Science.gov

Sample records for adult somatic cells

  1. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    PubMed

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  2. Adult somatic stem cells in the human parasite, Schistosoma mansoni

    PubMed Central

    Collins, James J.; Wang, Bo; Lambrus, Bramwell G.; Tharp, Marla; Iyer, Harini; Newmark, Phillip A.

    2013-01-01

    Summary Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites. PMID:23426263

  3. Reprogramming of somatic cells.

    PubMed

    Rajasingh, Johnson

    2012-01-01

    Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed. PMID:22917226

  4. Cats cloned from fetal and adult somatic cells by nuclear transfer.

    PubMed

    Yin, X J; Lee, H S; Lee, Y H; Seo, Y I; Jeon, S J; Choi, E G; Cho, S J; Cho, S G; Min, W; Kang, S K; Hwang, W S; Kong, I K

    2005-02-01

    This work was undertaken in order to study the developmental competence of nuclear transfer (NT) into cat embryos using fetal fibroblast and adult skin fibroblast cells as donor nuclei. Oocytes were recovered by mincing the ovaries in Hepes-buffered TCM199 and selecting the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark color. Homogenous ooplasm was cultured for maturation in TCM199+10% fetal bovine serum (FBS) for 12 h and used as a source of recipient cytoplast for exogenous somatic nuclei. In experiment 1, we evaluated the effect of donor cell type on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate were not different between fetal fibroblasts and adult skin cells (71.2 vs 66.8; 71.0 vs 57.6; 4.0 vs 6.1% respectively; P < 0.05). In experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of the seven recipient queens was delivered naturally of 2 healthy cloned cats and 1 stillborn from fetal fibroblast cells of male origin 65 days after embryo transfer. One of three recipient queens was delivered naturally of 1 healthy cloned cat from adult skin cells of female origin 65 days after embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning. PMID:15695619

  5. Behavioral observations of adolescent Holstein heifers cloned from adult somatic cells.

    PubMed

    Savage, Amy F; Maull, John; Tian, X Cindy; Taneja, Maneesh; Katz, Larry; Darre, Michael; Yang, Xiangzhong

    2003-10-01

    Cloning using somatic cells offers many potential applications in biomedicine and basic research. The objective of this study was to test whether clones from the same genotype can be used as models to study the genetic influences of behavior. Specifically, several aspects of the behavior of four prepubertal heifers cloned from somatic cells of a 13-year-old Holstein cow along with age-matched control heifers were compared to determine whether juvenile clones from an aged adult behave similarly to their age-matched controls, and whether clones with identical genetic makeup exhibit any behavioral trends. Behavioral observations or behavior challenge tests were conducted to compare the following traits: vocalization, play behavior, movement frequencies, grooming, curiosity, and companion preference, as well as dominance and aggressiveness. From play behavior, movements and vocalization, we observed that these four juvenile clones of an aged genetic donor did not show behavioral indications of aging and were similar to their counterparts of comparable chronological age except that they tended to play less than controls. Behavioral trends were also observed in the clones that indicated that they exhibited higher levels of curiosity, more grooming activities and were more aggressive and dominant than controls. Furthermore, these four clones preferred each other or the donor as companions, which may indicate genetic kin recognition. PMID:12935849

  6. Technological Overview of iPS Induction from Human Adult Somatic Cells

    PubMed Central

    Bayart, Emilie; Cohen-Haguenauer, Odile

    2013-01-01

    The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive – such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons-based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendaï virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical

  7. Technological overview of iPS induction from human adult somatic cells.

    PubMed

    Bayart, Emilie; Cohen-Haguenauer, Odile

    2013-04-01

    The unlimited proliferation capacity of embryonic stem cells (ESCs) combined with their pluripotent differentiation potential in various lineages raised great interest in both the scientific community and the public at large with hope for future prospects of regenerative medicine. However, since ESCs are derived from human embryos, their use is associated with significant ethical issues preventing broad studies and therapeutic applications. To get around this bottleneck, Takahashi and Yamanaka have recently achieved the conversion of adult somatic cells into ES-like cells via the forced expression of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. This first demonstration attracted public attention and opened a new field of stem cells research with both cognitive - such as disease modeling - and therapeutic prospects. This pioneer work just received the 2012 Nobel Prize in Physiology or Medicine. Many methods have been reported since 2006, for the generation of induced pluripotent stem (iPS) cells. Most strategies currently under use are based on gene delivery via gamma-retroviral or lentiviral vectors; some experiments have also been successful using plasmids or transposons- based systems and few with adenovirus. However, most experiments involve integration in the host cell genome with an identified risk for insertional mutagenesis and oncogenic transformation. To circumvent such risks which are deemed incompatible with therapeutic prospects, significant progress has been made with transgene-free reprogramming methods based on e.g.: sendai virus or direct mRNA or protein delivery to achieve conversion of adult cells into iPS. In this review we aim to cover current knowledge relating to both delivery systems and combinations of inducing factors including chemicals which are used to generate human iPS cells. Finally, genetic instability resulting from the reprogramming process is also being considered as a safety bottleneck for future clinical translation

  8. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-01-01

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues. PMID:27103217

  9. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  10. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C.

    PubMed

    Chen, Huanhuan; Zhang, Lei; Guo, Zekun; Wang, Yongsheng; He, Rongjun; Qin, Yumin; Quan, Fusheng; Zhang, Yong

    2015-11-01

    Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P < 0.05). The blastocyst rate was also significantly improved after nuclear transfer (39.6% treated vs. 26.0% control, P < 0.05); the average number of apoptotic cells in cloned blastocysts was significantly reduced (2.2 vs. 4.4, P < 0.05); and the inner cell mass-to-trophectoderm ratio (38.25% vs. 30.75%, P < 0.05) and expression of SOX2 (3.71-fold, P < 0.05) and POU5F1 (3.15-fold, P < 0.05) were significantly increased. These results suggested that Vc promotes cell proliferation, decreases DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos. PMID:26212732

  11. Reprogramming mammalian somatic cells.

    PubMed

    Rodriguez-Osorio, N; Urrego, R; Cibelli, J B; Eilertsen, K; Memili, E

    2012-12-01

    Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation. PMID:22979962

  12. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny. PMID:21036163

  13. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition

    PubMed Central

    Díaz-Sala, Carmen

    2014-01-01

    Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity. PMID:25071793

  14. Somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, Kannika; Pinmee, Boonya; Venta, Patrick J; Chang, Chia-Cheng; Cibelli, Jose B

    2009-10-01

    We developed a method for somatic cell nuclear transfer in zebrafish using laser-ablated metaphase II eggs as recipients, the micropyle for transfer of the nucleus and an egg activation protocol after nuclear reconstruction. We produced clones from cells of both embryonic and adult origins, although the latter did not give rise to live adult clones. PMID:19718031

  15. How Somatic Adult Tissues Develop Organizer Activity.

    PubMed

    Vogg, Matthias C; Wenger, Yvan; Galliot, Brigitte

    2016-01-01

    The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered. PMID:26970630

  16. SUMO regulates somatic cyst stem cell maintenance and directly targets the Hedgehog pathway in adult Drosophila testis.

    PubMed

    Lv, Xiangdong; Pan, Chenyu; Zhang, Zhao; Xia, Yuanxin; Chen, Hao; Zhang, Shuo; Guo, Tong; Han, Hui; Song, Haiyun; Zhang, Lei; Zhao, Yun

    2016-05-15

    SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) that plays important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here, we report the function of SUMOylation in somatic cyst stem cell (CySC) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySC maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which leads to a reduction in the number of CySCs. Consistent with this, CySC clones carrying a mutation of the SUMO-conjugating enzyme are rapidly lost. Furthermore, inhibition of the SUMO pathway phenocopies disruption of the Hedgehog (Hh) pathway, and can block the proliferation of CySCs induced by Hh activation. Importantly, the SUMO pathway directly regulates the SUMOylation of Hh pathway transcription factor Cubitus interruptus (Ci), which is required for promoting CySC proliferation. Thus, we conclude that SUMO directly targets the Hh pathway and regulates CySC maintenance in adult Drosophila testis. PMID:27013244

  17. Human somatic cell nuclear transfer is alive and well.

    PubMed

    Cibelli, Jose B

    2014-06-01

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well. PMID:24905159

  18. Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells.

    PubMed

    Zhou, Zheng-Rong; Zhong, Bu-Shuai; Jia, Ruo-Xin; Wan, Yong-Jie; Zhang, Yan-Li; Fan, Yi-Xuan; Wang, Li-Zhong; You, Ji-Hao; Wang, Zi-Yu; Wang, Feng

    2013-01-15

    Myostatin, a member of the transforming growth factor-β family, acts as a negative regulator of skeletal muscle mass. In this study, myostatin-targeted caprine fibroblasts were obtained and subjected to SCNT to determine whether myostatin-knockout goats could be created. Fibroblasts from a 2-mo-old goat were transfected with a myostatin-targeted vector to prepare transgenic donor cells for nuclear transfer. After serum-starvation (for synchronization of the cell cycle), the percentage of transgenic fibroblasts in the G(0)/G(1) phase increased (66.2% vs. 82.9%; P < 0.05) compared with that in the control group, whereas the apoptosis rate and mitochondrial membrane potential were unaffected (P > 0.05). There were no significant differences between in vivo- and in vitro-matured oocytes as recipient cytoplasts for rates of fusion (86.5% vs. 78.4%), pregnancy (21.6% vs. 16.7%), or kidding (2.7% vs. 0%). One female kid from an in vivo-matured oocyte was born, but died a few hours later. Microsatellite analysis and polymerase chain reaction identification confirmed that this kid was genetically identical to the donor cells. Based on Western blot analysis, myostatin of the cloned kid was not expressed compared with that of nontransgenic kids. In conclusion, SCNT using myostatin-targeted 2-mo-old goat fibroblasts as donors has potential as a method for producing myostatin-targeted goats. PMID:23174778

  19. Bovine somatic cell nuclear transfer.

    PubMed

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes. PMID:20336522

  20. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    PubMed Central

    Hu, Chenxia; Li, Lanjuan

    2015-01-01

    The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases. PMID:26347063

  1. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  2. Somatic cell nuclear transfer in the mouse.

    PubMed

    Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories. PMID:19085136

  3. More Frequent than Desired: Midgut Stem Cell Somatic Mutations.

    PubMed

    Li, Qi; Ip, Y Tony

    2015-12-01

    The accumulation of somatic mutations in adult stem cells contributes to the decline of tissue functions and cancer initiation. In this issue of Cell Stem Cell, Siudeja et al. (2015) investigate the rate and mechanism of naturally occurring mutations in Drosophila midgut intestinal stem cells during aging and find high-frequency mutations arising from multiple mechanisms. PMID:26637937

  4. Reprogrammed pluripotent stem cells from somatic cells.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  5. Somatic Cell Counts in Bovine Milk

    PubMed Central

    Dohoo, I. R.; Meek, A. H.

    1982-01-01

    Factors which influence somatic cell counts in bovine milk are reviewed and guidelines for their interpretation are presented. It is suggested that the thresholds of 300 000 and 250 000 cells/mL be used to identify infected quarters and cows respectively. However, it is stressed that somatic cell counts are general indicators of udder health which are subject to the influence of many factors. Therefore the evaluation of several successive counts is preferable to the interpretation of an individual count. Relationships between somatic cell counts and both milk production and milk composition are discussed. Subclinical mastitis reduces milk quality and decreases yield although the relationship between production loss and somatic cell count requires clarification. Finally the availability of somatic cell counting programs in Canada is presented. PMID:17422127

  6. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  7. Cellular mechanisms of somatic stem cell aging.

    PubMed

    Jung, Yunjoon; Brack, Andrew S

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  8. Autophagy SEPArates germline and somatic cells.

    PubMed

    Baehrecke, Eric H

    2009-01-23

    Cellular determinants of the germline selectively accumulate in germ cell precursors and influence cell fate during early development in many organisms. Zhang et al. (2009) now report that targeted autophagy mediated by the SEPA-1 protein depletes germplasm proteins from somatic cells during early development of the nematode. PMID:19167322

  9. DOES FAMILY OF ORIGIN FUNCTIONING PREDICT ADULT SOMATIC COMPLAINTS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has long been believed that adult somatic complaints are associated with early family dysfunction. Yet few studies have examined this hypothesis in community samples, where medically unexplained symptom complaints are estimated to be very common. Given the potential population-wide impact of subt...

  10. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis.

    PubMed

    Voog, Justin; D'Alterio, Cecilia; Jones, D Leanne

    2008-08-28

    Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10-15 somatic cells that is required for stem cell self-renewal and maintenance. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life. PMID:18641633

  11. Reprogramming of human somatic cells by bacteria.

    PubMed

    Ito, Naofumi; Ohta, Kunimasa

    2015-05-01

    In general, it had been believed that the cell fate restriction of terminally differentiated somatic cells was irreversible. In 1952, somatic cell nuclear transfer (SCNT) was introduced to study early embryonic development in frogs. So far, various mammalian species have been successfully cloned using the SCNT technique, though its efficiency is very low. Embryonic stem (ES) cells were the first pluripotent cells to be isolated from an embryo and have a powerful potential to differentiate into more than 260 types of cells. The generation of induced pluripotent stem (iPS) cells was a breakthrough in stem cell research, and the use of these iPS cells has solved problems such as low efficiency and cell fate restriction. These cells have since been used for clinical application, disease investigation, and drug selection. As it is widely accepted that the endosymbiosis of Archaea into eukaryotic ancestors resulted in the generation of eukaryotic cells, we examined whether bacterial infection could alter host cell fate. We previously showed that when human dermal fibroblast (HDF) cells were incorporated with lactic acid bacteria (LAB), the LAB-incorporated HDF cells formed clusters and expressed a subset of common pluripotent markers. Moreover, LAB-incorporated cell clusters could differentiate into cells derived from each of the three germinal layers both in vivo and in vitro, indicating successful reprogramming of host HDF cells by LAB. In the current review, we introduce the existing examples of cellular reprogramming by bacteria and discuss their nuclear reprogramming mechanisms. PMID:25866152

  12. Mechanisms and models of somatic cell reprogramming

    PubMed Central

    Buganim, Yosef; Faddah, Dina A.; Jaenisch, Rudolf

    2014-01-01

    Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic stem cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodeling the genome, including new insights into the function of c-Myc, and describe the different phases, markers and emerging models of reprogramming. PMID:23681063

  13. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells.

    PubMed

    Luo, Jiesi; Suhr, Steven T; Chang, Eun Ah; Wang, Kai; Ross, Pablo J; Nelson, Laura L; Venta, Patrick J; Knott, Jason G; Cibelli, Jose B

    2011-10-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases. PMID:21495906

  14. Generation of Leukemia Inhibitory Factor and Basic Fibroblast Growth Factor-Dependent Induced Pluripotent Stem Cells from Canine Adult Somatic Cells

    PubMed Central

    Luo, Jiesi; Suhr, Steven T.; Chang, Eun Ah; Wang, Kai; Ross, Pablo J.; Nelson, Laura L.; Venta, Patrick J.; Knott, Jason G.

    2011-01-01

    For more than thirty years, the dog has been used as a model for human diseases. Despite efforts made to develop canine embryonic stem cells, success has been elusive. Here, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine adult fibroblasts, which we accomplished by introducing human OCT4, SOX2, c-MYC, and KLF4. The ciPSCs expressed critical pluripotency markers and showed evidence of silencing the viral vectors and normal karyotypes. Microsatellite analysis indicated that the ciPSCs showed the same profile as the donor fibroblasts but differed from cells taken from other dogs. Under culture conditions favoring differentiation, the ciPSCs could form cell derivatives from the ectoderm, mesoderm, and endoderm. Further, the ciPSCs required leukemia inhibitory factor and basic fibroblast growth factor to survive, proliferate, and maintain pluripotency. Our results demonstrate an efficient method for deriving canine pluripotent stem cells, providing a powerful platform for the development of new models for regenerative medicine, as well as for the study of the onset, progression, and treatment of human and canine genetic diseases. PMID:21495906

  15. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer

    PubMed Central

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L.; Wolf, Don; Mitalipov, Shoukhrat

    2013-01-01

    SUMMARY Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state. PMID:23683578

  16. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans

    PubMed Central

    Vermezovic, J; Stergiou, L; Hengartner, M O; d'Adda di Fagagna, F

    2012-01-01

    The germline of Caenorhabditis elegans is a well-established model for DNA damage response (DDR) studies. However, the molecular basis of the observed cell death resistance in the soma of these animals remains unknown. We established a set of techniques to study ionizing radiation-induced DNA damage generation and DDR activation in a whole intact worm. Our single-cell analyses reveal that, although germline and somatic cells show similar levels of inflicted DNA damage, somatic cells, differently from germline cells, do not activate the crucial apical DDR kinase ataxia-telengiectasia mutated (ATM). We also show that DDR signaling proteins are undetectable in all somatic cells and this is due to transcriptional repression. However, DNA repair genes are expressed and somatic cells retain the ability to efficiently repair DNA damage. Finally, we demonstrate that germline cells, when induced to transdifferentiate into somatic cells within the gonad, lose the ability to activate ATM. Overall, these observations provide a molecular mechanism for the known, but hitherto unexplained, resistance to DNA damage-induced cell death in C. elegans somatic cells. We propose that the observed lack of signaling and cell death but retention of DNA repair functions in the soma is a Caenorhabditis-specific evolutionary-selected strategy to cope with its lack of adult somatic stem cell pools and regenerative capacity. PMID:22705849

  17. Somatic cell genetic approaches to Down's syndrome.

    PubMed

    Patterson, D; Jones, C; Scoggin, C; Miller, Y E; Graw, S

    1982-01-01

    Somatic cell genetic analysis of mutants of Chinese hamster ovary cells with deficient purine synthesis and of hybrids between these mutants and human cells is described. Data are presented substantiating that two genes for enzymes of purine synthesis, AdeC and AdeG, can be coordinately regulated in mammalian cells. Analysis of a human-hamster hybrid cell, Ade C/21, which contains a normal complement of hamster chromosomes and human chromosome 21 as its only human genetic component recognizable by electrophoretic and immunogenetic techniques demonstrates that genes associated with the presence of human chromosome 21 and required for the synthesis of specific polypeptides and specific human lethal cell surface antigens can be detected in these hybrids. PMID:6217778

  18. Repression of somatic cell fate in the germline.

    PubMed

    Robert, Valérie J; Garvis, Steve; Palladino, Francesca

    2015-10-01

    Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs. PMID:26043973

  19. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed. PMID:3941670

  20. Constitutive heterochromatin reorganization during somatic cell reprogramming

    PubMed Central

    Fussner, Eden; Djuric, Ugljesa; Strauss, Mike; Hotta, Akitsu; Perez-Iratxeta, Carolina; Lanner, Fredrik; Dilworth, F Jeffrey; Ellis, James; Bazett-Jones, David P

    2011-01-01

    Induced pluripotent stem (iPS) cell reprogramming is a gradual epigenetic process that reactivates the pluripotent transcriptional network by erasing and establishing repressive epigenetic marks. In contrast to loci-specific epigenetic changes, heterochromatin domains undergo epigenetic resetting during the reprogramming process, but the effect on the heterochromatin ultrastructure is not known. Here, we characterize the physical structure of heterochromatin domains in full and partial mouse iPS cells by correlative electron spectroscopic imaging. In somatic and partial iPS cells, constitutive heterochromatin marked by H3K9me3 is highly compartmentalized into chromocentre structures of densely packed chromatin fibres. In contrast, chromocentre boundaries are poorly defined in pluripotent embryonic stem and full iPS cells, and are characterized by unusually dispersed 10 nm heterochromatin fibres in high Nanog-expressing cells, including pluripotent cells of the mouse blastocyst before differentiation. This heterochromatin reorganization accompanies retroviral silencing during conversion of partial iPS cells by MEK/GSK3 2i inhibitor treatment. Thus, constitutive heterochromatin is compacted in partial iPS cells but reorganizes into dispersed 10 nm chromatin fibres as the fully reprogrammed iPS cell state is acquired. PMID:21468033

  1. Changes in somatic cell structure during senescence of Volvox carteri.

    PubMed

    Pommerville, J C; Kochert, G D

    1981-06-01

    Senescence of the terminally differentiated somatic cells of the green alga, Volvox carteri f. weismannia, was investigated by light, fluorescence, and electron microscopy. Viability of the somatic cell population, as determined by trypan blue or erythrosin B exclusion, showed a sharp reduction beginning 144 h after the somatic cells had lost the ability to divide. This increased mortality rate was correlated at the light microscopic level with a retraction of the somatic cell cytoplasm, a reduction in chloroplast autofluorescence (and total chlorophyll content), and a decline in the number of vacuoles which could be localized with 9-aminoacridine fluorescence microscopy. Nuclear fluorescence with acridine orange remained unaffected during this time. Lipid bodies increased in older cells, and total lipid analysis showed a sharp increase beginning 96 h after the somatic cells had stopped dividing. Electron microscopic comparison between young (48--72 h) and old (168 h) somatic cells showed a disorganization of chloroplast structure, a decline in the number of cytoplasmic ribosomes, and, substantiating the light microscopy, and accumulation of lipid bodies in the cytoplasm of the older cells. The results demonstrate progressive changes in somatic cell structure with age and are suggestive of cells under nutrient stress even though they are in nutrient medium. Therefore senescence and death of the V. carteri somatic cells may be caused, in part, by an inability to take up or utilize nutrients present in the culture medium. PMID:7285941

  2. A Cell Electrofusion Chip for Somatic Cells Reprogramming

    PubMed Central

    Wu, Wei; Zeng, Yuxiao; Yang, Jun; Xu, Haiwei; Yin, Zheng Qin

    2015-01-01

    Cell fusion is a potent approach to explore the mechanisms of somatic cells reprogramming. However, previous fusion methods, such as polyethylene glycol (PEG) mediated cell fusion, are often limited by poor fusion yields. In this study, we developed a simplified cell electrofusion chip, which was based on a micro-cavity/ discrete microelectrode structure to improve the fusion efficiency and to reduce multi-cell electrofusion. Using this chip, we could efficiently fuse NIH3T3 cells and mouse embryonic stem cells (mESCs) to induce somatic cells reprogramming. We also found that fused cells demethylated gradually and 5-hydroxymethylcytosine (5hmC) was involved in the demethylation during the reprogramming. Thus, the cell electrofusion chip would facilitate reprogramming mechanisms research by improving efficiency of cell fusion and reducing workloads. PMID:26177036

  3. Somatic growth and lung function in sickle cell disease.

    PubMed

    Catanzaro, Tina; Koumbourlis, Anastassios C

    2014-03-01

    Somatic growth is a key indicator of overall health and well-being with important prognostic implications in the management of chronic disease. Worldwide studies of growth in children and adults with SCD have predominantly shown delayed growth (especially in terms of body weight) that is gradual and progressive in nature. However, more recent studies have shown that a substantial number of patients with SCD have normal weight gain whereas some are even obese. Height in patients with SCD is not universally affected even among those with suboptimal weight gain, whereas some achieve the same or greater height than healthy controls. The relationship between somatic growth and lung function in SCD is not yet clearly defined. As a group, patients with SCD tend to have lower lung volumes compared with healthy controls. These findings are similar across the age spectrum and across ethnic/racial lines regardless of the differences in body weight. Several mechanisms and risk factors have been proposed to explain these findings. These include malnutrition, racial differences and socioeconomic status. In addition, there are structural changes of the thorax (specifically the anterio-posterior chest diameter and anterio-posterior to lateral chest ratio) specific to sickle cell disease, that potentially interfere with normal lung growth. Although, caloric and protein intake have been shown to improve both height and weight, the composition of an optimal diet remains unclear. The following article reviews the current knowledge and controversies regarding somatic growth and its relationship with lung function in sickle cell disease (SCD) as well as the role of specific deficiencies of certain micronutrients. PMID:24268619

  4. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research. PMID:21044008

  5. Cytogenetic analysis of human somatic cell haploidization.

    PubMed

    Galat, V; Ozen, S; Rechitsky, S; Kuliev, A; Verlinsky, Y

    2005-02-01

    Despite recent interest in the derivation of female and male gametes through somatic cell nuclear transfer, there is still insufficient data on chromosomal analysis of these gametes resulting from haploidization, especially involving a human nuclear donor and recipient oocytes. The objective of this study was to investigate the fidelity of chromosomal separation during haploidization of human cumulus cells by in-vitro matured human enucleated MII oocytes. A total of 129 oocytes were tested 4-7, 8-14, or 15-21 h after nuclear transfer (NT) followed by electro-stimulation, resulting in 71.3% activation efficiency on average. Haploidization was documented by the formation of two separate groups of chromosomes, originating from either polar body/pronucleus (PB/PN), or only 2PN, which were tested by 5-colour FISH, or DNA analysis for copy number of chromosomes 13, 16, 18, 21, 22 and X. Two PN were formed more frequently than PB/PN, irrespective of incubation time. In agreement with recent reports on mouse oocytes, as many as 90.2% of the resulting haploid sets tested showed abnormal chromosome segregation, suggesting unsuitability of the resulting artificial gametes for practical application at the present time. PMID:15823223

  6. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    PubMed Central

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in regenerative medicine. This review summarizes the concept and data of somatic cell nuclear transfer, fusion of somatic cells with ES cells, viral or non-viral transduction of pluripotency-related genes into somatic cells, introduction of extract (or proteins) of pluripotent cells into somatic cells. Dedifferentiated/reprogrammed ES-like cells could be a perfect genetic match (autologous or tailored pluripotent stem cells) for future applications. Further studies regarding technical refinements as well as mechanistic analysis of dedifferentiation induction and re-differentiation into specific cell types will provide us with the substantial application of pluripotent stem cells to therapeutic purposes. PMID:24855516

  7. Clinical next generation sequencing of pediatric-type malignancies in adult patients identifies novel somatic aberrations

    PubMed Central

    Silva, Jorge Galvez; Corrales-Medina, Fernando F.; Maher, Ossama M.; Tannir, Nizar; Huh, Winston W.; Rytting, Michael E.; Subbiah, Vivek

    2015-01-01

    Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted. PMID:25859559

  8. Clinical next generation sequencing of pediatric-type malignancies in adult patients identifies novel somatic aberrations.

    PubMed

    Silva, Jorge Galvez; Corrales-Medina, Fernando F; Maher, Ossama M; Tannir, Nizar; Huh, Winston W; Rytting, Michael E; Subbiah, Vivek

    2015-01-01

    Pediatric malignancies in adults, in contrast to the same diseases in children are clinically more aggressive, resistant to chemotherapeutics, and carry a higher risk of relapse. Molecular profiling of tumor sample using next generation sequencing (NGS) has recently become clinically available. We report the results of targeted exome sequencing of six adult patients with pediatric-type malignancies : Wilms tumor(n=2), medulloblastoma(n=2), Ewing's sarcoma( n=1) and desmoplastic small round cell tumor (n=1) with a median age of 28.8 years. Detection of druggable somatic aberrations in tumors is feasible. However, identification of actionable target therapies in these rare adult patients with pediatric-type malignancies is challenging. Continuous efforts to establish a rare disease registry are warranted. PMID:25859559

  9. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells

    PubMed Central

    Biswas, Dhruba; Jiang, Peng

    2016-01-01

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming. PMID:26861316

  10. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm. PMID:16735543

  11. Depression, Health, and Somatic Complaints in Older Adults.

    ERIC Educational Resources Information Center

    Mahurin, Kathleen A.; Gatz, Margaret

    Although depression is considered to be common in the elderly, reliable rates of prevalence are lacking. Studies have shown that age differences on measures of depressive symptomatology can be attributed to higher levels of somatic complaints. In order to examine whether the association between somatic and depressive symptoms varies as a function…

  12. Somatic embryogenesis - Stress-induced remodeling of plant cell fate.

    PubMed

    Fehér, Attila

    2015-04-01

    Plants as sessile organisms have remarkable developmental plasticity ensuring heir continuous adaptation to the environment. An extreme example is somatic embryogenesis, the initiation of autonomous embryo development in somatic cells in response to exogenous and/or endogenous signals. In this review I briefly overview the various pathways that can lead to embryo development in plants in addition to the fertilization of the egg cell and highlight the importance of the interaction of stress- and hormone-regulated pathways during the induction of somatic embryogenesis. Somatic embryogenesis can be initiated in planta or in vitro, directly or indirectly, and the requirement for dedifferentiation as well as the way to achieve developmental totipotency in the various systems is discussed in light of our present knowledge. The initiation of all forms of the stress/hormone-induced in vitro as well as the genetically provoked in planta somatic embryogenesis requires extensive and coordinated genetic reprogramming that has to take place at the chromatin level, as the embryogenic program is under strong epigenetic repression in vegetative plant cells. Our present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program. The role of stress-related chromatin reorganization in the genetic instability of in vitro cultures is also discussed. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. PMID:25038583

  13. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS. PMID:22329581

  14. Identification of somatic gene mutations in penile squamous cell carcinoma.

    PubMed

    Ferrándiz-Pulido, Carla; Hernández-Losa, Javier; Masferrer, Emili; Vivancos, Ana; Somoza, Rosa; Marés, Roso; Valverde, Claudia; Salvador, Carlos; Placer, Jose; Morote, Juan; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Toll, Agusti; García-Patos, Vicente

    2015-10-01

    There is a lack of studies on somatic gene mutations and cell signaling driving penile carcinogenesis. Our objective was to analyze somatic mutations in genes downstream of EGFR in penile squamous cell carcinomas, especially the mTOR and RAS/MAPK pathways. We retrospectively analyzed somatic mutations in 10 in situ and 65 invasive penile squamous cell carcinomas by using Sequenom's Mass Spectrometry iPlex Technology and Oncocarta v1.0 Panel. The DNA was extracted from FFPE blocks and we identified somatic missense mutations in three in situ tumors and in 19 invasive tumors, mostly in PIK3CA, KRAS, HRAS, NRAS, and PDGFA genes. Somatic mutations in the PIK3CA gene or RAS family genes were neither associated with tumor grade, stage or outcome, and were equally often identified in hrHPV positive and in hrHPV negative tumors that showed no p53 expression. Mutations in PIK3CA, KRAS, and HRAS are frequent in penile squamous cell carcinoma and likely play a role in the development of p53-negative tumors. Although the presence of these mutations does not seem to correlate with tumoral behavior or outcome, they could be biomarkers of treatment failure with anti-EGFR mAb in patients with penile squamous cell carcinoma. PMID:26216163

  15. Somatic cells count in cow's bulk tank milk.

    PubMed

    Olechnowicz, Jan; Jaśkowski, Jedrzej M

    2012-06-01

    The objective of this study was therefore to present factors affecting somatic cell counts in bovine bulk milk as a result of intramammary infections as well as non-infectious factors. The paper presents also the impact of on-farm management practices on the level of bulk milk somatic cell counts and presents quality indicators in bulk tank milk. At the farm level bulk milk bacterial infection takes place through three main sources: bacterial contamination from the external surface of the udder and teats, from the surface of the milking equipment, and from mastitis microorganisms within the udder. The threshold of 200,000 cells/ml identifies bacteriological negative quarters of the udder. The counts of mammary pathogens in bulk tank milk are relatively low, on average not exceeding 1,000 cfu/ml. Environmental pathogens predominate in bulk tank milk samples with somatic cells count <300 × 10(3) ml. PMID:22230979

  16. Dynamics and regulation of bulk milk somatic cell counts.

    PubMed Central

    Schukken, Y H; Weersink, A; Leslie, K E; Martin, S W

    1993-01-01

    Somatic cell count (SCC) in milk is inversely related to dairy cow productivity and milk quality. In an effort to improve product quality, and indirectly farm productivity, regulatory limits on somatic cell counts have been established by many of the major dairy producing countries. The purpose of this paper was to assess the impact of regulations on bulk milk somatic cell counts in Ontario and to assist producers in meeting regulatory limits through development of prediction models. Through the use of a transfer function model, provincial SCC was found to have dropped by approximately 60,000 as a result of the reduction program. Limits of the regulatory program, seasonality and herd characteristics were found through time series cross-sectional models to have an impact on prediction of SCC at the farm level, but the major influence was historical SCC levels. PMID:8490807

  17. The histone chaperone CAF-1 safeguards somatic cell identity.

    PubMed

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Youngsook L; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Euong Ang, Cheen; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter J; Penninger, Josef M; Zuber, Johannes; Hochedlinger, Konrad

    2015-12-10

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting. PMID:26659182

  18. Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells.

    PubMed

    Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie

    2015-01-01

    Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells. PMID:25965553

  19. Clock-like mutational processes in human somatic cells

    SciTech Connect

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.

  20. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    PubMed

    Abdel-Maguid, T E; Bowsher, D

    1984-06-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value. PMID:6204961

  1. The histone chaperone CAF-1 safeguards somatic cell identity

    PubMed Central

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Youngsook L; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y.; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter; Penninger, Josef M; Zuber, Johannes; Hochedlinger, Konrad

    2016-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting. PMID:26659182

  2. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  3. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells.

    PubMed

    Schulz, Cordula; Wood, Cricket G; Jones, D Leanne; Tazuke, Salli I; Fuller, Margaret T

    2002-10-01

    Germ cells normally differentiate in the context of encapsulating somatic cells. However, the mechanisms that set up the special relationship between germ cells and somatic support cells and the signals that mediate the crucial communications between the two cell types are poorly understood. We show that interactions between germ cells and somatic support cells in Drosophila depend on wild-type function of the stet gene. In males, stet acts in germ cells to allow their encapsulation by somatic cyst cells and is required for germ cell differentiation. In females, stet function allows inner sheath cells to enclose early germ cells correctly at the tip of the germarium. stet encodes a homolog of rhomboid, a component of the epidermal growth factor receptor signaling pathway involved in ligand activation in the signaling cell. The stet mutant phenotype suggests that stet facilitates signaling from germ cells to the epidermal growth factor receptor on somatic cells, resulting in the encapsulation of germ cells by somatic support cells. The micro-environment provided by the surrounding somatic cells may, in turn, regulate differentiation of the germ cells they enclose. PMID:12223409

  4. Development of methods for characterizing fetal and adult somatic mutations detected in human erythroid precursor

    SciTech Connect

    Langlois, R.G.; Manchester, D.K.

    1994-12-31

    The glycophorin A (GPA) assay was developed to quantify somatic mutations in humans by measuring the frequency of peripheral erythrocytes with mutant phenotypes that are presumed to be progeny of mutated erythroid precursor cells. This assay has been used to identify GPA variant cells in unexposed individuals at a frequency of {approximately}10 per million erythrocytes, and to demonstrate significant increases in variant frequency after mutagenic exposures. Characterization of the mutations responsible for these variant cells requires that the assay be modified to allow flow analysis and sorting of variant erythroid precursor cells that contain nucleic acids. Cord blood samples contain low levels of both reticulocytes and nucleated erythrocytes. We have developed enrichment methods using centrifugation that yield samples containing up to 30% nucleated erythrocytes, and immunomagnetic separation methods that yield samples containing up to 90% reticulocytes. Enrichment methods for these two cell types are also being developed for adult bone marrow samples. We have confirmed that enrichment and labeling with a nucleic acid-specific dye are compatible with GPA analysis of erythrocytes, reticulocytes, and nucleated erythrocytes. Enriched samples have been successfully used for flow cytometric detection of GPA variant reticulocytes in cord blood. PCR-based analysis methods are being developed for molecular characterization of sorted variant cells at the mRNA level.

  5. Somatic cell counts of milk from Dairy Herd Improvement herds during 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Test-day data from all herds enrolled in Dairy Herd Improvement (DHI) somatic cell testing during 2010 were examined to assess the status of national milk quality. Somatic cell score (SCS) is reported to AIPL and was converted to somatic cell count (SCC) for calculating herd and State averages. The ...

  6. Interchromosomal recombination is suppressed in mammalian somatic cells.

    PubMed Central

    Shulman, M J; Collins, C; Connor, A; Read, L R; Baker, M D

    1995-01-01

    Homologous recombination occurs intrachromosomally as well as interchromosomally, both in mitotic (somatic) cells as well as meiotically in the germline. These different processes can serve very different purposes in maintaining the integrity of the organism and in enhancing diversity in the species. As shown here, comparison of the frequencies of intra- and interchromosomal recombination in meiotic and mitotic cells of both mouse and yeast argues that interchromosomal recombination is particularly low in mitotic cells of metazoan organisms. This result in turn suggests that the recombination machinery of metazoa might be organized to avoid the deleterious effects of homozygotization in somatic cells while still deriving the benefits of species diversification and of DNA repair. Images PMID:7664750

  7. Non-stochastic reprogramming from a privileged somatic cell state

    PubMed Central

    Guo, Shangqin; Zi, Xiaoyuan; Schulz, Vincent P.; Cheng, Jijun; Zhong, Mei; Koochaki, Sebastian H.J.; Megyola, Cynthia M.; Pan, Xinghua; Heydari, Kartoosh; Weissman, Sherman M.; Gallagher, Patrick G.; Krause, Diane S.; Fan, Rong; Lu, Jun

    2014-01-01

    SUMMARY Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient, and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a non-stochastic manner. Subsets of murine hematopoietic progenitors are privileged, whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after 4–5 divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ~8 hours. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression, and is increased by p53-knockdown. This ultrafast-cycling population accounts for >99% of the bulk reprogramming activity in wildtype or p53-knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state, and suggest that cell cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PMID:24486105

  8. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells

    PubMed Central

    Klein, Ulf; Rajewsky, Klaus; Küppers, Ralf

    1998-01-01

    Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27+ B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise ∼15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of ∼40% mutated memory B cells and 60% unmutated, naive IgD+CD27− B cells (including CD5+ B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vκ genes. This might be due to an intrinsically lower mutation rate in κ light chain genes compared with heavy chain genes and/or result from κ light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans. PMID:9802980

  9. Bovine ooplasm partially remodels primate somatic nuclei following somatic cell nuclear transfer.

    PubMed

    Wang, Kai; Beyhan, Zeki; Rodriguez, Ramon M; Ross, Pablo J; Iager, Amy E; Kaiser, German G; Chen, Ying; Cibelli, Jose B

    2009-03-01

    Interspecies somatic cell nuclear transfer (iSCNT) has the potential to become a useful tool to address basic questions about the nucleus-cytoplasm interactions between species. It has also been proposed as an alternative for the preservation of endangered species and to derive autologous embryonic stem cells. Using chimpanzee/ bovine iSCNT as our experimental model we studied the early epigenetic events that take place soon after cell fusion until embryonic genome activation (EGA). Our analysis suggested partial EGA in iSCNT embryos at the eight-cell stage, as indicated by Br-UTP incorporation and expression of chimpanzee embryonic genes. Oct4, Stella, Crabp1, CCNE2, CXCL6, PTGER4, H2AFZ, c-MYC, KLF4, and GAPDH transcripts were expressed, while Nanog, Glut1, DSC2, USF2, Adrbk1, and Lin28 failed to be activated. Although development of iSCNT embryos did not progress beyond the 8- to 16-cell stage, chromatin remodeling events, monitored by H3K27 methylation, H4K5 acetylation, and global DNA methylation, were similar in both intra- and interspecies SCNT embryos. However, bisulfite sequencing indicated incomplete demethylation of Oct4 and Nanog promoters in eight-cell iSCNT embryos. ATP production levels were significantly higher in bovine SCNT embryos than in iSCNT embryos, TUNEL assays did not reveal any difference in the apoptotic status of the nuclei from both types of embryos. Collectively, our results suggest that bovine ooplasm can partially remodel chimpanzee somatic nuclei, and provides insight into some of the current barriers iSCNT must overcome if further embryonic development is to be expected. PMID:19196039

  10. Mitochondria, cellular stress resistance, somatic cell depletion and lifespan.

    PubMed

    Robb, Ellen L; Page, Melissa M; Stuart, Jeffrey A

    2009-03-01

    The causes of aging and determinants of maximum lifespan in animal species are multifaceted and complex. However, a wealth of experimental data suggests that mitochondria are involved both in the aging process and in regulating lifespan. Here we outline a somatic cell depletion (SCD) model to account for correlations between: (1) mitochondrial reactive oxygen species and lifespan; (2) mitochondrial antioxidant enzymes and lifespan; (3) mitochondrial DNA mutation and lifespan and (4) cellular stress resistance and lifespan. We examine the available data from within the framework of the SCD model, in which mitochondrial dysfunction leading to cell death and gradual loss of essential somatic cells eventually contributes to the decline in physiological performance that limits lifespan. This model is useful in explaining many of the mitochondrial manipulations that alter maximum lifespan in a variety of animal species; however, there are a number of caveats and critical experiments outstanding, and these are outlined in this review. PMID:20021396

  11. Regulation of somatic cell reprogramming through inducible mir-302 expression.

    PubMed

    Lin, Shi-Lung; Chang, Donald C; Lin, Chun-Hung; Ying, Shao-Yao; Leu, Davey; Wu, David T S

    2011-02-01

    Global demethylation is required for early zygote development to establish stem cell pluripotency, yet our findings reiterate this epigenetic reprogramming event in somatic cells through ectopic introduction of mir-302 function. Here, we report that induced mir-302 expression beyond 1.3-fold of the concentration in human embryonic stem (hES) H1 and H9 cells led to reprogramming of human hair follicle cells (hHFCs) to induced pluripotent stem (iPS) cells. This reprogramming mechanism functioned through mir-302-targeted co-suppression of four epigenetic regulators, AOF2 (also known as KDM1 or LSD1), AOF1, MECP1-p66 and MECP2. Silencing AOF2 also caused DNMT1 deficiency and further enhanced global demethylation during somatic cell reprogramming (SCR) of hHFCs. Re-supplementing AOF2 in iPS cells disrupted such global demethylation and induced cell differentiation. Given that both hES and iPS cells highly express mir-302, our findings suggest a novel link between zygotic reprogramming and SCR, providing a regulatory mechanism responsible for global demethylation in both events. As the mechanism of conventional iPS cell induction methods remains largely unknown, understanding this microRNA (miRNA)-mediated SCR mechanism may shed light on the improvements of iPS cell generation. PMID:20870751

  12. Identification of Spectral Modifications Occurring during Reprogramming of Somatic Cells

    PubMed Central

    Sandt, Christophe; Féraud, Olivier; Oudrhiri, Noufissa; Bonnet, Marie Laure; Meunier, Marie Claude; Valogne, Yannick; Bertrand, Angelina; Raphaël, Martine; Griscelli, Frank; Turhan, Ali G.; Dumas, Paul; Bennaceur-Griscelli, Annelise

    2012-01-01

    Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However, research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (ESC). We report here on the use of infrared microspectroscopy to follow the spectral modification of somatic cells during the reprogramming process. We show that induced pluripotent stem cells (iPSC) adopt a chemical composition leading to a spectral signature indistinguishable from that of embryonic stem cells (ESC) and entirely different from that of the original somatic cells. Similarly, this technique allows a distinction to be made between partially and fully reprogrammed cells. We conclude that infrared microspectroscopy signature is a novel methodology to evaluate induced pluripotency and can be added to the tests currently used for this purpose. PMID:22514597

  13. Sodium copper chlorophyllin (SCC) induces genetic damage in postmeiotic and somatic wing cells of Drosophila melanogaster.

