been detected in fecal samples of children, further studies should elucidate the pathogenicity and emergence potential of different rosaviruses. PMID:27737017

  17. Rodent empathy and affective neuroscience.

    PubMed

    Panksepp, Jules B; Lahvis, Garet P

    2011-10-01

    In the past few years, several experimental studies have suggested that empathy occurs in the social lives of rodents. Thus, rodent behavioral models can now be developed to elucidate the mechanistic substrates of empathy at levels that have heretofore been unavailable. For example, the finding that mice from certain inbred strains express behavioral and physiological responses to conspecific distress, while others do not, underscores that the genetic underpinnings of empathy are specifiable and that they could be harnessed to develop new therapies for human psychosocial impairments. However, the advent of rodent models of empathy is met at the outset with a number of theoretical and semantic problems that are similar to those previously confronted by studies of empathy in humans. The distinct underlying components of empathy must be differentiated from one another and from lay usage of the term. The primary goal of this paper is to review a set of seminal studies that are directly relevant to developing a concept of empathy in rodents. We first consider some of the psychological phenomena that have been associated with empathy, and within this context, we consider the component processes, or endophenotypes of rodent empathy. We then review a series of recent experimental studies that demonstrate the capability of rodents to detect and respond to the affective state of their social partners. We focus primarily on experiments that examine how rodents share affective experiences of fear, but we also highlight how similar types of experimental paradigms can be utilized to evaluate the possibility that rodents share positive affective experiences. Taken together, these studies were inspired by Jaak Panksepp's theory that all mammals are capable of felt affective experiences.

  18. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease.

    PubMed

    Inestrosa, Nibaldo C; Ríos, Juvenal A; Cisternas, Pedro; Tapia-Rojas, Cheril; Rivera, Daniela S; Braidy, Nady; Zolezzi, Juan M; Godoy, Juan A; Carvajal, Francisco J; Ardiles, Alvaro O; Bozinovic, Francisco; Palacios, Adrián G; Sachdev, Perminder S

    2015-11-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of age-related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild-type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age-related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative-activated receptor γ coactivator-1α (PGC-1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.

  19. Social isolation in prairie voles induces behaviors relevant to negative affect: toward the development of a rodent model focused on co-occurring depression and anxiety

    PubMed Central

    Grippo, Angela J.; Wu, Kevin D.; Hassan, Iman; Carter, C. Sue

    2008-01-01

    Recent evidence suggests substantial overlap between mood and anxiety disorders, both in clinical presentation and associated features. A theoretical framework to account for this overlap focuses on negative affectivity, defined as the disposition to experience negative emotional states, including fear, sadness and guilt. This model has been successful in explaining the co-occurrence of depressive and anxiety disorders in humans. As a next step, development of an animal model focused on both depression- and anxiety-relevant behaviors may advance understanding of depression-anxiety symptom overlap, relations of these disorders with associated medical conditions and responses to treatment. The current study was designed to investigate inducible and quantifiable depression- and anxiety-like behaviors in prairie voles (Microtus ochrogaster). Adult, female prairie voles were exposed to 4 weeks of social pairing (control) or isolation, an established stressor for socially monogamous mammals (including humans). Operational measures of depression (sucrose intake and behaviors in the forced swim test), anxiety (behaviors in the elevated plus maze) and aggression (responses to an unrelated prairie vole pup) were investigated. Social isolation induced a progressive decline in sucrose intake and increased immobility time during the forced swim test. Social isolation also decreased the amount of time spent in the open arms of the elevated plus maze, and increased pup-directed attack behavior. The current findings suggest that isolation induces behaviors reflecting elevated negative affect. These results may provide a foundation for creating a rodent model to examine the mechanisms underlying comorbid mood and anxiety disorders. PMID:17935206

  20. Allometric disparity in rodent evolution

    PubMed Central

    Wilson, Laura A B

    2013-01-01

    In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter-trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents. PMID:23610638

  1. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: Rodent and human studies.

    PubMed

    van Enkhuizen, Jordy; Geyer, Mark A; Minassian, Arpi; Perry, William; Henry, Brook L; Young, Jared W

    2015-11-01

    Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments.

  2. Modeling specific phobias and posttraumatic stress disorder in rodents: the challenge to convey both cognitive and emotional features.

    PubMed

    Berardi, Andrea; Trezza, Viviana; Campolongo, Campolongo

    2012-01-01

    Aberrant emotional memory processing is a core, disabling feature of both specific phobias and posttraumatic stress disorder (PTSD), two psychiatric diseases of significant prevalence and morbidity whose cognitive symptoms cannot be adequately treated by current psychopharmacological tools. Elucidating the neurobiological mechanisms involved in the etiology of these diseases is of great interest for the identification of new therapeutics that improve not only the symptomatology but also the full recovery from the pathology. To this aim, several animal models have been proposed based on substantial resemblance between the behavioral alterations seen in animals and the human pathology. The purpose of this review is to describe and comment on the most commonly used rodent models of specific phobias and PTSD. A particular focus will be reserved to the cued version of fear conditioning, as the highly specific stimulus-bound conditioned fear response seems to fit well with clinical descriptions of phobic fear.Moreover, animal models of PTSD will be evaluated by referring to three elements that are considered essential ina valid model of this disease: stressor exposure, memory for the stressor, and anxiety-related behaviors. Finally, current therapeutic directions, with a focus on cannabinoid and glucocorticoid compounds, will be briefly outlined.

  3. Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A.

    PubMed

    Fledrich, Robert; Stassart, Ruth M; Klink, Axel; Rasch, Lennart M; Prukop, Thomas; Haag, Lauren; Czesnik, Dirk; Kungl, Theresa; Abdelaal, Tamer A M; Keric, Naureen; Stadelmann, Christine; Brück, Wolfgang; Nave, Klaus-Armin; Sereda, Michael W

    2014-09-01

    Duplication of the gene encoding the peripheral myelin protein of 22 kDa (PMP22) underlies the most common inherited neuropathy, Charcot-Marie-Tooth 1A (CMT1A), a disease without a known cure. Although demyelination represents a characteristic feature, the clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. CMT1A disease manifests within the first two decades of life, and walking disabilities, foot deformities and electrophysiological abnormalities are already present in childhood. Here, we show in Pmp22-transgenic rodent models of CMT1A that Schwann cells acquire a persistent differentiation defect during early postnatal development, caused by imbalanced activity of the PI3K-Akt and the Mek-Erk signaling pathways. We demonstrate that enhanced PI3K-Akt signaling by axonally overexpressed neuregulin-1 (NRG1) type I drives diseased Schwann cells toward differentiation and preserves peripheral nerve axons. Notably, in a preclinical experimental therapy using a CMT1A rat model, when treatment is restricted to early postnatal development, soluble NRG1 effectively overcomes impaired peripheral nerve development and restores axon survival into adulthood. Our findings suggest a model in which Schwann cell differentiation within a limited time window is crucial for the long-term maintenance of axonal support.

  4. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models

    PubMed Central

    Marquardt, Kristin; Brigman, Jonathan L.

    2016-01-01

    Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD. PMID:26992695

  5. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models.

    PubMed

    Marquardt, Kristin; Brigman, Jonathan L

    2016-03-01

    Fetal Alcohol Spectrum Disorders (FASD) are characterized by deficits in working memory, response inhibition, and behavioral flexibility. However, the combination and severity of impairments are highly dependent upon maternal ethanol consumption patterns, which creates a complex variety of manifestations. Rodent models have been essential in identifying behavioral endpoints of prenatal alcohol exposure (PAE). However, experimental model outcomes are extremely diverse based on level, pattern, timing, and method of ethanol exposure, as well as the behavioral domain assayed and paradigm used. Therefore, comparisons across studies are difficult and there is currently no clear comprehensive behavioral phenotype of PAE. This lack of defined cognitive and behavioral phenotype is a contributing factor to the difficulty in identifying FASD individuals. The current review aims to critically examine preclinical behavioral outcomes in the social, cognitive, and affective domains in terms of the PAE paradigm, with a special emphasis on dose, timing, and delivery, to establish a working model of behavioral impairment. In addition, this review identifies gaps in our current knowledge and proposes future areas of research that will advance knowledge in the field of PAE outcomes. Understanding the complex behavioral phenotype, which results from diverse ethanol consumption will allow for development of better diagnostic tools and more critical evaluation of potential treatments for FASD.

  6. Multi-object model-based multi-atlas segmentation for rodent brains using dense discrete correspondences

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Styner, Martin

    2016-03-01

    The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.

  7. Varicella zoster virus-induced pain and post-herpetic neuralgia in the human host and in rodent animal models.

    PubMed

    Kinchington, Paul R; Goins, William F

    2011-12-01

    Pain and post-herpetic neuralgia (PHN) are common and highly distressing complications of herpes zoster that remain a significant public health concern and in need of improved therapies. Zoster results from reactivation of the herpesvirus varicella zoster virus (VZV) from a neuronal latent state established at the primary infection (varicella). PHN occurs in some one fifth to one third of zoster cases with severity, incidence, and duration of pain increasing with rising patient age. While VZV reactivation and the ensuing ganglionic damage trigger the pain response, the mechanisms underlying protracted PHN are not understood, and the lack of an animal model of herpes zoster (reactivation) makes this issue more challenging. A recent preclinical rodent model has developed that opens up the potential to allow the exploration of the underlying mechanisms and treatments for VZV-induced pain. Rats inoculated with live cell-associated human VZV into the hind paw reliably demonstrate thermal hyperalgesia and mechanical allodynia for extended periods and then spontaneously recover. Dorsal root ganglia express a limited VZV gene subset, including the IE62 regulatory protein, and upregulate expression of markers suggesting a neuropathic pain state. The model has been used to investigate treatment modalities and aspects of pain signaling and is under investigation by the authors to delineate VZV genetics involved in the induction of pain. This article compares human zoster-associated pain and PHN to the pain indicators in the rat and poses important questions that, if answered, could be the basis for new treatments.

  8. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  9. Multi-Object Model-based Multi-Atlas Segmentation for Rodent Brains using Dense Discrete Correspondences

    PubMed Central

    Lee, Joohwi; Kim, Sun Hyung; Styner, Martin

    2016-01-01

    The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra-subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool. PMID:27065200

  10. Progesterone induces mucosal immunity in a rodent model of human taeniosis by Taenia solium.

    PubMed

    Escobedo, Galileo; Camacho-Arroyo, Ignacio; Nava-Luna, Paul; Olivos, Alfonso; Pérez-Torres, Armando; Leon-Cabrera, Sonia; Carrero, J C; Morales-Montor, Jorge

    2011-01-01

    More than one quarter of human world's population is exposed to intestinal helminth parasites. The Taenia solium tapeworm carrier is the main risk factor in the transmission of both human neurocysticercosis and porcine cysticercosis. Sex steroids play an important role during T. solium infection, particularly progesterone has been proposed as a key immunomodulatory hormone involved in susceptibility to human taeniosis in woman and cysticercosis in pregnant pigs. Thus, we evaluated the effect of progesterone administration upon the experimental taeniosis in golden hamsters (Mesocricetus auratus). Intact female adult hamsters were randomly divided into 3 groups: progesterone-subcutaneously treated; olive oil-treated as the vehicle group; and untreated controls. Animals were treated every other day during 4 weeks. After 2 weeks of treatment, all hamsters were orally infected with 4 viable T. solium cysticerci. After 2 weeks post infection, progesterone-treated hamsters showed reduction in adult worm recovery by 80%, compared to both vehicle-treated and non-manipulated infected animals. In contrast to control and vehicle groups, progesterone treatment diminished tapeworm length by 75% and increased proliferation rate of leukocytes from spleen and mesenteric lymph nodes of infected hamsters by 5-fold. The latter exhibited high expression levels of IL-4, IL-6 and TNF-α at the duodenal mucosa, accompanied with polymorphonuclear leukocytes infiltration. These results support that progesterone protects hamsters from the T. solium adult tapeworm establishment by improving the intestinal mucosal immunity, suggesting a potential use of analogues of this hormone as novel inductors of the gut immune response against intestinal helminth infections and probably other bowel-related disorders.

  11. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease.

    PubMed

    Lapchak, P A; Araujo, D M; Hilt, D C; Sheng, J; Jiao, S

    1997-11-28

    A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinson's disease.

  12. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models.

    PubMed

    Bolzoni, L; Rosà, R; Cagnacci, F; Rizzoli, A

    2012-04-01

    Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.

  13. Tactile learning in rodents: Neurobiology and neuropharmacology.

    PubMed

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes.

  14. Evidence for a virtual human analog of a rodent relational memory task: a study of aging and fMRI in young adults.

    PubMed

    Etchamendy, Nicole; Konishi, Kyoko; Pike, G Bruce; Marighetto, Aline; Bohbot, Véronique D

    2012-04-01

    A radial maze concurrent spatial discrimination learning paradigm consisting of two stages was previously designed to assess the flexibility property of relational memory in mice, as a model of human declarative memory. Aged mice and young adult mice with damage to the hippocampus, learned accurately Stage 1 of the task which required them to learn a constant reward location in a specific set of arms (i.e., learning phase). In contrast, they were impaired relative to healthy young adult mice in a second stage when faced with rearrangements of the same arms (i.e., flexibility probes). This mnemonic inflexibility in Stage 2 is thought to derive from insufficient relational processing by the hippocampus during initial learning (Stage 1) which favors stimulus-response learning, a form of procedural learning. This was proposed as a model of the selective declarative and relational memory decline classically described in elderly people. As a first step to examine the validity of this model, we adapted this protocol to humans using a virtual radial-maze. (1) We showed that performance in the flexibility probes in young and older adults positively correlated with performance in a wayfinding task, suggesting that our paradigm assesses relational memory. (2) We demonstrated that older healthy participants displayed a deficit in the performance of the flexibility probes (Stage 2), similar to the one previously seen in aged mice. This was associated with a decline in the wayfinding task. (3) Our fMRI data in young adults confirmed that hippocampal activation during early discrimination learning in Stage 1 correlated with memory flexibility in Stage 2, whereas caudate nucleus activation in Stage 1 negatively correlated with subsequent flexibility. By enabling relational memory assessment in mice and humans, our radial-maze paradigm provides a valuable tool for translational research.

  15. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease.

    PubMed

    Haik, K L; Shear, D A; Schroeder, U; Sabel, B A; Dunbar, G L

    2000-06-01

    Quinolinic acid (QA) is an N-methyl-d-aspartate agonist that has been shown to produce neurotoxic effects that mimic certain neurodegenerative diseases when administered to laboratory animals. Intrastriatal injections of QA in rats have been used extensively to produce some of the neuropathological and behavioral deficits that are analogous to Huntington's disease (HD). However, acute intrastriatal injections of QA produce symptoms that are not analogous to the progressive nature of HD. Thus far, models using chronic administration of QA that produce HD-like behavioral and neuroanatomical changes have necessitated the use of a relatively bulky and fragile microdialytic pump apparatus. The present study tested an alternative way of chronically administering QA. Specifically, this study tested whether gradual release of QA from ethylene vinylacetate (EVA) polymers could produce symptoms analogous to HD. Rats received either no implants or bilateral intrastriatal implants of polymers with or without QA. Subsequent tests for spontaneous motor activity (SMA), grip strength, balance, and learning ability in a radial-arm-water-maze task revealed QA-induced impairments in balance and learning ability, but did not affect grip strength or SMA. Histological analysis revealed QA-induced enlargement of lateral ventricles, striatal atrophy, and striatal neuronal loss, with relative sparing of NADPH-diaphorase-positive neurons. These results suggest that QA released from polymers can produce behavioral and neuropathological profiles analogous to early stages of HD and that EVA polymers offer a useful means of chronically delivering QA in rodent models of neurodegeneration.

  16. Long-term vascular access ports as a means of sedative administration in a rodent fMRI survival model.

    PubMed

    Hettinger, Patrick C; Li, Rupeng; Yan, Ji-Geng; Matloub, Hani S; Cho, Younghoon R; Pawela, Christopher P; Rowe, Daniel B; Hyde, James S

    2011-09-15

    The purpose of this study is to develop a rodent functional magnetic resonance imaging (fMRI) survival model with the use of heparin-coated vascular access devices. Such a model would ease the administration of sedative agents, reduce the number of animals required in survival experiments and eliminate animal-to-animal variability seen in previous designs. Seven male Sprague-Dawley rats underwent surgical placement of an MRI-compatible vascular access port, followed by implantable electrode placement on the right median nerve. Functional MRI during nerve stimulation and resting-state functional connectivity MRI (fcMRI) were performed at times 0, 2, 4, 8 and 12 weeks postoperatively using a 9.4T scanner. Anesthesia was maintained using intravenous dexmedetomidine and reversed using atipamezole. There were no fatalities or infectious complications during this study. All vascular access ports remained patent. Blood oxygen level dependent (BOLD) activation by electrical stimulation of the median nerve using implanted electrodes was seen within the forelimb sensory region (S1FL) for all animals at all time points. The number of activated voxels decreased at time points 4 and 8 weeks, returning to a normal level at 12 weeks, which is attributed to scar tissue formation and resolution around the embedded electrode. The applications of this experiment extend far beyond the scope of peripheral nerve experimentation. These vascular access ports can be applied to any survival MRI study requiring repeated medication administration, intravenous contrast, or blood sampling.

  17. Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model.

    PubMed

    Donegan, J J; Tyson, J A; Branch, S Y; Beckstead, M J; Anderson, S A; Lodge, D J

    2016-08-02

    An increasing literature suggests that schizophrenia is associated with a reduction in hippocampal interneuron function. Thus, we posit that stem cell-derived interneuron transplants may be an effective therapeutic strategy to reduce hippocampal hyperactivity and attenuate behavioral deficits in schizophrenia. Here we used a dual-reporter embryonic stem cell line to generate enriched populations of parvalbumin (PV)- or somatostatin (SST)-positive interneurons, which were transplanted into the ventral hippocampus of the methylazoxymethanol rodent model of schizophrenia. These interneuron transplants integrate within the existing circuitry, reduce hippocampal hyperactivity and normalize aberrant dopamine neuron activity. Further, interneuron transplants alleviate behaviors that model negative and cognitive symptoms, including deficits in social interaction and cognitive inflexibility. Interestingly, PV- and SST-enriched transplants produced differential effects on behavior, with PV-enriched populations effectively normalizing all the behaviors examined. These data suggest that the stem cell-derived interneuron transplants may represent a novel therapeutic strategy for schizophrenia.Molecular Psychiatry advance online publication, 2 August 2016; doi:10.1038/mp.2016.121.

  18. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models.

    PubMed

    Sánchez, M M; Ladd, C O; Plotsky, P M

    2001-01-01

    Increasing evidence supports the view that the interaction of perinatal exposure to adversity with individual genetic liabilities may increase an individual's vulnerability to the expression of psycho- and physiopathology throughout life. The early environment appears to program some aspects of neurobiological development and, in turn, behavioral, emotional, cognitive, and physiological development. Several rodent and primate models of early adverse experience have been analyzed in this review, including those that "model" maternal separation or loss, abuse or neglect, and social deprivation. Accumulating evidence shows that these early traumatic experiences are associated with long-term alterations in coping style, emotional and behavioral regulation. neuroendocrine responsiveness to stress, social "fitness,' cognitive function, brain morphology, neurochemistry, and expression levels of central nervous system genes that have been related to anxiety and mood disorders. Studies are underway to identify important aspects of adverse early experience, such as (a) the existence of "sensitive periods" during development associated with alterations in particular output systems. (b) the presence of "windows of opportunity" during which targeted interventions (e.g., nurturant parenting or supportive-enriching environment) may prevent or reverse dysfunction, (c) the identity of gene polymorphisms contributing to the individual's variability in vulnerability, and (d) a means to translate the timing of these developmental "sensitive periods" across species.

  19. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder.

  20. Preventive effects of Flos Perariae (Gehua) water extract and its active ingredient puerarin in rodent alcoholism models

    PubMed Central

    2010-01-01

    Background Radix Puerariae is used in Chinese medicine to treat alcohol addiction and intoxication. The present study investigates the effects of Flos puerariae lobatae water extract (FPE) and its active ingredient puerarin on alcoholism using rodent models. Methods Alcoholic animals were given FPE or puerarin by oral intubation prior or after alcohol treatment. The loss of righting reflex (LORR) assay was used to evaluate sedative/hypnotic effects. Changes of gama-aminobutyric acid type A receptor (GABAAR) subunits induced by alcohol treatment in hippocampus were measured with western blot. In alcoholic mice, body weight gain was monitored throughout the experiments. Alcohol dehydrogenase (ADH) levels in liver were measured. Results FPE and puerarin pretreatment significantly prolonged the time of LORR induced by diazepam in acute alcoholic rat. Puerarin increased expression of gama-aminobutyric acid type A receptor alpha1 subunit and decreased expression of alpha4 subunit. In chronic alcoholic mice, puerarin pretreatment significantly increased body weight and liver ADH activity in a dose-dependent manner. Puerarin pretreatment, but not post-treatment, can reverse the changes of gama-aminobutyric acid type A receptor subunit expression and increase ADH activity in alcoholism models. Conclusion The present study demonstrates that FPE and its active ingredient puerarin have preventive effects on alcoholism related disorders. PMID:20974012

  1. Study of neurometabolic and behavioral alterations in rodent model of mild traumatic brain injury: a pilot study.

    PubMed

    Singh, Kavita; Trivedi, Richa; Haridas, Seenu; Manda, Kailash; Khushu, Subash

    2016-12-01

    Mild traumatic brain injury (mTBI) is the most common form of TBI (70-90%) with consequences of anxiety-like behavioral alterations in approximately 23% of mTBI cases. This study aimed to assess whether mTBI-induced anxiety-like behavior is a consequence of neurometabolic alterations. mTBI was induced using a weight drop model to simulate mild human brain injury in rodents. Based on injury induction and dosage of anesthesia, four animal groups were included in this study: (i) injury with anesthesia (IA); (ii) sham1 (injury only, IO); (iii) sham2 (only anesthesia, OA); and (iv) control rats. After mTBI, proton magnetic resonance spectroscopy ((1) H-MRS) and neurobehavioral analysis were performed in these groups. At day 5, reduced taurine (Tau)/total creatine (tCr, creatine and phosphocreatine) levels in cortex were observed in the IA and IO groups relative to the control. These groups showed mTBI-induced anxiety-like behavior with normal cognition at day 5 post-injury. An anxiogenic effect of repeated dosage of anesthesia in OA rats was observed with normal Tau/tCr levels in rat cortex, which requires further examination. In conclusion, this mTBI model closely mimics human concussion injury with anxiety-like behavior and normal cognition. Reduced cortical Tau levels may provide a putative neurometabolic basis of anxiety-like behavior following mTBI.

  2. A Physiologically Based Pharmacokinetic Model for the Oxime TMB-4: Simulation of Rodent and Human Data

    DTIC Science & Technology

    2013-01-13

    values) (Voicu et al. 2010). Medically, oximes are administered to counteract organophosphate (OP) poisoning . OPs form serine-conjugated phosphonates...AH, Warnet JM (2011) Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning ...model structure for the organophosphate diisopropylfluorophosphate, the model includes key sites of acetylcholinesterase inhibition (brain and diaphragm

  3. Assessment of knee joint pain in experimental rodent models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; Im, Hee-Jeong

    2015-01-01

    Pain assessment in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe two methods for behavioral pain assessments available for use in animal models of experimental osteoarthritic pain: Von Frey filaments and spontaneous activity monitoring.

  4. Rodents And Other Gnawers.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about rodents and lagomorphs, including definitions and the characteristics of these animals. Contains teaching activities such as "Habitats for Hoppers,""Cartoon Gnawers," and "The Great Rodent Expedition." Reproducible handouts for two of the activities are provided. (TW)

  5. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  6. Prior killing of intracellular bacteria Wolbachia reduces inflammatory reactions and improves antifilarial efficacy of diethylcarbamazine in rodent model of Brugia malayi.

    PubMed

    Shakya, Shilpy; Bajpai, Preeti; Sharma, Sharad; Misra-Bhattacharya, Shailja

    2008-04-01

    The discovery of the endosymbiont Wolbachia, which has a mutualistic relationship with filarial nematodes, and its importance in filarial parasite biology has provided a lead for developing novel chemotherapeutic agents against human filariasis. Wolbachia also appears to be involved in immunopathological responses as well as adverse reactions after antifilarial therapy. The aim of the present study was to explore the potential of administering anti-Wolbachial therapy before antifilarial treatment to improve the filaricidal efficacy of the present-day filaricide diethylcarbamazine. An additional objective was to minimize host inflammatory reactions using a rodent model Mastomys coucha and Meriones unguiculatus infected with human lymphatic filariid Brugia malayi. We observed: (1) a 40-day treatment schedule of tetracycline alone resulted in delayed reduction in microfilaraemia and a low degree of macrofilaricidal efficacy; (2) tetracycline therapy followed by 100 mg/kg diethylcarbamazine (DEC) x5 days led to marked reduction in microfilaraemia from day 48 onward after initiation of treatment. The combination treatment also brought about approximately 70% death of adult B. malayi and sterilization of 82.3% of the surviving female worms, thus exhibiting remarkable enhancement in the antifilarial activity of DEC; (3) tissue inflammatory reactions and pathogenesis were significantly reduced as observed by histopathology, and peritoneal macrophage mediated oxidative burst shown by fluorescence-activated cell sorting (FACS) analysis using dichlorofluorescein diacetate (DCF-DA); and (4) the characteristic filarial antigen-specific and mitogen-specific cellular unresponsiveness was significantly reversed, possibly due to marked clearance of microfilaraemia. It is therefore advisable to give an anti-Wolbachial antibiotic trial before starting antifilarial therapy to achieve maximum benefits.

  7. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  8. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator.

    PubMed

    Sherwood, William Erik; Harris-Warrick, Ronald; Guckenheimer, John

    2011-04-01

    Establishing, maintaining, and modifying the phase relationships between extensor and flexor muscle groups is essential for central pattern generators in the spinal cord to coordinate the hindlimbs well enough to produce the basic walking rhythm. This paper investigates a simplified computational model for the spinal hindlimb central pattern generator (CPG) that is abstracted from experimental data from the rodent spinal cord. This model produces locomotor-like activity with appropriate phase relationships in which right and left muscle groups alternate while extensor and flexor muscle groups alternate. Convergence to this locomotor pattern is slow, however, and the range of parameter values for which the model produces appropriate output is relatively narrow. We examine these aspects of the model's coordination of left-right activity through investigation of successively more complicated subnetworks, focusing on the role of the synaptic architecture in shaping motoneuron phasing. We find unexpected sensitivity in the phase response properties of individual neurons in response to stimulation and a need for high levels of both inhibition and excitation to achieve the walking rhythm. In the absence of cross-cord excitation, equal levels of ipsilateral and contralateral inhibition result in a strong preference for hopping over walking. Inhibition alone can produce the walking rhythm, but contralateral inhibition must be much stronger than ipsilateral inhibition. Cross-cord excitatory connections significantly enhance convergence to the walking rhythm, which is achieved most rapidly with strong crossed excitation and greater contralateral than ipsilateral inhibition. We discuss the implications of these results for CPG architectures based on unit burst generators.

  9. Predictable stress versus unpredictable stress: a comparison in a rodent model of stroke.

    PubMed

    Zucchi, Fabíola C R; Kirkland, Scott W; Jadavji, Nafisa M; van Waes, Linda T; Klein, Alexander; Supina, Rebecca D; Metz, Gerlinde A

    2009-12-14

    Previous studies have associated stress with poor outcome in individuals affected by stroke. It was suggested that the effects of stress depend on the stressor's type and strength. Here we compare the effects of chronic predictable restraint stress and chronic unpredictable variable stress on motor recovery after focal lesion in the rat motor cortex. Adult male rats were pre-trained and tested in skilled reaching and skilled walking tasks. Animals were assigned to daily treatments of either restraint stress or variable stress starting 1 week prior to lesion up to 2 weeks post-lesion. One group served as lesion only control. The results revealed a distinct pattern of recovery and compensation of skilled movement. Animals exposed to predictable restraint stress had significantly lower reaching success at both pre- and post-lesion time points, and higher error rates in skilled walking when compared to lesion controls. Overall, restraint stress induced more pronounced motor impairments prior to and after injury than variable stress. Variable stress increased the number of attempts required to grasp food pellets and changed movement pattern performance. By contrast, variable stress improved limb placement accuracy when compared to lesion controls. The behavioural changes were not accompanied by differences in infarct size. These findings are in agreement with other studies reporting that both chronic predicable restraint stress and unpredictable variable stress influence the course of recovery following stroke, however, restraint stress might affect stroke recovery through a different route than variable stress.

  10. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury.

    PubMed

    Kawa, Lizan; Barde, Swapnali; Arborelius, Ulf P; Theodorsson, Elvar; Agoston, Denes; Risling, Mårten; Hökfelt, Tomas

    2016-05-01

    The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI.

  11. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy*

    PubMed Central

    Grebenstein, Patricia E.; Burroughs, Danielle; Roiko, Samuel A.; Pentel, Paul R.; LeSage, Mark G.

    2015-01-01

    Background The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. Methods The present study examined these issues in a rodent nicotine self- administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Results Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. Conclusions These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. PMID:25891231

  12. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models

    NASA Astrophysics Data System (ADS)

    Rangarajan, Janaki Raman; Vande Velde, Greetje; van Gent, Friso; de Vloo, Philippe; Dresselaers, Tom; Depypere, Maarten; van Kuyck, Kris; Nuttin, Bart; Himmelreich, Uwe; Maes, Frederik

    2016-11-01

    Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study.

  13. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD

    PubMed Central

    Vanderheyden, William M.; George, Sophie A.; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R.

    2015-01-01

    Sleep abnormalities such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of post-traumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating these sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stress exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops in rats. SPS resulted in acutely increased REM sleep, transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. We also report reductions in theta (4–10 Hz) and sigma (10–15 Hz) band power during transition to REM sleep which also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure. PMID:26019008

  14. Image-based in vivo assessment of targeting accuracy of stereotactic brain surgery in experimental rodent models

    PubMed Central

    Rangarajan, Janaki Raman; Vande Velde, Greetje; van Gent, Friso; De Vloo, Philippe; Dresselaers, Tom; Depypere, Maarten; van Kuyck, Kris; Nuttin, Bart; Himmelreich, Uwe; Maes, Frederik

    2016-01-01

    Stereotactic neurosurgery is used in pre-clinical research of neurological and psychiatric disorders in experimental rat and mouse models to engraft a needle or electrode at a pre-defined location in the brain. However, inaccurate targeting may confound the results of such experiments. In contrast to the clinical practice, inaccurate targeting in rodents remains usually unnoticed until assessed by ex vivo end-point histology. We here propose a workflow for in vivo assessment of stereotactic targeting accuracy in small animal studies based on multi-modal post-operative imaging. The surgical trajectory in each individual animal is reconstructed in 3D from the physical implant imaged in post-operative CT and/or its trace as visible in post-operative MRI. By co-registering post-operative images of individual animals to a common stereotaxic template, targeting accuracy is quantified. Two commonly used neuromodulation regions were used as targets. Target localization errors showed not only variability, but also inaccuracy in targeting. Only about 30% of electrodes were within the subnucleus structure that was targeted and a-specific adverse effects were also noted. Shifting from invasive/subjective 2D histology towards objective in vivo 3D imaging-based assessment of targeting accuracy may benefit a more effective use of the experimental data by excluding off-target cases early in the study. PMID:27901096

  15. Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Nichols, Nicole L.; Gowing, Genevieve; Satriotomo, Irawan; Nashold, Lisa J.; Dale, Erica A.; Suzuki, Masatoshi; Avalos, Pablo; Mulcrone, Patrick L.; McHugh, Jacalyn

    2013-01-01

    Rationale: Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1G93A rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. Objectives: To preserve or restore phrenic nerve activity in SOD1G93A rats at disease end stage. Methods: SOD1G93A rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. Measurements and Main Results: The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. Conclusions: AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS. PMID:23220913

  16. Epidural administration of liposome-encapsulated hydromorphone provides extended analgesia in a rodent model of stifle arthritis.

    PubMed

    Schmidt, Jennifer R; Krugner-Higby, Lisa; Heath, Timothy D; Sullivan, Ruth; Smith, Lesley J

    2011-07-01

    Liposome encapsulation of opioids by using an ammonium-sulfate-gradient loading technique significantly slows the release time of the drug. This study evaluated the duration of analgesia in a rodent model of monoarthritis after epidural administration of liposome-encapsulated hydromorphone (LE-hydromorphone; prepared by ammonium-sulfate-gradient loading) compared with standard hydromorphone and a negative control of blank liposomes. Analgesia was assessed by changes in thermal withdrawal latency, relative weight-bearing, and subjective behavioral scoring. Analgesia in arthritic rats was short-lived after epidural hydromorphone; increases in pain threshold were observed only at 2 h after administration. In contrast, thermal pain thresholds after epidural LE-hydromorphone were increased for as long as 72 h, and subjective lameness scores were lower for as long as 96 h after epidural administration. Injection of LE-hydromorphone epidurally was associated with various mild changes in CNS behavior, and 2 rats succumbed to respiratory depression and death. In conclusion, LE-hydromorphone prolonged the duration of epidural analgesia compared with the standard formulation of hydromorphone, but CNS side effects warrant careful administration of this LE-hydromorphone in future studies.

  17. Sympathetic modulation of sensory nerve activity with age: human and rodent skin models.

    PubMed

    Khalil, Z; LeVasseur, S; Merhi, M; Helme, R D

    1997-11-01

    1. Sensory nerves serve an afferent role and mediate neurogenic components of inflammation and tissue repair via an axon reflex release of sensory peptides at sites of injury. Dysfunction of these nerves with age could contribute to delayed tissue healing. 2. Complementary animal and human skin models were used in the present studies to investigate changes in the modulation of sensory nerve function by sympathetic efferents during ageing. Laser Doppler flowmetry was used to monitor neurogenic skin vascular responses. 3. The animal model used skin of the hind footpad of anaesthetized rats combined with electrical stimulation of the sciatic nerve, while the human model comprised capsaicin electrophoresis to the volar surface of the forearm. Sympathetic modulation was effected by systemic phentolamine pretreatment in animals and local application in the human model. 4. The results obtained from the human model confirmed the reported decline in sensory nerve function and showed no change in sympathetic modulation with age. The results from the animal model confirm and expand results obtained from the human model. 5. The use of low (5 Hz) and high (15 Hz) frequency electrical stimulation (20 V, 2 ms for 1 min) revealed a preferential response of aged sensory nerves to low-frequency electrical stimulation parameters with differential sympathetic modulation that is dependent on the frequency of stimulation.

  18. The Use of Rodent Models to Investigate Host-Bacteria Interactions Related to Periodontal Diseases

    PubMed Central

    Graves, Dana T.; Fine, Daniel; Teng, Yen-Tung A.; Van Dyke, Tom E.; Hajishengallis, George

    2009-01-01

    Even though animal models have limitations they are often superior to in vitro or clinical studies in addressing mechanistic questions and serve as an essential link between hypotheses and human patients. Periodontal disease can be viewed as a process that involves four major stages: bacterial colonization, invasion, induction of a destructive host response in connective tissue and a repair process that reduces the extent of tissue breakdown. Animal studies should be evaluated in terms of their capacity to test specific hypotheses rather than their fidelity to all aspects of periodontal disease initiation and progression. Thus, each of the models described below can be adapted to test discrete components of these four major steps, but not all of them. This review describes five different animal models that are appropriate for examining components of host-bacteria interactions that can lead to breakdown of hard and soft connective tissue or conditions that limit its repair as follows: the mouse calvarial model, murine oral gavage models with or without adoptive transfer of human lymphocytes, rat ligature model and rat Aggregatibacter actinomycetemcomitans feeding model. PMID:18199146

  19. A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents

    PubMed Central

    Randhawa, Puneet Kaur; Singh, Kavinder; Singh, Nirmal

    2014-01-01

    Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD. PMID:25177159

  20. Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling

    PubMed Central

    2017-01-01

    A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups) with the costs of thermogenesis (by contributing heat). The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction between self

  1. Ecological and Control Techniques for Sand Flies (Diptera: Psychodidae) Associated with Rodent Reservoirs of Leishmaniasis

    DTIC Science & Technology

    2013-09-12

    found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet, without having to locate or capture...on rodent feces. Through the identification of rodent feces as a sand fly larval habitat, we now know that rodent baits containing insecticides that...rodents, and that the elimination of sand flies that feed on rodents can be achieved using baits containing an insecticide that circulates in the blood of

  2. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model.

    PubMed

    Barbosa Bezerra, Gislaine; de Menezes de Souza, Luana; Dos Santos, Adailma Santana; de Almeida, Grace Kelly Melo; Souza, Marília Trindade Santana; Santos, Sandra Lauton; Aparecido Camargo, Enilton; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Cardoso, Juliana Cordeiro; Gomes, Silvana Vieira Floresta; Gomes, Margarete Zanardo; de Albuquerque, Ricardo Luiz Cavalcanti

    2017-01-01

    Ulcerative colitis (UC) is a common intestinal inflammatory disease with an etiology that is not well understood. Although the anti-inflammatory and anti-oxidant effects of the hydroalcoholic extract of Brazilian red propolis (HERP) have been reported in various experimental models, its protective effect in models of UC have not been evaluated. The purpose of this study was to investigate the chemopreventive effect of hydroalcoholic extract of Brazilian red propolis (HERP) in acetic acid-induced colitis (AAIC) using a rodent model. The HERP was chemically characterised by HPLC/DAD analyses. Male rats were randomly assigned into four groups: sham, vehicle (with AAIC, treated with vehicle), P10 (with AAIC, treated with 10mg/kg HERP), and P100 (with AAIC, treated with 100mg/kg HERP). Treatments were performed for 7days, and colitis was induced on day seven. Animals were euthanized 24h after colitis induction and body weight, colon length, gross and histological scores, malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations in colon tissue, and the immunohistochemical expression of inducible nitric oxide synthase (iNOS) were assessed. The major compounds found in HERP were liquiritigenin (68.8mg/g), formononetin (54.29mg/g), biochanin A (30.97mg/g), and daidzein (19.90mg/g). Rats treated with 10mg/kg HERP demonstrated significant decreases in MPO concentrations, gross and histological scores of tissue damage, and iNOS expression (p<0.05). Similarly, rats treated with 100mg/kg HERP demonstrated significant decreases in MPO levels (p<0.05) and histological scores of tissue damage (p<0.05). The results of this study indicate that oral administration of HERP attenuates AAIC in rats, which may be due to anti-inflammatory effects related to iNOS inhibition.

  3. Using chronic social stress to model postpartum depression in lactating rodents.

    PubMed

    Carini, Lindsay M; Murgatroyd, Christopher A; Nephew, Benjamin C

    2013-06-10

    Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.

  4. Rodent models to study the metabolic effects of shiftwork in humans

    PubMed Central

    Opperhuizen, Anne-Loes; van Kerkhof, Linda W. M.; Proper, Karin I.; Rodenburg, Wendy; Kalsbeek, Andries

    2015-01-01

    Our current 24-h society requires an increasing number of employees to work nightshifts with millions of people worldwide working during the evening or night. Clear associations have been found between shiftwork and the risk to develop metabolic health problems, such as obesity. An increasing number of studies suggest that the underlying mechanism includes disruption of the rhythmically organized body physiology. Normally, daily 24-h rhythms in physiological processes are controlled by the central clock in the brain in close collaboration with peripheral clocks present throughout the body. Working schedules of shiftworkers greatly interfere with these normal daily rhythms by exposing the individual to contrasting inputs, i.e., at the one hand (dim)light exposure at night, nightly activity and eating and at the other hand daytime sleep and reduced light exposure. Several different animal models are being used to mimic shiftwork and study the mechanism responsible for the observed correlation between shiftwork and metabolic diseases. In this review we aim to provide an overview of the available animal studies with a focus on the four most relevant models that are being used to mimic human shiftwork: altered timing of (1) food intake, (2) activity, (3) sleep, or (4) light exposure. For all studies we scored whether and how relevant metabolic parameters, such as bodyweight, adiposity and plasma glucose were affected by the manipulation. In the discussion, we focus on differences between shiftwork models and animal species (i.e., rat and mouse). In addition, we comment on the complexity of shiftwork as an exposure and the subsequent difficulties when using animal models to investigate this condition. In view of the added value of animal models over human cohorts to study the effects and mechanisms of shiftwork, we conclude with recommendations to improve future research protocols to study the causality between shiftwork and metabolic health problems using animal models

  5. Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review

    PubMed Central

    Rumajogee, Prakasham; Bregman, Tatiana; Miller, Steven P.; Yager, Jerome Y.; Fehlings, Michael G.

    2016-01-01

    Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5–3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice–Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury. PMID:27199883

  6. Impact of the gut microbiota on rodent models of human disease.

    PubMed

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  7. "Asparagus Racemosus" Enhances Memory and Protects against Amnesia in Rodent Models

    ERIC Educational Resources Information Center

    Ojha, Rakesh; Sahu, Alakh N.; Muruganandam, A. V.; Singh, Gireesh Kumar; Krishnamurthy, Sairam

    2010-01-01

    "Asparagus Racemosus" (AR) is an Ayurvedic rasayana possessing multiple neuropharmacological activities. The adpatogenic and antidepressant activity of AR is well documented. The present study was undertaken to assess nootropic and anti-amnesic activities of MAR in rats. The Morris water maze (MWM) and elevated plus maze (EPM) models were employed…

  8. Is there a geometric module for spatial orientation? Insights from a rodent navigation model.

    PubMed

    Sheynikhovich, Denis; Chavarriaga, Ricardo; Strösslin, Thomas; Arleo, Angelo; Gerstner, Wulfram

    2009-07-01

    Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over the nongeometric (landmarks) cues. Moreover, sensitivity of hippocampal cell firing to changes in the environment layout was taken in support of the geometric module hypothesis. Using a computational model of rat navigation, the authors proposed and tested the alternative hypothesis that the influence of spatial geometry on both behavioral and neuronal levels can be explained by the properties of visual features that constitute local views of the environment. Their modeling results suggest that the pattern of diagonal errors observed in reorientation tasks can be understood by the analysis of sensory information processing that underlies the navigation strategy employed to solve the task. In particular, 2 navigation strategies were considered: (a) a place-based locale strategy that relies on a model of grid and place cells and (b) a stimulus-response taxon strategy that involves direct association of local views with action choices. The authors showed that the application of the 2 strategies in the reorientation tasks results in different patterns of diagonal errors, consistent with behavioral data. These results argue against the geometric module hypothesis by providing a simpler and biologically more plausible explanation for the related experimental data. Moreover, the same model also describes behavioral results in different types of water-maze tasks.

  9. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.

    PubMed

    Huh, Namjung; Jo, Suhyun; Kim, Hoseok; Sul, Jung Hoon; Jung, Min Whan

    2009-05-01

    Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's knowledge or model of the environment in model-based reinforcement learning algorithms. To investigate how animals update value functions, we trained rats under two different free-choice tasks. The reward probability of the unchosen target remained unchanged in one task, whereas it increased over time since the target was last chosen in the other task. The results show that goal choice probability increased as a function of the number of consecutive alternative choices in the latter, but not the former task, indicating that the animals were aware of time-dependent increases in arming probability and used this information in choosing goals. In addition, the choice behavior in the latter task was better accounted for by a model-based reinforcement learning algorithm. Our results show that rats adopt a decision-making process that cannot be accounted for by simple reinforcement learning models even in a relatively simple binary choice task, suggesting that rats can readily improve their decision-making strategy through the knowledge of their environments.

  10. Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism.

    PubMed

    Gut, Nadine K; Winn, Philip

    2015-03-25

    The pedunculopontine tegmental nucleus (PPTg) has been proposed as a target for deep brain stimulation (DBS) in parkinsonian patients, particularly for symptoms such as gait and postural difficulties refractory to dopaminergic treatments. Several patients have had electrodes implanted aimed at the PPTg, but outcomes have been disappointing, with little evidence that gait and posture are improved. The PPTg is a heterogeneous structure. Consequently, exact target sites in PPTg, possible DBS mechanisms, and potential benefits still need systematic investigation in good animal models. We have investigated the role of PPTg in gait, developed a refined model of parkinsonism including partial loss of the PPTg with bilateral destruction of nigrostriatal dopamine neurons that mimics human pathophysiology, and investigated the effect of DBS at different PPTg locations on gait and posture using a wireless device that lets rats move freely while receiving stimulation. Neither partial nor complete lesions of PPTg caused gait deficits, underlining questions raised previously about the status of PPTg as a motor control structure. The effect of DBS in the refined and standard model of parkinsonism were very different despite minimal behavioral differences in nonstimulation control conditions. Anterior PPTg DBS caused severe episodes of freezing and worsened gait, whereas specific gait parameters were mildly improved by stimulation of posterior PPTg. These results emphasize the critical importance of intra-PPTg DBS location and highlight the need to take PPTg degeneration into consideration when modeling parkinsonian symptoms. They also further implicate a role for PPTg in the pathophysiology of parkinsonism.