    PubMed

    Peñaloza, Emilio Pimentel; Cruces Martínez, Martha Patricia

    2013-01-01

    There is no apparent evidence to indicate that sodium copper chlorophyllin (SCC) is mutagenic. The aim of the present study was thus to determine the mutagenic effect of SCC, in postmeiotic germ cells of the adult male Drosophila. This investigation was based on the ability to examine whether SCC induced sex-linked recessive lethal mutations (SLRL), as well as the somatic mutation and recombination test (SMART). Four different SCC concentrations were used: 0, 45, 69, 80, and 100 mM. For SLRL, two broods were generated to test sperm and primarily spermatids. Results showed a significant frequency of recessive lethal mutations compared with control sperm cells with SCC at 69, 80, and 100 mM. In contrast, the frequency of somatic mutations rose by 0.21 only with 100 mM of SCC. These findings provide evidence that SCC is a weak mutagen in both cell lines. The differential response may be attributed to repair mechanisms that are active in somatic cells but almost absent in germ cells. PMID:24283476

  14. Normal somatic cell count and subclinical mastitis in Murrah buffaloes.

    PubMed

    Dhakal, I P

    2006-03-01

    This study was conducted to investigate the normal somatic cell count (SCC) and to define subclinical mastitis in Murrah buffaloes. Data were collected from 60 clinically normal buffaloes stationed at five farms of Chitwan Nepal and Buffalo Research Center, Hissar, India. Somatic cell count was measured using the Newman-Lampert staining technique. The upper limit of SCC was determined >or=200 000/ml of milk based on the mean +/- 2SD of a total SCC. Abnormal data of the SCC was repeatedly removed, which lie beyond the values of more than mean + 2SD until all the data come to lie within (mean + 2SD). Averages of SCC of right front and right hind quarters were significantly higher than left front and left hind quarters. Nearly 94% of California mastitis test (CMT) negative quarters were having somatic cells >or=200 000/ml. The mean SCC of CMT positive quarter was significantly higher (P < 0.01) than CMT negative quarters. Subclinical mastitis was diagnosed on the basis of samples with SCCs >or=200 000/ml with positive bacterial cultures. Subclinical mastitis was found in 21.7% buffaloes and 8% of the quarter foremilk samples. Neutrophil counts were significantly higher in subclinical mastitis milk. PMID:16626405

  15. Somatic cell nuclear transfer: pros and cons.

    PubMed

    Sumer, Huseyin; Liu, Jun; Tat, Pollyanna; Heffernan, Corey; Jones, Karen L; Verma, Paul J

    2009-01-01

    Even though the technique of mammalian SCNT is just over a decade old it has already resulted in numerous significant advances. Despite the recent advances in the reprogramming field, SCNT remains the bench-mark for the generation of both genetically unmodified autologous pluripotent stem cells for transplantation and for the production of cloned animals. In this review we will discuss the pros and cons of SCNT, drawing comparisons with other reprogramming methods. PMID:20232594

  16. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    PubMed Central

    Ruiz, Sergio; Lopez-Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Gutierrez-Martinez, Paula; Bua, Sabela; Ramirez, Oscar; Olalde, Iñigo; Rodrigo-Perez, Sara; Li, Han; Marques-Bonet, Tomas; Serrano, Manuel; Blasco, Maria A.; Batada, Nizar N.; Fernandez-Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress. Increasing the levels of the checkpoint kinase 1 (CHK1) reduces reprogramming-induced replication stress and increases the efficiency of iPSC generation. Similarly, nucleoside supplementation during reprogramming reduces the load of DNA damage and genomic rearrangements on iPSC. Our data reveal that lowering replication stress during reprogramming, genetically or chemically, provides a simple strategy to reduce genomic instability on mouse and human iPSC. PMID:26292731

  17. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer

    PubMed Central

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the “Yamanaka method.” However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning. PMID:25692793

  18. Application of Somatic Embryogenesis in Woody Plants.

    PubMed Central

    Guan, Yuan; Li, Shui-Gen; Fan, Xiao-Fen; Su, Zhen-Hong

    2016-01-01

    Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means. PMID:27446166

  19. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    PubMed Central

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  20. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell.

    PubMed

    Jianping, Du

    2010-01-01

    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back) easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function. PMID:20181100

  1. Clock-like mutational processes in human somatic cells

    DOE PAGESBeta

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less

  2. Prediction of bulk tank somatic cell count violations based on monthly individual cow somatic cell count data.

    PubMed

    Fauteux, V; Bouchard, E; Haine, D; Scholl, D T; Roy, J P

    2015-04-01

    The regulatory limit in Canada for bulk tank somatic cell count (BTSCC) was recently lowered from 500,000 to 400,000 cells/mL. Herd indices based on changes in cow somatic cell count over 2 consecutive months (e.g., proportion of healthy or chronically infected cows, cows cured, and new intramammary infection rate) could be used as predictors for BTSCC violations. The objective of this study was to develop a predictive model for exceeding the limit of 400,000 cells/mL in the next month using these herd indices. Dairy Herd Improvement (DHI) data were used from 924 dairy herds in Québec, Canada. Test-day BTSCC was estimated by dividing the sum of all cows' DHI test-day somatic cell count times DHI test-day milk production by the total volume of milk produced by the herd on that test-day. In total, 986 of 8,681 (11.4%) estimated BTSCC exceeded 400,000 cells/mL. The final predictive model included 6 variables: mean herd somatic cell score at the current test-month, proportion of cows >500,000 cells/mL at the current test-month, proportion of healthy cows during lactation at the current test-month, proportion of chronically infected cows at the current test-month, average days in milk at the current test-month, and annual mean daily milk production. The optimized sensitivity and specificity of the model were 76 and 74%, respectively. The positive predictive value and negative predictive value were 25 and 95%, respectively. This low positive predictive value and high negative predictive value demonstrated that the model was less accurate at predicting herds that would violate the estimated BTSCC threshold but very accurate at identifying herds that would not. In addition, the area under the curve for the receiver operating characteristic curve was 0.82, suggesting that the model had excellent discrimination between test-months that did and did not exceed 400,000 cells/mL. An internal validation was completed using a bootstrapped resampling-based estimation method and

  3. Somatic cell genotoxicity at the glycophorin A locus in humans

    SciTech Connect

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-12-28

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N{O}) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N{O} and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs.

  4. Method for somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. PMID:21924165

  5. Preparation and stability of milk somatic cell reference materials.

    PubMed

    Di Marzo, Larissa; Wojciechowski, Karen L; Barbano, David M

    2016-09-01

    Our objectives were to develop a method to produce milk somatic cell count (SCC) reference materials for calibration of electronic somatic cell count (ESCC) using gravity separation and to determine the effect of refrigerated storage (4°C) and freeze-thaw stability of the skim and whole milk SCC reference materials. Whole raw milk was high-temperature short-time pasteurized and split into 2 portions. One portion was gravity separated at 4°C for 22 h and the second portion was centrifugally separated to produce skim milk that was also gravity separated with somatic cells rising to the surface. After 22 h, stock solutions (low SCC skim milk, high SCC skim milk, high SCC whole milk) were prepared and preserved (bronopol). Two experiments were conducted, one to compare the shelf-life of skim and whole milk SCC standards at 4°C and one to determine the effect of freezing and thawing on SCC standards. Both experiments were replicated 3 times. Gravity separation was an effective approach to isolate and concentrate somatic cells from bovine milk and redistribute them in a skim or whole milk matrix to create a set of reference materials with a wider and more uniformly distributed range of SCC than current calibration sets. The liquid SCC reference materials stored using the common industry practice at 4°C were stable (i.e., fit for purpose, no large decrease in SCC) for a 2-wk period, whereas frozen and thawed reference materials may have a much longer useful life. A gradual decrease occurred in residual difference in ESCC (SCC × 1,000/mL) versus original assigned reference SCC over duration of refrigerated storage for both skim and whole milk SCC samples, indicating that milk ESCC of the preserved milks was gradually decreasing during 28 d of storage at 4°C by about 15,000 SCC/mL. No difference in the ESCC for skim milk was detected between refrigerated and frozen storage, whereas for whole milk the ESCC for frozen was lower than refrigerated samples. Future work is

  6. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells

    PubMed Central

    Rouhani, Foad J.; Nik-Zainal, Serena; Wuster, Arthur; Li, Yilong; Conte, Nathalie; Koike-Yusa, Hiroko; Kumasaka, Natsuhiko; Vallier, Ludovic; Yusa, Kosuke; Bradley, Allan

    2016-01-01

    The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50–70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer. PMID:27054363

  7. Vitamin C modulates TET1 function during somatic cell reprogramming.

    PubMed

    Chen, Jiekai; Guo, Lin; Zhang, Lei; Wu, Haoyu; Yang, Jiaqi; Liu, He; Wang, Xiaoshan; Hu, Xiao; Gu, Tianpeng; Zhou, Zhiwei; Liu, Jing; Liu, Jiadong; Wu, Hongling; Mao, Shi-Qing; Mo, Kunlun; Li, Yingying; Lai, Keyu; Qi, Jing; Yao, Hongjie; Pan, Guangjin; Xu, Guo-Liang; Pei, Duanqing

    2013-12-01

    Vitamin C, a micronutrient known for its anti-scurvy activity in humans, promotes the generation of induced pluripotent stem cells (iPSCs) through the activity of histone demethylating dioxygenases. TET hydroxylases are also dioxygenases implicated in active DNA demethylation. Here we report that TET1 either positively or negatively regulates somatic cell reprogramming depending on the absence or presence of vitamin C. TET1 deficiency enhances reprogramming, and its overexpression impairs reprogramming in the context of vitamin C by modulating the obligatory mesenchymal-to-epithelial transition (MET). In the absence of vitamin C, TET1 promotes somatic cell reprogramming independent of MET. Consistently, TET1 regulates 5-hydroxymethylcytosine (5hmC) formation at loci critical for MET in a vitamin C-dependent fashion. Our findings suggest that vitamin C has a vital role in determining the biological outcome of TET1 function at the cellular level. Given its benefit to human health, vitamin C should be investigated further for its role in epigenetic regulation. PMID:24162740

  8. Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis

    PubMed Central

    Hétié, Phylis; de Cuevas, Margaret; Matunis, Erika

    2014-01-01

    Summary Adult stem cells reside in specialized regulatory microenvironments, or niches, where local signals ensure stem cell maintenance. The Drosophila testis contains a well-characterized niche wherein signals from post-mitotic hub cells promote maintenance of adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells were considered to be terminally differentiated; here we show that they can give rise to CySCs. Genetic ablation of CySCs triggers hub cells to transiently exit quiescence, delaminate from the hub, and convert into functional CySCs. Ectopic Cyclin D-Cdk4 expression in hub cells is also sufficient to trigger their conversion into CySCs. In both cases, this conversion causes the formation of multiple ectopic niches over time. Therefore, our work provides a model for understanding how oncogenic mutations in quiescent niche cells could promote loss of quiescence, changes in cell fate, and aberrant niche expansion more generally. PMID:24746819

  9. Quiescence Loosens Epigenetic Constraints in Bovine Somatic Cells and Improves Their Reprogramming into Totipotency.

    PubMed

    Kallingappa, Prasanna K; Turner, Pavla M; Eichenlaub, Michael P; Green, Andria L; Oback, Fleur C; Chibnall, Alice M; Wells, David N; Oback, Björn

    2016-07-01

    Reprogramming by nuclear transfer (NT) cloning forces cells to lose their lineage-specific epigenetic marks and reacquire totipotency. This process often produces molecular anomalies that compromise clone development. We hypothesized that quiescence alters the epigenetic status of somatic NT donor cells and elevates their reprogrammability. To test this idea, we compared chromatin composition and cloning efficiency of serum-starved quiescent (G0) fibroblasts versus nonstarved mitotically selected (G1) controls. We show that G0 chromatin contains reduced levels of Polycomb group proteins EED, SUZ12, PHC1, and RING2, as well as histone variant H2A.Z. Using quantitative confocal immunofluorescence microscopy and fluorometric enzyme-linked immunosorbent assay, we further show that G0 induced DNA and histone hypomethylation, specifically at H3K4me3, H3K9me2/3 and H3K27me3, but not H3K9me1. Collectively, these changes resulted in a more relaxed G0 chromatin state. Following NT, G0 donors developed into blastocysts that retained H3K9me3 hypomethylation, both in the inner cell mass and trophectoderm. G0 blastocysts from different cell types and cell lines developed significantly better into adult offspring. In conclusion, serum starvation induced epigenetic changes, specifically hypotrimethylation, that provide a mechanistic correlate for increased somatic cell reprogrammability. PMID:27281704

  10. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells

    PubMed Central

    Yajima, Mamiko; Wessel, Gary M.

    2015-01-01

    ABSTRACT Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation. PMID:25977366

  11. Method for somatic cell nuclear transfer in zebrafish.

    PubMed

    Siripattarapravat, K; Prukudom, S; Cibelli, J

    2016-01-01

    This chapter presents a detailed methodology for somatic cell nuclear transfer-cloning of zebrafish. We aim to place the reader in a virtual lab experience to assist acquisition of the technical skills required for reproducing the published protocol. All materials, including catalog numbers for reagents and techniques for their preparation, are provided. Our protocols describe laser inactivation of egg chromosomes, the transfer of a cell through the oocyte micropyle, and spontaneous activation of the reconstructed embryo. High-quality eggs are the key to cloning success, and Chinook salmon ovarian fluid is indispensable for keeping eggs arrested at the metaphase of meiosis II. This protocol continues to be refined by our laboratory. However, naive investigators should be able to apply it in its present form to generate cloned zebrafish. PMID:27443929

  12. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    SciTech Connect

    Kishigami, Satoshi Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  13. CSN1 Somatic Mutations in Penile Squamous Cell Carcinoma.

    PubMed

    Feber, Andrew; Worth, Daniel C; Chakravarthy, Ankur; de Winter, Patricia; Shah, Kunal; Arya, Manit; Saqib, Muhammad; Nigam, Raj; Malone, Peter R; Tan, Wei Shen; Rodney, Simon; Freeman, Alex; Jameson, Charles; Wilson, Gareth A; Powles, Tom; Beck, Stephan; Fenton, Tim; Sharp, Tyson V; Muneer, Asif; Kelly, John D

    2016-08-15

    Other than an association with HPV infection, little is known about the genetic alterations determining the development of penile cancer. Although penile cancer is rare in the developed world, it presents a significant burden in developing countries. Here, we report the findings of whole-exome sequencing (WES) to determine the somatic mutational landscape of penile cancer. WES was performed on penile cancer and matched germline DNA from 27 patients undergoing surgical resection. Targeted resequencing of candidate genes was performed in an independent 70 patient cohort. Mutation data were also integrated with DNA methylation and copy-number information from the same patients. We identified an HPV-associated APOBEC mutation signature and an NpCpG signature in HPV-negative disease. We also identified recurrent mutations in the novel penile cancer tumor suppressor genes CSN1(GPS1) and FAT1 Expression of CSN1 mutants in cells resulted in colocalization with AGO2 in cytoplasmic P-bodies, ultimately leading to the loss of miRNA-mediated gene silencing, which may contribute to disease etiology. Our findings represent the first comprehensive analysis of somatic alterations in penile cancer, highlighting the complex landscape of alterations in this malignancy. Cancer Res; 76(16); 4720-7. ©2016 AACR. PMID:27325650

  14. Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells.

    PubMed

    Chung, Young Gie; Matoba, Shogo; Liu, Yuting; Eum, Jin Hee; Lu, Falong; Jiang, Wei; Lee, Jeoung Eun; Sepilian, Vicken; Cha, Kwang Yul; Lee, Dong Ryul; Zhang, Yi

    2015-12-01

    The extremely low efficiency of human embryonic stem cell (hESC) derivation using somatic cell nuclear transfer (SCNT) limits its potential application. Blastocyst formation from human SCNT embryos occurs at a low rate and with only some oocyte donors. We previously showed in mice that reduction of histone H3 lysine 9 trimethylation (H3K9me3) through ectopic expression of the H3K9me3 demethylase Kdm4d greatly improves SCNT embryo development. Here we show that overexpression of a related H3K9me3 demethylase KDM4A improves human SCNT, and that, as in mice, H3K9me3 in the human somatic cell genome is an SCNT reprogramming barrier. Overexpression of KDM4A significantly improves the blastocyst formation rate in human SCNT embryos by facilitating transcriptional reprogramming, allowing efficient derivation of SCNT-derived ESCs using adult Age-related Macular Degeneration (AMD) patient somatic nuclei donors. This conserved mechanistic insight has potential applications for improving SCNT in a variety of contexts, including regenerative medicine. PMID:26526725

  15. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation.

    PubMed

    Hwang, Jeong Ho; Kim, Sang Eun; Gupta, Mukesh Kumar; Lee, HoonTaek

    2016-08-01

    Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos. PMID:27459580

  16. Finnish Sixth Graders as Victims of Adult, Peer, and Co-Occurring Adult and Peer Violence: Depression, Somatization, and Violent Ideation in Relation to Victimization

    ERIC Educational Resources Information Center

    Uusitalo-Malmivaara, Lotta

    2013-01-01

    This study examined the experiences of peer and adult victimization of 737 12-year-old Finnish students. Of the respondents, 28.4% had experienced peer or adult, or both kinds of violence. Peer violence was the most common type of violence, while adult violence was rare. The associations between victimization and depression, somatization and…

  17. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells

    PubMed Central

    Kanno, Hiroshi

    2013-01-01

    Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described. PMID:24179604

  18. Somatic Cell Counts of Milk from Dairy Herd Improvement Herds during 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Test-day data from all herds enrolled in Dairy Herd Improvement (DHI) somatic cell testing during 2006 were examined to assess the status of national milk quality. Cows with records failing some AIPL editing procedures were excluded. Somatic cell score (SCS) is reported to AIPL and was converted to ...

  19. Consequence of changing standards for somatic cell count on US Dairy Herd Improvement herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consequence of noncompliance with European Union (EU) and current US standards for somatic cell count (SCC) as well as SCC standards proposed by the National Milk Producers Federation was examined for US herds. Somatic cell scores (SCS) from 14,854 Dairy Herd Improvement (DHI) herds were analyzed. H...

  20. Use of cow culling to help meet compliance for somatic cell standards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stricter somatic cell count (SCC) standards are expected in the United States. This study examines the degree to which a single high test increases the risk of non-compliance, and whether culling strategies can help keep the herd in compliance. Source of data was somatic cell scores (SCS) from 14,34...

  1. Somatic cell counts of milk from Dairy Herd Improvement herds during 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Test-day data from all herds enrolled in Dairy Herd Improvement (DHI) somatic cell testing during 2009 were examined to assess the status of national milk quality. Cows with records failing some AIPL editing procedures were excluded. Somatic cell score (SCS) is reported to AIPL and was converted to ...

  2. Somatic Cell Counts of Milk from Dairy Herd Improvement Herds during 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Test-day data from all herds enrolled in Dairy Herd Improvement (DHI) somatic cell testing during 2007 were examined to assess the status of national milk quality. Cows with records failing some AIPL editing procedures were excluded. Somatic cell score (SCS) is reported to AIPL and was converted to ...

  3. Somatic cell counts of milk from Dairy Herd Improvement herds during 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Test-day data from all herds enrolled in Dairy Herd Improvement (DHI) somatic cell testing during 2008 were examined to assess the status of national milk quality. Cows with records failing some AIPL editing procedures were excluded. Somatic cell score (SCS) is reported to AIPL and was converted to ...

  4. Evidence of canonical somatic hypermutation in hairy cell leukemia

    PubMed Central

    Arons, Evgeny; Roth, Laura; Sapolsky, Jeffrey; Suntum, Tara; Stetler-Stevenson, Maryalice

    2011-01-01

    To compare hairy cell leukemia (HCL) with chronic lymphocytic leukemia (CLL) and normal B cells with respect to their B-cell receptors, somatic hypermutation (SHM) features in HCL were examined in a series of 130 immunoglobulin gene heavy chain rearrangements, including 102 from 100 classic (HCLc) and 28 from 26 variant (HCLv) patients. The frequency of unmutated rearrangements in HCLc was much lower than that in HCLv (17% vs 54%, P < .001) or historically in CLL (17% vs 46%, P < .001), but HCLv and CLL were similar (P = .45). As previously reported for CLL, evidence of canonical SHM was observed in HCLc rearrangements, including: (1) a higher ratio of replacement to silent mutations in the complementarity determining regions than in the framework regions (2.83 vs 1.41, P < .001), (2) higher transition to transversion ratio than would be expected if mutations were random (1.49 vs 0.5, P < .001), and (3) higher than expected concentration of mutations within RGYW hot spots (13.92% vs 3.33%, P < .001). HCLv met these 3 criteria of canonical SHM to a lesser extent. These data suggest that, whereas HCLc cells may recognize antigen-like CLL and normal B cells before malignant transformation, HCLv cells from some patients may originate differently, possibly without undergoing antigen recognition. PMID:21368287

  5. New Rapid Method of DNA Isolation from Milk Somatic Cells

    PubMed Central

    Pokorska, Joanna; Kułaj, Dominika; Dusza, Magdalena; Żychlińska-Buczek, Justyna; Makulska, Joanna

    2016-01-01

    ABSTRACT Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses. PMID:26913552

  6. Somatic Stem Cells and Their Dysfunction in Endometriosis

    PubMed Central

    Djokovic, Dusan; Calhaz-Jorge, Carlos

    2015-01-01

    Emerging evidence indicates that somatic stem cells (SSCs) of different types prominently contribute to endometrium-associated disorders such as endometriosis. We reviewed the pertinent studies available on PubMed, published in English language until December 2014 and focused on the involvement of SSCs in the pathogenesis of this common gynecological disease. A concise summary of the data obtained from in vitro experiments, animal models, and human tissue analyses provides insights into the SSC dysregulation in endometriotic lesions. In addition, a set of research results is presented supporting that SSC-targeting, in combination with hormonal therapy, may result in improved control of the disease, while a more in-depth characterization of endometriosis SSCs may contribute to the development of early-disease diagnostic tests with increased sensitivity and specificity. Key message: Seemingly essential for the establishment and progression of endometriotic lesions, dysregulated SSCs, and associated molecular alterations hold a promise as potential endometriosis markers and therapeutic targets. PMID:25593975

  7. New Rapid Method of DNA Isolation from Milk Somatic Cells.

    PubMed

    Pokorska, Joanna; Kułaj, Dominika; Dusza, Magdalena; Żychlińska-Buczek, Justyna; Makulska, Joanna

    2016-04-01

    Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses. PMID:26913552

  8. The somatic genomic landscape of chromophobe renal cell carcinoma

    PubMed Central

    Davis, Caleb F.; Ricketts, Christopher; Wang, Min; Yang, Lixing; Cherniack, Andrew D.; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C.; Hacker, Kathryn E.; Bhanot, Gyan; Gordenin, Dmitry A.; Chu, Andy; Gunaratne, Preethi H.; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A.; Bristow, Christopher A.; Donehower, Lawrence A.; Wallen, Eric M.; Smith, Angela B.; Tickoo, Satish K.; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S.; Hsieh, James J.; Choueiri, Toni K.; Hakimi, A. Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A. Gordon; Laird, Peter W.; Henske, Elizabeth P.; Kwiatkowski, David J.; Park, Peter J.; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A.; Linehan, W. Marston; Gibbs, Richard A.; Rathmell, W. Kimryn; Creighton, Chad J.

    2014-01-01

    Summary We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations. PMID:25155756

  9. The somatic genomic landscape of chromophobe renal cell carcinoma.

    PubMed

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. PMID:25155756

  10. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    PubMed Central

    AKAGI, Satoshi; MATSUKAWA, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle. PMID:25341701

  11. Replication-defective vectors of reticuloendotheliosis virus transduce exogenous genes into somatic stem cells of the unincubated chicken embryo

    SciTech Connect

    Bosselman, R.A.; Hsu, R.Y.; Boggs, T.; Hu, S.; Bruszewski, J.; Ou, S.; Souza, L.; Kozar, L.; Martin, F.; Nicolson, M.

    1989-06-01

    Replication-defective vectors derived from reticuloendotheliosis virus were used to transduce exogenous genes into early somatic stem cells of the chicken embryo. One of these vectors transduced and expressed the chicken growth hormone coding sequence. The helper cell line, C3, was used to generate stocks of vector containing about 10/sup 4/ transducing units per ml. Injection of 5- to 20-..mu..l volumes of vector directly beneath the blastoderm of unincubated chicken embryos led to infection of somatic stem cells. Infected embryos and adults contained unrearranged integrated proviral DNAs. Embryos expressed the transduced chicken growth hormone gene and contained high levels of serum growth hormone. Blood, brain, muscle, testis, and semen contained from individuals injected as embryos contained vector DNA. Replication-defective vectors of the reticuloendotheliosis virus transduced exogenous genes into chicken embryonic stem cells in vivo.

  12. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance

    PubMed Central

    Ozmadenci, Duygu; Féraud, Olivier; Markossian, Suzy; Kress, Elsa; Ducarouge, Benjamin; Gibert, Benjamin; Ge, Jian; Durand, Isabelle; Gadot, Nicolas; Plateroti, Michela; Bennaceur-Griscelli, Annelise; Scoazec, Jean-Yves; Gil, Jesus; Deng, Hongkui; Bernet, Agnes; Mehlen, Patrick; Lavial, Fabrice

    2015-01-01

    The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming is extensively documented, but comparatively little is known about soluble molecules promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC, described for their respective survival/death functions in normal and oncogenic contexts, as reprogramming modulators. In various somatic cells, we found that reprogramming is accompanied by a transient transcriptional repression of Netrin-1 mediated by an Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our work also sheds light on Netrin-1's function in protecting embryonic stem cells from apoptosis mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1 improves the generation of mouse and human iPS cells. PMID:26154507

  13. Current methods for inducing pluripotency in somatic cells.

    PubMed

    Tavernier, Geertrui; Mlody, Barbara; Demeester, Jo; Adjaye, James; De Smedt, Stefaan C

    2013-05-28

    The groundbreaking discovery of reprogramming fibroblasts towards pluripotency merely by introducing four transcription factors (OCT4, SOX2, KLF4 and c-MYC) by means of retroviral transduction has created a promising revolution in the field of regenerative medicine. These so-called induced pluripotent stem cells (iPSCs) can provide a cell source for disease-modelling, drug-screening platforms, and transplantation strategies to treat incurable degenerative diseases, while circumventing the ethical issues and immune rejections associated with the use of non-autologous embryonic stem cells. The risk of insertional mutagenesis, caused both by the viral and transgene nature of the technique has proven to be the major limitation for iPSCs to be used in a clinical setting. In view of this, a variety of alternative techniques have been developed to induce pluripotency in somatic cells. This review provides an overview on current reprogramming protocols, discusses their pros and cons and future challenges to provide safe and transgene-free iPSCs. PMID:23529911

  14. The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells.

    PubMed

    Keam, Simon P; Young, Paul E; McCorkindale, Alexandra L; Dang, Thurston H Y; Clancy, Jennifer L; Humphreys, David T; Preiss, Thomas; Hutvagner, Gyorgy; Martin, David I K; Cropley, Jennifer E; Suter, Catherine M

    2014-08-01

    The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. PMID:25038252

  15. The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells

    PubMed Central

    Keam, Simon P.; Young, Paul E.; McCorkindale, Alexandra L.; Dang, Thurston H.Y.; Clancy, Jennifer L.; Humphreys, David T.; Preiss, Thomas; Hutvagner, Gyorgy; Martin, David I.K.; Cropley, Jennifer E.; Suter, Catherine M.

    2014-01-01

    The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. PMID:25038252

  16. Visualization of actin filaments and monomers in somatic cell nuclei.

    PubMed

    Belin, Brittany J; Cimini, Beth A; Blackburn, Elizabeth H; Mullins, R Dyche

    2013-04-01

    In addition to its long-studied presence in the cytoplasm, actin is also found in the nuclei of eukaryotic cells. The function and form (monomer, filament, or noncanonical oligomer) of nuclear actin are hotly debated, and its localization and dynamics are largely unknown. To determine the distribution of nuclear actin in live somatic cells and evaluate its potential functions, we constructed and validated fluorescent nuclear actin probes. Monomeric actin probes concentrate in nuclear speckles, suggesting an interaction of monomers with RNA-processing factors. Filamentous actin probes recognize discrete structures with submicron lengths that are excluded from chromatin-rich regions. In time-lapse movies, these actin filament structures exhibit one of two types of mobility: 1) diffusive, with an average diffusion coefficient of 0.06-0.08 μm(2)/s, or (2) subdiffusive, with a mobility coefficient of 0.015 μm(2)/s. Individual filament trajectories exhibit features of particles moving within a viscoelastic mesh. The small size of nuclear actin filaments is inconsistent with a role in micron-scale intranuclear transport, and their localization suggests that they do not participate directly in chromatin-based processes. Our results instead suggest that actin filaments form part of a large, viscoelastic structure in the nucleoplasm and may act as scaffolds that help organize nuclear contents. PMID:23447706

  17. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers

    PubMed Central

    Shu, Jian; Wu, Chen; Wu, Yetao; Li, Zhiyuan; Shao, Sida; Zhao, Wenhui; Tang, Xing; Yang, Huan; Shen, Lijun; Zuo, Xiaohan; Yang, Weifeng; Shi, Yan; Chi, Xiaochun; Zhang, Hongquan; Gao, Ge; Shu, Youmin; Yuan, Kehu; He, Weiwu; Tang, Chao; Zhao, Yang; Deng, Hongkui

    2014-01-01

    SUMMARY The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here we report that during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a “seesaw model,” in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming. PMID:23706735

  18. Propagation of elite rescue dogs by somatic cell nuclear transfer.

    PubMed

    Oh, Hyun Ju; Choi, Jin; Kim, Min Jung; Kim, Geon A; Jo, Young Kwang; Choi, Yoo Bin; Lee, Byeong Chun

    2016-01-01

    The objective of the present study was to compare the efficiency of two oocyte activation culture media to produce cloned dogs from an elite rescue dog and to analyze their behavioral tendencies. In somatic cell nuclear transfer procedure, fused couplets were activated by calcium ionophore treatment for 4 min, cultured in two media: modified synthetic oviduct fluid (mSOF) with 1.9 mmol/L 6-dimethylaminopyridine (DMAP) (SOF-DMAP) or porcine zygote medium (PZM-5) with 1.9 mmol/L DMAP (PZM-DMAP) for 4 h, and then were transferred into recipients. After embryo transfer, pregnancy was detected in one out of three surrogate mothers that received cloned embryos from the PZM-DMAP group (33.3%), and one pregnancy (25%) was detected in four surrogate mothers receiving cloned embryos from the SOF-DMAP group. Each pregnant dog gave birth to one healthy cloned puppy by cesarean section. We conducted the puppy aptitude test with two cloned puppies; the two cloned puppies were classified as the same type, accepting humans and leaders easily. The present study indicated that the type of medium used in 6-DMAP culture did not increase in cloning efficiency and dogs cloned using donor cells derived from one elite dog have similar behavioral tendencies. PMID:26387964

  19. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  20. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming.

    PubMed

    Hirsch, Calley L; Coban Akdemir, Zeynep; Wang, Li; Jayakumaran, Gowtham; Trcka, Dan; Weiss, Alexander; Hernandez, J Javier; Pan, Qun; Han, Hong; Xu, Xueping; Xia, Zheng; Salinger, Andrew P; Wilson, Marenda; Vizeacoumar, Frederick; Datti, Alessandro; Li, Wei; Cooney, Austin J; Barton, Michelle C; Blencowe, Benjamin J; Wrana, Jeffrey L; Dent, Sharon Y R

    2015-04-15

    Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc-SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming. PMID:25877919

  1. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis.

    PubMed

    Poon, Jessica; Wessel, Gary M; Yajima, Mamiko

    2016-07-01

    Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis. PMID:27179696

  2. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    SciTech Connect

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S. . E-mail: keith.campbell@nottingham.ac.uk

    2005-07-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.

  3. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  4. Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells

    PubMed Central

    Cervelló, Irene; Gil-Sanchis, Claudia; Mas, Aymara; Delgado-Rosas, Francisco; Martínez-Conejero, José Antonio; Galán, Amparo; Martínez-Romero, Alicia; Martínez, Sebastian; Navarro, Ismael; Ferro, Jaime; Horcajadas, José Antonio; Esteban, Francisco José; O'Connor, José Enrique; Pellicer, Antonio; Simón, Carlos

    2010-01-01

    During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC) population. Here we explore the hypothesis that human endometrial side population (SP) cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC. PMID:20585575

  5. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    PubMed

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. PMID:26746137

  6. Novel Variants of Oct-3/4 Gene Expressed in Mouse Somatic Cells*S⃞

    PubMed Central

    Mizuno, Nobuhiko; Kosaka, Mitsuko

    2008-01-01

    It has been suggested that Oct-3/4 may regulate self-renewal in somatic stem cells, as it does in embryonic stem cells. However, recent reports raise the possibility that detection of human Oct-3/4 expression by RT-PCR is prone to artifacts generated by pseudogene transcripts and argue against a role for Oct-3/4 in somatic cells. In this study, we clarified Oct-3/4 expression in mouse somatic tissues using designed PCR primers, which can exclude amplification of its pseudogenes. We found that novel alternative transcripts are indeed expressed in somatic tissues, rather than the normal length transcripts in germline and ES cells. The alternative transcripts indicate the expression of two kinds of truncated proteins. Furthermore, we determined novel promoter regions that are sufficient for the expression of Oct-3/4 transcript variants in somatic cells. These findings provide new insights into the postnatal role of Oct-3/4 in somatic tissues. PMID:18765667

  7. Somatic cell nuclear transfer-derived embryonic stem cell lines in humans: pros and cons.

    PubMed

    Langerova, Alena; Fulka, Helena; Fulka, Josef

    2013-12-01

    The recent paper, published by Mitalipov's group in Cell (Tachibana et al., 2013 ), reporting the production of human somatic cell nuclear transfer (SCNT) embryonic stem cells (ESCs), opens again the debate if, in the era of induced pluripotent stem cells (iPSCs), the production of these cells is indeed necessary and, if so, whether they are different from ESCs produced from spare embryos and iPSCs. It is our opinion that these questions are very difficult to answer because it is still unclear whether and how normal ESCs differ from iPSCs. PMID:24180743

  8. Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor

    PubMed Central

    Morillo, Sandra M.; Escoll, Pedro; de la Hera, Antonio; Frade, José M.

    2009-01-01

    A subset of neurons in the normal vertebrate nervous system contains double the normal amount of DNA in their nuclei. These neurons are all thought to derive from aberrant mitoses in neuronal precursor cells. Here we show that endogenous NGF induces DNA replication in a subpopulation of differentiating chick retinal ganglion cells that express both the neurotrophin receptor p75 and the E2F1 transcription factor, but that lack the retinoblastoma protein. Many of these neurons avoid G2/M transition and remain alive in the retina as tetraploid cells with large cell somas and extensive dendritic trees, and most of them express β2 nicotinic acetylcholine receptor subunits, a specific marker of retinal ganglion cells innervating lamina F in the stratum-griseum-et-fibrosum-superficiale of the tectal cortex. Tetraploid neurons were also observed in the adult mouse retina. Thus, a developmental program leading to somatic tetraploidy in specific retinal neurons exists in vertebrates. This program might occur in other vertebrate neurons during normal or pathological situations. PMID:20018664

  9. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  10. Adult Stem Cells and Diseases of Aging.

    PubMed

    Boyette, Lisa B; Tuan, Rocky S

    2014-01-21

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  11. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  12. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells.

    PubMed

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  13. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    PubMed Central

    Das, Joydeep; Kang, Min-Hee; Kim, Eunsu; Kwon, Deug-Nam; Choi, Yun-Jung; Kim, Jin-Hoi

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis, resulting in male infertility. Cr(VI) by inducing oxidative stress was cytotoxic to both male somatic cells and SSCs in a dose-dependent manner, and induced mitochondria-dependent apoptosis. Although the mechanism of Cr(VI)-induced cytotoxicity was similar in both somatic cells, the differences in sensitivity of TM3 and TM4 cells to Cr(VI) could be attributed, at least in part, to cell-specific regulation of P-AKT1, P-ERK1/2, and P-P53 proteins. Cr(VI) affected the differentiation and self-renewal mechanisms of SSCs, disrupted steroidogenesis in TM3 cells, while in TM4 cells, the expression of tight junction signaling and cell receptor molecules was affected as well as the secretory functions were impaired. In conclusion, our results show that Cr(VI) is cytotoxic and impairs the physiological functions of male somatic cells and SSCs. PMID:26355036

  14. Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes

    PubMed Central

    Hu, Chenxia; Li, Lanjuan

    2015-01-01

    The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocytes. However, the major challenges and potential applications of reprogrammed hepatocytes remain under investigation. In this review, we provide a summary of two effective routes including direct reprogramming and indirect reprogramming from somatic cells to hepatocytes and the general potential applications of the resulting hepatocytes. Through these approaches, we are striving toward the goal of achieving a robust, mature source of clinically relevant lineages. PMID:26340624

  15. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.

    PubMed

    Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R

    2015-06-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125

  16. [Antiviral activity of interferon and its inducers in human lymphoblastoid and somatic cells].

    PubMed

    Novokhatskiĭ, A S; Labzo, S S; Tsareva, A A

    1979-04-01

    The antiviral effect of interferon inductors, such as poly-I--poly-C, phage f2 RNA replicative form and low molecular inductor GSN and their influence on cellular DNA synthesis were studied in the cultures of lymphoblastoid (inplanting lines Raji Namalva) and somatic human cells. The Semliki forest virus used as the test organism multiplicated well in cells Raji accumulating up to 9 lg BOU/ml. The two-strand RNA was less active in the lymphoid cells than in the somatic ones. GSN was 10 times more active and less toxic in cells Raji as compared to the fibroblasts. The lymphoblastoid interferon had higher antiviral activity as compared to the fibroblast interferon in the system of Raji--Semliki forest virus than in the system of the human embryon fibroblast--Venezuela Horse Encephalytic Virus. Romantadin actively inhibited (100 times) production of the alfavirus in both the somatic and lymphoblastoid cells. PMID:220908

  17. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    PubMed Central

    Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.

    2015-01-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125

  18. Assessment of megabase-scale somatic copy number variation using single-cell sequencing

    PubMed Central

    Knouse, Kristin A.; Wu, Jie; Amon, Angelika

    2016-01-01

    Megabase-scale copy number variants (CNVs) can have profound phenotypic consequences. Germline CNVs of this magnitude are associated with disease and experience negative selection. However, it is unknown whether organismal function requires that every cell maintain a balanced genome. It is possible that large somatic CNVs are tolerated or even positively selected. Single-cell sequencing is a useful tool for assessing somatic genomic heterogeneity, but its performance in CNV detection has not been rigorously tested. Here, we develop an approach that allows for reliable detection of megabase-scale CNVs in single somatic cells. We discover large CNVs in 8%–9% of cells across tissues and identify two recurrent CNVs. We conclude that large CNVs can be tolerated in subpopulations of cells, and particular CNVs are relatively prevalent within and across individuals. PMID:26772196

  19. Consequence for dairy herds in the United States of imposing different standards for somatic cell count

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New European Union (E.U.) regulations may require that a somatic cell count (SCC) limit of 400,000 cells/mL for milk be met by every farm that contributes to pooled milk exported to Europe. In the United States, the standard is 750,000 cells/mL. Because bulk tank SCC is not readily available through...

  20. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    PubMed

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P<0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA. PMID:23217630

  1. Partial Somatic to Stem Cell Transformations Induced By Cell-Permeable Reprogramming Factors

    PubMed Central

    Lim, Junghee; Kim, Junghee; Kang, Jinsun; Jo, Daewoong

    2014-01-01

    The production of pluripotent stem cells (iPSCs) for therapeutic applications will require practical methods to achieve tight temporal and quantitative control of reprogramming factor (RF) expression, while avoiding the mutagenic potential of gene transfer. Toward this end, we have developed cell-permeable RF proteins (CP-RFs) incorporating newly developed macromolecule transduction domains (MTDs). Treatment of human dermal fibroblasts (HDFs) with combinations of cell-permeable OCT4, SOX2, KLF4, CMYC and either NANOG or LIN28 proteins induced the outgrowth of stem cell-like colonies (iSCs). iSC colonies generated with CP-RFs resembled embryonic stem cells with regard to morphology, biomarker expression, and extended capacity for self-renewal, but failed to expand as iPSC or ES cell lines. Partial reprogramming appears to be a common response to protein-based delivery of programming factors into somatic cells. PMID:24618595

  2. Usp16 contributes to somatic stem cell defects in Down syndrome

    PubMed Central

    Adorno, Maddalena; Sikandar, Shaheen; Mitra, Siddhartha S.; Kuo, Angera; Di Robilant, Benedetta Nicolis; Haro-Acosta, Veronica; Ouadah, Youcef; Quarta, Marco; Rodriguez, Jacqueline; Qian, Dalong; Reddy, Vadiyala M.; Cheshier, Samuel; Garner, Craig C.; Clarke, Michael F.