  11. A Rodent Model of Schizophrenia Reveals Increase in Creatine Kinase Activity with Associated Behavior Changes

    PubMed Central

    Canever, Leila; Oliveira, Larissa; de Luca, Renata D'Altoé; Correa, Paulo T. F.; Fraga, Daiane de B.; Matos, Maria Paula; Scaini, Giselli; Quevedo, João; Streck, Emílio L.; Zugno, Alexandra I.

    2010-01-01

    Schizophrenia is a debilitating mental disorder characterized by positive (delusions, hallucinations, disorganized speech) and negative (affective flattering, avolition and social withdrawal) symptoms as well as cognitive deficits. The frequency, severity and topography characterize the disorder as heterogeneous, the pathophysiology of schizophrenia is poorly understood. Sub-anesthetic doses of ketamine produce hyperactivity, stereotypy and abnormal social interaction and it is used as a model of schizophrenia. In this study, we induced an animal model by acute sub-anesthetic doses of ketamine and tested different behavioral parameters. We also evaluated the activity of creatine kinase (CK) in brain of rats treated with ketamine. Our results demonstrated that administration of 10, 25 and 50 mg/kg of ketamine induced an increase of covered distance in habituated and non-habituated rats to the behavioral apparatus. Ketamine administration induced significant social deficits and stereotypic behavioral in all doses tested. Finally we evaluated the effect of different doses of ketamine on creatinine kinase (CK) activity and we observed that CK activity is increased inspecific regions of the brain. Our study suggests that our animal model may be used as a model of schizophrenia and that cerebral energy metabolism might be altered in the brain of schizophrenic patients, probably leading to alterations that might be involved in the pathogenesis of schizophrenia. PMID:21270541

  12. Rodent Working Heart Model for the Study of Myocardial Performance and Oxygen Consumption

    PubMed Central

    Kheir, John N.

    2016-01-01

    Isolated working heart models have been used to understand the effects of loading conditions, heart rate and medications on myocardial performance in ways that cannot be accomplished in vivo. For example, inotropic medications commonly also affect preload and afterload, precluding load-independent assessments of their myocardial effects in vivo. Additionally, this model allows for sampling of coronary sinus effluent without contamination from systemic venous return, permitting assessment of myocardial oxygen consumption. Further, the advent of miniaturized pressure-volume catheters has allowed for the precise quantification of markers of both systolic and diastolic performance. We describe a model in which the left ventricle can be studied while performing both volume and pressure work under controlled conditions. In this technique, the heart and lungs of a Sprague-Dawley rat (weight 300-500 g) are removed en bloc under general anesthesia. The aorta is dissected free and cannulated for retrograde perfusion with oxygenated Krebs buffer. The pulmonary arteries and veins are ligated and the lungs removed from the preparation. The left atrium is then incised and cannulated using a separate venous cannula, attached to a preload block. Once this is determined to be leak-free, the left heart is loaded and retrograde perfusion stopped, creating the working heart model. The pulmonary artery is incised and cannulated for collection of coronary effluent and determination of myocardial oxygen consumption. A pressure-volume catheter is placed into the left ventricle either retrograde or through apical puncture. If desired, atrial pacing wires can be placed for more precise control of heart rate. This model allows for precise control of preload (using a left atrial pressure block), afterload (using an afterload block), heart rate (using pacing wires) and oxygen tension (using oxygen mixtures within the perfusate). PMID:27584550

  13. Cerebrolysin reduces mechanical allodynia in a rodent model of peripheral inflammation.

    PubMed

    Morales-Medina, Julio Cesar; Griffiths, Natalie H; Flores, Gonzalo; Mastranzo, Virginia M; Iannitti, Tommaso

    2017-03-06

    Cerebrolysin (Cbl) is a neuropeptide preparation of cerebroproteins that crosses the blood brain barrier displaying neuroprotective properties and promoting neurogenesis. Limited evidence exists on the efficacy of Cbl for the treatment of pain, with many studies focusing on neuropathic pain associated to diabetes. Therefore, we designed a study to test the hypothesis that Cbl would reduce mechanical allodynia in a rat model of peripheral inflammation induced by administration of complete Freund's adjuvant (CFA) in the hind paw. We found that acute administration of Cbl was effective in reducing mechanical allodynia but not peripheral inflammation in the CFA model of inflammatory pain. Our investigation supports further investigation into the therapeutic applications and mechanisms underlying the anti-allodynic effects of Cbl in inflammatory pain.

  14. Study of the effects of electroacupuncture in a rodent model of cerebral ischaemia.

    PubMed

    Domenici, Rosaria Maria; Mingfu, Luo; Tebano, Maria Teresa; Reggio, Rosaria; Chiarotti, Flavia; Petti, Filomena; Liguori, Aldo; Popoli, Patrizia

    2003-01-01

    The effects of electroacupuncture (EA) has been studied in a model of global cerebral ischaemia performed in gerbils through the bilateral carotid artery occlusion (BCAO). Animals, under isofluorane anaesthesia, underwent 5 min of BCAO and were killed after 7 days. The effects of EA were evaluated both on functional (with electrophysiological recordings of synaptic potentials in hippocampal slices) and morphological parameters (by counting the number of survived neurons in CA1 area of the hippocampus). The results demonstrated that the treatment of animals with EA (5 min before, during and 20 min after BCAO and 30 min per day in the following 5 days) did not modify either the ischaemia-induced reduction of synaptic potentials amplitude, either ischaemia-induced neuronal loss in the hippocampus. We conclude that, at least in this animal model of cerebral ischaemia, EA does not exert a neuroprotective effect.

  15. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Seeley, Randy J.

    2014-01-01

    Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these ‘metabolic’ surgical procedures. Here we review data from animal models and how these studies have evolved our understanding of the critical signalling systems that mediate the effects of bariatric surgery. These insights could lead to alternative therapies able to accomplish effects similar to bariatric surgery in a less invasive manner. PMID:25374275

  16. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery.

    PubMed

    Arble, Deanna M; Sandoval, Darleen A; Seeley, Randy J

    2015-02-01

    Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these 'metabolic' surgical procedures. Here we review data from animal models and how these studies have evolved our understanding of the critical signalling systems that mediate the effects of bariatric surgery. These insights could lead to alternative therapies able to accomplish effects similar to bariatric surgery in a less invasive manner.

  17. Amygdala, Anxiety and Alpha(1) Adrenoceptors: Investigations Utilizing a Rodent Model of Traumatic Stress

    DTIC Science & Technology

    2006-08-23

    predicts negative affect in depressed patients. Neuroreport 9: 3301- 3307 Adrien,J., Dugovic,C. and Martin ,P., Sleep-wakefulness patterns in the helpless... Martin ,P, Raskind,MA. Daytime prazosin reduces psychological distress to trauma specific cues in civilian trauma posttraumatic stress disorder. Biol...stressors: toward an animal model of chronic stress and stress-related mental illness. Biol Psychiatry 26: 829-841. Otto T, Eichenbaum H, Wiener SI

  18. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia.

    PubMed

    Angelucci, Francesco; Mathé, Aleksander A; Aloe, Luigi

    2004-01-01

    Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are proteins involved in neuronal survival and plasticity of dopaminergic, cholinergic and serotonergic neurons in the central nervous system (CNS). Loss of neurons in specific brain regions has been found in depression and schizophrenia, and this chapter summarizes the findings of altered neurotrophins in animal models of those two disorders under baseline condition and following antidepressive and antipsychotic treatments. In a model of depression (Flinders sensitive line/Flinders resistant line; FSL/FRL rats), increased NGF and BDNF concentrations were found in frontal cortex of female, and in occipital cortex of male 'depressed' FSL compared to FRL control rats. Using the same model, the effects of electroconvulsive stimuli (ECS) and chronic lithium treatment on brain NGF, BDNF and glial cell line-derived neurotrophic factors were investigated. ECS and lithium altered the brain concentrations of neurotrophic factors in the hippocampus, frontal cortex, occipital cortex and striatum. ECS mimic the effects of electroconvulsive therapy (ECT) that is an effective treatment for depression and also schizophrenia. Since NGF and BDNF may also be changed in the CNS of animal models of schizophrenia, we investigated whether treatment with antipsychotic drugs (haloperidol, risperidone, and olanzapine) affects the constitutive levels of NGF and BDNF in the CNS. Both typical and atypical antipsychotic drugs altered the regional brain levels of NGF and BDNF. Other studies also demonstrated that these drugs differentially altered neurotrophin mRNAs. Overall, these studies indicate that alteration of brain level of NGF and BDNF could constitute part of the biochemical alterations induced by antipsychotic drugs.

  19. Transplantation and Perfusion of Microvascular Fragments in a Rodent Model of Volumetric Muscle Loss Injury

    DTIC Science & Technology

    2014-07-01

    Microvascular transplantation after acute myocardial infarction . Tissue Eng 13: 2871-2879. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ...when grafts were implanted after murine myocardial infarction (Shepherd, 2007, text reference). However, caution should be made when extrapolating...these findings to the current study due to the differences between the models ( myocardial infarction vs. VML) and the time allowed for microvessel

  20. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder.

    PubMed

    Fox, Adam E; Caramia, Sierra R; Haskell, Molly M; Ramey, Aerial L; Singha, Depika

    2017-02-01

    The spontaneously hypertensive (SHR/NCrl) rat from Charles River is one of the most widely used models of the combined subtype of Attention-Deficit/Hyperactivity Disorder (ADHD-C). Although often used as its control strain, the Wistar Kyoto (WKY/NCrl) from Charles River has been proposed as a model of the predominately inattentive subtype of ADHD (ADHD-PI). In Experiment 1 SHR/NCrl, WKY/NCrl, and Wistar (WI; the progenitor strain for the two models) rats were trained on a left→right lever-press sequence in the presence of light discriminative stimuli that signaled the active lever in the sequence. In subsequent conditions the discriminative light cues were removed or reversed. WKY/NCrl accuracy remained relatively stable across cue light transitions. SHR/NCrl and WI accuracy was more disrupted when light cues were removed or reversed-an indication that behavior of the WKY/NCrl rats may not have come under control of the discriminative light cues as it did for the other strains, but relied more on past behavior and spatial cues. In Experiment 2, all three strains were exposed to a response-initiated fixed-interval (RIFI) 8-s schedule of reinforcement. In RIFI schedules behavior must be timed from a past instance of the target response. Replicating previous work, timing during the FI was roughly equivalent across the three strains; however, latencies to initiate the FI were significantly longer for SHR/NCrl than WKY/NCrl and WI rats, suggesting SHR/NCrl behavior was less sensitive to the first-response:food contingency in the RIFI schedule. These findings identify differences in stimulus control between the three strains and may help determine the efficacy of SHR/NCrl and WKY/NCrl as models of ADHD subtypes in humans.

  1. Inhalation Exposure Systems for the Development of Rodent Models of Sulfur Mustard-Induced Pulmonary Injury

    PubMed Central

    Weber, Waylon M.; Kracko, Dean A.; Lehman, Mericka R.; Irvin, Clinton M.; Blair, Lee F.; White, Richard K.; Benson, Janet M.; Grotendorst, Gary R.; Cheng, Yung-Sung; McDonald, Jacob D.

    2011-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg · min/m3 resulted in homogeneous lung injury with no nasal degeneration. PMID:20025432

  2. FoxP3+ Regulatory T Cells Determine Disease Severity in Rodent Models of Inflammatory Neuropathies

    PubMed Central

    Meyer zu Hörste, Gerd; Cordes, Steffen; Mausberg, Anne K.; Zozulya, Alla L.; Wessig, Carsten; Sparwasser, Tim; Mathys, Christian; Wiendl, Heinz; Hartung, Hans-Peter; Kieseier, Bernd C.

    2014-01-01

    Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies. PMID:25286182

  3. Inhalation exposure systems for the development of rodent models of sulfur mustard-induced pulmonary injury.

    PubMed

    Weber, Waylon M; Kracko, Dean A; Lehman, Mericka R; Irvin, Clinton M; Blair, Lee F; White, Richard K; Benson, Janet M; Grotendorst, Gary R; Cheng, Yung-Sung; McDonald, Jacob D

    2010-01-01

    Sulfur mustard (SM) is a chemical threat agent for which its effects have no current treatment. Due to the ease of synthesis and dispersal of this material, the need to develop therapeutics is evident. The present manuscript details the techniques used to develop SM laboratory exposure systems for the development of animal models of pulmonary injury. These models are critical for evaluating SM injury and developing therapeutics against that injury. Iterative trials were conducted to optimize a lung injury model. The resulting pathology was used as a guide, with a goal of effecting homogeneous and diffuse lung injury comparable to that of human injury. Inhalation exposures were conducted by either nose-only inhalation or intubated inhalation. The exposures were conducted to either directly vaporized SM or SM that was nebulized from an ethanol solution. Inhalation of SM by nose-only inhalation resulted in severe nasal epithelial degeneration and minimal lung injury. The reactivity of SM did not permit it to transit past the upper airways to promote lower airway injury. Intratracheal inhalation of SM vapors at a concentration of 5400 mg x min/m(3) resulted in homogeneous lung injury with no nasal degeneration.

  4. Animal models of motivation for drinking in rodents with a focus on opioid receptor neuropharmacology.

    PubMed

    Koob, George F; Roberts, Amanda J; Kieffer, Brigitte L; Heyser, Charles J; Katner, Simon N; Ciccocioppo, Roberto; Weiss, Friedbert

    2003-01-01

    Ethanol, like other drugs of abuse, has motivating properties that can be developed as animal models of self-administration. A major strength of the operant approach where an animal must work to obtain ethanol is that it reduces confounds due to palatability and controls for nonspecific malaise-inducing effects. In the domain of opioid peptide systems, limited access paradigms have good predictive validity. In addition, animal models of excessive drinking-either environmentally or genetically induced-also appear sensitive to blockade or inactivation of opioid peptide receptors. Ethanol availability can be predicted by cues associated with positive reinforcement, and these models are sensitive to the administration of opioid antagonists. Perhaps most exciting are the recent results suggesting that the key element in opioid peptide systems that is important for the positive reinforcing effects of ethanol is the mu-opioid receptor. How exactly ethanol modulates mu-receptor function will be a major challenge of future research. Nevertheless, the apparently critical role of the mu receptor in ethanol reinforcement refocuses the neuropharmacology of ethanol reinforcement in the opioid peptide domain and opens a novel avenue for exploring medications for treating alcoholism.

  5. Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models

    PubMed Central

    Guo, Wei; Chu, Yu-Xia; Imai, Satoshi; Yang, Jia-Le; Zou, Shiping; Mohammad, Zaid; Wei, Feng; Dubner, Ronald

    2016-01-01

    Background Bone marrow stromal cells (BMSCs) have shown potential to treat chronic pain, although much still needs to be learned about their efficacy and mechanisms of action under different pain conditions. Here, we provide further convergent evidence on the effects of BMSCs in rodent pain models. Results In an orofacial pain model involving injury of a tendon of the masseter muscle, BMSCs attenuated behavioral pain conditions assessed by von Frey filaments and a conditioned place avoidance test in female Sprague-Dawley rats. The antihyperalgesia of BMSCs in females lasted for <8 weeks, which is shorter than that seen in males. To relate preclinical findings to human clinical conditions, we used human BMSCs. Human BMSCs (1.5 M cells, i.v.) attenuated mechanical and thermal hyperalgesia induced by spinal nerve ligation and suppressed spinal nerve ligation-induced aversive behavior, and the effect persisted through the 8-week observation period. In a trigeminal slice preparation, BMSC-treated and nerve-injured C57B/L mice showed reduced amplitude and frequency of spontaneous excitatory postsynaptic currents, as well as excitatory synaptic currents evoked by electrical stimulation of the trigeminal nerve root, suggesting inhibition of trigeminal neuronal hyperexcitability and primary afferent input by BMSCs. Finally, we observed that GluN2A (N-methyl-D-aspartate receptor subunit 2A) tyrosine phosphorylation and protein kinase Cgamma (PKCγ) immunoreactivity in rostral ventromedial medulla was suppressed at 8 weeks after BMSC in tendon-injured rats. Conclusions Collectively, the present work adds convergent evidence supporting the use of BMSCs in pain control. As PKCγ activity related to N-methyl-D-aspartate receptor activation is critical in opioid tolerance, these results help to understand the mechanisms of BMSC-produced long-term antihyperalgesia, which requires opioid receptors in rostral ventromedial medulla and apparently lacks the development of tolerance

  6. A rapid lateral fluid percussion injury rodent model of traumatic brain injury and post-traumatic epilepsy.

    PubMed

    Hameed, Mustafa Q; Goodrich, Grant S; Dhamne, Sameer C; Amandusson, Asa; Hsieh, Tsung-Hsun; Mou, Danlei; Wang, Yingpeng; Rotenberg, Alexander

    2014-05-07

    Traumatic brain injury is a leading cause of acquired epilepsy. Initially described in 1989, lateral fluid percussion injury (LFPI) has since become the most extensively used and well-characterized rodent traumatic brain injury and post-traumatic epilepsy model. Universal findings, particularly seizures that reliably develop after an initial latent period, are evident across studies from multiple laboratories. However, the LFPI procedure is a two-stage process, requiring initial surgical attachment of a skull fluid cannula and then reanesthesia for delivery of the epidural fluid pressure wave. We now describe a modification of the original technique, termed 'rapid lateral fluid percussion injury' (rLFPI), which allows for a one-stage procedure and thus shorter operating time and reduced anesthesia exposure. Anesthetized male Long-Evans rats were subjected to rLFPI through a length of plastic tubing fitted with a pipette tip cannula with a 4-mm aperture. The cannula opening was positioned over a craniectomy of slightly smaller diameter and exposed dura such that the edges of the cannula fit tightly when pressed to the skull with a micromanipulator. Fluid percussion was then delivered immediately thereafter, in the same surgery session. rLFPI resulted in nonlethal focal cortical injury in all animals. We previously demonstrated that the rLFPI procedure resulted in post-traumatic seizures and regional gliosis, but had not examined other histopathologic elements. Now, we show apoptotic cell death confined to the perilesional cortex and chronic pathologic changes such as ipsilesional ventriculomegaly that are seen in the classic model. We conclude that the rLFPI method is a viable alternative to classic LFPI, and--being a one-stage procedure--has the advantage of shorter experiment turnaround and reduced exposure to anesthetics.

  7. Anxiety-like behaviour is attenuated by gabapentin, morphine and diazepam in a rodent model of HIV anti-retroviral-associated neuropathic pain

    PubMed Central

    Wallace, Victoria C.J.; Segerdahl, Andrew R.; Blackbeard, Julie; Pheby, Timothy; Rice, Andrew S.C.

    2008-01-01

    Neuropathic pain is commonly associated with affective disorders such as anxiety and depression. We have previously characterised a rodent model of HIV, anti-retroviral-associated neuropathy in which rats develop hypersensitivity to a punctate mechanical stimulus and display anxiety-like behaviour in the open field paradigm. To assess the potential of this behavioural paradigm for the assessment of pain related co-morbidities in rodent models of pain, here we test the sensitivity of this anxiety-like behaviour to the analgesic agents gabapentin and morphine in comparison to the known anxiolytic drug diazepam. We found that gabapentin (30 mg/kg, i.p.) and morphine (2.5 mg/kg, i.p.), which reduce mechanical hypersensitivity in these rats, significantly reduces measures of thigmotaxis in the open field. The effect of gabapentin and morphine did not differ significantly from diazepam (1 mg/kg, i.p.). This study highlights the potential use of this rodent model and behavioural paradigm in the validation of the affective component of novel analgesic pharmacological targets and elucidation of underlying pathophysiological mechanisms. PMID:18926876

  8. Anxiety-like behaviour is attenuated by gabapentin, morphine and diazepam in a rodent model of HIV anti-retroviral-associated neuropathic pain.

    PubMed

    Wallace, Victoria C J; Segerdahl, Andrew R; Blackbeard, Julie; Pheby, Timothy; Rice, Andrew S C

    2008-12-19

    Neuropathic pain is commonly associated with affective disorders such as anxiety and depression. We have previously characterised a rodent model of HIV, anti-retroviral-associated neuropathy in which rats develop hypersensitivity to a punctate mechanical stimulus and display anxiety-like behaviour in the open field paradigm. To assess the potential of this behavioural paradigm for the assessment of pain related co-morbidities in rodent models of pain, here we test the sensitivity of this anxiety-like behaviour to the analgesic agents gabapentin and morphine in comparison to the known anxiolytic drug diazepam. We found that gabapentin (30 mg/kg, i.p.) and morphine (2.5 mg/kg, i.p.), which reduce mechanical hypersensitivity in these rats, significantly reduces measures of thigmotaxis in the open field. The effect of gabapentin and morphine did not differ significantly from diazepam (1 mg/kg, i.p.). This study highlights the potential use of this rodent model and behavioural paradigm in the validation of the affective component of novel analgesic pharmacological targets and elucidation of underlying pathophysiological mechanisms.