    2013-01-01

    SUMMARY Down syndrome (DS) results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, trisomic for 132 genes homologous to HSA21, triplication of Usp16 reduces self-renewal of hematopoietic stem cells and expansion of mammary epithelial cells, neural progenitors, and fibroblasts. Moreover, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from H2AK119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal USP16 allele or by shRNAs, largely rescues all these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and post-natal neural progenitors while downregulation of USP16 partially rescues the proliferation defects of DS fibroblasts. Taken together, these results suggest that USP16 plays an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome and could serve as an attractive target to ameliorate some of the associated pathologies. PMID:24025767

  3. Whole-exome sequencing identifies a somatic missense mutation of NBN in clear cell sarcoma of the salivary gland.

    PubMed

    Zhang, Lei; Jia, Zhen; Mao, Fengbiao; Shi, Yueyi; Bu, Rong Fa; Zhang, Baorong

    2016-06-01

    Clear cell sarcoma (CCS) is a rare, low-grade carcinoma commonly located in the distal extremities of young adults involving tendons and aponeuroses. CCS is characterized by its poor prognosis due to late diagnosis, multiple local recurrence, propensity to late metastases, and a high rate of tumor-related mortality. The genetic cause for CCS is thought to be EWSR1 gene translocation. However, CCS lacking a translocation may have other, as yet uncharacterized, genetic mutations that can cause the same pathological effect. A combination of whole‑exome sequencing and Sanger sequencing of cancer tissue and venous blood from a patient diagnosed with CCS of the salivary gland revealed a somatic missense mutation, c.1061C>T (p.P354L), in exon 9 of the Nibrin gene (NBN). This somatic missense mutation led to the conversion of proline to leucine (p.P354L), resulting in deleterious effects for the NBN protein. Multiple-sequence alignments showed that codon 354, where the mutation (c.1061C>T) occurs, is located within a phylogenetically conserved region. In conclusion, we here report a somatic missense mutation c.1061C>T (p.P354L) in the NBN gene in a patient with CCS lacking an EWSR1-ATF1 fusion. Our findings broaden the genotypic spectrum of CCS and provide new molecular insight that should prove useful in the future clinical genetic diagnosis of CCS. PMID:27109316

  4. No differences in sheep somatic cell nuclear transfer outcomes using serum-starved or actively growing donor granulosa cells.

    PubMed

    Peura, T T; Hartwich, K M; Hamilton, H M; Walker, S K

    2003-01-01

    The aim of this study was to compare serum-starved and non-starved donor cells in sheep nuclear transfer with a special emphasis on cloning outcomes. Sheep oocytes, derived either in vivo or in vitro, were fused with cultured serum-starved or actively growing adult granulosa cells. Resulting blastocysts were transferred to recipients fresh or after vitrification, and subsequent pregnancies followed to term. Donor cell treatment did not significantly affect preimplantation development, pregnancy rates, fetal loss or neonate survival rates. Of 22 lambs born, ten survived the immediate perinatal period but all succumbed at various timepoints within the first few weeks of life. The results of the study suggest that the use of serum-starved cells offers no advantages or disadvantages to cloning outcomes. Neither were significant differences in outcomes observed when using either in vivo- or in vitro-derived oocytes or embryos transferred fresh or after vitrification. Yet, these results continue to highlight problems associated with somatic cell cloning as indicated by offspring mortality. It remains unclear whether the high offspring mortality in the current study was related to species, associated with the cell lines used or the result of other causes. PMID:12921702

  5. PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer

    PubMed Central

    Lunde, Ida G; Ekmark, Merete; Rana, Zaheer A; Buonanno, Andres; Gundersen, Kristian

    2007-01-01

    The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca2+, hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARδ, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARδ protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARδ was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARδ was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARδ can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARδ in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARδ can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation–transcription coupling. PMID:17463039

  6. Spatial separation of parental genomes in hybrids of somatic plant cells.

    PubMed

    Gleba, Y Y; Parokonny, A; Kotov, V; Negrutiu, I; Momot, V

    1987-06-01

    Chromosome spatial arrangements on metaphase plates of intergeneric intertribal cell hybrids of Nicotiana chinensis and Atropa belladonna as well as interspecific somatic hybrid plants of Nicotiana plumbaginifolia and Nicotiana sylvestris were analyzed. In the metaphases of the first divisions of protoplast fusion products, chromosomes of the two parents were spatially separated (segmented metaphase). In long-term cultured somatic hybrids, the topology of genome separation pattern in both callus cells and plants showed changes in form from "segmental" to "radial." Growing the hybrid cells in the presence of colchicine resulted in random chromosome arrangement both in cells directly exposed to different colchicine concentrations and in colchicine-treated cells grown in colchicine-free media. The degree of genome separation calculated for different cell clones remained constant during in vitro propagation of cells but was significantly lower for subclones derived from colchicine-treated cells. Therefore, it is concluded that spatial chromosome arrangement in metaphase is epigenetically controlled. PMID:16593838

  7. Effects of donor fibroblasts expressing OCT4 on bovine embryos generated by somatic cell nuclear transfer.

    PubMed

    Goissis, Marcelo D; Suhr, Steven T; Cibelli, Jose B

    2013-02-01

    The production of healthy, live, cloned animals by somatic cell nuclear transfer (SCNT) has been hampered by low efficiencies. Significant epigenetic changes must take place to ensure proper chromatin remodeling in SCNT. We hypothesized that exogenous expression of OCT4 in donor fibroblasts prior to its fusion with enucleated oocytes would facilitate SCNT reprogramming. We infected bovine adult fibroblasts with retroviral vectors containing yellow fluorescent protein (YFP) only, or the OCT4 gene fused to YFP (YO). We found that development to the blastocyst stage was not different between NT-YFP and NT-YO groups. NT-YFP embryos had the fewest trophoblast cells, measured by numbers of CDX2-positive cells. Fibroblasts expressing OCT4 had reduced levels of histone 3 lysine 9 or 27 trimethylation (H3K9me3 and H3K27me3, respectively). NT-YO blastocysts displayed higher H3K9me3 levels than IVF and NT-YFP embryos; however, they did not have different H3K27me3 levels. Levels of XIST mRNA expression in NT-YO and NT-YF were higher when compared to in vitro-fertilized blastocysts. We observed no differences in the expression of SOX2, NANOG, and CDX2. Although overexpression of OCT4 in donor cells increased H3K9me3 and did not reduce XIST gene expression, we show that a single transcription factor can affect the number of trophectoderm cells in bovine SCNT embryos. PMID:23276226

  8. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells.

    PubMed

    Ghildiyal, Megha; Seitz, Hervé; Horwich, Michael D; Li, Chengjian; Du, Tingting; Lee, Soohyun; Xu, Jia; Kittler, Ellen L W; Zapp, Maria L; Weng, Zhiping; Zamore, Phillip D

    2008-05-23

    Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to messenger RNAs (mRNAs); these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form double-stranded RNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease Dicer-2 and the RNAi effector protein Argonaute2 (Ago2). We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma, much as Piwi-interacting RNAs do in the germ line. PMID:18403677

  9. Single-Cell Genetic Analysis Using Automated Microfluidics to Resolve Somatic Mosaicism.

    PubMed

    Szulwach, Keith E; Chen, Peilin; Wang, Xiaohui; Wang, Jing; Weaver, Lesley S; Gonzales, Michael L; Sun, Gang; Unger, Marc A; Ramakrishnan, Ramesh

    2015-01-01

    Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10(-6), on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells. PMID:26302375

  10. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

    PubMed

    Menendez, Javier A; Vellon, Luciano; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Vazquez-Martin, Alejandro

    2011-11-01

    Molecular controllers of the number and function of tissue stem cells may share common regulatory pathways for the nuclear reprogramming of somatic cells to become induced Pluripotent Stem Cells (iPSCs). If this hypothesis is true, testing the ability of longevity-promoting chemicals to improve reprogramming efficiency may provide a proof-of-concept validation tool for pivotal housekeeping pathways that limit the numerical and/or functional decline of adult stem cells. Reprogramming is a slow, stochastic process due to the complex and apparently unrelated cellular processes that are involved. First, forced expression of the Yamanaka cocktail of stemness factors, OSKM, is a stressful process that activates apoptosis and cellular senescence, which are the two primary barriers to cancer development and somatic reprogramming. Second, the a priori energetic infrastructure of somatic cells appears to be a crucial stochastic feature for optimal successful routing to pluripotency. If longevity-promoting compounds can ablate the drivers and effectors of cellular senescence while concurrently enhancing a bioenergetic shift from somatic oxidative mitochondria toward an alternative ATP-generating glycolytic metabotype, they could maximize the efficiency of somatic reprogramming to pluripotency. Support for this hypothesis is evidenced by recent findings that well-characterized mTOR inhibitors and autophagy activators (e.g., PP242, rapamycin and resveratrol) notably improve the speed and efficiency of iPSC generation. This article reviews the existing research evidence that the most established mTOR inhibitors can notably decelerate the cellular senescence that is imposed by DNA damage-like responses, which are somewhat equivalent to the responses caused by reprogramming factors. These data suggest that fine-tuning mTOR signaling can impact mitochondrial dynamics to segregate mitochondria that are destined for clearance through autophagy, which results in the loss of

  11. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.

    PubMed

    Doege, Claudia A; Inoue, Keiichi; Yamashita, Toru; Rhee, David B; Travis, Skylar; Fujita, Ryousuke; Guarnieri, Paolo; Bhagat, Govind; Vanti, William B; Shih, Alan; Levine, Ross L; Nik, Sara; Chen, Emily I; Abeliovich, Asa

    2012-08-30

    Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by using the pluripotency factors Oct4, Sox2, Klf4 and c-Myc (together referred to as OSKM). iPSC reprogramming erases somatic epigenetic signatures—as typified by DNA methylation or histone modification at silent pluripotency loci—and establishes alternative epigenetic marks of embryonic stem cells (ESCs). Here we describe an early and essential stage of somatic cell reprogramming, preceding the induction of transcription at endogenous pluripotency loci such as Nanog and Esrrb. By day 4 after transduction with OSKM, two epigenetic modification factors necessary for iPSC generation, namely poly(ADP-ribose) polymerase-1 (Parp1) and ten-eleven translocation-2 (Tet2), are recruited to the Nanog and Esrrb loci. These epigenetic modification factors seem to have complementary roles in the establishment of early epigenetic marks during somatic cell reprogramming: Parp1 functions in the regulation of 5-methylcytosine (5mC) modification, whereas Tet2 is essential for the early generation of 5-hydroxymethylcytosine (5hmC) by the oxidation of 5mC (refs 3,4). Although 5hmC has been proposed to serve primarily as an intermediate in 5mC demethylation to cytosine in certain contexts, our data, and also studies of Tet2-mutant human tumour cells, argue in favour of a role for 5hmC as an epigenetic mark distinct from 5mC. Consistent with this, Parp1 and Tet2 are each needed for the early establishment of histone modifications that typify an activated chromatin state at pluripotency loci, whereas Parp1 induction further promotes accessibility to the Oct4 reprogramming factor. These findings suggest that Parp1 and Tet2 contribute to an epigenetic program that directs subsequent transcriptional induction at pluripotency loci during somatic cell reprogramming. PMID:22902501

  12. Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin.

    PubMed

    Sun, Wei-Hsin; Coleman, Thomas R; DePamphilis, Melvin L

    2002-03-15

    Previous studies have suggested that cell cycle-dependent changes in the affinity of the origin recognition complex (ORC) for chromatin are involved in regulating initiation of DNA replication. To test this hypothesis, chromatin lacking functional ORCs was isolated from metaphase hamster cells and incubated in Xenopus egg extracts to initiate DNA replication. Intriguingly, Xenopus ORC rapidly bound to hamster somatic chromatin in a Cdc6-dependent manner and was then released, concomitant with initiation of DNA replication. Once pre-replication complexes (pre-RCs) were assembled either in vitro or in vivo, further binding of XlORC was inhibited. Neither binding nor release of XlORC was affected by inhibitors of either cyclin-dependent protein kinase activity or DNA synthesis. In contrast, inhibition of pre-RC assembly, either by addition of Xenopus geminin or by depletion of XlMcm proteins, augmented ORC binding by inhibiting ORC release. These results demonstrate a programmed release of XlORC from somatic cell chromatin as it enters S phase, consistent with the proposed role for ORC in preventing re-initiation of DNA replication during S phase. PMID:11889049

  13. The influence of donor nucleus source on the outcome of zebrafish somatic cell nuclear transfer.

    PubMed

    Siripattarapravat, Kannika; Pinmee, Boonya; Chang, Eun-Ah; Muñoz, Juan D; Kawakami, Koichi; Cibelli, José B

    2010-01-01

    The success of nuclear reprogramming following somatic cell nuclear transfer (SCNT) is thought to depend on factors present in the egg. Little is known about the role - if any - played by the somatic cell type on the outcome of the procedure. We tested whether cells of different lineages might have different capacities for reprogramming following SCNT, comparing cells isolated from five different tissues of transgenic zebrafish for their developmental potential when used as SCNT donor cells. We used transgenic zebrafish lines expressing green fluorescence protein under an endogenous tissue-specific promoter: HGn62A-skin, HGn28A-skin, HGn8E-heart, HG21C-fin and notochord and HGn30A-hatch gland. We analyzed the efficiency of cloning, as measured by reconstructed embryos that developed up to the hatched-fry stage. Specifically, donor cells of fin and notochord origin yielded the best rate of cloned fish production. All of the other cell types used were capable of producing cloned fish, albeit with significantly lower efficiency. These results indicate that the type of zebrafish cells used for SCNT can influence the outcome of the procedure. Future epigenetic analysis of these cells will help determine specific chromatin profiles in somatic cells that have an impact on nuclear reprogramming procedures. PMID:21404188

  14. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    PubMed Central

    2014-01-01

    The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs). Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types. PMID:25431601

  15. Knockdown of Brm and Baf170, Components of Chromatin Remodeling Complex, Facilitates Reprogramming of Somatic Cells.

    PubMed

    Jiang, Zongliang; Tang, Yong; Zhao, Xueming; Zhang, Mingyuan; Donovan, David M; Tian, Xiuchun Cindy

    2015-10-01

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells, esBAF contains Brg1 and Baf155, while their homologs, Brm and Baf170, are present in BAF of somatic cells. In this study, we sought to determine whether Brm and Baf170 play any roles in induced pluripotent stem cell (iPSC) reprogramming by using shRNA-mediated knockdown studies in the mouse model. We found that knocking down Brm during early, mid, and late stages (days 3, 6, and 9 after initial iPSC induction) and knocking down Baf170 during late-stage (day 9) reprogramming improve the numbers of iPSC colonies formed. We further showed that inhibition of these somatic BAF components also promotes complete reprogramming of partially reprogrammed somatic cells (pre-iPSCs). Finally, we found that the expression of Brm and Baf170 during reprogramming was regulated by Jak/Stat3 activity. Taken together, these data suggest that inhibiting somatic BAF improves complete reprogramming by facilitating the activation of the pluripotency circuitry. PMID:26121422

  16. Somatic Cell Count in Milk of Goats Enrolled in Dairy Herd Improvement Program in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of breed, parity, stage of lactation (month), herd size, and regions/states on somatic cell count (SCC) and production of milk from dairy goats enrolled in the Dairy Herd Improvement (DHI) program in the United States in 2007 were investigated to monitor the current status of SCC and to ...

  17. Impact of selection for decreased somatic cell score on productive life and culling for mastitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impact of continued selection for decreased somatic cell score (SCS) was examined to determine if such selection resulted in greater mastitis susceptibility and shorter productive life (PL). Holstein artificial-insemination bulls with a predicted transmitting ability (PTA) for SCS based on >=35 daug...

  18. A matter of identity - Phenotype and differentiation potential of human somatic stem cells.

    PubMed

    New, S E P; Alvarez-Gonzalez, C; Vagaska, B; Gomez, S G; Bulstrode, N W; Madrigal, A; Ferretti, P

    2015-07-01

    Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the "identity" and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs), pediatric adipose-derived stem cells (p-ADSCs) in parallel with human neural stem cells (NSCs). We show that UC-MSCs at a basal level express mesenchymal and so-called "neural" markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic approaches. PMID:25957945

  19. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    SciTech Connect

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z. . E-mail: hzsheng2003@yahoo.com

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.

  20. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    SciTech Connect

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu; and others

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  1. Calcineurin-NFAT Signaling Controls Somatic Cell Reprogramming in a Stage-Dependent Manner.

    PubMed

    Sun, Ming; Liao, Bing; Tao, Yu; Chen, Hao; Xiao, Feng; Gu, Junjie; Gao, Shaorong; Jin, Ying

    2016-05-01

    Calcineurin-NFAT signaling is critical for early lineage specification of mouse embryonic stem cells and early embryos. However, its roles in somatic cell reprogramming remain unknown. Here, we report that calcineurin-NFAT signaling has a dynamic activity and plays diverse roles at different stages of reprogramming. At the early stage, calcineurin-NFAT signaling is transiently activated and its activation is required for successful reprogramming. However, at the late stage of reprogramming, activation of calcineurin-NFAT signaling becomes a barrier for reprogramming and its inactivation is critical for successful induction of pluripotency. Mechanistically, calcineurin-NFAT signaling contributes to the reprogramming through regulating multiple early events during reprogramming, including mesenchymal to epithelial transition (MET), cell adhesion and emergence of SSEA1(+) intermediate cells. Collectively, this study reveals for the first time the important roles of calcineurin-NFAT signaling during somatic cell reprogramming and provides new insights into the molecular regulation of reprogramming. PMID:26448199

  2. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid

    SciTech Connect

    Yefenof, E.; Goldapfel, M.; Ber, R.

    1982-05-01

    The cell line designated PIR-2 is a nonimmunogenic X-ray-induced thymoma of C57BL/6 origin that is unable to induce antitumor immunity in syngeneic lymphocytes in vitro and in mice in vivo. Fusion of PIR-2 with an allogeneic universal fuser A9HT (clone 3c) resulted in the establishment of a somatic cell hybrid designated A9/PIR. C57BL/6 lymphocytes sensitized in vitro with A9/PIR could lyse parental PIR-2 cells, as well as other syngeneic tumors. However, immunization of mice with the hybrid significantly enhanced PIR-2 tumor takes while it partially protected the animals against a challenge with unrelated syngeneic tumors. The results imply that somatic cell hybridization can increase the immunogenicity of an otherwise nonimmunogenic tumor. However, in view of the enhancing effects of hybrid preimmunization on parental tumor cell growth, the possible application of this approach for immunotherapy is questionable.

  3. Freeze-dried somatic cells direct embryonic development after nuclear transfer.

    PubMed

    Loi, Pasqualino; Matsukawa, Kazutsugu; Ptak, Grazyna; Clinton, Michael; Fulka, Josef; Nathan, Yehudith; Arav, Amir

    2008-01-01

    The natural capacity of simple organisms to survive in a dehydrated state has long been exploited by man, with lyophylization the method of choice for the long term storage of bacterial and yeast cells. More recently, attempts have been made to apply this procedure to the long term storage of blood cells. However, despite significant progress, practical application in a clinical setting is still some way off. Conversely, to date there are no reports of attempts to lyophilize nucleated somatic cells for possible downstream applications. Here we demonstrate that lyophilised somatic cells stored for 3 years at room temperature are able to direct embryonic development following injection into enucleated oocytes. These remarkable results demonstrate that alternative systems for the long-term storage of cell lines are now possible, and open unprecedented opportunities in the fields of biomedicine and for conservation strategies. PMID:18714340

  4. Direct somatic lineage conversion.

    PubMed

    Tanabe, Koji; Haag, Daniel; Wernig, Marius

    2015-10-19

    The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced. PMID:26416679

  5. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.

    PubMed

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony F; Rosenberg Belmaker, Lior A; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E; Grigorenko, Elena L; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M

    2012-12-20

    Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. PMID:23160490

  6. Somatic copy-number mosaicism in human skin revealed by induced pluripotent stem cells

    PubMed Central

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony; Belmaker, Lior A. Rosenberg; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E.; Grigorenko, Elena L.; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M.

    2012-01-01

    Reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variations (CNVs)1-4. To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR), we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts (i.e. the fibroblasts from which each corresponding hiPSC line is derived) and are manifested in iPSC colonies due to the colonies’ clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. PMID:23160490

  7. Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming.

    PubMed

    Chen, Jun; Chen, Xiaolong; Li, Min; Liu, Xiaoyu; Gao, Yawei; Kou, Xiaochen; Zhao, Yanhong; Zheng, Weisheng; Zhang, Xiaobai; Huo, Yi; Chen, Chuan; Wu, You; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2016-02-16

    The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies. PMID:26832419

  8. The Evolutionary Origin of Somatic Cells under the Dirty Work Hypothesis

    PubMed Central

    Goldsby, Heather J.; Knoester, David B.; Ofria, Charles; Kerr, Benjamin

    2014-01-01

    Reproductive division of labor is a hallmark of multicellular organisms. However, the evolutionary pressures that give rise to delineated germ and somatic cells remain unclear. Here we propose a hypothesis that the mutagenic consequences associated with performing metabolic work favor such differentiation. We present evidence in support of this hypothesis gathered using a computational form of experimental evolution. Our digital organisms begin each experiment as undifferentiated multicellular individuals, and can evolve computational functions that improve their rate of reproduction. When such functions are associated with moderate mutagenic effects, we observe the evolution of reproductive division of labor within our multicellular organisms. Specifically, a fraction of the cells remove themselves from consideration as propagules for multicellular offspring, while simultaneously performing a disproportionately large amount of mutagenic work, and are thus classified as soma. As a consequence, other cells are able to take on the role of germ, remaining quiescent and thus protecting their genetic information. We analyze the lineages of multicellular organisms that successfully differentiate and discover that they display unforeseen evolutionary trajectories: cells first exhibit developmental patterns that concentrate metabolic work into a subset of germ cells (which we call “pseudo-somatic cells”) and later evolve to eliminate the reproductive potential of these cells and thus convert them to actual soma. We also demonstrate that the evolution of somatic cells enables phenotypic strategies that are otherwise not easily accessible to undifferentiated organisms, though expression of these new phenotypic traits typically includes negative side effects such as aging. PMID:24823361

  9. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells

    PubMed Central

    Zhang, Xi-Feng; Choi, Yun-Jung; Han, Jae Woong; Kim, Eunsu; Park, Jung Hyun; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    Background Silver nanoparticles (AgNPs) possess unique physical, chemical, and biological properties. AgNPs have been increasingly used as anticancer, antiangiogenic, and antibacterial agents for the treatment of bacterial infections in open wounds as well as in ointments, bandages, and wound dressings. The present study aimed to investigate the effects of two different sizes of AgNPs (10 nm and 20 nm) in male somatic Leydig (TM3) and Sertoli (TM4) cells and spermatogonial stem cells (SSCs). Methods Here, we demonstrate a green and simple method for the synthesis of AgNPs using Bacillus cereus culture supernatants. The synthesized AgNPs were characterized using ultraviolet and visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The toxicity of the synthesized AgNPs was evaluated by the effects on cell viability, metabolic activity, oxidative stress, apoptosis, and expression of genes encoding steroidogenic and tight junction proteins. Results AgNPs inhibited the viability and proliferation of TM3 and TM4 cells in a dose- and size-dependent manner by damaging cell membranes and inducing the generation of reactive oxygen species, which in turn affected SSC growth on TM3 and TM4 as feeder cells. Small AgNPs (10 nm) were more cytotoxic than medium-sized nanoparticles (20 nm). TEM revealed the presence of AgNPs in the cell cytoplasm and nucleus, and detected mitochondrial damage and enhanced formation of autosomes and autolysosomes in the AgNP-treated cells. Flow cytometry analysis using Annexin V/propidium iodide staining showed massive cell death by apoptosis or necrosis. Real-time polymerase chain reaction and western blot analyses indicated that in TM3 and TM4 cells, AgNPs activated the p53, p38, and pErk1/2 signaling pathways and significantly downregulated the expression of genes related to testosterone synthesis (TM3) and tight junctions (TM4). Furthermore, the exposure of TM3

  10. Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain.

    PubMed

    Friend, K K; Chen, S; Ruddle, F H

    1976-03-01

    Staining of chromosome preparations of Chinese hamster-human hybrid cells and mouse-chimpanzee hybrids with alkaline Giemsa has yielded color differentiation of the interspecific chromosomes. Bicolor chromosomes, indicating apparent translocations also are observed for each of these hybrids. The specific color differences observed provide a rapid means of recognizing and aiding in the identification of the interspecific chromosomes and apparent translocations in these somatic cell hybrids. PMID:1028166

  11. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions.

    PubMed

    Mordhorst, A P; Voerman, K J; Hartog, M V; Meijer, E A; van Went, J; Koornneef, M; de Vries, S C

    1998-06-01

    Embryogenesis in plants can commence from cells other than the fertilized egg cell. Embryogenesis initiated from somatic cells in vitro is an attractive system for studying early embryonic stages when they are accessible to experimental manipulation. Somatic embryogenesis in Arabidopsis offers the additional advantage that many zygotic embryo mutants can be studied under in vitro conditions. Two systems are available. The first employs immature zygotic embryos as starting material, yielding continuously growing embryogenic cultures in liquid medium. This is possible in at least 11 ecotypes. A second, more efficient and reproducible system, employing the primordia timing mutant (pt allelic to hpt, cop2, and amp1), was established. A significant advantage of the pt mutant is that intact seeds, germinated in 2,4-dichlorophenoxyacetic acid (2, 4-D) containing liquid medium, give rise to stable embryonic cell cultures, circumventing tedious hand dissection of immature zygotic embryos. pt zygotic embryos are first distinguishable from wild type at early heart stage by a broader embryonic shoot apical meristem (SAM). In culture, embryogenic clusters originate from the enlarged SAMs. pt somatic embryos had all characteristic embryo pattern elements seen in zygotic embryos, but with higher and more variable numbers of cells. Embryogenic cell cultures were also established from seedling, of other mutants with enlarged SAMs, such as clavata (clv). pt clv double mutants showed additive effects on SAM size and an even higher frequency of seedlings producing embryogenic cell lines. pt clv double mutant plants had very short fasciated inflorescence stems and additive effects on the number of rosette leaves. This suggests that the PT and CLV genes act in independent pathways that control SAM size. An increased population of noncommitted SAM cells may be responsible for facilitated establishment of somatic embryogenesis in Arabidopsis. PMID:9611173

  12. Magnetofection of human somatic cells with magnetite and cobalt ferrospinel nanoparticles.

    PubMed

    Sukoyan, M A; Khrapov, E A; Voronina, E N; Boyarskikh, U A; Gubanov, A I; Itin, V I; Magaeva, A A; Nayden, E P; Terekhova, O G; Filipenko, M L

    2013-03-01

    Superparamagnetic nanoparticles varying by their chemical composition and synthesis method were used to transfer DNA into somatic cells under the influence of constant magnetic field (method of magnetofection). Magnetite particles obtained by mechanochemical synthesis ensured higher expression of the marker gene GFP (evaluated by fluorescence intensity of the cell lysate) then particles of ferric oxide obtained by chemical co-precipitation and cobalt ferrospinel particles obtained by the mechanochemical method. PMID:23658896

  13. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions.

    PubMed Central

    Mordhorst, A P; Voerman, K J; Hartog, M V; Meijer, E A; van Went, J; Koornneef, M; de Vries, S C

    1998-01-01

    Embryogenesis in plants can commence from cells other than the fertilized egg cell. Embryogenesis initiated from somatic cells in vitro is an attractive system for studying early embryonic stages when they are accessible to experimental manipulation. Somatic embryogenesis in Arabidopsis offers the additional advantage that many zygotic embryo mutants can be studied under in vitro conditions. Two systems are available. The first employs immature zygotic embryos as starting material, yielding continuously growing embryogenic cultures in liquid medium. This is possible in at least 11 ecotypes. A second, more efficient and reproducible system, employing the primordia timing mutant (pt allelic to hpt, cop2, and amp1), was established. A significant advantage of the pt mutant is that intact seeds, germinated in 2,4-dichlorophenoxyacetic acid (2, 4-D) containing liquid medium, give rise to stable embryonic cell cultures, circumventing tedious hand dissection of immature zygotic embryos. pt zygotic embryos are first distinguishable from wild type at early heart stage by a broader embryonic shoot apical meristem (SAM). In culture, embryogenic clusters originate from the enlarged SAMs. pt somatic embryos had all characteristic embryo pattern elements seen in zygotic embryos, but with higher and more variable numbers of cells. Embryogenic cell cultures were also established from seedling, of other mutants with enlarged SAMs, such as clavata (clv). pt clv double mutants showed additive effects on SAM size and an even higher frequency of seedlings producing embryogenic cell lines. pt clv double mutant plants had very short fasciated inflorescence stems and additive effects on the number of rosette leaves. This suggests that the PT and CLV genes act in independent pathways that control SAM size. An increased population of noncommitted SAM cells may be responsible for facilitated establishment of somatic embryogenesis in Arabidopsis. PMID:9611173

  14. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    SciTech Connect

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  15. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  16. Observations on intramammary infection and somatic cell counts in cows treated with recombinant bovine somatotropin.

    PubMed Central

    Lissemore, K D; Leslie, K E; McBride, B W; Burton, J H; Willan, A R; Bateman, K G

    1991-01-01

    Data were collected on udder health variables as part of a study of the effects of recombinant bovine somatotropin on production in lactating dairy cows. Milk samples, obtained at three intervals during the study, were assessed for their somatic cell count and bacteriological culture result. There was an increase in the prevalence of infection at mid-lactation in the 20.6 and 41.2 mg per day treatment groups as compared to the controls. There was no difference detected in the mean cell count between groups from the samples collected pretrial, mid-lactation, or late lactation. However, analysis of the individual cow Dairy Herd Improvement somatic cell count data showed a difference between groups which was most evident in mid-lactation. PMID:1884302

  17. [Radiation-induced DNA fragmentation in cells of somatic and generative tissues of Drosophila melanogaster].

    PubMed

    Yushkova, E; Zainullin, V

    2015-01-01

    The levels of DNA fragmentation (using a neutral version of the "Comet assay" method) in the cells of somatic (brain ganglia) and generative (male gonad) tissues of the inbred individuals of the Drosophila wild-type developing in different conditions of a chronic irradiation were estimated. It was found that the radiobiological effect depends on the genotype and cytotype. Irradiation at low doses (0.42 mGy/h) induces the DNA damage in somatic cells of all the studied lines Drosophila in the same way. With the increase in the intensity of chronic irradiation (3.5mGy/h) a significant level of DNA breaks in neuroblasts was observed only for Harwich and Oregon-R stocks, in the cells of male gonad--for all the studied genotypes. PMID:25962282

  18. Psychic and Somatic Symptoms of Depression among Young Adults, Institutionalized Aged and Noninstitutionalized Aged.

    ERIC Educational Resources Information Center

    Zemore, Robert; Eames, Nancy

    1979-01-01

    Tested hypothesis that the institutional nature of old-age homes increases depression in the elderly. Results provided no support that the aged are more depressed. Somatic complaints can be indicators of depression in the elderly if normative differences between young and old are taken into account. (Author)

  19. Morphology and ultrastructure of the somatic cells in Astacus leptodactylus ovary.

    PubMed

    Petrescu, Ana-Maria; Moldovan, Lucia; Zarnescu, Otilia

    2016-01-01

    We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. PMID:26453477

  20. Reversal of informational entropy and the acquisition of germ-like immortality by somatic cells.

    PubMed

    Kyriazis, Marios

    2014-01-01

    We live within an increasingly technological, information-laden environment for the first time in human evolution. This subjects us (and will continue to subject us in an accelerating fashion) to an unremitting exposure to 'meaningful information that requires action'. Directly dependent upon this new environment are novel evolutionary pressures, which can modify existing resource allocation mechanisms and may eventually favour the survival of somatic cells (particularly neurons) at the expense of germ line cells. In this theoretical paper I argue that persistent, structured information-sharing in both virtual and real domains, leads to increased biological complexity and functionality, which reflects upon human survival characteristics. Certain biological immortalisation mechanisms currently employed by germ cells may thus need to be downgraded in order to enable somatic cells to manage these new energy demands placed by our modern environment. Relevant concepts from a variety of disciplines such as the evolution of complex adaptive systems, information theory, digital hyper-connectivity, and cell immortalisation will be reviewed. Using logical, though sometimes speculative arguments, I will attempt to describe a new biology. A biology not driven by sex and reproduction but by information and somatic longevity. PMID:24852017

  1. Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming.

    PubMed

    Jin, Wensong; Wang, Lei; Zhu, Fei; Tan, Weiqi; Lin, Wei; Chen, Dahua; Sun, Qinmiao; Xia, Zongping

    2016-01-01

    The POU domain transcription factor Oct4 plays critical roles in self-renewal and pluripotency of embryonic stem cells (ESCs). Together with Sox2, Klf4 and c-Myc, Oct4 can reprogram any other cell types to pluripotency, in which Oct4 is the only factor that cannot be functionally replaced by other POU family members. To investigate the determinant elements of Oct4 uniqueness, we performed Ala scan on all Ser, Thr, Tyr, Lys and Arg of murine Oct4 by testing their capability in somatic cell reprogramming. We uncovered a series of residues that are important for Oct4 functionality, in which almost all of these key residues are within the POU domains making direct interaction with DNA. The Oct4 N- and C-terminal transactivation domains (TADs) are not unique and could be replaced by the Yes-associated protein (YAP) TAD domain to support reprogramming. More importantly, we uncovered two important residues that confer Oct4 uniqueness in somatic cell reprogramming. Our systematic structure-function analyses bring novel mechanistic insight into the molecular basis of how critical residues function together to confer Oct4 uniqueness among POU family for somatic cell reprogramming. PMID:26877091

  2. A molecular roadmap of reprogramming somatic cells into iPS cells.

    PubMed

    Polo, Jose M; Anderssen, Endre; Walsh, Ryan M; Schwarz, Benjamin A; Nefzger, Christian M; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy; Natesan, Sridaran; Melnick, Ari; Zhu, Jinfang; Ramaswamy, Sridhar; Hochedlinger, Konrad

    2012-12-21

    Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming. PMID:23260147

  3. Somatic mutation and cell differentiation in neoplastic transformation

    SciTech Connect

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  4. Reprogrammed Transcriptome in Rhesus-Bovine Interspecies Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Wang, Kai; Otu, Hasan H.; Chen, Ying; Lee, Young; Latham, Keith; Cibelli, Jose B.

    2011-01-01

    Background Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive. Methodology/Principal Findings In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos. Conclusions/Significance Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation. PMID:21799794

  5. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    PubMed

    Cieslak, Jakub; Mackowski, Mariusz; Czyzak-Runowska, Grazyna; Wojtowski, Jacek; Puppel, Kamila; Kuczynska, Beata; Pawlak, Piotr

    2015-01-01

    Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse) we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8) is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment. PMID:26437076

  6. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells

    PubMed Central

    Cieslak, Jakub; Mackowski, Mariusz; Czyzak-Runowska, Grazyna; Wojtowski, Jacek; Puppel, Kamila; Kuczynska, Beata; Pawlak, Piotr

    2015-01-01

    Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse’s milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse) we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8) is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment. PMID:26437076

  7. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells.

    PubMed

    Chung, H J; Hassan, M M; Park, J O; Kim, H J; Hong, S T

    2015-05-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  8. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    PubMed Central

    Chung, H.J.; Hassan, M.M.; Park, J.O.; Kim, H.J.; Hong, S.T.

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  9. Evidence for estrogen receptor expression in germ cell and somatic cell subpopulations in the ovary of the newly hatched chicken.

    PubMed

    Méndez, M C; Chávez, B; Echeverría, O; Vilchis, F; Vázquez Nin, G H; Pedernera, E

    1999-10-01

    Estrogens are involved in the gonadal morphogenesis of vertebrates, and almost all hormonal effects of 17beta-estradiol are mediated through specific receptors. At the time of sexual differentiation in the chicken, or even before, there is evidence of the presence of estrogen receptors and the secretion of 17beta-estradiol. However, no information is available regarding the cellular types that express the estrogen receptor in the immature chick ovary. The present study analyzes estrogen receptor expression in germ and somatic cells of the ovary in the newly hatched chicken. Highly purified cell subpopulations of germ and somatic cells were evaluated for specific 17beta-estradiol nuclear binding. In addition, the estrogen receptor was localized at the ultrastructural level by the immunogold technique. Finally, reverse transcription and polymerase chain reaction procedures detected a steady-state level of mRNA for the estrogen receptor. Somatic cells including typical steroidogenic cells showed specific 17beta-estradiol nuclear binding, displayed the estrogen receptor, and possessed estrogen receptor transcripts. The same result was observed in primary oocytes, together with the ultrastructural localization of estrogen receptor in extended chromatin filaments. Our experimental data support the hypothesis that estrogens are involved in the function of somatic and germ cells subpopulations in the immature chicken ovary. PMID:10555548

  10. Loss of centrioles causes chromosomal instability in vertebrate somatic cells

    PubMed Central

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G.; Dunning, Mark; Kilmartin, John V.

    2013-01-01

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore–MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity. PMID:24297747

  11. Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism

    PubMed Central

    Iourov, Ivan Y.; Vorsanova, Svetlana G.; Zelenova, Maria A.; Korostelev, Sergei A.; Yurov, Yuri B.

    2015-01-01

    Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease. PMID:26421275

  12. On distinguishing cause and consequence: do high somatic cell counts lead to lower milk yield or does high milk yield lead to lower somatic cell count?

    PubMed

    Green, L E; Schukken, Y H; Green, M J

    2006-09-15

    Researchers have reported that as milk yield increases composite milk somatic cell count (SCC) is diluted in cattle with no intramammary infection (IMI) and as a consequence, estimates of SCC from high yields are lower than estimates of SCC from low yields in dairy cows without an IMI. To date, estimates of reduced milk yield associated with high SCC because of intramammary infection have not been adjusted for any dilution of SCC. Ignoring dilution is therefore likely to lead to an overestimate of reduction in yield with increasing SCC. This paper investigates scenarios of the possible impact of dilution and inflammation on the association between somatic cell count and yield. The data used to investigate this relationship come from 8373 monthly records of milk yield and composite somatic cell count, together with incidence of clinical mastitis, which were recorded on 850 cows from five dairy cattle farms in Gloucestershire, UK. Two sets of models were used to investigate dilution and inflammation using two-level hierarchical models. The first set of models was used to estimate the linear (dilution) and log10-linear (inflammation) impact of SCC on the outcome variable milk yield. Five general linear models with increasing inclusion of higher test day SCC values were run. The cumulative categories were test day SCC values of up to and inclusive of 30, 50, 100, 200 and 400x10(3)cells/ml. Linear and log linear SCC influences on milk yield were estimated. At low SCC values the linear SCC predictor was dominant, while at higher values the log linear predictor was dominant. Up to 100x10(3)cells/ml there was mostly a slightly negative linear relationship between SCC and yield, potentially indicating a dilution effect. In the second set of models, three approaches to adjust milk loss for dilution were compared with an unadjusted model. In general, dilution-adjusted SCC values fitted the data better and resulted in a slightly lower milk loss per SCC category compared with

  13. Molecular analysis and breakpoint definition of a set of human chromosome 21 somatic cell hybrids

    SciTech Connect

    Graw, S.L.; Gardiner, K.; Hart, I.

    1995-11-01

    Rodent-human somatic cell hybrids containing single human chromosomes or chromosome fragments are extremely valuable in physical mapping, marker analysis, and disease mapping. Chromosome 21 has been extensively studied in this fashion, ans a single set of hybrids has been utilized in mapping the majority of chromosome 21 markets. The utility of a set of hybrids depends upon the definition of the human chromosome 21 markers in the preliminary analysis of YACs spanning chromosome 21q. We have used these same markers to evaluate the STS content of a set of 27 chromosome 21 somatic cell hybrids, resulting in the description of the breakpoints at the molecular level, as well as the definition of 35 {open_quotes}bins.{close_quotes} The detailed molecular definition of chromosome 21 content of the hybrids, in combination with the further analysis of chromosome 21 YACs (2), has resulted in the most detailed picture of chromosome 21 to date. 32 refs., 2 tabs.

  14. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  15. Somatic stiffness of cochlear outer hair cells is voltage-dependent.

    PubMed

    He, D Z; Dallos, P

    1999-07-01

    The mammalian cochlea depends on an amplification process for its sensitivity and frequency-resolving capability. Outer hair cells are responsible for providing this amplification. It is usually assumed that the membrane-potential-driven somatic shape changes of these cells are the basis of the amplifying process. It is of interest to see whether mechanical reactance changes of the cells might accompany their changes in cell shape. We now show that the cylindrical outer hair cells change their axial stiffness as their membrane potential is altered. Cell stiffness was determined by optoelectronically measuring the amplitude of motion of a flexible vibrating fiber as it was loaded by the isolated cell. Voltage commands to the cell were delivered in a tight-seal whole-cell configuration. Cell stiffness was decreased by depolarization and increased by hyperpolarization. PMID:10393976

  16. Programmable calculator program for linear somatic cell scores to estimate mastitis yield losses.

    PubMed

    Kirk, J H

    1984-02-01

    A programmable calculator program calculates loss of milk yield in dairy cows based on linear somatic cell count scores. The program displays the distribution of the herd by lactation number and linear score for present and optimal goal situations. Loss of yield is in pounds and dollars by cow and herd. The program estimates optimal milk production and numbers of fewer cows at the goal for mastitis infection. PMID:6546938

  17. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows

    PubMed Central

    2013-01-01

    Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows. PMID

  18. Power Efficiency of Outer Hair Cell Somatic Electromotility

    PubMed Central

    Rabbitt, Richard D.; Clifford, Sarah; Breneman, Kathryn D.; Farrell, Brenda; Brownell, William E.

    2009-01-01

    Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing. PMID:19629162

  19. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    PubMed Central

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    Background and Aims The thin cell layer (TCL) technique is based on the use of very small explants and has allowed enhanced in vitro morphogenesis in several plant species. The present study evaluated the TCL technique as a procedure for somatic embryo production and plantlet regeneration of peach palm. Methods TCL explants from different positions in the shoot apex and leaf sheath of peach palm were cultivated in MS culture medium supplemented with 0–600 µm Picloram in the presence of activated charcoal. The production of primary calli and embryogenic calli was evaluated in these different conditions. Histological and amplified fragment length polymorphism (AFLP) analyses were conducted to study in vitro morphogenetic responses and genetic stability, respectively, of the regenerated plantlets. Key Results Abundant primary callus induction was observed from TCLs of the shoot meristem in culture media supplemented with 150–600 µm Picloram (83–97 %, respectively). The production of embryogenic calli depends on Picloram concentration and explant position. The best response observed was 43 % embryogenic callus production from shoot meristem TCL on 300 µm Picloram. In maturation conditions, 34 ± 4 somatic embryos per embryogenic callus were obtained, and 45·0 ± 3·4 % of these fully developed somatic embryos were converted, resulting in plantlets ready for acclimatization, of which 80 % survived. Histological studies revealed that the first cellular division events occurred in cells adjacent to vascular tissue, resulting in primary calli, whose growth was ensured by a meristematic zone. A multicellular origin of the resulting somatic embryos arising from the meristematic zone is suggested. During maturation, histological analyses revealed bipolarization of the somatic embryos, as well as the development of new somatic embryos. AFLP analyses revealed that 92 % of the regenerated plantlets were true to type. The use of TCL explants considerably improves the

  20. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    PubMed

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC. PMID:26621586

  1. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    PubMed

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  2. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei.