  9. Rodent Research-1 Validation of Rodent Hardware

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Beegle, Janet

    2013-01-01

    To achieve novel science objectives, validation of a rodent habitat on ISS will enable - In-flight analyses during long duration spaceflight- Use of genetically altered animals- Application of modern analytical techniques (e.g. genomics, proteomics, and metabolomics)

  10. BDNF signaling contributes to oral cancer pain in a preclinical orthotopic rodent model

    PubMed Central

    Chodroff, Leah; Bendele, Michelle; Valenzuela, Vanessa; Henry, Michael

    2016-01-01

    The majority of patients with oral cancer report intense pain that is only partially managed by current analgesics. Thus, there is a strong need to study mechanisms as well as develop novel analgesics for oral cancer pain. Current study employed an orthotopic tongue cancer model with molecular and non-reflexive behavioral assays to determine possible mechanisms of oral cancer pain. Human oral squamous cell carcinoma cells line, HSC2, was injected into the tongue of male athymic mice and tumor growth was observed by day 6. Immunohistological analyses revealed a well-differentiated tumor with a localized immune response and pronounced sensory and sympathetic innervation and vascularization. The tumor expressed TMPRSS2, a protein previously reported with oral squamous cell carcinoma. ATF3 expression in trigeminal ganglia was not altered by tumor growth. Molecular characterization of the model demonstrated altered expression of several pain-related genes, out of which up-regulation of BDNF was most striking. Moreover, BDNF protein expression in trigeminal ganglia neurons was increased and inhibition of BDNF signaling with a tyrosine kinase B antagonist, ANA-12, reversed pain-like behaviors induced by the oral tumor. Oral squamous cell carcinoma tumor growth was also associated with a reduction in feeding, mechanical hypersensitivity in the face, as well as spontaneous pain behaviors as measured by the conditioned place preference test, all of which were reversed by analgesics. Interestingly, injection of HSC2 into the hindpaw did not reproduce this spectrum of pain behaviors; nor did injection of a colonic cancer cell line into the tongue. Taken together, this orthotopic oral cancer pain model reproduces the spectrum of pain reported by oral cancer patients, including higher order cognitive changes, and demonstrates that BDNF signaling constitutes a novel mechanism by which oral squamous cell carcinoma induces pain. Identification of the key role of tyrosine kinase B

  11. P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.

    PubMed

    Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern

    2017-03-02

    A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.

  12. Lesioning of the Striatum Reverses Motor Asymmetry in the 6-Hydroxydopamine Rodent Model of Parkinsonism

    PubMed Central

    Friehs, G. M.; Parker, R. G.; He, L. S.; Haines, S. J.; Turner, D. A.; Ebner, T. J.

    1991-01-01

    In the rat several paradigms of grafting of adrenal medulla into the striatum were studied following the induction of a parkinsonian model, using a unilateral 6-hydroxydopamine (6-OHDA) lesion of the substantia nigra . Direct autologous grafting of adrenal medulla into the caudate-putamen complex, a radiofrequency lesion of the striatum alone, and a radiofrequency lesion followed by delayed grafting of adrenal medulla were compared by analyzing rotational behavior. Direct grafting of adrenal medulla produced an overall reduction in apomorphine induced turning behavior by 43.5% when compared with controls. Radiofrequency lesioning of the striatum without graft showed the best improvement over control animals with a 92% reduction in the total number of rotations induced by apomorphine. Delayed grafting into the caudate lesion cavity also produced a dramatic reduction in motor asymmetry but did not improve the behavioral outcome over that of the lesion alone. Animals receiving only radiofrequency lesions exhibited a band of increased tyrosine hydroxylase like immunoreactivity bordering the lesion cavity. Graft survival was limited in the nonlesioned animals but appeared enhanced in the animals whose striatum was previously lesioned. Lesion location within the striatum influenced the behavioral outcome. Large reductions in apomorphine-induced rotations could result from small lesions of the dorso-lateral striatum. These findings indicate that selective destruction of the caudate-putamen complex without tissue transplantation produces a dramatic reduction in the motor asymmetry of 6-OHDA treated rats. Suggested explanations for the decrease in induced rotational behavior with radiofrequency lesions include a decrease in the number of striatal dopamine receptors following cell destruction and lesioninduced recovery of host dopaminergic afferents. Striatal damage in critical areas can reverse some of the motor behavior associated with the 6-OHDA model and needs to be

  13. Effects of Jasminum multiflorum leaf extract on rodent models of epilepsy, motor coordination and anxiety.

    PubMed

    Addae, Jonas I; Pingal, Ramish; Walkins, Kheston; Cruickshank, Renee; Youssef, Farid F; Nayak, Shivananda B

    2017-03-01

    Jasmine flowers and leaves are used extensively in folk medicine in different parts of the world to treat a variety of diseases. However, there are very few published reports on the neuropsychiatric effects of Jasmine extracts. Hence, the objectives of the present study were to examine the effects of an alcohol extract of Jasminum multiflorum leaves on topically-applied bicuculline (a model of acute simple partial epilepsy) and maximal electroshock (MES, a model of generalized tonic-clonic seizure) in male Sprague-Dawley rats. The objectives also included an examination of the anxiolytic properties of the extract using an elevated plus maze and the effect of the extract on motor coordination using a rotarod treadmill. Phytochemical analysis of the extract showed the presence of three flavonoids and four additional compounds belonging to the steroid, terpenoid, phenol or sugar classes of compounds. The Jasmine alcohol extract, diluted with water and given orally or intraperitoneally, reduced the number of bicuculline-induced epileptiform discharges in a dose-dependent manner. The extract did not cause a significant increase in the current needed to induce hind limb extension in MES experiments. The extract significantly affected motor coordination when injected at 500mg/kg but not at 200mg/kg. At the latter dose, the extract increased open-arm entries and duration in the elevated plus maze to a level comparable to that of diazepam at 2mg/kg. We conclude that Jasmine leaf extract has a beneficial effect against an animal model of acute partial complex epilepsy, and significant anxiolytic effect at a dose that does not affect motor co-ordination.

  14. Effect of cannabidiol in a MK-801-rodent model of aspects of schizophrenia.

    PubMed

    Gururajan, Anand; Taylor, David Alan; Malone, Daniel Thomas

    2011-09-23

    Cannabidiol is a non-psychoactive phytocannabinoid which, based on several previous preclinical and clinical reports, is purported to have antipsychotic potential. The purpose of this investigation was to further investigate if these effects would be seen using an MK-801-induced rat model of aspects of schizophrenia. MK-801 is an NMDA receptor-antagonist known to produce hyperactivity, deficits in prepulse inhibition and social withdrawal, behaviours which correlate well with some of the positive, cognitive and negative symptoms of schizophrenia. Following a 4-day acclimatisation to the holding room, rats were acclimatised to startle chambers on day 5 and their prepulse inhibition (PPI) determined on day 6 following treatment with cannabidiol or vehicle and MK-801 or vehicle. On day 9, rats were acclimatised to the social interaction testing arena and on day 10, were tested for social interaction and locomotor activity following the same treatments. Cannabidiol treatment alone disrupted PPI and produced hyperactivity but had no effect on social behaviour. Cannabidiol had no effect on MK-801-induced disruption of PPI or hyperactivity but showed potential towards inhibiting MK-801-induced social withdrawal. As a comparator, we also tested the effect of the atypical antipsychotic clozapine which only partially reversed MK-801-induced disruption of PPI but was able to reverse MK-801-induced hyperactivity and social withdrawal. In conclusion, cannabidiol showed both propsychotic activity and partial antipsychotic activity in an MK-801-induced model of aspects of schizophrenia. Further behavioural studies would be required using a range of species, strains, animal models and testing paradigms to conclusively establish the antipsychotic potential of cannabidiol.

  15. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent

    PubMed Central

    Moonen, Gray; Satkunendrarajah, Kajana; Wilcox, Jared T.; Badner, Anna; Mothe, Andrea; Foltz, Warren; Fehlings, Michael G.

    2016-01-01

    Abstract Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. The effects of moderate (20 g), moderate-to-severe (26 g) and severe (35 g, and 56 g) clip impact-compression injuries at the lumbar spinal cord level L1-L2 (vertebral level T11-T12) were assessed using several neurobehavioral, neuroanatomical, and electrophysiological outcome measures. Lesions were generated after meticulous anatomical landmarking using microCT, followed by laminectomy and extradural inclusion of central and radicular elements to generate a traumatic SCI. Clinically relevant outcomes, such as MR and ultrasound imaging, were paired with robust morphometry. Analysis of the lesional tissue demonstrated that pronounced tissue loss and cavitation occur throughout the acute to chronic phases of injury. Behavioral testing revealed significant deficits in locomotion, with no evidence of hindlimb weight-bearing or hindlimb-forelimb coordination in any injured group. Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies. PMID:26414192

  16. A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Chu, Xun-Xun; Dominic Rizak, Joshua; Yang, Shang-Chuan; Wang, Jian-Hong; Ma, Yuan-Ye; Hu, Xin-Tian

    2014-05-01

    Postpartum depression (PPD) is a modified form of major depressive disorders (MDD) that can exert profound negative effects on both mothers and infants than MDD. Within the postpartum period, both mothers and infants are susceptible; but because PPD typically occurs for short durations and has moderate symptoms, there exists challenges in exploring and addressing the underlying cause of the depression. This fact highlights the need for relevant animal models. In the present study, postpartum adult female cynomolgus monkeys (Macaca fascicularis) living in breeding groups were observed for typical depressive behavior. The huddle posture behavior was utilized as an indicator of behavioral depression postpartum (BDP) as it has been established as the core depressive-like behavior in primates. Monkeys were divided into two groups: A BDP group (n=6), which were found to spend more time huddling over the first two weeks postpartum than other individuals that formed a non-depression control group (n=4). The two groups were then further analyzed for locomotive activity, stressful events, hair cortisol levels and for maternal interactive behaviors. No differences were found between the BDP and control groups in locomotive activity, in the frequencies of stressful events experienced and in hair cortisol levels. These findings suggested that the postpartum depression witnessed in the monkeys was not related to external factors other than puerperium period. Interestingly, the BDP monkeys displayed an abnormal maternal relationship consisting of increased infant grooming. Taken together, these findings suggest that the adult female cynomolgus monkeys provide a natural model of behavioral postpartum depression that holds a number of advantages over commonly used rodent systems in PPD modeling. The cynomolgus monkeys have a highly-organized social hierarchy and reproductive characteristics without seasonal restriction-similar to humans-as well as much greater homology to humans

  17. Conditioned Inhibition in a Rodent Model of Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Green, John T.; Chess, Amy C.; Conquest, Cynthia J.; Yegla, Brittney A.

    2011-01-01

    A deficit in inhibition may underlie some of the symptoms of Attention-deficit/hyperactivity disorder (ADHD), particularly impulsivity. However, the data on inhibitory deficits in children with ADHD are mixed. Moreover, there has been little characterization of inhibitory processes in animal models of ADHD. Pavlov’s conditioned inhibition procedure allows a direct assessment of the inhibitory status of a stimulus via summation and retardation tests. Therefore, in the current study we examined conditioned inhibition in spontaneously hypertensive rats (SHRs), the most well-validated animal model of ADHD. SHRs and Wistar rats were trained in a simultaneous feature-negative discrimination in eyeblink conditioning. Each session consisted of a mixture of two trial types: a tone paired with a periocular stimulation (A+) or a tone and light presented simultaneously without a periocular stimulation (XA−). Both SHRs and Wistars were able to discriminate A+ from XA− trials. In subsequent summation (X presented simultaneously with a different conditioned excitor, B) and retardation (X paired with the periocular stimulation) tests, the presence of inhibition to X was confirmed in both SHRs and Wistars: X reduced responding to B and X was slow to develop excitation when paired with periocular stimulation. These results are the first to demonstrate Pavlovian conditioned inhibition in SHRs and to use a summation and a retardation test to confirm X as a conditioned inhibitor. The data indicate that conditioned inhibition is intact in SHRs, thus inhibitory processes that do not require prefrontal cortex or cerebellum may be normal in this strain. PMID:22004263

  18. Response acquisition with delayed reinforcement in a rodent model of attention-deficit/hyperactivity disorder (ADHD).

    PubMed

    Hand, Dennis J; Fox, Andrew T; Reilly, Mark P

    2006-12-15

    The spontaneously hypertensive rat (SHR) has been shown to exhibit behavioral characteristics analogous to those exhibited by humans diagnosed with attention-deficit/hyperactivity disorder (ADHD). The present study was conducted to further evaluate the validity of the SHR model of ADHD by characterizing learning of a novel response under conditions of delayed reinforcement. Seven experimentally naïve SHRs and a control group of seven normotensive Wistar-Kyoto (WKY) rats were exposed to a contingency where one lever press initiated pellet delivery after a 15-s, resetting delay. Rats in both groups acquired lever pressing, and the pattern of acquisition was well described with a three-parameter, sigmoidal equation. Response acquisition was retarded in the SHRs; they took longer to acquire the behavior, exhibited lower response rates and earned fewer reinforcers over the course of the experiment. When reinforcer delivery was made immediate in a subsequent condition, the SHRs exhibited higher response rates than the WKY, suggesting that the lower rates of responding seen in the SHRs were due to the reinforcer delay. The results replicate previous research on response acquisition with delayed reinforcement and provide further validation of the SHR strain as a model of ADHD. Like humans diagnosed with ADHD, the SHRs appear to be hypersensitive to delayed consequences, which in the present context, interfered with learning a novel behavior.

  19. Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: A systematic review

    PubMed Central

    Krishna, Vibhor; Konakondla, Sanjay; Nicholas, Joyce; Varma, Abhay; Kindy, Mark; Wen, Xuejun

    2013-01-01

    Context There is considerable interest in translating laboratory advances in neuronal regeneration following spinal cord injury (SCI). A multimodality approach has been advocated for successful functional neuronal regeneration. With this goal in mind several biomaterials have been employed as neuronal bridges either to support cellular transplants, to release neurotrophic factors, or to do both. A systematic review of this literature is lacking. Such a review may provide insight to strategies with a high potential for further investigation and potential clinical application. Objective To systematically review the design strategies and outcomes after biomaterial-based multimodal interventions for neuronal regeneration in rodent SCI model. To analyse functional outcomes after implantation of biomaterial-based multimodal interventions and to identify predictors of functional outcomes. Methods A broad PubMed, CINHAL, and a manual search of relevant literature databases yielded data from 24 publications; 14 of these articles included functional outcome information. Studies reporting behavioral data in rat model of SCI and employing biodegradable polymer-based multimodal intervention were included. For behavioral recovery, studies using severe injury models (transection or severe clip compression (>16.9 g) or contusion (50 g/cm)) were categorized separately from those investigating partial injury models (hemisection or moderate-to-severe clip compression or contusion). Results The cumulative mean improvements in Basso, Beattie, and Bresnahan scores after biomaterial-based interventions are 5.93 (95% CI = 2.41 − 9.45) and 4.44 (95% CI = 2.65 – 6.24) for transection and hemisection models, respectively. Factors associated with improved outcomes include the type of polymer used and a follow-up period greater than 6 weeks. Conclusion The functional improvement after implantation of biopolymer-based multimodal implants is modest. The relationship with neuronal

  20. Effect of Valproic Acid on Acute Lung Injury in a Rodent Model of Intestinal Ischemia Reperfusion

    PubMed Central

    Kim, Kyuseok; Li, Yongqing; Jin, Guang; Chong, Wei; Liu, Baoling; Lu, Jennifer; Lee, Kyoungbun; deMoya, Marc; Velmahos, George; Alam, Hasan B.

    2011-01-01

    Objectives Acute lung injury (ALI) is developed in many clinical situations and associated with significant morbidity and mortality. Valproic acid (VPA), a well-known anti-epileptic drug, has been shown to have anti-oxidant and anti-inflammatory effects in various ischemia/reperfusion (I/R) models. The purpose of this study was to investigate whether VPA could affect survival and development of ALI in a rat model of intestinal I/R. Methods Two experiments were performed. Experiment I: Male Sprague-Dawley rats (250–300 g) were subjected to intestinal ischemia (1 hour) and reperfusion (3 hours). They were randomized into 2 groups (n=7/group) 30 min after ischemia: Vehicle (Veh) and VPA (300 mg/kg, IV). Primary end-point for this study was survival over 4 hours from the start of ischemia. Experiment II: The histological and biochemical effects of VPA treatment on lungs were examined 3 hours (1 hr ischemia + 2 hrs reperfusion) after intestinal I/R injury (Veh vs. VPA, n = 9/group). An objective histological score was used to grade the degree of ALI. Enzyme linked immunosorbent assay (ELISA) was performed to measure serum levels of cytokine interleukins (IL-6 and 10), and lung tissue of cytokine-induced neutrophil chemoattractant (CINC) and myeloperoxidase (MPO). In addition, the activity of 8-isoprostane was analyzed for pulmonary oxidative damage. Results In Experiment I, four-hour survival rate was significantly higher in VPA treated animals compared to Veh animals (71.4% vs. 14.3%, p = 0.006). In Experiment II, ALI was apparent in all of the Veh group animals. Treatment with VPA prevented the development of ALI, with a reduction in the histological score (3.4 ± 0.3 vs. 5.3 ± 0.6, p = 0.025). Moreover, compared to the Veh control group the animals from the VPA group displayed decreased serum levels of IL-6 (952 ± 213 vs. 7709 ± 1990 pg/ml, p = 0.011), and lung tissue concentrations of CINC (1188 ± 28 vs. 1298 ± 27, p < 0.05), MPO activity (368 ± 23 vs. 490

  1. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Padilla-Velarde, Edgar; Ortuño-Sahagún, Daniel

    2016-01-01

    A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD. PMID:28018163

  2. Systemic and Local Drug Delivery for Treating Diseases of the Central Nervous System in Rodent Models

    PubMed Central

    Serwer, Laura; Hashizume, Rintaro; Ozawa, Tomoko; James, C. David

    2010-01-01

    Thorough preclinical testing of central nervous system (CNS) therapeutics includes a consideration of routes of administration and agent biodistribution in assessing therapeutic efficacy. Between the two major classifications of administration, local vs. systemic, systemic delivery approaches are often preferred due to ease of administration. However, systemic delivery may result in suboptimal drug concentration being achieved in the CNS, and lead to erroneous conclusions regarding agent efficacy. Local drug delivery methods are more invasive, but may be necessary to achieve therapeutic CNS drug levels. Here, we demonstrate proper technique for three routes of systemic drug delivery: intravenous injection, intraperitoneal injection, and oral gavage. In addition, we show a method for local delivery to the brain: convection-enhanced delivery (CED). The use of fluorescently-labeled compounds is included for in vivo imaging and verification of proper drug administration. The methods are presented using murine models, but can easily be adapted for use in rats. PMID:20736920

  3. Spinal manual therapy produces rapid onset analgesia in a rodent model.

    PubMed

    Grayson, Jane E; Barton, Tom; Cabot, Peter J; Souvlis, Tina

    2012-08-01

    A rapid hypoalgesic effect following spinal manual therapy (SMT) has been demonstrated in humans. Although the characteristics of the pain relief are well described, the mechanisms have remained speculative. The purpose of this suite of studies was to investigate the effects of SMT on pain measures using animal models. This study employed a randomized, controlled design. Study 1: Rats without inflammation were allocated to either a treatment group (n = 6) that received three applications of joint mobilization centrally over L5 or a sham-treated group (n = 6) who received non-specific handling. Pressure pain threshold (PPT) and thermal pain threshold (TPT) were measured before and immediately after each intervention. Results demonstrated significantly increased mechanical nociceptive thresholds in the SMT group (p = 0.01) compared to that of the sham-treated group but no difference for thermal nociceptive thresholds. Study 2: The time course effect of an inflammatory and mechanical response following i.pl injection of inflammatory mediators was investigated to determine the appropriate time period for a treatment intervention. Study 3: The effects of SMT on mechanical nociception were investigated following interplanar injection of inflammatory mediators into the right hind paw of rats as a pain model (n = 6 for both SMT and sham-treated groups). Injection of endogenous metabolites produced significant swelling and flaring as well as increased PPT values following SMT (p < 0.02) compared with controls. These results demonstrate a rapid analgesic response following application of SMT, which has similar characteristics as that seen in both symptomatic and asymptomatic human populations.

  4. Platelets promote cartilage repair and chondrocyte proliferation via ADP in a rodent model of osteoarthritis.

    PubMed

    Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu

    2016-01-01

    Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.

  5. Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models

    PubMed Central

    Rajpal, Deepak K.; Klein, Jean-Louis; Mayhew, David; Boucheron, Joyce; Spivak, Aaron T.; Kumar, Vinod; Ingraham, Karen; Paulik, Mark; Chen, Lihong; Van Horn, Stephanie; Thomas, Elizabeth; Sathe, Ganesh; Livi, George P.; Holmes, David J.; Brown, James R.

    2015-01-01

    The gastrointestinal tract microbiome has been suggested as a potential therapeutic target for metabolic diseases such as obesity and Type 2 diabetes mellitus (T2DM). However, the relationship between changes in microbial communities and metabolic disease-phenotypes are still poorly understood. In this study, we used antibiotics with markedly different antibacterial spectra to modulate the gut microbiome in a diet-induced obesity mouse model and then measured relevant biochemical, hormonal and phenotypic biomarkers of obesity and T2DM. Mice fed a high-fat diet were treated with either ceftazidime (a primarily anti-Gram negative bacteria antibiotic) or vancomycin (mainly anti-Gram positive bacteria activity) in an escalating three-dose regimen. We also dosed animals with a well-known prebiotic weight-loss supplement, 10% oligofructose saccharide (10% OFS). Vancomycin treated mice showed little weight change and no improvement in glycemic control while ceftazidime and 10% OFS treatments induced significant weight loss. However, only ceftazidime showed significant, dose dependent improvement in key metabolic variables including glucose, insulin, protein tyrosine tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Subsequently, we confirmed the positive hyperglycemic control effects of ceftazidime in the Zucker diabetic fatty (ZDF) rat model. Metagenomic DNA sequencing of bacterial 16S rRNA gene regions V1-V3 showed that the microbiomes of ceftazidime dosed mice and rats were enriched for the phylum Firmicutes while 10% OFS treated mice had a greater abundance of Bacteroidetes. We show that specific changes in microbial community composition are associated with obesity and glycemic control phenotypes. More broadly, our study suggests that in vivo modulation of the microbiome warrants further investigation as a potential therapeutic strategy for metabolic diseases. PMID:26709835

  6. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain

    PubMed Central

    Wallace, Victoria C. J.; Blackbeard, Julie; Segerdahl, Andrew R.; Hasnie, Fauzia; Pheby, Timothy; McMahon, Stephen B.; Rice, Andrew S. C.

    2009-01-01

    A distal symmetrical sensory peripheral neuropathy is frequently observed in people living with Human Immunodeficiency Virus Type 1 (HIV-1). This neuropathy can be associated with viral infection alone, probably involving a role for the envelope glycoprotein gp120; or a drug-induced toxic neuropathy associated with the use of nucleoside analogue reverse transcriptase inhibitors as a component of highly active anti-retroviral therapy. In order to elucidate the mechanisms underlying drug-induced neuropathy in the context of HIV infection, we have characterized pathological events in the peripheral and central nervous system following systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) with or without the concomitant delivery of HIV-gp120 to the rat sciatic nerve (gp120+ddC). Systemic ddC treatment alone is associated with a persistent mechanical hypersensitivity (33% decrease in limb withdrawal threshold) that when combined with perineural HIV-gp120 is exacerbated (48% decrease in threshold) and both treatments result in thigmotactic (anxiety-like) behaviour. Immunohistochemical studies revealed little ddC-associated alteration in DRG phenotype, as compared with known changes following perineural HIV-gp120. However, the chemokine CCL2 is significantly expressed in the DRG of rats treated with perineural HIV-gp120 and/or ddC and there is a reduction in intraepidermal nerve fibre density, comparable to that seen in herpes zoster infection. Moreover, a spinal gliosis is apparent at times of peak behavioural sensitivity that is exacerbated in gp120+ddC as compared to either treatment alone. Treatment with the microglial inhibitor, minocycline, is associated with delayed onset of hypersensitivity to mechanical stimuli in the gp120+ddC model and reversal of some measures of thigmotaxis. Finally, the hypersensitivity to mechanical stimuli was sensitive to systemic treatment with gabapentin, morphine and the cannabinoid WIN 55,212-2, but not with

  7. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain.

    PubMed

    Wallace, Victoria C J; Blackbeard, Julie; Segerdahl, Andrew R; Hasnie, Fauzia; Pheby, Timothy; McMahon, Stephen B; Rice, Andrew S C

    2007-10-01

    A distal symmetrical sensory peripheral neuropathy is frequently observed in people living with Human Immunodeficiency Virus Type 1 (HIV-1). This neuropathy can be associated with viral infection alone, probably involving a role for the envelope glycoprotein gp120; or a drug-induced toxic neuropathy associated with the use of nucleoside analogue reverse transcriptase inhibitors as a component of highly active anti-retroviral therapy. In order to elucidate the mechanisms underlying drug-induced neuropathy in the context of HIV infection, we have characterized pathological events in the peripheral and central nervous system following systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) with or without the concomitant delivery of HIV-gp120 to the rat sciatic nerve (gp120+ddC). Systemic ddC treatment alone is associated with a persistent mechanical hypersensitivity (33% decrease in limb withdrawal threshold) that when combined with perineural HIV-gp120 is exacerbated (48% decrease in threshold) and both treatments result in thigmotactic (anxiety-like) behaviour. Immunohistochemical studies revealed little ddC-associated alteration in DRG phenotype, as compared with known changes following perineural HIV-gp120. However, the chemokine CCL2 is significantly expressed in the DRG of rats treated with perineural HIV-gp120 and/or ddC and there is a reduction in intraepidermal nerve fibre density, comparable to that seen in herpes zoster infection. Moreover, a spinal gliosis is apparent at times of peak behavioural sensitivity that is exacerbated in gp120+ddC as compared to either treatment alone. Treatment with the microglial inhibitor, minocycline, is associated with delayed onset of hypersensitivity to mechanical stimuli in the gp120+ddC model and reversal of some measures of thigmotaxis. Finally, the hypersensitivity to mechanical stimuli was sensitive to systemic treatment with gabapentin, morphine and the cannabinoid WIN 55,212-2, but not with

  8. The yin and yang of cannabis-induced psychosis: the actions of Δ(9)-tetrahydrocannabinol and cannabidiol in rodent models of schizophrenia.

    PubMed

    Arnold, J C; Boucher, A A; Karl, T

    2012-01-01

    The link between cannabis and psychosis has often been debated with polarized views on the topic. There is substantial epidemiological evidence showing that cannabis increases the risk of psychosis, whereas other research suggests that schizophrenia patients self-medicate with the substance. These conflicting accounts may at least be partially explained by the two phytocannabinoids cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC) and their opposing actions on schizophrenia-related symptoms. In the present review we will first focus on how traditional rodent models of schizophrenia have been used to improve our understanding of the propsychotic actions of THC and the antipsychotic actions of CBD. We will also review novel rodent models used to address genetic vulnerability to cannabis-induced schizophrenia and show that specific genes are being uncovered that modulate cannabinoid action (e.g. the schizophrenia susceptibility gene neuregulin 1). We will also review rodent studies that have addressed interactions between THC and CBD. These animal studies underscore great complexity with some studies showing that CBD antagonises the neurobehavioural effects of THC, while others show the opposite, that CBD potentiates the actions of THC. Various mechanisms are put forth to explain these divergent effects such as CBD antagonism at central CB1 receptors or that CBD inhibits proteins that regulate THC disposition and metabolism (e.g. the ABC transporter, P-glycoprotein).

  9. Sex Differences in Mechanisms and Outcome of Neonatal Hypoxia-Ischemia in Rodent Models: Implications for Sex-Specific Neuroprotection in Clinical Neonatal Practice

    PubMed Central

    Hill, Courtney A.; Fitch, R. Holly

    2012-01-01

    Clinical findings show that male infants with hypoxic-ischemic injury (HI) fare more poorly than matched females on cognitive outcomes. Rodent models of neonatal hypoxia-ischemia support this difference, with data showing that perinatal brain injury leads to long-term behavioral deficits primarily in male rodents and in female rodents treated with early androgens. Results support the idea that sex-specific gonadal hormones may modulate developmental response to injury and dovetail with overwhelming evidence of developmental androgen effects on typical brain morphology and behavior. However, mechanisms underlying sex differences in response to early brain injury may be more complicated. Specifically, activation of cell death pathways in response to HI may also differ by sex. In females, the preferential activation of the caspase-dependent apoptotic pathway may actually afford greater protection, potentially due to the actions of X-linked inhibitor of apoptosis (XIAP) within this pathway. This contrasts the pattern of preferential activation of the caspase-independent pathway in males. While an integrated model of sex-specific hormonal and genetic modulation of response to early injury remains to be fully elucidated, these findings suggest that infants might benefit from sex-specific neuroprotection following HI injury. PMID:22474588

  10. Mechanistic role of p38 MAPK in gastric cancer dissemination in a rodent model peritoneal metastasis.

    PubMed

    Graziosi, Luigina; Mencarelli, Andrea; Santorelli, Chiara; Renga, Barbara; Cipriani, Sabrina; Cavazzoni, Emanuel; Palladino, Giuseppe; Laufer, Stefan; Burnet, Michael; Donini, Annibale; Fiorucci, Stefano

    2012-01-15

    Peritoneal dissemination is a highly frequent complication of poorly differentiated gastric cancers for which no effective therapies are available. Constitutive activation of mitogen-activated protein kinases (MAPKs) signaling cascades is recognized as a causative factor in the malignant transformation of several carcinoma cell types. In the present study we provide evidence that p38 MAPK inhibition protects against gastric cancer cells dissemination in a mouse model of peritoneal carcinomatosis. Administering mice with ML3403 and SB203580, potent and selective p38 MAPK inhibitors, attenuate the formation of neoplastic foci induced by intraperitoneal inoculation of gastric cancer cells. By gene array analysis we found that such a protective effect correlates with a robust downregulation in the expression of CXC chemokine receptor-4, Fms-related tyrosine kinase 4 (FLT4), the non-receptor spleen tyrosine kinase (SYK) and the collagen α2(IV) (COL4A2) in neoplasic foci. Inhibition of p38 MAPK in vivo increased the sensitivity of tumor cells to cisplatin and associated with a robust downregulation in the expression of the multidrug resistance (MDR)-1, a well defined marker of resistance to chemotherapy. In summary, p38 MAPK inhibition by a small molecule is beneficial in preventing the peritoneal dissemination of poorly differentiated gastric cancer cells by acting at multiple check-points in the process of attachment and diffusion of tumor cells in the peritoneum.

  11. The HIF-1 inhibitor YC-1 decreases reactive astrocyte formation in a rodent ischemia model

    PubMed Central

    Na, Jong-In; Na, Joo-Young; Choi, Woo-Young; Lee, Min-Cheol; Park, Man-Seok; Choi, Kang-Ho; Lee, Jeong-Kil; Kim, Kyung-Tae; Park, Jong-Tae; Kim, Hyung-Seok

    2015-01-01

    Astrocytes become reactive after central nervous system injury, re-expressing glial fibrillary acidic protein (GFAP), vascular endothelial growth factor (VEGF), and nestin. Hypoxia-inducible transcription factor alpha (HIF-1α) is an important transcription factor for several genes including the VEGF and nestin genes, the expression of which generate reactive astrocytes and cause gliosis after cerebral ischemia. To evaluate the role of HIF-1α in reactive astrocyte formation, we applied the potent HIF-1α inhibitor YC-1 to a focal cerebral ischemia model and analyzed the expression of HIF-1α, VEGF, nestin, and GFAP. Quantitative real-time reverse transcription polymerase chain reaction and western blot analyses demonstrated that the expression of HIF-1α and its downstream genes (VEGF and nestin) were markedly attenuated in the YC-1-treated group versus the control group (HIF-1α, VEGF: p < 0.01; nestin: p < 0.05). GFAP expression was also effectively inhibited in the YC-1-treated group (p < 0.05). Immunohistochemical evaluations showed that GFAP-positive (GFAP+) cells in the YC-1-treated group were sparse in the peri-infarct area, while an immunofluorescence assay revealed that the number of VEGF+/GFAP+ and nestin+/GFAP+ reactive astrocytes were decreased in the YC-1-treated group (p < 0.05). These results demonstrate that HIF-1α suppression decreases the formation of reactive astrocytes and gliosis that occur following focal ischemia. PMID:26064442

  12. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia.

    PubMed

    Hadar, R; Bikovski, L; Soto-Montenegro, M L; Schimke, J; Maier, P; Ewing, S; Voget, M; Wieske, F; Götz, T; Desco, M; Hamani, C; Pascau, J; Weiner, I; Winter, C

    2017-04-04

    The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.Molecular Psychiatry advance online publication, 4 April 2017; doi:10.1038/mp.2017.52.

  13. Premenopausal Obesity and Breast Cancer Growth Rates in a Rodent Model.

    PubMed

    Matthews, Shawna B; McGinley, John N; Neil, Elizabeth S; Thompson, Henry J

    2016-04-11

    Obese premenopausal women with breast cancer have poorer prognosis for long term survival, in part because their tumors are larger at the time of diagnosis than are found in normal weight women. Whether larger tumor mass is due to obesity-related barriers to detection or to effects on tumor biology is not known. This study used polygenic models for obesity and breast cancer to deconstruct this question with the objective of determining whether cell autonomous mechanisms contribute to the link between obesity and breast cancer burden. Assessment of the growth rates of 259 chemically induced mammary carcinomas from rats sensitive to dietary induced obesity (DS) and of 143 carcinomas from rats resistant (DR) to dietary induced obesity revealed that tumors in DS rats grew 1.8 times faster than in DR rats. This difference may be attributed to alterations in cell cycle machinery that permit more rapid tumor cell accumulation. DS tumors displayed protein expression patterns consistent with reduced G1/S checkpoint inhibition and a higher threshold of factors required for execution of the apoptotic cell death pathway. These mechanistic insights identify regulatory targets for life style modifications or pharmacological interventions designed to disrupt the linkage between obesity and tumor burden.

  14. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    PubMed Central

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  15. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery

    PubMed Central

    Dantzer, Robert

    2016-01-01

    Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission. PMID:27026361

  16. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  17. The biological effects of tocotrienol on bone: a review on evidence from rodent models

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2015-01-01

    Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211

  18. Involvement of glial P2Y1 receptors in cognitive deficit after focal cerebral stroke in a rodent model

    PubMed Central

    2013-01-01

    Background Neuroinflammation is associated with many conditions that lead to dementia, such as cerebrovascular disorders or Alzheimer’s disease. However, the specific role of neuroinflammation in the progression of cognitive deficits remains unclear. To understand the molecular mechanisms underlying these events we used a rodent model of focal cerebral stroke, which causes deficits in hippocampus-dependent cognitive function. Methods Cerebral stroke was induced by middle cerebral artery occlusion (MCAO). Hippocampus-dependent cognitive function was evaluated by a contextual fear conditioning test. The glial neuroinflammatory responses were investigated by immunohistochemical evaluation and diffusion tensor MRI (DTI). We used knockout mice for P2Y1 (P2Y1KO), a glial ADP/ATP receptor that induces the release of proinflammatory cytokines, to examine the links among P2Y1-mediated signaling, the neuroinflammatory response, and cognitive function. Results Declines in cognitive function and glial neuroinflammatory response were observed after MCAO in both rats and mice. Changes in the hippocampal tissue were detected by DTI as the mean diffusivity (MD) value, which corresponded with the cognitive decline at 4 days, 1 week, 3 weeks, and 2 months after MCAO. Interestingly, the P2Y1KO mice with MCAO showed a decline in sensory-motor function, but not in cognition. Furthermore, the P2Y1KO mice showed neither a hippocampal glial neuroinflammatory response (as assessed by immunohistochemistry) nor a change in hippocampal MD value after MCAO. In addition, wild-type mice treated with a P2Y1-specific antagonist immediately after reperfusion did not show cognitive decline. Conclusion Our findings indicate that glial P2Y1 receptors are involved in the hippocampal inflammatory response. The findings from this study may contribute to the development of a therapeutic strategy for brain infarction, targeting the P2Y1 receptor. PMID:23890321

  19. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model.

    PubMed

    Wargo, Andrew R; Huijben, Silvie; de Roode, Jacobus C; Shepherd, James; Read, Andrew F

    2007-12-11

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance.

  20. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    USGS Publications Warehouse

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  1. EVALUATION OF THE EFFECTS OF SPECIFIC OPIOID RECEPTOR AGONISTS IN A RODENT MODEL OF SPINAL CORD INJURY

    PubMed Central

    Aceves, Miriam; Mathai, Babetta B.; Hook, Michelle A.

    2016-01-01

    Objective The current study aimed to evaluate the contribution(s) of specific opioid receptor systems to the analgesic and detrimental effects of morphine, observed after spinal cord injury in prior studies. Study Design We used specific opioid receptor agonists to assess the effects of µ- (DAMGO), δ- (DPDPE), and κ- (GR89696) opioid receptor activation on locomotor (BBB, tapered beam, ladder tests) and sensory (girdle, tactile, and tail-flick tests) recovery in a rodent contusion model (T12). We also tested the contribution of non-classic opioid binding using [+]- morphine. Methods First, a dose-response curve for analgesic efficacy was generated for each opioid agonist. Baseline locomotor and sensory reactivity was assessed 24 h after injury. Subjects were then treated with an intrathecal dose of a specific agonist and re-tested after 30 min. To evaluate effects on recovery, subjects were treated with a single dose of an agonist and both locomotor and sensory function were monitored for 21 d. Results All agonists for the classic opioid receptors, but not the [+]- morphine enantiomer, produced antinociception at a concentration equivalent to a dose of morphine previously shown to produce strong analgesic effects (0.32 μmol). DAMGO and [+]- morphine did not affect long-term recovery. GR89696, however, significantly undermined recovery of locomotor function at all doses tested. Conclusions Based on these data, we hypothesize that the analgesic efficacy of morphine is primarily mediated by binding to the classic μ-opioid receptor. Conversely, the adverse effects of morphine may be linked to activation of the κ-opioid receptor. Ultimately, elucidating the molecular mechanisms underlying the effects of morphine is imperative in order to develop safe and effective pharmacological interventions in a clinical setting. Setting USA PMID:26927293

  2. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma.

    PubMed

    Kline, Anthony E; Massucci, Jaime L; Ma, Xiecheng; Zafonte, Ross D; Dixon, C Edward

    2004-12-01

    Oxidative stress is a significant contributor to the secondary sequelae of traumatic brain injury (TBI), and may mediate subsequent neurobehavioral deficits and histopathology. The present study examined the neuroprotective effects of bromocriptine (BRO), a dopamine D2 receptor agonist with significant antioxidant properties, on cognition, histopathology, and lipid peroxidation in a rodent model of focal brain trauma. BRO (5 mg/kg) or a comparable volume of vehicle (VEH) was administered intraperitoneally 15 min prior to cortical impact or sham injury. In experiment 1, spatial learning was assessed in an established water maze task on post-surgery days 14-18, followed by quantification of hippocampal cell survival and cortical lesion volume at 4 weeks. In experiment 2, rats were sacrificed 1 hr post-surgery, and malondialdehyde (MDA), the end product of lipid peroxidation, was measured in the frontal cortex, striatum, and substantia nigra using a thiobarbituric acid reactive substances assay. The TBI+BRO group was significantly more adept at locating a hidden platform in the water maze compared to the TBI+VEH group and also exhibited a greater percentage of surviving CA3 hippocampal neurons. TBI increased MDA in all examined regions of the VEH-treated, but not BRO-treated group versus SHAMs. MDA was significantly decreased in both the striatum (4.22 +/- 0.52 versus 5.60 +/- 0.44 nmol per mg/tissue +/- SEM) and substantia nigra (4.18 +/- 0.35 versus 7.76 +/- 2.05) of the TBI+BRO versus TBI+VEH groups, respectively, while only a trend toward decreased MDA was observed in the frontal cortex (5.44 +/- 0.44 versus 6.96 +/- 0.77). These findings suggest that TBI-induced oxidative stress is attenuated by acute BRO treatment, which may, in part, explain the benefit in cognitive and histological outcome.

  3. Comparisons between Garcia, Modo, and Longa rodent stroke scales: Optimizing resource allocation in rat models of focal middle cerebral artery occlusion.

    PubMed

    Bachour, Salam P; Hevesi, Mario; Bachour, Ornina; Sweis, Brian M; Mahmoudi, Javad; Brekke, Julia A; Divani, Afshin A

    2016-05-15

    The use of rodent stroke models allow for the understanding of stroke pathophysiology. There is currently no gold standard neurological assessment to measure deficits and recovery from stroke in rodent models. Agreement on a universal preclinical stroke scale allows for comparison of the outcomes among conducted studies. The present study aimed to compare three routinely used neurological assessments in rodent studies (i.e., Garcia, Modo, and Longa) to determine which is most effective for accurately and consistently quantifying neurological deficits in the context of focal middle cerebral artery occlusion (MCAo) in rats. Focal MCAo was induced in 22 male Wistar rats using a novel transfemoral approach. Rodents were assessed for neurological deficit pre-injury as well as 3 and 24h post-injury. Data was analyzed to determine Pearson correlation coefficients in addition to McNemar's χ(2) values between each pair of neurological assessments. All three stroke scales, Garcia, Modo, and Longa, showed statistically significant changes between the baseline and the 3-hour neurological assessments. A trend towards neurological recovery was observed in all three stroke scales between the 3 and 24-hour endpoints. The three scales were highly correlated with each other, with Garcia and Modo having the strongest correlation. Of the three pairwise analyses, the comparison between the Garcia and Longa tests demonstrated the highest McNemar's χ(2) value, indicating least marginal homogeneity between these two tests. The combination of high correlation between Garcia and Modo tests along with greatest marginal heterogeneity observed between the Garcia and Longa test lead us to recommend the use of Garcia and Longa neurological scales when researchers are hoping to capture the broadest range of neurological factors using only two stroke scales.

  4. Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation

    PubMed Central

    Hartung, Jane E.; Eskew, Olivia; Wong, Terrence; Tchivileva, Inna E.; Oladosu, Folabomi A.; O’Buckley, Sandra C.; Nackley, Andrea G.

    2015-01-01

    Nuclear factor-kappa B (NF-κB) is a ubiquitously expressed protein complex regulating the transcription of genes involved in inflammation and pain. Increased NF-κB activity in immune and nervous system cells is linked to several chronic pain conditions in humans as well as inflammation- and nerve injury-evoked pain in animals. A recent in vitro study further demonstrates that increased NF-κB activity in astrocytes decreases transcription of catechol-o-methyltransferase (COMT), an enzyme that inactivates catecholamines that cause pain. The purpose of the present study was to examine the relationship between systemic and astrocytic NF-κB activity, pain, and COMT expression in an animal model of inflammation. Results demonstrated that administration of the inflammatory stimulant complete Freund’s adjuvant (CFA) led to increased pain and decreased COMT protein expression in an NF-κB-dependent manner. Specifically, we found that rats and mice receiving intraplantar CFA exhibited increased behavioral responses to mechanical and thermal heat stimuli. CFA-evoked pain was blocked in rats receiving a pre-emptive systemic dose of the NF-κB inhibitor MG132 and exacerbated in IKKca mice with constitutive NF-κB activity in astrocytes. Furthermore, we observed NF-κB-linked reductions in COMT expression in midbrain at 6h and 1d following CFA in rats and at 1h and 1d in forebrain and midbrain following CFA in IKKca mice. Collectively, these results demonstrate that systemic and astrocytic NF-κB activity drive inflammatory pain and regulate the expression of COMT in forebrain and midbrain structures. PMID:26187567

  5. The role of anxiety in vulnerability for self-injurious behaviour: studies in a rodent model.

    PubMed

    Yuan, X; Devine, D P

    2016-09-15

    Self-injurious behaviour (SIB) is a debilitating characteristic that is highly prevalent in autism and other neurodevelopmental disorders. Pathological anxiety is also common, and there are reports of comorbid anxiety and self-injury in some children. We have investigated potential interactions between anxiety and self-injury, using a rat model of pemoline-induced self-biting. In one experiment, rats were pre-screened for trait anxiety by measuring expression of anxiety-related behaviour on the elevated plus maze and open field emergence test. The rats were then treated with pemoline once daily for ten days, and vulnerability for pemoline-induced self-injury was evaluated. This revealed modest correlations between innate levels of anxiety-related behaviour in the open field test (time in the start box, and latency to enter the open field), and vulnerability for pemoline-induced self-biting (total duration of self-injurious oral contact, and total size of tissue injury). Measures in the elevated plus maze were not significantly correlated with vulnerability for pemoline-induced self-injury. In a second experiment, rats were treated with the beta-carboline FG 7142 twice daily, during 5days of treatment with pemoline. The rats that were treated with this anxiogenic drug exhibited greater duration of self-injurious oral contact, and larger injuries than vehicle-treated controls did. Overall, these results suggest that anxiety may contribute to the etiology and/or expression of self-injurious behaviour, and indicate that further research is warranted.

  6. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model.