    PubMed

    Fu, Bo; Liu, Di; Ma, Hong; Guo, Zhen-Hua; Wang, Liang; Li, Zhong-Qiu; Peng, Fu-Gang; Bai, Jing

    2016-02-01

    Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming. PMID:26503330

  3. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins.

    PubMed

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M; Telugu, Bhanu P

    2016-01-01

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals. PMID:27240344

  4. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    PubMed Central

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M.; Telugu, Bhanu P.

    2016-01-01

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals. PMID:27240344

  5. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    PubMed Central

    Renault, Andrew D.

    2012-01-01

    Summary Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor. PMID:23213382

  6. A miR-372/let-7 Axis Regulates Human Germ Versus Somatic Cell Fates.

    PubMed

    Tran, Nam D; Kissner, Michael; Subramanyam, Deepa; Parchem, Ronald J; Laird, Diana J; Blelloch, Robert H

    2016-07-01

    The embryonic stem cell cycle (ESCC) and let-7 families of miRNAs function antagonistically in the switch between mouse embryonic stem cell self-renewal and somatic differentiation. Here, we report that the human ESCC miRNA miR-372 and let-7 act antagonistically in germline differentiation from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). hESC and iPSC-derived primordial germ cell-like cells (PGCLCs) expressed high levels of miR-372 and conversely, somatic cells expressed high levels of let-7. Manipulation of miRNA levels by introduction of miRNA mimics or knockdown with miRNA sponges demonstrated that miR-372 promotes whereas let-7 antagonizes PGCLC differentiation. Knockdown of the individual miR-372 targets SMARCC1, MECP2, CDKN1, RBL2, RHOC, and TGFBR2 increased PGCLC production, whereas knockdown of the let-7 targets CMYC and NMYC suppressed PGCLC differentiation. These findings uncover a miR-372/let-7 axis regulating human primordial germ cell (PGC) specification. Stem Cells 2016;34:1985-1991. PMID:27066911

  7. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells.

    PubMed

    Kikuchi, Akira; Sanuki, Nobuya; Higashi, Katsumi; Koshiba, Tomokazu; Kamada, Hiroshi

    2006-03-01

    Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10(-4) M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses. PMID:16160844

  8. The glycophorin A assay for somatic cell mutations in humans

    SciTech Connect

    Langlois, R.G.; Bigbee, W.L.; Jensen, R.H.

    1989-08-18

    In this report we briefly review our past experience and some new developments with the GPA assay. Particular emphasis will be placed on two areas that affect the utility of the GPA assay for human population monitoring. The first is our efforts to simplify the GPA assay to make it more generally available for large population studies. The second is to begin to understand some of the characteristics of human hemopoiesis which affect the accumulation and expression of mutant phenotype cells. 11 refs., 4 figs.

  9. Genetics of Somatic Mammalian Cells: Biochemical Genetics of Chinese Hamster Cell Mutants with Deviant Purine Metabolism

    PubMed Central

    Patterson, David; Kao, Fa-Ten; Puck, Theodore T.

    1974-01-01

    Studies are presented on the biochemical genetics of 30 adenine-requiring mutants of the Chinese hamster ovary cell which were induced by mutagenesis and selected by the BrdU-visible light technique. Representative experiments conducted with these mutants include: hybridization with each other; hybridization with normal human cells; nutritional analysis; biochemical analysis with radioactively labeled intermediates; and measurement of reversion frequencies to wild-type phenotype occurring spontaneously and under the influence of selected mutagens. All mutants behave as if having point mutations. These experiments provide information relevant to the determination of dominant-recessive relationships, resolution into different complementation classes, localization of the human chromosomes which carry human genes required by the individual mutants, determination of the point of metabolic block for different mutants, and elucidation of the nature of the underlying DNA changes. These experiments illustrate the range of biochemical-genetic studies now possible with such a family of somatic mammalian cell mutants in vitro. Possible application to problems of human genetic disease are indicated. Images PMID:4525316

  10. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells

    PubMed Central

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. DOI: http://dx.doi.org/10.7554/eLife.18426.001 PMID:27537197

  11. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    PubMed

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  12. CRISPR mediated somatic cell genome engineering in the chicken.

    PubMed

    Véron, Nadège; Qu, Zhengdong; Kipen, Phoebe A S; Hirst, Claire E; Marcelle, Christophe

    2015-11-01

    Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model. PMID:26277216

  13. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika.

    PubMed

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-01-01

    Sperm specific lactate dehydrogenases (LDH-C₄) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika's heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C₄, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment. PMID:27490559

  14. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika

    PubMed Central

    Wei, Dengbang; Wei, Linna; Li, Xiao; Wang, Yang; Wei, Lian

    2016-01-01

    Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika’s heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment. PMID:27490559

  15. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    PubMed Central

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  16. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  17. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  18. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility

    PubMed Central

    Wissing, Silke; Muñoz-Lopez, Martin; Macia, Angela; Yang, Zhiyuan; Montano, Mauricio; Collins, William; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.

    2012-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ∼10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs. PMID:21989055

  19. Factors Determining the Efficiency of Porcine Somatic Cell Nuclear Transfer: Data Analysis with Over 200,000 Reconstructed Embryos.

    PubMed

    Liu, Tianbin; Dou, Hongwei; Xiang, Xi; Li, Lin; Li, Yong; Lin, Lin; Pang, Xinzhi; Zhang, Yijie; Chen, Yu; Luan, Jing; Xu, Ying; Yang, Zhenzhen; Yang, Wenxian; Liu, Huan; Li, Feida; Wang, Hui; Yang, Huanming; Bolund, Lars; Vajta, Gabor; Du, Yutao

    2015-12-01

    Data analysis in somatic cell nuclear transfer (SCNT) research is usually limited to several hundreds or thousands of reconstructed embryos. Here, we report mass results obtained with an established and consistent porcine SCNT system (handmade cloning [HMC]). During the experimental period, 228,230 reconstructed embryos and 82,969 blastocysts were produced. After being transferred into 656 recipients, 1070 piglets were obtained. First, the effects of different types of donor cells, including fetal fibroblasts (FFs), adult fibroblasts (AFs), adult preadipocytes (APs), and adult blood mesenchymal (BM) cells, were investigated on the further in vitro and in vivo development. Compared to adult donor cells (AFs, APs, BM cells, respectively), FF cells resulted in a lower blastocyst/reconstructed embryo rate (30.38% vs. 37.94%, 34.65%, and 34.87%, respectively), but a higher overall efficiency on the number of piglets born alive per total blastocysts transferred (1.50% vs. 0.86%, 1.03%, and 0.91%, respectively) and a lower rate of developmental abnormalities (10.87% vs. 56.57%, 24.39%, and 51.85%, respectively). Second, recloning was performed with cloned adult fibroblasts (CAFs) and cloned fetal fibroblasts (CFFs). When CAFs were used as the nuclear donor, fewer developmental abnormalities and higher overall efficiency were observed compared to AFs (56.57% vs. 28.13% and 0.86% vs. 1.59%, respectively). However, CFFs had an opposite effect on these parameters when compared with CAFs (94.12% vs. 10.87% and 0.31% vs. 1.50%, respectively). Third, effects of genetic modification on the efficiency of SCNT were investigated with transgenic fetal fibroblasts (TFFs) and gene knockout fetal fibroblasts (KOFFs). Genetic modification of FFs increased developmental abnormalities (38.96% and 25.24% vs. 10.87% for KOFFs, TFFs, and FFs, respectively). KOFFs resulted in lower overall efficiency compared to TFFs and FFs (0.68% vs. 1.62% and 1.50%, respectively). In conclusion, this is the

  20. Genotoxic effects of two-generational selenium deficiency in mouse somatic and testicular cells

    PubMed Central

    Graupner, Anne; Instanes, Christine; Andersen, Jill M.; Brandt-Kjelsen, Anicke; Dertinger, Stephen D.; Salbu, Brit; Brunborg, Gunnar; Olsen, Ann-Karin

    2015-01-01

    Many studies have investigated genotoxic effects of high Se diets but very few have addressed the genotoxicity of Se deprivation and its consequences in germ cells and none in somatic cells. To address these data gaps, C57BL/6 male mice were subjected to Se deprivation starting in the parental generation, i.e. before conception. Mice were given a diet of either low (0.01mg Se/kg diet) or normal (0.23mg Se/kg diet) Se content. Ogg1-deficient (Ogg1 −/−) mice were used as a sensitive model towards oxidative stress due to their reduced capacity to repair oxidised purines. Ogg1 −/− mice also mimic the repair characteristics of human post-meiotic male germ cells which have a reduced ability to repair such lesions. The genotoxicity of Se deficiency was addressed by measuring DNA lesions with the alkaline single cell gel electrophoresis (+ Fpg to detect oxidised DNA lesions) in somatic cells (nucleated blood cells and lung cells) and male germ cells (testicular cells). Total Se concentration in liver and GPx activity in plasma and testicular cells were measured. Gene mutation was evaluated by an erythrocyte-based Pig-a assay. We found that Se deprivation of F1 from their conception and until early adulthood led to the induction of DNA lesions in testicular and lung cells expressed as significantly increased levels of DNA lesions, irrespective of the mouse genotype. In blood cells, Se levels did not appear to affect DNA lesions or mutant cell frequencies. The results suggest that the testis was the most sensitive tissue. Thus, genotoxicity induced by the low Se diet in the spermatozoal genome has potential implications for the offspring. PMID:25358475

  1. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    PubMed

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. PMID:27319353

  2. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    SciTech Connect

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  3. Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance.

    PubMed

    Wang, James Q; Jeelall, Yogesh S; Beutler, Bruce; Horikawa, Keisuke; Goodnow, Christopher C

    2014-03-10

    MYD88(L265P) has recently been discovered as an extraordinarily frequent somatic mutation in benign monoclonal IgM gammopathy, Waldenström's macroglobulinemia, and diffuse large B cell lymphoma. In this study, we analyze the consequences for antigen-activated primary B cells of acquiring MYD88(L265P). The mutation induced rapid B cell division in the absence of exogenous TLR ligands and was inhibited by Unc93b1(3d) mutation and chloroquine or TLR9 deficiency, indicating continued dependence on upstream TLR9 activation. Proliferation and NF-κB activation induced by MYD88(L265P) were nevertheless rapidly countered by the induction of TNFAIP3, an NF-κB inhibitor frequently inactivated in MYD88(L265P)-bearing lymphomas, and extinguished by Bim-dependent apoptosis. MYD88(L265P) caused self-reactive B cells to accumulate in vivo only when apoptosis was opposed by Bcl2 overexpression. These results reveal checkpoints that fortify TLR responses against aberrant B cell proliferation in response to ubiquitous TLR and BCR self-ligands and suggest that tolerance failure requires the accumulation of multiple somatic mutations. PMID:24534189

  4. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    PubMed Central

    Rodriguez-Osorio, Nelida; Wang, Zhongde; Kasinathan, Poothappillai; Page, Grier P; Robl, James M; Memili, Erdogan

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research. PMID:19393066

  5. De novo generation of HSCs from somatic and pluripotent stem cell sources

    PubMed Central

    Vo, Linda T.

    2015-01-01

    Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177

  6. Polycomb Group Proteins: Multi-Faceted Regulators of Somatic Stem Cells and Cancer

    PubMed Central

    Sauvageau, Martin; Sauvageau, Guy

    2016-01-01

    Polycomb Group (PcG) proteins are transcriptional repressors that epigenetically modify chromatin and participate in the establishment and maintenance of cell fates. These proteins play important roles in both stem cell self-renewal and in cancer development. Our understanding of their mechanism of action has greatly advanced over the past 10 years, but many unanswered questions remain. In this review, we present the currently available experimental data that connect PcG protein function with some of the key processes which govern somatic stem cell activity. We also highlight recent studies suggesting that a delicate balance in PcG gene dosage is crucial for proper stem cell homeostasis and prevention of cancer stem cell development. PMID:20804967

  7. De novo generation of HSCs from somatic and pluripotent stem cell sources.

    PubMed

    Vo, Linda T; Daley, George Q

    2015-04-23

    Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177

  8. Reprogramming of mouse and human somatic cells by high-performance engineered factors

    PubMed Central

    Wang, Yang; Chen, Jiekai; Hu, Jia-Lei; Wei, Xi-Xiao; Qin, Dajiang; Gao, Juan; Zhang, Lei; Jiang, Jing; Li, Jin-Song; Liu, Jing; Lai, Ke-Yu; Kuang, Xia; Zhang, Jian; Pei, Duanqing; Xu, Guo-Liang

    2011-01-01

    Reprogramming somatic cells to become induced pluripotent stem cells (iPSCs) by using defined factors represents an important breakthrough in biology and medicine, yet remains inefficient and poorly understood. We therefore devised synthetic factors by fusing the VP16 transactivation domain to OCT4 (also known as Pou5f1), NANOG and SOX2, respectively. These synthetic factors could reprogramme both mouse and human fibroblasts with enhanced efficiency and accelerated kinetics. Remarkably, Oct4–VP16 alone could efficiently reprogramme mouse embryonic fibroblasts (MEFs) into germline-competent iPSCs. Furthermore, episomally delivered synthetic factors could reproducibly generate integration-free iPSCs from MEFs with enhanced efficiency. Our results not only demonstrate the feasibility of engineering more potent reprogramming factors, but also suggest that transcriptional reactivation of OCT4 target genes might be a rate-limiting step in the conversion of somatic cells to pluripotent cells. Synthetic factor-based reprogramming might lead to a paradigm shift in reprogramming research. PMID:21399616

  9. Oncogenic transformation of Drosophila somatic cells induces a functional piRNA pathway.

    PubMed

    Fagegaltier, Delphine; Falciatori, Ilaria; Czech, Benjamin; Castel, Stephane; Perrimon, Norbert; Simcox, Amanda; Hannon, Gregory J

    2016-07-15

    Germline genes often become re-expressed in soma-derived human cancers as "cancer/testis antigens" (CTAs), and piRNA (PIWI-interacting RNA) pathway proteins are found among CTAs. However, whether and how the piRNA pathway contributes to oncogenesis in human neoplasms remain poorly understood. We found that oncogenic Ras combined with loss of the Hippo tumor suppressor pathway reactivates a primary piRNA pathway in Drosophila somatic cells coincident with oncogenic transformation. In these cells, Piwi becomes loaded with piRNAs derived from annotated generative loci, which are normally restricted to either the germline or the somatic follicle cells. Negating the pathway leads to increases in the expression of a wide variety of transposons and also altered expression of some protein-coding genes. This correlates with a reduction in the proliferation of the transformed cells in culture, suggesting that, at least in this context, the piRNA pathway may play a functional role in cancer. PMID:27474441

  10. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    PubMed

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-01

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency. PMID:25043040

  11. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells.

    PubMed

    Jacobs, Sandra A; Roobrouck, Valerie D; Verfaillie, Catherine M; Van Gool, Stefaan W

    2013-01-01

    Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used. PMID:23295415

  12. Microarray Analysis of Siberian Ginseng Cyclic Somatic Embryogenesis Culture Systems Provides Insight into Molecular Mechanisms of Embryogenic Cell Cluster Generation

    PubMed Central

    Zhou, Chenguang; Liu, Likun; Li, Chenghao

    2014-01-01

    Four systems of cyclic somatic embryogenesis of Siberian ginseng (Eleutherococcus senticosus Maxim) were used to study the mechanism of embryonic cell cluster generation. The first, direct somatic embryo induction (DSEI), generates secondary embryos directly from the primary somatic embryos; the second, direct embryogenic cell cluster induction (DEC)), induces embryogenic cell clusters directly from somatic embryos in agar medium. Subsequently, we found that when DEC-derived somatic embryos are transferred to suspension culture or a bioreactor culture, only somatic embryos are induced, and embryogenic cell clusters cannot form. Therefore, these new lines were named DEC cultured by liquid medium (ECS) and DEC cultured by bioreactor (ECB), respectively. Transmission electron microscopy showed that DEC epidermal cells contained a variety of inclusions, distinct from other lines. A cDNA library of DEC was constructed, and 1,948 gene clusters were obtained and used as probes. RNA was prepared from somatic embryos from each of the four lines and hybridized to a microarray. In DEC, 7 genes were specifically upregulated compared with the other three lines, and 4 genes were downregulated. EsXTH1 and EsPLT1, which were among the genes upregulated in DEC, were cloned using the rapid amplification of cDNA ends (RACE). Real-time quantitative PCR showed EsXTH1 was more highly expressed in DEC than in other lines throughout the culture cycle, and EsPLT1 expression in DEC increased as culture duration increased, but remained at a low expression level in other lines. These results suggest that EsXTH1 and EsPLT1 may be the essential genes that play important roles during the induction of embryogenic cell clusters. PMID:24743225

  13. The Application of Bulk Tank Somatic Cell Counts to Monitoring Mastitis Levels in Dairy Herds

    PubMed Central

    Meek, A.H.; Barnum, D.A.

    1982-01-01

    The objective of this study was to investigate the feasibility of developing a system whereby measurements taken on bulk tank milk samples could be used to monitor the level of subclinical mastitis in dairy herds. The variables that were examined were the logarithmically transformed total somatic cell counts and percentages of cell volume in channel 8 (volumes from 89.2 to 178.3 µm3), the presence or absence of Streptococcus agalactiae and various husbandry/management factors including herdsize and the use of teat dips. Each of the use of actual monthly and rolling average bulk tank cell count determinations was investigated. It was found that the inclusion of all variables resulted in a correct classification of approximately 85% of herds and that no improvement was achieved by the use of rolling as opposed to actual monthly values. The inclusion of various husbandry/management practices improved the percentage correct classification to some extent over that achieved by the sole use of total somatic cell counts and percentages of cell volume in channel 8 when the herds were grouped on the basis of quarter infection rate (<10%, >10%) but not in the case of the cow infection rate categories (<20%, >20%). The use of both total cell counts and percentages of cell volume in channel 8 did not improve the overall predictive value over that achieved by the sole use of percentage of cell volume in channel 8 in the case of the quarter infection rate groupings but did to some extent in the case of the cow infection rate groupings. When the classification functions were applied prospectively and considering combinations of the two cell count determinations only, it was found that they were able to correctly classify, on the basis of the quarter infection rate groupings, approximately 75% of the study herds. It is concluded that the system described herein has limited application as a basis for selecting problem herds. PMID:7042053

  14. Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system.

    PubMed

    Kothapalli, Nagarama; Fugmann, Sebastian D

    2011-01-01

    The secondary immunoglobulin gene diversification processes, somatic hypermutation (SHM), immunoglobulin gene conversion (GCV), and class switch recombination, are important for efficient humoral immune responses. They require the action of activation-induced cytidine deaminase, an enzyme that deaminates cytosine in the context of single-stranded DNA. The chicken DT40 B-cell line is an important model system for exploring the mechanisms of SHM and GCV, as both processes occur constitutively without the need for stimulation. In addition, standard gene targeting strategies can be used for defined manipulations of the DT40 genome. Thus, these cells represent an excellent model of choice for genetic studies of SHM and GCV. Problems arising from defects in early B-cell development that are of concern when using genetically engineered mice are avoided in this system. Here, we describe how to perform gene targeting in DT40 cells and how to determine the effects of such modifications on SHM and GCV. PMID:21701980

  15. Plant cell electrophysiology: applications in growth enhancement, somatic hybridisation and gene transfer.

    PubMed

    Ochatt, Sergio

    2013-12-01

    The use and exploitation of electrophysiology with plant cells have witnessed a slow but steady increase for a number of purposes in recent years. First envisaged only as a tool for the recovery of somatic hybrid plants following protoplast electrofusion, or for transient and/or stable genetic transformation following electroporation-mediated entry of foreign genes into protoplasts and cells, electrophysiological studies with plant cells and tissues have since spanned into other areas, and particularly for the assessment of the possible effects of electric and electromagnetic fields on the subsequent growth and differentiation competences of the electro-treated cells. This review will critically discuss these various applications of electrophysiology and will also aim at analysing the fundamental physiological and physico-chemical mechanisms underlying them. PMID:23562891

  16. Association between somatic growth trajectory and cognitive functioning in young children with sickle cell disease.

    PubMed

    Puffer, Eve S; Schatz, Jeffrey C; Roberts, Carla W

    2016-08-01

    Children with sickle cell disease are at risk of cognitive deficits and somatic growth delays beginning in early childhood. We examined growth velocity from age 2 years (height and body mass index progression over time) and cognitive functioning in 46 children with sickle cell disease 4 to 8 years of age. Height-for-age velocity was not associated with cognitive outcomes. Higher body mass index velocity was associated with higher scores on global cognitive and visual-motor abilities but not processing resources or academic achievement. Body mass index progression over time may be a clinically useful indicator of neurocognitive risk in sickle cell disease, as it may reflect multiple sickle cell disease-related risk factors. PMID:25488939

  17. Activation of bovine somatic cell nuclear transfer embryos by PLCZ cRNA injection.

    PubMed

    Ross, Pablo J; Rodriguez, Ramon M; Iager, Amy E; Beyhan, Zeki; Wang, Kai; Ragina, Neli P; Yoon, Sook-Young; Fissore, Rafael A; Cibelli, Jose B

    2009-03-01

    The production of cloned animals by the transfer of a differentiated somatic cell into an enucleated oocyte circumvents fertilization. During fertilization, the sperm delivers a sperm-specific phospholipase C (PLCZ) that is responsible for triggering Ca(2)(+) oscillations and oocyte activation. During bovine somatic cell nuclear transfer (SCNT), oocyte activation is artificially achieved by combined chemical treatments that induce a monotonic rise in intracellular Ca(2)(+) and inhibit either phosphorylation or protein synthesis. In this study, we tested the hypothesis that activation of bovine nuclear transfer embryos by PLCZ improves nuclear reprogramming. Injection of PLCZ cRNA into bovine SCNT units induced Ca(2)(+) oscillations similar to those observed after fertilization and supported high rates of blastocyst development similar to that seen in embryos produced by IVF. Furthermore, gene expression analysis at the eight-cell and blastocyst stages revealed a similar expression pattern for a number of genes in both groups of embryos. Lastly, levels of trimethylated lysine 27 at histone H3 in blastocysts were higher in bovine nuclear transfer embryos activated using cycloheximide and 6-dimethylaminopurine (DMAP) than in those activated using PLCZ or derived from IVF. These results demonstrate that exogenous PLCZ can be used to activate bovine SCNT-derived embryos and support the hypothesis that a fertilization-like activation response can enhance some aspects of nuclear reprogramming. PMID:19074500

  18. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells

    PubMed Central

    Boccardi, Virginia; Razdan, Neetu; Kaplunov, Jessica; Mundra, Jyoti J; Kimura, Masayuki; Aviv, Abraham; Herbig, Utz

    2015-01-01

    Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells. PMID:25684230

  19. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing.

    PubMed

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  20. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

    PubMed Central

    Liu, Wenqiang; Liu, Xiaoyu; Wang, Chenfei; Gao, Yawei; Gao, Rui; Kou, Xiaochen; Zhao, Yanhong; Li, Jingyi; Wu, You; Xiu, Wenchao; Wang, Su; Yin, Jiqing; Liu, Wei; Cai, Tao; Wang, Hong; Zhang, Yong; Gao, Shaorong

    2016-01-01

    Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos. PMID:27462457

  1. Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs.

    PubMed

    Kang, Eunju; Wang, Xinjian; Tippner-Hedges, Rebecca; Ma, Hong; Folmes, Clifford D L; Gutierrez, Nuria Marti; Lee, Yeonmi; Van Dyken, Crystal; Ahmed, Riffat; Li, Ying; Koski, Amy; Hayama, Tomonari; Luo, Shiyu; Harding, Cary O; Amato, Paula; Jensen, Jeffrey; Battaglia, David; Lee, David; Wu, Diana; Terzic, Andre; Wolf, Don P; Huang, Taosheng; Mitalipov, Shoukhrat

    2016-05-01

    The genetic integrity of iPSCs is an important consideration for therapeutic application. In this study, we examine the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24-72 years). We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues. The frequency of mtDNA defects in iPSCs increased with age, and many mutations were non-synonymous or resided in RNA coding genes and thus can lead to respiratory defects. Our results highlight a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications. PMID:27151456

  2. Analysis of protein coding mutations in hiPSCs and their possible role during somatic cell reprogramming

    PubMed Central

    Ruiz, Sergio; Gore, Athurva; Li, Zhe; Panopoulos, Athanasia D.; Montserrat, Nuria; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M.; Zaehres, Holm; Schöler, Hans R.; Zhang, Kun; Belmonte, Juan Carlos Izpisua

    2013-01-01

    Recent studies indicate that human induced pluripotent stem cells (hiPSCs) contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived hiPSCs, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight hiPSC lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the hiPSC state and are independent of somatic cell source. Furthermore, we analyze a total of 17 point mutations found in hiPSCs and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming. PMID:23340422

  3. Driving folliculogenesis by the oocyte-somatic cell dialog: Lessons from genetic models.

    PubMed

    Monniaux, Danielle

    2016-07-01

    This review focuses on the role of the dialog between the oocyte and its companion somatic cells in driving folliculogenesis from the primordial to the preovulatory follicle stage. Mouse and sheep genetic models have brought complementary evidence of these cell interactions and their consequences for ovarian function. In mouse, the deletion of genes encoding connexins has shown that functional gap junction channels between oocytes and granulosa cells and between granulosa cells themselves maintain the follicle in a functionally integrated state. Targeted deletions in oocytes or granulosa cells have revealed the cell- and stage-specific role of ubiquist factors belonging to the phosphatidylinositol 3 kinase signaling pathway in primordial follicle activation, oocyte growth and follicle survival. Various models of transgenic mice and sheep carrying natural loss-of-function mutations associated with sterility have established that the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor 9 orchestrate follicle development, support cumulus metabolism and maturation and participate in oocyte meiosis arrest. Unexpectedly in sheep, mutations resulting in the attenuation of BMP signaling lead to enhanced ovulation rate, likely resulting from a lowered follicular atresia rate and the enhancement of FSH-regulated follicular maturation. Both the activation level of BMP signaling and an adequate equilibrium between BMP15 and growth differentiation factor 9 determine follicle survival, maturation, and development toward ovulation. The physiological approaches which were implemented on genetic animal models during the last 20 years have opened up new perspectives for female fertility by identifying the main signaling pathways of the oocyte-somatic cell dialog. PMID:27155734

  4. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    SciTech Connect

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis (TH-thymidine, autoradiography) or protein synthesis (TVS-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test.

  5. Regulation of microRNA function in somatic stem cell proliferation and differentiation

    PubMed Central

    Shenoy, Archana; Blelloch, Robert H.

    2015-01-01

    microRNAs (miRNAs) are important modulators of development. Owing to their ability to simultaneously silence hundreds of target genes, they have key roles in large-scale transcriptomic changes that occur during cell fate transitions. In somatic stem and progenitor cells — such as those involved in myogenesis, haematopoiesis, skin and neural development — miRNA function is carefully regulated to promote and stabilize cell fate choice. miRNAs are integrated within networks that form both positive and negative feedback loops. Their function is regulated at multiple levels, including transcription, biogenesis, stability, availability and/or number of target sites, as well as their cooperation with other miRNAs and RNA-binding proteins. Together, these regulatory mechanisms result in a refined molecular response that enables proper cellular differentiation and function. PMID:25118717

  6. Genotoxicity effects of Flusilazole on the somatic cells of Allium cepa.

    PubMed

    Ozakca, Dilek Unal; Silah, Hulya

    2013-09-01

    The aim of this study was to evaluate the effects of the fungicide flusilazole on somatic cells of Allium cepa. For evaluation of cytogenetic effects, root meristem cells of A. cepa were treated with 10, 20, 30 and 45 ppm (EC50 concentration) for 24, 48 and 72 h. The mitotic index and different types of chromosomal abnormalities such as bridges, stickiness and laggards were determined in both control and test groups. Acridine orange/Ethidium bromide double staining and fluorescence microscope was used to determine the stability of chromosome structure. Data obtained from staining process indicated that ratio of necrotic cells significantly increased by the flusilazole presoaking. The RAPD-PCR method was used and the higher doses treated-group (45 ppm) was more distant to the control group compare with others. PMID:25149233

  7. Integrative genomic characterization of oral squamous cell carcinomaidentifies frequent somatic drivers

    PubMed Central

    Pickering, Curtis R.; Zhang, Jiexin; Yoo, Suk Young; Bengtsson, Linnea; Moorthy, Shhyam; Neskey, David M.; Zhao, Mei; Alves, Marcus V Ortega; Chang, Kyle; Drummond, Jennifer; Cortez, Elsa; Xie, Tong-xin; Zhang, Di; Chung, Woonbok; Issa, Jean-Pierre J.; Zweidler-McKay, Patrick A.; Wu, Xifeng; El-Naggar, Adel K.; Weinstein, John N.; Wang, Jing; Muzny, Donna M.; Gibbs, Richard A.; Wheeler, David A.; Myers, Jeffrey N.; Frederick, Mitchell J.

    2013-01-01

    The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we performed comprehensive genomic analysis of gene expression, copy number, methylation and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of CASP8 defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating disease. PMID:23619168

  8. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees.

    PubMed

    Corredoira, E; Ballester, A; Ibarra, M; Vieitez, A M

    2015-06-01

    A reproducible procedure for induction of somatic embryogenesis (SE) from adult trees of Eucalyptus globulus Labill. and the hybrid E. saligna Smith × E. maidenii has been developed for the first time. Somatic embryos were obtained from both shoot apex and leaf explants of all three genotypes evaluated, although embryogenic frequencies were significantly influenced by the species/genotype, auxin and explant type. Picloram was more efficient for somatic embryo induction than naphthaleneacetic acid (NAA), with the highest frequency of induction being obtained in Murashige and Skoog medium containing 40 µM picloram and 40 mg l(-1) gum Arabic, in which 64% of the shoot apex explants and 68.8% of the leaf explants yielded somatic embryos. The embryogenic response of the hybrid was higher than that of the E. globulus, especially when NAA was used. The cultures initiated on picloram-containing medium consisted of nodular embryogenic structures surrounded by a mucilaginous coating layer that emerged from a watery callus developed from the initial explants. Cotyledonary somatic embryos were differentiated after subculture of these nodular embryogenic structures on a medium lacking plant growth regulators. Histological analysis confirmed the bipolar organization of the somatic embryos, with shoot and root meristems and closed procambial tissue that bifurcated into small cotyledons. The root pole was more differentiated than the shoot pole, which appeared to be formed by a few meristematic layers. Maintenance of the embryogenic lines by secondary SE was attained by subculturing individual cotyledonary embryos or small clusters of globular and torpedo embryos on medium with 16.11 µM NAA at 4- to 5-week intervals. Somatic embryos converted into plantlets after being transferred to liquid germination medium although plant regeneration remained poor. PMID:25877768

  9. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs.

    PubMed

    Vajta, G; Callesen, H

    2012-04-15

    Handmade cloning (HMC) is now an established procedure used in several species for somatic cell nuclear transfer, but only applied in two related laboratories for pigs. The aim of this review is to facilitate widespread application by summarizing the process of establishment and explaining the background of the incorporated special approaches. Optimized steps of traditional cloning in pigs (in vitro maturation, activation, embryo culture) were merged with those of the micromanipulation-free HMC that has been modified according to the specific needs of sensitive porcine oocytes (partial zona digestion before enucleation, two-step zona-free fusion with the somatic cell; initiation of activation with the second fusion). The zona-free approach required embryo culture to the blastocyst stage before surgical transfer of embryos to the uterine horns of recipient sows in the proper phase of an unstimulated cycle. Eventually a competitive, inexpensive and reliable alternative to traditional porcine nuclear transfer cloning techniques evolved that is also suitable to produce transgenic offspring containing various genetic modifications to establish models for several human diseases with genetic background. Further improvements and involvement of additional techniques to increase the overall efficiency and facilitate practical applications are expected in the foreseeable future. PMID:22284219

  10. Functional enucleation of porcine oocytes for somatic cell nuclear transfer using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2010-02-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer over the last decade. However, this method still results in very low efficiencies originating from biological and technical aspects. The highly-invasive mechanical enucleation belongs to the technical aspects and requires considerable micromanipulation skill. In this paper, we present a novel non-invasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically determined the metaphase plate position and shape. Subsequent irradiation of this volume with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation. We show that functional fs laser-based enucleation of porcine oocytes completely inhibited further embryonic development while maintaining intact oocyte morphology. In contrast, non-irradiated oocytes were able to develop to the blastocyst stage without significant differences to control oocytes. Our results indicate that fs laser systems offer great potential for oocyte imaging and enucleation as a fast, easy to use and reliable tool which may improve the efficiency of somatic cell clone production.

  11. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  12. Genetic parameters for test day somatic cell score in Brazilian Holstein cattle.

    PubMed

    Costa, C N; Santos, G G; Cobuci, J A; Thompson, G; Carvalheira, J G V

    2015-01-01

    Selection for lower somatic cell count has been included in the breeding objectives of several countries in order to increase resistance to mastitis. Genetic parameters of somatic cell scores (SCS) were estimated from the first lactation test day records of Brazilian Holstein cows using random-regression models with Legendre polynomials (LP) of the order 3-5. Data consisted of 87,711 TD produced by 10,084 cows, sired by 619 bulls calved from 1993 to 2007. Heritability estimates varied from 0.06 to 0.14 and decreased from the beginning of the lactation up to 60 days in milk (DIM) and increased thereafter to the end of lactation. Genetic correlations between adjacent DIM were very high (>0.83) but decreased to negative values, obtained with LP of order four, between DIM in the extremes of lactation. Despite the favorable trend, genetic changes in SCS were not significant and did not differ among LP. There was little benefit of fitting an LP of an order >3 to model animal genetic and permanent environment effects for SCS. Estimates of variance components found in this study may be used for breeding value estimation for SCS and selection for mastitis resistance in Holstein cattle in Brazil. PMID:26782564

  13. Concise review: Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion.

    PubMed

    Velasco, Iván; Salazar, Patricia; Giorgetti, Alessandra; Ramos-Mejía, Verónica; Castaño, Julio; Romero-Moya, Damià; Menendez, Pablo

    2014-11-01

    Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening. PMID:24989459

  14. Somatic cell hybrid mapping on mouse chromosome 11 (MMU11): Assignment of markers relative to two breakpoints in band D

    SciTech Connect

    Morris, D.J.; Robinson, T.J. ); Adler, I.D. )

    1993-02-01

    Mouse [times] rat somatic cell hybrids were generated by fusing mouse cell lines that are heterozygous for reciprocal translocations involving the T42H and T9Ad breakpoints on mouse chromosome 11 (MMU11) to a thymidine kinase-negative (Tk[sup [minus

  15. Genetic landscape of adult T-cell leukemia/lymphoma.

    PubMed

    Kataoka, Keisuke; Ogawa, Seishi

    2016-04-01

    Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell malignancy associated with HTLV-1 infection. To decipher the genetic landscape of ATL, we performed an integrated molecular analysis, which included whole-genome, whole-exome, transcriptome and targeted sequencing, as well as array-based copy number and methylation analyses. The somatic alterations are highly enriched for T-cell receptor/NF-κB signaling, the G-protein coupled receptor associated with T-cell migration, and other T-cell-related pathways as well as immune surveillance related genes. Among these, PLCG1, PRKCB, CARD11, VAV1, IRF4, CCR4, and CCR7 activating mutations and CTLA4-CD28 and ICOS-CD28 fusion genes have been identified. In addition, these genes significantly overlap with HTLV-1 Tax interactome. These results provide an important basis for the development of new ATL diagnostics and therapeuticsregimens. PMID:27169444

  16. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells

    PubMed Central

    Juliano, Celina E.; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A.; Wessel, Gary M.; Steele, Robert E.; Lin, Haifan

    2014-01-01

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI–piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095

  17. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells.

    PubMed

    Juliano, Celina E; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A; Wessel, Gary M; Steele, Robert E; Lin, Haifan

    2014-01-01

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095

  18. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms. PMID:25564763

  19. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    PubMed Central

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  20. The sexual identity of adult intestinal stem cells controls organ size and plasticity.

    PubMed

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-02-18

    Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realization that cell-intrinsic mechanisms play important and persistent roles. Here we use the Drosophila melanogaster intestine to investigate the nature and importance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncovers the key role this identity has in controlling organ size, reproductive plasticity and response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms that control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognized. PMID:26887495

  1. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts.

    PubMed

    Albenzio, M; Santillo, A; Kelly, A L; Caroprese, M; Marino, R; Sevi, A

    2015-11-01

    Individual caprine milk with different somatic cell counts (SCC) were studied with the aim of investigating the percentage distribution of leukocyte cell types and the activities of indigenous proteolytic enzymes; proteolysis of casein was also studied in relation to cell type following recovery from milk. The experiment was conducted on 5 intensively managed dairy flocks of Garganica goats; on the basis of SCC, the experimental groups were denoted low (L-SCC; <700,000 cells/mL), medium (M-SCC; from 701,000 to 1,500,000 cells/mL), and high (H-SCC; >1,501,000 cells/mL) SCC. Leukocyte distribution differed between groups; polymorphonuclear neutrophilic leukocytes were higher in M-SCC and H-SCC milk samples, the percentage macrophages was the highest in H-SCC, and levels of nonviable cells significantly decreased with increasing SCC. Activities of all the main proteolytic enzymes were affected by SCC; plasmin activity was the highest in H-SCC milk and the lowest in L-SCC, and elastase and cathepsin D activities were the highest in M-SCC. Somatic cell count influenced casein hydrolysis patterns, with less intact α- and β-casein in H-SCC milk. Higher levels of low electrophoretic mobility peptides were detected in sodium caseinate incubated with leukocytes isolated from L-SCC milk, independent of cell type, whereas among cells recovered from M-SCC milk, macrophages yielded the highest levels of low electrophoretic mobility peptides from sodium caseinate. The level of high electrophoretic mobility peptides was higher in sodium caseinate incubated with polymorphonuclear neutrophilic leukocytes and macrophages isolated from M-SCC, whereas the same fraction of peptides was always the highest, independent of leukocyte type, for cells recovered from H-SCC milk. In caprine milk, a level of 700,000 cells/mL represented the threshold for changes in leukocyte distribution, which is presumably related to the immune status of the mammary gland. Differences in the profile of

  2. Incomplete DNA methylation underlies a transcriptional memory of the somatic cell in human iPS cells

    PubMed Central

    Ohi, Yuki; Qin, Han; Hong, Chibo; Blouin, Laure; Polo, Jose M.; Guo, Tingxia; Qi, Zhongxia; Downey, Sara L.; Manos, Philip D.; Rossi, Derrick J.; Yu, Jingwei; Hebrok, Matthias; Hochedlinger, Konrad; Costello, Joseph F.; Song, Jun S.; Ramalho-Santos, Miguel

    2013-01-01

    Human induced pluripotent stem (iPS) cells are remarkably similar to embryonic stem (ES) cells, but recent reports suggest that there may be important differences between them. We performed a systematic comparison of human iPS cells generated from hepatocytes (representative of endoderm), skin fibroblasts (mesoderm) and melanocytes (ectoderm). All low passage iPS cells analyzed retain a transcriptional memory of the original cells. The persistent expression of somatic genes can be partially explained by incomplete promoter DNA methylation. This epigenetic mechanism underlies a robust form of memory that can be found in iPS cells generated by multiple laboratories using different methods, including RNA transfection. Incompletely silenced genes tend to be isolated from other genes that are repressed during reprogramming, indicating that recruitment of the silencing machinery may be inefficient at isolated genes. Knockdown of the incompletely reprogrammed gene C9orf64 reduces the efficiency of human iPS cell generation, suggesting that somatic memory genes may be functionally relevant during reprogramming. PMID:21499256

  3. MicroRNA-34c Expression in Donor Cells Influences the Early Development of Somatic Cell Nuclear Transfer Bovine Embryos

    PubMed Central

    Wang, Bo; Wang, Yongsheng; Zhang, Man; Du, Yue; Zhang, Yijun; Xing, Xupeng; Zhang, Lei; Su, JianMin

    2014-01-01

    Abstract The essence of the reprogramming activity of somatic cell nuclear transfer (SCNT) embryos is to produce normal fertilized embryos. However, reprogramming of somatic cells is not as efficient as the reprogramming of sperm. In this report, we describe the effect of an inducible, specific miR-34 microRNA expression in donor cells that enables a similar level of sperm:transgene expression on the early development of SCNT embryos. Our results showed that donor cells with doxycycline (dox)-induced miR-34c expression for the preparation of SCNT embryos resulted in altered developmental rates, histone modification (H3K9ac and H3K4me3), and extent of apoptosis. The cleavage rate and blastocyst formation of the induced nuclear transfer (NT) group were significantly increased. The immunofluorescence signal of H3K9ac in embryos in the induced NT group significantly increased in two-cell- and eight-cell-stage embryos; that of H3K4me3 increased significantly in eight-cell-stage embryos. Although significant differences in staining signals of apoptosis were not detected between groups, lower apoptosis levels were observed in the induced NT group. In conclusion, miR-34c expression induced by dox treatment enhances the developmental potential of SCNT embryos, modifies the epigenetic status, and changes blastocyst quality. PMID:25437869

  4. Benchmarks for evaluation and comparison of udder health status using monthly individual somatic cell count

    PubMed Central

    Fauteux, Véronique; Roy, Jean-Philippe; Scholl, Daniel T.; Bouchard, Émile

    2014-01-01

    The objectives of this study were to propose benchmarks for the interpretation of herd udder health using monthly individual somatic cell counts (SCC) from dairy herds in Quebec, Canada and to evaluate the association of risk factors with intramammary infection (IMI) dynamics relative to these benchmarks. The mean and percentiles of indices related to udder infection status [e.g., proportion of healthy or chronically infected cows, cows cured and new IMI (NIMI) rate] during lactation and over the dry period were calculated using a threshold of ≥ 200 000 cells/mL at test day. Mean NIMI proportion and proportion of cows cured during lactation were 0.11 and 0.27. Benchmarks of 0.70 and 0.03 for healthy and chronically infected cows over the dry period were proposed. Season and herd mean SCC were risk factors influencing IMI dynamics during lactation and over the dry period. PMID:25082989

  5. Femtosecond laser based enucleation of porcine oocytes for somatic cell nuclear transfer

    NASA Astrophysics Data System (ADS)

    Kütemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2009-07-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer (SCNT) in recent years. However, this method still results in very low efficiencies around 1% which originate from suboptimal culture conditions and highly invasive techniques for oocyte enucleation and injection of the donor cell using micromanipulators. In this paper, we present a new minimal invasive method for oocyte imaging and enucleation based on the application of femtosecond (fs) laser pulses. After imaging of the oocyte with multiphoton microscopy, ultrashort pulses are focused onto the metaphase plate of MII-oocytes in order to ablate the DNA molecules. We show that fs laser based enucleation of porcine oocytes completely inhibits the first mitotic cleavage after parthenogenetic activation while maintaining intact oocyte morphology in most cases. In contrast, control groups without previous irradiation of the metaphase plate are able to develop to the blastocyst stage. Further experiments have to clarify the suitability of fs laser based enucleated oocytes for SCNT.

  6. Development of mouse and rat oocytes in chimeric reaggregated ovaries after interspecific exchange of somatic and germ cell components.

    PubMed

    Eppig, J J; Wigglesworth, K

    2000-10-01

    The germ cell and somatic cell compartments of newborn rat and mouse ovaries, which contain only primordial stage follicles, were completely exchanged and reaggregated to produce xenogeneic chimeric ovaries. The reaggregated ovaries were grafted beneath the renal capsules of ovariectomized SCID mice to develop for periods up to 21 days. Xenogeneic follicles developed with essentially normal morphological characteristics. Both rat and mouse oocytes with species-specific characteristics grew within follicles that were composed of somatic cells exclusively of the alternative species. Rat oocytes grown in mouse follicles became competent to resume meiosis, and progressed to metaphase II when they were removed from follicles and cultured. In addition, mouse oocytes grown in rat follicles underwent fertilization and preimplantation development in vitro, and developed to term after embryos were transferred to pseudopregnant mouse foster mothers. Therefore, despite an estimated 11 million years of divergent evolution, oocytes and somatic cells of rat and mouse ovaries can be exchanged and can produce functional oocytes. It is concluded that factors involved in oocyte-somatic cell interactions necessary to support oocyte development and appropriate differentiation of the oocyte-associated granulosa cells are conserved between rats and mice. Moreover, although granulosa cells play important roles in oocyte development, the development of species-specific characteristics of oocytes occurs without apparent modification by a xenogeneic follicular environment. PMID:10993822

  7. Lack of complementation in somatic cell hybrids between fibroblasts from patients with different forms of cystinosis

    SciTech Connect

    Pellett, O.L.; Smith, M.L.; Greene, A.A.; Schneider, J.A. )

    1988-05-01

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types of cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.

  8. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    PubMed Central

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators. PMID:25232356

  9. Risk factors for intramammary infections and relationship with somatic-cell counts in Italian dairy goats.

    PubMed

    Moroni, P; Pisoni, G; Ruffo, G; Boettcher, P J

    2005-07-12

    Routine examination of milk was performed on five herds of lactating goats in northern Italy as part of a milk quality-monitoring program in the year 2000. As part of the study, aseptic samples of foremilk were collected monthly from both half udders during the entire lactation for 305 goats, resulting in a total of 4571 samples. The samples were tested with cytological and bacteriological analyses to evaluate the relationship between mammary infections and somatic-cell count (SCC; Fossomatic (TM) method). Prevalence of intramammary infection (IMI) was 40.2% (n = 1837) of all udder-half samples examined. The most-prevalent mastitis agents were coagulase-negative Staphylococci (CNS), 80% (n = 1474 udder-half samples); within this group, Staphylococcus epidermidis was the most-prevalent species (38%). Other prevalence were Staphylococcus aureus 6% (n = 112 udder-half samples) and environmental pathogens 14% of infected udder-half samples (n = 251) with a diverse mixture of species, none of which had a frequency of > 4%. Enterococcus faecalis was the most-frequently isolated among this group. Neither Salmonella spp. nor Listeria monocytogenes were detected. The risk (sample level) of infection differed across herds, parities, and stage of lactation according to results from logistic multiple regression. Infection was more common among goats in third and fourth parities and during the later stages of lactation. Of the 2734 samples from uninfected udder halves, the mean log2 SCC was 3.9 cell/ml; of the 1837 bacteriological positive samples, the mean log2 SCC was 5.6 cell/ml. According to results from a linear mixed model, concentrations of somatic cells tended to increase with increasing age and days in milk and with the presence of bacteria. Infection with S. aureus was associated with the highest SCS. PMID:15907567

  10. Condensin II Subunit dCAP-D3 Restricts Retrotransposon Mobilization in Drosophila Somatic Cells

    PubMed Central

    Schuster, Andrew T.; Sarvepalli, Kavitha; Murphy, Eain A.; Longworth, Michelle S.

    2013-01-01

    Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1) higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2) increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin II influences local

  11. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    PubMed Central

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  12. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  13. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  14. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats

    PubMed Central

    2011-01-01

    Background Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC) by California Mastitis Test (CMT) and direct measurement of SCC using a portable deLaval cell counter (DCC) are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI) in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT) corresponded to direct measurement of SCC (DCC). Method Udder half milk samples were collected once from dairy goats (n = 111), in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory. Results Intramammary infection, defined as growth of udder pathogens, was found in 39 (18%) of the milk samples. No growth was found in 180 (81%) samples while 3 (1%) samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS) (72% of all isolates), followed by Staphylococcus aureus (23% of all isolates). Somatic cell count measured by DCC was strongly (p = 0.000) associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC. Conclusions According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a predictor of the SCC

  15. Versatile and enhanced tumour modelling in mice via somatic cell transduction

    PubMed Central

    Rodriguez, Esther; Mannion, Liz; D'Santos, Paula; Griffiths, Meryl; Arends, Mark J; Brindle, Kevin M; Lyons, Scott K

    2014-01-01

    Genetically engineered mouse (GEM) models of cancer currently comprise the most accurate way to experimentally recapitulate the human disease in the laboratory. Given recent advances in genomics and genetic screens, however, as well as an increasing urgency for the translation of effective preclinical treatments into the clinic, there is a pressing need to make these models easier and more efficient to work with. Accordingly, we have developed a versatile lentivirus-based approach to induce tumours from somatic cells of GEMs, add or subtract gene expression and render the tumours imageable from a simple breeding stock. The vectors deliver a tamoxifen-inducible and self-inactivating Cre recombinase, conditional bioluminescent and fluorescent proteins and an shRNA component. Following the transduction of somatic cells, tumours are initiated by Cre-mediated recombination of the inherited floxed alleles. Self-inactivation of Cre expression switches on the expression of luciferase, thereby rendering the recombined cells and resulting tumours bioluminescent. We demonstrate proof of concept of this approach by inducing bioluminescent lung tumours in conditional Kras and p53 mice. We also show that a variant vector expressing shRNA alters tumour growth dynamics and the histological grade associated with the inherited genotype. This approach comprises a versatile means to induce imageable and spontaneous tumour burden in mice. The vectors can be readily customized at the bench to modify reporter readout or tumour phenotype without additional transgenic strain development or breeding. They should also be useful for inducing imageable tumours in organs other than the lung, provided that the inherited conditional genotype is sufficiently penetrant. © 2013 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:24307564

  16. Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle

    PubMed Central

    2014-01-01

    Background To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks. Results When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL. Conclusions The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions. PMID:24898131

  17. Effect of coagulase-negative staphylococci on somatic cell count in Dutch dairy herds.

    PubMed

    Sampimon, Otlis; van den Borne, Bart Hp; Santman-Berends, Inge; Barkema, Herman W; Lam, Theo

    2010-08-01

    The effect was quantified of coagulase-negative staphylococci (CNS) intramammary infections on quarter- and cow-level somatic cell count (SCC) and on bulk milk somatic cell count (BMSCC) in different BMSCC cohorts in Dutch dairy herds. Two datasets were used for this purpose. In the first dataset, on 49 randomly selected dairy farms a total of 4220 quarter milk samples of 1072 cows were collected of all cows and heifers with a test-day SCC 250 000 and 150 000 cells/ml, respectively, and of 25% of cows and heifers below these thresholds. In the second dataset, on 39 selected dairy farms a total of 8329 quarter milk samples of 2115 cows were collected of all cows with a test-day SCC 250 000 cells/ml following two consecutive SCC <250 000 cells/ml, and of heifers using the same SCC criteria but with a threshold of 150 000 cells/ml. These cows and heifers were defined as new high SCC. In both datasets, CNS was the most frequently isolated pathogen, 11% in the first dataset and 12% in the second dataset. In both datasets, quarters with CNS IMI had a lower SCC than quarters infected with major pathogens, and a higher SCC than culture-negative quarters. The same was found for SCC at cow level. Coagulase-negative staphylococci were more often found in quarters with SCC 200 000 cells/ml in dairy farms with a BMSCC <150 000 cells/ml compared with dairy farms with a higher BMSCC. Prevalence of CNS in cows and heifers with a high SCC was higher in dairy farms with a BMSCC <150 000 cells/ml compared with dairy farms with a medium or high BMSCC: 30, 19 and 18%, respectively. This indicates that CNS IMI as a cause of subclinical mastitis is relatively more important in dairy farms with a low BMSCC and may become a point of attention in udder health management on that type of farm. PMID:20450528

  18. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    SciTech Connect

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S.

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  19. [Langerhans cell histiocytosis in adults].

    PubMed

    Néel, A; Artifoni, M; Donadieu, J; Lorillon, G; Hamidou, M; Tazi, A

    2015-10-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by the infiltration of one or more organs by Langerhans cell-like dendritic cells, most often organized in granulomas. The disease has been initially described in children. The clinical picture of LCH is highly variable. Bone, skin, pituitary gland, lung, central nervous system, lymphoid organs are the main organs involved whereas liver and intestinal tract localizations are less frequently encountered. LCH course ranges from a fulminant multisystem disease to spontaneous resolution. Several randomized controlled trials have enable pediatricians to refine the management of children with LCH. Adult LCH has some specific features and poses distinct therapeutic challenges, knowing that data on these patients are limited. Herein, we will provide an overview of current knowledge regarding adult LCH and its management. We will also discuss recent advances in the understanding of the disease, (i.e. the role of BRAF oncogene) that opens the way toward targeted therapies. PMID:26150351

  20. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    PubMed

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos. PMID:25549216

  1. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans.

    PubMed

    Leighton, Daniel H W; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W

    2014-12-16

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  2. Herd level approach to high bulk milk somatic cell count problems in dairy cattle.

    PubMed

    Barkema, Herman W; De Vliegher, Sarne; Piepers, Sofie; Zadoks, Ruth N

    2013-06-01

    Since the introduction of the standard mastitis prevention program in the late 1960s, enormous progress has been made in decreasing the average bulk milk somatic cell count (BMSCC). In many countries, reduction of BMSCC has been encouraged through premium payments or penalty systems. However, the success of the program depends heavily on consistent implementation of management practices. The approach to problem solving in a herd with high BMSCC must include the following elements: (1) problem definition using primary udder health parameters; (2) detection of cows causing the problem; (3) definition of short- and long-term goals; (4) formulation and implementation of a herd management plan; and (5) evaluation of the results. Findings and plans are recorded for use at follow-up visits. Every high BMSCC problem can be solved if farmers are sufficiently motivated, if farm advisors are sufficiently knowledgeable, and if farmer and advisors work together according to a jointly determined plan. PMID:23706026

  3. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans

    PubMed Central

    Leighton, Daniel H. W.; Choe, Andrea; Wu, Shannon Y; Sternberg, Paul W.

    2014-01-01

    Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans. PMID:25453110

  4. In vitro development of canine somatic cell nuclear transfer embryos in different culture media

    PubMed Central

    No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos. PMID:25549216

  5. Bioactive amines in Mozzarella cheese from milk with varying somatic cell counts.

    PubMed

    Ubaldo, Juliana Cristina Sampaio Rigueira; Carvalho, Antônio Fernandes; Fonseca, Leorges Moraes; Glória, Maria Beatriz Abreu

    2015-07-01

    The influence of somatic cells counts (SCC) in milk on bioactive amines in Mozzarella cheese was investigated. High SCC milk had lower lactose and higher pH compared to low and medium SCC. Low spermine levels were found in milk irrespective of SCC. The cheeses had similar characteristics, but the extension and depth of proteolysis increased with SCC. Cheese from all SCC categories contained spermine; whereas tyramine and tryptamine were only detected in cheese from high SCC milk. During 60-days refrigerated storage, significant positive effects were observed between SCC and proteolysis, storage time and pH and storage time and proteolysis. There was a significant positive effect of storage time on spermine and serotonin levels. Only cheese from high SCC milk showed significantly higher serotonin levels. Tyramine and tryptamine were found in cheese from high SCC milk. PMID:25704706

  6. Interaction between genes Mos and mwh expressed in somatic cells of Drosophila melanogaster

    SciTech Connect

    Vaisman, N.Ya.; Zakharov, I.K.

    1995-07-01

    Gene Mosaic (Mos) of chromosome 3 of Drosophila melanogaster was located by means of dominant markers Ly, Sb, and Dr. This gene was shown to be located between Ly and Sb in the centromeric region (45-50 map units). An analysis of interaction between Mos and mwh genes in cis- and trans-heterozygotes showed a significant effect of the Mos gene on mutability (recombinogenesis) of chromosome mwh in somatic cells. In the cis heterozygote mwh Mos/++, the frequency of small mutant clones on wings of flies increased. In mwh/Mos heterozygotes, the Mos gene caused a significant reduction of dorsocentral and scutellar bristles (78% in mwh/Mos, 85% in mwh +/+ Mos, and 98% in mwh Mos/mwh +). 20 refs., 3 tabs.

  7. Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma

    PubMed Central

    Mori, Takahiro; Sumii, Makiko; Fujishima, Fumiyoshi; Ueno, Kazuko; Emi, Mitsuru; Nagasaki, Masao; Ishioka, Chikashi; Chiba, Natsuko

    2015-01-01

    BRCA1-associated protein 1 (BAP1) is a deubiquitinating enzyme that is involved in the regulation of cell growth. Recently, many somatic and germline mutations of BAP1 have been reported in a broad spectrum of tumors. In this study, we identified a novel somatic non-synonymous BAP1 mutation, a phenylalanine-to-isoleucine substitution at codon 170 (F170I), in 1 of 49 patients with esophageal squamous cell carcinoma (ESCC). Multiplex ligation-dependent probe amplification (MLPA) of BAP1 gene in this ESCC tumor disclosed monoallelic deletion (LOH), suggesting BAP1 alterations on both alleles in this tumor. The deubiquitinase activity and the auto-deubiquitinase activity of F170I-mutant BAP1 were markedly suppressed compared with wild-type BAP1. In addition, wild-type BAP1 mostly localizes to the nucleus, whereas the F170I mutant preferentially localized in the cytoplasm. Microarray analysis revealed that expression of the F170I mutant drastically altered gene expression profiles compared with expressed wild-type BAP1. Gene-ontology analyses indicated that the F170I mutation altered the expression of genes involved in oncogenic pathways. We found that one candidate, TCEAL7, previously reported as a putative tumor suppressor gene, was significantly induced by wild-type BAP1 as compared to F170I mutant BAP1. Furthermore, we found that the level of BAP1 expression in the nucleus was reduced in 44% of ESCC examined by immunohistochemistry (IHC). Because the nuclear localization of BAP1 is important for its tumor suppressor function, BAP1 may be functionally inactivated in a substantial portion of ESCC. Taken together, BAP1 is likely to function as a tumor suppressor in at least a part of ESCC. PMID:26081045

  8. Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells

    PubMed Central

    Pizarro, Javier G.; Cristofari, Gaël

    2016-01-01

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposons form the only autonomously active family of transposable elements in humans. They are expressed and mobile in the germline, in embryonic stem cells and in the early embryo, but are silenced in most somatic tissues. Consistently, they play an important role in individual genome variations through insertional mutagenesis and sequence transduction, which occasionally lead to novel genetic diseases. In addition, they are reactivated in nearly half of the human epithelial cancers, contributing to tumor genome dynamics. The L1 element codes for two proteins, ORF1p and ORF2p, which are essential for its mobility. ORF1p is an RNA-binding protein with nucleic acid chaperone activity and ORF2p possesses endonuclease and reverse transcriptase activities. These proteins and the L1 RNA assemble into a ribonucleoprotein particle (L1 RNP), considered as the core of the retrotransposition machinery. The L1 RNP mediates the synthesis of new L1 copies upon cleavage of the target DNA and reverse transcription of the L1 RNA at the target site. The L1 element takes benefit of cellular host factors to complete its life cycle, however several cellular pathways also limit the cellular accumulation of L1 RNPs and their deleterious activities. Here, we review the known cellular host factors and pathways that regulate positively or negatively L1 retrotransposition at post-transcriptional level, in particular by interacting with the L1 machinery or L1 replication intermediates; and how they contribute to control L1 activity in somatic cells. PMID:27014690

  9. The effect of multiplex-PCR-assessed major pathogens causing subclinical mastitis on somatic cell profiles.

    PubMed

    Goli, Mohammad; Ezzatpanah, Hamid; Ghavami, Mehrdad; Chamani, Mohammad; Aminafshar, Mehdi; Toghiani, Majid; Eghbalsaied, Shahin

    2012-10-01

    The major pathogens causing mastitis were evaluated by multiplex-polymerase chain reaction (M-PCR) with self-designed primers in four quarters of the first, third, and fifth parities in industrial, semi-industrial, and traditional dairy cattle farms in Iran. With the incidence of infection in the quarters by Staphylococcus aureus and Streptococcus agalactiae, the mean log somatic cell count (log SCC) increased from 5.06 to 5.77. The smallest changes occurred with Escherichia coli. Contagious pathogens, when compared with environmental pathogens, were more prevalent and common and created more profound quantitative and qualitative changes in SCC profiles. The second part of the study surveyed the diversity of contaminating pathogens and their effect on quantitative and qualitative profiles of somatic cells. M-PCR was used to determine the absence (M-PCR(-)) and presence of one (M-PCR(+1)), two (M-PCR(+2)), and three (M-PCR(+3)) major pathogens in raw milk samples. Quarter log SCC increased from 5.06 (for M-PCR(-1)) to 5.5 (for M-PCR(+1)), 5.7 (for M-PCR(+2)), and 6 (for M-PCR(+3)). Percent changes in polymorphonuclears (PMNs) were not significant between different quarters and parities but were significant between different farms in terms of pathogen diversity (P < 0.05). Therefore, by increasing the number of types of major pathogens involved in subclinical mastitis, SCC of udder quarters and the proportion of PMNs significantly increased, whereas the proportion of lymphocytes significantly decreased. This subject is very important in increasing the shelf life of dairy products, because PMNs are introduced to the enzymatic pools. PMID:22535149

  10. Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range

    PubMed Central

    Chernet, Brook T.; Levin, Michael

    2014-01-01

    The microenvironment is increasingly recognized as a crucial aspect of cancer. In contrast and complement to the field's focus on biochemical factors and extracellular matrix, we characterize a novel aspect of host:tumor interaction – endogenous bioelectric signals among non-excitable somatic cells. Extending prior work focused on the bioelectric state of cancer cells themselves, we show for the first time that the resting potentials of distant cells are critical for oncogene-dependent tumorigenesis. In the Xenopus laevis tadpole model, we used human oncogenes such as mutant KRAS to drive formation of tumor-like structures that exhibited overproliferation, increased nuclear size, hypoxia, acidity, and leukocyte attraction. Remarkably, misexpression of hyperpolarizing ion channels at distant sites within the tadpole significantly reduced the incidence of these tumors. The suppression of tumorigenesis could also be achieved by hyperpolarization using native CLIC1 chloride channels, suggesting a treatment modality not requiring gene therapy. Using a dominant negative approach, we implicate HDAC1 as the mechanism by which resting potential changes affect downstream cell behaviors. Based on published data on the voltage-mediated changes of butyrate flux through the SLC5A8 transporter, we present a model linking resting potentials of host cells to the ability of oncogenes to initiate tumorigenesis. Antibiotic data suggest that the relevant butyrate is generated by a native bacterial species, identifying a novel link between the microbiome and cancer that is mediated by alterations in bioelectric signaling. PMID:24830454

  11. The actin-binding protein profilin is required for germline stem cell maintenance and germ cell enclosure by somatic cyst cells

    PubMed Central

    Shields, Alicia R.; Spence, Allyson C.; Yamashita, Yukiko M.; Davies, Erin L.; Fuller, Margaret T.

    2014-01-01

    Specialized microenvironments, or niches, provide signaling cues that regulate stem cell behavior. In the Drosophila testis, the JAK-STAT signaling pathway regulates germline stem cell (GSC) attachment to the apical hub and somatic cyst stem cell (CySC) identity. Here, we demonstrate that chickadee, the Drosophila gene that encodes profilin, is required cell autonomously to maintain GSCs, possibly facilitating localization or maintenance of E-cadherin to the GSC-hub cell interface. Germline specific overexpression of Adenomatous Polyposis Coli 2 (APC2) rescued GSC loss in chic hypomorphs, suggesting an additive role of APC2 and F-actin in maintaining the adherens junctions that anchor GSCs to the niche. In addition, loss of chic function in the soma resulted in failure of somatic cyst cells to maintain germ cell enclosure and overproliferation of transit-amplifying spermatogonia. PMID:24346697

  12. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells.

    PubMed

    Williams, Alan M; Maman, Yaakov; Alinikula, Jukka; Schatz, David G

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  13. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells

    PubMed Central

    Williams, Alan M.; Maman, Yaakov; Alinikula, Jukka; Schatz, David G.

    2016-01-01

    The activation induced cytosine deaminase (AID) mediates diversification of B cell immunoglobulin genes by the three distinct yet related processes of somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion (GCV). SHM occurs in germinal center B cells, and the transcription factor Bcl6 is a key regulator of the germinal center B cell gene expression program, including expression of AID. To test the hypothesis that Bcl6 function is important for the process of SHM, we compared WT chicken DT40 B cells, which constitutively perform SHM/GCV, to their Bcl6-deficient counterparts. We found that Bcl6-deficient DT40 cells were unable to perform SHM and GCV despite enforced high level expression of AID and substantial levels of AID in the nucleus of the cells. To gain mechanistic insight into the GCV/SHM dependency on Bcl6, transcriptional features of a highly expressed SHM target gene were analyzed in Bcl6-sufficient and -deficient DT40 cells. No defect was observed in the accumulation of single stranded DNA in the target gene as a result of Bcl6 deficiency. In contrast, association of Spt5, an RNA polymerase II (Pol II) and AID binding factor, was strongly reduced at the target gene body relative to the transcription start site in Bcl6-deficient cells as compared to WT cells. However, partial reconstitution of Bcl6 function substantially reconstituted Spt5 association with the target gene body but did not restore detectable SHM. Our observations suggest that in the absence of Bcl6, Spt5 fails to associate efficiently with Pol II at SHM targets, perhaps precluding robust AID action on the SHM target DNA. Our data also suggest, however, that Spt5 binding is not sufficient for SHM of a target gene even in DT40 cells with strong expression of AID. PMID:26900682

  14. EVALUATION OF MILK SOMATIC CELLS AS A SOURCE OF MRNA FOR STUDY OF MAMMARY GLAND LIPOGENSIS IN LACTATING BEEF COWS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to compare mRNA levels for acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) extracted from mammary gland and from somatic cell pellets of the milk from each mammary gland. Eighteen primiparous beef cows (BW = 411 ± ...

  15. Consequence of alternative standards for bulk tank somatic cell count of dairy herds in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparison of dairy operations failing compliance with current US and European Union (EU) standards for bulk-tank somatic cell count (BTSCC) as well as BTSCC standards proposed by 3 national organizations were evaluated using 2 populations of US dairy herds: Dairy Herd Improvement Association (DHI) ...

  16. Derivation of factors to estimate daily fat, protein, and somatic cell score from one milking of cows milked twice daily

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield or somatic cell score (SCS) when milk is sampled once for cows milked twice per d. Milk samples were collected for each milking on test-day by Dairy Herd Improvement personnel from herds recording milking times and m...

  17. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.

    PubMed

    Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao

    2015-02-01

    Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins. PMID:25139669

  18. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    SciTech Connect

    Knoell, A.; Ketterling, R.P.; Vielhaber, E.

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  19. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer.

    PubMed

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-06-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches. PMID:27004264

  20. Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes.

    PubMed

    Dai, Yunping; Wang, Lili; Wang, Haiping; Liu, Ying; Li, Ning; Lyu, Qifeng; Keefe, David L; Albertini, David F; Liu, Lin

    2006-06-01

    Cloning mammalians by somatic cell nuclear transfer (SCNT) remains inefficient. A majority of clones produced by SCNT fail to develop properly and of those which do survive, some exhibit early aging, premature death, tumors, and other pathologies associated with aneuploidy. Alterations of centrosomes are linked to aberrant cell cycle progression, aneuploidy, and tumorigenesis in many cell types. It remains to be determined how centrosomes are remodeled in cloned bovine embryos. We show that abnormalities in either distribution and/or number of centrosomes were evident in approximately 50% of reconstructed embryos following SCNT. Moreover, centrosome abnormalities and failed 'pronuclear' migration which manifested during the first cell cycle coincided with errors in spindle morphogenesis, chromosome alignment, and cytokinesis. By contrast, nuclear mitotic apparatus protein (NuMA) exhibited normal expression patterns at metaphase spindle poles and in 'pronucleus' during interphase. The defects in centrosome remodeling and 'pronuclear' migration could lead to chromosome instability and developmental failures associated with embryo production by SCNT. Addressing these fundamental problems may enhance production of normal clones. PMID:16735544

  1. Incomplete replication generates somatic DNA alterations within Drosophila polytene salivary gland cells

    PubMed Central

    Yarosh, Will

    2014-01-01

    DNA replication remains unfinished in many Drosophila polyploid cells, which harbor disproportionately fewer copies of late-replicating chromosomal regions. By analyzing paired-end high-throughput sequence data from polytene larval salivary gland cells, we define 112 underreplicated (UR) euchromatic regions 60–480 kb in size. To determine the effects of underreplication on genome integrity, we analyzed anomalous read pairs and breakpoint reads throughout the euchromatic genome. Each UR euchromatic region contains many different deletions 10–500 kb in size, while very few deletions are present in fully replicated chromosome regions or UR zones from embryo DNA. Thus, during endocycles, stalled forks within UR regions break and undergo local repair instead of remaining stable and generating nested forks. As a result, each salivary gland cell contains hundreds of unique deletions that account for their copy number reductions. Similar UR regions and deletions were observed in ovarian DNA, suggesting that incomplete replication, fork breakage, and repair occur widely in polytene cells. UR regions are enriched in genes encoding immunoglobulin superfamily proteins and contain many neurally expressed and homeotic genes. We suggest that the extensive somatic DNA instability described here underlies position effect variegation, molds the structure of polytene chromosomes, and should be investigated for possible functions. PMID:25128500

  2. Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer.

    PubMed

    Shimatsu, Yoshiki; Horii, Wataru; Nunoya, Tetsuo; Iwata, Akira; Fan, Jianglin; Ozawa, Masayuki

    2016-01-01

    Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis. PMID:26411321

  3. Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice.

    PubMed

    Bagri, Preeti; Kumar, Vinod; Sikka, Anil K

    2016-10-01

    Pesticides are being used for plant protection to increase food protection and to reduce insect-borne diseases worldwide. Exposure to the pesticides may cause genotoxic effects on both the target and nontarget organisms, including man. Therefore, the mutagenicity evaluation of such pesticides has become a priority area of research. Imidacloprid (IMI), a neonicotinoid insecticide, is widely used in agriculture either alone or in combination with other insecticides. A combined approach employing micronucleus test (MNT) and chromosomal aberrations assay (CA) was utilized to assess the mutagenicity of imidacloprid in bone marrow of Swiss albino male mice. IMI suspension was prepared in 3% gum acacia and administered at doses of 5.5, 11 and 22 mg/kg body weight for 7, 14 and 28 days to mice. IMI treatment resulted in a dose and time-dependant increase in the frequencies of micronuclei per cell and chromosomal aberrations in bone marrow cells. A statistically significant increase in chromosomal aberrations and micronuclei/cell was found only after daily treatment of IMI at highest selected dose (22 mg/kg body weight) for longest selected time period (28 days) compared to the control group. Thus, daily exposure of imidacloprid at a dose level of 22 mg/kg body weight for 28 days caused mutagenic effects on the somatic cells of Swiss albino male mice. PMID:26823062

  4. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer

    PubMed Central

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-01-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches. PMID:27004264

  5. Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer

    PubMed Central

    Shimatsu, Yoshiki; Horii, Wataru; Nunoya, Tetsuo; Iwata, Akira; Fan, Jianglin; Ozawa, Masayuki

    2015-01-01

    Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis. PMID:26411321

  6. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells

    PubMed Central

    Gause, Maria; Webber, Hayley A.; Misulovin, Ziva; Haller, Gabe; Rollins, Robert A.; Eissenberg, Joel C.; Bickel, Sharon E.

    2008-01-01

    Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs. PMID:17909832

  7. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    PubMed

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  8. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    PubMed Central

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  9. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies. PMID:26214134

  10. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    PubMed

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  11. Use of domestic detergents in the California mastitis test for high somatic cell counts in milk.

    PubMed

    Leach, K A; Green, M J; Breen, J E; Huxley, J N; Macaulay, R; Newton, H T; Bradley, A J

    2008-11-01

    The California mastitis test (CMT) is used on farms to identify subclinical mastitis by an indirect estimation of the somatic cell count (SCC) in milk. Four commercially available detergents were compared with a bespoke cmt fluid for their ability to detect milk samples with a scc above 200,000 cells/ml; differences between the interpretation of the results of the tests by eight operators were also investigated. The sensitivity and specificity of the test were affected by the type of detergent, and by the operators' interpretations. When used by the most sensitive operator, suitably diluted Fairy Liquid performed almost identically to cmt fluid in identifying milk samples with more than 200,000 cells/ml. The average sensitivities achieved by the eight operators for detecting this threshold were 82 per cent for Fairy Liquid and 84 per cent for cmt fluid, and the specificities were 93 and 91 per cent respectively. The other detergents contained less anionic surfactants and were less sensitive but similarly specific. PMID:18997186

  12. Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer

    PubMed Central

    Min, Byungkuk; Cho, Sunwha; Park, Jung Sun; Lee, Yun-Gyeong; Kim, Namshin; Kang, Yong-Kook

    2015-01-01

    Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency. PMID:26342001

  13. Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer.

    PubMed

    Min, Byungkuk; Cho, Sunwha; Park, Jung Sun; Lee, Yun-Gyeong; Kim, Namshin; Kang, Yong-Kook

    2015-12-01

    Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency. PMID:26342001

  14. BCL-6 mutations in normal germinal center B cells: Evidence of somatic hypermutation acting outside Ig loci

    PubMed Central

    Pasqualucci, Laura; Migliazza, Anna; Fracchiolla, Nicola; William, Christopher; Neri, Antonino; Baldini, Luca; Chaganti, R. S. K.; Klein, Ulf; Küppers, Ralf; Rajewsky, Klaus; Dalla-Favera, Riccardo

    1998-01-01

    The molecular mechanism involved in the process of antigen-driven somatic hypermutation of Ig genes is unknown, but it is commonly believed that this mechanism is restricted to the Ig loci. B cell lymphomas commonly display multiple somatic mutations clustering in the 5′-regulatory region of BCL-6, a proto-oncogene encoding for a POZ/Zinc finger transcriptional repressor expressed in germinal center (GC) B cells and required for GC formation. To determine whether BCL-6 mutations represent a tumor-associated phenomenon or reflect a physiologic mechanism, we screened single human tonsillar GC B cells for mutations occurring in the BCL-6 5′-noncoding region and in the Ig variable heavy chain sequences. Thirty percent of GC B cells, but not naive B cells, displayed mutations in the 742 bp region analyzed within the first intron of BCL-6 (overall frequency: 5 × 10−4/bp). Accordingly, an expanded survey in lymphoid malignancies showed that BCL-6 mutations are restricted to B cell tumors displaying GC or post-GC phenotype and carrying mutated Ig variable heavy chain sequences. These results indicate that the somatic hypermutation mechanism active in GC B cells physiologically targets non-Ig sequences. PMID:9751748

  15. In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.).

    PubMed

    Jayanthi, Madhavan; Susanthi, Bollarapu; Murali Mohan, Nandiganti; Mandal, Pranab Kumar

    2015-01-01

    We report here a method for plant regeneration through somatic embryogenesis from explants collected from immature male inflorescence of adult oil palm cultivated in India. Callus induction was successful from tissues of immature male inflorescence collected from both dura and tenera varieties of oil palm. A modified Y3 (Eeuwens) media supplemented with several additives and activated charcoal (3%) were used for the experiments. Out of four different auxin treatments, 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram) produced maximum callus induction (82%) and it was not significantly different from 2,4-dichlorophenoxyacetic acid (2,4-D) and a combination of 2,4-D + picloram. The callus induction obtained with auxin α-naphthalene acetic acid was only 54% and it was significantly low as compared to the other treatments. Highest embryogenesis was obtained with a combination of 2,4-D + picloram (4.9%) followed by picloram (3.4%). Genotypic variation in response to the same auxins was observed both for callus induction and embryogenesis. Callus induction and embryogenesis ranged from 42 to 72% and 6.8 to 9.35%, respectively in tenera. The formation of embryogenic calli was marked by the appearance of white to yellowish globular or nodular structures which subsequently formed clear somatic embryos. Somatic embryogenesis was asynchronous and at one time we could find different stages of embryogenesis like the globular, torpedo and the cotyledonary stages. The somatic embryos when exposed to light in the same basal media along with 6-benzyladenine (18 µM), abscisic acid (3.78 µM) and gibberellic acid (5.78 µM) regenerated into plantlets. To the best of our knowledge this is the first report o f callus induction and somatic embryogenesis from immature male inflorescence of oil palm. PMID:26085976

  16. Effects of Histone Deacetylase Inhibitor Oxamflatin on In Vitro Porcine Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Hou, Liming; Ma, Fanhua; Yang, Jinzeng; Riaz, Hasan; Wang, Yongliang; Wu, Wangjun; Xia, Xiaoliang; Ma, Zhiyuan; Zhou, Ying; Zhang, Lin; Ying, Wenqin; Xu, Dequan; Zuo, Bo; Ren, Zhuqing

    2014-01-01

    Abstract Low cloning efficiency is considered to be caused by the incomplete or aberrant epigenetic reprogramming of differentiated donor cells in somatic cell nuclear transfer (SCNT) embryos. Oxamflatin, a novel class of histone deacetylase inhibitor (HDACi), has been found to improve the in vitro and full-term developmental potential of SCNT embryos. In the present study, we studied the effects of oxamflatin treatment on in vitro porcine SCNT embryos. Our results indicated that the rate of in vitro blastocyst formation of SCNT embryos treated with 1 μM oxamflatin for 15 h postactivation was significantly higher than all other treatments. Treatment of oxamflatin decreased the relative histone deacetylase (HDAC) activity in cloned embryos and resulted in hyperacetylation levels of histone H3 at lysine 9 (AcH3K9) and histone H4 at lysine 5 (AcH4K5) at pronuclear, two-cell, and four-cell stages partly through downregulating HDAC1. The suppression of HDAC6 through oxamflatin increased the nonhistone acetylation level of α-tubulin during the mitotic cell cycle of early SCNT embryos. In addition, we demonstrated that oxamflatin downregulated DNA methyltransferase 1 (DNMT1) expression and global DNA methylation level (5-methylcytosine) in two-cell-stage porcine SCNT embryos. The pluripotency-related gene POU5F1 was found to be upregulated in the oxamflatin-treated group with a decreased DNA methylation tendency in its promoter regions. Treatment of oxamflatin did not change the locus-specific DNA methylation levels of Sus scrofa heterochromatic satellite DNA sequences at the blastocyst stage. Meanwhile, our findings suggest that treatment with HDACi may contribute to maintaining the stable status of cytoskeleton-associated elements, such as acetylated α-tubulin, which may be the crucial determinants of donor nuclear reprogramming in early SCNT embryos. In summary, oxamflatin treatment improves the developmental potential of porcine SCNT embryos in vitro. PMID

  17. Green fluorescent protein gene-transfected peafowl somatic cells participate in the development of chicken embryos.

    PubMed

    Xi, Yongmei; Nada, Yoich; Soh, Tomoki; Fujihara, Noboru; Hattori, Masa-Aki

    2004-02-01

    This study was performed to investigate whether the embryonic somatic cells are capable of reconstituting and participating in the embryonic development of chickens to produce chimeras. In order to track the migration behavior of the donor cells, a cell line, originally isolated from an Indian peafowl embryo, was fluorescent-labeled by transfection of the cells with enhanced Green Fluorescent Protein (GFP) and Neomycin resistant (Neo) genes prior to injection into the stage X blastoderm of White Leghorn chickens. The injection was performed with a medium in the presence of 1-5% polyethylene glycol. The development of putative chimeric embryos between the stages three and 24 was examined for GFP expression under fluorescent light. To trace the peafowl cells in the developing chicken embryos, both a species-specific genetic marker originating from the mitochondrial DNA cytochrome b (cyt b) gene and a DNA fragment of GFP gene were used. Of the 185 fertile eggs manipulated, 173 developed into embryos. Fifty-five of them showed positive GFP patches in extra-embryonic tissues, and 15 expressed GFP in intra-embryonic tissues such as those of the head, heart, and gonad. PCR analysis revealed that PCR fragments for the peafowl mitochondrial DNA cyt b and GFP genes were detected in the samples of the GFP positive extra- and intra-embryonic tissues of the chimeras. The present results provide evidence that fluorescent-labeled peafowl embryonic cells carrying GFP and Neo genes are able to participate in the development of chicken embryos to generate chimeras. PMID:14743513

  18. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  19. Flow Cytometry Approach to Quantify the Viability of Milk Somatic Cell Counts after Various Physico-Chemical Treatments

    PubMed Central

    Li, Na; Richoux, Romain; Perruchot, Marie-Hélène; Boutinaud, Marion; Mayol, Jean-François; Gagnaire, Valérie

    2015-01-01

    Flow cytometry has been used as a routine method to count somatic cells in milk, and to ascertain udder health and milk quality. However, few studies investigate the viability of somatic cells and even fewer at a subpopulation level to follow up how the cells can resist to various stresses that can be encountered during technological processes. To address this issue, a flow cytometry approach was used to simultaneously identify cell types of bovine milk using cell-specific antibodies and to measure the cell viability among the identified subpopulations by using a live/dead cell viability kit. Confirmation of the cell viability was performed by using conventional microscopy. Different physico-chemical treatments were carried out on standardized cell samples, such as heat treatment, various centrifugation rates and storage in milk or in PBS pH 7.4 for three days. Cytometry gating strategy was developed by using blood cell samples stored at 4°C in PBS and milk cell samples heat-treated at 80°C for 30 min as a control for the maximum (95.9%) and minimum (0.7%) values of cell viability respectively. Cell viability in the initial samples was 39.5% for all cells and varied for each cell population from 26.7% for PMNs, to 32.6% for macrophages, and 58.3% for lymphocytes. Regarding the physico-chemical treatments applied, somatic cells did not sustain heat treatment at 60°C and 80°C in contrast to changes in centrifugation rates, for which only the higher level, i.e. 5000×g led to a cell viability decrease, down to 9.4%, but no significant changes within the cell subpopulation distribution were observed. Finally, the somatic cells were better preserved in milk after 72h storage, in particular PMNs, that maintained a viability of 34.0 ± 2.9% compared to 4.9±1.9% in PBS, while there was almost no changes for macrophages (41.7 ± 5.7% in milk vs 31.2 ± 2.4% in PBS) and lymphocytes (25.3 ± 3.0% in milk vs 11.4 ± 3.1% in PBS). This study provides a new array to better

  20. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. Results The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Conclusions Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards Staphylococcus

  1. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    PubMed

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. PMID:15037999

  2. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins

    PubMed Central

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Amato, Clelia; Tinti, Mara; Tana, Luigi; Frattini, Annalisa; Delia, Domenico; Krantz, Ian D.; Jessberger, Rolf; Musio, Antonio

    2015-01-01

    Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding. PMID:26673124

  3. Correlation between standard plate count and somatic cell count milk quality results for Wisconsin dairy producers.

    PubMed

    Borneman, Darand L; Ingham, Steve

    2014-05-01

    The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R(2) value was very small (0.02-0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤ 25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤ 25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC. PMID:24630657

  4. The human T-cell cloning assay: identifying genotypes susceptible to drug toxicity and somatic mutation.

    PubMed

    Hou, Sai-Mei

    2014-01-01

    Humans exhibit marked genetic polymorphisms in drug metabolism that contribute to high incidence of adverse effects in susceptible individuals due to altered balance between metabolic activation and detoxification. The T-cell cloning assay, which detects mutations in the gene for hypoxanthine-guanine phosphoribosyl transferase (HPRT), is the most well-developed reporter system for studying specific locus mutation in human somatic cells. The assay is based on a mitogen- and growth factor-dependent clonal expansion of peripheral T-lymphocytes in which the 6-thioguanine-resistant HPRT mutants can be selected, enumerated, and collected for molecular analysis of the mutational nature. The assay provides a unique tool for studying in vivo and in vitro mutagenesis, for investigating the functional impact of common polymorphism in metabolism and repair genes, and for identifying risk genotypes for drug-induced toxicity and mutagenicity. This chapter presents a simple and reliable method for the enumeration of HPRT mutant frequency induced in vitro without using any source of recombinant interleukin-2. The other main feature is that only truly induced and unique mutants are collected for further analysis. PMID:24623236

  5. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells.

    PubMed

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C; Oliver, Rema A; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E; Nunez, Andrea C; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R; Purton, Louise E; Ward, Robyn L; Wong, Jason W H; Hesson, Luke B; Walsh, William; Pimanda, John E

    2016-04-19

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  6. Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells

    PubMed Central

    Li, Xiang; Qin, Li; Huang, Ke; Wang, Lihui; Huang, Wenhao; Li, Shengbiao; Jia, Bei; Zhong, Mei; Pan, Guangjin; Cai, Jinglei; Pei, Duanqing

    2013-01-01

    The groundbreaking discovery of induced pluripotent stem cells (iPS cells) provides a new source for cell therapy. However, whether the iPS derived functional lineages from different cell origins have different immunogenicity remains unknown. It had been known that the cells isolated from extra-embryonic tissues, such as umbilical cord mesenchymal cells (UMCs), are less immunogenic than other adult lineages such as skin fibroblasts (SFs). In this report, we differentiated iPS cells from human UMCs and SFs into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with allologous peripheral blood mononuclear cells (PBMCs), we showed that UMCs were indeed less immunogenic than skin cells to simulate proliferation of PBMCs. Surprisingly, we found that the NPCs differentiated from UMC-iPS cells retained low immunogenicity as the parental UMCs based on the PBMC proliferation assay. In cytotoxic expression assay, reactions in most kinds of immune effector cells showed more perforin and granzyme B expression with SF-NPCs stimulation than that with UMC-NPCs stimulation in PBMC co-culture system, in T cell co-culture system as well. Furthermore, through whole genome expression microarray analysis, we showed that over 70 immune genes, including all members of HLA-I, were expressed at lower levels in NPCs derived from UMC-iPS cells than that from SF-iPS cells. Our results demonstrated a phenomenon that the low immunogenicity of the less immunogenic cells could be retained after cell reprogramming and further differentiation, thus provide a new concept to generate functional lineages with lower immunogenicity for regenerative medicine. PMID:23922758

  7. Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo–activated cells

    PubMed Central

    Maul, Robert W.; Cao, Zheng; Venkataraman, Lakshmi; Giorgetti, Carol A.; Press, Joan L.; Denizot, Yves; Du, Hansen; Sen, Ranjan

    2014-01-01

    Variable (V) genes of immunoglobulins undergo somatic hypermutation by activation-induced deaminase (AID) to generate amino acid substitutions that encode antibodies with increased affinity for antigen. Hypermutation is restricted to germinal center B cells and cannot be recapitulated in ex vivo–activated splenic cells, even though the latter express high levels of AID. This suggests that there is a specific feature of antigen activation in germinal centers that recruits AID to V genes which is absent in mitogen-activated cultured cells. Using two Igh knock-in mouse models, we found that RNA polymerase II accumulates in V regions in B cells after both types of stimulation for an extended distance of 1.2 kb from the TATA box. The paused polymerases generate abundant single-strand DNA targets for AID. However, there is a distinct accumulation of the initiating form of polymerase, along with the transcription cofactor Spt5 and AID, in the V region from germinal center cells, which is totally absent in cultured cells. These data support a model where mutations are prevalent in germinal center cells, but not in ex vivo cells, because the initiating form of polymerase is retained, which affects Spt5 and AID recruitment. PMID:25288395

  8. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    PubMed

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co‑occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC‑115, the MAPK1‑mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit α (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ε (POLE1), ribonuclease type III (DICER1), CCCTC‑binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3α (DNMT3A), transformation/transcription domain‑associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease. PMID:26548627

  9. Deletion of Tuberous Sclerosis 1 in Somatic Cells of the Murine Reproductive Tract Causes Female Infertility

    PubMed Central

    Tanaka, Yoshihiro; Park, Joo Hyun; Tanwar, Pradeep S.; Kaneko-Tarui, Tomoko; Mittal, Shilpi; Lee, Ho-Joon

    2012-01-01

    Tumors develop with dysregulated activation of mammalian target of rapamycin (mTOR), the kinase activity of which is kept in an inactive state by a tumor suppressor dimer containing tuberous sclerosis 1 (TSC1) and TSC2. We examined whether conditional deletion of TSC1 by a knock-in allele of the anti-Müllerian hormone type 2 receptor (Amhr2) driving Cre expression and subsequent activation of mTOR in granulosa cells and in oviductal and uterine stromal cells affects fertility in female mice. Increased phosphorylation of ribosomal protein S6, a downstream target of activated mTOR, was observed in all AMHR2-expressing tissues examined, indicating loss of TSC1 activity. TSC1 deletion in granulosa cells led to the detection of significantly fewer primordial follicles in mutant mice at 12 wk, suggesting premature ovarian insufficiency, which might be related to the significantly increased time mutant mice spent in estrus. Although the number of good-quality ovulated oocytes was not significantly different compared with controls, there was a significantly higher number of degenerated oocytes after normal and superovulation, suggesting compromised oocyte quality, as well. Natural mating also showed severalfold higher numbers of degenerate bodies in the mutants that collected in bilateral swellings resembling hydrosalpinges that formed in all mice examined because of occlusion of the proximal oviduct. Attempts to transfer control embryos into mutant uteri also failed, indicating that implantation was compromised. Endometrial epithelial cells continued to proliferate, and quantitative RT-PCR showed that mucin 1 expression persisted during the window of implantation in mutant uteri, without any changes in progesterone receptor mRNA expression, suggesting a mechanism that does not involve disrupted estradiol-regulated progesterone receptor expression. Homozygous deletion of TSC1 in reproductive tract somatic tissues of mice rendered females completely infertile, which is

  10. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.

    PubMed

    Kroetz, Mary B; Zarkower, David

    2015-12-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  11. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts

    PubMed Central

    Kroetz, Mary B.; Zarkower, David

    2015-01-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  12. Genotoxic damage induced by isopropanol in germinal and somatic cells of Drosophila melanogaster.

    PubMed

    Palermo, Ana María; Mudry, Marta Dolores

    2011-12-24

    Isopropanol (isopropyl alcohol, 2-propanol, IPA) is a volatile solvent widely used in domestic or industrial environments and reported as innocuous in various test systems. The aim of this work was to search for in vivo genotoxic effects of IPA in Drosophila melanogaster, studying its ability to induce nondisjunction (ND) in females, sex linked recessive lethals (SLRL) in males, and somatic mutation and/or recombination (SMART) in larvae. Treatments were acute (60min) and were administered via inhalation. IPA had low toxicity in adult flies (75% IPA mortality index, MI=12.7% (females) and 2.6% (males)) and larvae (MI=14.3%, 75% IPA). Female fertility was severely affected during the first 24h (brood I, BI) after treatment, but, afterwards, control values were recovered. IPA induced a 50-fold increase of ND (%) in 24h old females, and a six-fold rise in 4-5 d old BI offspring. Nondisjunction frequencies (%) in the offspring of broods II to V (24h in each case) were similar to control values. IPA doses of 25% and 50% (v/v), tested in 24h old females, showed a significant dose-dependent increase of ND(%)in BI only, with control values in subsequent broods. Flies gave normal offspring when kept in regular media for 24h before mating. The eye spot test (SMART) showed a significant increase at 50% IPA (p<0.05, m=2), but the response was not dose-dependent. IPA failed to induce SLRL in any of the spermatogenesis stages tested. These findings suggest that the main effect of IPA is to induce chromosomal malsegregation; IPA must be present at the resumption of M-phase I after fertilization, to exert these effects. The alcohol does not affect DNA directly, but perturbations of the nuclear membrane may be responsible for induction of ND. PMID:22001194

  13. Potential of adipose-derived mesenchymal stem cells and skeletal muscle-derived satellite cells for somatic cell nuclear transfer mediated transgenesis in Arbas Cashmere goats.

    PubMed

    Ren, Yu; Wu, Haiqing; Ma, Yuzhen; Yuan, Jianlong; Liang, Hao; Liu, Dongjun

    2014-01-01

    Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1 was more than twice that of gFFCs-pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs-pDsRed2-1 and gMDSCs-pDsRed2-1 recipients were higher than those of gFFCs-pDsRed2-1 recipients (P

  14. Potential of Adipose-Derived Mesenchymal Stem Cells and Skeletal Muscle-Derived Satellite Cells for Somatic Cell Nuclear Transfer Mediated Transgenesis in Arbas Cashmere Goats

    PubMed Central

    Yuan, Jianlong; Liang, Hao; Liu, Dongjun

    2014-01-01

    Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs–pDsRed2-1 or gMDSCs–pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs–pDsRed2-1 or gMDSCs–pDsRed2-1 was more than twice that of gFFCs–pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs–pDsRed2-1 and gMDSCs–pDsRed2-1 recipients were higher than those of gFFCs–pDsRed2

  15. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    PubMed

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. PMID:22580161

  16. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    PubMed

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer. PMID:17524303

  17. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  18. Analysis of the rolC promoter region involved in somatic embryogenesis-related activation in carrot cell cultures.

    PubMed Central

    Fujii, N; Yokoyama, R; Uchimiya, H

    1994-01-01

    In cell cultures of carrot (Daucus carota L.), somatic embryogenesis can be induced by transferring cells from a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) to one devoid of 2,4-D. Previous analysis of transgenic carrot cells containing the 5' non-coding sequence of the Ri plasmid rolC and a structural gene for bacterial beta-glucuronidase (uidA) has shown that the chimeric gene is actively expressed after induction of somatic embryogenesis. In this study, we demonstrate that activation of the rolC promoter is dependent on the process of embryo development but not on the duration of the cell culture in 2,4-D-free medium. We also analyzed the cis region of the rolC promoter that is responsible for somatic embryogenesis-related activation (SERA), namely relatively low beta-glucuronidase (GUS) activity in calli and proembryogenic masses (PEM) and high GUS activity in heart- and torpedo-stage embryos. When the -255-bp region of the rolC gene was used, SERA was retained. Internal deletions within this -255-bp region did not alter SERA by the rolC promoter. Furthermore, when a rolC promoter fragment (-848 to -94 bp) was fused to the cauliflower mosaic virus (CaMV) 35S core region (-90 to +6 bp), it conferred relatively low GUS activity in calli and PEM but high GUS activity in heart and torpedo embryos. When -848 to -255-bp or -255- to -94-bp fragments of the rolC promoter were fused to the same CaMV 35S core region, GUS activity patterns were not related to somatic embryogenesis. These results suggest that the combination of several regulatory regions in the rolC promoter may be required for SERA in carrot cell cultures. PMID:8016259

  19. Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art

    PubMed Central

    Easley, Charles A.; Simerly, Calvin R.; Schatten, Gerald

    2015-01-01

    Generating gametes from pluripotent stem cells (PSCs) has many scientific justifications and several biomedical rationales. Here, we consider several strategies for deriving gametes from PSCs from mice and primates (human and non-human) and their anticipated strengths, challenges and limitations. Although the ‘Weismann barrier’, which separates the mortal somatic cell lineages from the potentially immortal germline, has long existed, breakthroughs first in mice and now in humans are artificially creating germ cells from somatic cells. Spermatozoa with full reproductive viability establishing multiple generations of seemingly normal offspring have been reported in mice and, in humans, haploid spermatids with correct parent-of-origin imprints have been obtained. Similar progress with making oocytes has been published using mouse PSCs differentiated in vitro into primordial germ cells, which are then cultured after xenografting reconstructed artificial ovaries. Progress in making human oocytes artificially is proving challenging. The usefulness of these artificial gametes, from assessing environmental exposure toxicity to optimising medical treatments to prevent negative off-target effects on fertility, may prove invaluable, as may basic discoveries on the fundamental mechanisms of gametogenesis. PMID:25472048

  20. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells.

    PubMed

    Abdouh, Mohamed; Hanna, Roy; El Hajjar, Jida; Flamier, Anthony; Bernier, Gilbert

    2016-01-01

    The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2A(ub)) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2A(ub) deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome. PMID:26468281

  1. Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures Differentiation by Silencing Transposons in Planarian.

    PubMed

    Shibata, Norito; Kashima, Makoto; Ishiko, Taisuke; Nishimura, Osamu; Rouhana, Labib; Misaki, Kazuyo; Yonemura, Shigenobu; Saito, Kuniaki; Siomi, Haruhiko; Siomi, Mikiko C; Agata, Kiyokazu

    2016-05-01

    Differentiation of pluripotent stem cells (PSCs) requires transposon silencing throughout the process. PIWIs, best known as key factors in germline transposon silencing, are also known to act in somatic differentiation of planarian PSCs (neoblasts). However, how PIWIs control the latter process remains elusive. Here, using Dugesia japonica, we show that a nuclear PIWI, DjPiwiB, was bound to PIWI-interacting RNAs (generally key mediators of PIWI-dependent transposon silencing), and was detected in not only neoblasts but also their descendant somatic cells, which do not express piwi. In contrast, cytoplasmic DjPiwiA and DjPiwiC were detected only in neoblasts, in accord with their transcription there. DjPiwiB was indispensable for regeneration, but dispensable for transposon silencing in neoblasts. However, transposons were derepressed at the onset of differentiation in DjPiwiB-knockdown planarians. Thus, DjPiwiB appears to be inherited by descendant somatic cells of neoblasts to ensure transposon silencing in those cells, which are unable to produce PIWI proteins. PMID:27165555

  2. Relationship between test-day measures of somatic cell count and milk production in California dairy cows.

    PubMed Central

    Tyler, J W; Thurmond, M C; Lasslo, L

    1989-01-01

    The relationship between test-day measures of milk somatic cell count and milk yield was evaluated using the November 1985 test data from 8352 Holstein cattle (2923 primiparous and 5429 multiparous cows) located in ten Tulare County, California dairies. Following correction for herd and stage of lactation effects, design variable regression was used to create separate models for primiparous and multiparous cows predicting the changes in milk production associated with milk somatic cell count class. Cell counts were stratified by 1/2 loge cell count (x1000 cells/mL) units, permitting comparisons with previous studies. Cell counts less than 148,000/mL were not found to be associated with significant reductions in milk yield when compared to the reference class (cell counts less than 20,000/mL). Consistent incremental decreases in milk production were not noted with increasing cell count strata, even following the natural log transformation. The most dramatic production losses were noted in the range of 148,000 to 665,000 cells/mL. Primiparous cattle in the 403,000 to 665,000 cell count strata experienced a 5.22 kg (19.72%) decrease in test-day milk yield. Multiparous cattle in the same class experienced 3.01 kg (7.82%) reductions in milk production. Primiparous and multiparous cows had similar production losses. The study population differed from previous studies on the basis of herd size, milk production and the level of udder health, measured by milk somatic cell count. These differences and the choice of experimental design may in part explain differences in study results and conclusions. PMID:2713782

  3. Somatic Copy Number Alterations Associated with Japanese or Endometriosis in Ovarian Clear Cell Adenocarcinoma

    PubMed Central

    Okamoto, Aikou; Sehouli, Jalid; Yanaihara, Nozomu; Hirata, Yukihiro; Braicu, Ioana; Kim, Byoung-Gie; Takakura, Satoshi; Saito, Misato; Yanagida, Satoshi; Takenaka, Masataka; Yamaguchi, Noriko; Morikawa, Asuka; Tanabe, Hiroshi; Yamada, Kyosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Itamochi, Hiroaki; Kigawa, Junzo; Matsumura, Noriomi; Konishi, Ikuo; Aida, Satoshi; Aoki, Yuko; Ishii, Nobuya; Ochiai, Kazunori; Akiyama, Tetsu; Urashima, Mitsuyoshi

    2015-01-01

    When compared with other epithelial ovarian cancers, the clinical characteristics of ovarian clear cell adenocarcinoma (CCC) include 1) a higher incidence among Japanese, 2) an association with endometriosis, 3) poor prognosis in advanced stages, and 4) a higher incidence of thrombosis as a complication. We used high resolution comparative genomic hybridization (CGH) to identify somatic copy number alterations (SCNAs) associated with each of these clinical characteristics of CCC. The Human Genome CGH 244A Oligo Microarray was used to examine 144 samples obtained from 120 Japanese, 15 Korean, and nine German patients with CCC. The entire 8q chromosome (minimum corrected p-value: q = 0.0001) and chromosome 20q13.2 including the ZNF217 locus (q = 0.0078) were amplified significantly more in Japanese than in Korean or German samples. This copy number amplification of the ZNF217 gene was confirmed by quantitative real-time polymerase chain reaction (Q-PCR). ZNF217 RNA levels were also higher in Japanese tumor samples than in non-Japanese samples (P = 0.027). Moreover, endometriosis was associated with amplification of EGFR gene (q = 0.047), which was again confirmed by Q-PCR and correlated with EGFR RNA expression. However, no SCNAs were significantly associated with prognosis or thrombosis. These results indicated that there may be an association between CCC and ZNF217 amplification among Japanese patients as well as between endometriosis and EGFR gene amplifications. PMID:25658832

  4. A Chimeric Arabinogalactan Protein Promotes Somatic Embryogenesis in Cotton Cell Culture1[W][OA

    PubMed Central

    Poon, Simon; Heath, Robyn Louise; Clarke, Adrienne Elizabeth

    2012-01-01

    Arabinogalactan proteins (AGPs) are a family of extracellular plant proteoglycans implicated in many aspects of plant growth and development, including in vitro somatic embryogenesis (SE). We found that specific AGPs were produced by cotton (Gossypium hirsutum) calli undergoing SE and that when these AGPs were isolated and incorporated into tissue culture medium, cotton SE was promoted. When the AGPs were partly or fully deglycosylated, SE-promoting activity was not diminished. Testing of AGPs separated by reverse-phase high-performance liquid chromatography revealed that the SE-promoting activity resided in a hydrophobic fraction. We cloned a full-length complementary DNA (cotton PHYTOCYANIN-LIKE ARABINOGALACTAN-PROTEIN1 [GhPLA1]) that encoded the protein backbone of an AGP in the active fraction. It has a chimeric structure comprising an amino-terminal signal sequence, a phytocyanin-like domain, an AGP-like domain, and a hydrophobic carboxyl-terminal domain. Recombinant production of GhPLA1 in tobacco (Nicotiana tabacum) cells enabled us to purify and analyze a single glycosylated AGP and to demonstrate that this chimeric AGP promotes cotton SE. Furthermore, the nonglycosylated phytocyanin-like domain from GhPLA1, which was bacterially produced, also promoted SE, indicating that the glycosylated AGP domain was unnecessary for in vitro activity. PMID:22858635

  5. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    SciTech Connect

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong; Shim, Hosup; Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June; Kim, Jin-Hoi; Lee, Jeong Woong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  6. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics.

    PubMed

    Yerle, M; Echard, G; Robic, A; Mairal, A; Dubut-Fontana, C; Riquet, J; Pinton, P; Milan, D; Lahbib-Mansais, Y; Gellin, J

    1996-01-01

    A panel of 27 pig x rodent somatic cell hybrids was produced and characterized cytogenetically. The first step of this study consisted of hybridizing a SINE probe to GTG-banded metaphases of each hybrid clone in order to count and identify the normal pig chromosomes and to detect rearranged ones. The second step consisted of using the DNA of each clone as a probe after pIRS-PCR (porcine interspersed repetitive sequence-polymerase chain reaction) amplification to highly enrich it in pig sequences. These probes, hybridized to normal pig metaphase chromosomes, enabled the identification of the complete porcine complement in the hybrid lines. Whole chromosomes and fragments were characterized quickly and precisely, and results were compared. In addition to this cytogenetic characterization, molecular verification was also carried out by using primers specific to six microsatellites and to one gene previously mapped to pig chromosomes. The results obtained allow us to conclude that we have produced a panel that is informative for all porcine chromosomes. This panel constitutes a highly efficient tool to establish not only assignments of genes and markers but also regional localizations on pig chromosomes. PMID:8697807

  7. Post-milking teat dip use in dairy herds with high or low somatic cell counts.

    PubMed

    Erskine, R J; Eberhart, R J

    1991-12-15

    Milk samples for bacteriologic culture were submitted from 71 dairy herds, 24 with low somatic cell count (SCC) and 47 with high SCC and high prevalence of subclinical mastitis. At the time of sample submission to the Mastitis Diagnostic Laboratory of Pennsylvania State University, information regarding the herd mastitis control practices was collected. A combined program of post-milking teat dipping (PMTD) and antibiotic treatment of all cows at the start of the nonlactating period was practiced more frequently for herds with low SCC, (P less than 0.001) than for herds with high SCC. Among all herds for which PMTD was practiced, a higher proportion (P less than 0.001) of those for which chlorhexidine-based products were used had low SCC than high SCC. Conversely, a higher proportion of herds for which a dip with an acrylic latex barrier was used had high SCC rather than low SCC (P = 0.002). For herds with high prevalence of subclinical mastitis, and despite a program of PMTD and treatment of all cows at the start of the nonlactating period, a change to a different germicidal teat dip product may be indicated to help reduce prevalence of infection. PMID:1813466

  8. Recombinogenic activity of Pantoprazole® in somatic cells of Drosophila melanogaster

    PubMed Central

    Lopes, Jeyson Césary; Machado, Nayane Moreira; Saturnino, Rosiane Soares; Nepomuceno, Júlio César

    2015-01-01

    Pantoprazole® is one of the leading proton pump inhibitors (PPIs) used in the treatment of a variety of diseases related to the upper gastrointestinal tract. However, studies have shown an increased risk of developing gastric cancer, intestinal metaplasia and hyperplasia of endocrine cells with prolonged use. In the present study, the somatic mutation and recombination test (SMART) was employed to determine the mutagenic effects of Pantoprazole on Drosophila melanogaster. Repeated treatments with Pantoprazole were performed on 72-hour larvae of the standard (ST) and high bioactivation (HB) crosses at concentrations of 2.5, 5.0, and 10.0 μM. In addition, doxorubicin (DXR) was administered at 0.4 mM, as a positive control. When administered to ST descendants, total number of spots were statistically significant at 2.5 and 5.0 μM concentrations. For HB descendants, a significant increase in the total number of spots was observed among the marked transheterozygous (MH) flies. Through analysis of balancer heterozygous (BH) descendants, recombinogenic effects were observed at all concentrations in descendants of the HB cross. In view of these experimental conditions and results, it was concluded that Pantoprazole is associated with recombinogenic effects in Drosophila melanogaster. PMID:25983631

  9. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  10. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    PubMed

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  11. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    SciTech Connect

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  12. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    PubMed

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p < 0.05), total cell number (93.0 ± 9.9 vs. 101.0 ± 9.8, p < 0.05), ratio of inner cell mass (ICM) to trophectoderm (TE) (0.29 ± 0.006 vs. 0.39 ± 0.005, p < 0.05), and apoptosis index in day 7 blastocysts (2.5 ± 0.22 vs. 8.7 ± 0.41, p < 0.05) compared to the control group. Although no statistical difference in pregnancy rate and birth rate was observed after embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos. PMID:27135251

  13. High density physical mapping of chromosome 3p by hybridization of somatic cell hybrid derived Alu-PCR products

    SciTech Connect

    Shearman, A.M.; Andresen, J.M.; Aburatani, H.

    1994-09-01

    We have produced high density physical maps covering most of chromosome 3 using a hybridization-based approach to YAC isolation and contig assembly. The strategy has been to use a well characterized panel of somatic cell hybrids to generate probe sets distributed across the chromosome. From each of 50 somatic cell hybrids, a library of {approximately}100-600 cloned Alu-PCR products was isolated and Alu-PCR inserts from the full set of clones was spotted at high density on nylon membranes. Representative sets of unique clones from most of the hybrids were used to screen {approximately}16 genome equivalents of CEPH YACs by hybridization. These results, combined with our previous results and data from CEPH, produced contigs covering most of the chromosomes. The use of somatic cell hybrid-derived probe sets allowed easy integration of contigs with physical mapping boundaries defined by the somatic cell hybrids. We will describe various Alu-PCR strategies subsequently used to achieve closure, including successful identification of Alu-PCR products from the spotted set which lie in regions not previously covered by YAC contigs and use of Alu-PCR walking strategies to fill gaps and confirm tentative linkages. Our basic YAC screening methodology allows one individual to screen {approximately}16 genome equivalents of CEPH YACs with 96 probes/week at a material cost of less than $1 per locus. We have now mapped >2,200 loci on chromosome 3, with average interlocus distances of {approximately}50-100 kb over large regions. Alu-PCR-defined loci spaced along the chromosome at regular intervals are being converted to STSs. Our results indicate that use of a hybridization-based approach to physical mapping constitutes an efficient, accurate, high throughput method for isolating YACs and assembling YAC contigs.

  14. The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche

    PubMed Central

    Ma, Qing; Wawersik, Matthew; Matunis, Erika L.

    2014-01-01

    Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (DsxM) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of DsxM. The Dsx homologue DMRT1 prevents the male-to female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells, and that this highly conserved process is governed by effectors of niche signals. PMID:25453558

  15. A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis.

    PubMed

    Dubey, Pankaj; Joti, Prakash; Ray, Krishanu

    2016-06-01

    Odorant receptors (OR) heterodimerizes with the OR co-receptor (Orco), forming specific odorant-gated cation channels, which are key to odor reception at the olfactory sensory neurons (OSN). Mammalian ORs are expressed in many other tissues, including testis. However, their biological implications are yet to be fully ascertained. In the mosquito, Orco is localized along the sperm tail and is indicated to maintain fidelity. Here, we show that orco expresses in Drosophila testis. The levels are higher in the somatic cyst cells. The orco-null mutants are perfectly fertile at 25 degree C. At 28 degree C, the coiled spermatid bundles are severely disrupted. The loss of Orco also disrupts the actin cap, which forms inside the head cyst cell at the rostral ends of the spermatid nuclei after coiling, and plays a key role in preventing the abnormal release of spermatids from the cyst enclosure. Both the defects are rescued by the somatic cyst cell-specific expression of the UAS-orco transgene. These results highlight a novel role of Orco in the somatic tissue during sperm release. PMID:27240982

  16. Expression Profiling of Innate Immune Genes in Milk Somatic Cells During Subclinical Mastitis in Crossbred Dairy Cows.

    PubMed

    Karthikeyan, A; Radhika, G; Aravindhakshan, T V; Anilkumar, K

    2016-10-01

    Innate immune mechanism plays a key role in mammary defense, from recognition of pathogens to activation of nonspecific and specific immunity involved in elimination of pathogens. Expression profiles of innate immune response genes namely Toll like receptor 2 (TLR-2), Peptidoglycan recognition protein 1 (PGLYRP-1), Interleukin 8 receptor (IL-8 R), L-Selectin (SELL), and Osteopontin (OPN) in milk somatic cells of subclinical mastitis (SCM) affected crossbred cows were investigated under this study at transcript level using quantitative real time polymerase chain reaction (qRT-PCR). Dairy cows in mid lactation were screened for SCM using California Mastitis Test (CMT), Somatic Cell Count (SCC) and Electrical Conductivity test (EC). Based on results of SCM screening tests, crossbred cows were clustered into two groups with four Staphylococcus aureus infected SCM cows and four apparently healthy cows. The expressions levels of TLR-2, PGLYRP-1, IL-8 R, SELL, and OPN in milk somatic cells of SCM affected cows were significantly higher (p < 0.05) than healthy cows. These genes could be considered as candidate genes for innate immune response against S. aureus SCM infection. PMID:27565875

  17. Genetic parameters for lactation traits of milking ewes: protein content and composition, fat, somatic cells and individual laboratory cheese yield

    PubMed Central

    Othmane, Med Houcine; Carriedo, Juan Antonio; San Primitivo, Fermin; De la Fuente, Luis Fernando

    2002-01-01

    The effects of some environmental variation factors and the genetic parameters for total milk traits (fat content, protein content, casein content, serum protein content, lactation mean of individual laboratory cheese yield (LILCY), lactation mean of somatic cell count (LSCC), and milk yield) were estimated from the records of 1 111 Churra ewes. Genetic parameters were estimated by multivariate REML. Heritability for fat content was low (0.10) as is usually found in the Churra breed. Heritabilities for protein content, casein content, serum protein content, LILCY, milk yield and somatic cell count were 0.31, 0.30, 0.22, 0.09, 0.26 and 0.11, respectively. The highest heritability estimates were for protein and casein contents. Casein content is not advisable as an alternative to protein content as a selection criterion for cheese yield improvement; it does not have any compelling advantages and its measurement is costly. Our results for LSCC indicated that efforts should focus on improving the level of management rather than selecting for somatic cells, in the actual conditions of the Churra breed. PMID:12427387

  18. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    PubMed

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments. PMID:21358981

  19. A role for XLF in DNA repair and recombination in human somatic cells.

    PubMed

    Fattah, Farjana Jahan; Kweon, Junghun; Wang, Yongbao; Lee, Eu Han; Kan, Yinan; Lichter, Natalie; Weisensel, Natalie; Hendrickson, Eric A

    2014-03-01

    Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor. PMID:24461734

  20. A role for XLF in DNA repair and recombination in human somatic cells

    PubMed Central

    Fattah, Farjana; Kweon, Junghun; Wang, Yongbao; Lee, Eu Han; Kan, Yinan; Lichter, Natalie; Weisensel, Natalie; Hendrickson, Eric A.

    2014-01-01

    Classic non-homologous end-joining (C-NHEJ) is required for the repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian cells and plays a critical role in lymphoid V(D)J recombination. A core C-NHEJ component is the DNA ligase IV co-factor, Cernunnos/XLF (hereafter XLF). In patients, mutations in XLF cause predicted increases in radiosensitivity and deficits in immune function, but also cause other less well-understood pathologies including neural disorders. To characterize XLF function(s) in a defined genetic system, we used a recombinant adeno-associated virus-mediated gene targeting strategy to inactivate both copies of the XLF locus in the human HCT116 cell line. Analyses of XLF-null cells (which were viable) showed that they were highly sensitive to ionizing radiation and a radiomimetic DNA damaging agent, etoposide. XLF-null cells had profound DNA DSB repair defects as measured by in vivo plasmid end-joining assays and were also dramatically impaired in their ability to form either V(D)J coding or signal joints on extrachromosomal substrates. Thus, our somatic XLF-null cell line recapitulates many of the phenotypes expected from XLF patient cell lines. Subsequent structure:function experiments utilizing the expression of wild-type and mutant XLF cDNAs demonstrated that all of the phenotypes of an XLF deficiency could be rescued by the overexpression of a wild-type XLF cDNA. Unexpectedly, mutant forms of XLF bearing point mutations at amino acid positions L115 and L179, also completely complemented the null phenotype suggesting, in contrast to predictions to the contrary, that these mutations do not abrogate XLF function. Finally, we demonstrate that the absence of XLF causes a small, but significant, increase in homologous recombination, implicating XLF in DSB pathway choice regulation. We conclude that human XLF is a non-essential, but critical, C-NHEJ-repair factor. PMID:24461734

  1. A proteomic perspective on the changes in milk proteins due to high somatic cell count.

    PubMed

    Zhang, L; Boeren, S; van Hooijdonk, A C M; Vervoort, J M; Hettinga, K A

    2015-08-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 10(5) to 10(6) cells/mL were analyzed qualitatively and quantitatively using both one-dimension sodium dodecyl sulfate PAGE and filter-aided sample preparation coupled with dimethyl labeling, both followed by liquid chromatography tandem mass spectrometry. Minor differences were found on the qualitative level in the proteome from milk with different SCC levels, whereas the concentration of milk proteins showed remarkable changes. Not only immune-related proteins (cathelicidins, IGK protein, CD59 molecule, complement regulatory protein, lactadherin), but also proteins with other biological functions (e.g., lipid metabolism: platelet glycoprotein 4, butyrophilin subfamily 1 member A1, perilipin-2) were significantly different in milk from cows with high SCC level compared with low SCC level. The increased concentration of protease inhibitors in the milk with higher SCC levels may suggest a protective role in the mammary gland against protease activity. Prostaglandin-H2 D-isomerase showed a linear relation with SCC, which was confirmed with an ELISA. However, the correlation coefficient was lower in individual cows compared with bulk milk. These results indicate that prostaglandin-H2 D-isomerase may be used as an indicator to evaluate bulk milk quality and thereby reduce the economic loss in the dairy industry. The results from this study reflect the biological phenomena occurring during subclinical mastitis and in addition provide a potential indicator for the detection of bulk milk with high SCC. PMID:26094216

  2. Short communication: Bulk milk somatic cell penalties in herds enrolled in Dairy Herd Improvement programs.

    PubMed

    Hand, K J; Godkin, M A; Kelton, D F

    2012-01-01

    The objective of this study was to determine the effect of somatic cell count (SCC) monitoring at the cow level through Dairy Herd Improvement (DHI) programs on the risk of bulk tank SCC (BTSCC) penalties. For the year 2009, BTSCC for all producers in Ontario were examined, for a total of 2,898 DHI herds, 1,186 non-DHI herds, and 48,250 BTSCC records. Two penalty levels were examined, where BTSCC exceeded 499,000 (P500) and 399,000 (P400) cells/mL. Data were modeled first to determine the odds of a BTSCC exceeding a set penalty threshold and second to determine the odds of incurring a penalty under the Ontario Milk Act. All data were modeled as a generalized mixed model with a binary link function. Random effects included herd, fixed effects included season of BTSCC (summer, May to September, and winter, October to April), total milk shipped per month (L), fat paid per month (kg), protein paid per month (kg), and participation or not in the DHI program. The likelihood of a BTSCC exceeding a penalty threshold in a non-DHI herd compared with a DHI herd was significantly greater than 1 at both penalty levels, where the odds ratios were estimated to be 1.42 [95% confidence interval (CI): 1.19 to 1.69] and 1.38 (95% CI: 1.25 to 1.54) for P500 and P400, respectively. The likelihood of incurring a BTSCC penalty (where 3 out of 4 consecutive BTSCC exceeded penalty thresholds) was not significantly different at P500; however, it was significantly different for P400, where the odds ratio was estimated to be 1.42 (95% CI: 1.12 to 1.81). PMID:22192202

  3. Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows.

    PubMed

    dos Reis, C B Malek; Barreiro, J R; Moreno, J F G; Porcionato, M A F; Santos, M V

    2011-09-01

    The objectives of this study were (1) to determine the sensitivity (Se) and specificity (Sp) of somatic cell count (SCC) thresholds to identify subclinical mastitis in Gyr cows caused by major and minor pathogens; (2) to study the effects of month of sampling, rear or front mammary quarters, herd, intramammary infection (IMI), and bacterial species on SCC at quarter level; and (3) to describe the prevalence of IMI in Gyr cows in commercial dairy herds. In total, 221 lactating Gyr cows from 3 commercial dairy farms were selected. Milk samples were collected from individual quarters once a month for 1 yr from all lactating cows for SCC and bacteriological analysis. Mammary quarters were considered the experimental units and the SCC results were log(10)-transformed. Four SCC thresholds (100, 200, 300 and 400 × 10(3) cells/mL) were used to determine Se and Sp to identify infected mammary quarters. The overall prevalence of IMI in quarter milk samples of Gyr cows was 49.8%, and the prevalence of minor pathogens was higher (31.9%) than that of major pathogens (17.8%). Quarter samples with microbial isolation presented higher SCC compared with negative samples. Sensitivity and Sp of selected SCC thresholds varied according to the group of pathogen (major and minor) involved in the IMI definition. Sensitivity increased and Sp decreased when mammary quarters with only major pathogens isolation were considered positive. The use of a single SCC analysis to classify quarters as uninfected or infected in Gyr cows may not be a useful test for this breed because Se and Sp of SCC at the studied thresholds were low. The occurrence of IMI and the bacterial species are the main factors responsible for SCC variation in mammary quarters of Gyr cows. Milk samples with major pathogens isolation elicited higher SCC than those with minor pathogens. PMID:21854914

  4. Protein profiles of bovine placenta derived from somatic cell nuclear transfer.

    PubMed

    Kim, Hong Rye; Kang, Jae Ku; Yoon, Jong Taek; Seong, Hwan Hoo; Jung, Jin Kwan; Lee, Hong Mie; Sik Park, Chang; Jin, Dong Il

    2005-11-01

    Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by an extremely low success rate. To address whether placental dysfunction in SCNT causes fetal loss during pregnancy, we have used a global proteomics approach using 2-DE and MS to analyze the differential protein patterns of three placentae from the afterbirth of cases of postnatal death, derived from SCNT of Korean Native cattle, and three normal placentae obtained from the afterbirth of fetuses derived from artificial insemination. Proteins within a pI range of 4.0-7.0 and 6.0-9.0 were analyzed separately by 2-DE in triplicate. A total of approximately 2000 spots were detected in placental 2-DE gels stained with CBB. In the comparison of normal and SCNT samples, 60 spots were identified as differentially expressed proteins, of which 33 spots were up-regulated proteins in SCNT placentae, while 27 spots were down-regulated proteins. Most of the proteins identified in this analysis appeared to be related with protein repair or protection, cytoskeleton, signal transduction, immune system, metabolism, extracellular matrix and remodeling, transcription regulation, cell structure or differentiation and ion transport. One of up-regulated proteins in SCNT was TIMP-2 protein known to be related to extracellular matrix and remodeling during pregnancy. Western blot analysis showed an increased level of TIMP-2 in SCNT placenta compared to normal. Our results revealed composite profiles of key proteins involved in abnormal placenta derived from SCNT, and suggested expression abnormality of these genes in SCNT placenta, resulting in fetal losses following SCNT. PMID:16196098

  5. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo

    PubMed Central

    Patil, M. P.; Nagvekar, A. S.; Ingole, S. D.; Bharucha, S. V.; Palve, V. T.

    2015-01-01

    Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×105 cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes. PMID:27047098

  6. Effect of an automated dipping and backflushing system on somatic cell counts.

    PubMed

    Olde Riekerink, R G M; Ohnstad, I; van Santen, B; Barkema, H W

    2012-09-01

    Postmilking teat disinfection is an effective management practice to prevent transmission of contagious mastitis pathogens from cow to cow. With farms increasing in size and an increase in the number of rotary milking parlors, the need for automation of postmilking teat disinfection is mounting. Automated teat dipping and backflushing (ADB) systems have existed for some years, but their effect on udder health was never examined in a field study on commercial dairy farms. The objectives of this study were, therefore, to evaluate the effect of introducing an ADB system in a herd on (1) bulk milk somatic cell count (SCC), (2) individual cow SCC, and (3) the proportion of newly elevated SCC. Dairy herd improvement data were collected over a 30-mo period on 25 sets of 3 farms. Each set of 3 farms contained a farm that installed an ADB system, one that disinfected teats using dipping after milking, and one that sprayed teats after milking. Data were analyzed using linear mixed models. Bulk milk SCC on farms that sprayed or dipped before installing an ADB system were 16,000 and 30,000 cells/mL lower in the period 6 to 18 mo after installation, respectively, than on farms that continued spraying or dipping the teats after milking. In the same period after installing an ADB system, proportions of cows with elevated SCC were 4.3 and 1.2% lower, respectively, compared with spraying and with dipping. Similarly, proportions of cows that had newly elevated SCC were 1.5% lower and 0.3% higher, respectively, compared with farms that sprayed or dipped. Installing an ADB system had a beneficial effect on bulk milk SCC, individual cow SCC, and the proportion of newly elevated SCC. The effect was most prominent in the period 6 to 18 mo after installation of an ADB system. PMID:22916897

  7. An informative panel of somatic cell hybrids for physical mapping on human chromosome 19q.

    PubMed Central

    Bachinski, L L; Krahe, R; White, B F; Wieringa, B; Shaw, D; Korneluk, R; Thompson, L H; Johnson, K; Siciliano, M J

    1993-01-01

    A panel of 22 somatic cell hybrids divides the q arm of human chromosome 19 into 22 ordered subregions. The panel was characterized with respect to 41 genetic markers. In most cases, a single fragment of chromosome 19 was present in each hybrid. In two cell lines the presence of multiple fragments of the chromosome was demonstrated by segregation of these fragments in subclones. On the basis of the results of marker analysis in this panel, the most likely order of the markers tested is MANB-D19S7-PEPD-D19S9-GPI-C/EBP-TGFB1++ +-(CYP2A,BCKDHA,CGM2,NCA)-PSG1-(D19S8, XRCC1)-(ATP1A3,D19S19)-(D19S37,APOC2)-C KM-ERCC2-ERCC1-(D19S116,D19S117)- (D19S118,D19S119, D19S63,p36.1,D19S112,D19S62,D19S51,D19S54, D19S55)-pW39-D19S6-(D19S50,TNNT1)-D19S2 2-(HRC,CGB,FTL,PRKCG)-qter. This gene order is generally consistent with published physical and genetic mapping orders, although some discrepancies exist. By means of a mapping function that relates the frequency of cosegregation of markers to the distance between them, estimates were made of the sizes, in megabases, of the 19q subregions. The relative physical distances between reference markers were compared with published genetic distances for 19q. Excellent correlation was observed, suggesting that the physical distances calculated by this method are predictive of genetic distances in this region of the genome and, therefore, are just as useful in estimating relative positions of markers. Images Figure 1 PMID:8430698

  8. [Dynamic changes of γ-tubulin in mouse somatic cell nuclear transferred embryos].

    PubMed

    Zhang, Qing-Hua; Lei, Lei

    2013-04-25

    The aim of the present study is to observe the dynamic changes of γ-tubulin in mouse somatic nuclear transferred (SCNT) embryos. The γ-tubulin was detected and analyzed in the enucleated oocyte and SCNT embryos by immunofluorescence and laser confocal microscopy. The results showed that γ-tubulin distributed in the cortex of the enucleated MII oocytes, and decreased in this area during the activation of oocytes. Meanwhile cytoplasmic asters appeared, but there was no spindle formed. Spindle formation could be observed in the enucleated oocytes which were injected with cumulus cells and activated by SrCl2. The spots-like γ-tubulin signals spread between chromosomes at the prophase, and the signals arrayed with spindle or aggregated at two poles of the spindle at the early metaphase. Furthermore, γ-tubulin signals were localized between the segregated sister chromatids at anaphase or telophase. Some reconstructed embryos exhibited advanced activation, showing abnormal spindles and aberrant distribution of γ-tubulin and chromosomes. Two spindles would be formed when the cumulus cell was injected into an intact oocyte, and the distribution of γ-tubulin was similar to that of the normal SCNT. Moreover, advanced activation also occurred in this case and formed either two small spindles or one big barrel-shaped spindle. These results suggest that γ-tubulin plays a pivotal role in spindle assembling in mouse SCNT embryos. The reconstructed oocytes were easily to be activated, and aberrant distribution of γ-tubulin is associated with formation of abnormal spindles and chromosome misalignment. PMID:23598871

  9. Nuclear remodeling in bovine somatic cell nuclear transfer embryos using MG132-treated recipient oocytes.

    PubMed

    Le Bourhis, Daniel; Beaujean, Nathalie; Ruffini, Sylvie; Vignon, Xavier; Gall, Laurence

    2010-12-01

    The early events in the nuclear reprogramming process during somatic cell nuclear transfer (SCNT) consist of morphological remodeling of the donor nucleus including premature chromosome condensation (PCC). In the present study, the objective was to increase oocyte M-Phase Promoting Factor (MPF) kinase activity and to examine the fate of the donor nucleus and the development of SCNT embryos thereafter. Indeed, in controls, recipient oocytes activated upon nuclear transfer, undergo a decrease in MPF activity, responsible for the inability to promote PCC in 77.8% of reconstituted embryos. Here we showed that exposure of the recipient oocyte to the proteasome inhibitor MG132 prior to fusion inhibited the degradation of cyclin B, which normally occurred immediately after activation by electro stimulation, and therefore sustained a high level of MPF. Treatment with MG132 also significantly increased the percentage of SCNT embryos with PCC when compared to the nontreated SCNT control embryos (94.1 vs. 22.2%, respectively, p < 0.01). The frequency of development to the blastocyst stage did not differ between MG132-treated or untreated recipient oocytes. However, we observed a significant increase of the total cells number in embryos produced after MG132 treatment. Investigation of the global nuclear organization by immunodetection of heterochromatin protein 1 (CBX1) showed that SCNT embryos derived from MG132-treated recipient oocytes displayed organization patterns similar to the ones observed in IVF embryos in contrast to the nontreated SCNT controls. Taken together, these results suggest that the PCC induced by MG132 treatment allows reorganization of the chromatin at an appropriate time potentially, leading to better reprogramming. PMID:21108537

  10. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  11. In Vitro Ectopic Behavior of Porcine Spermatogonial Germ Cells and Testicular Somatic Cells.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Do, Jung Tae; Park, Chan Kyu; Kim, Nam Hyung; Kim, Jin Hoi; Chung, Hak Jae; Kim, Dong Woon; Song, Hyuk

    2016-08-01

    Embryonic body-like colony formation is a unique pattern in male germ cell cultures, including spermatogonial stem cells. However, detailed information of the colony formation has not yet been sufficiently reported in male germ cell culture. To elucidate the formation of germ cell-derived colony (GDC), glial cell-derived neurotrophic factor receptor alpha-1 (GFRα-1)-positive pig germ cells were isolated using an immunomagnetic cell isolation method and labeled with red- or green-fluorescent dye. In GDC culture, red-fluorescent-labeled germ cells were evenly distributed in the wells from day 1 to 4, and they clustered together at the time of GDC formation on day 6. Interestingly, feeder cells migrated to the site of colony formation as spermatogonia carriers. Furthermore, when freshly prepared green-labeled GFRα-1-positive germ cells were added, mixed-fluorescent dye (red and green) colonies were observed. On bromodeoxyuridine (BrdU) treatment, 58% ± 3.13% of germ cells were positive to protein gene product 9.5 but negative to BrdU cells. Immunocytochemistry and reverse transcription-polymerase chain reaction results showed that cultured GDC cells were positive to stem cell- and pig germ cell-specific marker genes. In conclusion, in vitro formation of GDCs is mainly dependent on the aggregation of single germ cells as well as on the slow proliferation of germ cells. PMID:27328332

  12. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

    PubMed Central

    Choi, Hye Yeon; Saha, Subbroto Kumar; Kim, Kyeongseok; Kim, Sangsu; Yang, Gwang-Mo; Kim, BongWoo; Kim, Jin-hoi; Cho, Ssang-Goo

    2015-01-01

    G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs. [BMB Reports 2015; 48(2): 68-80] PMID:25413305

  13. Cloning mammary cell cDNAs from 17q12-q23 using interspecific somatic cell hybrids and subtractive hybridization

    SciTech Connect

    Cerosaletti, K.M.; Shapero, M.H.; Fournier, R.E.K.

    1995-01-01

    We have cloned human genes that are encoded in the region 17q12-q23 and expressed in breast tissue using interspecific somatic cell hybrids and subtractive hybridization. Two mouse microcell hybrids containing fragments of human chromosome 17 with a nonoverlap region at 17q12-q23 were generated by microcell transfer. Radiolabeled cDNA was synthesized from the hybrid cell containing the 17q12-q23 interval and was subtracted with an excess of RNA from the hybrid cell lacking the interval. Resulting cDNA probes enriched for sequences from 17q12-q23 were used to screen a human premenopausal breast cDNA library, and 60 cDNAs were identified. Three of these cDNAs mapped to the hybrid cell nonoverlap region. These cDNAs were expressed in mammary epithelial cell hybrids, although none appeared to be breast-specific. Sequence analysis of the cDNAs revealed that clone 93A represents a previously unidentified gene, clone 98C has homology to an expressed sequence tag from goat mammary tissue, and clone 200A is identical to the human homologue of the Drosophila melanogaster flightless-I gene. These genes map outside a 1-cM region linked to early onset familial breast cancer but may be useful genetic markers in the 17q12-q23 region. 47 refs., 6 figs.

  14. Control of intramammary infections in goats: impact on somatic cell counts.

    PubMed

    Poutrel, B; de Crémoux, R; Ducelliez, M; Verneau, D

    1997-02-01

    Udder-half infections were recorded throughout a lactation for 1,060 goats belonging to eight commercial herds. Bacteriological examination from aseptic milk samples and somatic cell counts (SCC) determined by Fossomatic cell counting were performed at the beginning, the middle, and the end of lactation. Coagulase-negative staphylococci (CNS) were the prevalent microorganisms isolated. Geometric means of SCC for uninfected halves or halves infected by CNS or major pathogens were 272 x 10(3) cells/mL, 932,000 x 10(3) cells/mL and 2,443,000 x 10(3) cells/mL, respectively. Two field trials were carried out for evaluation of effectiveness of systematic treatment at drying-off (1 syringe by half) by a combination of penicillin, nafcillin, and dihydrostreptomycin labeled for bovines. In the first trial, all goats (n = 217) of two herds were treated immediately after the last milking, and two herds (n = 196) were used as untreated controls. In the second trial, 215 goats were treated at drying-off. There were no untreated controls. Dry period cures were determined by bacteriological examination of udder-half milk samples collected aseptically at drying-off and 2 wk after parturition. Impact of treatment on SCC was determined from composite milk samples collected monthly after kidding. At parturition, in the first trial, 40 of 202 (19.8%) udder halves were spontaneously cured in the control group vs 169 of 217 (77.9%) in the treatment group. In the second trial, 141 out of 215 treated halves were cured. During the first 75 d in lactation, geometric mean SCC was significantly lower for treated goats than for control goats. After 75 d, SCC for treated and control goats were similar. These data suggest that other methods are required to prevent new intramammary infections throughout the lactation in order to keep a low SCC in goat milk. To determine whether this could be accomplished through teat dipping, half of the goats in five commercial herds were dipped (n = 294) after

  15. Rex Rabbit Somatic Cell Nuclear Transfer with In Vitro-Matured Oocytes.

    PubMed

    Liu, Yong; Wang, Huili; Lu, Jinhua; Miao, Yiliang; Cao, Xinyan; Zhang, Ling; Wu, Xiaoqing; Wu, Fengrui; Ding, Biao; Wang, Rong; Luo, Mingjiu; Li, Wenyong; Tan, Jinghe

    2016-06-01

    Somatic cell nuclear transfer (SCNT) requires large numbers of matured oocytes. In vitro-matured (IVM) oocytes have been used in SCNT in many animals. We investigated the use of IVM oocytes in Rex rabbit SCNT using Rex rabbit ovaries obtained from a local abattoir. The meiotic ability of oocytes isolated from follicles of different diameters was studied. Rex rabbit SCNT was optimized for denucleation, activation, and donor cell synchronization. Rex rabbit oocytes grew to the largest diameter (110 μm) when the follicle diameter was 1.0 mm. Oocytes isolated from <0.5-mm follicles lacked the ability to resume meiosis. More than 90% of these oocytes remained in the germinal vesicle (GV) stage after in vitro culture (IVC) for 18 h. Oocytes isolated from >0.7-mm follicles acquired maturation ability. More than 90% of these oocytes matured after IVC for 18 h. The developmental potential of oocytes isolated from >1-mm follicles was greater than that of oocytes isolated from 0.7- to 1.0-mm follicles. The highest activation rates for IVM Rex rabbit oocytes were seen after treatment with 2.5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) and 5 μg/mL cycloheximide (CHX) for 1 h. Ionomycin induced the chromatin of IVM oocytes to protrude from the oocyte surface, promoting denucleation. Fetal fibroblast cells (FFCs) and cumulus cells (CCs) were more suitable for Rex rabbit SCNT than skin fibroblast cells (SFCs) (blastocyst rate was 35.6 ± 2.2% and 38.0 ± 6.0% vs. 19.7 ± 3.1%). The best fusion condition was a 2DC interval for 1 sec, 1.6 kV/cm voltages, and 40 μsec duration in 0.28 M mannitol. In conclusion, the in vitro maturation of Rex rabbit oocytes and SCNT procedures were studied systematically and optimized in this study. PMID:27159389

  16. Diethylnitrosamine-induced expression of germline-specific genes and pluripotency factors, including vasa and oct4, in medaka somatic cells.

    PubMed

    Shen, Jialing; Yokota, Shinpei; Yokoi, Hayato; Suzuki, Tohru

    2016-09-16

    Various methods have been developed to reprogram mammalian somatic cells into pluripotent cells as well as to directly reprogram somatic cells into other cell lineages. We are interested in applying these methods to fish, and here, we examined whether mRNA expression of germline-specific genes (vasa, nanos2, -3) and pluripotency factors (oct4, sox2, c-myc, nanog) is inducible in somatic cells of Japanese medaka (Oryzias latipes). We found that the expression of vasa is induced in the gut and regenerating fin by exposure to a carcinogen, diethylnitrosamine (DEN). Induction of vasa in the gut started on the 5th day of treatment with >50 ppm DEN. In addition, nanos2, -3, oct4, sox2, klf4, c-myc, and nanog were also expressed simultaneously in some vasa-positive gut and regenerating fin samples. Vasa-positive cells were detected by immunohistochemistry (IHC) in the muscle surrounding the gut and in the wound epidermis, blastema, and fibroblast-like cells in regenerating fin. In vasa:GFP transgenic medaka, green fluorescent protein (GFP) fluorescence appeared in the wound epidermis and fibroblast-like cells in the regenerating fin following DEN exposure, in agreement with the IHC data. Our data show that mRNA expression of genes relevant to germ cell specification and pluripotency can be induced in fish somatic cells by exposure to DEN, suggesting the possibility of efficient and rapid cell reprogramming of fish somatic cells. PMID:27514449

  17. Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.

    PubMed

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Guo, Zhen-Hua; Zhu, Meng; Bai, Jing

    2016-01-01

    Many transgenes are silenced in mammalian cells (donor cells used for somatic cell nuclear transfer [SCNT]). Silencing correlated with a repressed chromatin structure or suppressed promoter, and it impeded the production of transgenic animals. Gene transcription studies in live cells are challenging because of the drawbacks of reverse-transcription polymerase chain reaction and fluorescence in situ hybridization. Nano-flare probes provide an effective approach to detect RNA in living cells. We used 18S RNA, a housekeeping gene, as a reference gene. This study aimed to establish a platform to detect RNA in single living donor cells using a Nano-flare probe prior to SCNT and to verify the safety and validity of the Nano-flare probe in order to provide a technical foundation for rescuing silenced transgenes in transgenic cloned embryos. We investigated cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts, characterized the distribution of the 18S RNA-Nano-flare probe in living cells and investigated the effect of the 18S RNA-Nano-flare probe on the development of cloned embryos after SCNT. The cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts was dose-dependent, and 18S RNA was detected using the 18S RNA-Nano-flare probe. In addition, treating donor cells with 500 pM 18S RNA-Nano-flare probe did not have adverse effects on the development of SCNT embryos at the pre-implantation stage. In conclusion, we established a preliminary platform to detect RNA in live donor cells using a Nano-flare probe prior to SCNT. PMID:26109144

  18. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer.

    PubMed

    Bao, Lei; Chen, HaiDe; Jong, UiMyong; Rim, CholHo; Li, WenLing; Lin, XiJuan; Zhang, Dan; Luo, Qiong; Cui, Chun; Huang, HeFeng; Zhang, Yan; Xiao, Lei; Fu, ZhiXin

    2014-02-01

    Genetically modified pigs are valuable models of human disease and donors of xenotransplanted organs. Conventional gene targeting in pig somatic cells is extremely inefficient. Zinc-finger nuclease (ZFN) technology has been shown to be a powerful tool for efficiently inducing mutations in the genome. However, ZFN-mediated targeting in pigs has rarely been achieved. Here, we used ZFNs to knock out the porcine α-1, 3-galactosyl-transferase (GGTA1) gene, which generates Gal epitopes that trigger hyperacute immune rejection in pig-to-human transplantation. Primary pig fibroblasts were transfected with ZFNs targeting the coding region of GGTA1. Eighteen mono-allelic and four biallelic knockout cell clones were obtained after drug selection with efficiencies of 23.4% and 5.2%, respectively. The biallelic cells were used to produce cloned pigs via somatic cell nuclear transfer (SCNT). Three GGTA1 null piglets were born, and one knockout primary fibroblast cell line was established from a cloned fetus. Gal epitopes on GGTA1 null pig cells were completely eliminated from the cell membrane. Functionally, GGTA1 knockout cells were protected from complement-mediated immune attacks when incubated with human serum. This study demonstrated that ZFN is an efficient tool in creating gene-modified pigs. GGTA1 null pigs and GGTA1 null fetal fibroblasts would benefit research and pig-to-human transplantation. PMID:24430555

  19. Monitoring dry period intramammary infection incidence and elimination rates using somatic cell count measurements.

    PubMed

    Dufour, S; Dohoo, I R

    2012-12-01

    The objective of the study was to evaluate the predictive ability of the herd dry period (DP) intramammary infection (IMI) incidence and elimination rates derived from predry and postcalving somatic cell count (SCC) measurements [quarter-level SCC and dairy herd improvement (DHI) composite-level SCC] for monitoring the herd DP IMI incidence and elimination rates. A cohort of 91 Canadian dairy herds was followed from 2007 to 2008. In each herd, a sample of 15 cows was selected each year, and a series of 2 predry and 2 postcalving quarter milk samples were collected. Routine milk bacteriological culture was conducted to identify IMI, SCC was measured on the quarter milk samples, and composite SCC of the last predry and first postcalving DHI tests were obtained. Mastitis pathogens were grouped into 3 categories: major pathogens, minor pathogens, and any pathogens. For each herd, DP bacteriological culture-derived IMI incidence and elimination rates were computed using quarter milk culture data. Similarly, SCC-derived herd incidence and elimination rates were computed using quarter and DHI composite-level SCC measurements and using various SCC thresholds to define new and eliminated IMI. Linear regression was used to compare herd quarter-level and composite-level SCC-derived herd incidence and elimination with DP bacteriological culture-derived IMI incidence and elimination. Herd DP incidences computed by using quarter-level SCC, and with most of the SCC thresholds tested, were significant predictors of the DP major, minor, and any IMI incidences (F-test; P≤0.05). The highest coefficients of determination (R(2)) were obtained with thresholds of 200,000 (R(2): 12%) and 50,000 cells/mL (R(2): 25%) for predicting major and minor IMI, respectively. When using composite DHI SCC measurements, however, substantial losses of predictive power were seen for minor and any IMI incidences compared with quarter-level SCC. For DP major IMI incidence, composite SCC yielded similar

  20. Telomere elongation and naïve pluripotent stem cells achieved from telomerase haplo-insufficient cells by somatic cell nuclear transfer

    PubMed Central

    Sung, Li-Ying; Chang, Wei-Fang; Zhang, Qian; Liu, Chia-Chia; Liou, Jun-Yang; Chang, Chia-Chun; Ou-Yang, Huan; Guo, Renpeng; Fu, Haifeng; Cheng, Winston T.K.; Ding, Shih-Torng; Chen, Chuan-Mu; Okuka, Maja; Keefe, David L; Chen, Y. Eugene; Liu, Lin; Xu, Jie

    2014-01-01

    Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities towards the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs) have been efficiently achieved by somatic cell nuclear transfer (SCNT). We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs using relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/−) mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naïve pluripotency as evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation (TEC), the most stringent test of naïve pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. PMID:25464850

  1. Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: Null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Pavlu-Pereira, Hana; Florindo, Cristina; Barroso, Madalena; Marques, Bárbara; Correia, Hildeberto; Oliveira, Anabela; Gaspar, Ana; Tavares de Almeida, Isabel; Rivera, Isabel

    2016-10-15

    Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5'UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being both mRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells. Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associated with the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency. PMID:27343776

  2. Cells with Stem Cell Characteristics in Somatic Compartments of the Ovary

    PubMed Central

    Kossowska-Tomaszczuk, Katarzyna; De Geyter, Christian

    2013-01-01

    Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF), it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology. PMID:23484108

  3. Heritability estimates associated with alternative definitions of mastitis and correlations with somatic cell score and yield.

    PubMed

    Vallimont, J E; Dechow, C D; Sattler, C G; Clay, J S

    2009-07-01

    The objectives of this study were to compare alternative mastitis definitions and to estimate genetic correlations of producer-recorded mastitis with somatic cell score (SCS) and yield. Cow health events and lactation records from June 2002 through October 2007 were provided by Dairy Records Management Systems (Raleigh, NC). First- through fifth-lactation records from cows calving between 20 and 120 mo of age and that calved in a herd-year with at least 1% of cows with a clinical mastitis event were retained. The edited data contained 118,516 lactation records and 1,072,741 test-day records of 64,893 cows. Mastitis occurrence (1 = at least one mastitis event during lactation or test-day interval, 0 = no mastitis events), number of mastitis events during lactation, SCS, and yield were analyzed with animal models (single trait) or sire-maternal grandsire models (multiple trait) in ASREML. Comparisons were made among models assuming a normal distribution, a binary distribution, or Poisson distribution (for total episodes). The overall incidence of clinical mastitis was 15.4%; and heritability estimates ranged from 0.73% (test-day interval mastitis with a linear model) to 11.07% (number of mastitis episodes with a Poisson model). Increased mastitis incidence was genetically correlated with higher SCS (range 0.66 to 0.88) and was generally correlated with higher yield (range -0.03 to 0.40), particularly during first lactation (0.04 to 0.40). Significant genetic variation exists for clinical mastitis; and health events recorded by producers could be used to generate genetic evaluations for cow health. Sires ranked similarly for daughter mastitis susceptibility regardless of how mastitis was defined; however, test-day interval mastitis and a total count of mastitis episodes per lactation allow a higher proportion of mastitis treatments to be included in the genetic analysis. PMID:19528618

  4. Enhanced somatic mutation rates induced in stem cells of mice by low chronic exposure to ethylnitrosourea.

    PubMed Central

    Shaver-Walker, P M; Urlando, C; Tao, K S; Zhang, X B; Heddle, J A

    1995-01-01

    We have found that the somatic mutation rate at the Dlb-1 locus increases exponentially during low daily exposure to ethylnitrosourea over 4 months. This effect, enhanced mutagenesis, was not observed at a lacI transgene in the same tissue, although the two loci respond very similarly to acute doses. Since both mutations are neutral, the mutant frequency was expected to increase linearly with time in response to a constant mutagenic exposure, as it did for lacI. Enhanced mutagenesis does not result from an overall sensitization of the animals, since mice that had first been treated with a low daily dose for 90 days and then challenged with a large acute dose were not sensitized to the acute dose. Nor was the increased mutant frequency due to selection, since animals that were treated for 90 days and then left untreated for up to 60 days showed little change from the 90-day frequency. The effect is substantial: about 8 times as many Dlb-1 mutants were induced between 90 and 120 days as in the first 30 days. This resulted in a reverse dose rate effect such that 90 mg/kg induced more mutants when delivered at 1 mg/kg per day than at 3 mg/kg per day. We postulate that enhanced mutagenesis arises from increased stem cell proliferation and the preferential repair of transcribed genes. Enhanced mutagenesis may be important for risk evaluation, as the results show that chronic exposures can be more mutagenic than acute ones and raise the possibility of synergism between chemicals at low doses. PMID:8524785

  5. Relationship between the somatic cell count in milk and reproductive function in peripartum dairy cows

    PubMed Central

    ISOBE, Naoki; IWAMOTO, Chihiro; KUBOTA, Hirokazu; YOSHIMURA, Yukinori

    2014-01-01

    The aim of the present study was to examine the effect of the somatic cell count (SCC) in milk on reproductive performance, such as pregnancy status in the prepartum period and ovarian function in the postpartum period, in dairy cows. Blood samples were collected every week from one month prepartum to parturition in order to measure the concentrations of 13,14-dihydro-15-keto-PGF2α (PGFM), estrone sulfate (E1S) and progesterone. Milk samples were collected three times per week in both the prepartum (for one month before the dry period) and postpartum periods (for 3 months immediately after parturition) to measure the SCC. Progesterone was also determined in the whole milk of postpartum cows to define the day of the first ovulation. In the prepartum period, the maximum SCC negatively correlated with the pregnancy period (r = –0.77), but not the calf birth weight. Positive and negative correlations were observed between the average SCC and PGFM or progesterone concentrations in plasma, respectively (r = 0.84 or –0.92, respectively), at 39 weeks of pregnancy. In the postpartum period, a correlation was observed between the day of the first ovulation and both the average and maximum SCC (r = –0.74 and –0.75, respectively), whereas days open was not related to the SCC. These results suggest that a high SCC in the prepartum period may advance parturition by increasing PGF2α and decreasing progesterone and that the first ovulation in the postpartum period was affected by a high SCC. PMID:25196356

  6. Progenitor cells in the adult pancreas.

    PubMed

    Holland, Andrew M; Góñez, L Jorge; Harrison, Leonard C

    2004-01-01

    The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells. PMID:14737742

  7. Composition, proteolysis indices and coagulating properties of ewe milk as affected by bulk tank somatic cell count.

    PubMed

    Martí-De Olives, Ana; Navarro-Ríos, María Jesús; Rubert-Alemán, Joaquín; Fernández, Nemesio; Molina, Maria Pilar

    2015-08-01

    The aim of this study was to assess the effect of ovine bulk tank somatic cell count (BTSCC) on composition, proteose-peptone (p-p) content and casein fractions as indicating parameters for proteolysis and coagulating properties of milk. A total of 97 samples of bulk tank milk from Manchega breed ewe flocks were grouped according to somatic cell count (SCC) into four classes: fewer than 500,000 cells/ml, from 500,000 to 10,00000 cells/ml, from 10,00000 to 15,00000 and more than 15,00000 cells/ml. The casein : protein ratio and lactose content decreased with BTSCC. Proteolysis increased with BTSCC, causing a drop in β-casein and an increase in the γ-caseins from a concentration of 500,000 cells/ml. Regarding coagulation behaviour, the rennet clotting time (RCT) and firming time (k20) rose from 10,00000-15,00000 cells/ml of milk. The results showed that the impairment of milk quality and milk ability to make cheese as affected by intramammary infection (IMI) can be inferred from the bulk tank milk of flocks with poor udder health. PMID:26104824

  8. Somatic-cell mutation induced by short exposures to cigarette smoke in urate-null, oxidative stress-sensitive Drosophila.

    PubMed

    Uchiyama, Tomoyo; Koike, Ryota; Yuma, Yoko; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Suzuki, Toshinori; Negishi, Tomoe

    2016-01-01

    We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain (y v ma-l; mwh) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l, and they are heterozygous for multiple wing hair (mwh), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25°C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females (ma-l (-/-)), but not in the urate-positive females (ma-l (+/-)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H2DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible

  9. Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes.

    PubMed

    Gómez, Martha C; Jenkins, Jill A; Giraldo, Angelica; Harris, Rebecca F; King, Amy; Dresser, Betsy L; Pope, Charles Earle

    2003-09-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  10. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    USGS Publications Warehouse

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  11. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  12. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    PubMed

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  13. Effective Oocyte Vitrification and Survival Techniques for Bovine Somatic Cell Nuclear Transfer.

    PubMed

    Park, Min Jee; Lee, Seung Eun; Kim, Eun Young; Lee, Jun Beom; Jeong, Chang Jin; Park, Se Pill

    2015-06-01

    Bovine somatic cell nuclear transfer (SCNT) using vitrified-thawed (VT) oocytes has been studied; however, the cloning efficiency of these oocytes is not comparable with that of nonvitrified (non-V) fresh oocytes. This study sought to optimize the survival and cryopreservation of VT oocytes for SCNT. Co-culture with feeder cells that had been preincubated for 15 h significantly improved the survival of VT oocytes and their in vitro developmental potential following SCNT in comparison to co-culture with feeder cells that had been preincubated for 2, 5, or 24 h (p<0.05). Spindle assessment via the Oosight Microscopy Imaging System and microtubule staining revealed that vitrified metaphase II oocytes (VT group) were not suitable for SCNT. However, enucleating and/or activating oocytes prior to freezing enhanced their developmental potential and suitability for SCNT. The cloning efficiency of the enucleated-activated-vitrified-thawed (EAVT) group (21.6%) was better than that of the other vitrification groups [enucleated-vitrified-thawed (EVT) group, 13.7%; VT group, 15.0%; p<0.05] and was comparable with that of the non-V group (25.9%). The reactive oxygen species level was significantly lower in the EAVT group than in the other vitrification groups (p<0.05). mRNA levels of maternal genes (ZAR1, BMP15, and NLRP5) and a stress gene (HSF1) were lower in the vitrification groups than in the non-V group (p<0.05), whereas the level of phospho-p44/42 mitogen-activated protein kinase did not differ among the groups. Among the vitrification groups, blastocysts in the EAVT group had the best developmental potential, as judged by their high mRNA expression of developmental potential-related genes (POU5f1, Interferon-tau, and SLC2A5) and their low expression of proapoptotic (CASP3) and stress (Hsp70) genes. This study demonstrates that SCNT using bovine frozen-thawed oocytes can be successfully achieved using optimized vitrification and co-culture techniques. PMID:25984830

  14. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer.

    PubMed

    Yoo, Hyunju; Kim, Eunhye; Hwang, Seon-Ung; Yoon, Junchul David; Jeon, Yubyeol; Park, Kyu-Mi; Kim, Kyu-Jun; Jin, Minghui; Lee, Chang-Kyu; Lee, Eunsong; Kim, Hyunggee; Kim, Gonhyung; Hyun, Sang-Hwan

    2016-04-22

    The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair. PMID:26821870

  15. Parkinson's Disease in a Dish: What Patient Specific-Reprogrammed Somatic Cells Can Tell Us about Parkinson's Disease, If Anything?

    PubMed

    Drouin-Ouellet, J; Barker, R A

    2012-01-01

    Technologies allowing for the derivation of patient-specific neurons from somatic cells are emerging as powerful in vitro tools to investigate the intrinsic cellular pathological behaviours of the diseases that affect these patients. While the use of patient-derived neurons to model Parkinson's disease (PD) has only just begun, these approaches have allowed us to begin investigating disease pathogenesis in a unique way. In this paper, we discuss the advances made in the field of cellular reprogramming to model PD and discuss the pros and cons associated with the use of such cells. PMID:23316244

  16. Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin[C][W

    PubMed Central

    Hong, Lilan; Tang, Ding; Zhu, Keming; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-01-01

    The switch from mitosis to meiosis is one of the most pivotal events in eukaryotes undergoing sexual reproduction. However, the mechanisms orchestrating meiosis initiation remain elusive, particularly in plants. Flowering plants are heterosporous, with male and female spore genesis adopting different developmental courses. We show here that plant pollen mother cells contain a specific meiosis initiation machinery through characterization of a rice (Oryza sativa) gene, MICROSPORELESS1 (MIL1). The mil1 mutant does not produce microspores in anthers but has the normal female fertility. Detailed molecular and cytological investigations demonstrate that mil1 anthers are defective in the meiotic entry of sporogenous cell progenies and in the differentiation of surrounding somatic cell layers, resulting in locules filled with somatic cells instead of microspores. Furthermore, analysis of mil1 msp1 double mutants reveals that due to the absence of MIL1, the cells in their anther locule center do not activate meiotic cell cycle either, generating a similar anther phenotype to mil1. MIL1 encodes a plant-specific CC-type glutaredoxin, which could interact with TGA transcription factors. These results suggest meiotic entry in microsporocytes is directed by an anther-specific mechanism, which requires MIL1 activity, and redox regulation might play important roles in this process. PMID:22319054

  17. Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge.

    PubMed

    Krishnamurty, Akshay T; Thouvenel, Christopher D; Portugal, Silvia; Keitany, Gladys J; Kim, Karen S; Holder, Anthony; Crompton, Peter D; Rawlings, David J; Pepper, Marion

    2016-08-16

    Humoral immunity consists of pre-existing antibodies expressed by long-lived plasma cells and rapidly reactive memory B cells (MBC). Recent studies of MBC development and function after protein immunization have uncovered significant MBC heterogeneity. To clarify functional roles for distinct MBC subsets during malaria infection, we generated tetramers that identify Plasmodium-specific MBCs in both humans and mice. Long-lived murine Plasmodium-specific MBCs consisted of three populations: somatically hypermutated immunoglobulin M(+) (IgM(+)) and IgG(+) MBC subsets and an unmutated IgD(+) MBC population. Rechallenge experiments revealed that high affinity, somatically hypermutated Plasmodium-specific IgM(+) MBCs proliferated and gave rise to antibody-secreting cells that dominated the early secondary response to parasite rechallenge. IgM(+) MBCs also gave rise to T cell-dependent IgM(+) and IgG(+)B220(+)CD138(+) plasmablasts or T cell-independent B220(-)CD138(+) IgM(+) plasma cells. Thus, even in competition with IgG(+) MBCs, IgM(+) MBCs are rapid, plastic, early responders to a secondary Plasmodium rechallenge and should be targeted by vaccine strategies. PMID:27473412

  18. Microfluidic device for high-yield pairing and fusion of stem cells with somatic cells

    NASA Astrophysics Data System (ADS)

    Gel, Murat; Hirano, Kunio; Oana, Hidehiro; Kotera, Hidetoshi; Tada, Takashi; Washizu, Masao

    2011-12-01

    Electro cell fusion has significant potential as a biotechnology tool with applications ranging from antibody production to cellular reprogramming. However due to low fusion efficiency of the conventional electro fusion methodology the true potential of the technique has not been reached. In this paper, we report a new method which takes cell fusion efficiency two orders magnitude higher than the conventional electro fusion method. The new method, based on one-toone pairing, fusion and selection of fused cells was developed using a microfabricated device. The device was composed of two microfluidic channels, a micro slit array and a petri dish integrated with electrodes. The electrodes positioned in each channel were used to generate electric field lines concentrating in the micro slits. Cells were introduced into channels and brought in to contact through the micro slit array using dielectrophoresis. The cells in contact were fused by applying a DC pulse to electrodes. As the electric field lines were concentrated at the micro slits the membrane potential was induced only at the vicinity of the micro slits, namely only at the cell-cell contact point. This mechanism assured the minimum damage to cells in the fusion as well as the ability to control the strength and location of induced membrane potential. We introduced mouse embryonic stem cells and mouse embryonic fibroblasts to the microfluidic channels and demonstrated high-yield fusion (> 80%). Post-fusion study showed the method can generate viable hybrids of stem cells and embryonic fibroblasts. Multinucleated hybrid cells adhering on the chip surface were routinely obtained by using this method and on-chip culturing.

  19. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  20. Monitoring herd incidence of intramammary infection in lactating cows using repeated longitudinal somatic cell count measurements.

    PubMed

    Dufour, S; Dohoo, I R

    2013-03-01

    The objective of the study was to evaluate the ability of an estimate of the herd intramammary infection (IMI) incidence rate computed using repeated somatic cell count (SCC) measurements (quarter- and composite-SCC; hereafter, the SCC-derived herd IMI incidence, SCCI)to predict the incidence rate computed using repeated quarter-milk bacteriological culture (hereafter, bacteriological culture incidence, BCI) during the lactating period. A cohort of 91 Canadian dairy herds was followed in 2007 and 2008. In each herd and at each of 4 sampling periods, a series of 3 to 7 quarter-milk samples was collected from a sample of 15 cows. Routine milk bacteriological culture was conducted to identify IMI, SCC was measured on the quarter-milk samples, and composite-SCC of the preceding and following dairy herd improvement (DHI) tests were obtained. Mastitis pathogens were grouped in 3 categories: major, minor, and any pathogens. For each herd and for each period, BCI was computed for each group of organisms. Similarly, SCCI were computed using quarter- and DHI composite-SCC and using a threshold of 200,000 cells/mL to define infected quarters or cows. A linear regression model taking into account the structure of the data was used to compare the SCCI to the BCI. A similar model was used to compare fluctuations (i.e., changes from one sampling period to the next) over time of the SCCI and BCI. Measures of correlation between observed and predicted rates were computed and limits of agreement plots sketched to better explore the predictive ability of the SCCI. The quarter-milk SCC measurements that could be obtained-for instance, using on-line milking system measurements-appeared to be particularly valuable. Quarter-SCCI showed a positive and significant association with the BCI. However, limits of agreement plots indicated important disagreement for the small proportion of observations with very high BCI. Quarter-level SCCI and BCI fluctuations were also significantly associated

  1. Effects of injectable trace mineral supplementation in lactating dairy cows with elevated somatic cell counts.

    PubMed

    Ganda, E K; Bisinotto, R S; Vasquez, A K; Teixeira, A G V; Machado, V S; Foditsch, C; Bicalho, M; Lima, F S; Stephens, L; Gomes, M S; Dias, J M; Bicalho, R C

    2016-09-01

    Objectives of this clinical trial were to evaluate the effects of injectable trace mineral supplementation (ITMS) on somatic cell count (SCC), linear score (LS), milk yield, milk fat and protein contents, subclinical mastitis cure, and incidence of clinical mastitis in cows with elevated SCC. Holstein cows from a commercial dairy farm in New York were evaluated for subclinical mastitis, defined as SCC ≥200×10(3) cells/mL on the test day preceding enrollment. Cows with a history of treatment for clinical mastitis in the current lactation and those pregnant for more than 150d were not eligible for enrollment. Cows fitting inclusion criteria were randomly allocated to 1 of 2 treatment groups. Cows assigned to ITMS (n=306) received 1 subcutaneous injection containing zinc (300mg), manganese (50mg), selenium (25mg), and copper (75mg) at enrollment (d 0). Control cows (CTRL; n=314) received 1 subcutaneous injection of sterile saline solution. Following treatment, visual assessment of milk was performed daily, and cows with abnormal milk (i.e., presence of flakes, clots, or serous milk) were diagnosed with clinical mastitis (CM). Chronic clinical mastitis was defined as cows with 3 or more cases of CM. Milk yield, milk fat and protein contents, SCC, and LS were evaluated once monthly. Additionally, randomly selected animals were sampled to test serum concentrations of selected minerals on d0 and 30 (n=30 cows/treatment). Treatment did not affect serum concentrations of calcium, magnesium, phosphorus, potassium, copper, iron, manganese, selenium, and zinc on d30. Injectable supplementation with trace minerals did not improve overall cure of subclinical mastitis (CTRL=42.8 vs. ITMS=46.5%), although a tendency was observed in cows with 3 or more lactations (CTRL=27.1 vs. ITMS=40.0%). Supplementation did not reduce treatment incidence of CM (CTRL=48.2 vs. ITMS=41.7%); however, it tended to reduce the proportion of cows diagnosed with chronic CM (CTRL=16.9 vs. ITMS=12

  2. Case Study: Somatic Sprouts and Halo-Like Amorphous Materials of the Purkinje Cells in Huntington's Disease.

    PubMed

    Sakai, Kenji; Ishida, Chiho; Morinaga, Akiyoshi; Takahashi, Kazuya; Yamada, Masahito

    2015-12-01

    We described a 63-year-old Japanese female with genetically confirmed Huntington's disease who showed unusual pathological findings in the cerebellum. This case exhibited typical neuropathological features as Huntington's disease, including severe degeneration of the neostriatum and widespread occurrence of ubiquitin and expanded polyglutamine-positive neuronal intranuclear and intracytoplasmic inclusions. The cerebellum was macroscopically unremarkable; however, somatic sprouts and halo-like amorphous materials of Purkinje cell with a large amount of torpedoes were noteworthy. Furthermore, the Purkinje cells were found to have granular cytoplasmic inclusions. Somatic sprouting is a form of degenerated Purkinje cell exhibited in several specific conditions. Although this finding usually appeared in developmental brains, several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and several other conditions, have been reported showing sprouting from the soma of Purkinje cell. We propose that Huntington's disease is another degenerative condition associated with these distinct neuropathological findings of Purkinje cell. Abnormally accumulated huntingtin protein in the cytoplasm could be related to the development of these structures. PMID:25962893

  3. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage.

    PubMed

    Fang, Xing; Ide, Naohiro; Higashi, Sho-Ichi; Kamei, Yasuhiro; Toyooka, Tatsushi; Ibuki, Yuko; Kawai, Kazuaki; Kasai, Hiroshi; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Negishi, Tomoe

    2014-09-01

    Evidence is accumulating indicating that UVA (320-400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m(-2)), levels of phosphorylated H2AvD (γ-H2AvD) increased significantly in the urate-null strain. Moreover, the level of γ-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of γ-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D

  4. Metabolites and immune variables associated with somatic cell counts of primiparous dairy cows.

    PubMed

    Nyman, A-K; Emanuelson, U; Holtenius, K; Ingvartsen, K L; Larsen, T; Waller, K Persson

    2008-08-01

    The main objective of this study was to investigate associations between serum concentrations of several blood variables related to metabolic and immunological status around calving, and udder health measured as milk somatic cell counts (SCC), Box-Cox transformed to bcSCC, at first test-milking in 287 primiparous cows in 20 Swedish dairy herds. Possible systematic effects of breed and age at calving on blood profiles were also investigated. Ordinary linear regression models, with robust standard errors and adjusting for clustering within herds, were used to investigate associations between blood variables and bcSCC. Hierarchical linear regression models, with herd as random factor, were used to investigate systematic effects on blood variables. The results showed that greater concentrations of beta-hydroxybutyrate (BHBA) and glucose before calving were associated with lesser bcSCC at first test-milking, whereas greater concentrations of nonesterified fatty acids (NEFA) before calving and greater delta NEFA (describing the difference in concentrations before and after calving) were associated with greater bcSCC at first test-milking. In addition, greater alpha-tocopherol concentrations in the period -5 to +5 d relative to calving were associated with lesser bcSCC at first test-milking, whereas greater concentrations of collectin of 43 kDa (CL-43) postpartum (1 to 21 d after calving) were associated with greater bcSCC. Postpartum concentrations of conglutinin and haptoglobin were also associated with bcSCC, but not independently of each other. Moreover, significant breed differences were observed for insulin, urea nitrogen, conglutinin, cholesterol, NEFA, and CL-43, the latter 3 as an interaction with period. Overall, cows of the Swedish Red breed had greater concentrations of insulin, cholesterol, urea nitrogen, and conglutinin, and lesser concentrations of NEFA and CL-43 than cows of the Swedish Holstein breed. Age at calving as main effect was significantly

  5. Fluorescence photon migration techniques for the on-farm measurement of somatic cell count in fresh cow's milk

    NASA Astrophysics Data System (ADS)

    Khoo, Geoffrey; Kuennemeyer, Rainer; Claycomb, Rod W.

    2005-04-01

    Currently, the state of the art of mastitis detection in dairy cows is the laboratory-based measurement of somatic cell count (SCC), which is time consuming and expensive. Alternative, rapid, and reliable on-farm measurement methods are required for effective farm management. We have investigated whether fluorescence lifetime measurements can determine SCC in fresh, unprocessed milk. The method is based on the change in fluorescence lifetime of ethidium bromide when it binds to DNA from the somatic cells. Milk samples were obtained from a Fullwood Merlin Automated Milking System and analysed within a twenty-four hour period, over which the SCC does not change appreciably. For reference, the milk samples were also sent to a testing laboratory where the SCC was determined by traditional methods. The results show that we can quantify SCC using the fluorescence photon migration method from a lower bound of 4x105 cells mL-1 to an upper bound of 1 x 107 cells mL-1. The upper bound is due to the reference method used while the cause of the lower boundary is unknown, yet.

  6. Facultative role of germinal centers and T cells in the somatic diversification of IgVH genes.

    PubMed

    Miller, C; Stedra, J; Kelsoe, G; Cerny, J

    1995-04-01

    The development of memory B cells takes place in germinal centers (GC) of lymphoid follicles where antigen-driven lymphocytes undergo somatic hypermutation and affinity selection, presumably under the influence of helper T cells. However, the mechanisms that drive this complex response are not well understood. We explored the relationship between GC formation and the onset of hypermutation in response to the hapten phosphorylcholine (PC) coupled to antigenic proteins in mice bearing different frequencies of CD4+ T cells. PC-reactive GC were identified by staining frozen splenic sections with peanut agglutinin (PNA) and with monoclonal Abs against AB1-2, a dominant idiotope of T15+ anti-PC antibody. The nucleotide sequences of rearranged T15 VH1 genes were determined from polymerase chain reaction amplifications of genomic DNA from microdissected GC B cells. T15+ GC became fully developed by day 6-7 after primary immunization of euthymic mice with either PC-keyhole limpet hemocyanin (KLH) or PC-chicken gamma globulin (CGG). Yet the VH1 gene segments recovered from the primary GC as late as day 10-14 had low numbers of mutations, in contrast to responses to the haptens nitrophenyl or oxazolone that sustain high levels of hypermutation after GC formation. PC-reactive B cells proliferate in histologically typical GC for considerable periods with no or little somatic hypermutation; the signals for GC formation are independent of those for the activation of hypermutation. We then examined GC 7 d after secondary immunization with PC-KLH in euthymic mice, in nu/nu mice reconstituted with limited numbers of normal CD4+ cells before priming (CD4(+)-nu/nu) and in nu/nu mice. All of these animals develop T15+ GC after antigen priming, however, the patterns of V gene mutations in the secondary GC reflected the levels of CD4+ cells present during the primary response. VDJ sequences from secondary GC of euthymic mice were heavily mutated, but most of these mutations were shared

  7. Regional localisation of 19 brain expressed sequence tags to human chromosome 11 using PCR amplification of somatic cell hybrid DNAs.

    PubMed

    Slorach, E M; Polymeropoulos, M H; Evans, K L; Seawright, A; Fletcher, J M; Porteous, D J; Brookes, A J

    1995-01-01

    Expressed sequence tags (ESTs) provide an efficient route to the identification of genes involved in normal development and in disease. PCR amplification of somatic cell hybrid DNAs was used to localise 22 brain-derived ESTs to subregions of human chromosome 11. Problems encountered with the standardised PCR conditions were overcome by optimising the annealing temperatures and the use of "touchdown" PCR. Amplification of the correct target sequence allowed the mapping of 19 ESTs, 8 to the short arm and 11 to the long arm of chromosome 11. No definitive localisation could be determined for the three remaining ESTs. PMID:7736794

  8. Ionic selectivity of chloride ion symport in mechanisms controlling resting potential and osmotic homeostasis in earthworm somatic muscle cells.

    PubMed

    Volkov, E M; Volkov, M E; Zefirov, A L

    2008-05-01

    Replacement of Cl(-) for Br(-) in bathing solution did not reduce resting potential and had no effect on modulation of transmembrane potential in hyper- and hypoosmotic solutions. Under these conditions, baclofen, an agonist of GABAergic B-type receptors, failed to activate Na(+)/K(+)-pump in earthworm somatic muscle cells. It was hypothesized that the contribution of Cl(-) symport to osmotic homeostasis is not highly selective in respect to replacement of Cl(-) to Br(-) ions, whereas in case of activation of electrogenic ion pumps, this replacement is equivalent to removal of Cl(-) ions from the bathing solution. PMID:19145278

  9. Partial characterization of genes whose transcripts accumulate preferentially in cell clusters at the earliest stage of carrot somatic embryogenesis.

    PubMed

    Yasuda, H; Nakajima, M; Ito, T; Ohwada, T; Masuda, H

    2001-04-01

    We attempted to identify genes that are preferentially expressed immediately after somatic cells divide to form cell clusters at the earliest stage of carrot somatic embryogenesis when they are not or barely expressed in non-embryogenic suspension-cultured cells in the presence of 2,4-D. Using the differential display technique, we isolated three cDNA clones, designated No. 43, No. 87 and No. 93. The No. 43 transcript was preferentially expressed in the earliest cell clusters, its level decreased drastically at the globular and heart-shaped and torpedo-shaped stages, and it was not detected in non-embryogenic suspension-cultured cells. No. 43 cDNA encoded a protein with homology to thaumatin-like proteins and the deduced positions of seven cysteine residues in the 63 amino acid sequence from the carboxyl terminus were identical to those in thaumatin-like proteins. The full-length nucleotide sequence of No. 93 cDNA was determined and its product was about 80% homologous to precursor of the 14 kDa proline-rich DC 2.15 protein of carrot at the amino acid level. However, the deduced amino acid sequence lacked the characteristic core of repeating Pro-X motifs found in DC 2.15. The No. 93 transcript accumulated preferentially in the earliest cell clusters but it was also detected at a low level in non-embryogenic suspension-cultured cells, unlike DC 2.15 transcripts that begin to accumulate in heart-shaped embryos before their level falls in torpedo-shaped embryos. No. 87 transcripts were expressed preferentially in the earliest cell clusters that has been incubated with 2,4-D but were also detected at a low level in suspension-cultured cells subcultured in the continued presence of 2,4-D. The No. 87 cDNA exhibited no significant homology to any sequences in databases. PMID:11430432

  10. Efficient Generation Human Induced Pluripotent Stem Cells from Human Somatic Cells with Sendai-virus

    PubMed Central

    Choi, In Young; Lim, HoTae; Lee, Gabsang

    2014-01-01

    A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases. Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner. PMID:24798302

  11. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos.

    PubMed Central

    Apuya, NR; Zimmerman, JL

    1992-01-01

    We have determined that the synthesis of heat shock proteins is regulated ultimately at the translational level in heat-shocked carrot callus cells and somatic embryos. Polysome analysis revealed that heat-shocked callus cells do not translate most heat shock transcripts, which they abundantly synthesize and accumulate. By contrast, heat-shocked globular embryos accumulate low levels of heat shock mRNA but selectively translate more of the heat shock mRNA molecules compared to callus cells and embryos of later stages. The overall result of these different translational control schemes is that undifferentiated callus cells and globular embryos synthesize comparable levels of heat shock proteins even though they have large differences in heat shock transcript levels. PMID:12297657

  12. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration.

    PubMed

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2015-01-01

    The combination of scaffolds and cells can be useful in tissue reconstruction. In this study, nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nanohydroxyapatite (nano-HAp) scaffolds, filled with unrestricted somatic stem cells (USSCs), were used for healing calvarial bone in rat model. The healing effects of these scaffolds, with and without stem cells, in bone regeneration were investigated by computed tomography (CT) analysis and pathology assays after 28 days of grafting. The results of CT analysis showed that bone regeneration on the scaffolds, and the amounts of regenerated new bone for polymer/nano-HAp scaffold with USSC, was significantly greater than the scaffold without cell and untreated control samples. Therefore, the combination of scaffold especially with USSC could be considered as a useful method for bone regeneration. PMID:25710767

  13. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders.

    PubMed

    Corti, S; Locatelli, F; Strazzer, S; Guglieri, M; Comi, G P

    2003-06-01

    Stem cell transplantation through cell replacement or as vector for gene delivery is a potential strategy for the treatment of neurodegenerative diseases. Several studies have reported the transdifferentiation of different somatic stem cells into neurons in vitro or after transplantation into animal models. This observation has pointed out the perspective of using an ethical and accessible cell source to "replace" damaged neurons or provide support to brain tissue. However, recent findings such as the cell fusion phenomenon have raised some doubts about the real existence of somatic stem cell plasticity. In this review, we will discuss current evidence and controversial issues about the neuroneogenesis from various sources of somatic cells focusing on the techniques of isolation, expansion in vitro as well as the inductive factors that lead to transdifferentiation in order to identify the factors peculiar to this process. The morphological, immunochemical, and physiological criteria to correctly judge whether the neuronal transdifferentation occurred are critically presented. We will also discuss the transplantation experiments that were done in view of a possible clinical therapeutic application. Animal models of stroke, spinal cord and brain trauma have improved with Mesenchymal Stem Cells or Bone Marrow transplantation. This improvement does not seem to depend on the replacement of the lost neurons but may be due to increased expression levels of neurotrophic factors, thus suggesting a beneficial effect of somatic cells regardless of transdifferentiation. Critical understanding of available data on the mechanisms governing the cell fate reprogramming is a necessary achievement toward an effective cell therapy. PMID:12762483

  14. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  15. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    PubMed Central

    Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.

    2016-01-01

    STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the

  16. DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors.

    PubMed

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E; Hong, Chibo; Hamilton, Emily G; Bell, Robert J A; Smirnov, Ivan V; Reis, Gerald F; Phillips, Joanna J; Barnes, Michael J; Idbaih, Ahmed; Alentorn, Agusti; Kloezeman, Jenneke J; Lamfers, Martine L M; Bollen, Andrew W; Taylor, Barry S; Molinaro, Annette M; Olshen, Adam B; Chang, Susan M; Song, Jun S; Costello, Joseph F

    2015-09-14

    The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution. PMID:26373278

  17. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells.

    PubMed

    Sumiyoshi, Tetsutaro; Sato, Kaoru; Yamamoto, Hitomi; Iwasaki, Yuka W; Siomi, Haruhiko; Siomi, Mikiko C

    2016-07-15

    In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila. PMID:27474440

  18. Genotoxic effects of bisphenol A on somatic cells of female mice, alone and in combination with X-rays.

    PubMed

    Gajowik, Aneta; Radzikowska, Joanna; Dobrzyńska, Małgorzata M

    2013-10-01

    Bisphenol A (BPA), a monomer used in the manufacture of epoxy, polycarbonate, and polystyrene resins, is a xenoestrogen present in many consumer products. We investigated the effects of 2-week exposure to BPA, either alone or in combination with X-rays, on the induction of DNA damage in somatic cells of female mice in vivo. The micronucleus and alkaline comet assays were used to evaluate genotoxicity. BPA induced DNA strand breaks in lung cells but not in bone marrow lymphocytes, liver, kidney, or spleen cells. Induction of micronuclei was observed only in polychromatic reticulocytes of peripheral blood. Levels of damage following combination exposure to ionizing radiation plus BPA depended on tissue, assay, and time. PMID:23954285

  19. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells

    PubMed Central

    Sumiyoshi, Tetsutaro; Sato, Kaoru; Yamamoto, Hitomi; Iwasaki, Yuka W.; Siomi, Haruhiko; Siomi, Mikiko C.

    2016-01-01

    In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila. PMID:27474440

  20. Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells

    PubMed Central

    Huang, Kaimeng; Zhang, Xiaobai; Shi, Jiejun; Yao, Mingze; Lin, Jiannan; Li, Jiao; Liu, He; Li, Huanhuan; Shi, Guang; Wang, Zhibin; Zhang, Biliang; Chen, Jiekai; Pan, Guangjin; Jiang, Cizhong; Pei, Duanqing; Yao, Hongjie

    2015-01-01

    Nucleosome positioning and histone modification play a critical role in gene regulation, but their role during reprogramming has not been fully elucidated. Here, we determined the genome-wide nucleosome coverage and histone methylation occupancy in mouse embryonic fibroblasts (MEFs), induced pluripotent stem cells (iPSCs) and pre-iPSCs. We found that nucleosome occupancy increases in promoter regions and decreases in intergenic regions in pre-iPSCs, then recovers to an intermediate level in iPSCs. We also found that nucleosomes in pre-iPSCs are much more phased than those in MEFs and iPSCs. During reprogramming, nucleosome reorganization and histone methylation around transcription start sites (TSSs) are highly coordinated with distinctively transcriptional activities. Bivalent promoters gradually increase, while repressive promoters gradually decrease. High CpG (HCG) promoters of active genes are characterized by nucleosome depletion at TSSs, while low CpG (LCG) promoters exhibit the opposite characteristics. In addition, we show that vitamin C (VC) promotes reorganizations of canonical, H3K4me3- and H3K27me3-modified nucleosomes on specific genes during transition from pre-iPSCs to iPSCs. These data demonstrate that pre-iPSCs have a more open and phased chromatin architecture than that of MEFs and iPSCs. Finally, this study reveals the dynamics and critical roles of nucleosome positioning and chromatin organization in gene regulation during reprogramming. PMID:26639176

  1. Selective autophagic degradation of maternally-loaded germline P granule components in somatic cells during C. elegans embryogenesis.

    PubMed

    Zhao, Yu; Tian, E; Zhang, Hong

    2009-07-01

    Germline P granules are specialized protein/RNA aggregates that are found exclusively in germ cells in C. elegans. During the early embryonic divisions that generate germ blastomeres, aggregate-prone P granule components PGL-1 and PGL-3 that remain in the cytoplasm destined for somatic daughters are selectively removed by autophagy. Loss-of-function of components of the autophagy pathway, including the VPS-34/BEC-1 complex, causes accumulation of PGL-1 and PGL-3 into aggregates in somatic cells (termed PGL granules). Formation of PGL granules depends on SEPA-1, which is an integral component of these granules. SEPA-1 is preferentially degraded by autophagy and is also required for the autophagic degradation of PGL-1 and PGL-3. SEPA-1 functions as a bridging molecule in mediating degradation of P granule components by directly interacting with PGL-3 and also with the autophagy protein LGG-1/Atg8. The defect in embryonic development in autophagy mutants is suppressed by mutation of sepa-1, suggesting that autophagic degradation of PGL granule components may provide nutrients for embryogenesis and/or also prevent the formation of aggregates that could be toxic for animal development. Our study reveals a specific physiological function of selective autophagic degradation during C. elegans development. PMID:19372764

  2. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer.

    PubMed

    Rodríguez-Alvarez, Lleretny; Manriquez, Jose; Velasquez, Alejandra; Castro, Fidel Ovidio

    2013-10-01

    Nuclear transfer (NT) is associated with epigenetic reprogramming of donor cells. Expression of certain genes in these cells might facilitate their expression in the NT embryo. This research was aimed to investigate the effect of constitutive expression of OCT4 in bovine somatic cells used for NT on the developmental potential of derived cloned embryos as well as in the expression of pluripotency markers in the Day-7 resulting embryos. Cloned blastocysts were generated from five cell lines that expressed OCT4. Pools of blastocysts were screened to detect OCT4, SOX2, and NANOG by qPCR. In vitro-fertilized time-matched blastocysts were used as controls. The development potential was assessed on the basis of blastocysts rate; grading and total cell counts at Day 7. OCT4 expression in the cell lines positively correlates with blastocysts rate (r = 0.92; p = 0.02), number of grade I blastocysts (r = 0.96; p = 0.01), and total cell number (r = 0.98; p = 0.002). The high expression of OCT4 in the cell line did not improve the final outcome of cloning. Somatic expression of OCT4 lead to increased expression of OCT4 and SOX2 in cloned grade I blastocysts; however, there was a bigger variability in OCT4 and SOX2 (p = 0.03; p = 0.02) expression in the embryos generated from cells expressing highest levels of OCT4. Probably the higher variability in OCT4 expression in cloned embryos is due to incorrect reprogramming and incapability of the oocyte to correct for higher OCT4 levels. For that reason, we concluded that OCT4 expression in somatic cells is not a good prognosis marker for selecting cell lines. PMID:23846396

  3. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells

    PubMed Central

    Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D.; Nakamura, Nori

    2015-01-01

    It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3’ portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation

  4. Effect of somatic cell count in goat milk on yield, sensory quality and fatty acid profile of semi-hard cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effect of somatic cell count (SCC) of goat milk on yield, free fatty acid (FFA) profile, and sensory quality of semi-hard cheese. Thirty kilograms of goat milk with mean SCC levels of 410,000 (Low), 770,000 (Medium), and 1,250,000 cells/mL (High) was obtained for the manu...

  5. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  6. Mesenchymal Stem Cells Develop Tumor Tropism but Do Not Accelerate Breast Cancer Tumorigenesis in a Somatic Mouse Breast Cancer Model

    PubMed Central

    Usha, Lydia; Rao, Geetha; Christopherson II, Kent; Xu, Xiulong

    2013-01-01

    The role of mesenchymal stem cells (MSCs) on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM) of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT) or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves. PMID:24069135

  7. Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis.

    PubMed

    Albenzio, M; Santillo, A; Caroprese, M; Ruggieri, D; Ciliberti, M; Sevi, A

    2012-07-01

    Immune competence of the ewe mammary gland was investigated by monitoring the leukocyte differential count, cytokine pattern, and endogenous proteolytic enzymes in milk samples with different somatic cell counts (SCC) and pathogenic bacteria. Furthermore, the leukocyte differential count and T-lymphocyte populations were evaluated in ewe blood. A total of 1,500 individual milk samples were randomly selected from the pool of the samples collected during sampling and grouped into 5 classes of 300 samples each, on the basis of SCC. Classes were <300,000 cells/mL, from 300,000 to 500,000 cells/mL, from 501,000 to 1,000,000 cells/mL, from 1,001,000 to 2,000,000 cells/mL, and >2,000,000 cells/mL. Microbiological analyses of ewe milk were conducted to detect mastitis-related pathogens. Sheep whose udders were without clinical abnormalities, and whose milk was apparently normal but with at least 10(3)cfu/mL of the same pathogen were considered to have subclinical mastitis and therefore defined as infected. Polymorphonuclear neutrophilic leukocytes (PMNL) and macrophages increased with SCC, whereas lymphocytes decreased. Milk samples with SCC >1,000,000 cells/mL showed differences in leukocyte populations between uninfected and infected ewes, with higher percentages of PMNL and macrophages and lower percentages of lymphocytes in infected animals. Nonviable PMNL levels were the highest in ewe milk samples with SCC <300,000 cells/mL; starting from SCC >500,000 cells/mL, nonviable PMNL were higher in uninfected ewes than in infected ones. In infected animals giving milk with SCC >1,000,000 cells/mL, a higher CD4(+)/CD8(+) ratio was observed, suggesting that the presence of pathogens induced an activation of both CD4(+) and CD8(+). The levels of tumor necrosis factor-α and IL-12 were higher in infected than uninfected ewes, irrespective of SCC. Plasmin activity increased along with SCC and was always higher in infected than uninfected animals; cathepsin D increased starting

  8. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  9. Somatic mosaicism and variable expressivity.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-02-01

    For more than 50 years geneticists have assumed that variations in phenotypic expression are caused by alterations in genotype. Recent evidence shows that 'simple' mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained entirely by a gene or allelic alteration. In certain cases of androgen insensitivity syndrome caused by identical mutations in the androgen receptor gene, phenotypic variability is caused by somatic mosaicism, that is, somatic mutations that occur only in certain androgen-sensitive cells. Recently, more than 30 other genetic conditions that exhibit variable expressivity have been linked to somatic mosaicism. Somatic mutations have also been identified in diseases such as prostate and colorectal cancer. Therefore, the concept of somatic mutations and mosaicism is likely to have far reaching consequences for genetics, in particular in areas such as genetic counseling. PMID:11173116

  10. Effect of vanillin on toxicant-induced mutation and mitotic recombination in proliferating somatic cells of Drosophila melanogaster.

    PubMed

    Sinigaglia, Marialva; Reguly, Maria Luíza; de Andrade, Heloísa Helena Rodrigues

    2004-01-01

    Vanillin (VA; C8H8O3) is a flavoring agent that in previous studies has both increased and decreased the genotoxicity of chemical agents, depending on the nature of both the agent and the genetic event measured. The ability of VA to modulate the mutagenicity and recombinogenicity of three different monoalkylating agents, N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU), and ethyl methanesulfonate (EMS), and the intercalating agent bleomycin (BLEO) was examined using the somatic mutation and recombination test (SMART) in Drosophila melanogaster. While neither the mutagenicity nor the recombinagenicity of ENU or MNU was modified by posttreatment with VA, EMS-induced genetic toxicity was enhanced by as much as 30%. This overall enhancement included a synergistic increase in mitotic recombination and a lesser decrease in mutation. Posttreatment with VA also produced an increase in the genotoxicity of BLEO, which was characterized by increases of 120% and 180% for 0.5% and 1% VA, respectively. This enhancement was restricted to an increase in recombinational events, since no alteration in BLEO-induced mutation was observed. The data suggest that the major VA-modulatory action on genotoxicity in D. melanogaster is related to its synergistic effects on somatic recombination, which has a greater consequence on overall genotoxicity than its antimutagenic effects. Since the SMART assay is specifically sensitive to mitotic crossing-over, our data suggest that VA promotes toxicant-induced homologous recombination, at least in the proliferative cells of Drosophila. PMID:15515154

  11. Modulating effect of losartan potassium on the mutagenicity and recombinogenicity of doxorubicin in somatic cells of Drosophila melanogaster.

    PubMed

    Silva-Oliveira, R G; Orsolin, P C; Nepomuceno, J C

    2016-09-01

    Losartan potassium is an antihypertensive drug in the angiotensin II receptor antagonist (ARA) class. Some studies claim that, in addition to regulating blood pressure, this class of drug has anticancer properties. The objective of this study was to evaluate the genotoxic and antigenotoxic potential of losartan potassium using the SMART (Somatic Mutation and Recombination Test) assay on the somatic cells of Drosophila melanogaster, as well as the possible modulating effects of this drug, when associated with doxorubicin (DXR). Third instar larvae, descendents of standard and high bioactivation (ST and HB) crosses, were chronically treated with different concentrations of losartan potassium (0.25; 0.5; 1; 2; and 4 mM) alone or in association (co-treatment) with doxorubicin (DXR 0.125 mg/mL). The results showed an absence of a mutagenic effect of losartan potassium. In the co-treatment of losartan with DXR, the results showed that losartan is capable of reducing the number of mutant spots induced by DXR without altering the recombinogenic effect of the chemotherapeutic agent. Antiproliferative action appears to be the main mechanism involved in reducing the frequency of mutant spots and consequent modulation of alterations induced by DXR, although this parameter has not been directly assessed in this study. PMID:27394655

  12. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    PubMed

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  13. Sleep Disorders in Adult Sickle Cell Patients

    PubMed Central

    Sharma, Sunil; Efird, Jimmy T.; Knupp, Charles; Kadali, Renuka; Liles, Darla; Shiue, Kristin; Boettger, Peter; Quan, Stuart F.

    2015-01-01

    Study Objectives: While sleep apnea has been studied in children with sickle cell disease (SCD), little is known about sleep disorders in adult sickle cell patients. The objective of this study was to evaluate sleep disordered breathing and its polysomnographic characteristics in adult patients with sickle cell disease. Methods: The analysis cohort included 32 consecutive adult SCD patients who underwent a comprehensive sleep evaluation and overnight polysomnography in an accredited sleep center after reporting symptoms suggesting disordered sleep or an Epworth Sleepiness Scale score ≥ 10. Epworth score, sleep parameters, comorbid conditions, and narcotic use were reviewed and compared in patients with and without sleep disordered breathing. SCD complication rates in the two groups also were compared. Results: In adult SCD patients who underwent overnight polysomnography, we report a high prevalence (44%) of sleep disordered breathing. Disease severity was mild to moderate (mean apnea-hypopnea index = 17/h (95% CI: 10–24/h). Concomitant sleep disorders, including insomnia complaints (57%) and delayed sleep-phase syndrome (57%), also were common in this population. In this limited cohort, we did not find increased SCD complications associated with sleep disordered breathing in adult patients with sickle cell disease. Conclusions: A high burden of sleep disordered breathing and other sleep-related complaints were identified in the adult sickle cell population. Our results provide important information on this unique population. Citation: Sharma S, Efird JT, Knupp C, Kadali R, Liles D, Shiue K, Boettger P, Quan SF. Sleep disorders in adult sickle cell patients. J Clin Sleep Med 2015;11(3):219–223. PMID:25515282

  14. Adult Stem Cell Responses to Nanostimuli

    PubMed Central

    Tsimbouri, Penelope M.

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review. PMID:26193326

  15. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  16. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment.

    PubMed

    Hammami, H; Bormann, J; M'hamdi, N; Montaldo, H H; Gengler, N

    2013-03-01

    This study was aimed to evaluate the degree of thermal stress exhibited by Holsteins under a continental temperate climate. Milk, fat, protein, and somatic cell count test-day records collected between 2000 and 2011 from 23,963 cows in 604 herds were combined with meteorological data from 14 public weather stations in Luxembourg. Daily values of 6 different thermal indices (TI) weighted in term of temperature, relative humidity, solar radiation, and wind speed were calculated by averaging hourly TI over 24h. Heat stress thresholds were first identified by a broken-line regression model. Regression models were thereafter applied to quantify milk production losses due to heat stress. The tipping points at which milk and protein yields declined were effectively identified. For fat yield, no valid threshold was identified for any of the studied TI. Daily fat yields tended to decrease steadily with increasing values of TI. Daily somatic cell score patterns were marked by increased values at both lowest and highest TI ranges, with a more pronounced reaction to cold stress for apparent temperature indices. Thresholds differed between TI and traits. For production traits, they ranged from 62 (TI(1)) to 80 (TI(3)) for temperature-humidity indices (THI) and from 16 (TI(5)) to 20 (TI(6)) for apparent temperature indices. Corresponding somatic cell score thresholds were higher and ranged from 66 (TI(1)) to 82 (TI(3)) and from 20 (TI(5)) to 23 (TI(6)), respectively. The largest milk decline per unit of mild, moderate, and extreme heat stress levels of 0.164, 0.356, and 0.955 kg, respectively, was observed when using the conventional THI (TI(1)). The highest yearly milk, fat, and protein losses of 54, 5.7, and 4.2 kg, respectively, were detected by TI(2), the THI index that is adjusted for wind speed and solar radiation. The latter index could be considered as the best indicator of heat stress to be used for forecast and herd management in a first step in temperate regions under

  17. AID AND SOMATIC HYPERMUTATION

    PubMed Central

    Maul, Robert W.; Gearhart, Patricia J.

    2010-01-01

    In response to an assault by foreign organisms, peripheral B cells can change their antibody affinity and isotype by somatically mutating their genomic DNA. The ability of a cell to modify its DNA is exceptional in light of the potential consequences of genetic alterations to cause human disease and cancer. Thus, as expected, this mechanism of antibody diversity is tightly regulated and coordinated through one protein, activation induced deaminase (AID). AID produces diversity by converting cytosine to uracil within the immunoglobulin loci. The deoxyuracil residue is mutagenic when paired with deoxyguanosine, since it mimics thymidine during DNA replication. Additionally, B cells can manipulate the DNA repair pathways so that deoxyuracils are not faithfully repaired. Therefore, an intricate balance exists which is regulated at multiple stages to promote mutation of immunoglobulin genes, while retaining integrity of the rest of the genome. Here we discuss and summarize the current understanding of how AID functions to cause somatic hypermutation. PMID:20510733

  18. Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction

    PubMed Central

    Nakagomi, Takayuki; Nakano-Doi, Akiko; Narita, Aya; Matsuyama, Tomohiro

    2015-01-01

    Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka's factors, it is known that several stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction. PMID:25945100

  19. Isolation of the human chromosomal band Xq28 within somatic cell hybrids by fragile X site breakage.

    PubMed Central

    Warren, S T; Knight, S J; Peters, J F; Stayton, C L; Consalez, G G; Zhang, F P

    1990-01-01

    The chromosomal fragile-site mapping to Xq27.3 is associated with a frequent form of mental retardation and is prone to breakage after induced deoxyribonucleotide pool perturbation. The human hypoxanthine phosphoribosyltransferase (HPRT) and glucose-6-phosphate dehydrogenase (G6PD) genes flank the fragile X chromosome site and can be used to monitor integrity of the site in human-hamster somatic cell hybrids deficient in the rodent forms of these activities. After induction of the fragile X site, negative selection for HPRT and positive enrichment for G6PD resulted in 31 independent colonies of HPRT-,G6PD+ phenotype. Southern blot analysis demonstrated the loss of all tested markers proximal to the fragile X site with retention of all tested human Xq28 loci in a majority of the hybrids. In situ hybridization with a human-specific probe demonstrated the translocation of a small amount of human DNA to rodent chromosomes in these hybrids, suggesting chromosome breakage at the fragile X site and the subsequent translocation of Xq28. Southern blot hybridization of hybrid-cell DNA, resolved by pulsed-field gel electrophoresis, for human-specific repetitive sequences revealed abundant CpG-islands within Xq28, consistent with its known gene density. The electrophoretic banding patterns of human DNA among the hybrids were remarkably consistent, suggesting that fragile X site breakage is limited to a relatively small region in Xq27-28. These somatic cell hybrids, containing Xq27.3-qter as the sole human DNA, will aid the search for DNA associated with the fragile X site and will augment the high resolution genomic analysis of Xq28, including the identification of candidate genes for genetic-disease loci mapping to this region. Images PMID:2339126

  20. Methyl-CpG-Binding Protein 2 Improves the Development of Mouse Somatic Cell Nuclear Transfer Embryos.

    PubMed

    Wang, Zhen-Dong; Duan, Lian; Zhang, Zi-Hui; Song, Si-Hang; Bai, Guang-Yu; Zhang, Na; Shen, Xing-Hui; Shen, Jing-Ling; Lei, Lei

    2016-04-01

    Methyl-CpG-binding domain proteins (MBPs) connect DNA methylation and histone modification, which are the key changes of somatic cell reprogramming. Methyl-CpG-binding protein 2 (MeCP2) was the first discovered MBP that has been extensively studied in the neurodevelopmental disorder Rett syndrome. However, a role for MeCP2 during cellular reprogramming associated with somatic cell nuclear transfer (SCNT) has not been examined. In this study, we discovered that MeCP2 expression was significantly lower in embryos generated by SCNT compared with those generated by intracytoplasmic sperm injection (ICSI). We genetically modified mouse embryonic fibroblasts (MEFs) to overexpress MeCP2 and serve as donor cells for nuclear transfer (NT) to investigate the effects of MeCP2 on preimplantation development of SCNT embryos. The blastocyst rate (35.71%) of MeCP2 overexpressed embryos (NT(+)) was significantly greater than in nontransgenic embryos (NT(-), 24.29%). Furthermore, immunofluorescence experiments revealed that 5-methylcytosine (5mC) was transferred to 5-hydroxymethylcytosine (5hmC) to a greater extent in NT(+) embryos than in NT(-) embryos. Real-time PCR evaluation of gene expression also showed that embryonic development-associated genes, such as Oct4 and Nanog, were significantly higher in the NT(+) group compared to the NT(-) group. Collectively, these results suggested that MeCP2 facilitated Tet3 activity, enhanced expression of pluripotency-related genes, and eventually improved the development of NT embryos. Finally, we performed chromatin immunoprecipitation to identify direct targets of MeCP2 and constructed a protein interaction network to elucidate several putative MeCP2 targets. PMID:26982160

  1. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment.

    PubMed

    Srirattana, Kanokwan; Imsoonthornruksa, Sumeth; Laowtammathron, Chuti; Sangmalee, Anawat; Tunwattana, Wanchai; Thongprapai, Thamnoon; Chaimongkol, Chockchai; Ketudat-Cairns, Mariena; Parnpai, Rangsun

    2012-06-01

    Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development. PMID:22578161

  2. Genotoxicity of p-aminophenol in somatic and germ line cells of Drosophila melanogaster.

    PubMed

    Eiche, A; Bexell, G; Sandelin, K

    1990-02-01

    p-Aminophenol (PAP; as a component of, e.g., hair dyes, photographic developers, as adsorbent in gas filters, as a metabolite of various fungicides, pesticides and drugs) has been tested for genotoxicity in Drosophila by means of the sex-linked recessive lethal test (SLRLT) and the somatic mutation and recombination test (SMART) of the wing. While the SLRLT was not significant, the SMART clearly indicated that the compound has genotoxic properties in this in vivo test in agreement with a majority of mammalian short-term tests in vitro and in vivo. The reducing agent dithiothreitol enhanced the genotoxic effects of PAP in the SMART; the reasons for this interaction remain to be elucidated. PMID:2105465

  3. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  4. Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues

    PubMed Central

    Bhattacharya, Palash; Grigera, Fernando; Rogozin, Igor B.; McCarty, Thomas; Morse, Herbert C.; Kenter, Amy L.

    2016-01-01

    Activation-induced deaminase (AID) is the master regulator of class switch recombination (CSR) and somatic hypermutation (SHM), but the mechanisms regulating AID function are obscure. The differential pattern of switch plasmid activity in three IgM+/AID+ and two IgG+/AID+ B cell lines prompted an analysis of global gene expression to discover the origin of these cells. Gene profiling suggested that the IgG+/AID+ B cell lines derived from germinal center B cells. Analysis of SHM potential demonstrates that the IgVκ domains are inducibly diversified at high rate during in vitro culture. The mutation spectra focused to A:T base pairs, revealing a component of the hypermutation program that occurs preferentially during phase 2 of SHM. The A:T error spectra were analyzed and were not characteristic of polymerase η activity. A differential pattern of three consensus motifs used for A:T base substitutions was observed in WT and Polη-, Msh2- and Msh6-deficient B cells. Strikingly, mutations in our B cell lines recapitulated the mutable motif profile for Polη and Msh2 deficiency, respectively, and suggest that an additional pathway for the generation of A:T mutations in SHM is conserved in mouse and human. PMID:18081040

  5. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma.

    PubMed

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  6. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    SciTech Connect

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  7. Six cloned calves produced from adult fibroblast cells after long-term culture

    PubMed Central

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  8. [Thyroid gland dysfunction, disorders of somatic and sexual development, disturbances of fertility after hematopoietic stem cell transplantation].

    PubMed

    Wędrychowicz, Anna; Starzyk, Jerzy

    2013-01-01

    Since the 1980s, hematopoietic stem cell transplantation (HSCT) has been performed for malignant and non-malignant disorders leading to increasing numbers of long-term survivors. Some of them develop long-term posttransplantation complications, among them endocrine complications that arise many years after HSCT and demand to be treated till the end of patients´ life. In the paper "classical", observed several years after HSCT had been used as a treatment procedure, endocrine complications are discussed and the review of literature regarding this problem is presented. Thyroid dysfunction, disorders of somatic and sexual development are presented in details. Gonad dysfunction with the problem of fertility disturbances is reported. The paper presents the etiopathogenesis, methods of prevention, as well as treatment and the results of the treatment of these endocrine complications after HSCT. Moreover actual recommendations for screening and prevention of endocrine complications in long-term HCT survivors are presented. PMID:23739647

  9. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    SciTech Connect

    Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi; Hirai, Yuko; Kusunoki, Yoichiro; Umeki, Shigeko

    1996-07-01

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.

  10. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.

  11. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer.

    PubMed

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-09-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double‑stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome‑scale lentiviral single‑guide RNA library, could be applied to a loss‑of‑function genetic screen, although the loss‑of‑function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline‑inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription‑PCR and western blot analysis indicated that the PFFs were Cas9‑positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  12. Generation of porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene by somatic cell nuclear transfer

    PubMed Central

    Liu, Guoqian; Liu, Kai; Wei, Hengxi; Li, Li; Zhang, Shouquan

    2016-01-01

    Cas9 endonuclease, from so-called clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems of Streptococcus pyogenes, type II functions as an RNA-guided endonuclease and edits the genomes of prokaryotic and eukaryotic organisms, including deletion and insertion by DNA double-stranded break repair mechanisms. In previous studies, it was observed that Cas9, with a genome-scale lentiviral single-guide RNA library, could be applied to a loss-of-function genetic screen, although the loss-of-function genes have yet to be verified in vitro and this approach has not been used in porcine cells. Based on these observations, lentiviral Cas9 was used to infect porcine primary fibroblasts to achieve cell colonies carrying Cas9 endonuclease. Subsequently, porcine fetal fibroblasts expressing the tetracycline-inducible Cas9 gene were generated by somatic cell nuclear transfer, and three 30 day transgenic porcine fetal fibroblasts (PFFs) were obtained. Polymerase chain reaction (PCR), reverse transcription-PCR and western blot analysis indicated that the PFFs were Cas9-positive. In addition, one of the three integrations was located near to known functional genes in the PFF1 cell line, whereas neither of the integrations was located in the PFF1 or PFF2 cell lines. It was hypothesized that these transgenic PFFs may be useful for conditional genomic editing in pigs, and for generating ideal modified porcine models. PMID:27430306

  13. MicroRNA-145 Inhibitor Significantly Improves the Development of Bovine Somatic Cell Nuclear Transfer Embryos In Vitro.

    PubMed

    Li, Wenzhe; Xiong, Yongjie; Wang, Fengyu; Liu, Xin; Gao, Yang; Wang, Yongsheng; Zhang, Yong; Jin, Yaping

    2016-08-01

    Directly regulating the translation of POU5F1, SOX2, KLF4, and miRNA-145 plays an important role in maintaining the pluripotency of stem cells and the development of early embryos. In the present study, the expression model of miRNA-145 on bovine somatic cell nuclear transfer (SCNT) and in vitro fertilized (IVF) embryos were investigated and compared. Results indicated that (1) the expression level of miRNA-145 was significantly higher in SCNT embryos than that in IVF embryos after the eight-cell stage; (2) miRNA-145 negatively regulated the POU5F1, SOX2, and KLF4 in bovine embryos; (3) decreasing the expression of miRNA-145 by the miRNA-145 inhibitor significantly enhanced the expression of these three genes and the blastocyst formation rate; it also increased the total cell number and inner cell mass ratio of the bovine day 7 SCNT embryos. In conclusion, decreasing miRNA-145 expression might be a feasible means to enhance SCNT efficiency in bovines. PMID:27459582

  14. Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees.

    PubMed

    Park, So-Young; Klimaszewska, Krystyna; Park, Ji-Young; Mansfield, Shawn D

    2010-11-01

    Of the various alternatives for cloning elite conifers, somatic embryogenesis (SE) appears to be the best option. In recent years, significant areas of lodgepole pine (Pinus contorta) forest have been devastated by the mountain pine beetle (MPB) in Western Canada. In an attempt to establish an SE propagation system for MPB-resistant lodgepole pine, several families displaying varying levels of resistance were selected for experimentation involving shoot bud and immature seed explants. In bud cultures, eight embryogenic lines were induced from 2 of 15 genotypes following various treatments. Genotype had an important influence on embryogenic culture initiation, and this effect was consistent over time. These lines were identified by microscopic observation and genetic markers. Despite the abundance of early somatic embryos, the cultures have yet to develop into mature embryos. In contrast, immature zygotic embryos (ZEs) cultured from megagametophytes initiated SE at an early dominance stage via nodule-type callus in 1 of 10 genotypes. As part of the study, putative embryogenesis-specific genes, WOX2 (WUSCHELL homeobox 2) and HAP3A, were analyzed in cultures of both shoot bud explants and ZEs. On the basis of these analyses, we postulate that PcHAP3A was expressed mainly in callus and may be involved in cell division, whereas WOX2 was expressed mainly in embryonal mass (EM)-like tissues. The findings from this study, based on molecular assessment, suggest that the cell lines derived from bud cultures were truly EM. Moreover, these experimental observations suggest that PcWOX2 could be used as an early genetic marker to discriminate embryogenic cultures from callus. PMID:20935320

  15. Adult neural stem cells stake their ground

    PubMed Central

    Lim, Daniel A.; Alvarez-Buylla, Arturo

    2014-01-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over two decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. Here we discuss recent findings regarding the unique organization of the V-SVZ NSCs niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development. PMID:25223700

  16. Bone Marrow Mesenchymal Stem Cells Are an Attractive Donor Cell Type for Production of Cloned Pigs As Well As Genetically Modified Cloned Pigs by Somatic Cell Nuclear Transfer

    PubMed Central

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua

    2013-01-01

    Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142

  17. Assignment of the phosducin (PDC) gene to human chromosome 1q25-1q32. 1 by somatic cell hybridization and in situ hybridization

    SciTech Connect

    Sparkes, R.S.; Kojis, T.; Klisak, I.; Heinzmann, C.; Bateman, J.B. ); Lee, R.H. ); Shinohara, T. ); Craft, C.M. )

    1993-11-01

    Phosducin is a soluble photoreceptor phosphoprotein that probably modulates phototransduction in the retina and thus qualifies as a potential candidate gene for retinitis pigmentosa. Using both human/mouse somatic cell hybrids and in situ hybridization to human metaphase chromosomes, the authors have mapped this gene to chromosome 1q25-1q32.1. 18 refs., 2 figs.

  18. Derivation of factors to estimate daily, fat, protein, and somatic cell score from one milking of cows milked three times daily

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield and somatic cell score (SCS) when milk is sampled once per d for cows milked three times (3x) per d. Daily milk weights were recorded automatically and samples were collected from 8 herds for each milking on test-day ...

  19. Single inverted terminal repeats of the Junonia coenia Densovirus promotes somatic chromosomal integration of vector plasmids in insect cells and supports high efficiency expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmids that contain a disrupted genome of the Junonia coenia densovirus (JcDNV) integrate into the chromosomes of the somatic cells of insects. When subcloned individually, both the P9 inverted terminal repeat (P9-ITR) and the P93-ITR promote the chromosomal integration of vector plasmids in insec...

  20. Assignment of the human fast skeletal troponin T gene (TNNT3) to chromosome 11p15.5: Evidence for the presence of 11pter in a monochromosome 9 somatic cell hybrid in NIGMS mapping panel 2

    SciTech Connect

    Mao, Chengjian; Jha, P.K.; Sarkar, S.

    1996-02-01

    Human fast skeletal troponin T (TnT{sub f}), the tropomyosin binding component of the multisubunit troponin complex, plays an important role in the Ca{sup 2+} regulation of striated muscle contraction. Specific primers designed from the 3{prime} end of human TnT{sub f} cDNA were used to amplify an intronic region by polymerase chain reaction (PCR). This TnT{sub f}-specific PCR product was detected from two somatic cell hybrids containing human chromosomes 9 and 11, respectively, in NIGMS mapping panel 2. However, further studies with other somatic hybrid cell lines (Bios Laboratory) localized the TnT{sub f} genomic probe generated by extended PCR, showing the sublocalization of the gene to band p15.5 on chromosome 11. This locus is of specific interest, as Beckwith-Wiedemann syndrome and various childhood and adult tumor-related abnormalities have been mapped to this region. The study also indicates the presence of an 11pter region in the NIGMS cell hybrid GM10611, which has previously been reported to contain only human chromosome 9. 11 refs., 2 figs.

  1. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  2. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells

    PubMed Central

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J.; Hendrickson, Eric A.

    2014-01-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene’s essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells. PMID:24837021

  3. Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming.

    PubMed

    Beagan, Jonathan A; Gilgenast, Thomas G; Kim, Jesi; Plona, Zachary; Norton, Heidi K; Hu, Gui; Hsu, Sarah C; Shields, Emily J; Lyu, Xiaowen; Apostolou, Effie; Hochedlinger, Konrad; Corces, Victor G; Dekker, Job; Phillips-Cremins, Jennifer E

    2016-05-01

    Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression. PMID:27152443

  4. The effects of storage temperature on goat milk somatic cell count using the DeLaval counter.

    PubMed

    Sanchez-Macias, Davinia; Castro, Noemi; Moreno-Indias, Isabel; Morales-delaNuez, Antonio; Briggs, Heather; Capote, Juan; Argüello, Anastasio

    2010-10-01

    This study investigated the influence of storage temperature and storage time on goat milk somatic cell counts (SCCs) determined using the DeLaval cell counter (DCC). SCCs were measured in 40 Majorera goat milk samples using the DCC device. Samples were grouped from high score (>2,750 x 10(3) cells/mL) to low score (<630 x 10(3) cell/mL) according to the SCC. Each milk sample was divided into four aliquots and stored at four different temperatures (4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C). The SCC was recorded every hour for 12 hours. Storage of goat milk with a high SCC for 5, 5, 2 or 1 hour at 4 degrees C, 21 degrees C, 36 degrees C or 45 degrees C, respectively, decreased the SCC value compared to fresh milk. The goat milk SCC was lower after 1 hour of storage than that determined for fresh milk at any tested temperature in low-SCC samples. The data presented herein suggest that regardless of storage temperature, goat milk samples should not be stored for more than 1 hour before measurement of SCC with a DCC device. PMID:20419471

  5. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells

    PubMed Central

    Mei, Yuping; Wang, Yuyan; Kumari, Priti; Shetty, Amol Carl; Clark, David; Gable, Tyler; MacKerell, Alexander D.; Ma, Mark Z.; Weber, David J.; Yang, Austin J.; Edelman, Martin J.; Mao, Li

    2015-01-01

    PIWI-interacting RNAs (piRNAs) are thought to silence transposon and gene expression during development. However, the roles of piRNAs in somatic tissues are largely unknown. Here we report the identification of 555 piRNAs in human lung bronchial epithelial (HBE) and non-small cell lung cancer (NSCLC) cell lines, including 295 that do not exist in databases termed as piRNA-like sncRNAs or piRNA-Ls. Distinctive piRNA/piRNA-L expression patterns are observed between HBE and NSCLC cells. piRNA-like-163 (piR-L-163), the top downregulated piRNA-L in NSCLC cells, binds directly to phosphorylated ERM proteins (p-ERM), which is dependent on the central part of UUNNUUUNNUU motif in piR-L-163 and the RRRKPDT element in ERM. The piR-L-163/p-ERM interaction is critical for p-ERM's binding capability to filamentous actin (F-actin) and ERM-binding phosphoprotein 50 (EBP50). Thus, piRNA/piRNA-L may play a regulatory role through direct interaction with proteins in physiological and pathophysiological conditions. PMID:26095918

  6. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells.

    PubMed

    Nguyen, Thuy Vy; Riou, Lydia; Aoufouchi, Saïd; Rosselli, Filippo

    2014-06-01

    Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca(-/-) mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation. PMID:24799500

  7. Specification of the somatic musculature in Drosophila†

    PubMed Central

    Dobi, Krista C.; Schulman, Victoria K.; Baylies, Mary K.

    2015-01-01

    The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new