    PubMed

    van Steenberghe, M; Schubert, T; Guiot, Y; Bouzin, C; Bollen, X; Gianello, P

    2017-02-25

    Glutaraldehyde preservation is the gold standard for cardiovascular biological prosthesis. However, secondary calcifications and the absence of tissue growth remain major limitations. Our study assessed in vitro and in vivo the biocompatibility of human (fascia lata, pericardium) and porcine tissues (pericardium, peritoneum) treated with a physicochemical procedure for decellularization and non-conventional pathogens inactivation. Biopsies were performed before and after treatment to assess decellularization (HE/Dapi staining/DNA quantification/MHC I/alpha gal immunostaining) and mechanical integrity. Forty-five rats received an abdominal aortic patch of native cryopreserved tissues (n = 20), treated tissues (n = 20) or glutaraldehyde-preserved bovine pericardium (GBP, control, n = 5). Grafts were explanted at 4 weeks and processed for HE/von Kossa staining and immunohistochemistries for lymphocytes (CD3)/macrophages (CD68) histomorphometry. 95% of decellularization was obtained for all tissues except for fascia lata (75%). Mechanical properties were slightly altered. In the in vivo model, a significant increase of CD3 and CD68 infiltrations was found in native and control implants in comparison with decellularized tissues (p < 0.05). Calcifications were found in 3 controls. Decellularized tissues were recolonized. GBP showed the most inflammatory response. This physicochemical treatment improves the biocompatibility of selected xeno/allogeneic tissues in comparison with their respective native cryopreserved tissues and with GBP. Incomplete decellularization is associated with a significantly higher inflammatory response. Our treatment is a promising tool in the field of tissue decellularization and tissue banking.

  7. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke

    PubMed Central

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-01-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, Hansen et al. proposed a fast kurtosis mapping method and demonstrated it in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, both DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis/diffusion lesion mismatch was observed using the conventional (26±13%, P<0.01) and fast DKI methods (23±8%, P<0.01). In addition, regression analysis showed that the kurtosis/diffusion lesion mismatch obtained using conventional and fast DKI methods were substantially correlated (R2=0.57, P=0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting. PMID:25208309

  8. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-11-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, a fast kurtosis mapping method has been demonstrated in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, the two DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis-diffusion lesion mismatch was observed using the conventional (26 ± 13%, P < 0.01) and fast DKI methods (23 ± 8%, P < 0.01). In addition, regression analysis showed that the kurtosis-diffusion lesion mismatches obtained using conventional and fast DKI methods were substantially correlated (R(2) = 0.57, P = 0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting.

  9. Liposomal polychemotherapy improves adrenocortical carcinoma treatment in a preclinical rodent model.

    PubMed

    Hantel, Constanze; Jung, Sara; Mussack, Thomas; Reincke, Martin; Beuschlein, Felix

    2014-06-01

    Owing to high relapse rates and early metastatic spread, prognosis in adrenocortical carcinoma (ACC) patients remains poor, highlighting the importance of developing new treatment alternatives for them. Recently, polychemotherapy regimens including etoposide, doxorubicin, and cisplatin together with mitotane (EDP-M) have been defined as the standard treatment for late-stage disease patients. Nevertheless, the administration of conventional cytostatic drugs is associated with severe and dose-limiting side effects. In an attempt to optimize existing clinical treatment regimens, in this study, we investigated the therapeutic efficacy of EDP-M in comparison with that of a paclitaxel-modified scheme (paclitaxel, doxorubicin, cisplatin plus mitotane (PDP-M)) in preclinical in vitro and in vivo models. In addition, based on an extraordinary uptake phenomenon of liposomes in ACC cells, we further evaluated liposomal variants of these protocols (etoposide, liposomal doxorubicin, liposomal cisplatin plus mitotane (LEDP-M) and nab-paclitaxel, liposomal doxorubicin, liposomal cisplatin plus mitotane (LPDP-M)). In vitro, PDP-M was more potent in the induction of apoptosis and inhibition of cell viability as well as cell proliferation than EDP-M. Following the administration of a single therapeutic cycle, we further demonstrated that LEDP-M and LPDP-M exerted significant antitumoral effects in vivo, which were not as evident upon EDP-M and PDP-M treatments. These results were confirmed in a long-term experiment, in which the highest and sustained antitumoral effects were observed for LEDP-M. In summary, liposomal cytostatic substances could represent a promising option that deserves testing in appropriate clinical protocols for the treatment of ACC patients.

  10. Hypergravity-induced immunomodulation in a rodent model: lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Green, Lora M.; Miller, Glen M.; Nelson, Gregory A.

    2002-01-01

    The major goal of this study was to quantify changes in lymphoid organs and cells over time due to centrifugation-induced hypergravity. C57BL/6 mice were exposed to 1, 2 and 3 G and the following assays were performed on days 1, 4, 7, 10, and 21: spleen, thymus, lung, and liver masses; total leukocyte, lymphocyte, monocyte/macrophage, and granulocyte counts; level of splenocyte apoptosis; enumeration of CD3+ T, CD3+/CD4+ T helper, CD3+/CD8+ T cytotoxic, B220+ B, and NK1.1+ natural killer cells; and quantification of cells expressing CD25, CD69, and CD71 activation markers. The data show that increased gravity resulted in decreased body, spleen, thymus, and liver, but not lung, mass. Significant reductions were noted in all three major leukocyte populations (lymphocytes, granulocytes, monocyte/macrophages) [correction of macrphages] with increased gravity; persistent depletion was noted in blood but not spleen. Among the various lymphocyte populations, the CD3+/CD8+ T cells and B220+ B cells were the most affected and NK1.1+ NK cells the least affected. Overall, the changes were most evident during the first week, with a greater influence noted for cells in the spleen. A linear relationship was found between some of the measurements and the level of gravity, especially on day 4. These findings indicate that hypergravity profoundly alters leukocyte number and distribution in a mammalian model and that some aberrations persisted throughout the three weeks of the study. In certain cases, the detected changes were similar to those observed after whole-body irradiation. In future investigations we hope to combine hypergravity with low-dose rate irradiation and immune challenge.

  11. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. Results: Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. Conclusion: With the present small-scale study, we could not prove a positive effect of nicotinic

  12. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research

    PubMed Central

    Jensen, Victoria S; Porsgaard, Trine; Lykkesfeldt, Jens; Hvid, Henning

    2016-01-01

    Laboratory rodents are available as either genetically defined inbred strains or genetically undefined outbred stocks. As outbred rodents are generally thought to display a higher level of phenotypic variation compared to inbred strains, it has been argued that experimental studies should preferentially be performed by using inbred rodents. However, very few studies with adequate sample sizes have in fact compared phenotypic variation between inbred strains and outbred stocks of rodents and moreover, these studies have not reached consistent conclusions. The aim of the present study was to compare the phenotypic variation in commonly used experimental readouts within obesity and diabetes research, for four of the most frequently used mouse strains: inbred C57BL/6 and BALB/c and outbred NMRI and CD-1 mice. The variation for all readouts was examined by calculating the coefficient of variation (CV), i.e., the relative variation, including a 95% confidence interval for the CV. We observed that for the majority of the selected readouts, inbred and outbred mice showed comparable phenotypic variation. The observed variation appeared highly influenced by strain choice and type of readout, which suggests that these collectively would serve as more predictive of the phenotypic variation than the more general classification of mice as inbred or outbred based on genetic heterogeneity. PMID:27648148

  13. Competency-Based Adult Education: Florida Model.

    ERIC Educational Resources Information Center

    Singer, Elizabeth

    This compilation of program materials serves as an introduction to Florida's Brevard Community College's (BCC's) Competency-Based Adult High School Completion Project, a multi-year project designed to teach adult administrators, counselors, and teachers how to organize and implement a competency-based adult education (CBAE) program; to critique…

  14. Response to Comment on "Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring".

    PubMed

    Eftekhari, Sanaz; Shahrokhi, Amene; Tsintsadze, Vera; Nardou, Romain; Brouchoud, Corinne; Conesa, Magali; Burnashev, Nail; Ferrari, Diana C; Ben-Ari, Yehezkel

    2014-10-10

    Bambini-Junior et al. questioned whether our treatment in two rodent models of autism has a long-lasting effect into adulthood. In response, we show that bumetanide treatment around delivery attenuates autistic behavioral features in adult offspring. Therefore, the polarity of γ-aminobutyric acid (GABA) actions during delivery exerts long-lasting priming actions after birth.

  15. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis

    PubMed Central

    Chen, Yi; Huang, Haixiu; Xu, Chengfu; Yu, Chaohui; Li, Youming

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide with an unclear mechanism. Long non-coding RNAs (lncRNAs) have recently emerged as important regulatory molecules. To better understand NAFLD pathogenesis, lncRNA and messenger RNA (mRNA) microarrays were conducted in an NAFLD rodent model. Potential target genes of significantly changed lncRNA were predicted using cis/trans-regulatory algorithms. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed to explore their function. In the current analysis, 89 upregulated and 177 downregulated mRNAs were identified, together with 291 deregulated lncRNAs. Bioinformatic analysis of these RNAs has categorized these RNAs into pathways including arachidonic acid metabolism, circadian rhythm, linoleic acid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathway, sphingolipid metabolism, steroid biosynthesis, tryptophan metabolism and tyrosine metabolism were compromised. Quantitative polymerase chain reaction (qPCR) of representative nine mRNAs and eight lncRNAs (named fatty liver-related lncRNA, FLRL) was conducted and this verified previous microarray results. Several lncRNAs, such as FLRL1, FLRL6 and FLRL2 demonstrated to be involved in circadian rhythm targeting period circadian clock 3 (Per3), Per2 and aryl hydrocarbon receptor nuclear translocator-like (Arntl), respectively. While FLRL8, FLRL3 and FLRL7 showed a potential role in PPAR signaling pathway through interaction with fatty acid binding protein 5 (Fabp5), lipoprotein lipase (Lpl) and fatty acid desaturase 2 (Fads2). Functional experiments showed that interfering of lncRNA FLRL2 expression affected the expression of predicted target, circadian rhythm gene Arntl. Moreover, both FLRL2 and Arntl were downregulated in the NAFLD cellular model. The current study identified lncRNA and corresponding mRNA in NAFLD

  16. Quality Assurance Model for Digital Adult Education Materials

    ERIC Educational Resources Information Center

    Dimou, Helen; Kameas, Achilles

    2016-01-01

    Purpose: This paper aims to present a model for the quality assurance of digital educational material that is appropriate for adult education. The proposed model adopts the software quality standard ISO/IEC 9126 and takes into account adult learning theories, Bloom's taxonomy of learning objectives and two instructional design models: Kolb's model…

  17. A mechanism-mediated model for carcinogenicity: model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals.

    PubMed Central

    Purdy, R

    1996-01-01

    A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coefficient, molecular size, atomic partial charge, bond angle strain, atomic acceptor delocalizibility, atomic radical superdelocalizibility, the lowest unoccupied molecular orbital (LUMO) energy of hypothesized intermediate nitrenium ion of primary aromatic amines, difference in charge of ionized and unionized carbon-chlorine bonds, substituent size and pattern on polynuclear aromatic hydrocarbons, the distance between lone electron pairs over a rigid structure, and the presence of functionalities such as nitroso and hydrazine. The model correctly classified 96% of the carcinogens in the training set of 306 chemicals, and 90% of the carcinogens in the test set of 301 chemicals. The test set by chance contained 84% of the positive thio-containing chemicals. A QSAR for these chemicals was developed. This posttest set modified model correctly predicted 94% of the carcinogens in the test set. This model was used to predict the carcinogenicity of the 25 organic chemicals the U.S. National Toxicology Program was testing at the writing of this article. PMID:8933058

  18. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models

    PubMed Central

    Yan, Pang-ke; Zhang, Li-na; Feng, Ying; Qu, Hui; Qin, Li; Zhang, Lian-shan; Leng, Ying

    2014-01-01

    Aim: The sodium glucose cotransporter 2 (SGLT2) plays an important role in renal glucose reabsorption, thus serves as a new target for the treatment of diabetes. The purpose of this study was to evaluate SHR3824 as a novel selective SGLT2 inhibitor and to characterize its in vivo effects on glucose homeostasis. The effects of chronic administration of SHR3824 on peripheral insulin sensitivity and pancreatic β-cell function were also investigated. Methods: The in vitro potency and selectivity of SHR3824 were assessed in HEK293 cells transfected with human SGLT2 or SGLT1. Acute and multi-dose studies were performed on ICR mice, GK rats and db/db mice to assess the ability of SHR3824 to enhance urinary glucose excretion and improve blood glucose levels. 2-Deoxyglucose uptake and insulin immunohistochemical staining were performed in the soleus muscle and pancreas, respectively, of db/db mice. A selective SGLT2 inhibitor BMS512148 (dapagliflozin) was taken as positive control. Results: SHR3824 potently inhibited human SGLT2 in vitro, but exerted much weak inhibition on human SGLT1 (the IC50 values of SHR3824 against human SGLT2 and SGLT1 were 2.38 and 4324 nmol/L, respectively). Acute oral administration of SHR3824 (0.3, 1.0, 3.0 mg/kg) dose-dependently improved glucose tolerance in ICR mice, and reduced hyperglycemia by increasing urinary glucose excretion in GK rats and db/db mice. Chronic oral administration of SHR3824 (0.3, 1.0, 3.0 mg·kg−1·d−1) dose-dependently reduced blood glucose and HbA1c levels in GK rats and db/db mice, and significantly increased insulin-stimulated glucose uptake in the soleus muscles and enhanced insulin staining in the islet cells of db/db mice. Conclusion: SHR3824 is a potent and selective SGLT2 inhibitor and exhibits antidiabetic efficacy in several rodent models, suggesting its potential as a new therapeutic agent for the treatment of type 2 diabetes. PMID:24786232

  19. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa

    PubMed Central

    2011-01-01

    Background Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. Methods An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. Results The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. Conclusion The automated platform ℮-conome used

  20. Characterization of a Graded Cervical Hemicontusion Spinal Cord Injury Model in Adult Male Rats

    PubMed Central

    Dunham, Kelly A.; Siriphorn, Akkradate; Chompoopong, Supin

    2010-01-01

    Abstract Most experimental models of spinal cord injury (SCI) in rodents induce damage in the thoracic cord and subsequently examine hindlimb function as an indicator of recovery. In these models, functional recovery is most attributable to white-matter preservation and is less influenced by grey-matter sparing. In contrast, most clinical cases of SCI occur at the lower cervical levels, a region in which both grey-matter and white-matter sparing contribute to functional motor recovery. Thus experimental cervical SCI models are beginning to be developed and used to assess protective and pharmacological interventions following SCI. The objective of this study was to characterize a model of graded cervical hemicontusion SCI with regard to several histological and behavioral outcome measures, including novel forelimb behavioral tasks. Using a commercially available rodent spinal cord impactor, adult male rats received hemicontusion SCI at vertebral level C5 at 100, 200, or 300 kdyn force, to produce mild, moderate, or severe injury severities. Tests of skilled and unskilled forelimb and locomotor function were employed to assess functional recovery, and spinal cord tissue was collected to assess lesion severity. Deficits in skilled and unskilled forelimb function and locomotion relating to injury severity were observed, as well as decreases in neuronal numbers, white-matter area, and white-matter gliosis. Significant correlations were observed between behavioral and histological data. Taken together, these data suggest that the forelimb functional and locomotor assessments employed here are sensitive enough to measure functional changes, and that this hemicontusion model can be used to evaluate potential protective and regenerative therapeutic strategies. PMID:21087156

  1. New generalized poisson mixture model for bimodal count data with drug effect: An application to rodent brief‐access taste aversion experiments

    PubMed Central

    Soto, J; Orlu Gul, M; Cortina‐Borja, M; Tuleu, C; Standing, JF

    2016-01-01

    Pharmacodynamic (PD) count data can exhibit bimodality and nonequidispersion complicating the inclusion of drug effect. The purpose of this study was to explore four different mixture distribution models for bimodal count data by including both drug effect and distribution truncation. An example dataset, which exhibited bimodal pattern, was from rodent brief‐access taste aversion (BATA) experiments to assess the bitterness of ascending concentrations of an aversive tasting drug. The two generalized Poisson mixture models performed the best and was flexible to explain both under and overdispersion. A sigmoid maximum effect (Emax) model with logistic transformation was introduced to link the drug effect to the data partition within each distribution. Predicted density‐histogram plot is suggested as a model evaluation tool due to its capability to directly compare the model predicted density with the histogram from raw data. The modeling approach presented here could form a useful strategy for modeling similar count data types. PMID:27472892

  2. A MATHEMATICAL MODEL FOR THE ANDROGENIC REGULATION OF THE PROSTATE IN INTACT AND CASTRATE ADULT MALE RATS

    EPA Science Inventory

    An abstract that provides understanding for a mathematical model by Barton and Anderson, for the dynamics of androgenic synthesis, transport, metabolism, and regulation of the rodent ventral prostate.

  3. Associations between parenting behavior and anxiety in a rodent model and a clinical sample: relationship to peripheral BDNF levels

    PubMed Central

    Dalle Molle, R; Portella, A K; Goldani, M Z; Kapczinski, F P; Leistner-Segala, S; Salum, G A; Manfro, G G; Silveira, P P

    2012-01-01

    Adverse early-life environment is associated with anxiety-like behaviors and disorders. Brain-derived neurotrophic factor (BDNF) is sensitive to this environment and could be a marker of underlying brain changes. We aimed at evaluating the development of anxiety-like behaviors in a rat model of early adversity, as well as the possible association with BDNF levels. Similar associations were investigated in a sample of adolescent humans. For the rat study, Wistar rat litters were divided into: early-life stress (ELS, limited access to nesting material) and control groups. Maternal behavior was observed from days 1 to 9 of life and, as adults, rats were subjected to behavioral testing and BDNF measurements in plasma, hippocampus, amygdala and periaqueductal gray. For the human study, 129 adolescents were evaluated for anxiety symptoms and perceived parental care. Serum BDNF levels and the Val66Met polymorphism of the BDNF gene were investigated. We found that ELS dams showed more pure contact, that is, contact with low care and high control, toward pups, and their adult offspring demonstrated higher anxiety-like behaviors and plasma BDNF. Also the pure contact correlated positively with adult peripheral BDNF. Similarly in humans, there was a positive correlation between maternal overprotection and serum BDNF only in Met carriers. We also found negative correlations between maternal warmth and separation anxiety, social phobia and school phobia. Finally, our translational approach revealed that ELS, mediated through variations in maternal care, is associated with anxiety in both rats and humans and increased peripheral BDNF may be marking these phenomena. PMID:23168995

  4. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Sumiyoshi, Akira; Kanamori, Masayuki; Sonoda, Yukihiko; Kawashima, Ryuta; Tominaga, Teiji

    2016-10-01

    Convection-enhanced delivery (CED) of therapeutic agents is a promising local delivery technique that has been extensively studied as a treatment for CNS diseases over the last two decades. One continuing challenge of CED is accurate and consistent delivery of the agents to the target. The present study focused on a new type of therapeutic agent, NK012, a novel SN-38-loaded polymeric micelle. Local delivery profiles of NK012 and SN-38 were studied using rodent brain and intracranial rodent brain tumor models. First, the cytotoxicity of NK012 against glioma cell lines was determined in vitro. Proliferations of glioma cells were significantly reduced after exposure to NK012. Then, the distribution and local toxicity after CED delivery of NK012 and SN-38 were evaluated in vivo. Volume of distribution of NK012 after CED was much larger than that of SN-38. Histological examination revealed minimum brain tissue damage in rat brains after delivery of 40 µg NK012 but severe damage with SN-38 at the same dose. Subsequently, the efficacy of NK012 delivered via CED was tested in 9L and U87MG rodent orthotopic brain tumor models. CED of NK012 displayed excellent efficacy in the 9L and U87MG orthotopic brain tumor models. Furthermore, NK012 and gadolinium diamide were co-delivered via CED to monitor the NK012 distribution using MRI. Volume of NK012 distribution evaluated by histology and MRI showed excellent agreement. CED of NK012 represents an effective treatment option for malignant gliomas. MRI-guided CED of NK012 has potential for clinical application.

  5. Rodent selectivity of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists: insights from a receptor model.

    PubMed

    Kriegl, Jan M; Martyres, Domnic; Grundl, Marc A; Anderskewitz, Ralf; Dollinger, Horst; Rast, Georg; Schmid, Bernhard; Seither, Peter; Tautermann, Christofer S

    2015-01-15

    Rodent selectivity data of piperidine-4-yl-1H-indoles, a series of CC chemokine receptor-3 (CCR3) antagonists, are presented and discussed as part of an overall optimization effort within this lead compound class. Although attachment of an acidic moiety to the 1-position of the indole led to an overall balanced in vitro profile, in particular reducing inhibition of the hERG channel, potency on the rat and mouse receptor worsened. These findings could be rationalized in the context of a CCR3 homology model.

  6. Convection enhanced drug delivery of BDNF through a microcannula in a rodent model to strengthen connectivity of a peripheral motor nerve bridge model to bypass spinal cord injury.

    PubMed

    Martin Bauknight, W; Chakrabarty, Samit; Hwang, Brian Y; Malone, Hani R; Joshi, Shailendra; Bruce, Jeffrey N; Sander Connolly, E; Winfree, Christopher J; Cunningham, Miles G; Martin, John H; Haque, Raqeeb

    2012-04-01

    Models employing peripheral nerve to bypass spinal cord injury (SCI), although highly promising, may benefit from improved nerve regeneration and motor bridge connectivity. Recent studies have demonstrated that neuronal growth factor-induced enhancement of endogenous neurorestoration may improve neuronal connectivity after severe neurologic injury, particularly if delivered intraparenchymally with zero-order kinetics. We sought to investigate the effect of convection-enhanced delivery of brain-derived neurotrophic factor (BDNF), a neuronal growth factor, on the connectivity of a peripheral motor-nerve bridge in a rodent model using electrophysiology and immunohistochemistry (IHC). Spinal cords of 29 female rats were hemisected at the L1 level. Ipsilateral T13 peripheral nerves were dissected from their muscular targets distally, while maintaining their connections with the spinal cord, and inserted caudal to the injury site to establish the nerve bridge. A microcannula attached to a six-week mini-osmotic pump was used to deliver either BDNF (n=12), saline (n=14), or fluorescein dye (n=3) directly into the spinal cord parenchyma between the site of nerve insertion and hemisection to a depth of 2mm into the area of the lateral motor pool. After four weeks, gastrocnemius muscle activation was assessed electromyographically in five animals from each group. Spinal cords were harvested and analyzed with IHC for cannula-associated injury, and nerve regeneration. Strength of motor bridge connection was illustrated by electrophysiology data. Intraspinal BDNF levels were measured using enzyme-linked immunosorbent assay. IHC revealed increased intraparenchymal BDNF concentration at the nerve bridge insertion site with evidence of minimal trauma from cannulation. BDNF infusion resulted in stronger connections between bridge nerves and spinal motor axons. Bridge nerve electrical stimulation in BDNF-treated rats evoked hind leg electromyogram responses of shorter latency and

  7. Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model.

    PubMed

    Groves, James O; Leslie, Isla; Huang, Guo-Jen; McHugh, Stephen B; Taylor, Amy; Mott, Richard; Munafò, Marcus; Bannerman, David M; Flint, Jonathan

    2013-01-01

    The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.

  8. In silico exploratory study using structure-activity relationship models and metabolic information for prediction of mutagenicity based on the Ames test and rodent micronucleus assay.

    PubMed

    Kamath, P; Raitano, G; Fernández, A; Rallo, R; Benfenati, E

    2015-12-01

    The mutagenic potential of chemicals is a cause of growing concern, due to the possible impact on human health. In this paper we have developed a knowledge-based approach, combining information from structure-activity relationship (SAR) and metabolic triggers generated from the metabolic fate of chemicals in biological systems for prediction of mutagenicity in vitro based on the Ames test and in vivo based on the rodent micronucleus assay. In the first part of the work, a model was developed, which comprises newly generated SAR rules and a set of metabolic triggers. These SAR rules and metabolic triggers were further externally validated to predict mutagenicity in vitro, with metabolic triggers being used only to predict mutagenicity of chemicals, which were predicted unknown, by SARpy. Hence, this model has a higher accuracy than the SAR model, with an accuracy of 89% for the training set and 75% for the external validation set. Subsequently, the results of the second part of this work enlist a set of metabolic triggers for prediction of mutagenicity in vivo, based on the rodent micronucleus assay. Finally, the results of the third part enlist a list of metabolic triggers to find similarities and differences in the mutagenic response of chemicals in vitro and in vivo.

  9. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  10. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    PubMed Central

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.

    2017-01-01

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506

  11. Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis.

    PubMed

    Honda, Yasushi; Kessoku, Takaomi; Ogawa, Yuji; Tomeno, Wataru; Imajo, Kento; Fujita, Koji; Yoneda, Masato; Takizawa, Toshiaki; Saito, Satoru; Nagashima, Yoji; Nakajima, Atsushi

    2017-02-14

    The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH.

  12. Antidepressant and anxiolytic-like effects of 4n, a novel 5-HT3 receptor antagonist using behaviour based rodent models.

    PubMed

    Kumar, Baldev; Jindal, Ankur; Pandey, Dilip Kumar; Bhatt, Shvetank; Devadoss, Thangaraj; Mahesh, Radhakrishnan

    2012-09-01

    The present study was designed to investigate the putative antidepressant and anxiolytic-like effects of N-n-Butylquinoxalin-2-carboxamide (4n), a novel 5-HT3 receptor antagonist, with an optimal log P (2.01) and pA2 value (7.3) greater than ondansetron (6.9) using rodent behavioural models of depression and anxiety. Acute treatment of 4n (1-4 mg/kg, ip) in mice produced antidepressant-like effect in forced swim test (FST) without affecting the baseline locomotion in actophotometer test in mice. 4n (2-4 mg/kg, ip) treatment also potentiated the 5-hydroxytryptophan (5-HTP) induced head twitch response in mice. Further, 4n (1-4 mg/kg, ip) treatment antagonized reserpine induced hypothermia in rats. Chronic treatment (14 days) with 4n (1-4 mg/kg) and paroxetine (10 mg/kg) significantly attenuated the behavioural anomalies induced by bilateral olfactory bulbectomy in rats in modified open field paradigm. An anxiogenic-like behaviour was induced by light alone as the stimulus using light-dark aversion test. 4n (2-4 mg/kg, ip) treatment significantly increased no. of transitions between dark and lit area and the time spent in the lit area. In conclusion, these preliminary investigations confirm that 4n exhibited antidepressant and anxiolytic-like effects in rodent models of depression and anxiety.

  13. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models.

    PubMed

    Yang, Shilong; Xiao, Yao; Kang, Di; Liu, Jie; Li, Yuan; Undheim, Eivind A B; Klint, Julie K; Rong, Mingqiang; Lai, Ren; King, Glenn F

    2013-10-22

    Loss-of-function mutations in the human voltage-gated sodium channel NaV1.7 result in a congenital indifference to pain. Selective inhibitors of NaV1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of µ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits NaV1.7 with an IC50 of ∼25 nM. µ-SLPTX-Ssm6a has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes, with the exception of NaV1.2, for which the selectivity is 32-fold. µ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. µ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemical-induced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes µ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting NaV1.7, which might be suitable for treating a wide range of human pain pathologies.

  14. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models.

    PubMed

    Karuppagounder, Saravanan S; Alim, Ishraq; Khim, Soah J; Bourassa, Megan W; Sleiman, Sama F; John, Roseleen; Thinnes, Cyrille C; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F; Schallert, Timothy; Tappero, Ryan V; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R; Holman, Theodore R; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W; Schofield, Christopher J; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models.

  15. Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis

    PubMed Central

    Honda, Yasushi; Kessoku, Takaomi; Ogawa, Yuji; Tomeno, Wataru; Imajo, Kento; Fujita, Koji; Yoneda, Masato; Takizawa, Toshiaki; Saito, Satoru; Nagashima, Yoji; Nakajima, Atsushi

    2017-01-01

    The efficacy of peroxisome proliferator-activated receptor α-agonists (e.g., fibrates) against nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) in humans is not known. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator that can maximize the beneficial effects and minimize the adverse effects of fibrates used currently. In a phase-2 study, pemafibrate was shown to improve liver dysfunction in patients with dyslipidaemia. In the present study, we first investigated the effect of pemafibrate on rodent models of NASH. Pemafibrate efficacy was assessed in a diet-induced rodent model of NASH compared with fenofibrate. Pemafibrate and fenofibrate improved obesity, dyslipidaemia, liver dysfunction, and the pathological condition of NASH. Pemafibrate improved insulin resistance and increased energy expenditure significantly. To investigate the effects of pemafibrate, we analysed the gene expressions and protein levels involved in lipid metabolism. We also analysed uncoupling protein 3 (UCP3) expression. Pemafibrate stimulated lipid turnover and upregulated UCP3 expression in the liver. Levels of acyl-CoA oxidase 1 and UCP3 protein were increased by pemafibrate significantly. Pemafibrate can improve the pathogenesis of NASH by modulation of lipid turnover and energy metabolism in the liver. Pemafibrate is a promising therapeutic agent for NAFLD/NASH. PMID:28195199

  16. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models

    PubMed Central

    Yang, Shilong; Xiao, Yao; Kang, Di; Liu, Jie; Li, Yuan; Undheim, Eivind A. B.; Klint, Julie K.; Rong, Mingqiang; Lai, Ren; King, Glenn F.

    2013-01-01

    Loss-of-function mutations in the human voltage-gated sodium channel NaV1.7 result in a congenital indifference to pain. Selective inhibitors of NaV1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of µ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits NaV1.7 with an IC50 of ∼25 nM. µ-SLPTX-Ssm6a has more than 150-fold selectivity for NaV1.7 over all other human NaV subtypes, with the exception of NaV1.2, for which the selectivity is 32-fold. µ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. µ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemical-induced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes µ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting NaV1.7, which might be suitable for treating a wide range of human pain pathologies. PMID:24082113

  17. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain.

    PubMed

    Hallmann, Anna-Lena; Araúzo-Bravo, Marcos J; Zerfass, Christina; Senner, Volker; Ehrlich, Marc; Psathaki, Olympia E; Han, Dong Wook; Tapia, Natalia; Zaehres, Holm; Schöler, Hans R; Kuhlmann, Tanja; Hargus, Gunnar

    2016-05-01

    Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  18. Application of the MechPeff model to predict passive effective intestinal permeability in the different regions of the rodent small intestine and colon.

    PubMed

    Pade, D; Jamei, M; Rostami-Hodjegan, A; Turner, D B

    2017-03-01

    A major component of physiologically based pharmacokinetic (PBPK) models is the prediction of the rate and extent of absorption of orally dosed drugs for which knowledge of effective passive intestinal permeability (Peff ) is essential. Single-pass intestinal perfusion (SPIP) studies are used to establish effective permeability in vivo but are difficult to perform in rodents, while mechanistic models to predict drug Peff in rat and mouse have not been published. This work evaluates the predictive performance of the 'MechPeff' model to predict Peff in the rodent intestine based upon knowledge of regional gut physiology and drug-specific physicochemical parameters. The 'MechPeff' model, built-in to the Simcyp Rat and Mouse Simulators, predicts transcellular, paracellular and mucus layer permeabilities and combines these to give the overall Peff . The jejunal and/or ileal Peff was predicted for 12 (4) acidic, 13 (12) basic, 10 (8) neutral and 2 (0) ampholytic drugs in the rat (mouse), spanning a wide range of MW and logPo:w , and compared with experimental Peff obtained using SPIP. A key input is the intrinsic transcellular permeability (Ptrans,0 ) which can be derived from modelling of appropriate in vitro permeability experiments or predicted from physicochemical properties. The Peff predictions were reasonably good when experimentally derived Ptrans,0 was used; from 42 Peff,rat values, 24 (57%) were within 3-fold, and of 19 Peff,mouse values, 12 (63%) were within 3-fold, of observed Peff . Considering the lack of alternative models to predict Peff in preclinical species, and the minimal drug-specific inputs required, this model provides a valuable tool within drug discovery and development programmes. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Effect of pre- and postnatal manganese exposure on brain histamine content in a rodent model of Parkinson's disease.

    PubMed

    Brus, Ryszard; Jochem, Jerzy; Nowak, Przemysław; Adwent, Marta; Boroń, Dariusz; Brus, Halina; Kostrzewa, Richard M

    2012-02-01

    Rats lesioned shortly after birth with 6-hydroxydopamine (6-OHDA; 134 μg icv) represent a near-ideal model of severe Parkinson's disease because of the near-total destruction of nigrostriatal dopaminergic fibers. There are scarce data that in Parkinson's disease, activity of the central histaminergic system is increased. The element manganese, an essential cofactor for many enzymatic reactions, itself in toxic amount, replicates some clinical features similar to those of Parkinson's disease. The aim of this study was to examine the effect of neonatal manganese exposure on 6-OHDA modeling of Parkinson's disease in rats, and to determine effects on histamine content in the brain of these rats in adulthood. Manganese (MnCl₂·4H₂O; 10,000 ppm) was included in the drinking water of pregnant Wistar rats from the time of conception until the 21st day after delivery, the age when neonatal rats were weaned. Control rats consumed tap water. Other groups of neonatal rat pups, on the 3rd day after birth, were pretreated with desipramine (20 mg/kg ip 1 h) prior to bilateral icv administration of 6-OHDA (60 or 134 μg) or its vehicle saline-ascorbic (0.1%) (control). At 2 months after birth, in rats lesioned with 60 or 134 μg 6-OHDA, endogenous striatal dopamine (DA) content was reduced, respectively, by 92 and 98% (HPLC/ED), while co-exposure of these groups to perinatal manganese did not magnify the DA depletion. However, there was prominent enhancement of histamine content in frontal cortex, hippocampus, hypothalamus, and medulla oblongata of adult rat brain after 6-OHDA (60 and 134 μg) injection on the day 3rd postnatal day. These findings indicate that histamine and the central histaminergic system are altered in the brain of rats lesioned to model Parkinson's disease, and that manganese enhances effects of 6-OHDA on histamine in brain.

  20. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    DOE PAGES

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; ...

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less

  1. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models

    SciTech Connect

    Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohu; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, T. R.; Culmsee, Carsten; Fong, Guo-Hua -H.; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.

    2016-03-02

    Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficits following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.

  2. Anti-depressant-like activity of a novel serotonin type-3 (5-HT3) receptor antagonist in rodent models of depression.

    PubMed

    Gupta, Deepali; Devadoss, Thangaraj; Bhatt, Shvetank; Gautam, Baldev; Jindal, Ankur; Pandey, Dilip; Mahesh, Radhakrishnan

    2011-08-01

    N-Cyclohexyl-3-methoxyquinoxalin-2-carboxamide (QCM-13), a novel 5-HT3 antagonist identified from a series of compounds with higher pA2 (7.6) and good log P (2.91) value was screened in rodent models of depression such as forced swim test (FST), tail suspension test (TST), interaction studies with standard anti-depressants and confirmatory studies such as reversal of parthenolide induced depression and reserpine induced hypothermia. In FST (2 and 4 mg/kg) and TST (2 and 4 mg/kg), QCM-13 significantly reduced the duration of immobility in mice without affecting the base line locomotion. QCM-13 (2 and 4 mg/kg) was also found to have significant interaction with standard anti-depressants (fluoxetine and bupropion in FST and TST respectively). Further, reversal of parthenolide induced depression in mice and reserpine induced hypothermia in rat models indicate the serotonergic influence of QCM-13 for anti-depressant potential.

  3. A rodent model of protein turnover used to design an experiment for measuring the rates of channeling, recycling and protein synthesis.

    PubMed

    Johnson, H A; Baldwin, R L; Klasing, K C; France, J; Calvert, C C

    2000-12-01

    We described previously a mechanistic model of whole-body protein turnover in rodents. Channeling was defined as the flow of amino acids from the extracellular compartment to aminoacyl tRNA and protein synthesis. Recycling was defined as the flow of amino acids from protein degradation to aminoacyl tRNA (protein synthesis) without mixing with the intracellular pool of amino acids. In this paper, the model is applied to tissues and whole body and is used to develop an experimental protocol for estimating protein fractional synthesis rate, recycling and channeling. Channeling, recycling and protein synthesis must be estimated simultaneously because changes in specific radioactivities over time are highly dependent on the rate of protein synthesis. Injection-specific radioactivities, body weights and experimental variation were used with the model to generate data at different rates of recycling and channeling. The data generated were then used to determine the best time points and experimental method to estimate percentages of recycling, channeling and protein synthesis rate by the iterative Method of Maximum Likelihood. Specific radioactivity at each time point was based on simulated data from three rodents at each of six time points. Predicted protein synthesis rates were within 5%/d of observed rates for all methods. Predicted rates of recycling and channeling were generally within 15% of observed rates except recycling in muscle at high channeling and high recycling. Standard deviations of the predictions of percentages of channeling and recycling were between 0.148 and 44.5% for the pulse dose method, 0.0655 and 197% for the continuous infusion method and 0.351 and 962% for the flooding dose method. The experimental design that yields the best estimates of channeling, recycling and protein synthesis is the pulse dose. Changes in amino acid specific radioactivities in the extracellular, aminoacyl tRNA and protein pools were greatest and should be measured at 2, 6

  4. Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury

    PubMed Central

    Radojicic, Milan; Nistor, Gabriel; Keirstead, Hans S

    2007-01-01

    Background Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. Methods Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4), 28 (n = 4), 120 (n = 4), 450 (n = 5), or 540 (n = 5) days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures. Results Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil. Conclusion Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of chronic SCI and provide

  5. Examining a Model of Life Satisfaction among Unemployed Adults

    ERIC Educational Resources Information Center

    Duffy, Ryan D.; Bott, Elizabeth M.; Allan, Blake A.; Torrey, Carrie L.

    2013-01-01

    The present study examined a model of life satisfaction among a diverse sample of 184 adults who had been unemployed for an average of 10.60 months. Using the Lent (2004) model of life satisfaction as a framework, a model was tested with 5 hypothesized predictor variables: optimism, job search self-efficacy, job search support, job search…

  6. Evidence for a General Factor Model of ADHD in Adults

    ERIC Educational Resources Information Center

    Gibbins, Christopher; Toplak, Maggie E.; Flora, David B.; Weiss, Margaret D.; Tannock, Rosemary

    2012-01-01

    Objective: To examine factor structures of "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.) symptoms of ADHD in adults. Method: Two sets of models were tested: (a) models with inattention and hyperactivity/impulsivity as separate but correlated latent constructs and (b) hierarchical general factor models with a general factor for…

  7. The largest fossil rodent

    PubMed Central

    Rinderknecht, Andrés; Blanco, R. Ernesto

    2008-01-01

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. PMID:18198140

  8. The largest fossil rodent.

    PubMed

    Rinderknecht, Andrés; Blanco, R Ernesto

    2008-04-22

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene-Pleistocene (4-2Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities.

  9. Further studies on the influence of chemical form and dose on absorptions of Np, Pu, Am and Cm from the gastrointestinal tracts of adult and neonatal rodents.

    PubMed

    Sullivan, M F; Miller, B M; Ruemmler, P S; Ryan, J L

    1985-01-01

    Absorption of isotopes of the actinide elements Np, Pu, Am and Cm from various organic media and/or in combination with plant or animal ligands or tissue is compared with their absorption from an inorganic nitrate medium. Gastrointestinal (GI) transport of 238Pu, 239Pu, 241Am and 244Cm at high concentrations from citrate medium by adult rats and/or mice was higher than from nitric acid medium. Neptunium-237 absorption, however, was not increased by citrate; probably because its oxidation state was reduced from 237Np(V) to 237Np(IV) by the medium and by the GI content. Increasing the mass of the 237Np dose resulted in increased absorption. Neither incorporation of 238Pu in rat liver nor retention of 238Pu oxide in rat lungs enhanced absorption when those Pu-containing tissues were administered intragastrically to either adult or neonatal rats. Ranking of GI absorption of the various forms of Pu gavaged in these studies suggests that transport is in the order: Pu citrate greater than Pu phytate greater than biologically incorporated Pu greater than Pu nitrate.

  10. Discovery of Aryl Sulfonamides as Isoform-Selective Inhibitors of NaV1.7 with Efficacy in Rodent Pain Models

    PubMed Central

    2016-01-01

    We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNaV1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNaV1.7 while minimizing off-target safety concerns and generated compound 3. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of NaV1.7 leads to an analgesic effect in vivo. Our findings corroborate the importance of hNaV1.7 as a drug target for the treatment of pain. PMID:26985315

  11. Discovery of Aryl Sulfonamides as Isoform-Selective Inhibitors of NaV1.7 with Efficacy in Rodent Pain Models.

    PubMed

    Focken, Thilo; Liu, Shifeng; Chahal, Navjot; Dauphinais, Maxim; Grimwood, Michael E; Chowdhury, Sultan; Hemeon, Ivan; Bichler, Paul; Bogucki, David; Waldbrook, Matthew; Bankar, Girish; Sojo, Luis E; Young, Clint; Lin, Sophia; Shuart, Noah; Kwan, Rainbow; Pang, Jodie; Chang, Jae H; Safina, Brian S; Sutherlin, Daniel P; Johnson, J P; Dehnhardt, Christoph M; Mansour, Tarek S; Oballa, Renata M; Cohen, Charles J; Robinette, C Lee

    2016-03-10

    We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNaV1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNaV1.7 while minimizing off-target safety concerns and generated compound 3. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of NaV1.7 leads to an analgesic effect in vivo. Our findings corroborate the importance of hNaV1.7 as a drug target for the treatment of pain.

  12. Children's and Adults' Models for Predicting Teleological Action: The Development of a Biology-Based Model.

    ERIC Educational Resources Information Center

    Opfer, John E.; Gelman, Susan A.

    2001-01-01

    Two studies examined models that preschoolers, fifth-graders, and adults use to guide predictions of self-beneficial, goal-directed action. Found that preschoolers' predictions were consistent with an animal-based model, fifth-graders' with biology-based and complexity-based models, and adults' predictions with a biology-based model. All age…

  13. Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Kumar, Ambrish; Singh, Chandra K; Lavoie, Holly A; Dipette, Donald J; Singh, Ugra S

    2011-09-01

    In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD.

  14. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome.

    PubMed

    Gustin, Richard M; Bichell, Terry Jo; Bubser, Michael; Daily, Jennifer; Filonova, Irina; Mrelashvili, Davit; Deutch, Ariel Y; Colbran, Roger J; Weeber, Edwin J; Haas, Kevin F

    2010-09-01

    Angelman syndrome (AS) is a neurogenetic disorder caused by loss of maternal UBE3A expression or mutation-induced dysfunction of its protein product, the E3 ubiquitin-protein ligase, UBE3A. In humans and rodents, UBE3A/Ube3a transcript is maternally imprinted in several brain regions, but the distribution of native UBE3A/Ube3a(1) protein expression has not been comprehensively examined. To address this, we systematically evaluated Ube3a expression in the brain and peripheral tissues of wild-type (WT) and Ube3a maternal knockout mice (AS mice). Immunoblot and immunohistochemical analyses revealed a marked loss of Ube3a protein in hippocampus, hypothalamus, olfactory bulb, cerebral cortex, striatum, thalamus, midbrain, and cerebellum in AS mice relative to WT littermates. Also, Ube3a expression in heart and liver of AS mice showed greater than the predicted 50% reduction relative to WT mice. Co-localization studies showed Ube3a expression to be primarily neuronal in all brain regions and present in GABAergic interneurons as well as principal neurons. These findings suggest that neuronal function throughout the brain is compromised in AS.

  15. The Changing Nature of Adult Education in the Age of Transnational Migration: Toward a Model of Recognitive Adult Education

    ERIC Educational Resources Information Center

    Guo, Shibao

    2015-01-01

    This chapter examines the changing nature of adult education in the age of transnational migration and proposes recognitive adult education as an inclusive model that acknowledges and affirms cultural difference and diversity as positive and desirable assets.

  16. Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent hosts.

    PubMed

    Misra, Namita; Sharma, Mithilesh; Raj, Kanwal; Dangi, Anil; Srivastava, Sudhir; Misra-Bhattacharya, Shailja

    2007-02-01

    Lymphatic filariasis continues to be a major health problem in tropical and subtropical countries. A macrofilaricidal agent capable of eliminating adult filarial parasites is urgently needed. In the present study, we report the antifilarial activity in the extract of stem portion of the plant Lantana camara. The crude extract at 1 g/kg for 5 days by oral route killed 43.05% of the adult Brugia malayi parasites and sterilized 76% of surviving female worms in the rodent model Mastomys coucha. A 34.5% adulticidal activity along with sterilization of 66% of female worms could be demonstrated in the chloroform fraction. Remarkable antifilarial activity was observed in the adult B. malayi transplanted gerbil model where up to 80% of the adult worms could be killed at the same dose and all the surviving female parasites were found sterilized. The extract was also found effective against a subcutaneous rodent filariid Acanthocheilonema viteae maintained in Mastomys coucha, where it exerted strong microfilaricidal (95.04%) and sterilization (60.66%) efficacy with mild macrofilaricidal action. Two compounds, oleanonic acid and oleanolic acid, isolated from hexane and chloroform fractions showed LC100 at 31.25 and 62.5 mug/ml, respectively, on B. malayi in vitro. This is the first ever report on the antifilarial efficacy of Lantana camara.

  17. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.

    PubMed

    Kar, Supratik; Roy, Kunal

    2012-04-01

    Different regulatory agencies in food and drug administration and environmental protection worldwide are employing quantitative structure-activity relationship (QSAR) models to fill the data gaps related with properties of chemicals affecting the environment and human health. Carcinogenicity is a toxicity endpoint of major concern in recent times. Interspecies toxicity correlations may provide a tool for estimating sensitivity towards toxic chemical exposure with known levels of uncertainty for a diversity of wildlife species. In this background, we have developed quantitative interspecies structure-carcinogenicity correlation models for rat and mouse [rodent species according to the Organization for Economic Cooperation and Development (OECD) guidelines] based on the carcinogenic potential of 166 organic chemicals with wide diversity of molecular structures, spanning a large number of chemical classes and biological mechanisms. All the developed models have been assessed according to the OECD principles for the validation of QSAR models. Consensus predictions for carcinogenicity of the individual compounds are presented here for any one species when the data for the other species are available. Informative illustrations of the contributing structural fragments of chemicals which are responsible for specific carcinogenicity endpoints are identified by the developed models. The models have also been used to predict mouse carcinogenicities of 247 organic chemicals (for which rat carcinogenicities are present) and rat carcinogenicities of 150 chemicals (for which mouse carcinogenicities are present). Discriminatory features for rat and mouse carcinogenicity values have also been explored.

  18. Model-Based Assessment of an In-Vivo Predictive Relationship from CA1 to CA3 in the Rodent Hippocampus

    PubMed Central

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2014-01-01

    Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N=7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73%) CA3→CA1 models and 96/145 (66%) CA1→CA3 models had significant predictive power, thus confirming a predictive ‘Granger’ causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3’s role as an endogenous hippocampal pacemaker. PMID:25260381

  19. Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus.

    PubMed

    Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z

    2015-02-01

    Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N = 7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73 %) CA3→CA1 models and 96/145 (66 %) CA1→CA3 models had significant predictive power, thus confirming a predictive 'Granger' causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3's role as an endogenous hippocampal pacemaker.

  20. Activity of and Effect of Subcutaneous Treatment with the Broad-Spectrum Antiviral Lectin Griffithsin in Two Laboratory Rodent Models

    PubMed Central

    Barton, Christopher; Kouokam, J. Calvin; Lasnik, Amanda B.; Foreman, Oded; Cambon, Alexander; Brock, Guy; Montefiori, David C.; Vojdani, Fakhrieh; McCormick, Alison A.; O'Keefe, Barry R.

    2014-01-01

    Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. PMID:24145548

  1. Data Sources Available for Modeling Environmental Exposures in Older Adults

    EPA Science Inventory

    This report, “Data Sources Available for Modeling Environmental Exposures in Older Adults,” focuses on information sources and data available for modeling environmental exposures in the older U.S. population, defined here to be people 60 years and older, with an emphasis on those...

  2. Research-Based Model for Adult Consumer-Homemaking Education.

    ERIC Educational Resources Information Center

    Ball State Univ., Muncie, IN.

    This model is designed to be used as a guide by all teachers and designers of adult vocational consumer and homemaking courses who usually function as program planners. Chapter 1 contains an operational definition, the rationale, and description of intended users. Chapter 2 presents the model description with an overview and discussion of the…

  3. A novel platform device for rodent echocardiography.

    PubMed

    Kutschka, Ingo; Sheikh, Ahmad Y; Sista, Ramachandra; Hendry, Stephen L; Chun, Hyung J; Hoyt, Grant; Kutschka, Werner; Pelletier, Marc P; Quertermous, Tom; Wu, Joseph C; Robbins, Robert C

    2007-06-06

    Acquisition of echocardiographic data from rodents is subject to wide variability due to variations in technique. We hypothesize that a dedicated imaging platform can aid in standardization of technique and improve the quality of images obtained. We constructed a device consisting of a boom-mounted steel platform frame (25 x 35 x 3 cm) on which a transparent polyethylene membrane is mounted. The animal is placed onto the membrane and receives continual inhaled anesthesia via an integrated port. The membrane allows for probe positioning from beneath the animal to obtain standard echo-views in left lateral decubitus or prone positions. The frame can be set at any desired angle ranging from 0 to 360 degrees along either the long or short axis. Adult male Sprague-Dawley rats (n = 5) underwent echocardiography (General Electric, Vivid 7, 14 MHz) using the platform. The device allowed for optimal positioning of animals for a variety of standard echocardiographic measurements. Evaluations among all animals showed minimal variability between two different operators and time points. We tested the feasibility of the device for supporting the assessment of cardiac function in a disease model by evaluating a separate cohort of adult male spontaneously hypertensive rats (n = 5) that underwent left anterior descending coronary artery ligation. Serial echocardiography demonstrated statistically significant decreases of fractional shortening and ejection fraction (p < 0.01) 240 days after surgery. Our novel imaging platform allowed for consistent collection of high-quality echocardiographic data from rats. Future studies will focus on improving this technology to allow for standardized high-throughput echocardiographic analysis in small animal models of disease.

  4. Immunotoxicity risks associated with land-treatment of petrochemical wastes revealed using an in situ rodent model.

    PubMed

    Rafferty, D P; Lochmiller, R L; McBee, K; Qualls, C W; Basta, N T

    2001-01-01

    Land-treatment of petrochemical wastes is a widely used method to dispose of hazardous and non-hazardous waste by biodegradation. However, no comprehensive assessment of the impact of such disposal techniques on terrestrial ecosystems has been conducted. Despite the presence of suspected immunotoxicants in the soil, wild rodents frequently reside on these waste sites after closure or abandonment. We explored the seasonal sensitivity of the immune system of the hispid cotton rat (Sigmodon hispidus) to in situ exposures on sites land-treated with petrochemical wastes. Animals were monitored on five contaminated land-treatment sites and five ecologically matched-reference sites in Oklahoma, USA, over two seasons (summer and winter). Most hematological parameters were not adversely affected by land-treatment; however, platelet counts were 26% greater in cotton rats from land-treatment sites compared to reference sites in winter. Significant treatment-related differences were observed in total serum protein concentrations, organ mass and organ cellularity, but these differences were not consistent across the five land-treatment units. Lymphoproliferative responses of cotton rat splenocytes stimulated in vitro were elevated for a T-cell mitogen and depressed for a B-cell mitogen in animals from land-treatment compared to reference sites. The ability of splenocytes to proliferate in response to interleukin-2 receptor-binding was not influenced by treatment. Total yields of peritoneal cells, yield of peritoneal macrophages, and yield of peritoneal lymphocytes were influenced to varying degrees by land-treatment. Functionally, in vitro metabolic activity of peritoneal macrophages was 114% greater in cotton rats from land-treatment sites compared to reference sites during summer. These results indicate that petrochemical wastes applied to soils on these five land-treatment sites had variable immunomodulatory effects in resident cotton rats. Immune alterations for some assays

  5. Genotoxic evaluation of pirfenidone using erythrocyte rodent micronucleus assay.

    PubMed

    Alcántar-Díaz, Blanca E; Gómez-Meda, Belinda C; Zúñiga-González, Guillermo M; Zamora-Perez, Ana L; González-Cuevas, Jaime; Alvarez-Rodríguez, Bertha A; Sánchez-Parada, María Guadalupe; García-Bañuelos, Jesús J; Armendáriz-Borunda, Juan

    2012-08-01

    Pirfenidone is a non-steroidal antifibrotic compound that has been proposed in clinical protocols and experimental studies as a pharmacological treatment for fibroproliferative diseases. The objective of this study was to determine the genotoxicity or cytotoxicity of three doses of pirfenidone using the micronuclei test in peripheral blood erythrocytes of rodent models. Pirfenidone was administered orally to Balb-C mice for 3 days, and also was administered topically to hairless Sprague Dawley rats during the final stage of gestation. Mice were sampled every 24 h over the course of 6 days; pregnant rats were sampled every 24 h during the last 6 days of gestation, and pups were sampled at birth. Blood smears were analyzed and the frequencies of micronucleated erythrocytes (MNEs), micronucleated polychromatic erythrocytes (MNPCEs), and the proportion of polychromatic erythrocytes (PCEs), were recorded in samples from mice, pregnant rats and rat neonates. Increases in MN frequencies (p<0.03) were noted only in the positive control groups. No genotoxic effects or decreased PCE values were observed neither in newborn rats transplacentally exposed to pirfenidone, or in two adult rodent models when pirfenidone was administered orally or topically.

  6. The application of a generativity model for older adults.

    PubMed

    Ehlman, Katie; Ligon, Mary

    2012-01-01

    Generativity is a concept first introduced by Erik Erikson as a part of his psychosocial theory which outlines eight stages of development in the human life. Generativity versus stagnation is the main developmental concern of middle adulthood; however, generativity is also recognized as an important theme in the lives of older adults. Building on the work of Erikson, McAdams and de St. Aubin (1992) developed a model explaining the generative process. The aims of this article are: (a) to explore the relationship between generativity and older adults as it appears in research literature; and (b) to examine McAdam's model and use it to explain the role of generativity in older adults who share life stories with gerontology students through an oral history project.

  7. Microdialysis in Rodents

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.

    2010-01-01

    Microdialysis is an in vivo sampling technique that permits the quantification of various substances (e.g., neurotransmitters, peptides, electrolytes) in blood and tissue. It is also used to infuse substances into the brain and spinal cord. This unit describes methods for the construction and stereotaxic implantation of microdialysis probes into discrete brain regions of the rat and mouse. Procedures for the conduct of conventional and quantitative microdialysis experiments in the awake and anesthetized rodent are also provided. PMID:19340813

  8. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald

    2005-01-01

    The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.

  9. Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson's Disease

    PubMed Central

    Barroso-Flores, Janet; Herrera-Valdez, Marco A.; Lopez-Huerta, Violeta Gisselle; Galarraga, Elvira; Bargas, José

    2015-01-01

    Most neurons in the striatum are projection neurons (SPNs) which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP) between fast-spiking (FS) interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing), in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA) rodent model of Parkinson's disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings. PMID:26167304

  10. Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain.

    PubMed

    Brindisi, Margherita; Maramai, Samuele; Gemma, Sandra; Brogi, Simone; Grillo, Alessandro; Di Cesare Mannelli, Lorenzo; Gabellieri, Emanuele; Lamponi, Stefania; Saponara, Simona; Gorelli, Beatrice; Tedesco, Daniele; Bonfiglio, Tommaso; Landry, Christophe; Jung, Kwang-Mook; Armirotti, Andrea; Luongo, Livio; Ligresti, Alessia; Piscitelli, Fabiana; Bertucci, Carlo; Dehouck, Marie-Pierre; Campiani, Giuseppe; Maione, Sabatino; Ghelardini, Carla; Pittaluga, Anna; Piomelli, Daniele; Di Marzo, Vincenzo; Butini, Stefania

    2016-03-24

    We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood-brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity. Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol and behaves as a cannabinoid (CB1/CB2) receptor indirect agonist. Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin. Given these evidence, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.

  11. Suggesting a General ESP Model for Adult Learners

    ERIC Educational Resources Information Center

    Al-Jumaily, Samir

    2011-01-01

    The study suggests a general model that could guarantee the cooperation between teachers and their students to overcome the difficulties encountered in ESP learning. It tries to join together different perspectives in the research of adult education, specifically in the teaching of English for Specific Purposes. It also provides some sort of trust…

  12. A Systems Model for Operating an Adult Training Program

    ERIC Educational Resources Information Center

    Leslie, William; Dimitrick, Adam

    1977-01-01

    A description of the uses and application of a model for designing a machine operator adult training program based on Silvern's systems approach (anasynthesis). The DACUM (Developing A Curriculum) process was used in developing the curriculum. The DACUM chart showing the terminal objectives is included. (EM)

  13. In Vivo Diagnostic Imaging Using Micro-CT: Sequential and Comparative Evaluation of Rodent Models for Hepatic/Brain Ischemia and Stroke

    PubMed Central

    Hayasaka, Naoto; Nagai, Nobuo; Kawao, Naoyuki; Niwa, Atsuko; Yoshioka, Yoshichika; Mori, Yuki; Shigeta, Hiroshi; Kashiwagi, Nobuo; Miyazawa, Masaaki; Satou, Takao; Higashino, Hideaki; Matsuo, Osamu; Murakami, Takamichi

    2012-01-01

    Background There is an increasing need for animal disease models for pathophysiological research and efficient drug screening. However, one of the technical barriers to the effective use of the models is the difficulty of non-invasive and sequential monitoring of the same animals. Micro-CT is a powerful tool for serial diagnostic imaging of animal models. However, soft tissue contrast resolution, particularly in the brain, is insufficient for detailed analysis, unlike the current applications of CT in the clinical arena. We address the soft tissue contrast resolution issue in this report. Methodology We performed contrast-enhanced CT (CECT) on mouse models of experimental cerebral infarction and hepatic ischemia. Pathological changes in each lesion were quantified for two weeks by measuring the lesion volume or the ratio of high attenuation area (%HAA), indicative of increased vascular permeability. We also compared brain images of stroke rats and ischemic mice acquired with micro-CT to those acquired with 11.7-T micro-MRI. Histopathological analysis was performed to confirm the diagnosis by CECT. Principal Findings In the models of cerebral infarction, vascular permeability was increased from three days through one week after surgical initiation, which was also confirmed by Evans blue dye leakage. Measurement of volume and %HAA of the liver lesions demonstrated differences in the recovery process between mice with distinct genetic backgrounds. Comparison of CT and MR images acquired from the same stroke rats or ischemic mice indicated that accuracy of volumetric measurement, as well as spatial and contrast resolutions of CT images, was comparable to that obtained with MRI. The imaging results were also consistent with the histological data. Conclusions This study demonstrates that the CECT scanning method is useful in rodents for both quantitative and qualitative evaluations of pathologic lesions in tissues/organs including the brain, and is also suitable for

  14. Rodent-associated Bartonella Febrile Illness, Southwestern United States

    PubMed Central

    Iralu, Jonathan; Bai, Ying; Crook, Larry; Tempest, Bruce; Simpson, Gary; McKenzie, Taylor

    2006-01-01

    Serum specimens from 114 patients hospitalized with a febrile illness were tested with an indirect immunofluorescence assay (IFA) using Bartonella antigens prepared from 6 species of sigmodontine rodents and 3 known human Bartonella pathogens: B. henselae, B. quintana, and B. elizabethae. Acute- and convalescent-phase serum samples from 5 of these patients showed seroconversion with an IFA titer >512 to rodent-associated Bartonella antigens. The highest titer was against antigen derived from the white-throated woodrat (Neotoma albigula), although this rodent is not necessarily implicated as the source of infection. Three of the 5 who seroconverted showed no cross-reaction to the 3 Bartonella human pathogens. Common clinical characteristics were fever, chills, myalgias, leukopenia, thrombocytopenia, and transaminasemia. Although antibodies to Bartonella are cross-reactive, high-titer seroconversions to rodent-associated Bartonella antigens in adults with common clinical characteristics should stimulate the search for additional Bartonella human pathogens. PMID:16836824

  15. Individual differences in the effects of prenatal stress exposure in rodents

    PubMed Central

    Boersma, Gretha J.; Tamashiro, Kellie L.

    2014-01-01

    Exposure to prenatal stress alters the phenotype of the offspring in adulthood. When the prenatal and adult environments do not match, these alterations may induce pathology risk. There are, however, large individual differences in the effects of prenatal stress. While some individuals seem vulnerable, others appear to be relatively resistant to its effects. In this review we discuss potential mechanisms underlying these individual differences with a focus on animal models. Differences between rodent models selected for stress coping traits are discussed. In addition, the role of circulating factors, like glucocorticoids and cytokines, factors involved in brain development and influences of epigenetic and genetic factors in prenatal stress induced phenotype are covered. PMID:27589662

  16. Development and characterization of an adult model of obstructive hydrocephalus.

    PubMed

    Johnson, M J; Ayzman, I; Wood, A S; Tkach, J A; Klauschie, J; Skarupa, D J; McAllister, J P; Luciano, M G

    1999-09-15

    While hydrocephalus is common in adults its pathophysiology is not fully understood and its treatment remains problematic. Previous animal models have been acute, developmental, or involved non-specific blockage or inflammation and are not suitable for study of chronic adult-onset hydrocephalus. In this study, we describe the development of a canine model which allows basic physiological studies along with diagnostic and treatment procedures via surgical occlusion of the fourth ventricle with a bolus injection of cyanoacrylic gel glue. A total of 26 adult male canine mongrels were used for the induction of chronic hydrocephalus and were monitored for 1-12 weeks post-induction using magnetic resonance imaging (MRI), intracranial pressure measurements, and neurological fitness assessments. Of these, 81% (21/26) developed hydrocephalus that was mild (N = 6), moderate (N = 7), or severe (N = 8). Pressures were mild and transiently elevated, and brain compliance decreased. Clinical symptoms were also mild and transient. This model is unique in its focal obstruction without local compression or general inflammation and should facilitate the study of the pathophysiology and treatment of chronic adult-onset hydrocephalus.

  17. A physiologically based model for spirometric reference equations in adults.

    PubMed

    Brisman, Jonas; Kim, Jeong-Lim; Olin, Anna-Carin; Torén, Kjell; Bake, Björn

    2016-01-01

    A spirometric reference equation consists of a mathematical model with constants and coefficients optimized to fit a specific data set from healthy individuals. Commonly applied models are selected on statistical rather than physiological considerations. A predetermined model with constants and coefficients optimized to various populations would enable interpretable and interesting comparisons between populations. Lubiński and Gólczewski recently presented a piecewise linear model with constants and coefficients claimed to be physiologically interpretable (Lubiński model). Three questions were addressed: Is the Lubiński model as useful clinically as other models: multiple linear, piecewise polynomial and exponential with splines? Will reference equations based on the Lubiński model and optimized to a Swedish and to a Polish population allow for interpretable comparisons? Are three well-known reference equations clinically useful in the Swedish adult population? A recent Swedish random population sample with high-quality spirometric measurements enabled the present analyses. When optimized to fit the Swedish population sample, the Lubiński model and two other models provided accurate predictive normal values. Interesting differences were demonstrated between the Polish and Swedish populations. The proportion of subjects below lower limit normal was adequate for the piecewise polynomial equations but too low and not clinically useful for the advocated exponential equations with splines. It is concluded that the Lubiński model is clinically as useful as other models, and it adds important value and is recommended for future spirometric reference equations for adults. The advocated exponential equations with splines are not recommended for Swedish adults because of too wide normal limits.

  18. Plasmodium berghei: lactic acidosis and hypoglycaemia in a rodent model of severe malaria; effects of glucose, quinine, and dichloroacetate.

    PubMed

    Holloway, P A; Krishna, S; White, N J

    1991-02-01

    Fulminant malaria infections are characterised by hypoglycaemia and potentially lethal lactic acidosis. In young adult Wistar rats (n = 26) infected with Plasmodium berghei (ANKA strain), hyperparasitaemia (greater than 50%), anaemia (PCV 19.6 +/- 5.3%; mean +/- SD) hypoglycaemia (1.04 +/- 0.74 mmol/litre), hyperlactataemia (13.2 +/- 2.20 mmol/litre), hyperpyruvicaemia (0.51 +/- 0.12 mmol/litre) and metabolic acidosis (arterial pH 6.96 +/- 0.11) developed after approximately 14 days of infection. Hypoglycaemia was associated with appropriate suppression of plasma insulin concentrations. In a second series of experiments the metabolic effects of treatment with glucose (500 mg/kg/hr), quinine (5 mg/kg bolus followed by 10 mg/kg over 1 hr) and a potent activator of pyruvate dehydrogenase, dichloroacetate (300 mg/kg) were studied over a 1-hr period. In control animals quinine had no measurable effects, but dichloroacetate significantly reduced arterial blood lactate (74%) and pyruvate (80%). In infected animals, glucose infusion attenuated the rise in lactate (38% compared with 82%; P less than 0.01) but quinine had no additional metabolic effects. Dichloroacetate further attenuated the rise in lactate (14%; P less than 0.01).

  19. Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method

    NASA Astrophysics Data System (ADS)

    Orbán, Ágnes; Rebelo, Maria; Molnár, Petra; Albuquerque, Inês S.; Butykai, Adam; Kézsmárki, István

    2016-03-01

    Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using β-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66–76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections are feasible with this new technique. The present study demonstrates that the MO method – besides being label and reagent-free, automated and rapid – has a high in vivo sensitivity and is ready for in-field evaluation.

  20. Evaluation of the Effectiveness of Piper cubeba Extract in the Amelioration of CCl4-Induced Liver Injuries and Oxidative Damage in the Rodent Model

    PubMed Central

    AlSaid, Mansour; Mothana, Ramzi; Raish, Mohammad; Al-Sohaibani, Mohammed; Al-Yahya, Mohammed; Ahmad, Ajaz; Al-Dosari, Mohammed; Rafatullah, Syed

    2015-01-01

    Background. Liver diseases still represent a major health burden worldwide. Moreover, medicinal plants have gained popularity in the treatment of several diseases including liver. Thus, the present study was to evaluate the effectiveness of Piper cubeba fruits in the amelioration of CCl4-induced liver injuries and oxidative damage in the rodent model. Methods. Hepatoprotective activity was assessed using various biochemical parameters like SGOT, SGPT, γ-GGT, ALP, total bilirubin, LDH, and total protein. Meanwhile, in vivo antioxidant activities as LPO, NP-SH, and CAT were measured in rat liver as well as mRNA expression of cytokines such as TNFα, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. The extent of liver damage was also analyzed through histopathological observations. Results. Treatment with PCEE significantly and dose dependently prevented drug induced increase in serum levels of hepatic enzymes. Furthermore, PCEE significantly reduced the lipid peroxidation in the liver tissue and restored activities of defense antioxidant enzymes NP-SH and CAT towards normal levels. The administration of PCEE significantly downregulated the CCl4-induced proinflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent manner, while it upregulated the IL-10 and induced hepatoprotective effect by downregulating mRNA expression of iNOS and HO-1 gene. PMID:25654097

  1. Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method.

    PubMed

    Orbán, Ágnes; Rebelo, Maria; Molnár, Petra; Albuquerque, Inês S; Butykai, Adam; Kézsmárki, István

    2016-03-17

    Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using β-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66-76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections