Science.gov

Sample records for adult spinal deformity

  1. Neurological complications in adult spinal deformity surgery.

    PubMed

    Iorio, Justin A; Reid, Patrick; Kim, Han Jo

    2016-09-01

    The number of surgeries performed for adult spinal deformity (ASD) has been increasing due to an aging population, longer life expectancy, and studies supporting an improvement in health-related quality of life scores after operative intervention. However, medical and surgical complication rates remain high, and neurological complications such as spinal cord injury and motor deficits can be especially debilitating to patients. Several independent factors potentially influence the likelihood of neurological complications including surgical approach (anterior, lateral, or posterior), use of osteotomies, thoracic hyperkyphosis, spinal region, patient characteristics, and revision surgery status. The majority of ASD surgeries are performed by a posterior approach to the thoracic and/or lumbar spine, but anterior and lateral approaches are commonly performed and are associated with unique neural complications such as femoral nerve palsy and lumbar plexus injuries. Spinal morphology, such as that of hyperkyphosis, has been reported to be a risk factor for complications in addition to three-column osteotomies, which are often utilized to correct large deformities. Additionally, revision surgeries are common in ASD and these patients are at an increased risk of procedure-related complications and nervous system injury. Patient selection, surgical technique, and use of intraoperative neuromonitoring may reduce the incidence of complications and optimize outcomes. PMID:27250041

  2. Current Status of Adult Spinal Deformity

    PubMed Central

    Youssef, J. A.; Orndorff, D. O.; Patty, C. A.; Scott, M. A.; Price, H. L.; Hamlin, L. F.; Williams, T. L.; Uribe, J. S.; Deviren, V.

    2012-01-01

    Purpose To review the current literature for the nonoperative and operative treatment for adult spinal deformity. Recent Findings With more than 11 million baby boomers joining the population of over 60 years of age in the United States, the incidence of lumbar deformity is greatly increasing. Recent literature suggests that a lack of evidence exists to support the effectiveness of nonoperative treatment for adult scoliosis. In regards to operative treatment, current literature reports a varying range of improved clinical outcomes, curve correction, and complication rates. The extension of fusion to S1 compared with L5 and lower thoracic levels compared with L1 remains a highly controversial topic among literature. Summary Most adult deformity patients never seek nonoperative or operative treatment. Of the few that seek treatment, many can benefit from nonoperative treatment. However, in selected patients who have failed nonoperative treatment and who are candidates for surgical intervention, the literature reflects positive outcomes related to surgical intervention as compared with nonoperative treatment despite varying associated ranges in morbidity and mortality rates. If nonoperative therapy fails in addressing a patient's complaints, then an appropriate surgical procedure that relieves neural compression, corrects excessive sagittal or coronal imbalance, and results in a solidly fused, pain-free spine is warranted. PMID:24436852

  3. Decision Making Algorithm for Adult Spinal Deformity Surgery

    PubMed Central

    Kim, Yongjung J.; Cheh, Gene; Cho, Samuel K.; Rhim, Seung-Chul

    2016-01-01

    Adult spinal deformity (ASD) is one of the most challenging spinal disorders associated with broad range of clinical and radiological presentation. Correct selection of fusion levels in surgical planning for the management of adult spinal deformity is a complex task. Several classification systems and algorithms exist to assist surgeons in determining the appropriate levels to be instrumented. In this study, we describe our new simple decision making algorithm and selection of fusion level for ASD surgery in terms of adult idiopathic idiopathic scoliosis vs. degenerative scoliosis. PMID:27446511

  4. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  5. Evaluation of the Behavior of Spinal Deformities in Tuberculosis of the Spine in Adults

    PubMed Central

    Magu, Narender Kumar

    2015-01-01

    Study Design A prospective clinical study. Purpose The objective of the present study was to evaluate the behavior of spinal deformities in tuberculosis (TB) of the spine during the initial 2 years and to suggest remedial measures. Overview of Literature Spinal TB is the most common cause of a kyphotic deformity in many parts of the world. Treatment of the established deformity is difficult, hazardous and has a high complication rate. Methods We followed 50 adult patients treated for spinal TB for a minimum of 2 years. Average values of vertebral body height loss (VBL), deformity angle, kyphosis angle, and lumbosacral joint angle at the final follow-up were compared with the values at initial presentation. The relationship between the amount of initial VBL and final kyphotic angle was analyzed. Results Average values of VBL, deformity angle, kyphosis angle, and lumbosacral joint angle at initial presentation were 0.26, 12.51°, 2.26°, and 12.3°, respectively; and the corresponding values at the final follow-up were 0.7, 17.8°, 5.64°, and 10.8°, respectively. The increase was extremely significant for the deformity angle (initial vs. 6th month, p=0.000; 6th month vs. 24th month, p=0.000) and kyphotic angle (initial vs. 6th month, p=0.003; 6th month vs. 24th month, p=0.000) in the thoracic and thoracolumbar regions during the first 2 years of the disease process. The increase in the deformity angle in the lumbar region was significant only in the initial 6 months (p=0.01). We could not find any correlation between the initial VBL and the final kyphotic angle (r=0.302, p>0.05). Conclusions Different regions of the vertebral column respond differently to bony destruction caused by spinal TB. Deformity progression is more significant during the initial 6 months of the disease process, and this may be the best time to take remedial measures to prevent development/progression of the deformity. Kyphotic deformity keeps increasing even after 6 months of antituberculous

  6. Impact of spine surgery complications on costs associated with management of adult spinal deformity.

    PubMed

    Yeramaneni, Samrat; Robinson, Chessie; Hostin, Richard

    2016-09-01

    A better understanding of the consequences of spine surgery complications is warranted to optimize patient-reported outcomes and contain the rising health care costs associated with the management of adult spinal deformity (ASD). We systematically searched PubMed and Scopus databases using keywords "adult spinal deformity surgery," "complications," and "cost" for published studies on costs of complications associated with spinal surgery, with a particular emphasis on ASD and scoliosis. In the 17 articles reviewed, we identified 355,354 patients with 11,148 reported complications. Infection was the most commonly reported complication, with an average treatment cost ranging from $15,817 to $38,701. Hospital costs for patients with deep venous thrombosis, pulmonary thromboembolism, and surgical site infection were 2.3 to 3.1 times greater than for patients without those complications. An effort to collect and characterize data on cost of complications is encouraged, which may help health care providers to identify potential resources to limit complications and overall costs. PMID:27278531

  7. The Health Impact of Symptomatic Adult Spinal Deformity: Comparison of Deformity Types to United States Population Norms and Chronic Diseases

    PubMed Central

    Bess, Shay; Line, Breton; Fu, Kai-Ming; McCarthy, Ian; Lafage, Virgine; Schwab, Frank; Shaffrey, Christopher; Ames, Christopher; Akbarnia, Behrooz; Jo, Han; Kelly, Michael; Burton, Douglas; Hart, Robert; Klineberg, Eric; Kebaish, Khaled; Hostin, Richard; Mundis, Gregory; Mummaneni, Praveen; Smith, Justin S.

    2016-01-01

    Study Design. A retrospective analysis of a prospective, multicenter database. Objective. The aim of this study was to evaluate the health impact of symptomatic adult spinal deformity (SASD) by comparing Standard Form Version 2 (SF-36) scores for SASD with United States normative and chronic disease values. Summary of Background Data. Recent data have identified radiographic parameters correlating with poor health-related quality of life for SASD. Disability comparisons between SASD patients and patients with chronic diseases may provide further insight to the disease burden caused by SASD. Methods. Consecutive SASD patients, with no history of spine surgery, were enrolled into a multicenter database and evaluated for type and severity of spinal deformity. Baseline SF-36 physical component summary (PCS) and mental component summary (MCS) values for SASD patients were compared with reported U.S. normative and chronic disease SF-36 scores. SF-36 scores were reported as normative-based scores (NBS) and evaluated for minimally clinical important difference (MCID). Results. Between 2008 and 2011, 497 SASD patients were prospectively enrolled and evaluated. Mean PCS for all SASD was lower than U.S. total population (ASD = 40.9; US = 50; P < 0.05). Generational decline in PCS for SASD patients with no other reported comorbidities was more rapid than U.S. norms (P < 0.05). PCS worsened with lumbar scoliosis and increasing sagittal vertical axis (SVA). PCS scores for patients with isolated thoracic scoliosis were similar to values reported by individuals with chronic back pain (45.5 vs 45.7, respectively; P > 0.05), whereas patients with lumbar scoliosis combined with severe sagittal malalignment (SVA >10 cm) demonstrated worse PCS scores than values reported by patients with limited use of arms and legs (24.7 vs 29.1, respectively; P < 0.05). Conclusions. SASD is a heterogeneous condition that, depending upon the type and severity of the deformity

  8. The effect of July admission on inpatient morbidity and mortality after adult spinal deformity surgery

    PubMed Central

    De la Garza-Ramos, Rafael; Passias, Peter G.; Schwab, Frank J.; Lafage, Virginie

    2016-01-01

    Background Some studies have suggested patients who undergo surgery in July have worse outcomes compared to patients treated during other months. The purpose of this study is to compare inpatient morbidity and mortality among patients who underwent adult spinal deformity (ASD) surgery in July with those who underwent surgery in other months. Methods Admission data for patients who underwent ASD surgery were extracted from the Nationwide Inpatient Sample for the years 2002 to 2011. Only adult patients (over 21 years of age) and elective admissions to teaching hospitals were included. A multivariable regression analysis was performed to examine the independent effect of July admissions on overall complications, major complications, and inpatient mortality. Results A total of 27,794 patients were identified, with 2,023 (7.8%) admitted in July and 25,771 (92.2%) in other months. Overall complication rates in July (43.1%) were not different from rates in other months (44.9%, p=0.468). Similarly, major complication rates were similar; 12.9% in July and 12.4% in other months (p=0.764). Mortality was not different between groups (p=0.807). After multivariable analysis, July admissions were not found to increase the odds of developing any complication (OR 0.94; 95% CI, 0.77 - 1.12; p=0.403), major complications (OR 1.04; 95% CI, 0.76 - 1.41; p=0.788) or inpatient mortality (OR 1.35; 95% CI, 0.31 - 5.84; p=0.684). Conclusion In this study of a nationwide database, patients who underwent ASD surgery in July did not have increased odds of developing a complication or inpatient mortality compared to patients admitted in other months. PMID:26913223

  9. Spinal deformity after multilevel osteoplastic laminotomy

    PubMed Central

    Juergen, Krauss; Gloger, Harald; Soerensen, Nils; Wild, Alexander

    2007-01-01

    Multilevel laminectomy in children has a significant rate of postoperative spinal deformity. To decrease the incidence of this complication, the use of osteoplastic laminotomy is advocated to minimise the risk of spinal deformity by preserving the normal architecture of the spine. In this retrospective study, a 10-year series of a paediatric population undergoing multilevel osteoplastic laminotomy is reviewed to determine the incidence, especially in contrast to laminectomies, and to identify factors that affect the occurrence of spinal column deformity. Seventy patients (mean age 4.2 years) underwent multilevel osteoplastic laminotomy for congenital anomalies or removal of spinal tumours. All patients had a clinical and radiographic examination preoperatively, 12 months postoperatively and at follow-up. Mean follow-up was 5.3 years (range 3–12.6 years). Nineteen patients (27%) had a new or progressive spinal deformity. There was an increased incidence in patients who had surgery for spinal tumours (P < 0.05), surgery of the cervical spine (P < 0.01), and who had more than five levels of the spine included (P < 0.05). A review of the literature on children with multilevel laminectomy (n = 330), the incidence of spinal deformity found a significantly higher (46%) compared to our study group. This study demonstrates that osteoplastic laminotomy was found to be very effective in decreasing the incidence of spinal deformities after spinal-canal surgery for spinal-cord tumours or congenital anomalies in children and adolescents. The choice of an anatomical reconstructive surgical technique such as osteoplastic laminotomy seems to be essential to minimise secondary problems due to the surgical technique itself. Nevertheless, growing patients should be followed up for several years after the initial operation for early detection and consequent management of any possible deformity of the spinal column. PMID:17323095

  10. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery.

    PubMed

    Smith, Justin S; Klineberg, Eric; Lafage, Virginie; Shaffrey, Christopher I; Schwab, Frank; Lafage, Renaud; Hostin, Richard; Mundis, Gregory M; Errico, Thomas J; Kim, Han Jo; Protopsaltis, Themistocles S; Hamilton, D Kojo; Scheer, Justin K; Soroceanu, Alex; Kelly, Michael P; Line, Breton; Gupta, Munish; Deviren, Vedat; Hart, Robert; Burton, Douglas C; Bess, Shay; Ames, Christopher P

    2016-07-01

    OBJECTIVE Although multiple reports have documented significant benefit from surgical treatment of adult spinal deformity (ASD), these procedures can have high complication rates. Previously reported complications rates associated with ASD surgery are limited by retrospective design, single-surgeon or single-center cohorts, lack of rigorous data on complications, and/or limited follow-up. Accurate definition of complications associated with ASD surgery is important and may serve as a resource for patient counseling and efforts to improve the safety of patient care. The authors conducted a study to prospectively assess the rates of complications associated with ASD surgery with a minimum 2-year follow-up based on a multicenter study design that incorporated standardized data-collection forms, on-site study coordinators, and regular auditing of data to help ensure complete and accurate reporting of complications. In addition, they report age stratification of complication rates and provide a general assessment of factors that may be associated with the occurrence of complications. METHODS As part of a prospective, multicenter ASD database, standardized forms were used to collect data on surgery-related complications. On-site coordinators and central auditing helped ensure complete capture of complication data. Inclusion criteria were age older than 18 years, ASD, and plan for operative treatment. Complications were classified as perioperative (within 6 weeks of surgery) or delayed (between 6 weeks after surgery and time of last follow-up), and as minor or major. The primary focus for analyses was on patients who reached a minimum follow-up of 2 years. RESULTS Of 346 patients who met the inclusion criteria, 291 (84%) had a minimum 2-year follow-up (mean 2.1 years); their mean age was 56.2 years. The vast majority (99%) had treatment including a posterior procedure, 25% had an anterior procedure, and 19% had a 3-column osteotomy. At least 1 revision was required in 82

  11. Spinal Deformity Associated with Chiari Malformation.

    PubMed

    Kelly, Michael P; Guillaume, Tenner J; Lenke, Lawrence G

    2015-10-01

    Despite the frequency of Chiari-associated spinal deformities, this disease process remains poorly understood. Syringomyelia is often present; however, this is not necessary and scoliosis has been described in the absence of a syrinx. Decompression of the hindbrain is often recommended. In young patients (<10 years old) and/or those with small coronal Cobb measurements (<40°), decompression of the hindbrain may lead to resolution of the spinal deformity. Spinal fusion is reserved for those curves that progress to deformities greater than 50°. Further research is needed to understand the underlying pathophysiology to improve prognostication and treatment of this patient population.

  12. Potential use of (18)F-FDG-PET/CT to visualize hypermetabolism associated with muscle pain in patients with adult spinal deformity: a case report.

    PubMed

    Taniguchi, Yuki; Takahashi, Miwako; Matsudaira, Ko; Oka, Hiroyuki; Momose, Toshimitsu

    2016-11-01

    Patients with adult spinal deformity (ASD) are surgically treated for pain relief; however, visualization of the exact origin of the pain with imaging modalities is still challenging. We report the first case of a 60-year-old female patient who presented with painful degenerative kyphoscoliosis and was evaluated with flourine-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ((18)F-FDG-PET/CT) preoperatively. Because her low back pain was resistant to conservative treatment, she was treated with posterior spinal correction and fusion surgery from Th2 to the ilium. One year after the surgery, her low back pain had disappeared completely. In accordance with her clinical course, (18)F-FDG-PET imaging revealed the uptake of (18)F-FDG in the paravertebral muscles preoperatively and showed the complete absence of uptake at 1 year after surgery. The uptake site coincided with the convex part of each curve of the lumbar spine and was thought to be the result of the increased activity of paravertebral muscles due to their chronic stretched state in the kyphotic posture. This case report suggests the possibility of using (18)F-FDG-PET/CT to visualize increased activity in paravertebral muscles and the ensuing pain in ASD patients. PMID:27562570

  13. Spinal deformities rehabilitation - state of the art review

    PubMed Central

    2010-01-01

    Background Medical rehabilitation aims at an improvement in function, capacity and participation. For the rehabilitation of spinal deformities, the goal is to maintain function and prevent secondary symptoms in the short- and long-term. In patients with scoliosis, predictable signs and symptoms include pain and reduced pulmonary function. Materials and methods A Pub Med review was completed in order to reveal substantial evidence for inpatient rehabilitation as performed in Germany. No evidence has been found in general to support claims for actual inpatient rehabilitation programmes as used today. Nevertheless, as there is some evidence that inpatient rehabilitation may be beneficial to patients with spinal deformities complicated by certain additional conditions, the body of evidence there is for conservative treatment of spinal deformities has been reviewed in order to allow suggestions for outpatient conservative treatment and inpatient rehabilitation. Discussion Today, for both children and adolescents, we are able to offer intensive rehabilitation programmes lasting three to five days, which enable the patients to acquire the skills necessary to prevent postures fostering scoliosis in everyday life without missing too much of school teaching subjects at home. The secondary functional impairments adult scoliosis patients might have, as in the opinion of the author, still today require the time of 3-4 weeks in the clinical in-patient setting. Time to address psychosocial as well as somatic limitations, namely chronic pains and cardiorespiratory malfunction is needed to preserve the patients working capability in the long-term. Conclusion Outpatient treatment/rehabilitation is sufficient for adolescents with spinal deformities. Inpatient rehabilitation is recommended for patients with spinal deformities and pain or severe restrictive ventilation disorder. PMID:21184673

  14. Spinal deformity in children treated for neuroblastoma

    SciTech Connect

    Mayfield, J.K.; Riseborough, E.J.; Jaffe, N.; Nehme, M.E.

    1981-02-01

    Of seventy-four children who were treated at a mean age of seventeen months for neuroblastoma and survived more than five years, fifty-six had spinal deformity due either to the disease or to the treatment after a mean follow-up of 12.9 years. Of these fifty-six, 50 per cent had post-radiation scoliosis, and 16 per cent had post-radiation kyphosis, most frequently at the thoracolumbar junction, at the time of follow-up. Two kyphotic thoracolumbar curve patterns were identified: an angular kyphosis with a short radius of curvature and its apex at the twelfth thoracic and first lumbar vertebrae, and a thoracic kyphosis with a long radius of curvature that extended into the lumbar spine. The post-radiation deformity - both the scoliosis and the kyphosis - progressed with growth, the scoliosis at a rate of 1 degree per year and the kyphosis at a rate of 3 degrees per year. Epidural spread of the neuroblastoma was associated with most of the cases of severe scoliosis and kyphosis. The deformity was due either to the laminectomy or to the paraplegia acting in conjunction with the radiation. Eighteen per cent of 419 children with this malignant disease survived more than five years, and of the survivors, 20 per cent had spinal deformity severe enough to warrant treatment. The factors associated with the development of spinal deformity in patient treated for neuroblastoma were: orthovoltage radiation exceeding 3000 rads, asymmetrical radiation of the spine, thoracolumbar kyphosis, and epidural spread of the tumor.

  15. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  16. Effectiveness of preoperative autologous blood donation for protection against allogeneic blood exposure in adult spinal deformity surgeries: a propensity-matched cohort analysis

    PubMed Central

    Kelly, Michael P.; Zebala, Lukas P.; Kim, Han Jo; Sciubba, Daniel M.; Smith, Justin S.; Shaffrey, Christopher I.; Bess, Shay; Klineberg, Eric; Mundis, Gregory; Burton, Douglas; Hart, Robert; Soroceanu, Alex; Schwab, Frank; Lafage, Virginie

    2015-01-01

    OBJECT The goal of this study was to examine the effectiveness of preoperative autologous blood donation (PABD) in adult spinal deformity (ASD) surgery. METHODS Patients undergoing single-stay ASD reconstructions were identified in a multicenter database. Patients were divided into groups according to PABD (either PABD or NoPABD). Propensity weighting was used to create matched cohorts of PABD and NoPABD patients. Allogeneic (ALLO) exposure, autologous (AUTO) wastage (unused AUTO), and complication rates were compared between groups. RESULTS Four hundred twenty-eight patients were identified as meeting eligibility criteria. Sixty patients were treated with PABD, of whom 50 were matched to 50 patients who were not treated with PABD (NoPABD). Nearly one-third of patients in the PABD group (18/60, 30%) did not receive any autologous transfusion and donated blood was wasted. In 6 of these cases (6/60, 10%), patients received ALLO blood transfusions without AUTO. In 9 cases (9/60, 15%), patients received ALLO and AUTO blood transfusions. Overall rates of transfusion of any type were similar between groups (PABD 70% [42/60], NoPABD 75% [275/368], p = 0.438). Major and minor in-hospital complications were similar between groups (Major PABD 10% [6/60], NoPABD 12% [43/368], p = 0.537; Minor PABD 30% [18/60], NoPABD 24% [87/368], p = 0.499). When controlling for potential confounders, PABD patients were more likely to receive some transfusion (OR 15.1, 95% CI 2.1–106.7). No relationship between PABD and ALLO blood exposure was observed, however, refuting the concept that PABD is protective against ALLO blood exposure. In the matched cohorts, PABD patients were more likely to sustain a major perioperative cardiac complication (PABD 8/50 [16%], NoPABD 1/50 [2%], p = 0.046). No differences in rates of infection or wound-healing complications were observed between cohorts. CONCLUSIONS Preoperative autologous blood donation was associated with a higher probability of

  17. Historical overview of spinal deformities in ancient Greece

    PubMed Central

    Vasiliadis, Elias S; Grivas, Theodoros B; Kaspiris, Angelos

    2009-01-01

    Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years. PMID:19243609

  18. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  19. Comprehensive study of back and leg pain improvements after adult spinal deformity surgery: analysis of 421 patients with 2-year follow-up and of the impact of the surgery on treatment satisfaction.

    PubMed

    Scheer, Justin K; Smith, Justin S; Clark, Aaron J; Lafage, Virginie; Kim, Han Jo; Rolston, John D; Eastlack, Robert; Hart, Robert A; Protopsaltis, Themistocles S; Kelly, Michael P; Kebaish, Khaled; Gupta, Munish; Klineberg, Eric; Hostin, Richard; Shaffrey, Christopher I; Schwab, Frank; Ames, Christopher P

    2015-05-01

    OBJECT Back and leg pain are the primary outcomes of adult spinal deformity (ASD) and predict patients' seeking of surgical management. The authors sought to characterize changes in back and leg pain after operative or nonoperative management of ASD. Outcomes were assessed according to pain severity, type of surgical procedure, Scoliosis Research Society (SRS)-Schwab spine deformity class, and patient satisfaction. METHODS This study retrospectively reviewed data in a prospective multicenter database of ASD patients. Inclusion criteria were the following: age > 18 years and presence of spinal deformity as defined by a scoliosis Cobb angle ≥ 20°, sagittal vertical axis length ≥ 5 cm, pelvic tilt angle ≥ 25°, or thoracic kyphosis angle ≥ 60°. Patients were grouped into nonoperated and operated subcohorts and by the type of surgical procedure, spine SRS-Schwab deformity class, preoperative pain severity, and patient satisfaction. Numerical rating scale (NRS) scores of back and leg pain, Oswestry Disability Index (ODI) scores, physical component summary (PCS) scores of the 36-Item Short Form Health Survey, minimum clinically important differences (MCIDs), and substantial clinical benefits (SCBs) were assessed. RESULTS Patients in whom ASD had been operatively managed were 6 times more likely to have an improvement in back pain and 3 times more likely to have an improvement in leg pain than patients in whom ASD had been nonoperatively managed. Patients whose ASD had been managed nonoperatively were more likely to have their back or leg pain remain the same or worsen. The incidence of postoperative leg pain was 37.0% at 6 weeks postoperatively and 33.3% at the 2-year follow-up (FU). At the 2-year FU, among patients with any preoperative back or leg pain, 24.3% and 37.8% were free of back and leg pain, respectively, and among patients with severe (NRS scores of 7-10) preoperative back or leg pain, 21.0% and 32.8% were free of back and leg pain, respectively

  20. State of the art: Intraoperative neuromonitoring in spinal deformity surgery.

    PubMed

    Takata, Yoichiro; Sakai, Toshinori; Higashino, Kosaku; Matsuura, Tetsuya; Suzue, Naoto; Hamada, Daisuke; Goto, Tomohiro; Nishisho, Toshihiko; Tsutsui, Takahiko; Goda, Yuichiro; Morimoto, Masatoshi; Abe, Mitsunobu; Mineta, Kazuaki; Kimura, Tetsuya; Nitta, Akihiro; Hama, Shingo; Higuchi, Tadahiro; C Jha, Subash; Takahashi, Rui; Fukuta, Shoji; Sairyo, Koichi

    2015-01-01

    Application of deformity correction spinal surgery has increased substantially over the past three decades in parallel with improvements in surgical techniques. Intraoperative neuromonitoring (IOM) techniques,including somatosensory evoked potentials (SEPs), muscle evoked potentials (MEPs), and spontaneous electromyography (free-run EMG), have also improved surgical outcome by reducing the risk of iatrogenic neural injury. In this article, we review IOM techniques and their applications in spinal deformity surgery. We also summarize results of selected studies including hundreds of spinal correction surgeries. These studies indicate that multimodal IOM of both motor and sensory responses is superior to either modality alone for reducing the incidence of neural injury during surgery. J. Med. Invest. 62: 103-108, August, 2015. PMID:26399330

  1. Pleural Effusion in Spinal Deformity Correction Surgery- A Report of 28 Cases in a Single Center

    PubMed Central

    Liang, Weiqiang; Yu, Bin; Wang, Yipeng; Qiu, Guixing; Shen, Jianxiong; Zhang, Jianguo; Zhao, Hong; Zhao, Yu; Tian, Ye; Li, Shugang

    2016-01-01

    Objectives To analyze the occurrence, risk factors, treatment and prognosis of postoperative pleural effusion after spinal deformity correction surgery. Methods The clinical and imaging data of 3325 patients undergoing spinal deformity correction were collected from the database of our hospital. We analyzed the therapeutic process of the 28 patients who had postoperative pleural effusion, and we identified the potential risk factors using logistic regression. Results Among the 28 patients with postoperative pleural effusion, 24 (85.7%) suffered from hemothorax, 2 (7.1%) from chylothorax, and 2 (7.1%) from subarachnoid-pleural fistula. The pleural effusion occurred on the convex side in 19 patients (67.9%), on the concave side in 4 patients (14.3%), and on both sides in 4 patients (14.3%). One patient with left hemothorax was diagnosed with kyphosis. The treatment included conservative clinical observation for 5 patients and chest tube drainage for 23 patients. One patient also underwent thoracic duct ligation and pleurodesis. All of these treatments were successful. Logistic regression analysis showed that adult patients(≥18 years old), congenital scoliosis, osteotomy and thoracoplasty were risk factors for postoperative pleural effusion in spinal deformity correction surgery. Conclusions The incidence of postoperative pleural effusion in spinal deformity correction surgery was approximately 0.84% (28/3325), and hemothorax was the most common type. Chest tube drainage treatment was usually successful, and the prognosis was good. Adult patients(≥18 years old), congenital scoliosis, and had undergone osteotomy or surgery with thoracoplasty were more likely to suffer from postoperative pleural effusion. PMID:27167221

  2. The use of dual growing rods to correct spinal deformity secondary to a low-grade spinal cord astrocytoma

    PubMed Central

    Kuhn, Elizabeth N.; Muthigi, Akhil; Frino, John; Powers, Alexander K.

    2015-01-01

    Pediatric intramedullary spinal cord astrocytomas are rare, and the majority are low grade, typically carrying a low risk of mortality, but a high risk of morbidity. Quality of life is, therefore, an important consideration in treating concomitant progressive kyphoscoliosis. Compared with fusion-based spinal stabilization, fusionless techniques may limit some complications related to early instrumentation of the developing spine. Another consideration is the timing of radiation therapy relative to both spinal maturity and spinal instrumentation. To date, there have been no reports of the use of a fusionless technique to treat spinal deformity secondary to an intramedullary spinal cord tumor. Herein, we report the use of fusionless spinal stabilization with dual growing rods in a boy with low-grade spinal cord astrocytoma after radiation therapy. PMID:26468485

  3. Percutaneous nephrolithotomy in prone position in patients with spinal deformities

    PubMed Central

    Izol, Volkan; Aridogan, Ibrahim Atilla; Borekoglu, Ali; Gokalp, Fatih; Hatipoglu, Zehra; Bayazit, Yildirim; Zeren, Sinan

    2015-01-01

    Introduction: The feasibility, safety and efficacy of percutaneous nephrolithotomy (PCNL) in patients with spinal deformities were evaluated and the results of a single centre experience were reported. Patients and methods: Between July 1999 and December 2014, 16 patients with spinal deformities underwent PCNL. The anomalies included 5 cases with kyphoscoliosis, 4 with post-polio syndrome, 3 with osteogenesis imperfecta, 3 with myotonic dystrophy, and 1 with ankylosing spondylitis. All patients were preoperatively evaluated by an intravenous urogram and computerized tomography to assess the anatomy and appropriate access. The operative details, stone clearance rates, and complications were retrospectivelyanalyzed. Results: A total of 16 standard PCNL procedures were performed on 16 renal-units. The mean age of the patients was 30.7 ± 17.2 (5-62) years, and the mean stone burden was 609.6 ± 526.9 (100-1800) mm2. The mean operative and fluoroscopy times were 76.6 ± 35.1 (35-150) minutes and 12.5 ± 8.5 (3-34) minutes, respectively. At the end of the surgery, 13 (81.2%) of the patients were stone free. The overall success rate was 93.7% with the inclusion of 2 patients with clinically insignificant residual fragments (<3 mm). Complications (31.2%) included haemorrhage requiring a transfusion in 2 patients, prolonged urine leakage requiring double J catheter insertion in 1, infection in 1, and nephrectomy due to bleeding in 1. Mean hospitalization time was 4.6 ± 2.4 (3-13) days. Conclusion: PCNL is an effective, safe and minimally invasive procedure for the treatment of kidney stones in patients with spinal deformities, and it can be performed with low morbidity and high success rates. To achieve better results and minimizing the risk factors, systematic and anatomic evaluations for anaesthesia and operative planning are crucial before surgery. PMID:26885036

  4. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  5. Complications after spinal anesthesia in adult tethered cord syndrome.

    PubMed

    Liu, Jing-Jie; Guan, Zheng; Gao, Zhen; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2016-07-01

    Since little has been reported about complications of spinal anesthesia in adult tethered cord syndrome (TCS), we sought to delineate the characteristics of the condition.A total of 4 cases of adult TCS after spinal anesthesia were reviewed. The medical charts of the patients were obtained. Anesthesia, which was combined spinal and epidural anesthesia or spinal anesthesia was performed, and follow-up were carried out in all patients.The most common neurological symptom of adult TCS before surgery was occasional severe pain in back, perineal region, or legs. Frequent micturition, diminished knee and ankle reflexes, and difficulty in bending were exhibited in partial patients. Paraesthesia of perineal region or/and lower extremities existed 2 to 3 days after spinal anesthesia in all the cases. Weakness of lower extremities existed in 1 case. Lumbar magnetic resonance imaging showed the low location of conus medullaris. At follow-up, 3 cases recovered completely within 3 weeks, and 1 case underwent permanent disability.These cases suggest anesthesiologists and surgeons alert to the association of adult TCS and spinal anesthesia. Spinal anesthesia should be prohibited in patients with adult TCS to prevent neurological damages. PMID:27442670

  6. Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities.

    PubMed

    Dubousset, Jean; Wicart, Ph; Pomero, V; Barois, A; Estournet, B

    2003-01-01

    We studied and conceptually analyzed a retrospective case series of patients with airway compression due to an anterior vertebral body protrusion. The goal was to describe the pathology, methods of management, and a new concept for quantifying deformity. Case reports have been published on this pathology, but there has been no case series to date. In this study 18 patients with ages ranging from 7.3 to 18.0 years had thoracic lordoscoliosis due to a variety of etiologies; most ( n = 10) had a neuromuscular disorder. Following treatment, which most commonly was anterior subtotal subperiosteal vertebral body resection followed by posterior instrumentation and arthrodesis, atelectasia disappeared and any abnormal blood gases normalized; however, the effect on vital capacity was variable. Based on computed tomographic studies, the concept of the deformity as an endothoracic vertebral hump was developed and quantified. Study of this series of patients with compression of the airway due to vertebral body protrusion into the thorax provided the opportunity to describe treatment, define a new concept (the spinal penetration index), and make general recommendations about the management of both the endothoracic hump and the exothoracic rib hump. PMID:12560885

  7. Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury - the validation of a method.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-01-01

    Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries - specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, 'gold-standard' measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 μm (49 μm), 73 μm (79 μm) and 112 μm (110 μm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI.

  8. Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients

    PubMed Central

    Sutter, Martin A.; Grob, Dieter; Jeszenszky, Dezsö; Dvorak, Jiri

    2007-01-01

    A prospective study was performed on 217 patients who received MIOM during corrective surgery of spinal deformities between March 2000 and December 2005. Aim is to determine the sensitivity and specificity of MIOM techniques used to monitor spinal cord and nerve root function during corrective spine surgery. MIOM is becoming an increasingly used method of monitoring function during corrective spine surgery. The combination of monitoring of ascending and descending pathways may provide more sensitive and specific results giving immediate feedback information regarding any neurological deficits during the operation. Intraoperative somatosensory spinal and cerebral evoked potentials combined with continuous EMG and motor evoked potentials of the spinal cord and muscles were evaluated and compared with postoperative clinical neurological changes. A total of 217 consecutive patients with spinal deformities of different aetiologies were monitored by means of MIOM during the surgical procedure. Out of which 201 patients presented true negative findings while one patient presented false negative and three patients presented false positive findings. Twelve patients presented true positive findings where neurological deficit after the operation was predicted. All neurological deficits in those 12 patients recovered completely. The sensitivity of MIOM applied during surgery of spinal deformities has been calculated of 92.3% and the specificity 98.5%. Based upon the results of this study MIOM is an effective method of monitoring the spinal cord and nerve root function during corrective surgery of spinal deformities and consequently improves postoperative results. The Wake-up test for surgical procedure of spinal deformities became obsolete in our institution. PMID:17632737

  9. Procedure selection for the flexible adult acquired flatfoot deformity.

    PubMed

    Hentges, Matthew J; Moore, Kyle R; Catanzariti, Alan R; Derner, Richard

    2014-07-01

    Adult acquired flatfoot represents a spectrum of deformities affecting the foot and the ankle. The flexible, or nonfixed, deformity must be treated appropriately to decrease the morbidity that accompanies the fixed flatfoot deformity or when deformity occurs in the ankle joint. A comprehensive approach must be taken, including addressing equinus deformity, hindfoot valgus, forefoot supinatus, and medial column instability. A combination of osteotomies, limited arthrodesis, and medial column stabilization procedures are required to completely address the deformity.

  10. Procedure selection for the flexible adult acquired flatfoot deformity.

    PubMed

    Hentges, Matthew J; Moore, Kyle R; Catanzariti, Alan R; Derner, Richard

    2014-07-01

    Adult acquired flatfoot represents a spectrum of deformities affecting the foot and the ankle. The flexible, or nonfixed, deformity must be treated appropriately to decrease the morbidity that accompanies the fixed flatfoot deformity or when deformity occurs in the ankle joint. A comprehensive approach must be taken, including addressing equinus deformity, hindfoot valgus, forefoot supinatus, and medial column instability. A combination of osteotomies, limited arthrodesis, and medial column stabilization procedures are required to completely address the deformity. PMID:24980927

  11. Nonoperative management of adult flatfoot deformities.

    PubMed

    Marzano, Roger

    2014-07-01

    Managing those with adult flatfoot deformities can be quite challenging, and the methods and devices used are wide-ranging based on the experience of the managing physician and the experience of the provider of the orthotic devices. A thorough biomechanical assessment is paramount to provide the most successful treatment due to the wide range of pathologic abnormalities and pathomechanics that lead to this painful disorder. Taking away pain while improving function for any patient is a rewarding aspect of clinical foot care, and the information covered in this article should arm the practitioner, or surgeon, with viable alternatives to surgical management.

  12. The 100 Most Cited Papers in Spinal Deformity Surgery: A Bibliometric Analysis

    PubMed Central

    O’Neill, Shane C.; Butler, Joseph S.; McGoldrick, Niall; O’Leary, Robert; Synnott, Keith

    2014-01-01

    Spinal deformity is a condition that has been recognized for many millennia. There have been major advances in the treatment of spinal deformity in recent years and studies outlining new ideas can inspire others to further advance the speciality. The number of citations a paper receives may indicate the influence of that paper. It is therefore important that we evaluate and analyze the most cited works in our field. The aim of this study is to identify the 100 most cited papers relevant to spinal deformity surgery in the literature. A search through the Thomson Reuters Web of Science™ for citations related to spinal deformity surgery was performed. The number of citations, mean citation number (total number citations/years since publication), journal, authors, year of publication and country of origin of the top 100 papers was recorded. The top 100 papers were cited a combined 17,646 times, ranging from 453 to 112. The majority of papers originated from the United States (71) and were published in 20 different journals. The decade 1990-1999 was the most prolific, with 36 of the 100 papers published during this time. Papers pertaining to the management of scoliosis (49) were the most common. This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery. PMID:25568731

  13. The 100 most cited papers in spinal deformity surgery: a bibliometric analysis.

    PubMed

    O'Neill, Shane C; Butler, Joseph S; McGoldrick, Niall; O'Leary, Robert; Synnott, Keith

    2014-10-27

    Spinal deformity is a condition that has been recognized for many millennia. There have been major advances in the treatment of spinal deformity in recent years and studies outlining new ideas can inspire others to further advance the speciality. The number of citations a paper receives may indicate the influence of that paper. It is therefore important that we evaluate and analyze the most cited works in our field. The aim of this study is to identify the 100 most cited papers relevant to spinal deformity surgery in the literature. A search through the Thomson Reuters Web of Science™ for citations related to spinal deformity surgery was performed. The number of citations, mean citation number (total number citations/years since publication), journal, authors, year of publication and country of origin of the top 100 papers was recorded. The top 100 papers were cited a combined 17,646 times, ranging from 453 to 112. The majority of papers originated from the United States (71) and were published in 20 different journals. The decade 1990-1999 was the most prolific, with 36 of the 100 papers published during this time. Papers pertaining to the management of scoliosis (49) were the most common. This study identifies the top 100 most cited papers in the field of spinal deformity surgery. While citation is not a specific marker of the scientific quality of a paper, it is a surrogate for the influence a paper has had on the orthopedic community. This list of papers provides an invaluable resource for both those in training and those actively practicing and involved in the further development of spinal deformity surgery.

  14. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  15. Massive Charcot spinal disease deformity in a patient presenting with increasing abdominal girth and discomfort. Case report.

    PubMed

    Bishop, Frank S; Dailey, Andrew T; Schmidt, Meic H

    2010-03-01

    Charcot spinal disease is a destructive degenerative process involving the vertebrae and surrounding discs, resulting from repetitive microtrauma in patients who have decreased joint protective mechanisms due to loss of deep pain and proprioceptive sensation. The typical presentation of the disease is back pain and progressive spinal instability and deformity. The authors report an unusual case of massive Charcot spinal disease deformity in a patient presenting with increasing abdominal girth and discomfort.

  16. Coping and adaptation in adults living with spinal cord injury.

    PubMed

    Barone, Stacey Hoffman; Waters, Katherine

    2012-10-01

    Biopsychosocial adaptation remains a multifaceted challenge for individuals with spinal cord injury, their families, and healthcare providers alike. The development of frequent medical complications necessitating healthcare interventions is an ongoing, debilitating, and costly problem for those living with spinal cord injuries. Although several demographic variables have been correlated with positive adaptation in individuals with spinal cord injury, the research outcome data present limitations in understanding and facilitating which coping techniques work best to augment biopsychosocial adaptation in this population. Coping facilitates adaptation and adjustment to stress and can help to increase quality of life in people living with spinal cord injury and reduce common complications. The purpose of this study was to determine the extent to which sociodemographic characteristics and hardiness explain coping in 243 adults living with a spinal cord injury. In addition, this study examined which predictors of coping explain biopsychosocial adaptation. A descriptive explanatory design was utilized. Standardized instruments were administered nationally to assess hardiness, coping, and physiological and psychosocial adaptation. Canonical correlation and multiple regression analyses indicated that less educated, less hardy, and recently injured participants were more likely to use escape-avoidance coping and less likely to use social support, problem solving, and positive reappraisal coping behaviors (p < .05). Individuals with paraplegia had a higher level of functional ability, spent less time in rehabilitation, had a greater sense of control, and experienced less frequent complications. The control dimension of hardiness was the only dimension that significantly related to biopsychosocial adaptation within this sample.

  17. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  18. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    PubMed

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  19. [Scoliotic spinal deformity in pilot personnel from aviation physical examination's point of view].

    PubMed

    Churilov, Iu K; Moiseev, Iu B; Imenovskiĭ, I É; Radchenko, S N

    2013-11-01

    According to results of performed examinations scoliotic spinal deformity in flight personnel has a low impact on professional health. This is proved by: oligosymptomatic course of disease - lack of complaints of pain, moderate pain, which is revealed only in case of loading tests and palpation; preservation of supporting and movement spinal function; lack of worsening of deformity during the flight service. At the same time in flight personnel suffering from scoliosis was registered a low tolerance to ergometri; robe, which point to insufficient muscle reserve of lower extremities, abdominals and dorsum. This insufficient may have an adverse effect on G-tolerance of pilots serving in maneuvering aviation. According to this fact authors came to conclusion that first-degree scoliotic deformity is of importance for expert examination of pilots of high-performance aircraft. Scoliotic deformity in pilots of other branches of aviation is of importance only in case of clinical implications (pain syndrome, restraint of movement). From there, it is not necessary to make a record in regulatory documents of flight medical board about functional-compensatory spinal deformity (first- and second degree scoliosis) in flight personnel, except flight personnel of high-performance aircraft.

  20. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  1. 3D ultrasound imaging method to assess the true spinal deformity.

    PubMed

    Vo, Quang N; Lou, Edmond H M; Le, Lawrence H

    2015-08-01

    Spinal deformity is a three-dimensional (3D) spinal disorder with a lateral deviation and coupled with axial vertebral rotation (AVR). The current clinical practice only measures its severity on postero-anterior (PA) radiographs, which may underestimate the deformity. The actual severity should be obtained on the plane of maximal curvature (PMC), which requires a 3D spinal image. There are many approaches to reconstruct 3D spinal images; however, ultrasound is one of the promising techniques with its non-ionizing characteristic. This study proposed an image processing method using the voxel-based bilinear interpolation to reconstruct a 3D spinal image from ultrasound data, from which the AVR was measured and the spinal curvature on the PMC was determined. In-vitro and in-vivo experiments were performed to determine the accuracy of the measurements from the ultrasound method. The results showed that the 3D ultrasound spinal image could be reconstructed. The curvature angle on the PA and the PMC planes could also be determined. The tilt angle of each individual vertebra in in-vitro study showed high accuracy and correlation (MAD <; 0.9° ± 0.2° and r(2) > 0.87) when comparing the measurements from CT with ultrasound. In in-vivo study, the curvature angles measured on the PA radiographs and ultrasound images yielded a small difference (MAD 3.4° ± 1.0°) and a strong correlation (r(2) = 0.63) within a clinical accepted error of 5°. PMID:26736565

  2. Aspects of spinal deformity in familial dysautonomia (Riley-Day syndrome).

    PubMed

    Kaplan, L; Margulies, J Y; Kadari, A; Floman, Y; Robin, G C

    1997-01-01

    Familial dysautonomia (FD) is a rare autosomal recessive disease occurring in Jews of Ashkenazi descent, with only some 500 recognized cases. The causative gene was identified on chromosome 9. FD is of considerable orthopedic interest, because of the prevalence of skeletal deformity. About 90% of surviving dysautonomic children will develop a spinal curvature, commonly a scoliosis. The scoliotic curve is usually kyphotic rather than lordotic, and appears during the first decade of life. Fifty-one of the 90 reported cases of familial dysautonomia in Israel involved patients who were seen at the scoliosis clinic for assessment and treatment of their spinal deformities. Most of the patients presented with a scoliotic deformity associated in 37 cases with an increased thoracic kyphosis. In our series orthotic treatment and physiotherapy were found to be minimally successful at best. Surgical treatment of the spine was performed in 13 of 51 patients in this series. A retrospective review of these patients' charts and radiographs was carried out. Six years of follow-up are reported. The primary indication for surgery was progression of the spinal curve. Only posterior spinal fusions were performed. Anterior transthoracic procedures were avoided in spite of the significance of the kyphotic deformity, because of the frequency of pulmonary complications. Harrington distraction and compression instrumentation was used. Three-millimeter compression rods were used in a distraction mode in thin, young children. "Harri-Luque" segmental sublaminar wiring technique and Wisconsin spinous process segmental wiring was used in some. In all cases, the spine fusion was supplemented by bank bone only, to avoid the additional trauma of graft removal. We believe that surgical intervention is advantageous, if done early in the evolution of spinal deformity. Greater technical difficulties and a higher complication rate were encountered in this series relative to the problems usually seen

  3. Does Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Use in Adult Spinal Deformity (ASD) Increase Complications and Are Complications Associated With Location of rhBMP-2 Use?: A Prospective, Multicenter Study of 279 Consecutive Patients.

    PubMed

    Bess, Shay; Line, Breton G; Lafarge, Virginie; Schwab, Frank; Shaffrey, Christopher I; Hart, Robert A; Boachie-Adjei, Oheneba; Akbarnia, Behrooz A; Ames, Christopher P; Burton, Douglas C; Deverin, Vedat; Fu, Kai-Ming G; Gupta, Munish; Hostin, Richard; Kebaish, Khaled; Klineberg, Eric; Mundis, Gregory; O'Brien, Michael; Shelokov, Alexis; Smith, Justin S

    2013-11-18

    Study Design. Multi-center, prospective analysis of consecutive ASD patients.Objective. Evaluate complications associated with rhBMP-2 use in ASDSummary of Background Data. Off-label rhBMP-2 use is common, however under-reporting of rhBMP-2 associated complications has been recently scrutinized.Methods. ASD patients consecutively enrolled into a prospective, multicenter database, were evaluated for type and timing of acute perioperative complications. Inclusion criteria: age ≥ 18 years, ASD, spinal arthrodesis >4 levels, and ≥3 months follow-up. Patients divided into those receiving rhBMP-2 (BMP) or no rhBMP-2 (NOBMP). BMP divided into location of use: posterior (PBMP), interbody (IBMP), and interbody + posterior spine (I+PBMP). Correlations between acute perioperative complications and rhBMP-2 use including total dose, dose/level and location of use were evaluated.Results. 279 patients (mean age 57 years, mean spinal levels fused 12.0, mean follow-up 28.8 months) met inclusion criteria. BMP (n = 172; average posterior dose = 2.5 mg/level, average interbody dose = 5 mg/level) had similar age, smoking history, previous spine surgery, total spinal levels fused, estimated blood loss, and duration of hospital stay as NOBMP (n = 107; p>0.05). BMP had greater Charlson Comorbidity Index (1.9 vs. 1.2), greater scoliosis (43° vs. 38°), longer operative time (488.2 vs. 414.6 minutes), more osteotomies/patient (4.0 vs. 1.6) and greater percentage of anteroposterior fusion (APSF; 20.9% vs. 8.4%) than NOBMP, respectively (p<0.05). BMP had more total complications/patient (1.4 vs.0.6) and more minor complications/patient (0.9 vs. 0.2) than NOBMP, respectively (p<0.05). NOBMP had more complications requiring surgery/patient than BMP (0.3 vs. 0.2; p<0.05). Major, neurological, wound, and infection complications were similar for NOBMP, BMP, PBMP, IBMP, and I+PBMP (p>0.05). Multivariate analysis demonstrated small to non-existent correlations between rhBMP-2 use and

  4. Outcomes in adult scoliosis patients who undergo spinal fusion stopping at L5 compared with extension to the sacrum.

    PubMed

    Sardar, Zeeshan M; Ouellet, Jean A; Fischer, Dena J; Skelly, Andrea C

    2013-10-01

    Study Design Systematic review. Study Rationale Adult scoliosis is a common disorder that is associated with significantly higher pain, functional impairment, and effect on quality of life than those without scoliosis. Surgical spinal fusion has led to quantifiable improvement in patient's quality of life. However, for patients undergoing long lumbar fusion, the decision to stop the fusion at L5 or to extend to S1, particularly if the L5-S1 disc is healthy, remains controversial. Objective The aim of the study is to evaluate if fusion stopping at L5 increases the comparative rates of revision, correction loss, and/or poor functional outcomes compared with extension to the sacrum in adult scoliosis patients who require spinal fusion surgery. Materials and Methods A systematic review of the literature was performed using PubMed, the National Guideline Clearinghouse Database and bibliographies of key articles that evaluated adult scoliosis patients who required spinal fusion surgery and compared outcomes for fusions to the sacrum versus stopping at L5. Articles were included on the basis of predetermined criteria and were appraised using a predefined quality-rating scheme. Results From 111 citations, 26 articles underwent full-text review, and 3 retrospective cohort studies met all inclusion and exclusion criteria. Revision rates in subjects who underwent spinal fusion to L5 (20.8-23.5%) were lower in two studies compared with those with fusion extending to the sacrum (19.0-58.3%). Studies that assessed deformity correction used different measures, making comparison across studies difficult. No significant differences were found in patient-reported functional outcomes across two studies that used different measures. Conclusion The limited data available suggest that differences in revision rates did not consistently reach statistical significance across studies that compared spinal fusion to L5 versus extension to sacrum in adult scoliosis patients.

  5. The older adult with a spinal cord injury.

    PubMed

    Roth, E J; Lovell, L; Heinemann, A W; Lee, M Y; Yarkony, G M

    1992-07-01

    Sixty-two consecutive acute spinal cord injury (SCI) patients who were aged 55 years or older were studied and compared to 296 SCI patients of age less than 55 years. Compared to younger patients, the older group had significantly more females (29%), preexisting medical conditions (87%), associated injuries (55%), incomplete quadriplegic patients (63%), and persons whose injuries resulted from falls (53%). There were no differences between groups in frequency of ventilator use, occurrence of medical complications, or acute length of stay, but older patients tended to have fewer surgical spinal fusions (40%), shorter rehabilitation stays (66.5 days), more indwelling urethral cathteters (31%), and more nursing home discharges (19%). With other factors being controlled, advancing age was predictive only of nursing home discharge, and not of acute or rehabilitation lengths of stay. Among older SCI patients, those with complete injuries were nearly 3 times as likely to have been discharged to nursing homes in our series compared to older patients with incomplete lesions. Although many aspects of the presentation, course, and care of older SCI individuals are similar to those of younger patients, there are several unique features of older adults with a SCI. PMID:1508569

  6. Concurrent orthopedic and neurosurgical procedures in pediatric patients with spinal deformity.

    PubMed

    Mooney, James F; Glazier, Stephen S; Barfield, William R

    2012-11-01

    The management of pediatric patients with complex spinal deformity often requires both an orthopedic and a neurosurgical intervention. The reasons for multiple subspecialty involvement include, but are not limited to, the presence of a tethered cord requiring release or a syrinx requiring decompression. It has been common practice to perform these procedures in a staged manner, although there is little evidence in the literature to support separate interventions. We reviewed a series of consecutive patients who underwent spinal deformity correction and a neurosurgical intervention concurrently in an attempt to assess the safety, efficacy, and possible complications associated with such an approach. Eleven patients were reviewed who underwent concurrent orthopedic and neurosurgical procedures. Data were collected for patient demographics, preoperative diagnosis, procedures performed, intraoperative and perioperative complications, as well as any unexpected return to the operating room for any reason. Operative notes and anesthesia records were reviewed to determine estimated blood loss, surgical time, and the use of intraoperative neurological monitoring. Patient diagnoses included myelodysplasia (N=6), congenital scoliosis and/or kyphosis (N=4), and scoliosis associated with Noonan syndrome (N=1). Age at the time of surgery averaged 9 years 2 months (range=14 months to 17 years 2 months). Estimated blood loss averaged 605 ml (range=50-3000 ml). The operative time averaged 313 min (range=157-477 min). There were no intraoperative complications, including incidental dural tears or deterioration in preoperative neurological status. One patient developed a sore associated with postoperative cast immobilization that led to a deep wound infection. It appears that concurrent orthopedic and neurosurgical procedures in pediatric patients with significant spinal deformities can be performed safely and with minimal intraoperative and postoperative complications when utilizing

  7. Experience of Intraoperative Cell Salvage in Surgical Correction of Spinal Deformity

    PubMed Central

    Yang, Changsheng; Wang, Jianru; Zheng, Zhaomin; Zhang, Zhongmin; Liu, Hui; Wang, Hua; Li, Zemin

    2016-01-01

    Abstract The effect of intraoperative cell salvage (ICS) in surgical correction of spinal deformity remained controversial. This study was to quantitatively demonstrate its effect. In all, 124 patients having ICS in surgical correction of spinal deformity were included. These patients would be divided into 3 groups. Group 1—blood loss less than 15 mL/kg; group 2—between 15 and 37.5 mL/kg; and group 3—more than 37.5 mL/kg. The mean blood loss was 37.2 mL/kg and patients received 872.2 mL salvaged blood on average. The prevalence of intraoperative transfusion of allogenic RBC was 62.9% and the amount averaged 3.4 U. In groups 1 to 3, the prevalence of intraoperative allogenic transfusion was 23.5%, 66.7%, and 100%, respectively. Logistic analysis showed blood loss minus autotransfusion was of significance in predicting intraoperative transfusion, whereas the blood loss or autotransfusion alone was not, implicating an important role of ICS in saving allogenic RBC. The maximum decrease of hemoglobin after operation occurred in the third day, and the magnitude was 45.7 g/L. No severe complications related to ICS were observed. In summary, ICS could decrease the amount of allogenic transfusion in surgical correction of spinal deformity. However, in terms of reducing prevalence of allogenic transfusion, it had a protective effect only in patients with small blood loss. PMID:27227909

  8. Effects of Exercise on Spinal Deformities and Quality of Life in Patients with Adolescent Idiopathic Scoliosis

    PubMed Central

    Anwer, Shahnawaz; Alghadir, Ahmad; Abu Shaphe, Md.; Anwar, Dilshad

    2015-01-01

    Objectives. This systematic review was conducted to examine the effects of exercise on spinal deformities and quality of life in patients with adolescent idiopathic scoliosis (AIS). Data Sources. Electronic databases, including PubMed, CINAHL, Embase, Scopus, Cochrane Register of Controlled Trials, PEDro, and Web of Science, were searched for research articles published from the earliest available dates up to May 31, 2015, using the key words “exercise,” “postural correction,” “posture,” “postural curve,” “Cobb's angle,” “quality of life,” and “spinal deformities,” combined with the Medical Subject Heading “scoliosis.” Study Selection. This systematic review was restricted to randomized and nonrandomized controlled trials on AIS published in English language. The quality of selected studies was assessed by the PEDro scale, the Cochrane Collaboration's tool, and the Grading of Recommendations Assessment, Development, and Evaluation System (GRADE). Data Extraction. Descriptive data were collected from each study. The outcome measures of interest were Cobb angle, trunk rotation, thoracic kyphosis, lumbar kyphosis, vertebral rotation, and quality of life. Data Synthesis. A total of 30 studies were assessed for eligibility. Six of the 9 selected studies reached high methodological quality on the PEDro scale. Meta-analysis revealed moderate-quality evidence that exercise interventions reduce the Cobb angle, angle of trunk rotation, thoracic kyphosis, and lumbar lordosis and low-quality evidence that exercise interventions reduce average lateral deviation. Meta-analysis revealed moderate-quality evidence that exercise interventions improve the quality of life. Conclusions. A supervised exercise program was superior to controls in reducing spinal deformities and improving the quality of life in patients with AIS. PMID:26583083

  9. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  10. Spinal deformities in a wild line of Poecilia wingei bred in captivity: report of cases and review of the literature

    PubMed Central

    Arbuatti, Alessio; Salda, Leonardo Della; Romanucci, Mariarita

    2013-01-01

    Objective To describe the occurrence of various spinal deformations in a captive-bred wild line of Poecilia wingei (P. wingei). Methods Fish belonging to a wild line of P. wingei caught from Laguna de Los Patos, Venezuela, were bred in an aquarium home-breeding system during a period of three years (2006-2009). The spinal curvature was observed to study spinal deformities in P. wingei. Results Out of a total of 600 fish, 22 showed different types of deformities (scoliosis, lordosis, kyphosis), with a higher incidence in females. Growth, swimming and breeding of deformed fish were generally normal. Conclusions Possible causes for spinal curvature in fish are discussed on the basis of the current literature. While it is not possible to determine the exact cause(s) of spinal deformities observed in the present study, traumatic injuries, nutritional imbalances, genetic defects or a combination of these factors can be supposed to be involved in the pathogenesis of such lesions. PMID:23620835

  11. Approach and treatment of the adult acquired flatfoot deformity.

    PubMed

    Vulcano, Ettore; Deland, Jonathan T; Ellis, Scott J

    2013-12-01

    Adult acquired flatfoot deformity (AAFD), embraces a wide spectrum of deformities. AAFD is a complex pathology consisting both of posterior tibial tendon insufficiency and failure of the capsular and ligamentous structures of the foot. Each patient presents with characteristic deformities across the involved joints, requiring individualized treatment. Early stages may respond well to aggressive conservative management, yet more severe AAFD necessitates prompt surgical therapy to halt the progression of the disease to stages requiring more complex procedures. We present the most current diagnostic and therapeutic approaches to AAFD, based on the most pertinent literature and our own experience and investigations. PMID:23765382

  12. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    PubMed Central

    Driscoll, Mark; Mac-Thiong, Jean-Marc; Labelle, Hubert; Parent, Stefan

    2013-01-01

    A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices. PMID:23991426

  13. Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice.

    PubMed

    Zhang, Jian; Yang, Rui; Liu, Ziyi; Hou, Congzhe; Zong, Wen; Zhang, Aizhen; Sun, Xiaoyang; Gao, Jiangang

    2015-11-01

    In mammals, embryonic development are highly regulated morphogenetic processes that are tightly controlled by genetic elements. Failure of any one of these processes can result in embryonic malformation. The lysyl oxidase (LOX) family genes are closely related to human diseases. In this study, we investigated the essential role of lysyl oxidase-like 3 (LOXL3), a member of the LOX family, in embryonic development. Mice lacking LOXL3 exhibited perinatal lethality, and the deletion of the Loxl3 gene led to impaired development of the palate shelves, abnormalities in the cartilage primordia of the thoracic vertebrae and mild alveolar shrinkage. We found that the obvious decrease of collagen cross-links in palate and spine that was induced by the lack of LOXL3 resulted in cleft palate and spinal deformity. Thus, we provide critical in vivo evidence that LOXL3 is indispensable for mouse palatogenesis and vertebral column development. The Loxl3 gene may be a candidate disease gene resulting in cleft palate and spinal deformity.

  14. Review of Advances in Cobb Angle Calculation and Image-Based Modelling Techniques for Spinal Deformities

    NASA Astrophysics Data System (ADS)

    Giannoglou, V.; Stylianidis, E.

    2016-06-01

    Scoliosis is a 3D deformity of the human spinal column that is caused from the bending of the latter, causing pain, aesthetic and respiratory problems. This internal deformation is reflected in the outer shape of the human back. The golden standard for diagnosis and monitoring of scoliosis is the Cobb angle, which refers to the internal curvature of the trunk. This work is the first part of a post-doctoral research, presenting the most important researches that have been done in the field of scoliosis, concerning its digital visualisation, in order to provide a more precise and robust identification and monitoring of scoliosis. The research is divided in four fields, namely, the X-ray processing, the automatic Cobb angle(s) calculation, the 3D modelling of the spine that provides a more accurate representation of the trunk and the reduction of X-ray radiation exposure throughout the monitoring of scoliosis. Despite the fact that many researchers have been working on the field for the last decade at least, there is no reliable and universal tool to automatically calculate the Cobb angle(s) and successfully perform proper 3D modelling of the spinal column that would assist a more accurate detection and monitoring of scoliosis.

  15. Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice

    PubMed Central

    Zhang, Jian; Yang, Rui; Liu, Ziyi; Hou, Congzhe; Zong, Wen; Zhang, Aizhen; Sun, Xiaoyang; Gao, Jiangang

    2015-01-01

    In mammals, embryonic development are highly regulated morphogenetic processes that are tightly controlled by genetic elements. Failure of any one of these processes can result in embryonic malformation. The lysyl oxidase (LOX) family genes are closely related to human diseases. In this study, we investigated the essential role of lysyl oxidase-like 3 (LOXL3), a member of the LOX family, in embryonic development. Mice lacking LOXL3 exhibited perinatal lethality, and the deletion of the Loxl3 gene led to impaired development of the palate shelves, abnormalities in the cartilage primordia of the thoracic vertebrae and mild alveolar shrinkage. We found that the obvious decrease of collagen cross-links in palate and spine that was induced by the lack of LOXL3 resulted in cleft palate and spinal deformity. Thus, we provide critical in vivo evidence that LOXL3 is indispensable for mouse palatogenesis and vertebral column development. The Loxl3 gene may be a candidate disease gene resulting in cleft palate and spinal deformity. PMID:26307084

  16. Changes in spinal alignment.

    PubMed

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body.

  17. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  18. Office-based management of adult-acquired flatfoot deformity.

    PubMed

    Miniaci-Coxhead, Sara Lyn; Flemister, Adolph Samuel

    2014-03-01

    Adult-acquired flatfoot deformity is associated with dysfunction of the posterior tibial tendon, leading to loss of the medial arch. Patients tend to present with medial pain and swelling, but later in the disease process can also present with lateral-sided pain. The mainstay of nonoperative treatment is nonsteroidal anti-inflammatory drugs, weight loss, and orthotic insoles or brace use. The goals of therapy are to provide relief of symptoms and prevent progression of the deformity. If nonoperative management fails, a variety of surgical procedures are available; however, these require a lengthy recovery, and therefore patients should be advised accordingly.

  19. Impact of post-manipulation corrective core exercises on the spinal deformation and lumbar strength in golfers: a case study

    PubMed Central

    Shin, Chul-ho; Kim, Minjeong; Park, Gi Duck

    2015-01-01

    [Purpose] This study examined spinal shape in professional golfers with chronic back pain, and analyzed the effects of a 4-week regimen of semi-weekly manipulation and corrective core exercises on spinal shape. [Subjects] Two golfers with chronic back pain. [Methods] The pelvis and spinal vertebrae were corrected using the Thompson “drop” technique. Angle and force were adjusted to place the pelvis, lumbar spine, and thoracic vertebrae in neutral position. The technique was applied twice weekly after muscle massage in the back and pelvic areas. The golfers performed corrective, warmup stretching exercises, followed by squats on an unstable surface using the Togu ball. They then used a gym ball for repetitions of hip rotation, upper trunk extension, sit-ups, and pelvic anterior-posterior, pelvic left-right, and trunk flexion-extension exercises. The session ended with cycling as a cool-down exercise. Each session lasted 60 minutes. [Results] The difference in height was measured on the left and right sides of the pelvic bone. The pelvic tilt changed significantly in both participants after the 4-week program. [Conclusion] In golfers, core muscles are critical and are closely related to spinal deformation. Core strengthening and spinal correction play a pivotal role in the correction of spinal deformation. PMID:26504350

  20. Identification of spinal deformity classification with total curvature analysis and artificial neural network.

    PubMed

    Lin, Hong

    2008-01-01

    In this paper, a multilayer feed-forward, back-propagation (MLFF/BP) artificial neural network (ANN) was implemented to identify the classification patterns of the scoliosis spinal deformity. At the first step, the simplified 3-D spine model was constructed based on the coronal and sagittal X-ray images. The features of the central axis curve of the spinal deformity patterns in 3-D space were extracted by the total curvature analysis. The discrete form of the total curvature, including the curvature and the torsion of the central axis of the simplified 3-D spine model was derived from the difference quotients. The total curvature values of 17 vertebrae from the first thoracic to the fifth lumbar spine formed a Euclidean space of 17 dimensions. The King classification model was tested on this MLFF/BP ANN identification system. The 17 total curvature values were presented to the input layer of MLFF/BP ANN. In the output layer there were five neurons representing five King classification types. A total of 37 spinal deformity patterns from scoliosis patients were selected. These 37 patterns were divided into two groups. The training group had 25 patterns and testing group had 12 patterns. The 25-pattern training group was further divided into five subsets. Based on the definition of King classification system, each subset contained all five King types. The network training was conducted on these five subsets by the hold-out method, one of cross-validation variants, and the early stop method. In each one of the five cross-validation sessions, four subsets were alternatively used for estimation learning and one subset left was used for validation learning. Final network testing was conducted with remaining 12 patterns in testing group after the MLFF/BP ANN was trained by all five subsets in training group. The performance of the neural network was evaluated by comparing between two network topologies, one with one hidden layer and another with two hidden layers. The

  1. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury.

    PubMed

    Panayiotou, Elena; Malas, Stavros

    2013-11-28

    Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during SCI.

  2. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans

    2013-03-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.

  3. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature

    PubMed Central

    Thomas, Cheddhi; Modrek, Aram S.; Bayin, N. Sumru; Snuderl, Matija; Schiff, Peter B.

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes. PMID:27610254

  4. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature.

    PubMed

    Bustoros, Mark; Thomas, Cheddhi; Frenster, Joshua; Modrek, Aram S; Bayin, N Sumru; Snuderl, Matija; Rosen, Gerald; Schiff, Peter B; Placantonakis, Dimitris G

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes. PMID:27610254

  5. Adult Primary Spinal Epidural Extraosseous Ewing's Sarcoma: A Case Report and Review of the Literature

    PubMed Central

    Thomas, Cheddhi; Modrek, Aram S.; Bayin, N. Sumru; Snuderl, Matija; Schiff, Peter B.

    2016-01-01

    Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes.

  6. Pharmacological activation of locomotor patterns in larval and adult frog spinal cords.

    PubMed

    McClellan, A D; Farel, P B

    1985-04-15

    The effects of amino acids, catecholamines, and their agonists shown to elicit locomotor activity in several vertebrate species were examined in spinal animals and isolated nervous systems of developing tadpoles (Rana catesbiana) and adult frogs (R. catesbiana and pipiens). Elicited activity was correlated in spinal animals by video and electromyographic analysis, and in in vitro spinal cords by recordings of tail and hindlimb motor activity. Of the agents tested, only N-methyl-DL-aspartate (NMA), an amino acid agonist, was effective in eliciting motor activity in spinal animals. In isolated nervous systems, both NMA and D-glutamate added to the bath activated locomotor activity. NMA injected i.p. into tadpoles with high spinal cord transections elicited coordinated swimming motor activity in axial and hindlimb muscles that was roughly typical for the stage of development of the animal. In late stage tadpoles (st. XX), NMA also elicited wiping and alternating or synchronous (i.e. kicking or jumping) hindlimb movements. Addition of NMA or glutamate to a bath containing an in vitro tadpole spinal cord preparation elicited ventral root motor activity characteristic of swimming, but without a rostrocaudal phase lag. Rhythmic activity thought to underlie stepping and kicking was seen in lateral ventral rootlets innervating the hindlimbs. In adult frogs with high spinal cord transections, injection of NMA elicited a general sequence of spontaneous hindlimb motor functions: reflex wiping, stepping, and kicking or jumping. Isolated frog spinal cords were not responsive to bath applied NMA, under the present conditions. The activation by amino acids or their agonists of different motor functions in both larval and adult frogs, as well as in higher and lower vertebrates, suggests a general significance of amino acid-activated receptors in the neural networks controlling locomotor function. PMID:3888346

  7. Treatment of chronic low back pain in patients with spinal deformities using a sagittal re-alignment brace

    PubMed Central

    Weiss, Hans-Rudolf; Werkmann, Mario

    2009-01-01

    Background For adult scoliosis patients with chronic low back pain bracing is initially indicated before spinal surgery is considered. Until recently there has been a lack of research into the effect upon pain reductions in the mid and long-term. Promising results have been documented in short-term studies for the application of a sagittal re-alignment brace in patients with spinal deformities and along with pain; however mid-term and long-term results are not yet available. The purpose of this study is to investigate the mid-term effects of this brace with respect to pain control. Materials and methods 67 patients (58 females and 9 males) with chronic low back pain (> 24 months) and the diagnosis of scoliosis or hyperkyphosis were treated with a sagittal re-alignment brace (physio-logic brace™) between January 2006 and July 2007. The indication for this kind of brace treatment was derived from a positive sagittal re-alignment test (SRT) and the exclusion of successful conservative treatment during the last 24 months. The aim of this type of conservative intervention was to avoid surgery for chronic low back pain. Results The average pain intensity was measured on the Roland and Morris VRS (5 steps) before treatment. This was 3.3 (t1), at the time of brace adjustment it was 2.7 (t2) and after at an average observation time of 18 months it was 2.0 (t3). The differences were highly significant in the Wilcoxon test. Discussion Short-term measurements showed that a significant pain reduction is possible in chronic postural low back pain using a sagittal re-alignment brace inducing lumbar re-lordosation. In a preliminary report at adjustment (t2), highly significant improvements of pain intensity have also been demonstrated. At 6 months of treatment however, no improvement was measured. The improvement of the mid-term effects (18 months) found in this study compared to the preliminary report may be due to the changed approach to compliance: whilst the bracing standard

  8. Determination of the object surface function by structured light: application to the study of spinal deformities

    NASA Astrophysics Data System (ADS)

    Buendía, M.; Salvador, R.; Cibrián, R.; Laguia, M.; Sotoca, J. M.

    1999-01-01

    The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis.

  9. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  10. Functional Expression of T-Type Ca2+ Channels in Spinal Motoneurons of the Adult Turtle

    PubMed Central

    Canto-Bustos, Martha; Loeza-Alcocer, Emanuel; González-Ramírez, Ricardo; Gandini, María A.; Delgado-Lezama, Rodolfo; Felix, Ricardo

    2014-01-01

    Voltage-gated Ca2+ (CaV) channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type) a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR). In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons. PMID:25255145

  11. A developmental study of children's stereotyping of facially deformed adults.

    PubMed

    Rumsey, N; Bull, R; Gahagan, D

    1986-05-01

    A frequent complaint of facially deformed people is that they are rejected by others. This study was designed to examine whether negative reactions to facially deformed people would be demonstrated by girls and boys aged 5-11 years. The children were asked to attribute positive or negative characteristics to photographs in which adults were shown before and after minor oral surgery. Despite the relatively small differences in appearance between each adult's before- and after-operation photographs, it was found that, whereas overall the younger children selected faces at around chance level (i.e. 50 per cent), the 11-year-olds on 75 per cent of occasions selected in response to questions concerning friendliness and helping (deemed 'positive') the after-operation photographs, and in response to questions concerning fear and anger (deemed 'negative') the before-operation photographs. When the children's own judgements of facial attractiveness were related to the faces they had chosen in response to positive and negative questions, while again for the five-year-olds only chance responding (50 per cent) was observed, by age seven 75 per cent, and by age 11 90 per cent, of choices suggested facial stereotyping.

  12. Cognitive Training Program for Youths/Young Adults Having a Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Stirling, Gloria; And Others

    The pilot study determined the effectiveness of a cognitive skills training program on both the vocational retraining of five young adults with traumatic spinal cord injuries and learning difficulties and the adaptation process to an altered lifestyle required by permanent paralysis. After a 40-hour Instrumental Enrichment (IE) program, Ss showed…

  13. Effects of Rolipram on Adult Rat Oligodendrocytes and Functional Recovery after Contusive Cervical Spinal Cord Injury

    PubMed Central

    Beaumont, Eric; Whitaker, Christopher M.; Burke, Darlene A.; Hetman, Michal; Onifer, Stephen M.

    2009-01-01

    Traumatic human spinal cord injury causes devastating and long-term hardships. These are due to the irreparable primary mechanical injury and secondary injury cascade. In particular, oligodendrocyte cell death, white matter axon damage, spared axon demyelination, and the ensuing dysfunction in action potential conduction lead to the initial deficits and impair functional recovery. For these reasons, and that oligodendrocyte and axon survival may be related, various neuroprotective strategies after SCI are being investigated. We previously demonstrated that oligodendrocytes in the adult rat epicenter ventrolateral funiculus express 3′-5′-cyclic adenosine monophosphate-dependent phosphodiesterase 4 subtypes and that their death was attenuated up to 3 days after contusive cervical spinal cord injury when rolipram, a specific inhibitor of phosphodiesterase 4, was administered. Here, we report that 1) there are more oligodendrocyte somata in the adult rat epicenter ventrolateral funiculus, 2) descending and ascending axonal conductivity in the ventrolateral funiculus improves, and that 3) there are fewer hindlimb footfall errors during grid-walking at 5 weeks after contusive cervical spinal cord injury when rolipram is delivered for 2 weeks. This is the first demonstration of improved descending and ascending long-tract axonal conductivity across a spinal cord injury with this pharmacological approach. Since descending long-tract axonal conductivity did not return to normal, further evaluations of the pharmacokinetics and therapeutic window of rolipram as well as optimal combinations are necessary before consideration for neuroprotection in humans with spinal cord injury. PMID:19635528

  14. Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia).

    PubMed

    Messaoudi, Imed; Deli, Tmim; Kessabi, Kaouthar; Barhoumi, Sana; Kerkeni, Abdelhamid; Saïd, Khaled

    2009-09-01

    The present study illustrates an analysis of spinal deformities associated with metal accumulation in natural populations of Zosterisessor ophiocephalus derived from polluted (S1) and unpolluted (S2) areas in the Gulf of Gabès in Tunisia. Three basic types of spinal deformities were detected: kyphosis, scoliosis and lordosis. These basic deformities frequently co-occur. Spinal deformities were observed in 10.72% of the total examined fish (n = 494). Deformed fish were 3.85 times more frequent in S1 than in S2. In both sexes, the highest occurrence of deformities was observed in the 111-120 mm class decreasing thereafter with fish length. Hepatic concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were significantly higher in Z. ophiocephalus from S1 than those from S2. Comparisons between fish in each site showed that liver concentrations of Cd and Zn were significantly higher in deformed fish than in normal fish. The relationship between metals accumulation and observed spinal deformities as well as the suitability of this kind of studies for environmental monitoring are discussed.

  15. Planning the Surgical Correction of Spinal Deformities: Toward the Identification of the Biomechanical Principles by Means of Numerical Simulation

    PubMed Central

    Galbusera, Fabio; Bassani, Tito; La Barbera, Luigi; Ottardi, Claudia; Schlager, Benedikt; Brayda-Bruno, Marco; Villa, Tomaso; Wilke, Hans-Joachim

    2015-01-01

    In decades of technical developments after the first surgical corrections of spinal deformities, the set of devices, techniques, and tools available to the surgeons has widened dramatically. Nevertheless, the rate of complications due to mechanical failure of the fixation or the instrumentation remains rather high. Indeed, basic and clinical research about the principles of deformity correction and the optimal surgical strategies (i.e., the choice of the fusion length, the most appropriate instrumentation, and the degree of tolerable correction) did not progress as much as the implantable devices and the surgical techniques. In this work, a software approach for the biomechanical simulation of the correction of patient-specific spinal deformities aimed to the identification of its biomechanical principles is presented. The method is based on three-dimensional reconstructions of the spinal anatomy obtained from biplanar radiographic images. A user-friendly graphical user interface allows for the planning of the desired deformity correction and to simulate the implantation of pedicle screws. Robust meshing of the instrumented spine is provided by using consolidated computational geometry and meshing libraries. Based on a finite element simulation, the program is able to predict the loads and stresses acting in the instrumentation as well as those in the biological tissues. A simple test case (reduction of a low-grade spondylolisthesis at L3–L4) was simulated as a proof of concept, and showed plausible results. Despite the numerous limitations of this approach which will be addressed in future implementations, the preliminary outcome is promising and encourages a wide effort toward its refinement. PMID:26579518

  16. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    PubMed

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.

  17. Characteristics of lateral electrical surface stimulation (LESS) and its effect on the degree of spinal deformity in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef

    2009-01-01

    Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).

  18. Prevalence and Consequences of the Proximal Junctional Kyphosis After Spinal Deformity Surgery

    PubMed Central

    Yan, Chunda; Li, Yong; Yu, Zhange

    2016-01-01

    Abstract The aim of this study was to estimate the prevalence and patient outcomes of proximal junctional kyphosis (PJK) in pediatric patients and adolescents who received surgical interventions for the treatment of a spinal deformity. Literature was searched in electronic databases, and studies were selected by following précised eligibility criteria. Percent prevalence values of the PJK in individual studies were pooled to achieve a weighted effect size under the random effects model. Subgroup and meta-regression analyses were performed to appraise the factors affecting PJK prevalence. Twenty-six studies (2024 patients) were included in this meta-analysis. Average age of the patients was 13.8 ± 2.75 years of which 32 ± 20 % were males. Average follow-up was 51.6 ± 38.8 (range 17 ± 13 to 218 ± 60) months. Overall, the percent prevalence of PJK (95% confidence interval) was 11.02 (10.5, 11.5) %; P < 0.00001 which was inversely associated with age (meta-regression coefficient: –1.607 [–2.86, –0.36]; 0.014). Revision surgery rate in the patients with PJK was 10%. The prevalence of PJK was positively associated with the proximal junctional angle at last follow-up (coefficient: 2.248; P = 0.012) and the change in the proximal junctional angle from surgery to last follow-up (coefficient: 2.139; P = 0.014) but not with preoperative proximal junctional angle. The prevalence of PJK in the children and adolescent patients is 11%. About 10% of those affected require revision surgery. PMID:27196453

  19. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  20. New developments in the treatment of early-onset spinal deformity: role of the Shilla growth guidance system

    PubMed Central

    Morell, Sean M; McCarthy, Richard E

    2016-01-01

    Early-onset scoliosis is a complex condition with multiple facets. The goal of treating any spinal deformity is to improve the condition of the patient with the least intervention necessary. A system that allows for continuation of natural spinal growth while correcting the deformity should be the goal of treating this complex condition. The SHILLA growth guidance system allows for continued growth of the pediatric spine while correcting and guiding the apex and guiding the future growth of the curvature. The system involves selective fusion across the apex of the curvature, and minimally invasive instrumentation is then used above and below the apex to allow for continued growth of the spine. A review of recent literature on the SHILLA growth guidance system shows promising results. Early animal models showed continued growth across unfused levels with minimal facet articular damage. Comparative studies to traditional growing rods showed significantly less total surgeries along with comparable correction and longitudinal growth. The SHILLA growth guidance system is a good option for this complex patient group. Results are comparable with other growing constructs with significantly less operative interventions. The SHILLA system allows for natural growth of the pediatric spine while correcting the scoliotic deformity in a minimally invasive method. The goal of this article is to present a comprehensive review of the SHILLA system surgical technique and the associated literature concerning this topic. PMID:27499651

  1. Differential modulation of crossed and uncrossed reflex pathways by clonidine in adult cats following complete spinal cord injury.

    PubMed

    Frigon, Alain; Johnson, Michael D; Heckman, C J

    2012-02-15

    Clonidine, an α-noradrenergic agonist, facilitates hindlimb locomotor recovery after complete spinal transection (i.e. spinalization) in adult cats. However, the mechanisms involved in clonidine-induced functional recovery are poorly understood. Sensory feedback from the legs is critical for hindlimb locomotor recovery in spinalized mammals and clonidine could alter how spinal neurons respond to peripheral inputs in adult spinalized cats. To test this hypothesis we evaluated the effect of clonidine on the responses of hindlimb muscles, primarily in the left hindlimb, evoked by stretching the left triceps surae muscles and by stimulating the right tibial and superficial peroneal nerves in eight adult decerebrate cats that were spinalized 1 month before the terminal experiment. Cats were not trained following spinalization. Clonidine had no consistent effect on responses of ipsilateral muscles evoked by triceps surae muscle stretch. However, clonidine consistently potentiated the amplitude and duration of crossed extensor responses. Moreover, following clonidine injection, stretch and tibial nerve stimulation triggered episodes of locomotor-like activity in approximately one-third of trials. Differential effects of clonidine on crossed reflexes and on ipsilateral responses to muscle stretch indicate an action at a pre-motoneuronal site. We conclude that clonidine facilitates hindlimb locomotor recovery following spinalization in untrained cats by enhancing the excitability of central pattern generating spinal neurons that also participate in crossed extensor reflex transmission.

  2. Minimally invasive percutaneous nephrolithotomy guided by ultrasonography to treat upper urinary tract calculi complicated with severe spinal deformity

    PubMed Central

    He, Zhaohui; Zhang, Caixia; Zeng, Guohua

    2016-01-01

    ABSTRACT Objective: To report our experience of minimally invasive percutaneous nephrolithotomy(MPCNL) in managing upper urinary tract calculi complicated with severe spinal deformity. Materials and Methods: Between August 2001 to December 2012, 16 upper urinary calculi in 13 patients with severe spinal deformity were treated by MPCNL. Preoperative investigation of the respiratory function, evaluation of anatomy by intravenous urography (IVU) and CT scan, and preoperative kidney ultrasonagraphy with simulation of the percutaneous puncture were performed in all patients. The percutaneous puncture was guided by ultrasonography. Results: A total of 19 MPCNL procedures were performed in 16 kidneys, with an average 1.2 procedures in each kidney. Three kidneys needed two sessions of MPCNL, and 2 kidneys needed combined treatment with retrograde flexible ureterscopic lithotripsy. All procedures were successfully completed with no major complications during or after surgery. The mean (range) operative duration was 67 (20-150) min and the mean postoperative haemoglobin drop was 1.0 (0.2-3.1) g/dL. Complete stone-free status was achieved in 14 kidneys. At a mean follow-up of 48(3-86) months, recurrence of small lower calyx stone was detected in one patient. Recurrent UTI was documented by urine culture in two patients and managed with sensitive antibiotics. Conclusion: PCNL for patients with severe spinal deformities is challenging. Ultrasonography-assisted puncture can allow safe and successfully establishment of PCN tract through a narrow safety margin of puncture and avoid the injury to the adjacent organs. However, the operation should be performed in tertiary centers with significant expertise in managing complex urolithiasis. PMID:27509373

  3. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  4. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  5. Plasticity of functional connectivity in the adult spinal cord

    PubMed Central

    Cai, L.L; Courtine, G; Fong, A.J; Burdick, J.W; Roy, R.R; Edgerton, V.R

    2006-01-01

    This paper emphasizes several characteristics of the neural control of locomotion that provide opportunities for developing strategies to maximize the recovery of postural and locomotor functions after a spinal cord injury (SCI). The major points of this paper are: (i) the circuitry that controls standing and stepping is extremely malleable and reflects a continuously varying combination of neurons that are activated when executing stereotypical movements; (ii) the connectivity between neurons is more accurately perceived as a functional rather than as an anatomical phenomenon; (iii) the functional connectivity that controls standing and stepping reflects the physiological state of a given assembly of synapses, where the probability of these synaptic events is not deterministic; (iv) rather, this probability can be modulated by other factors such as pharmacological agents, epidural stimulation and/or motor training; (v) the variability observed in the kinematics of consecutive steps reflects a fundamental feature of the neural control system and (vi) machine-learning theories elucidate the need to accommodate variability in developing strategies designed to enhance motor performance by motor training using robotic devices after an SCI. PMID:16939979

  6. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  7. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  8. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    PubMed Central

    Serrano-Velez, Jose L.; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I.; Fraser, Scott E.; Yasumura, Thomas; Vanderpool, Kimberly G.; Rash, John E.; Rosa-Molinar, Eduardo

    2014-01-01

    “Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors. PMID:25018700

  9. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  10. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA

    PubMed Central

    El Mendili, Mohamed-Mounir; Lenglet, Timothée; Stojkovic, Tanya; Behin, Anthony; Guimarães-Costa, Raquel; Salachas, François; Meininger, Vincent; Bruneteau, Gaelle; Le Forestier, Nadine; Laforêt, Pascal; Lehéricy, Stéphane; Benali, Habib; Pradat, Pierre-François

    2016-01-01

    Purpose The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. Materials and Methods Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. Results CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10−5). There were no correlations between atrophy measurements, strength and disability scores. Conclusions Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients. PMID:27089520

  11. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats

    PubMed Central

    2013-01-01

    spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles. PMID:23336733

  12. Hindlimb Stretching Alters Locomotor Function Post-Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Atkinson, Darryn A.; Brown, Edward H.; Donaldson, Katie; Seibt, Erik; Chea, Tim; Smith, Erin; Chung, Karianne; Shum-Siu, Alice; Cron, Courtney C.; Magnuson, David S. K.

    2014-01-01

    Background Stretching is a widely accepted standard-of-care therapy following spinal cord injury that has not been systematically studied in animal models. Objective To investigate the influence of a daily stretch-based physical therapy program on locomotor recovery in adult rats with moderate T9 contusive SCI. Methods A randomized treatment and control study of stretching in an animal model of acute spinal cord injury (SCI). Moderate spinal cord injuries were delivered with the NYU Impactor. Daily stretching (30 min./day, 5 days/wk for 8 wks) was provided by a team of animal handlers. Hindlimb function was assessed using the BBB Open Field Locomotor Scale and kinematically. Passive range-of-motion for each joint was determined weekly using a goniometer. Results Declines in hindlimb function during overground stepping were observed for the first 4 weeks. BBB scores improved weeks 5–10 but remained below the control group. Stretched animals had significant deficits in knee passive ROM starting at week 4 and for the duration of the study. Kinematic assessment showed decreased joint excursion during stepping that partially recovered beginning at week 5. Conclusion Stretch-based therapy significantly impaired functional recovery in adult rats with a moderate contusive SCI at T10. The negative impact on function was greatest acutely, but persisted even after the stretching ceased at 8 weeks post-injury. PMID:25106555

  13. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury

    PubMed Central

    DePaul, Marc A.; Palmer, Marc; Lang, Bradley T.; Cutrone, Rochelle; Tran, Amanda P.; Madalena, Kathryn M.; Bogaerts, Annelies; Hamilton, Jason A.; Deans, Robert J.; Mays, Robert W.; Busch, Sarah A.; Silver, Jerry

    2015-01-01

    Following spinal cord injury (SCI), immune-mediated secondary processes exacerbate the extent of permanent neurological deficits. We investigated the capacity of adult bone marrow-derived stem cells, which exhibit immunomodulatory properties, to alter inflammation and promote recovery following SCI. In vitro, we show that human multipotent adult progenitor cells (MAPCs) have the ability to modulate macrophage activation, and prior exposure to MAPC secreted factors can reduce macrophage-mediated axonal dieback of dystrophic axons. Using a contusion model of SCI, we found that intravenous delivery of MAPCs one day, but not immediately, after SCI significantly improves urinary and locomotor recovery, which was associated with marked spinal cord tissue sparing. Intravenous MAPCs altered the immune response in the spinal cord and periphery, however biodistribution studies revealed that no MAPCs were found in the cord and instead preferentially homed to the spleen. Our results demonstrate that MAPCs exert their primary effects in the periphery and provide strong support for the use of these cells in acute human contusive SCI. PMID:26582249

  14. Relationship of syrinx size and tonsillar descent to spinal deformity in Chiari malformation Type I with associated syringomyelia

    PubMed Central

    Godzik, Jakub; Kelly, Michael P.; Radmanesh, Alireza; Kim, David; Holekamp, Terrence F.; Smyth, Matthew D.; Lenke, Lawrence G.; Shimony, Joshua S.; Park, Tae Sung; Leonard, Jeffrey; Limbrick, David D.

    2014-01-01

    Object Chiari malformation Type I (CM-I) is a developmental abnormality often associated with a spinal syrinx. Patients with syringomyelia are known to have an increased risk of scoliosis, yet the influence of specific radiographically demonstrated features on the prevalence of scoliosis remains unclear. The primary objective of the present study was to investigate the relationship of maximum syrinx diameter and tonsillar descent to the presence of scoliosis in patients with CM-I–associated syringomyelia [AQ? Edit okay? If not, please advise. JG: edit correct]. A secondary objective was to explore the role of craniovertebral junction (CVJ) characteristics for additional risk factors for scoliosis. Methods The authors conducted a retrospective review of pediatric patients evaluated for CM-I with syringomyelia at a single institution in the period from 2000 to 2012. Syrinx morphology and CVJ parameters were evaluated with MRI, whereas the presence of scoliosis was determined using standard radiographic criteria. Multiple logistic regression was used to analyze radiological features that were independently associated with scoliosis. Results Ninety-two patients with CM-I and syringomyelia were identified. The mean age was 10.5 ± 5 years. Thirty-five (38%) of 92 patients had spine deformity; 23 (66%) of these 35 were referred primarily for deformity, and 12 (34%) were diagnosed with deformity during workup for other symptoms. Multiple regression analysis revealed maximum syrinx diameter > 6 mm (OR 12.1, 95% CI 3.63–40.57, p < 0.001) and moderate (5–12 mm) rather than severe (> 12 mm) tonsillar herniation (OR 7.64, 95% CI 2.3–25.31, p = 0.001) as significant predictors of spine deformity when controlling for age, sex, and syrinx location. Conclusions The current study further elucidates the association between CM-I and spinal deformity by defining specific radiographic characteristics associated with the presence of scoliosis. Specifically, patients presenting

  15. Novel application of pre-operative vertebral body embolization to reduce intraoperative blood loss during a three-column spinal osteotomy for non-oncologic spinal deformity.

    PubMed

    Tuchman, Alexander; Mehta, Vivek A; Mack, William J; Acosta, Frank L

    2015-04-01

    Three column osteotomies (3CO) of the lumbar spine are powerful corrective procedures used in the treatment of kyphoscoliosis. Their efficacy comes at the cost of high reported complication rates, notably significant estimated blood loss (EBL). Previously reported techniques to reduce EBL have had modest efficacy. Here we describe a potential technique to decrease EBL during pedicle subtraction osteotomy (PSO) of the lumbar spine by means of pre-operative vertebral body embolization - a technique traditionally used to reduce blood loss prior to spinal column tumor resection. We present a 62-year-old man with iatrogenic kyphoscoliosis who underwent staged deformity correction. Stage 1 involved thoracolumbar instrumentation followed by transarterial embolization of the L4 vertebral body through bilateral segmental arteries. A combination of polyvinyl alcohol particles and Gelfoam (Pfizer, New York, NY, USA) were used. Following embolization there was decreased angiographic blood flow to the small vessels of the L4 vertebral body, while the segmental arteries remained patent. Stage 2 consisted of an L4 PSO and fusion. The EBL during the PSO procedure was 1L, which compared favorably to that during previous PSO at this institution as well as to quantities reported in previous literature. There have been no short term (5 month follow-up) complications attributable to the vertebral body embolization or surgical procedure. Although further investigation into this technique is required to better characterize its safety and efficacy in reducing EBL during 3CO, we believe this patient illustrates the potential utility of pre-operative vertebral embolization in the setting of non-oncologic deformity correction surgery. PMID:25564274

  16. Spinal cord deformation due to nozzle gas flow effects using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wong, Ronnie J.; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Sun, Cuiru; Huang, Yize; Yang, Victor X. D.

    2015-03-01

    The use of gas assistance in laser machining hard materials is well established in manufacturing but not in the context of surgery. Laser cutting of osseous tissue in the context of neurosurgery can benefit from gas-assist but requires an understanding of flow and pressure effects to minimize neural tissue damage. In this study we acquire volumetric flow rates through a gas nozzle on the spinal cord, with dura and without dura.

  17. Relationship between pulmonary function and degree of spinal deformity, location of apical vertebrae and age among adolescent idiopathic scoliosis patients

    PubMed Central

    Johari, Joehaimey; Sharifudin, Mohd Ariff; Rahman, Azriani Ab; Omar, Ahmad Sabri; Abdullah, Ahmad Tajudin; Nor, Sobri; Lam, Weii Cheak; Yusof, Mohd Imran

    2016-01-01

    INTRODUCTION This retrospective review aimed to examine the relationship between preoperative pulmonary function and the Cobb angle, location of apical vertebrae and age in adolescent idiopathic scoliosis (AIS). To our knowledge, there have been no detailed analyses of preoperative pulmonary function in relation to these three factors in AIS. METHODS A total of 38 patients with thoracic or thoracolumbar scoliosis were included. Curvature of spinal deformity was measured using the Cobb method. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were used to evaluate preoperative pulmonary function. Statistical methods were used to analyse the relationship between preoperative pulmonary function and the factors that may contribute to poor pulmonary function. RESULTS The mean age of the patients was 16.68 ± 6.04 years. An inverse relationship was found between the degree of the Cobb angle and FVC as well as FEV1; however, the relationships were not statistically significant (p = 0.057 and p = 0.072, respectively). There was also a trend towards a significant negative correlation between the thoracic curve and FVC (p = 0.014). Patients with larger thoracic curves had lower pulmonary function. A one-year increase in age significantly decreased FVC by 1.092 units (p = 0.044). No significant relationship between age and preoperative FEV1 was found. The median FVC was significantly higher in patients with affected apical vertebrae located at levels L1–L3 than at T6–T8 or T9–T12 (p = 0.006). CONCLUSION Lung function impairment was seen in more severe spinal deformities, proximally-located curvature and older patients. PMID:26831315

  18. Occupant dynamics in rollover crashes: influence of roof deformation and seat belt performance on probable spinal column injury.

    PubMed

    Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S

    2007-11-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.

  19. Occupant Dynamics in Rollover Crashes: Influence of Roof Deformation and Seat Belt Performance on Probable Spinal Column Injury

    PubMed Central

    Cochran, John E.; King, Dottie; Burke, Donald S.

    2007-01-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975

  20. Lessons for spinal cord injury rehabilitation taken from adult developmental psychology: 2011 Essie Morgan Lecture

    PubMed Central

    Rose, Jon

    2012-01-01

    Background/objective Developmental phases affect how individuals cope with and challenge threats to self-concept, health and functioning. Understanding prominent models of adult psychological development can help spinal cord injury/disease (SCI/D) rehabilitation professionals facilitate positive change and growth. Design Author's theoretical model informed by literature review and personal experience. Setting Veterans administration (VA) medical center interdisciplinary outpatient clinic providing primary and specialty care to veterans with spinal cord injuries and disorders. Conclusion Threats to life expectations, health, well-being, identity, and other aspects of self create crises that can result in psychopathology or psychological growth. SCI/D can present multiple threats across the lifespan. For example, self-image, ability to perform various activities, ability to feel attractive, and even life itself may be challenged by SCI/D or its complications. Threats may be perceived at the time of injury or onset of symptoms. Also, as the injured body declines further over time, complications can cause significant temporary or permanent functional decline. Individuals interpret each of these threats in the context of current developmental needs. How people cope is influenced by developmental factors and personality traits. An integrated model of adult psychological development based on the works of Erikson, Gutmann, and Baltes is related to the literature on coping with SCI/D. This model provides insights that interdisciplinary rehabilitation teams may use to facilitate personal growth, optimal functioning, and physical health as adults with SCI negotiate normal developmental challenges throughout their lifetimes. PMID:22507022

  1. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    PubMed

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury.

  2. The burden of acute traumatic spinal cord injury among adults in the united states: an update.

    PubMed

    Selvarajah, Shalini; Hammond, Edward R; Haider, Adil H; Abularrage, Christopher J; Becker, Daniel; Dhiman, Nitasha; Hyder, Omar; Gupta, Deepak; Black, James H; Schneider, Eric B

    2014-02-01

    The current incidence estimate of 40 traumatic spinal cord injuries (TSCI) per million population/year in the United States (U.S.) is based on data from the 1990s. We sought to update the incidence and epidemiology of TSCI in U.S adults by using the Nationwide Emergency Department Sample (NEDS), the largest all-payer emergency department (ED) database in the United States. Adult ED visits between 2007 and 2009 with a principal diagnosis of TSCI were identified using International Classification of Diseases (ICD)-9 codes (806.0-806.9 and 952.0-952.9). We describe TSCI cumulative incidence, mortality, discharge disposition, and hospital charges weighted to the U.S. population. The estimated 3-year cumulative incidence of TSCI was 56.4 per million adults. Cumulative incidence of TSCI in older adults increased from 79.4 per million older adults in 2007 to 87.7 by the end of 2009, but remained steady among younger adults. Overall, falls were the leading cause of TSCI (41.5%). ED charges rose by 20% over the study period, and death occurred in 5.7% of patients. Compared with younger adults, older adults demonstrated higher adjusted odds of mortality in the ED (adjusted odds ratio [AOR]=4.4; 95% confidence interval [CI]: 1.1-16.6), mortality during hospitalization (AOR=5.9; 95% CI: 4.7-7.4), and being discharged to chronic care (AOR=3.7; 95% CI: 3.0-4.5). The incidence of TSCI is higher than previously reported with a progressive increase among older adults who also experience worse outcomes compared with younger adults. ED-related TSCI charges are also increasing. These updated national estimates support the development of customized prevention strategies based on age-specific risk factors.

  3. Effects of mechanical horseback riding velocity on spinal alignment in young adults.

    PubMed

    Lim, Jae-Heon; Cho, Woon-Su; Lee, Seong-Jin; Park, Chi-Bok; Park, Jang-Sung

    2016-06-01

    [Purpose] This study aimed to determine if the velocity of mechanical horseback-riding training can improve spinal alignment in young adults. [Subjects and Methods] Thirty-six subjects were enrolled in this study. The subjects were randomly allocated into high-, moderate-, and low-velocity mechanical horseback-riding training groups. All participants completed one 20-minute session per day, 3 days per week, for 6 weeks. The evaluation was performed before and 6 weeks after the training intervention. The spinal alignment was measured by a Formetric III device. The measurement items were kyphotic angle, lordotic angle, trunk inclination, pelvic torsion, pelvic rotation, and lateral deviation. The data were analyzed using analysis of covariance to determine the statistical significance. [Results] The kyphotic angle and trunk inclination were significantly different among the groups. The kyphotic angles of the high- and moderate-velocity groups were significantly lower than that of the low-velocity group after the intervention. The trunk inclination of the high-velocity group was significantly lower than that of the low-velocity group after intervention. [Conclusion] Higher-velocity mechanical horseback-riding training is more effective than lower-velocity mechanical horseback-riding training for improving spinal alignment.

  4. Effects of mechanical horseback riding velocity on spinal alignment in young adults

    PubMed Central

    Lim, Jae-Heon; Cho, Woon-Su; Lee, Seong-Jin; Park, Chi-Bok; Park, Jang-Sung

    2016-01-01

    [Purpose] This study aimed to determine if the velocity of mechanical horseback-riding training can improve spinal alignment in young adults. [Subjects and Methods] Thirty-six subjects were enrolled in this study. The subjects were randomly allocated into high-, moderate-, and low-velocity mechanical horseback-riding training groups. All participants completed one 20-minute session per day, 3 days per week, for 6 weeks. The evaluation was performed before and 6 weeks after the training intervention. The spinal alignment was measured by a Formetric III device. The measurement items were kyphotic angle, lordotic angle, trunk inclination, pelvic torsion, pelvic rotation, and lateral deviation. The data were analyzed using analysis of covariance to determine the statistical significance. [Results] The kyphotic angle and trunk inclination were significantly different among the groups. The kyphotic angles of the high- and moderate-velocity groups were significantly lower than that of the low-velocity group after the intervention. The trunk inclination of the high-velocity group was significantly lower than that of the low-velocity group after intervention. [Conclusion] Higher-velocity mechanical horseback-riding training is more effective than lower-velocity mechanical horseback-riding training for improving spinal alignment. PMID:27390428

  5. Effects of enriched housing on functional recovery after spinal cord contusive injury in the adult rat.

    PubMed

    Lankhorst, A J; ter Laak, M P; van Laar, T J; van Meeteren, N L; de Groot, J C; Schrama, L H; Hamers, F P; Gispen, W H

    2001-02-01

    To date, most research performed in the area of spinal cord injury focuses on treatments designed to either prevent spreading lesion (secondary injury) or to enhance outgrowth of long descending and ascending fiber tracts around or through the lesion. In the last decade, however, several authors have shown that it is possible to enhance locomotor function after spinal cord injury in both animals and patients using specific training paradigms. As a first step towards combining such training paradigms with pharmacotherapy, we evaluated recovery of function in adult rats sustaining a spinal cord contusion injury (MASCIS device, 12.5 mm at T8), either housed in an enriched environment or in standard cages (n = 15 in both groups). The animals in the enriched environment were stimulated to increase their locomotor activity by placing water and food on opposite sides of the cage. As extra stimuli, a running wheel and several other objects were added to the cage. We show that exposure to the enriched environment improves gross and fine locomotor recovery as measured by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, the BBB subscale, the Gridwalk, and the Thoracolumbar height test. However, no group differences were found on our electrophysiological parameters nor on the amount of spared white matter. These data justify further studies on enriched housing and more controlled exercise training, with their use as potential additive to pharmacological intervention. PMID:11229712

  6. Does social support impact depression in caregivers of adults ageing with spinal cord injuries?

    PubMed Central

    Rodakowski, Juleen; Skidmore, Elizabeth R.; Rogers, Joan C.; Schulz, Richard

    2013-01-01

    Objective The objective of this study was to examine the role of social support in predicting depression in caregivers of adults aging with spinal cord injuries (SCI). Design Cross-sectional secondary data analyses were conducted for this study. Setting Participants were recruited from multiple community locations in Pittsburgh, PA and Miami, FL. Subjects Community-dwelling caregivers of aging adults with SCI (N=173) were interviewed as part of a multisite randomized clinical trial. Main measures The Center for Epidemiological Studies Depression Scale measured caregiver depression symptom levels. A hierarchical multiple regression analysis examined the effect of social support (social integration, received social support, and negative social interactions) on depressive symptoms levels for the caregivers of adults aging with SCI, controlling for demographic characteristics and caregiving characteristics. Results Caregivers were, on average, 53 years old (SD=15) and care-recipients were 55 years old (SD=13). Average Center for Epidemiological Studies Depression Scale scores indicated that sixty-nine (40%) caregivers had significant depressive symptoms (mean 8.69, SD=5.5). Negative social interactions (β̂ =.27, P<.01) and social integration (β̂ =−.25, P<.01) were significant independent predictors of depressive symptom levels in caregivers of adults aging with SCI. Conclusions Findings demonstrate that negative social interactions and social integration are associated with burden in caregivers of adults aging with SCI. Negative social interactions and social integration should be investigated in assessments and interventions intended to target caregiver depressive symptom levels. PMID:23117350

  7. Calcaneal osteotomy in the treatment of adult acquired flatfoot deformity.

    PubMed

    Guha, Abhijit R; Perera, Anthony M

    2012-06-01

    Calcaneal osteotomies are an essential part of our current armamentarium in the treatment of AAFD. Soft tissue correction or bony realignment alone have failed to adequately correct the deformity; therefore, both procedures are used simultaneously to achieve long-term correction. Medial displacement and lateral column lengthening osteotomies in isolation or in combination and the Malerba osteotomy have been employed along with soft tissue balancing to good effect by various authors. The goal is to create a stable bony configuration with adequate soft tissue balance to maintain dynamic equilibrium in the hindfoot. In “pronatory syndromes,” the relation of the osteotomy to the posterior subtalar facet modifies the biomechanics of the hindfoot in different ways. Anterior calcaneal osteotomies correct deformities in the transverse plane (forefoot abduction), whereas posterior tuberosity osteotomies result in “varization” of the calcaneus and correct the frontal plane deformity. The choice of osteotomy depends on the plane of the dominant deformity. If the subtalar axis is more horizontal than normal, transverse plane movement is cancelled out and the frontal plane eversion–inversion is predominant. The patient presents with marked hindfoot valgus without significant forefoot abduction. Conversely, if the subtalar axis is more vertical than normal, transverse plane movement is predominant and the patient presents with forefoot abduction and instability of the medial midtarsal joints, although without significant hindfoot valgus. In this situation, a lateral column lengthening procedure is recommended to decrease the uncovering of the talar head and improve the height of the arch while correcting the forefoot abduction. With a predominant frontal plane deformity, medialization of the calcaneal tuberosity is used to displace the calcaneal weight bearing axis medially, aligning it with the tibial axis and restoring the function of the gastrosoleus as a heel

  8. Regeneration of adult rat spinal cord is promoted by the soluble KDI domain of gamma1 laminin.

    PubMed

    Wiksten, Markus; Väänänen, Antti J; Liebkind, Ron; Liesi, Päivi

    2004-11-01

    Regeneration in the central nervous system (CNS) of adult mammals is hampered by formation of a glial scar and by proteins released from the myelin sheaths of injured neuronal pathways. Our recent data indicate that the KDI (Lys-Asp-Ile) domain of gamma1 laminin neutralizes both glial- and myelin-derived inhibitory signals and promotes survival and neurite outgrowth of cultured human spinal cord neurons. We show that after complete transection of the adult rat spinal cord, animals receiving onsite infusion of the KDI domain via osmotic mini-pumps recover and are able to sustain their body weights and walk with their hindlimbs. Animals treated with placebo suffer from irreversible hindlimb paralysis. Microscopic and molecular analyses of the spinal cords indicate that the KDI domain reduces tissue damage at the lesion site and enables neurite outgrowth through the injured area to effect functional recovery of the initially paralyzed animals. That the KDI domain enhances regeneration of acute spinal cord injuries in the adult rat suggests that it may be used to promote regeneration of spinal cord injuries in humans.

  9. Evaluation and Surgical Management of the Overcorrected Clubfoot Deformity in the Adult Patient.

    PubMed

    Burger, Dawid; Aiyer, Amiethab; Myerson, Mark S

    2015-12-01

    Adult patients presenting with an overcorrected clubfoot often have had a posteromedial release. They present later in life and have compensated quite well despite the development of deformity. Minor trauma may lead to the onset of acute symptoms. A spectrum of deformity exists. Key features include a dorsally subluxated navicular, a dorsal bunion from overpull of the tibialis anterior tendon, valgus of the ankle or hindfoot or both, and a flattop talus. This article details the diagnostic approach to the overcorrected clubfoot patient and options for management of the various components of the deformity. PMID:26589080

  10. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).

  11. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  12. Serotonin differentially modulates the intrinsic properties of spinal motoneurons from the adult turtle

    PubMed Central

    Perrier, Jean-François; Cotel, Florence

    2008-01-01

    This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT2 receptors and the inhibitory effect is due to the activation of 5-HT1A/7 receptors. PMID:18096602

  13. Psychological defenses and psychiatric symptoms in adults with pediatric spinal cord injuries.

    PubMed

    Sammallahti, P; Kannisto, M; Aalberg, V

    1996-11-01

    The psychological defenses and psychiatric morbidity of 30 adults with pediatric spinal cord injury and of 235 community controls were compared several years after the occurence of the injury. The patient group did not report more symptoms when measured with the Symptom Checklist-90 than the control group, but there were some characteristic features in their use of defenses as measured with the Defense Style Questionnaire. The adaptation process seems to follow a pattern: the greater the length of time since the injury, the less likely were the immature defenses omnipotence-devaluation and regression and the higher were the scores on the mature defense anticipation. It appears that the same result-symptom free adaptation-is first achieved by more immature means but as the adaptation process evolves, the psychological equilibrium can be maintained by mature defenses which do not distort reality. Furthermore, the results that patients with pediatric spinal cord injury scored higher on fantasy (daydreaming) and passive aggression (silent resistance) suggest that being injured very young may leave some faint, yet permanent psychodynamic traces.

  14. The International Research Society of Spinal Deformities (IRSSD) and its contribution to science

    PubMed Central

    2009-01-01

    From the time of its initial, informal meetings starting in 1980 to its formal creation in 1990, the IRSSD has met on a bi-annual basis to discuss all aspects of the spine and associated deformities. It has encouraged open discussion on all topics and, in particular, has tried to be the seed-bed for new ideas. The members are spread around the world and include people from all areas of academia as well as the most important people, the patients themselves. Most notably, application of the ideas and results of the research has always been at the forefront of the discussions. This paper was conceived with the idea of evaluating the impact made by the IRSSD over the last 30 years in the various areas and is intended to create discussion for the upcoming meeting in Montreal regarding future focus: "We are lost over the Atlantic Ocean but we are making good time." PMID:20025783

  15. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features.

    PubMed

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Florensa-Vila, José; Ferrer, Isidro; Grassner, Lukas; Molina-Holgado, Eduardo

    2015-06-01

    Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution. PMID:25882650

  16. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features.

    PubMed

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Florensa-Vila, José; Ferrer, Isidro; Grassner, Lukas; Molina-Holgado, Eduardo

    2015-06-01

    Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution.

  17. The role of Edward Harrison's (1766-1838) disciples, Thomas Engall, John and George Epps, Charles Hoyland, John Evans Riadore, John Robinson and John Baptiste de Serney in the treatment of spinal deformity in the Victorian medical world.

    PubMed

    Bovine, Gary; Silver, John Russell; Weiner, Marie-France

    2012-02-01

    Edward Harrison was a distinguished and innovative physician, an educationalist who had a profound influence on the treatment of spinal deformities. He founded the first infirmary for the treatment of spinal diseases in London in 1837. Little is known of this institution but much of Harrison's legacy rests with his disciples who followed Harrison's principles of treatment to treat spinal deformity. Like Harrison they were unconventional individuals, influenced by religious beliefs and liberal political and social ideologies. After his death, initially they followed his methods of treatment but subsequently they were not afraid to pursue new forms of treatment including homeopathy at a time when traditional medicine had little to offer.

  18. The impact of patient self assessment of deformity on HRQL in adults with scoliosis

    PubMed Central

    Tones, Megan J; Moss, Nathan D

    2007-01-01

    Background Body image and HRQL are significant issues for patients with scoliosis due to cosmetic deformity, physical and psychological symptoms, and treatment factors. A selective review of scoliosis literature revealed that self report measures of body image and HRQL share unreliable correlations with radiographic measures and clinician recommendations for surgery. However, current body image and HRQL measures do not indicate which aspects of scoliosis deformity are the most distressing for patients. The WRVAS is an instrument designed to evaluate patient self assessment of deformity, and may show some promise in identifying aspects of deformity most troubling to patients. Previous research on adolescents with scoliosis supports the use of the WRVAS as a clinical tool, as the instrument shares strong correlations with radiographic measures and quality of life instruments. There has been limited use of this instrument on adult populations. Methods The WRVAS and the SF-36v2, a HRQL measure, were administered to 71 adults with scoliosis, along with a form to report age and gender. Preliminary validation analyses were performed on the WRVAS (floor and ceiling effects, internal consistency and collinearity, correlations with the SF-36v2, and multiple regression with the WRVAS total score as the predictor, and SF-36v2 scores as outcomes). Results The psychometric properties of the WRVAS were acceptable. Older participants perceived their deformities as more severe than younger participants. More severe deformities were associated with lower scores on the Physical Component Summary Score of the SF-36v2. Total WRVAS score also predicted Physical Component Summary scores. Conclusion The results of the current study indicate that the WRVAS is a reliable tool to use with adult patients, and that patient self assessment of deformity shared a relationship with physical rather than psychological aspects of HRQL. The current and previous studies concur that revision of the

  19. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  20. Heart Rate Response During Underwater Treadmill Training in Adults with Incomplete Spinal Cord Injury

    PubMed Central

    Morgan, Don W.

    2015-01-01

    Background: Walking on a submerged treadmill can improve mobility in persons displaying lower limb muscle weakness and balance deficits. Little is known, however, regarding the effect of water treadmill exercise on cardiac performance in persons with incomplete spinal cord injury (iSCI). Objective: To assess heart rate response during underwater treadmill training (UTT) in adults with iSCI. Methods: Seven males and 4 females with iSCI (age = 48 ± 13 years; 5 ± 8 years after injury) completed 8 weeks of UTT (3 sessions per week; 3 walks per session) incorporating individually determined walking speeds, personalized levels of body weight unloading, and gradual, alternating increases in speed and duration. Heart rate was monitored during the last 15 seconds of the final 2 minutes of each walk. Results: Over the course of 3 biweekly periods in which walking speed remained constant, heart rate fell by 7% (7 ± 1 b•min-1; P < .001) in weeks 2 and 3, 14% (17 ± 6 b•min-1; P < .001) in weeks 4 and 5, and 17% (21 ± 11 b•min-1; P < .001) in weeks 6 and 7. Conclusion: In adults with iSCI, progressively greater absolute and relative reductions in submaximal exercise heart rate occurred after 2 months of UTT featuring a systematic increase in training volume. PMID:25762859

  1. Intermittent noxious stimulation following spinal cord contusion injury impairs locomotor recovery and reduces spinal BDNF-TrkB signaling in adult rats

    PubMed Central

    Garraway, Sandra M.; Turtle, Joel D.; Huie, J. Russell; Lee, Kuan H.; Hook, Michelle A.; Woller, Sarah A.; Grau, James W.

    2011-01-01

    Intermittent nociceptive stimulation following a complete transection or contused spinal cord injury (SCI) has been shown to exert several short and long lasting negative consequences. These include maladaptive spinal plasticity, enhanced mechanical allodynia and impaired functional recovery of locomotor and bladder functions. The neurotrophin, brain derived neurotrophic factor (BDNF) has been shown to play an important role in adaptive plasticity and also to restore functions following SCI. This suggests that the negative behavioral effects of shock are most likely related to corresponding changes in BDNF spinal levels. In this study we investigated the cellular effects of nociceptive stimulation in contused adult rats focusing on BDNF, its receptor, TrkB, and the subsequent downstream signaling system. The goal was to determine whether the behavioral effect of stimulation is associated with concomitant cellular changes induced during the initial post-injury period. Quantitative RT-PCR and western blotting were used to assess changes in the mRNA and/or protein levels of BDNF, TrkB and the downstream signaling proteins CAMKII and ERK1/2 at 1 hour, 24 hours and 7 days following administration of intermittent noxious shock to the tail of contused subjects. In addition, recovery of locomotor function (BBB score) was assessed daily for the first week post injury. The results showed that, while nociceptive stimulation failed to induce any changes in gene expression at 1 hour, it significantly reduced the expression of BDNF, TrkB, ERK2 and CAMKII, at 24 hours. In general, changes in gene expression were spatially localized to the dorsal spinal cord. In addition, locomotor recovery was impaired by shock. Evidence is also provided suggesting that shock engages a neuronal circuitry without having any negative effects on neuronal survival at 24 hours. These results suggest that nociceptive activity following SCI decreases BDNF and TrkB levels, which may significantly

  2. Cyp26b1 mediates differential neurogenicity in axial-specific populations of adult spinal cord progenitor cells.

    PubMed

    Leung, Carly; Chan, Sherwin Chun Leung; Tsang, Sze Lan; Wu, Wutian; Sham, Mai Har

    2012-08-10

    Utilization of endogenous adult spinal cord progenitor cells (SCPCs) for neuronal regeneration is a promising strategy for spinal cord repair. To mobilize endogenous SCPCs for injury repair, it is necessary to understand their intrinsic properties and to identify signaling factors that can stimulate their neurogenic potential. In this study, we demonstrate that adult mouse SCPCs express distinct combinatorial Hox genes and exhibit axial-specific stem cell properties. Lumbar-derived neurospheres displayed higher primary sphere formation and greater neurogenicity compared with cervical- and thoracic-derived neurospheres. To further understand the mechanisms governing neuronal differentiation of SCPCs from specific axial regions, we examined the neurogenic responses of adult SCPCs to retinoic acid (RA), an essential factor for adult neurogenesis. Although RA is a potent inducer of neuronal differentiation, we found that RA enhanced the generation of neurons specifically in cervical- but not lumbar-derived cells. We further demonstrate that the differential RA response was mediated by the RA-degrading enzyme cytochrome P450 oxidase b1 Cyp26b1. Lumbar cells express high levels of Cyp26b1 and low levels of the RA-synthesizing enzyme retinaldehyde dehydrogenase Raldh2, resulting in limited activation of the RA signaling pathway in these cells. In contrast, low Cyp26b1 expression in cervical spinal cord progenitor cells allows RA signaling to be readily activated upon RA treatment. The intrinsic heterogeneity and signaling factor regulation among adult SCPCs suggest that different niche factor regimens are required for site-specific mobilization of endogenous SCPCs from distinct spatial regions of the spinal cord for injury repair.

  3. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  4. Spinal Cord Lesions in Congenital Toxoplasmosis Demonstrated with Neuroimaging, Including Their Successful Treatment in an Adult

    PubMed Central

    Burrowes, Delilah; Boyer, Kenneth; Swisher, Charles N.; Noble, A. Gwendolyn; Sautter, Mari; Heydemann, Peter; Rabiah, Peter; Lee, Daniel; McLeod, Rima

    2012-01-01

    Neuroimaging studies for persons in the National Collaborative Chicago-Based Congenital Toxoplasmosis Study (NCCCTS) with symptoms and signs referable to the spinal cord were reviewed. Three infants had symptomatic spinal cord lesions, another infant a Chiari malformation, and another infant a symptomatic peri-spinal cord lipoma. One patient had an unusual history of prolonged spinal cord symptoms presenting in middle age. Neuroimaging was used to establish her diagnosis and response to treatment. This 43 year-old woman with congenital toxoplasmosis developed progressive leg spasticity, weakness, numbness, difficulty walking, and decreased visual acuity and color vision without documented re-activation of her chorioretinal disease. At 52 years of age, spinal cord lesions in locations correlating with her symptoms and optic atrophy were diagnosed with 3 Tesla MRI scan. Treatment with pyrimethamine and sulfadiazine decreased her neurologic symptoms, improved her neurologic examination, and resolved her enhancing spinal cord lesions seen on MRI. PMID:23487348

  5. [Effects of induction of anesthesia on hemodynamics in children with deformities of the spinal cord when turning to the position lying on the belly].

    PubMed

    Ul'rikh, G E; Gordeev, V I; Mokhammed Khusseĭn, Ia Ia; Kachalova, E G

    2005-01-01

    The investigation was devoted to assessment of the reaction of blood circulation to turning to the position "lying on the belly" in different variants of induction of anesthesia to children aged from 7 to 17 years having deformities of the spinal cord. The following combinations were compared: Ketamin, Fentanyl, and inhalation with nitrous oxide; Propofol and Fentanyl; Thiopental, Clofelin, Fentanyl and inhalation with nitrous oxide; Propofol, Clofelin and Fentanyl. The minimal changes in blood circulation were found to occur when using the combination of Thiopental, Clofelin and Fentanyl.

  6. Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord.

    PubMed

    BUNGE, R P; BUNGE, M B; RISH

    1960-07-01

    Plaques of subpial demyelination were induced in adult cat spinal cords by repeated withdrawal and reinjection of cerebrospinal fluid. Peripheral cord was fixed by replacing cerebrospinal fluid available at cisternal puncture with 3 per cent buffered OsO(4). Following extirpation, surface tissue was further fixed in 2 per cent buffered OsO(4), dehydrated in ethanol, and embedded in araldite. Normal subpial cord consists mainly of myelinated axons and two types of macroglia, fibrous astrocytes and oligodendrocytes. Twenty-nine hours after lesion induction most myelin sheaths are deteriorating and typical macroglia are no longer visible. Phagocytosis of myelin debris has begun. In 3-day lesions, axons are intact and their mitochondria and neurofibrils appear normal despite continued myelin breakdown. All axons are completely demyelinated by 6 days. They lack investments only briefly, however, for at 10 and 14 days, macroglial processes appear and embrace them. These macroglia do not resemble either one of the normally occurring glia; their dense cytoplasm contains fibrils in addition to the usual organelles. It is proposed that these macroglia, which later accomplish remyelination, are the hypertrophic or swollen astrocytes of classical neuropathology. The suggestion that these astrocytes possess the potential to remyelinate axons in addition to their known ability to form cicatrix raises the possibility of pharmacological control of their expression.

  7. Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats.

    PubMed

    Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin

    2016-03-01

    Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI.

  8. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats

    PubMed Central

    2016-01-01

    Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree. This is accompanied by an apparent increase in synaptic contacts to Purkinje cell proximal dendrites, presumably from climbing fibers originating in the inferior olive. We also observed an early stage injury-induced decrease in the levels of cerebellin-1, a synaptic organizing molecule that is critical for establishing and maintaining parallel fiber-Purkinje cell synaptic integrity. Interestingly, this transsynaptic reorganizational pattern is consistent with that reported during development and in certain transgenic mouse models. To our knowledge, such a reorganizational event has not been described in response to SCI in adult rats. Regardless, the novel results of this study are important for understanding SCI-induced synaptic changes in the cerebellum, which may prove critical for strategies focusing on promoting functional recovery. PMID:27504204

  9. Altered Cerebellar Circuitry following Thoracic Spinal Cord Injury in Adult Rats.

    PubMed

    Visavadiya, Nishant P; Springer, Joe E

    2016-01-01

    Cerebellar function is critical for coordinating movement and motor learning. However, events occurring in the cerebellum following spinal cord injury (SCI) have not been investigated in detail. We provide evidence of SCI-induced cerebellar synaptic changes involving a loss of granule cell parallel fiber input to distal regions of the Purkinje cell dendritic tree. This is accompanied by an apparent increase in synaptic contacts to Purkinje cell proximal dendrites, presumably from climbing fibers originating in the inferior olive. We also observed an early stage injury-induced decrease in the levels of cerebellin-1, a synaptic organizing molecule that is critical for establishing and maintaining parallel fiber-Purkinje cell synaptic integrity. Interestingly, this transsynaptic reorganizational pattern is consistent with that reported during development and in certain transgenic mouse models. To our knowledge, such a reorganizational event has not been described in response to SCI in adult rats. Regardless, the novel results of this study are important for understanding SCI-induced synaptic changes in the cerebellum, which may prove critical for strategies focusing on promoting functional recovery. PMID:27504204

  10. A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats.

    PubMed

    Lin, Tiao; Tong, Wei; Chandra, Abhishek; Hsu, Shao-Yun; Jia, Haoruo; Zhu, Ji; Tseng, Wei-Ju; Levine, Michael A; Zhang, Yejia; Yan, Shi-Gui; Liu, X Sherry; Sun, Dongming; Young, Wise; Qin, Ling

    2015-01-01

    Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI. PMID:26528401

  11. A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats

    PubMed Central

    Lin, Tiao; Tong, Wei; Chandra, Abhishek; Hsu, Shao-Yun; Jia, Haoruo; Zhu, Ji; Tseng, Wei-Ju; Levine, Michael A; Zhang, Yejia; Yan, Shi-Gui; Liu, X Sherry; Sun, Dongming; Young, Wise; Qin, Ling

    2015-01-01

    Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI. PMID:26528401

  12. Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats.

    PubMed

    Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin

    2016-03-01

    Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI. PMID:26677784

  13. Impact of Increasing Age on Outcomes of Spinal Fusion in Adult Idiopathic Scoliosis

    PubMed Central

    Verla, Terence; Adogwa, Owoicho; Toche, Ulysses; Farber, S. Harrison; Petraglia, Frank; Murphy, Kelly R.; Thomas, Steven; Fatemi, Parastou; Gottfried, Oren; Bagley, Carlos A.; Lad, Shivanand P.

    2016-01-01

    Objective To investigate the role of advancing age on postoperative complications and revision surgery after fusion for scoliosis. Methods A retrospective, cohort study was performed using the Thomson Reuters MarketScan database, examining patients with adult scoliosis who underwent spinal fusion from 2000 to 2009. Primary outcomes included infection, hemorrhage and pulmonary embolism (PE) within 90 days of surgery, and refusion. The effect of increasing age was estimated using the odds ratio (OR) of complications in a multivariate logistic regression analysis, and a Cox proportional hazard model estimated the hazard ratio of refusion. Results A total of 8432 patients were included in this study. Overall, the average age was 53.3 years, with 26.90% males and 39% with a Charlson Comorbidity Score of ≥1. Most patients had commercial insurance (66.81%), with 26.03% and 7.16% covered by Medicare and Medicaid, respectively. Increasing age (per 5-year increment) was a significant predictor of hemorrhagic complication (OR, 1.06; confidence interval [CI], 1.01–1.11; P = 0.0196), PE (OR, 1.09; CI, 1.03–1.16; P = 0.0031), infection (OR, 1.04; CI, 1.01–1.07; P = 0.0053), and refusion (hazard ratio, 1.07; CI, 1.02–1.13; P = 0.0103). Conclusions In this study, age was associated with increased risk of hemorrhage, PE, infection, and refusion. With the aging population, the role of patient age on postoperative healing and outcomes deserves deeper investigation after repair of adult idiopathic scoliosis. PMID:26546999

  14. Cervical compensatory alignment changes following correction of adult thoracic deformity: a multicenter experience in 57 patients with a 2-year follow-up.

    PubMed

    Oh, Taemin; Scheer, Justin K; Eastlack, Robert; Smith, Justin S; Lafage, Virginie; Protopsaltis, Themistocles S; Klineberg, Eric; Passias, Peter G; Deviren, Vedat; Hostin, Richard; Gupta, Munish; Bess, Shay; Schwab, Frank; Shaffrey, Christopher I; Ames, Christopher P

    2015-06-01

    OBJECT Alignment changes in the cervical spine that occur following surgical correction for thoracic deformity remain poorly understood. The purpose of this study was to evaluate such changes in a cohort of adults with thoracic deformity treated surgically. METHODS The authors conducted a multicenter retrospective analysis of consecutive patients with thoracic deformity. Inclusion criteria for this study were as follows: corrective osteotomy for thoracic deformity, upper-most instrumented vertebra (UIV) between T-1 and T-4, lower-most instrumented vertebra (LIV) at or above L-5 (LIV ≥ L-5) or at the ilium (LIV-ilium), and a minimum radiographic follow-up of 2 years. Sagittal radiographic parameters were assessed preoperatively as well as at 3 months and 2 years postoperatively, including the C-7 sagittal vertical axis (SVA), C2-7 cervical lordosis (CL), C2-7 SVA, T-1 slope (T1S), T1S minus CL (T1S-CL), T2-12 thoracic kyphosis (TK), apical TK, lumbar lordosis (LL), pelvic incidence (PI), PI-LL, pelvic tilt (PT), and sacral slope (SS). RESULTS Fifty-seven patients with a mean age of 49.1 ± 14.6 years met the study inclusion criteria. The preoperative prevalence of increased CL (CL > 15°) was 48.9%. Both 3-month and 2-year apical TK improved from baseline (p < 0.05, statistically significant). At the 2-year follow-up, only the C2-7 SVA increased significantly from baseline (p = 0.01), whereas LL decreased from baseline (p < 0.01). The prevalence of increased CL was 35.3% at 3 months and 47.8% at 2 years, which did not represent a significant change. Postoperative cervical alignment changes were not significantly different from preoperative values regardless of the LIV (LIV ≥ L-5 or LIV-ilium, p > 0.05 for both). In a subset of patients with a maximum TK ≥ 60° (35 patients) and 3-column osteotomy (38 patients), no significant postoperative cervical changes were seen. CONCLUSION Increased CL is common in adult spinal deformity patients with thoracic deformities

  15. Comparison of arylalkylamine N-acetyltransferase and melatonin receptor type 1B immunoreactivity between young adult and aged canine spinal cord

    PubMed Central

    Ahn, Ji Hyeon; Park, Joon Ha; Kim, In Hye; Lee, Jae-Chul; Yan, Bing Chun; Yong, Min Sik; Lee, Choong Hyun; Choi, Jung Hoon; Yoo, Ki-Yeon; Hwang, In Koo; Moon, Seung Myung

    2014-01-01

    Melatonin affects diverse physiological functions through its receptor and plays an important role in the central nervous system. In the present study, we compared immunoreactivity patterns of arylalkylamine N-acetyltransferase (AANAT), an enzyme essential for melatonin synthesis, and melatonin receptor type 1B (MT2) in the spinal cord of young adult (2~3 years) and aged (10~12 years) beagle dogs using immunohistochemistry and Western blotting. AANAT-specific immunoreactivity was observed in the nuclei of spinal neurons, and was significantly increased in aged dog spinal neurons compared to young adult spinal neurons. MT2-specific immunoreactivity was found in the cytoplasm of spinal neurons, and was predominantly increased in the margin of the neuron cytoplasm in aged spinal cord compared to that in the young adult dogs. These increased levels of AANAT and MT2 immunoreactivity in aged spinal cord might be a feature of normal aging and associated with a feedback mechanism that compensates for decreased production of melatonin during aging. PMID:24962405

  16. Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice.

    PubMed

    Apostolova, Ivayla; Irintchev, Andrey; Schachner, Melitta

    2006-07-26

    Tenascin-R (TNR) is an extracellular glycoprotein in the CNS implicated in neural development and plasticity. Its repellent properties for growing axons in a choice situation with a conducive substrate in vitro have indicated that TNR may impede regeneration in the adult mammalian CNS. Here we tested whether constitutive lack of TNR has beneficial impacts on recovery from spinal cord injury in adult mice. Using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale, we found that open-field locomotion in TNR-deficient (TNR-/-) mice recovered better that in wild-type (TNR+/+) littermates after compression of the thoracic spinal cord. We also designed, validated, and applied a motion analysis approach allowing numerical assessment of motor functions. We found, in agreement with the BBB score, that functions requiring low levels of supraspinal control such as plantar stepping improved more in TNR-/- mice. This was not the case for motor tasks demanding precision such as ladder climbing. Morphological analyses revealed no evidence that improved recovery of some functions in the mutant mice were attributable to enhanced tissue sparing or axonal regrowth. Estimates of perisomatic puncta revealed reduced innervation by cholinergic and GABAergic terminals around motoneurons in intact TNR-/- compared with TNR+/+ mice. Relative to nonlesioned animals, spinal cord repair was associated with increase in GABAergic and decrease of glutamatergic puncta in TNR-/- but not in TNR+/+ mice. Our results suggest that TNR restricts functional recovery by limiting posttraumatic remodeling of synapses around motoneuronal cell bodies where TNR is normally expressed in perineuronal nets.

  17. Atlantoaxial dislocation adjacent to kyphotic deformity in a case of adult Larsen syndrome.

    PubMed

    Sahoo, Sushanta K; Deepak, Arsikere N; Salunke, Pravin

    2016-01-01

    Kyphotic deformity is often seen in Larsen syndrome. However, its progress in adults is not clear. The adjacent level compression in these patients adds to the difficulty regarding the level that needs to be operated. A 56-year-old male presented with neck pain and spastic quadriplegia. Radiology showed kyphotic deformity (sequelae of Larsen syndrome) with atlantoaxial dislocation. Cord compression was apparent at both levels but careful evaluation showed C1-2 level compression and some compression below the kyphotic deformity. The kyphotic spine was already fused and the canal diameter was adequate. The adjacent level C1-2 was fused and he improved dramatically. Correction of long-standing kyphotic deformity may not be necessary, as it unlikely to progress because of its tendency to fuse naturally. Rather, the adjacent levels are likely to compress the cord due to excessive stress. A proper clinical history and a thorough radiological examination help the surgeon to make an appropriate decision. PMID:27217658

  18. Deformity correction for vitamin D-resistant hypophosphatemic rickets of adults.

    PubMed

    Matsubara, Hidenori; Tsuchiya, Hiroyuki; Kabata, Tamon; Sakurakichi, Keisuke; Watanabe, Koji; Tomita, Katsuro

    2008-10-01

    We performed correction for bowing deformity of the lower extremities due to vitamin D-resistant hypophosphatemic rickets of three adults, six segments. The operative method was gradual correction and lengthening using distraction osteogenesis by Ilizarov external fixator or Heidelberg external fixator. The orders of the corrections were simultaneous correction of the bilateral femur for one patient, simultaneous correction of the ipsilateral leg for one patient, and diagonal correction of the bilateral leg for one patient. The mean correction angle was 30.5 degrees. The mean external fixation period was 146 days. Each orders of the corrections had its merits and demerits. All patients obtained a physiological alignment and good bone formation by taking Vitamin D and oral phosphate supplements even an adult patient. All the patients had articular pain, such as hip, knee, and ankle, however, these pains healed up. All the patients were satisfied with the outcomes at the time of the final follow-up interview in terms of their cosmetic improvement. Distraction osteogenesis for bowing deformity of the lower extremities due to vitamin D-resistant hypophosphatemic rickets was very effective method and could be applied to adult patients. However, the order of the corrections should be considered carefully depending on each patient. PMID:18157541

  19. Plantar measurements to determine success of surgical correction of Stage IIb adult acquired flatfoot deformity.

    PubMed

    Matheis, Erika A; Spratley, E Meade; Hayes, Curtis W; Adelaar, Robert S; Wayne, Jennifer S

    2014-01-01

    Adult acquired flatfoot deformity is a degenerative disease causing medial arch dysfunction. Surgical correction has typically involved tendon reconstruction with calcaneal osteotomy; however, the postoperative changes have not been fully characterized. The present study assessed the success of surgical correction of Stage IIb adult acquired flatfoot deformity through changes in plantar pressures and patient-generated outcome scores. With Institutional Review Board approval, 6 participants were evaluated before and after surgery using pedobarography, the Foot and Ankle Outcome Score, and the Medical Outcomes Study 36-item short-form questionnaire. The plantar pressures were recorded using a TekScan HRMat(®) during walking and in a 1- and 2-foot stance. The resulting contour maps were segmented into 9 regions, with the peak pressure, normalized force, and arch index calculated. Surgical effects were analyzed using paired t tests. Postoperatively, the Foot and Ankle Outcome Score and Medical Outcomes Study 36-item short-form questionnaire scores increased significantly from 180 ± 78 to 360 ± 136 (p < .03) and 47 ± 18 to 71 ± 19 (p = .06), respectively. During the 2-foot stance, the normalized force had increased significantly in the lateral midfoot (p < .03), although no significant differences were found in peak pressures. No significant differences were observed in the 1-foot stance. During walking, the normalized force increased significantly in the lateral mid- and forefoot (p < .05). The peak pressure increased significantly in the lateral forefoot (p < .01). The arch index values demonstrated no significant changes. The increased questionnaire scores indicated that surgical correction improved the self-perceived health of the participants. Lateral shifts in the peak pressure and normalized force suggest that forefoot and midfoot loading is altered postoperatively, consistent with the goal of offloading the dysfunctional arch. Thus, the present study has

  20. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  1. Management of Spinal Meningiomas.

    PubMed

    Ravindra, Vijay M; Schmidt, Meic H

    2016-04-01

    Spinal meningiomas are the most common spinal tumors encountered in adults, and account for 6.5% of all craniospinal tumors. The treatment for these lesions is primarily surgical, but emerging modalities may include chemotherapy and radiosurgery. In this article, the current management of spinal meningiomas and the body of literature surrounding conventional treatment is reviewed and discussed.

  2. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Skinner, Kate; Basbaum, Allan I.

    2005-11-01

    The peripheral axonal branch of primary sensory neurons readily regenerates after peripheral nerve injury, but the central branch, which courses in the dorsal columns of the spinal cord, does not. However, if a peripheral nerve is transected before a spinal cord injury, sensory neurons that course in the dorsal columns will regenerate, presumably because their intrinsic growth capacity is enhanced by the priming peripheral nerve lesion. As the effective priming lesion is made before the spinal cord injury it would clearly have no clinical utility, and unfortunately, a priming lesion made after a spinal cord injury results in an abortive regenerative response. Here, we show that two priming lesions, one made at the time of a spinal cord injury and a second 1 week after a spinal cord injury, in fact, promote dramatic regeneration, within and beyond the lesion. The first lesion, we hypothesize, enhances intrinsic growth capacity, and the second one sustains it, providing a paradigm for promoting CNS regeneration after injury. primary afferents | dorsal columns | neurite outgrowth | sprouting | priming

  3. Concise review: Spinal cord injuries: how could adult mesenchymal and neural crest stem cells take up the challenge?

    PubMed

    Neirinckx, Virginie; Cantinieaux, Dorothée; Coste, Cécile; Rogister, Bernard; Franzen, Rachelle; Wislet-Gendebien, Sabine

    2014-04-01

    Since several years, adult/perinatal mesenchymal and neural crest stem cells have been widely used to help experimental animal to recover from spinal cord injury. More interestingly, recent clinical trials confirmed the beneficial effect of those stem cells, which improve functional score of patients suffering from such lesions. However, a complete understanding of the mechanisms of stem cell-induced recovery is seriously lacking. Indeed, spinal cord injuries gathered a wide range of biochemical and physiopathological events (such as inflammation, oxidative stress, axonal damage, demyelination, etc.) and the genuine healing process after cell transplantation is not sufficiently defined. This review aims to sum up recent data about cell therapy in spinal cord lesions using mesenchymal or recently identified neural crest stem cells, by describing precisely which physiopathological parameter is affected and the exact processes underlying the observed changes. Overall, although significant advances are acknowledged, it seems that further deep mechanistic investigation is needed for the development of optimized and efficient cell-based therapy protocols.

  4. Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Arenas, Ernest; Rodriguez, Francisco Javier

    2012-01-01

    Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological

  5. Spinal tumor

    MedlinePlus

    Tumor - spinal cord ... spinal tumors occur in the nerves of the spinal cord itself. Most often these are ependymomas and other ... gene mutations. Spinal tumors can occur: Inside the spinal cord (intramedullary) In the membranes (meninges) covering the spinal ...

  6. Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Brown, Edward H.; Shum-Siu, Alice; Burke, Darlene A.; Magnuson, Trystan S. G.; Voor, Michael J.; Magnuson, David S. K.

    2015-01-01

    Background Locomotor training of rats with thoracic contusion spinal cord injuries can induce task-specific changes in stepping but rarely results in improved overground locomotion, possibly due to a ceiling effect. Thus, the authors hypothesize that incompletely injured rats maximally retrain themselves while moving about in their cages over the first few weeks postinjury. Objective To test the hypothesis using hindlimb immobilization after mild thoracic contusion spinal cord injury in adult female rats. A passive stretch protocol was included as an independent treatment. Methods Wheelchairs were used to hold the hindlimbs stationary in an extended position leaving the forelimbs free. The wheelchairs were used for 15 to 18 hours per day, 5 days per week for 8 weeks, beginning at 4 days postinjury. A 20-minute passive hindlimb stretch therapy was applied to half of the animals. Results Hindlimb locomotor function of the wheelchair group was not different from controls at 1 week postinjury but declined significantly over the next 4 weeks. Passive stretch had no influence on wheelchair animals but limited functional recovery of normally housed animals, preventing them from regaining forelimb–hindlimb coordination. Following 8 weeks of wheelchair immobilization and stretch therapy, only the wheelchair group displayed an improvement in function when returned to normal housing but retained significant deficits in stepping and coordination out to 16 weeks. Conclusion Hindlimb immobilization and passive stretch may hinder or conceal the normal course of functional recovery of spinal cord injured rats. These observations have implications for the management of acute clinical spinal cord injuries. PMID:21697451

  7. Action of thymol on spontaneous excitatory transmission in adult rat spinal substantia gelatinosa neurons.

    PubMed

    Xu, Zhi-Hao; Wang, Chong; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2015-10-01

    Thymol, which is contained in thyme essential oil, has various actions including antinociception and nerve conduction inhibition. Although thymol activates transient receptor potential (TRP) channels expressed in heterologous cells, it remains to be examined whether this is so in native neurons. It has not yet been examined how thymol affects synaptic transmission. In order to know how thymol modulates excitatory transmission with a focus on TRP activation, we investigated its effect on glutamatergic spontaneous excitatory transmission in lamina II (substantia gelatinosa; SG) neurons with which nerve terminals expressing TRP channels make synaptic contacts. The experiment was performed by using the blind whole-cell patch-clamp technique in adult rat spinal cord slices. Superfusing thymol (1 mM) for 3 min reversibly increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) with a minimal increase in its amplitude in all neurons examined. Seventy-seven% of the neurons produced an outward current at a holding potential of -70 mV. The sEPSC frequency increase and outward current produced by thymol were concentration-dependent with almost the same half-maximal effective concentration (EC50) values of 0.18 and 0.14 mM, respectively. These activities were repeated at a time interval of 30 min, although the sEPSC frequency increase but not outward current recovered with a slow time course. Voltage-gated Na(+)-channel blocker tetrodotoxin did not affect the thymol activities. The sEPSC frequency increase was inhibited by TRPA1 antagonist HC-030031 but not TRPV1 and TRPM8 antagonist (capsazepine and BCTC, respectively), while these antagonists had no effect on the outward current. This was so, albeit the two thymol activities had similar EC50 values. It is concluded that thymol increases the spontaneous release of L-glutamate onto SG neurons by activating TRPA1 channels while producing an outward current without TRP activation. Considering that the SG

  8. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  9. Minimally invasive technique for direct repair of the pars defects in young adults using a spinal endoscope: a technical note.

    PubMed

    Higashino, K; Sairyo, K; Katoh, S; Sakai, T; Kosaka, H; Yasui, N

    2007-06-01

    Pars defect (spondylolysis) of the lumbar spine can cause chronic low back pain, and it sometimes requires surgical intervention. Direct repair is selected for the surgery if young adult patients do not present significant disc degeneration and lumbar instability. In order to lessen damages of back muscles during surgery, we added the use of a spinal endoscope to the "Buck's screwing procedure" the direct repair. There are four steps in this procedure: 1) identification of the defect, 2) curettage (refresh) of the defect, 3) percutaneous insertion of the annulated screws and 4) cancellous bone grafting. All these steps can be done endoscopically. We treated 3 young adults--a baseball player, a professional cycle-racer and a sculptor--using this endoscopic procedure. There were no complications during or after the operation. Union was obtained in all defects within 3 months, and they returned to their previous activities within 6 months after the surgery.

  10. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications. PMID:24317494

  11. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications.

  12. Surgical management of intradural spinal cord tumors in children and young adults: A single-center experience with 50 patients

    PubMed Central

    Özkan, Neriman; Jabbarli, Ramazan; Wrede, Karsten Henning; Sariaslan, Zeynep; Stein, Klaus Peter; Dammann, Philipp; Ringelstein, Adrian; Sure, Ulrich; Sandalcioglu, Erol Ibrahim

    2015-01-01

    Background: Intradural spinal cord tumors (IDSCTs) in children and young adults are rare diseases. This present study is aimed to demonstrate our experience with a large series of children and young adults with IDSCT. Methods: A total of 50 patients aged <20 years with IDSCT treated in our department between 1990 and 2010 were included in the study. Clinical, histological, and radiological findings, treatment strategies, and clinical outcome were retrospectively assessed. Depending on the relation to the spinal cord, IDSCT were dichotomized into intramedullary SCT (IMSCT) and extramedullary SCT (EMSCT). The functional outcome was evaluated with the Frankel score assessing the longest available follow-up period. Results: Mean age was 10.3 years (range 6 months–19 years). IDSCT surgery was performed in 44 patients (88%). A common first symptom in patients with EMSCT was neck and back pain (41%), whereas monoparesis of arms (43%) were often seen in patients with IMSCT. The main duration of the symptoms was longer in patients with IMSCT. The postoperative functional outcome was generally comparable to the preoperative functional condition, while better for EMSCT (P < 0.01). The functional outcome at last follow-up correlated significantly with the preoperative Frankel score (P < 0.002). Conclusion: Due to the mostly mild impact of the surgery on the functional outcome, the surgical treatment of IDSCT in children and young patients can be uniquely advocated. PMID:26713174

  13. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.

    PubMed

    Boido, Marina; Rupa, Rosita; Garbossa, Diego; Fontanella, Marco; Ducati, Alessandro; Vercelli, Alessandro

    2009-09-01

    Spinal cord injury (SCI) often results in permanent neurological deficits below the injury site. Serotonergic raphespinal projections promote functional recovery after SCI, but spontaneous regeneration of most severed axons is limited by the glial cyst and scar that form at the lesion site. Stem cell (SC) transplantation offers a promising approach for inducing regeneration through the damaged area. Here we compare the effects of transplantation of embryonic neural precursors (NPs) or adult mesenchymal SCs, both of which are potential candidates for SC therapy. The spinal cord was hemisected at the L2 neuromer in adult mice. Two weeks post-injury, we transplanted neural precursors or mesenchymal SCs into the cord, caudal to the hemisection. Injured mice without a graft served as controls. Mice were tested for functional recovery on a battery of motor tasks, then killed and analysed for survival of grafted cells, for effects of engraftment on the local cellular environment and for the sprouting of serotonergic axons. Both types of SCs survived and were integrated into the host tissue, but only the NPs expressed neuronal markers. All transplanted animals displayed an increased number of serotonin-positive fibres caudal to the hemisection, compared with untreated mice. And both cell types led to improved motor performance. These results point to a therapeutic potential for such cell grafting.

  14. Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects

    PubMed Central

    Wong, Ronnie; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Dinn, Nicole A.; Sun, Cuiru; Huang, Yize; Smith, James A.; Yang, Victor X.D.

    2014-01-01

    Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery. PMID:25657873

  15. Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects.

    PubMed

    Wong, Ronnie; Jivraj, Jamil; Vuong, Barry; Ramjist, Joel; Dinn, Nicole A; Sun, Cuiru; Huang, Yize; Smith, James A; Yang, Victor X D

    2015-01-01

    Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.

  16. Quantification of locomotor recovery following spinal cord contusion in adult rats.

    PubMed

    McEwen, Melanie L; Springer, Joe E

    2006-11-01

    Injury to the spinal cord not only disrupts the functioning of spinal circuits at the site of the impact, but also limits sensorimotor function caudal to the level of the lesion. Ratings of gross locomotor skill are generally used to quantify locomotor recovery following spinal cord injury (SCI). The purpose of this study was to assess behavioral recovery following SCI with three tasks: (1) BBB ratings, (2) walking on a horizontal ladder, and (3) footprint analyses. Behavioral testing was conducted for 6 postoperative weeks, and then the spinal cords were processed for the amount of white matter spared. As expected, BBB ratings dramatically decreased and then improved during recovery. The number of hindlimb foot-faults on the horizontal ladder increased after injury and remained elevated during the recovery period. Footprint analyses revealed that sham-control rats used several different gaits to cross the runway. In contrast, the locomotor function of rats with a SCI was impaired throughout the postoperative period. Some locomotor parameters of the injured rats improved slightly (velocity, stride length, stride duration, stance duration), some did not change (interlimb coordination, swing duration, forelimb base of support, hindpaw angle), and others declined (hindlimb base of support) during the recovery period. Together, these results show that gross locomotor skill improved after SCI, while recovery of fine locomotor function was more limited. Multiple tests should be included in future experiments in order to assess gross and fine changes in sensorimotor function following SCI. PMID:17115910

  17. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-06-01

    The springback behavior of Ti-12Cr and Ti-29Nb-13Ta-4.6Zr (TNTZ) during deformation by bending was investigated; and the microstructures of the non-deformed and deformed parts of both alloys were systematically examined to clarify the relationship between microstructure and springback behavior. For the deformed Ti-12Cr alloy, deformation-induced ω-phase transformation occurs in both the areas of compression and tension within the deformed part, which increases the Young׳s modulus. With the deformed TNTZ alloy, deformation-induced ω-phase transformation is observed in the area of compression within the deformed part; while a deformation-induced α″ martensite transformation occurs in the area under tension, which is likely to be associated with the pseudoelasticity of TNTZ. Among these two alloys, Ti-12Cr exhibits a smaller springback and a much greater bending strength when compared with TNTZ; making Ti-12Cr the more advantageous for spinal fixation applications. PMID:24561725

  18. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-06-01

    The springback behavior of Ti-12Cr and Ti-29Nb-13Ta-4.6Zr (TNTZ) during deformation by bending was investigated; and the microstructures of the non-deformed and deformed parts of both alloys were systematically examined to clarify the relationship between microstructure and springback behavior. For the deformed Ti-12Cr alloy, deformation-induced ω-phase transformation occurs in both the areas of compression and tension within the deformed part, which increases the Young׳s modulus. With the deformed TNTZ alloy, deformation-induced ω-phase transformation is observed in the area of compression within the deformed part; while a deformation-induced α″ martensite transformation occurs in the area under tension, which is likely to be associated with the pseudoelasticity of TNTZ. Among these two alloys, Ti-12Cr exhibits a smaller springback and a much greater bending strength when compared with TNTZ; making Ti-12Cr the more advantageous for spinal fixation applications.

  19. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery

    PubMed Central

    Balaji, V.; Kaila, R.; Wilson, L.

    2016-01-01

    Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418. PMID:27121215

  20. Assessment of axonal dysfunction in an in vitro model of acute compressive injury to adult rat spinal cord axons.

    PubMed

    Fehlings, M G; Nashmi, R

    1995-04-24

    An in vitro model of spinal cord injury was developed to study the pathophysiology of posttraumatic axonal dysfunction. A 25 mm length of thoracic spinal cord was removed from the adult male rat (n = 27). A dorsal column segment was isolated and pinned in a recording chamber and superfused with oxygenated (95% O2/5% CO2) Ringer. The cord was stimulated with a bipolar electrode, while two point responses were recorded extracellularly. Injury was accomplished by compression with a modified aneurysm clip which applied a 2 g force for 15 s. With injury the compound action potential (CAP) amplitude decreased to 53.7 +/- 5.4% (P < 0.001), while the latency increased to 115.6 +/- 3.1% (P < 0.0025) of control values. The absolute refractory period increased with injury from 1.7 +/- 0.1 ms to 2.1 +/- 0.1 ms (P < 0.05). The infusion of 5 mM 4-aminopyridine (4-AP), a blocker of voltage-sensitive 'fast' K channels confined to internodal regions, resulted in broadening of the CAP of injured axons to 114.9 +/- 3.1% of control (P < 0.05). Ultrastructural analysis of the injured dorsal column segments revealed marked axonal and myelin pathology, including considerable myelin disruption. In conclusion, we have developed and characterized an in vitro model of mammalian spinal cord injury which simulates many of the features of in vivo trauma. Injured axons display characteristic changes in physiological function including a shift in refractory period and high frequency conduction failure. The ultrastructural data and response of injured axons to 4-AP suggest that myelin disruption with exposure of 'fast' K+ channels contributes to posttraumatic axonal dysfunction.

  1. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    PubMed

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h. PMID:24071567

  2. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    PubMed

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.

  3. Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats.

    PubMed

    Becker, Daniel; Gary, Devin S; Rosenzweig, Ephron S; Grill, Warren M; McDonald, John W

    2010-04-01

    Functional electrical stimulation (FES) can restore control and offset atrophy to muscles after neurological injury. However, FES has not been considered as a method for enhancing CNS regeneration. This paper demonstrates that FES dramatically enhanced progenitor cell birth in the spinal cord of rats with a chronic spinal cord injury (SCI). A complete SCI at thoracic level 8/9 was performed on 12 rats. Three weeks later, a FES device to stimulate hindlimb movement was implanted into these rats. Twelve identically-injured rats received inactive FES implants. An additional control group of uninjured rats were also examined. Ten days after FES implantation, dividing cells were marked with bromodeoxyuridine (BrdU). The "cell birth" subgroup (half the animals in each group) was sacrificed immediately after completion of BrdU administration, and the "cell survival" subgroup was sacrificed 7 days later. In the injured "cell birth" subgroup, FES induced an 82-86% increase in cell birth in the lumbar spinal cord. In the injured "cell survival" subgroup, the increased lumbar newborn cell counts persisted. FES doubled the proportion of the newly-born cells which expressed nestin and other markers suggestive of tripotential progenitors. In uninjured rats, FES had no effect on cell birth/survival. This report suggests that controlled electrical activation of the CNS may enhance spontaneous regeneration after neurological injuries.

  4. Structural and functional alterations of spinal cord axons in adult Long Evans Shaker (LES) dysmyelinated rats.

    PubMed

    Eftekharpour, Eftekhar; Karimi-Abdolrezaee, Soheila; Sinha, Kusum; Velumian, Alexander A; Kwiecien, Jacek M; Fehlings, Michael G

    2005-06-01

    Abnormal formation or loss of myelin is a distinguishing feature of many neurological disorders and contributes to the pathobiology of neurotrauma. In this study we characterize the functional and molecular changes in CNS white matter in Long Evans Shaker (LES) rats. These rats have a spontaneous mutation of the gene encoding myelin basic protein which results in severe dysmyelination of the central nervous system (CNS), providing a unique model for demyelinating/dysmyelinating disorders. To date, the functional and molecular changes in CNS white matter in this model are not well understood. We have used in vivo somatosensory evoked potential (SSEP), in vitro compound action potential (CAP) recording in isolated dorsal columns, confocal immunohistochemistry, Western blotting and real-time PCR to examine the electrophysiological, molecular and cellular changes in spinal cord white matter in LES rats. We observed that dysmyelination is associated with dispersed labeling of Kv1.1 and Kv1.2 K+ channel subunits, as well as Caspr, a protein normally confined to paranodes, along the LES rat spinal cord axons. Abnormal electrophysiological properties including attenuation of CAP amplitude and conduction velocity, high frequency conduction failure and enhanced sensitivity to K+ channel blockers 4-aminopyridine and dendrotoxin-I were observed in spinal cord axons from LES rats. Our results in LES rats clarify some of the key molecular, cellular and functional consequences of dysmyelination and myelin-axon interactions. Further understanding of these issues in this model could provide critical insights for neurological disorders characterized by demyelination. PMID:15869936

  5. Antinociceptive Effects of Spinal Manipulative Therapy on Nociceptive Behavior of Adult Rats during the Formalin Test

    PubMed Central

    Onifer, Stephen M.; Reed, William R.; Sozio, Randall S.; Long, Cynthia R.

    2015-01-01

    Optimizing pain relief resulting from spinal manipulative therapies, including low velocity variable amplitude spinal manipulation (LVVA-SM), requires determining their mechanisms. Pain models that incorporate simulated spinal manipulative therapy treatments are needed for these studies. The antinociceptive effects of a single LVVA-SM treatment on rat nociceptive behavior during the commonly used formalin test were investigated. Dilute formalin was injected subcutaneously into a plantar hindpaw. Licking behavior was video-recorded for 5 minutes. Ten minutes of LVVA-SM at 20° flexion was administered with a custom-made device at the lumbar (L5) vertebra of isoflurane-anesthetized experimental rats (n = 12) beginning 10 minutes after formalin injection. Hindpaw licking was video-recorded for 60 minutes beginning 5 minutes after LVVA-SM. Control rats (n = 12) underwent the same methods except for LVVA-SM. The mean times spent licking the formalin-injected hindpaw of both groups 1–5 minutes after injection were not different. The mean licking time during the first 20 minutes post-LVVA-SM of experimental rats was significantly less than that of control rats (P < 0.001). The mean licking times of both groups during the second and third 20 minutes post-LVVA-SM were not different. Administration of LVVA-SM had a short-term, remote antinociceptive effect similar to clinical findings. Therefore, mechanistic investigations using this experimental approach are warranted. PMID:26693243

  6. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    NASA Astrophysics Data System (ADS)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  7. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms.

    PubMed

    Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms--modeled entirely in mesh surfaces--of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo

  8. Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals

    PubMed Central

    Kumamoto, Eiichi; Fujita, Tsugumi

    2016-01-01

    Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (−)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain. PMID:27483289

  9. Concurrent Intraventricular and Sacral Spinal Drop Metastasis of Ganglioglioma in an Adult Patient: A Case Report and Review of Literature

    PubMed Central

    Rhee, Jay W; Jha, Ribhu T; Felbaum, Daniel; Kalhorn, Christopher G

    2016-01-01

    Gangliogliomas are uncommon tumors of the central nervous system and rarely occur in the lateral ventricle or present with drop metastasis. We report a 49-year-old male who presented with a six-week history of left leg pain and numbness. Clinical examination revealed no focal neurological deficits. Magnetic resonance imaging (MRI) demonstrated enhancing nodular lesions in the sacral spine abutting the S2 nerve root. Further imaging of the neuroaxis demonstrated a cystic lesion in the left frontal horn of the lateral ventricle. Gross total surgical resection of the ventricular lesion was performed through a transcortical approach, followed by resection of the sacral spinal drop metastasis in a staged manner. A histopathological analysis revealed the diagnosis of low-grade ganglioglioma. To our knowledge, this is the first reported case of a low-grade intraventricular ganglioglioma presenting with symptoms associated with drop metastasis in an adult patient. PMID:27158568

  10. Glial changes in the phrenic nucleus following superimposed cervical spinal cord hemisection and peripheral chronic phrenicotomy injuries in adult rats.

    PubMed

    Gould, D J; Goshgarian, H G

    1997-11-01

    The objective of the present study was to characterize the microglial and astroglial reaction in the phrenic nucleus following either an ipsilateral C2 spinal cord hemisection, a peripheral phrenicotomy, or a combination of the two injuries in the same adult rat. The present study used three different fluorescent markers and a confocal laser image analysis system to study glial cells and phrenic motoneurons at the light microscopic level. Young adult female rats were divided into one combined injury group (left phrenicotomy and left C2 spinal hemisection with periods of 1 to 4 weeks between injuries, N = 12) and three other groups consisting of noninjured animals (N = 3), animals that received C2 hemisection only (N = 3), and animals with phrenicotomy only (survival periods of 2 (N = 3) and 4 (N = 3) weeks after phrenicotomy). Fluorogold was injected into the diaphragm to label phrenic motoneurons in all animals. Microglia and astrocytes were labeled with Texas red and fluorescein, respectively, and were visualized simultaneously along with phrenic motoneurons. The results suggest that the microglial and astrocytic response in the superimposed injury model are similar to the glial reactions characteristically seen in a peripheral axotomy alone model. These reactions include proliferation and migration of microglial cells along the perineuronal surface (peaking at 2 weeks) and the hypertrophy of astrocytes (peaking at 4 weeks). In addition, the increase in astrocytic tissue, which is characteristically seen in response to axotomy alone, is significantly enhanced in the superimposed injury model. Also, there is a large and rapid increase in GFAP-positive astrocytes within 24 hours after hemisection alone. The information gained from the present study will aid in determining, predicting, and eventually manipulating central nervous system responses to multiple injuries with the objective of reestablishing function in the damaged CNS.

  11. Transverse diameter of the lumbar spinal canal in normal adult Saudis.

    PubMed

    Amonoo-Kuofi, H S; Patel, P J; Fatani, J A

    1990-01-01

    Pathological changes in the diameters of the lumbar spinal canal may be associated with low back pain. The assessment of the size of the canal is therefore an important diagnostic procedure. Evidence suggests that there are ethnic differences in the dimensions of the canal. A radiogrammetric study was therefore undertaken to establish norms of the transverse diameter for the Saudi population. The results show that the transverse diameter of the canal in Saudis differ from that of other populations, but the shape is similar to those of earlier reports. Intersegmental differences which are useful for the detection of isolated segmental anomalies were also calculated. The significance of the findings is discussed.

  12. Soft Tissue Deformations Contribute to the Mechanics of Walking in Obese Adults

    PubMed Central

    Fu, Xiao-Yu; Zelik, Karl E.; Board, Wayne J.; Browning, Raymond C.; Kuo, Arthur D.

    2014-01-01

    Obesity not only adds to the mass that must be carried during walking, but also changes body composition. Although extra mass causes roughly proportional increases in musculoskeletal loading, less well understood is the effect of relatively soft and mechanically compliant adipose tissue. Purpose To estimate the work performed by soft tissue deformations during walking. The soft tissue would be expected to experience damped oscillations, particularly from high force transients following heel strike, and could potentially change the mechanical work demands for walking. Method We analyzed treadmill walking data at 1.25 m/s for 11 obese (BMI > 30 kg/m2) and 9 non-obese (BMI < 30 kg/m2) adults. The soft tissue work was quantified with a method that compares the work performed by lower extremity joints as derived using assumptions of rigid body segments, with that estimated without rigid body assumptions. Results Relative to body mass, obese and non-obese individuals perform similar amounts of mechanical work. But negative work performed by soft tissues was significantly greater in obese individuals (p= 0.0102), equivalent to about 0.36 J/kg vs. 0.27 J/kg in non-obese individuals. The negative (dissipative) work by soft tissues occurred mainly after heel strike, and for obese individuals was comparable in magnitude to the total negative work from all of the joints combined (0.34 J/kg vs. 0.33 J/kg for obese and non-obese adults, respectively). Although the joints performed a relatively similar amount of work overall, obese individuals performed less negative work actively at the knee. Conclusion The greater proportion of soft tissues in obese individuals results in substantial changes in the amount, location, and timing of work, and may also impact metabolic energy expenditure during walking. PMID:25380475

  13. Effects of mechanical loading on the expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in a rat spinal deformity model.

    PubMed

    Kaspiris, Angelos; Chronopoulos, Efstathios; Grivas, Theodoros B; Vasiliadis, Elias; Khaldi, Lubna; Lamprou, Margarita; Lelovas, Pavlos P; Papaioannou, Nikolaos; Dontas, Ismene A; Papadimitriou, Evangelia

    2016-02-01

    Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain.

  14. Effects of mechanical loading on the expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in a rat spinal deformity model.

    PubMed

    Kaspiris, Angelos; Chronopoulos, Efstathios; Grivas, Theodoros B; Vasiliadis, Elias; Khaldi, Lubna; Lamprou, Margarita; Lelovas, Pavlos P; Papaioannou, Nikolaos; Dontas, Ismene A; Papadimitriou, Evangelia

    2016-02-01

    Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain. PMID:26615567

  15. Kyphotic deformity after laminectomy surgery for a gunshot wound to the spine: a case report

    PubMed Central

    Taheri, Morteza

    2016-01-01

    Spinal kyphotic deformity after spinal laminectomy or laminoplasty is more common in pediatric patients than adults. Laminectomy can lead to decreased cartilage growth, anterior wedging and posterior spinal muscle insufficiency which can result in kyphotic deformity. Herein we outline a case report of a child presenting with kyphotic deformity after receiving a spinal laminectomy to treat a penetrating spinal trauma. The 8-year-old male presented with penetrating spinal trauma following a gunshot wound and subsequently underwent L1 laminectomy and thecal sac decompression to remove the foreign body. In a follow-up examination approximately one month after surgery, imaging revealed kyphotic deformity and the patient was referred to the Rasoul-e-Akram Hospital. The patient then underwent surgical reconstruction. The postoperative computed tomography (CT) scan showed appropriate repair of sagittal balance and the patient’s symptoms gradually improved. Post-laminectomy kyphosis is a notable concern and complication in the pediatric population and can occur shortly after surgery. The following interventions can decrease the likelihood of post-laminectomy kyphosis: minimal muscle dissection and bone removal during laminectomy, avoidance of facet disruption, use of laminoplasty rather than laminectomy, postoperative immobilization/bracing and regular follow-up for early detection and treatment of any deformity.

  16. Kyphotic deformity after laminectomy surgery for a gunshot wound to the spine: a case report.

    PubMed

    Babashahi, Ali; Taheri, Morteza

    2016-03-01

    Spinal kyphotic deformity after spinal laminectomy or laminoplasty is more common in pediatric patients than adults. Laminectomy can lead to decreased cartilage growth, anterior wedging and posterior spinal muscle insufficiency which can result in kyphotic deformity. Herein we outline a case report of a child presenting with kyphotic deformity after receiving a spinal laminectomy to treat a penetrating spinal trauma. The 8-year-old male presented with penetrating spinal trauma following a gunshot wound and subsequently underwent L1 laminectomy and thecal sac decompression to remove the foreign body. In a follow-up examination approximately one month after surgery, imaging revealed kyphotic deformity and the patient was referred to the Rasoul-e-Akram Hospital. The patient then underwent surgical reconstruction. The postoperative computed tomography (CT) scan showed appropriate repair of sagittal balance and the patient's symptoms gradually improved. Post-laminectomy kyphosis is a notable concern and complication in the pediatric population and can occur shortly after surgery. The following interventions can decrease the likelihood of post-laminectomy kyphosis: minimal muscle dissection and bone removal during laminectomy, avoidance of facet disruption, use of laminoplasty rather than laminectomy, postoperative immobilization/bracing and regular follow-up for early detection and treatment of any deformity. PMID:27683698

  17. Transplantation of Adult Monkey Neural Stem Cells into A Contusion Spinal Cord Injury Model in Rhesus Macaque Monkeys

    PubMed Central

    Hajinasrollah, Mostafa; Zare Mehrjerdi, Nargess; Azizi, Hossein; Hemmesi, Katayoun; Moghiminasr, Reza; Azhdari, Zahra; Talebi, Ardeshir; Mohitmafi, Soroush; Vosough Taqi Dizaj, Ahmad; Sharifi, Giuve; Baharvand, Hossein; Rezaee, Omidvar; Kiani, Sahar

    2014-01-01

    Objective Currently, cellular transplantation for spinal cord injuries (SCI) is the subject of numerous preclinical studies. Among the many cell types in the adult brain, there is a unique subpopulation of neural stem cells (NSC) that can self-renew and differentiate into neurons. The study aims, therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. Materials and Methods In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model was confirmed by magnetic resonance imaging (MRI) and histological analysis. Animals were clinically observed for 6 months. Results Analysis confirmed homing of mNSCs into the injury site. Transplanted cells expressed neuronal markers (TubIII). Hind limb performance improved in trans- planted animals based on Tarlov’s scale and our established behavioral tests for monkeys. Conclusion Our findings have indicated that mNSCs can facilitate recovery in contusion SCI models in rhesus macaque monkeys. Additional studies are necessary to determine the im- provement mechanisms after cell transplantation. PMID:24567941

  18. A population of patient-specific adult acquired flatfoot deformity models before and after surgery.

    PubMed

    Spratley, E M; Matheis, E A; Hayes, C W; Adelaar, R S; Wayne, J S

    2014-09-01

    Following IRB approval, a cohort of 3-D rigid-body computational models was created from submillimeter MRIs of clinically diagnosed Adult Acquired Flatfoot Deformity patients and employed to investigate postoperative foot/ankle function and surgical effect during single-leg stance. Models were constrained through physiologic joint contact, passive soft-tissue tension, active muscle force, full body weight, and without idealized joints. Models were validated against patient-matched controls using clinically utilized radiographic angle and distance measures and plantar force distributions in the medial forefoot, lateral forefoot, and hindfoot. Each model further predicted changes in strain for the spring ligament, deltoid ligament, and plantar fascia, as well as joint contact loads for three midfoot joints, the talonavicular, navicular-1st cuneiform, and calcaneocuboid. Radiographic agreement ranged across measures, with average absolute deviations of <5° and <4 mm indicating generally good agreement. Postoperative plantar force loading in patients and models was reduced for the medial forefoot and hindfoot concomitant with increases in the lateral forefoot. Model predicted reductions in medial soft-tissue strain and increases in lateral joint contact load were consistent with in vitro observations and elucidate the biomechanical mechanisms of repair. Thus, validated rigid-body models offer promise for the investigation of foot/ankle kinematics and biomechanical behaviors that are difficult to measure in vivo.

  19. Validation of a population of patient-specific adult acquired flatfoot deformity models.

    PubMed

    Spratley, E Meade; Matheis, Erika A; Hayes, Curtis W; Adelaar, Robert S; Wayne, Jennifer S

    2013-12-01

    Adult acquired flatfoot deformity (AAFD) is a degenerative disease resulting in malalignment of the mid- and hindfoot secondary to posterior tibial tendon dysfunction and increasing implication of ligament pathologies. Despite the complex 3D nature of AAFD, 2D radiographs are still employed to diagnose and stage the disease. Computer modeling techniques allow for accurate 3D recreations of musculoskeletal systems for the investigation of biomechanical factors contributing to disease. Following Institutional Review Board approval, the lower limbs of six diagnosed AAFD sufferers were imaged with MRI, photographs, and X-ray. Next, a radiologist graded the MRI attenuation of eight soft-tissues implicated in AAFD. Six patient-specific rigid-body models were then created and loaded according to patient weight, graded soft-tissues, and extrinsic muscles. Model function was validated using clinically relevant kinematic measures in three planes. Agreement varied depending on the measure, with average absolute deviations of < 7° for angles and <4 mm for distances. Additionally, the clinically favored AP talonavicular coverage angle, ML talo-1st metatarsal angle, and ML 1st cuneiform height showed strong correlations of R(2) = 0.63, 0.75, and 0.85, respectively. Thus, computer modeling offers a promising methodology for the non-invasive investigation of in vivo kinematic behavior in pathologic feet and, once validated, may further be used to investigate biomechanical parameters that are difficult to measure clinically.

  20. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  1. Acute and Chronic Deficits in the Urinary Bladder after Spinal Contusion Injury in the Adult Rat

    PubMed Central

    Herrera, Juan J.; Haywood-Watson, Ricky J.L.

    2010-01-01

    Abstract Traumatic spinal cord injury (SCI) permanently alters bladder function in humans. Hematuria and cystitis occur in both human SCI as well as in rodent models of SCI. Others have reported early SCI-dependent disruption to bladder uroepithelial integrity that results in increased permeability to urine and urine-borne substances. This can result in cystitis, or inflammation of the bladder, an ongoing pathological condition present throughout the chronic phase of SCI in humans. The goals of our study were twofold: (1) to begin to examine the inflammatory and molecular changes that occur within the bladder uroepithelium using a clinically-relevant spinal contusion model of injury, and (2) to assess whether these alterations continue into the chronic phase of SCI. Rats received either moderate SCI or sham surgery. Urine was collected from SCI and sham subjects over 7 days or at 7 months to assess levels of excreted proteins. Inflammation in the bladder wall was assessed via biochemical and immunohistochemical methods. Bladder tight junction proteins, mediators of uroepithelial integrity, were also measured in both the acute and chronic phases of SCI. Urine protein and hemoglobin levels rapidly increase following SCI. An SCI-dependent elevation in numbers of neutrophils within the bladder wall peaked at 48 h. Bladder tight junction proteins demonstrate a rapid but transient decrease as early as 2 h post-SCI. Surprisingly, elevated levels of urine proteins and significant deficits in bladder tight junction proteins could be detected in chronic SCI, suggesting that early pathological changes to the bladder may continue throughout the chronic phase of injury. PMID:19891526

  2. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment.

    PubMed

    Milbreta, Ulla; von Boxberg, Ysander; Mailly, Philippe; Nothias, Fatiha; Soares, Sylvia

    2014-05-01

    Upregulation of extracellular chondroitin sulfate proteoglycans (CSPG) is a primary cause for the failure of axons to regenerate after spinal cord injury (SCI), and the beneficial effect of their degradation by chondroitinase ABC (ChABC) is widely documented. Little is known, however, about the effect of ChABC treatment on astrogliosis and revascularization, two important factors influencing axon regrowth. This was investigated in the present study. Immediately after a spinal cord hemisection at thoracic level 8-9, we injected ChABC intrathecally at the sacral level, repeated three times until 10 days post-injury. Our results show an effective cleavage of CSPG glycosaminoglycan chains and stimulation of axonal remodeling within the injury site, accompanied by an extended period of astrocyte remodeling (up to 4 weeks). Interestingly, ChABC treatment favored an orientation of astrocytic processes directed toward the injury, in close association with axons at the lesion entry zone, suggesting a correlation between axon and astrocyte remodeling. Further, during the first weeks post-injury, ChABC treatment affected the morphology of laminin-positive blood vessel basement membranes and vessel-independent laminin deposits: hypertrophied blood vessels with detached or duplicated basement membrane were more numerous than in lesioned untreated animals. In contrast, at later time points, laminin expression increased and became more directly associated with newly formed blood vessels, the size of which tended to be closer to that found in intact tissue. Our data reinforce the idea that ChABC injection in combination with other synergistic treatments is a promising therapeutic strategy for SCI repair.

  3. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.

    PubMed

    Semler, Joerg; Wellmann, Katharina; Wirth, Felicitas; Stein, Gregor; Angelova, Srebrina; Ashrafi, Mahak; Schempf, Greta; Ankerne, Janina; Ozsoy, Ozlem; Ozsoy, Umut; Schönau, Eckhard; Angelov, Doychin N; Irintchev, Andrey

    2011-07-01

    Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. Recovery of locomotion was analyzed using video recordings of beam walking and inclined ladder climbing. Three out of four parameters used in mice appeared suitable: the foot-stepping angle (FSA) and the rump-height index (RHI), measured during beam walking, and for estimating paw placement and body weight support, respectively, and the number of correct ladder steps (CLS), assessing skilled limb movements. These parameters, similar to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scores, correlated with lesion volume and showed significant differences between moderately and severely injured rats at 1-9 weeks after SCI. The beam parameters, but not CLS, correlated well with the BBB scores within ranges of poor and good locomotor abilities. FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures. PMID:21428717

  4. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    PubMed

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  5. Neurosurgical approaches to spinal infections.

    PubMed

    Hazer, Derya Burcu; Ayhan, Selim; Palaoglu, Selcuk

    2015-05-01

    Spinal infection is rare. Clinical suspicion is important in patients with nonmechanical neck and/or back pain to make the proper diagnosis in early disease. Before planning surgery, a thorough evaluation of the spinal stability, alignment, and deformity is necessary. Timing of surgery, side of approach, appropriate surgical technique, and spinal instruments used are crucial. Biomechanical preservation of the spinal column during and after the infection is a significant issue. Postoperative spine infection is another entity of which spinal surgeons should be aware of. Proper septic conditions with meticulous planning of surgery are essential for successful spine surgery and better outcome. PMID:25952179

  6. Health promotion through fitness for adolescents and young adults following spinal cord injury.

    PubMed

    Edwards, P A

    1996-09-01

    A study by Warms (1987) sought to determine both the health care actually received by individuals following a spinal cord injury and the services they desired but did not obtain. The findings suggest that the general health promotion needs of these individuals are the same as for the general population and, though disability related topics are discussed with health care providers, information on health promotion is not received. The leading two services desired by the respondents but not obtained were planning an exercise program (43%) and referral to a fitness center (26%). A plan for health promotion through fitness was designed for individuals with physical disabilities to assist in meeting the identified needs. The program provides several benefits which include: improved function, a positive impact on lifestyle, and a decrease in the risk of complications. The plan includes a general health appraisal and fitness assessment as well as an exercise and fitness prescription with adapted physical activity and sports participation as integral parts. Evaluation methodology is incorporated to demonstrate that health promotion activities positively effect function and lifestyle and decrease severity of complications.

  7. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats.

    PubMed

    Sydekum, Esther; Ghosh, Arko; Gullo, Miriam; Baltes, Christof; Schwab, Martin; Rudin, Markus

    2014-02-15

    Thoracic spinal cord injured rats rely largely on forelimbs to walk, as their hindlimbs are dysfunctional. This increased limb use is accompanied by expansion of the cortical forelimb sensory representation. It is unclear how quickly the representational changes occur and whether they are at all related to the behavioral adaptation. Using blood oxygenation level dependent functional mangetic resonance imaging (BOLD-fMRI) we show that major plastic changes of the somato-sensory map can occur as early as one day after injury. The extent of map increase was variable between animals, and some animals showed a reduction in map size. However, at three or seven days after injury a significant enhancement of the forelimb representation was evident in all the animals. In a behavioral test for precise limb control, crossing of a horizontal ladder, the injured rats relied almost entirely on their forelimbs; they initially made more mistakes than at 7 days post injury. Remarkably, in the individual animals the behavioral performance seen at seven days was proportional to the physiological change present at one day after injury. The rapid increase in cortical representation of the injury-spared body part may provide the additional neural substrate necessary for high level behavioral adaptation. PMID:24185021

  8. Postural and dynamic balance while walking in adults with incomplete spinal cord injury.

    PubMed

    Lemay, Jean-François; Duclos, Cyril; Nadeau, Sylvie; Gagnon, Dany; Desrosiers, Émilie

    2014-10-01

    The purpose of this study was to characterize balance in individuals with and without an incomplete spinal cord injury (ISCI) during the single support phase of gait. Thirty-four individuals (17 with a ISCI, 17 able-bodied) walked at their self-selected walking speed. Among those, eighteen individuals (9 with ISCI, 9 able-bodied) with a similar walking speed were also analyzed. Stabilizing and destabilizing forces quantified balance during the single support phase of gait. The biomechanical factors included in the equation of the stabilizing and destabilizing forces served as explanatory factors. Individuals with ISCI had a lower stabilizing force and a higher destabilizing force compared to able-bodied individuals. The main explanatory factors of the forces extracted from the equations were the speed of the center of mass (maximal stabilizing force) and the distance between the center of pressure and the base of support (minimal destabilizing force). Only the minimal destabilizing force was significantly different among subgroups with a similar walking speed. The stabilizing and destabilizing forces suggest that individuals with ISCI were more stable than able-bodied, which was achieved by walking more slowly - which decrease the speed of the center of mass - and keeping the center of pressure away from the margin of the base of support in order to maintain balance within their range of physical ability.

  9. Comparison of pulmonary function and back muscle strength according to the degree of spinal curvature of healthy adults.

    PubMed

    You, Jae Eung; Lee, Hye Young; Kim, Kyoung

    2015-06-01

    [Purpose] Degree of curvature on the spine is known to affect respiratory function and back muscle activation. We compared pulmonary function and back muscle strength according to the degree of curvature of the spine of healthy adults. [Subjects and Methods] Twenty-three healthy volunteers were enrolled. They were divided into two groups according to the degree of curvature of the spine: the below 2° group, and the above 2° group. The degree of curvature was assessed using the Adams forward bending test and a scoliometer. A pulmonary function test (PFT) was conducted, and back muscle strength was measured. [Results] No significant differences in PFT were found between the below 2° group and the above 2° group, in terms of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC), or peak expiratory flow (PEF). However, back muscle strength in the below 2 group was significantly higher than that of the above 2 group. [Conclusion] Our findings indicate that the degree of curvature of the spine is associated with back muscle strength in subjects who have spinal curvature within the normal range. Therefore, evaluation and treatment of back muscle strength might be helpful for preventing the progress of curvature of the spine in adolescents with potential scoliosis. PMID:26180321

  10. Lifestyle Changes and Pressure Ulcer Prevention in Adults With Spinal Cord Injury in the Pressure Ulcer Prevention Study Lifestyle Intervention

    PubMed Central

    Ghaisas, Samruddhi; Pyatak, Elizabeth A.; Blanche, Erna; Clark, Florence

    2015-01-01

    Pressure ulcers (PrUs) are a major burden to patients with spinal cord injury (SCI), affecting their psychological, physical, and social well-being. Lifestyle choices are thought to contribute to the risk of developing PrUs. This article focuses on the interaction between lifestyle choices and the development of PrUs in community settings among participants in the University of Southern California–Rancho Los Amigos National Rehabilitation Center Pressure Ulcer Prevention Study (PUPS II), a randomized controlled trial of a lifestyle intervention for adults with SCI. We conducted a secondary cross-case analysis of treatment notes of 47 PUPS II participants and identified four patterns relating PrU development to lifestyle changes: positive PrU changes (e.g., healing PrUs) with positive lifestyle changes, negative or no PrU changes with positive lifestyle changes, positive PrU changes with minor lifestyle changes, and negative or no PrU changes with no lifestyle changes. We present case studies exemplifying each pattern. PMID:25553751

  11. Postural control during gait initiation and termination of adults with incomplete spinal cord injury.

    PubMed

    Lemay, Jean-François; Duclos, Cyril; Nadeau, Sylvie; Gagnon, Dany H

    2015-06-01

    Gait initiation and termination are potentially challenging tasks for balance due to the transition from a quasi-static bipedal phase to a dynamic single-support phase. The purpose of this study was to compare the bipedal and single-support phases of gait initiation and termination in individuals with incomplete spinal cord injury (ISCI). Twelve individuals with ISCI were evaluated on the dynamic and postural components of balance using the stabilizing and destabilizing forces during gait initiation, termination and natural gait. Phase comparisons were made using non parametric tests. Visual inspection of the force profile of the factors explaining the forces was also conducted. Gait termination challenged more the postural control during the single-support phase than the bipedal phase for the dynamic component of the stabilizing/destabilizing forces model (p=.002). For gait initiation, the most challenging phase varied with the components analyzed (single-support phase for the dynamic component, bipedal phase for the postural component) (p⩽.008). The single support phase is more challenged during gait termination (both components) (p⩽.015) while the bipedal phase is more challenged during gait initiation (dynamic components) (p=.012). The stabilizing force and the speed of the center of mass on the one hand, and destabilizing force and the distance between the center of pressure and the base of support on the other hand, had a similar profile. The single-support phase of gait termination was the most challenging among all phases evaluated, being as challenging as the single-support phase of level natural gait. This phase should be targeted in rehabilitation in order to improve balance and decrease the risk of falling in this population.

  12. Docosahexaenoic Acid Pretreatment Confers Protection and Functional Improvements after Acute Spinal Cord Injury in Adult Rats

    PubMed Central

    Figueroa, Johnny D.; Cordero, Kathia; Baldeosingh, Keisha; Torrado, Aranza I.; Walker, Robert L.; Miranda, Jorge D.

    2012-01-01

    Abstract Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA pretreatment experimental paradigm that targets acute cellular and molecular events during the first week after SCI in rats. We found that DHA pretreatment reduced functional deficits during the acute phase of injury, as shown by significant improvements in Basso-Beattie-Bresnahan (BBB) locomotor scores, and the detection of transcranial magnetic motor evoked potentials (tcMMEPs) compared to vehicle-pretreated animals. We demonstrated that, at 7 days post-injury, DHA pretreatment significantly increased the percentage of white matter sparing, and resulted in axonal preservation, compared to the vehicle injections. We found a significant increase in the survival of NG2+, APC+, and NeuN+ cells in the ventrolateral funiculus (VLF), dorsal corticospinal tract (dCST), and ventral horns, respectively. Interestingly, these DHA protective effects were observed despite the lack of inhibition of inflammatory markers for monocytes/macrophages and astrocytes, ED1/OX42 and GFAP, respectively. DHA pretreatment induced levels of Akt and cyclic AMP responsive element binding protein (CREB) mRNA and protein. This study shows for the first time that DHA pretreatment ameliorates functional deficits, and increases tissue sparing and precursor cell survival. Further, our data suggest that DHA-mediated activation of pro-survival/anti-apoptotic pathways may be independent of its anti-inflammatory effects. PMID:21970623

  13. Axon classes and internodal growth in the ventral spinal root L7 of adult and developing cats.

    PubMed Central

    Nilsson, I; Berthold, C H

    1988-01-01

    Internodal length, number of myelin sheath lamellae and axon diameter were estimated in samples of nerve fibres reconstructed from transverse sections (EM and LM) of the L7 ventral spinal root of adult cats, kittens and cat fetuses. The axon calibre spectrum was unimodal in the youngest fetuses, became bimodal at 47 days after mating, i.e. about 2 weeks before birth (63 days after mating) and trimodal at 1 week of postnatal age. Alpha-axons received myelin during the period 40-45 to 50-55 days after mating while gamma-axons became myelinated from 60-63 days after mating to 2-3 weeks of postnatal age. The mean length of the first completely myelinated internodes measured 139 microns and 209 microns in the alpha- and gamma-fibre group respectively. The adult mean values were 1390 microns and 640 microns respectively. The average internodal elongation was x 10 and x 3 in the two fibre groups, whereas the longitudinal growth of the whole ventral root was x 5.4 and x 3.5. A combined linlog function could be fitted to describe the regression between internodal length and axon diameter and was established from birth onwards. The separate alpha- and gamma-fibre samples were best described by linear functions, the alpha internodal length being independent of axon diameter while the gamma internodal length increased linearly with axon diameter. The amount of internodal myelin increased linearly with increasing mantle area of the internodal axon. The mean amount of internodal myelin of alpha-fibres showed two periods of intense growth; one from the start of myelination to 2 months postnatally and the other between 4 and 6 months of age. The mean length of the lamellar spiral forming the myelin sheath showed about the same increase per unit length of axon circumference (about 160:1) in both alpha- and gamma-fibre groups as long as longitudinal internodal growth persisted. PMID:3417553

  14. Effects of posterior tibial tendon augmented with biografts and calcaneal osteotomy in stage II adult-acquired flatfoot deformity.

    PubMed

    Lee, Daniel

    2009-02-01

    Adult-acquired flatfoot deformity (AAFD) is a well-known condition leading to flexible flatfoot deformity. However, only recently have the function and muscle strength for balancing opposing muscles been more appreciated in laboratory studies. With the advancements in collagen science in tendon structure, the rationale and concept of some of the most common procedures in tendon transfer have been challenged. The current availability of biograft technology has provided an alternative in augmentation procedures instead of sacrificing autologous tendons. This novel approach may offer a viable option in AAFD, delivering much-needed collagen in a degenerative tendon. These biografts have shown ease of use and tissue biocompatibility in many orthopaedic and plastic surgery procedures and may prove to be an adjunct in the surgical option for AAFD. PMID:19825747

  15. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

    PubMed Central

    Alluin, Olivier; Delivet-Mongrain, Hugo

    2015-01-01

    Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI. PMID:26203108

  16. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    SciTech Connect

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  17. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  18. Spinal injury

    MedlinePlus

    ... head. Alternative Names Spinal cord injury; SCI Images Skeletal spine Vertebra, cervical (neck) Vertebra, lumbar (low back) Vertebra, thoracic (mid back) Vertebral column Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  19. Coexistence of spinal teratoma of the conus medullaris and arteriovenous malformation in an adult: a case report.

    PubMed

    Yu, Jinlu; Qu, Li Mei; Li, Ye; Huang, Haiyan

    2012-01-01

    The coexistence of spinal teratoma of the conus medullaris and arteriovenous malformation (AVM) is exceptional, which has not been reported previously in the literature. The precise mechanism of the coexistence of these conditions is not known, however, the dysembryonic origin of spinal cord teratoma and AVM seems to play a part in this process. A 34-year-old male patient was admitted with lower back pain, bilateral lower extremity numbness and weakness, and sexual disturbance. Magnetic resonance imaging (MRI) showed an AVM extended cranially from the top of a heterogeneous expansile lesion of the conus medullaris. Surgical exploration and histopathological examination revealed a mature teratoma associated with the AVM. A literature review supported the dysembryonic origin of spinal cord teratomas and AVMs. This unique case may provide insight into the etiopathogenesis of the coexistence of spinal teratoma of the conus medullaris and AVM.

  20. Spinal instrumentation.

    PubMed

    Spivak, J M; Balderston, R A

    1994-03-01

    The past decade has seen a dramatic increase in the availability of spinal instrumentation devices, enabling surgeons to treat a variety of spinal disorders with improved results and lower morbidity. In each anatomic region new fixation systems exist. Improvement in fusion rates with supplemental plate fixation following anterior cervical diskectomies and reconstructions has been demonstrated; these devices can now be applied more safely than ever before. Posterior occipitocervical plating to the C-2 pedicle and C3-6 lateral masses can provide stable fixation despite incompetent posterior arch bony structures. Newer, more rigid anterior thoracolumbar instrumentation allows for correction of thoracolumbar and lumbar scoliosis along fewer levels and with better maintenance of lordosis and is also useful following anterior decompression for tumor and trauma. Segmental hook fixation of the posterior thoracolumbar spine has allowed for improved correction of deformity without increased morbidity or the need for postoperative bracing in many cases. Finally, the use of transpedicular screw fixation of the lumbosacral spine allows for excellent segmental fixation without intact posterior elements, including facet joints, and has significantly improved the fusion rate in lumbosacral fusions. PMID:8024965

  1. Spinal injuries in children.

    PubMed

    Babcock, J L

    1975-05-01

    Spinal injuries with neurologic sequelae are a rare but catastrophic injury. Many of these injuries might be preventable through proper parent and child education, particularly in water sports and vehicles accidents. A significant number of neurologic injuries are incomplete at the time of injury and proper rescue and initial care may make the difference between life as a quadriplegic and life as a normal individual. Because of the complexity of the management of the child with spinal injuries and their relative rarity, the definitive care is best undertaken at hospitals which specialize in the care of spinal injuries. Progressive deformity of the spine, a problem unique to childhood and adolescent paralysis, is often preventable with prolonged immobilization and protection of the spine. Progressive deformities which interfere with function or result in neurologic deterioration require an aggressive surgical approach. PMID:1124228

  2. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse.

    PubMed

    Benton, Richard L; Maddie, Melissa A; Minnillo, Danielle R; Hagg, Theo; Whittemore, Scott R

    2008-03-01

    After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.

  3. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    PubMed

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  4. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    PubMed

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions. PMID:24673421

  5. Cardiac mechanics in patients with human immunodeficiency virus: a study of systolic myocardial deformation in children and young adults.

    PubMed

    Al-Naami, Ghassan; Kiblawi, Fuad; Kest, Helen; Hamdan, Ayman; Myridakis, Dorothy

    2014-08-01

    Human immunodeficiency virus (HIV) infection causes dysfunction of different organ systems. Myocardial diastolic dysfunction has been reported previously in an adult HIV population. Our aim was to study myocardial strain in children and young adults infected by HIV who have apparently normal ejection fraction. Forty HIV-infected patients (mean age 20.6 ± 1.5 years) with normal ejection fraction and 55 matched normal controls (mean age 17 ± 1.5 years) were studied by two-dimensional echocardiogram. The images were stored then exported to velocity vector imaging software for analysis. Measures considered were left-ventricular peak global systolic strain (LV S) and strain rate (LV SR) as well as right-ventricular peak global systolic strain (RV S) and strain rate (RV SR). Circumferential measures of the left ventricle included the following: LV circumferential peak global systolic strain (LV circ S), strain rate (LV circ SR), radial velocity (LV rad vel), and rotational velocity (LV rot vel) at the level of the mitral valve. Statistical significance was set at p < 0.05. The means of all longitudinal deformation parameters were significantly lower in HIV patients compared with normal controls: LV S (-14.15 vs. -19.31), LV SR (-0.88 vs. -1.30), RV S (-19.58 vs. -25.09), and RV SR (-1.34 vs. -2.13), respectively (p < 0.05). LV rot vel was lower in patients compared with controls (43.23 vs. 51.71, p = 0.025). LV circ S, LV circ SR, and LV rad vel showed no significant difference between the two groups (p ≥ 0.05). HIV infection affects longitudinal systolic cardiac strain and strain rate in children and young adults. Normal ejection fraction might be attributed to preserved circumferential myocardial deformation. Strain and strain rate may help identify HIV patients at high risk for cardiac dysfunction and allow early detection of silent myocardial depression.

  6. The Louisville Swim Scale: A Novel Assessment of Hindlimb Function following Spinal Cord Injury in Adult Rats

    PubMed Central

    Smith, Rebecca R.; Burke, Darlene A.; Baldini, Angela D.; Shum-Siu, Alice; Baltzley, Ryan; Bunger, Michelle; Magnuson, David S.K.

    2010-01-01

    The majority of animal studies examining the recovery of function following spinal cord injury use the BBB Open-Field Locomotor Scale as a primary outcome measure. However, it is now well known that rehabilitation strategies can bring about significant improvements in hindlimb function in some animal models. Thus, improvements in walking following spinal cord injury in rats may be influenced by differences in activity levels and housing conditions during the first few weeks post-injury. Swimming is a natural form of locomotion that animals are not normally exposed to in the laboratory setting. We hypothesized that deficits in, and functional recovery of, swimming would accurately represent the locomotor capability of the nervous system in the absence of any retraining effects. To test this hypothesis, we have compared the recovery of walking and swimming in rats following a range of standardized spinal cord injuries and two different retraining strategies. In order to assess swimming, we developed a rating system we call the Louisville Swimming Scale (LSS) that evaluates three characteristics of swimming that are highly altered by spinal cord injury— namely, hindlimb movement, forelimb dependency, and body position. The data indicate that the LSS is a sensitive and reliable method of determining swimming ability and the improvement in hindlimb function after standardized contusion injury of the thoracic spinal cord. Furthermore, the data suggests that when used in conjunction with the BBB Open-field Locomotor Scale, the LSS assesses locomotor capabilities that are not influenced by a retraining effect. PMID:17115911

  7. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat.

    PubMed

    Leanza, G; Cataudella, T; Dimauro, R; Monaco, S; Stanzani, S

    1999-05-01

    Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a

  8. Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats.

    PubMed

    Jian, Rao; Yixu, Yang; Sheyu, Lin; Jianhong, Shen; Yaohua, Yan; Xing, Su; Qingfeng, Huang; Xiaojian, Lu; Lei, Zhang; Yan, Zhen; Fangling, Xiong; Huasong, Gao; Yilu, Gao

    2015-10-01

    The loss of spinal cord tissue and the cavity formation are major obstacles to the repair of spinal cord injury (SCI). In the study, the scaffold of chitosan+ECM+SB216763 was fabricated and used for the repair of injured spinal cord injury. First, the biocompatibility of the scaffold was analyzed and results showed that the scaffold had a good compatibility with the neural stem cells. Especially, the processes of differentiated neural stem cell embedded in the scaffold were found in the experiment. At the same time, we also investigated the effect of scaffold on the differentiation of neural stem cell. The results showed that the scaffold of chitosan+ECM+SB216763 could significantly promote the differentiation of neural stem cells into neurons, astrocytes, and oligodendrocytes relative to those in other groups. In order to probe the application of scaffold in vivo, the rat models of spinal cord hemisection were set up and scaffolds were implanted into transected gap. Then the electrophysiology and BBB score were evaluated and results showed that the amplitude, latency period and BBB score in chitosan+ECM+SB216763 group were dramatically better than those in other groups. In addition, the differentiation of neural stem cells into nerve cells was also assayed and the results revealed that the number of neural stem cells differentiating into neuron, astrocytes and oligodendrocytes in chitosan+ECM+SB216763 group was significantly bigger than those in other groups. All these data suggested that the scaffold of chitosan+ECM+SB216763 would be a promising medium for the repair of injured spinal cord.

  9. Parachute deformity of both atrioventricular valves with congenitally corrected transposition in an adult.

    PubMed

    Mohan, Jagdish C; Shukla, Madhu; Sethi, Arvind

    2015-01-01

    A 23-year-young female presented with mild exertional dyspnoea and palpitation since early childhood. By deploying 2D- and 3D echocardiography, she was detected to have situs solitus, atrioventricular and ventriculoarterial discordance with L-malposition of great vessels, valvular pulmonary stenosis, large secundum atrial septal defect, bicuspid aortic valve, right-sided aortic arch, and moderately severe mitral and tricuspid valve regurgitation. Typical parachute deformities of the morphologically mitral and tricuspid valves were observed. 3D echocardiography revealed a single papillary muscle in the morphologically left ventricle placed anteriorly and providing insertion to tendinous cords and only a moderator band with no other muscle bundles in the morphologically right ventricle placed posteriorly and providing attachment to two strings of cords. Considering the minimal symptoms, conservative treatment was pursued. PMID:26702687

  10. Parachute deformity of both atrioventricular valves with congenitally corrected transposition in an adult.

    PubMed

    Mohan, Jagdish C; Shukla, Madhu; Sethi, Arvind

    2015-01-01

    A 23-year-young female presented with mild exertional dyspnoea and palpitation since early childhood. By deploying 2D- and 3D echocardiography, she was detected to have situs solitus, atrioventricular and ventriculoarterial discordance with L-malposition of great vessels, valvular pulmonary stenosis, large secundum atrial septal defect, bicuspid aortic valve, right-sided aortic arch, and moderately severe mitral and tricuspid valve regurgitation. Typical parachute deformities of the morphologically mitral and tricuspid valves were observed. 3D echocardiography revealed a single papillary muscle in the morphologically left ventricle placed anteriorly and providing insertion to tendinous cords and only a moderator band with no other muscle bundles in the morphologically right ventricle placed posteriorly and providing attachment to two strings of cords. Considering the minimal symptoms, conservative treatment was pursued.

  11. Effect of neural stem cell transplantation combined with erythropoietin injection on axon regeneration in adult rats with transected spinal cord injury.

    PubMed

    Zhao, Y; Zuo, Y; Wang, X L; Huo, H J; Jiang, J M; Yan, H B; Xiao, Y L

    2015-01-01

    We investigated the effect of neural stem cells (NSC) and erythropoietin (EPO) on axon regeneration in adult rats with transected spinal cord injury, and provided an experimental basis for clinical treatment. Forty Wistar rats with T10-transected spinal cord injury were randomly divided into four groups of ten rats: a control group (group A), an NSC-transplant group (group B), an NSC-transplant and EPO group (group C), and an EPO group (group D). Biotinylated dextran amines (BDA) anterograde corticospinal cord neuronal tracing and Fluoro-Gold (FG) retrograde tracing were carried out at the 8th week after operation to observe the regeneration of nerve fibers. The Basso, Beattie, and Bresnahan (BBB) locomotor score was used to evaluate restoration. 1) BDA and FG immunofluorescence staining: in group C, a large number of regenerated axons were observed and some penetrated the injured area. In group B, only a small number of regenerated axons were observed and none penetrated the injured area. In group D, only sporadic regenerated nerve fibers were observed occasionally, while in group A, no axonal regeneration was observed. In group C, a small number of cones and axons emitted yellow fluorescence, and no FG-labeled cells were observed in the other groups. 2) The BBB scores for group C were higher than those for the other groups, and the differences were statistically significance (P < 0.05). NSC transplantation combined with EPO intraperitoneal injection may benefit axon regeneration in rats with transected spinal cord injury, and accelerate the functional recovery of the hindlimb locomotor. PMID:26782425

  12. Recurrence of spinal schwannoma: Is it preventable?

    PubMed Central

    Senapati, Satya B.; Mishra, Sudhansu S.; Dhir, Manmath K.; Patnaik, Ashis; Panigrahi, Souvagya

    2016-01-01

    Spinal schwannomas account for about 25% of primary intradural spinal cord tumors in adult. The prognosis for spinal schwannomas is excellent in most cases. Complete resection is curative. However following subtotal removal, recurrence develops after several years. We describe a case of recurrent spinal schwannoma who had been operated twice before for same disease. The possible cause of recurrence and difficulties in reoperation are discussed.

  13. Recurrence of spinal schwannoma: Is it preventable?

    PubMed Central

    Senapati, Satya B.; Mishra, Sudhansu S.; Dhir, Manmath K.; Patnaik, Ashis; Panigrahi, Souvagya

    2016-01-01

    Spinal schwannomas account for about 25% of primary intradural spinal cord tumors in adult. The prognosis for spinal schwannomas is excellent in most cases. Complete resection is curative. However following subtotal removal, recurrence develops after several years. We describe a case of recurrent spinal schwannoma who had been operated twice before for same disease. The possible cause of recurrence and difficulties in reoperation are discussed. PMID:27695564

  14. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    PubMed

    Abdel-Maguid, T E; Bowsher, D

    1984-06-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value. PMID:6204961

  15. Outcomes of a skiing program on level and stability of self-esteem and physical self in adults with spinal cord injury.

    PubMed

    Barbin, Jean-Marc; Ninot, Grégory

    2008-03-01

    This study explored the intraindividual level and variability of global self-esteem and physical self-worth in adults with spinal cord injury over three consecutive periods, 4 weeks at home, 1 week in an adapted skiing program, and 4 weeks at home. Ten participants responded twice a day over a period of 9 weeks with the Physical Self Inventory, a six-item questionnaire with a visual analogue scale. The results showed that the program significantly increased the level of global self-esteem, physical self-worth, and three subdomains. The variability of the physical condition, sport competence, and physical strength subdomains was diminished after the program. The changes are discussed in terms of impact of a specific adapted physical activities program on physical self conceived as a complex system.

  16. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  17. Alterations of action potentials and the localization of Nav1.6 sodium channels in spared axons after hemisection injury of the spinal cord in adult rats

    PubMed Central

    Hunanyan, Arsen S.; Alessi, Valentina; Patel, Samik; Pearse, Damien D.; Matthews, Gary

    2011-01-01

    Previously, we reported a pronounced reduction in transmission through surviving axons contralateral to chronic hemisection (HX) of adult rat spinal cord. To examine the cellular and molecular mechanisms responsible for this diminished transmission, we recorded intracellularly from lumbar lateral white matter axons in deeply anesthetized adult rats in vivo and measured the propagation of action potentials (APs) through rubrospinal/reticulospinal tract (RST/RtST) axons contralateral to chronic HX at T10. We found decreased excitability in these axons, manifested by an increased rheobase to trigger APs and longer latency for AP propagation passing the injury level, without significant differences in axonal resting membrane potential and input resistance. These electrophysiological changes were associated with altered spatial localization of Nav1.6 sodium channels along axons: a subset of axons contralateral to the injury exhibited a diffuse localization (>10 μm spread) of Nav1.6 channels, a pattern characteristic of demyelinated axons (Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. Proc Natl Acad Sci USA 101: 8168–8173, 2004b). This result was substantiated by ultrastructural changes seen with electron microscopy, in which an increased number of large-caliber, demyelinated RST axons were found contralateral to the chronic HX. Therefore, an increased rheobase, pathological changes in the distribution of Nav1.6 sodium channels, and the demyelination of contralateral RST axons are likely responsible for their decreased conduction chronically after HX and thus may provide novel targets for strategies to improve function following incomplete spinal cord injury. PMID:21177993

  18. Recurrent autonomic dysreflexia due to chronic aortic dissection in an adult male with cervical spinal cord injury.

    PubMed

    Vaidyanathan, Subramanian; Hughes, Peter L; Oo, Tun; Soni, Bakul M

    2008-01-01

    Autonomic dysreflexia is a hypertensive clinical emergency for persons with spinal cord injury at T-6 level or above. Recurrent autonomic dysreflexia is uncommon in spinal cord injury patients and is usually caused by noxious stimuli that cannot be removed promptly, e.g., somatic pain, abdominal distension. A 61-year-old man, who sustained tetraplegia at C-5 (ASIA-A) 38 years ago, was admitted with chest infection. Computerised tomography (CT) of the chest showed the ascending aorta to measure 4 cm in anteroposterior diameter; descending thoracic aorta measured 3.5 cm. No dissection was seen. Normal appearances of abdominal aorta were seen. He was treated with noninvasive ventilation, antibiotics, and diuretics. Nineteen days later, when there was sudden deterioration in his clinical condition, CT of the pulmonary angiogram was performed to rule out pulmonary embolism. This showed no pulmonary embolus, but the upper abdominal aorta showed some dissection with thrombosis of the false lumen. Blood pressure was controlled with perindopril 2 mg, once a day, doxazosin 4 mg, twice a day, and furosemide 20 mg, twice a day. Since this patient did not show clinical features of mesenteric or lower limb ischaemia, the vascular surgeon did not recommend subdiaphragmatic aortic replacement. This patient subsequently developed recurrent episodes of autonomic dysreflexia. Each acute episode of dysreflexia was controlled by nifedipine given sublingually in doses varying from 5 to 20 mg. No inciting cause for autonomic dysreflexia could be found other than chronic aortic dissection. This patient's medication was then changed to doxazosin 8 mg, twice a day, and sustained-release nifedipine 10 mg, twice a day, which helped to prevent recurrent autonomic dysreflexia. Chronic aortic dissection is a very rare cause for recurrent autonomic dysreflexia in ageing spinal cord injury patients. When the inciting cause for dysreflexia is not amenable for treatment, recurrent dysreflexic

  19. Spinal brucellosis.

    PubMed

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  20. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection.

    PubMed

    Liu, Hao; Skinner, Robert D; Arfaj, Ahmad; Yates, Charlotte; Reese, Nancy B; Williams, Keith; Garcia-Rill, Edgar

    2010-10-30

    This study investigated whether l-dopa (DOPA), locomotor-like passive exercise (Ex) using a motorized bicycle exercise trainer (MBET), or their combination in adult rats with complete spinal cord transection (Tx) preserves and restores low frequency-dependent depression (FDD) of the H-reflex. Adult Sprague-Dawley rats (n=56) transected at T8-9 had one of five treatments beginning 7 days after transection: Tx (transection only), Tx+Ex, Tx+DOPA, Tx+Ex+DOPA, and control (Ctl, no treatment) groups. After 30 days of treatment, FDD of the H-reflex was tested. Stimulation of the tibial nerve at 0.2, 1, 5, and 10Hz evoked an H-reflex that was recorded from plantar muscles of the hind paw. No significant differences were found at the stimulation rate of 1Hz. However, at 5Hz, FDD of the H-reflex in the Tx+Ex, Tx+DOPA and Ctl groups was significantly different from the Tx group (p<0.01). At 10Hz, all of the treatment groups were significantly different from the Tx group (p<0.01). No significant difference was identified between the Ctl and any of the treatment groups. These results suggest that DOPA significantly preserved and restored FDD after transection as effectively as exercise alone or exercise in combination with DOPA. Thus, there was no additive benefit when DOPA was combined with exercise.

  1. TRP Channels Involved in Spontaneous l-Glutamate Release Enhancement in the Adult Rat Spinal Substantia Gelatinosa

    PubMed Central

    Kumamoto, Eiichi; Fujita, Tsugumi; Jiang, Chang-Yu

    2014-01-01

    The spinal substantia gelatinosa (SG) plays a pivotal role in modulating nociceptive transmission through dorsal root ganglion (DRG) neurons from the periphery. TRP channels such as TRPV1 and TRPA1 channels expressed in the SG are involved in the regulation of the nociceptive transmission. On the other hand, the TRP channels located in the peripheral terminals of the DRG neurons are activated by nociceptive stimuli given to the periphery and also by plant-derived chemicals, which generates a membrane depolarization. The chemicals also activate the TRP channels in the SG. In this review, we introduce how synaptic transmissions in the SG neurons are affected by various plant-derived chemicals and suggest that the peripheral and central TRP channels may differ in property from each other. PMID:24785347

  2. Enhancing physical activity guidelines: a needs survey of adults with spinal cord injury and health care professionals.

    PubMed

    Foulon, Brianne L; Lemay, Valérie; Ainsworth, Victoria; Martin Ginis, Kathleen A

    2012-10-01

    The purpose of this study was to determine preferences of people with spinal cord injury (SCI) and health care professionals (HCP) regarding the content and format of a SCI physical activity guide to support recently released SCI physical activity guidelines. Seventy-eight people with SCI and 80 HCP completed a survey questionnaire. Participants with SCI identified desired content items and their preferences for format. HCP rated the helpfulness of content items to prescribe physical activity. All content items were rated favorably by participants with SCI and useful by HCP. The risks and benefits of activity and inactivity, and strategies for becoming more active, were rated high by both samples. Photographs and separate information for those with paraplegia versus tetraplegia were strongly endorsed. These data were used to guide the development of an SCI physical activity guide to enhance the uptake of physical activity guidelines for people with SCI. The guide was publically released November 11, 2011.

  3. Pediatric spinal trauma.

    PubMed

    Huisman, Thierry A G M; Wagner, Matthias W; Bosemani, Thangamadhan; Tekes, Aylin; Poretti, Andrea

    2015-01-01

    Pediatric spinal trauma is unique. The developing pediatric spinal column and spinal cord deal with direct impact and indirect acceleration/deceleration or shear forces very different compared to adult patients. In addition children are exposed to different kind of traumas. Moreover, each age group has its unique patterns of injury. Familiarity with the normal developing spinal anatomy and kind of traumas is essential to correctly diagnose injury. Various imaging modalities can be used. Ultrasound is limited to the neonatal time period; plain radiography and computer tomography are typically used in the acute work-up and give highly detailed information about the osseous lesions. Magnetic resonance imaging is more sensitive for disco-ligamentous and spinal cord injuries. Depending on the clinical presentation and timing of trauma the various imaging modalities will be employed. In the current review article, a summary of the epidemiology and distribution of posttraumatic lesions is discussed in the context of the normal anatomical variations due to progressing development of the child. PMID:25512255

  4. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    PubMed

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury.

  5. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.

    PubMed

    Fenrich, Keith K; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J; Fouad, Karim

    2016-02-15

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563

  6. Chronic ibuprofen administration reduces neuropathic pain but does not exert neuroprotection after spinal cord injury in adult rats.

    PubMed

    Redondo-Castro, Elena; Navarro, Xavier

    2014-02-01

    Ibuprofen is commonly used as an anti-inflammatory analgesic drug, although it is not amongst the first-line treatments for neuropathic pain. Its main effects are mediated by non-specific inhibition of COX enzymes, but it also exerts some COX-independent effects, such as the inhibition of RhoA signaling and the modulation of glial activity. These effects have boosted the use of ibuprofen as a tool to promote axonal regeneration and to increase functional recovery after neural injuries, although with controversial results showing positive and negative outcomes of ibuprofen treatment in several experimental models. We have evaluated the effects of ibuprofen administered at 60 mg/kg twice a day to rats subjected to a mild spinal cord contusion. Our results indicate that ibuprofen ameliorates mechanical hyperalgesia in rats by reducing central hyperexcitability, but failed to produce improvements in the recovery of locomotion. Despite an early effect on reducing microglial reactivity, the ibuprofen treatment did not provide histological evidence of neuroprotection; indeed the volume of cord tissue spared rostral to the lesion was decreased in ibuprofen treated rats. In summary, the early modulation of neuroinflammation produced by the administration of ibuprofen seems to eventually lead to a worse resolution of detrimental events occurring in the secondary injury phase, but also to reduce the development of neuropathic pain.

  7. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.

    PubMed

    Fan, Xin Yan Susan; Mothe, Andrea J; Tator, Charles H

    2013-02-01

    Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (P<0.05), but Fc fragments alone reduced NSPC survival at all doses in a dose-dependent fashion. In vivo, intrathecal infusion of ephrin-B3-Fc increased the proliferation of endogenous ependymal cells and the proportion of proliferating cells that expressed the glial fibrillary acidic protein astrocytic marker in the injured spinal cord compared with the infusion of PBS (P<0.05). However, in the injured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.

  8. Lower Risk of Stroke after Deformity Surgery: Long Term Benefit Demonstrated by a National Cohort Study

    PubMed Central

    Huang, Liang-Chung; Chung, Wu-Fu; Liu, Shih-Wei; Chang, Peng-Yuan; Chen, Li-Fu; Wu, Jau-Ching; Chen, Yu-Chun; Huang, Wen-Cheng; Liu, Laura; Cheng, Henrich; Lo, Su-Shun

    2015-01-01

    Objectives: This study aimed to investigate the long-term risk of stroke in adult patients with spinal deformity. Specifically, the study addressed the possible protective effect of surgery for spinal deformity against stroke. Methods: Using the National Health Insurance Research Database (NHIRD), a monopolistic national database in Taiwan, this retrospective cohort study analyzed the incidence of stroke in patients with adult spinal deformity (ASD) in a 11-year period. A total of 13,503 patients, between 55 and 75 years old, were identified for the diagnosis of ASD. The patients were grouped into two: the surgical group (n = 10,439) who received spinal fusion surgery, and the control group (n = 2124) who received other medical treatment. The incidence rates of all subsequent cerebrovascular accidents, including ischemic and hemorrhagic strokes, were calculated. Hazard ratios for stroke were calculated use a full cohort and a propensity score matched cohort. Adjustments for co-morbidities that may predispose to stroke, including hypertension, diabetes mellitus, arrhythmia and coronary heart disease were conducted. Kaplan-Meier and Cox regression analyses were performed to compare the risk of stroke between the two groups. Results: During the total observation period of 50,450 person-years, the incidence rate of stroke in the surgical group (15.55 per 1000 person-years) was significantly lower than that of the control group (20.89 per 1000 person-years, p < 0.001). Stroke was more likely to occur in the control group than in the surgical group (crude hazard ratio 1.34, p < 0.001; adjusted HR 1.28, p < 0.001, by a propensity score matched model). Conclusions: In this national cohort of more than 13,000 ASD patients covering 10 years, stroke was approximately 25% less likely to happen in patients who underwent spinal fusion surgery than those who received medical management. Therefore, spinal fusion surgery may provide a protective effect against stroke in adult

  9. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    PubMed

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  10. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury.

    PubMed

    Chain, Amina; Koury, Josely C; Bezerra, Flávia Fioruci

    2012-09-01

    Severe bone loss is a recognized complication of chronic spinal cord injury (SCI). Physical exercise contributes to bone health; however, its influence on bone mass of cervical SCI individuals has not been investigated. The aim of this study was to investigate the influence of physical activity on bone mass, bone metabolism, and vitamin D status in quadriplegics. Total, lumbar spine (L1-L4), femur and radius bone mineral density (BMD) were assessed in active (n = 15) and sedentary (n = 10) quadriplegic men by dual energy X-ray absorptiometry. Concentrations of 25-hydroxyvitamin D [25(OH)D], PTH, IGF1, osteocalcin and NTx were measured in serum. After adjustments for duration of injury, total body mass, and habitual calcium intake, bone indices were similar between groups, except for L1-L4 BMD Z score that was higher in the sedentary group (P < 0.05). Hours of physical exercise per week correlated positively with 25(OH)D (r = 0.59; P < 0.05) and negatively with PTH (r = -0.50; P < 0.05). Femur BMD was negatively associated with the number of months elapsed between the injury and the onset of physical activity (r = -0.60; P < 0.05). Moreover, in the active subjects, both L1-L4 BMD Z score (r = 0.72; P < 0.01) and radius BMD (r = 0.59; P < 0.05) were positively associated with calcium intake. In this cross-sectional study, both the onset of physical activity after injury and the number of hours dedicated to exercise were able to influence bone density and bone-related hormones in quadriplegic men. Our results also suggest a positive combined effect of exercise and calcium intake on bone health of quadriplegic individuals.

  11. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    PubMed

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  12. PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury

    PubMed Central

    Walker, Chandler L.; Xu, Xiao-Ming

    2014-01-01

    Cervical spinal cord injury (SCI) damages axons and motor neurons responsible for ipsilateral forelimb function and causes demyelination and oligodendrocyte death. Inhibition of the phosphatase and tensin homologue, PTEN, promotes neural cell survival, neuroprotection and regeneration in vivo and in vitro. PTEN inhibition can also promote oligodendrocyte-mediated myelination of axons in vitro likely through Akt activation. We recently demonstrated that acute treatment with phosphatase PTEN inhibitor, bisperoxovanadium (bpV)-pic reduced tissue damage, neuron death, and promoted functional recovery after cervical hemi-contusion SCI. Evidence suggests bpV can promote myelin stability; however, bpV effects on myelination and oligodendrocytes in contusive SCI models are unclear. We hypothesized that bpV could increase myelin around the injury site through sparing or remyelination, and that bpV treatment may promote increased numbers of oligodendrocytes. Using histological and immunofluorescence labeling, we found that bpV treatment promoted significant spared white matter (30%; p < 0.01) and Luxol Fast Blue (LFB)+ myelin area rostral (Veh: 0.56 ± 0.01 vs. bpV: 0.64 ± 0.02; p < 0.05) and at the epicenter (Veh: 0.4175 ± 0.03 vs. bpV: 0.5400 ± 0.03; p < 0.05). VLF oligodendrocytes were also significantly greater with bpV therapy (109 ± 5.3 vs. Veh: 77 ± 2.7/mm2; p < 0.01). In addition, bpV increased mean motor neuron soma area versus vehicle-treatment (1.0 ± 0.02 vs. Veh: 0.77 ± 0.02) relative to Sham neuron size. This study provides key insight into additional cell and tissue effects that could contribute to bpV-mediated functional recovery observed after contusive cervical SCI. PMID:24582904

  13. The Oropharyngeal Airway in Young Adults with Skeletal Class II and Class III Deformities: A 3-D Morphometric Analysis

    PubMed Central

    Jayaratne, Yasas Shri Nalaka; Zwahlen, Roger Arthur

    2016-01-01

    Objectives 1) To determine the accuracy and reliability of an automated anthropometric measurement software for the oropharyngeal airway and 2) To compare the anthropometric dimensions of the oropharyngeal airway in skeletal class II and III deformity patients. Methods Cone-beam CT (CBCT) scans of 62 patients with skeletal class II or III deformities were used for this study. Volumetric, linear and surface area measurements retroglossal (RG) and retropalatal (RP) compartments of the oropharyngeal airway was measured with the 3dMDVultus software. Accuracy of automated anthropometric pharyngeal airway measurements was assessed using an airway phantom. Results The software was found to be reasonably accurate for measuring dimensions of air passages. The total oropharyngeal volume was significantly greater in the skeletal class III deformity group (16.7 ± 9.04 mm3) compared with class II subjects (11.87 ± 4.01 mm3). The average surface area of both the RG and RP compartments were significantly larger in the class III deformity group. The most constricted area in the RG and RP airway was significantly larger in individuals with skeletal class III deformity. The anterior-posterior (AP) length of this constriction was significantly greater in skeletal class III individuals in both compartments, whereas the width of the constriction was not significantly different between the two groups in both compartments. The RP compartment was larger but less uniform than the RG compartment in both skeletal deformities. Conclusion Significant differences were observed in morphological characteristics of the oropharyngeal airway in individuals with skeletal class II and III deformities. This information may be valuable for surgeons in orthognathic treatment planning, especially for mandibular setback surgery that might compromise the oropharyngeal patency. PMID:26901313

  14. Short term treatment versus long term management of neck and back disability in older adults utilizing spinal manipulative therapy and supervised exercise: a parallel-group randomized clinical trial evaluating relative effectiveness and harms

    PubMed Central

    2014-01-01

    Background Back and neck disability are frequent in older adults resulting in loss of function and independence. Exercise therapy and manual therapy, like spinal manipulative therapy (SMT), have evidence of short and intermediate term effectiveness for spinal disability in the general population and growing evidence in older adults. For older populations experiencing chronic spinal conditions, long term management may be more appropriate to maintain improvement and minimize the impact of future exacerbations. Research is limited comparing short courses of treatment to long term management of spinal disability. The primary aim is to compare the relative effectiveness of 12 weeks versus 36 weeks of SMT and supervised rehabilitative exercise (SRE) in older adults with back and neck disability. Methods/Design Randomized, mixed-methods, comparative effectiveness trial conducted at a university-affiliated research clinic in the Minneapolis/St. Paul, Minnesota metropolitan area. Participants Independently ambulatory community dwelling adults ≥ 65 years of age with back and neck disability of minimum 12 weeks duration (n = 200). Interventions 12 weeks SMT + SRE or 36 weeks SMT + SRE. Randomization Blocked 1:1 allocation; computer generated scheme, concealed in sequentially numbered, opaque, sealed envelopes. Blinding Functional outcome examiners are blinded to treatment allocation; physical nature of the treatments prevents blinding of participants and providers to treatment assignment. Primary endpoint 36 weeks post-randomization. Data collection Self-report questionnaires administered at 2 baseline visits and 4, 12, 24, 36, 52, and 78 weeks post-randomization. Primary outcomes include back and neck disability, measured by the Oswestry Disability Index and Neck Disability Index. Secondary outcomes include pain, general health status, improvement, self-efficacy, kinesiophobia, satisfaction, and medication use. Functional outcome assessment occurs

  15. Langerhans' cell histiocytosis involving posterior elements of the dorsal spine: An unusual cause of extradural spinal mass in an adult.

    PubMed

    Tyagi, Devendra K; Balasubramaniam, Srikant; Savant, Hemant V

    2011-07-01

    Langerhans cell histiocytosis (LCH) is a clonal proliferation of Langerhans cells occurring as an isolated lesion or as part of a systemic proliferation. It is commoner in children younger than 10 years of age with sparing of the posterior elements in more than 95% of cases. We describe a case of LCH in an adult female presenting with paraplegia. MRI revealed a well-defined extradural contrast enhancing mass at D2-D4 vertebral level involving the posterior elements of spine. D2-5 laminectomy with excision of lesion was performed which lead to marked improvement of patients neurological status. Histopathology was suggestive of eosinophilic granuloma. We describe the case, discuss its uniqueness and review the literature on this rare tumor presentation.

  16. The validity of anthropometric leg muscle volume estimation across a wide spectrum: from able-bodied adults to individuals with a spinal cord injury.

    PubMed

    Layec, Gwenael; Venturelli, Massimo; Jeong, Eun-Kee; Richardson, Russell S

    2014-05-01

    The assessment of muscle volume, and changes over time, have significant clinical and research-related implications. Methods to assess muscle volume vary from simple and inexpensive to complex and expensive. Therefore this study sought to examine the validity of muscle volume estimated simply by anthropometry compared with the more complex proton magnetic resonance imaging ((1)H-MRI) across a wide spectrum of individuals including those with a spinal cord injury (SCI), a group recognized to exhibit significant muscle atrophy. Accordingly, muscle volume of the thigh and lower leg of eight subjects with a SCI and eight able-bodied subjects (controls) was determined by anthropometry and (1)H-MRI. With either method, muscle volumes were significantly lower in the SCI compared with the controls (P < 0.05) and, using pooled data from both groups, anthropometric measurements of muscle volume were strongly correlated to the values assessed by (1)H-MRI in both the thigh (r(2) = 0.89; P < 0.05) and lower leg (r(2) = 0.98; P < 0.05). However, the anthropometric approach systematically overestimated muscle volume compared with (1)H-MRI in both the thigh (mean bias = 2407cm(3)) and the lower (mean bias = 170 cm(3)) leg. Thus with an appropriate correction for this systemic overestimation, muscle volume estimated from anthropometric measurements is a valid approach and provides acceptable accuracy across a spectrum of adults with normal muscle mass to a SCI and severe muscle atrophy. In practical terms this study provides the formulas that add validity to the already simple and inexpensive anthropometric approach to assess muscle volume in clinical and research settings.

  17. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach

    PubMed Central

    Yasaka, Toshiharu; Tiong, Sheena Y.X.; Hughes, David I.; Riddell, John S.; Todd, Andrew J.

    2010-01-01

    Lamina II contains a large number of interneurons involved in modulation and transmission of somatosensory (including nociceptive) information. However, its neuronal circuitry is poorly understood due to the difficulty of identifying functional populations of interneurons. This information is important for understanding nociceptive processing and for identifying changes that underlie chronic pain. In this study, we compared morphology, neurotransmitter content, electrophysiological and pharmacological properties for 61 lamina II neurons recorded in slices from adult rat spinal cord. Morphology was related to transmitter content, since islet cells were GABAergic, while radial and most vertical cells were glutamatergic. However, there was considerable diversity among the remaining cells, some of which could not be classified morphologically. Transmitter phenotype was related to firing pattern, since most (18/22) excitatory cells, but few (2/23) inhibitory cells had delayed, gap or reluctant patterns, which are associated with A-type potassium (IA) currents. Somatostatin was identified in axons of 14/24 excitatory neurons. These had variable morphology, but most of those tested showed delayed-firing. Excitatory interneurons are therefore likely to contribute to pain states associated with synaptic plasticity involving IA currents. Although noradrenaline and serotonin evoked outward currents in both inhibitory and excitatory cells, somatostatin produced these currents only in inhibitory neurons, suggesting that its pro-nociceptive effects are mediated by disinhibition. Our results demonstrate that certain distinctive populations of inhibitory and excitatory interneuron can be recognised in lamina II. Combining this approach with identification of other neurochemical markers should allow further clarification of neuronal circuitry in the superficial dorsal horn. PMID:20817353

  18. Cell size and geometry of spinal cord motoneurons in the adult cat following the intramuscular injection of adriamycin: comparison with data from aged cats.

    PubMed

    Liu, R H; Yamuy, J; Engelhardt, J K; Xi, M C; Morales, F R; Chase, M H

    1996-10-28

    of neurons on the control side. We conclude that significant geometrical changes were induced in lumbar motoneurons of adult cats after ADM was injected to their muscles. In old cats, spinal cord motoneurons exhibit similar patterns of changes in their electrophysiological characteristics which have also been suggested to be correlated with changes in cell geometry. The question then arises as to whether the response of motoneurons to ADM and the aging process reflects a stereotypic reaction of motoneurons to a variety of insults or whether the response to ADM mirrors specific aspects of the aging process. PMID:8949934

  19. Anterior column realignment following lateral interbody fusion for sagittal deformity correction.

    PubMed

    Pimenta, Luiz; Fortti, Fernanda; Oliveira, Leonardo; Marchi, Luis; Jensen, Rubens; Coutinho, Etevaldo; Amaral, Rodrigo

    2015-07-01

    Degenerative and iatrogenic diseases may lead to loss of lordosis or even kyphotic thoracolumbar deformity and sagittal misalignment. Traditional surgery with three-column osteotomies is associated with important neurologic risks and postoperative morbidity. In a novel technique, the lateral transpsoas interbody fusion (LTIF) is complemented with the sacrifice of the anterior longitudinal ligament and anterior portion of the annulus followed by the insertion of a hyperlordotic interbody cage. This is a less invasive lateral technique named anterior column realignment (ACR) and aims to correct sagittal misalignment in adult spinal deformity (ASD), with or without the addition of minor posterior osteotomies. In this article, we provide an account of the evolution to the ACR technique, the literature, and the Brazilian experience in the treatment of adult spinal deformity with this novel advanced application of LTIF. In the presence of ASD, the risk-to-benefit ratio of a surgical correction must be evaluated. Less invasive surgical strategies can be alternatives to treat the deformity and provide better quality of life to the patient. ACR is an advanced application of lateral transpsoas approach, up to date has shown to be reliable and effective when used for ASD, and may minimize complications and morbidity from traditional surgical procedures. Long-term follow-up and comparative studies are needed to evaluate real benefit.

  20. Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers.

    PubMed

    Costa, Cecilia; Tanner, Gina; Lodesani, Marco; Maistrello, Lara; Neumann, Peter

    2011-11-01

    Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.

  1. Spinal and Limb Abnormalities in Adolescents with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Lin, Pei-Ying; Lin, Lan-Ping; Lai, Chia-Im; Leu, Yii-Rong; Yen, Chia-Feng; Hsu, Shang-Wei; Chu, Chi-Ming; Wu, Chia-Ling; Chu, Cordia M.

    2010-01-01

    There are not many studies pertaining to the spinal or limb abnormalities in people with intellectual disabilities, without a clear profile of these deformities of them, efforts to understand its characters and improve their quality of life will be impossible. Therefore, this paper aims to describe the prevalence and related factors of spinal and…

  2. Surgeon-driven neurophysiologic monitoring in a spinal surgery population

    PubMed Central

    Pickell, Michael; Mann, Stephen M.; Chakravertty, Rajesh

    2016-01-01

    Background This is a prospective observational study examining the use of a surgeon-driven intraoperative neurophysiologic monitoring system. Intraoperative neurophysiologic monitoring is becoming the standard of care for spinal surgeries with potential post-operative neurologic deficits. This standard applies to both adult and pediatric spinal surgery, but a shortage of appropriately trained and certified technologists and physiologists can compromise monitoring capabilities in some centers. A surgeon-driven, intra-operative monitoring system in the absence of a technologist or physiologist was examined for safety and efficacy. Methods One hundred thirty-five patients undergoing a variety of spinal procedures were monitored intra-operatively using a surgeon-driven neuro-monitoring system over a period of 80 months. Intraoperative monitoring included serial motor evoked potentials via an automated system that provided visual and audible feedback directly to the operative surgeon. Changes in monitoring and any corresponding surgical responses were evaluated and compared with postoperative neurological status. Results Of the 135 patients studied, intraoperative adjustments based on neuro-monitoring took place in four patients (3.0%): following reduction in spondylolisthesis, during instrumentation and fusion for a large kyphoscoliosis deformity, due to low hemoglobin, and because of traction. In all cases, surgical and/or anaesthetic modification restored MEPs toward baseline values. The accuracy of the neuro-monitoring results was sensitive to narcotics, benzodiazepines and changes in haemoglobin concentrations. No new postoperative deficits were observed in any patients in the cohort. Conclusions The authors concluded that surgeon-driven neuro-monitoring was a safe and effective means of intraoperative neuro-monitoring during spinal surgery. It reliably detected intraoperative insults, which could potentially have resulted in postoperative neurologic compromise

  3. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    PubMed

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  4. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-01

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  5. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  6. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  7. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  8. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  9. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov The National Spinal Cord Injury ...

  10. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  11. Spinal dysraphism.

    PubMed

    Sgouros, Spyros

    2013-09-01

    In the last decade there have been significant improvements in all the fields of management of patients with spinal dysraphism, which have increased dramatically the quality of life of these children. Prevention of spina bifida with food fortification is becoming increasingly practiced worldwide. As result, in many parts of the world the frequency of myelomeningocele has decreased. Intrauterine closure of myelomeningocele has been attempted in many institutions with variable results. While it is still at the sphere of experimental therapy, it is reasonable to anticipate progress in this field in the next decade. Antenatal MR imaging is already providing very high level of detail even before the child is born. This creates new ethical dilemmas and requires additional care, but has improved significantly the overall management of patients and their families. Further improvements are anticipated in this field. Management of neuropathic bladder has improved significantly in the last decade and is anticipated to play an increasing role in the long term follow up. Surgery for spinal cord tethering in all its forms has improved in the last decade, with far more chances of complete untethering now in comparison to 10-15 years ago, with the use of micro-neurosurgical techniques and intraoperative monitoring. It is reasonable to expect that in the next decade, intraoperative neurophysiological monitoring during spinal cord surgery will become mandatory. In the 2013 Annual Special Issue we have assembled a team of authors distinguished in their fields, who bring us up to date with all the latest developments. PMID:24013314

  12. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  13. Could failure of the spring ligament complex be the driving force behind the development of the adult flatfoot deformity?

    PubMed

    Williams, Geraint; Widnall, James; Evans, Paul; Platt, Simon

    2014-01-01

    We conducted an investigation into the relative associations of magnetic resonance imaging (MRI)-defined pathologic features of the spring ligament and/or tibialis posterior tendon with radiographic evidence of a planovalgus foot position. A total of 161 patient images (MRI and plain radiographs) obtained from the foot and ankle clinic (2008 to 2011) were retrospectively reviewed. All 161 patients (64 male and 97 female; mean age 45.9 years, range 18 to 86) were included in the analysis. Lateral weightbearing radiographs were analyzed for the talo-first metatarsal angle ≥ 5°, calcaneal pitch ≤ 20°, and talocalcaneal angle ≥ 45°. A positive finding for ≥ 1 measurements identified a radiographic planovalgus position of the foot. The radiographic deformity was analyzed against the MRI evidence of either spring ligament or tibialis posterior tendon pathologic features for significance (p < .05). Evidence of a spring ligament abnormality was strongly associated with a planovalgus foot position, reaching high levels of statistical significance in all 3 categories of radiographic deformity (odds ratio 9.2, p < .0001). Abnormalities of the tibialis posterior tendon failed to demonstrate significance, unless grade I changes were excluded, and grade II and III appearances were analyzed in isolation (odds ratio 2.9, p = .04). Although absolute causal relationships were not tested, this investigation has clearly demonstrated that MRI-defined abnormalities of the spring ligament complex are possibly of at least equal importance to tibialis posterior dysfunction for the presence of a moderate to severe radiographic planovalgus foot position.

  14. Could failure of the spring ligament complex be the driving force behind the development of the adult flatfoot deformity?

    PubMed

    Williams, Geraint; Widnall, James; Evans, Paul; Platt, Simon

    2014-01-01

    We conducted an investigation into the relative associations of magnetic resonance imaging (MRI)-defined pathologic features of the spring ligament and/or tibialis posterior tendon with radiographic evidence of a planovalgus foot position. A total of 161 patient images (MRI and plain radiographs) obtained from the foot and ankle clinic (2008 to 2011) were retrospectively reviewed. All 161 patients (64 male and 97 female; mean age 45.9 years, range 18 to 86) were included in the analysis. Lateral weightbearing radiographs were analyzed for the talo-first metatarsal angle ≥ 5°, calcaneal pitch ≤ 20°, and talocalcaneal angle ≥ 45°. A positive finding for ≥ 1 measurements identified a radiographic planovalgus position of the foot. The radiographic deformity was analyzed against the MRI evidence of either spring ligament or tibialis posterior tendon pathologic features for significance (p < .05). Evidence of a spring ligament abnormality was strongly associated with a planovalgus foot position, reaching high levels of statistical significance in all 3 categories of radiographic deformity (odds ratio 9.2, p < .0001). Abnormalities of the tibialis posterior tendon failed to demonstrate significance, unless grade I changes were excluded, and grade II and III appearances were analyzed in isolation (odds ratio 2.9, p = .04). Although absolute causal relationships were not tested, this investigation has clearly demonstrated that MRI-defined abnormalities of the spring ligament complex are possibly of at least equal importance to tibialis posterior dysfunction for the presence of a moderate to severe radiographic planovalgus foot position. PMID:24556481

  15. Acute Paraplegia as a Result of Hemorrhagic Spinal Ependymoma Masked by Spinal Anesthesia: Case Report and Review of Literature.

    PubMed

    Lee, Sang-Hyo; Park, David Jaehyun; Jeun, Sin-Soo

    2016-04-01

    Ependymomas are the most common intramedullary spinal cord tumors in adults. Although a hemorrhage within spinal ependymoma on imaging studies is not uncommon, it has rarely been reported to bea cause of acute neurological deficit. In the present report, we describe a case of a 24-year-old female patient who developed acute paraplegia as a result of hemorrhagic spinal ependymoma immediately after a cesarean delivery under spinal regional anesthesia. We review the literature of hemorrhagic spinal ependymomas presenting with acute neurological deficit and discuss the most appropriate treatment for a good neurological recovery. PMID:27195260

  16. Acute Paraplegia as a Result of Hemorrhagic Spinal Ependymoma Masked by Spinal Anesthesia: Case Report and Review of Literature

    PubMed Central

    Lee, Sang-Hyo; Jeun, Sin-Soo

    2016-01-01

    Ependymomas are the most common intramedullary spinal cord tumors in adults. Although a hemorrhage within spinal ependymoma on imaging studies is not uncommon, it has rarely been reported to bea cause of acute neurological deficit. In the present report, we describe a case of a 24-year-old female patient who developed acute paraplegia as a result of hemorrhagic spinal ependymoma immediately after a cesarean delivery under spinal regional anesthesia. We review the literature of hemorrhagic spinal ependymomas presenting with acute neurological deficit and discuss the most appropriate treatment for a good neurological recovery. PMID:27195260

  17. Rehabilitation of Disabled Children Following Spinal Fusion.

    ERIC Educational Resources Information Center

    Jaffe, Kenneth M.; Hays, Ross M.

    1986-01-01

    Records of 16 patients (ages 6-19) who had undergone surgery for severe spinal deformity were retrospectively analyzed to document ten aspects of rehabilitation intervention, including mobility skills, patient and family training and education, daily living activities, ongoing medical problems, planning for school reentry, and management of…

  18. Microsurgical resection of intramedullary spinal cord ependymoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ependymomas are the most commonly occurring intramedullary spinal cord tumor in adults. With few exceptions these tumors are histologically benign, although they exhibit some biologic variability with respect to growth rate. While unencapsulated, spinal ependymomas are non-infiltrative and present a clear margin of demarcation from the surrounding spinal cord that serves as an effective dissection plane. This video demonstrates the technique of microsurgical resection of an intramedullary ependymoma through a posterior midline myelotomy. The video can be found here: http://youtu.be/lcHhymSvSqU. PMID:25175587

  19. Pathophysiology of primary spinal syringomyelia

    PubMed Central

    Heiss, John D.; Snyder, Kendall; Peterson, Matthew M.; Patronas, Nicholas J.; Butman, John A.; Smith, René K.; DeVroom, Hetty L.; Sansur, Charles A.; Eskioglu, Eric; Kammerer, William A.; Oldfield, Edward H.

    2013-01-01

    Object The pathogenesis of syringomyelia in patients with an associated spinal lesion is incompletely understood. The authors hypothesized that in primary spinal syringomyelia, a subarachnoid block effectively shortens the length of the spinal subarachnoid space (SAS), reducing compliance and the ability of the spinal theca to dampen the subarachnoid CSF pressure waves produced by brain expansion during cardiac systole. This creates exaggerated spinal subarachnoid pressure waves during every heartbeat that act on the spinal cord above the block to drive CSF into the spinal cord and create a syrinx. After a syrinx is formed, enlarged subarachnoid pressure waves compress the external surface of the spinal cord, propel the syrinx fluid, and promote syrinx progression. Methods To elucidate the pathophysiology, the authors prospectively studied 36 adult patients with spinal lesions obstructing the spinal SAS. Testing before surgery included clinical examination; evaluation of anatomy on T1-weighted MRI; measurement of lumbar and cervical subarachnoid mean and pulse pressures at rest, during Valsalva maneuver, during jugular compression, and after removal of CSF (CSF compliance measurement); and evaluation with CT myelography. During surgery, pressure measurements from the SAS above the level of the lesion and the lumbar intrathecal space below the lesion were obtained, and cardiac-gated ultrasonography was performed. One week after surgery, CT myelography was repeated. Three months after surgery, clinical examination, T1-weighted MRI, and CSF pressure recordings (cervical and lumbar) were repeated. Clinical examination and MRI studies were repeated annually thereafter. Findings in patients were compared with those obtained in a group of 18 healthy individuals who had already undergone T1-weighted MRI, cine MRI, and cervical and lumbar subarachnoid pressure testing. Results In syringomyelia patients compared with healthy volunteers, cervical subarachnoid pulse pressure

  20. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord.

    PubMed

    Karimi-Abdolrezaee, Soheila; Eftekharpour, Eftekhar; Wang, Jian; Schut, Desiree; Fehlings, Michael G

    2010-02-01

    The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar.

  1. A combination therapy of neural and glial restricted precursor cells and chronic quipazine treatment paired with passive cycling promotes quipazine-induced stepping in adult spinalized rats

    PubMed Central

    Shumsky, Jed S.

    2015-01-01

    Introduction In order to develop optimal treatments to promote recovery from complete spinal cord injury (SCI), we examined the combination of: (1) a cellular graft of neural and glial restricted precursor (NRP/GRP) cells, (2) passive exercise, and (3) chronic quipazine treatment on behavioral outcomes and compared them with the individual treatment elements. NRP/GRP cells were transplanted at the time of spinalization. Methods Daily passive exercise began 1 week after injury to give sufficient time for the animals to recover. Chronic quipazine administration began 2 weeks after spinalization to allow for sufficient receptor upregulation permitting the expression of its behavioral effects. Behavioral measures consisted of the Basso, Beattie, and Bresnahan (BBB) locomotor score and percent of weight-supported steps and hops on a treadmill. Results Rats displayed an increased response to quipazine (BBB ≥ 9) beginning at 8 weeks post-injury in all the animals that received the combination therapy. This increase in BBB score was persistent through the end of the study (12 weeks post-injury). Conclusion Unlike the individual treatment groups which never achieved weight support, the combination therapy animals were able to perform uncoordinated weight-supported stepping without a body weight support system while on a moving treadmill (6.5 m per minute) and were capable of supporting their own weight in stance during open field locomotion testing. No regeneration of descending serotonergic projections into and through the lesion cavity was observed. Furthermore, these results are a testament to the capacity of the lumbar spinal cord, when properly stimulated, to sustain functioning locomotor circuitry following complete SCI. PMID:25329574

  2. Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats.

    PubMed

    Petrosyan, Hayk A; Hunanyan, Arsen S; Alessi, Valentina; Schnell, Lisa; Levine, Joel; Arvanian, Victor L

    2013-02-27

    NG2 belongs to the family of chondroitin sulfate proteoglycans that are upregulated after spinal cord injury (SCI) and are major inhibitory factors restricting the growth of fibers after SCI. Neutralization of NG2's inhibitory effect on axon growth by anti-NG2 monoclonal antibodies (NG2-Ab) has been reported. In addition, recent studies show that exogenous NG2 induces a block of axonal conduction. In this study, we demonstrate that acute intraspinal injections of NG2-Ab prevented an acute block of conduction by NG2. Chronic intrathecal infusion of NG2-Ab improved the following deficits induced by chronic midthoracic lateral hemisection (HX) injury: (1) synaptic transmission to lumbar motoneurons, (2) retrograde transport of fluororuby anatomical tracer from L5 to L1, and (3) locomotor function assessed by automated CatWalk gait analysis. We collected data in an attempt to understand the cellular and molecular mechanisms underlying the NG2-Ab-induced improvement of synaptic transmission in HX-injured spinal cord. These data showed the following: (1) that chronic NG2-Ab infusion improved conduction and axonal excitability in chronically HX-injured rats, (2) that antibody treatment increased the density of serotonergic axons with ventral regions of spinal segments L1-L5, (3) and that NG2-positive processes contact nodes of Ranvier within the nodal gap at the location of nodal Na(+) channels, which are known to be critical for propagation of action potentials along axons. Together, these results demonstrate that treatment with NG2-Ab partially improves both synaptic and anatomical plasticity in damaged spinal cord and promotes functional recovery after HX SCI. Neutralizing antibodies against NG2 may be an excellent way to promote axonal conduction after SCI. PMID:23447612

  3. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  4. Fictive motor patterns in chronic spinal cats.

    PubMed

    Pearson, K G; Rossignol, S

    1991-12-01

    1. Fictive motor patterns were recorded in hind leg nerves of 10 adult chronic spinal cats (spinalized at T13). Four of these animals had been trained to step with their hind legs on a treadmill (late-spinal animals), whereas the remainder received no training and were examined a short time after spinalization (early-spinal animals). 2. A fictive pattern resembling the locomotor pattern for stepping was evoked in all animals in response to stimulation of the skin of the perineal region. (2-[2,6-Dichloroaniline]-2-imidazoline) hydrochloride (Clonidine) at doses ranging from 100 to 500 micrograms/kg iv facilitated the production of this pattern, particularly in early-spinal animals. 3. The fictive locomotor pattern in late-spinal animals was more complex than that occurring in early-spinal animals. In the latter the pattern consisted of an alternation of activity in flexor and extensor nerves, and changing leg position did not qualitatively alter the pattern, whereas in late-spinal animals the relative durations of the bursts in different flexors were usually not the same, and the pattern of flexor activity was dependent on leg position. 4. Moving the legs from extension to flexion progressively decreased the duration of flexor bursts, increased the cycle period, and decreased the ease with which the pattern could be evoked in both early- and late-spinal animals. 5. 1-beta-3,4-Dihydroxyphenylalanine (DOPA)/Isonocotinic acid 2-[(2-benzylcarbamoyl)ethyl]hydrazide (Nialamide) treatment following Clonidine in early-spinal animals increased the complexity of flexor burst activity. This, and other observations, indicates that DOPA and Clonidine do not have strictly identical actions on the locomotor pattern generator. 6. Stimulation of the paws in late-spinal animals produced two patterns of activity distinctly different from the locomotor pattern. of activity distinctly different from the locomotor pattern. One was a short sequence of high-frequency rhythmic activity (at

  5. Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections

    PubMed Central

    Mitchell, Emma J.; McCallum, Sarah; Dewar, Deborah; Maxwell, David J.

    2016-01-01

    Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input. PMID:26999665

  6. Pediatric spinal cord injury: a review by organ system.

    PubMed

    Powell, Aaron; Davidson, Loren

    2015-02-01

    In this article, an overview is provided of pediatric spinal cord injury, organized by effects of this injury on various organ systems. Specific management differences between children and adults with spinal cord injury are highlighted. A detailed management approach is offered for particularly complex topics, such as spasticity and upper extremity reconstruction. PMID:25479784

  7. Primary osseous tumors of the pediatric spinal column: review of pathology and surgical decision making.

    PubMed

    Ravindra, Vijay M; Eli, Ilyas M; Schmidt, Meic H; Brockmeyer, Douglas L

    2016-08-01

    Spinal column tumors are rare in children and young adults, accounting for only 1% of all spine and spinal cord tumors combined. They often present diagnostic and therapeutic challenges. In this article, the authors review the current management of primary osseous tumors of the pediatric spinal column and highlight diagnosis, management, and surgical decision making. PMID:27476845

  8. Primary osseous tumors of the pediatric spinal column: review of pathology and surgical decision making.

    PubMed

    Ravindra, Vijay M; Eli, Ilyas M; Schmidt, Meic H; Brockmeyer, Douglas L

    2016-08-01

    Spinal column tumors are rare in children and young adults, accounting for only 1% of all spine and spinal cord tumors combined. They often present diagnostic and therapeutic challenges. In this article, the authors review the current management of primary osseous tumors of the pediatric spinal column and highlight diagnosis, management, and surgical decision making.

  9. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  10. [Spinal instrumentation, source of progress, but also revealing pitfalls].

    PubMed

    Dubousset, Jean

    2003-01-01

    The second half of the XXo century and especially the last 30 years have been the source of a great improvement for surgical treatment of spinal pathology essentially in 3 directions:--First, for the patient himself and his comfort by suppression for most of the cases of any post operative external support thanks to the rigidity, security and strength of segmental fixation given by the hooks, screws and rods systems, as well for posterior as anterior instrumentation. In addition, these new techniques allow the patient to return quickly to standing and walking activity and subsequently the surgery for adult people increased dramatically especially for all kind of degenerative diseases and more and more extended spinal deformities.--The second major improvement came from the real and new understanding of the 3 dimensions for all the physiology and pathology of the spine leading to practical applications for the design and surgical strategies for correction. The exploding expansion of the era of computer technology brought a lot of help in such understanding as well as for the development of spinal instrumentation.--Finally the impressive development of medical imaging with CT scan and less and less invasive techniques like MRI allow a much better vision of spinal cord and roots (a major concern for the spinal surgeon). All this occurs also because simultaneous revolution occurred in the field of anesthesia and intensive care especially post operatively, but also because the big progress for monitoring of vital function as well as neurological monitoring during surgery. The consequence of that was an improvement for the results concerning the patient for functional quality of life as well as for cosmesis. The subsequent failures resulting of these improvements came from various fields even if we exclude infection or neurological complications more and more controlled now.--At the level of the indications because of these lack of post operative external immobilization

  11. Segmentation of the human spinal cord.

    PubMed

    De Leener, Benjamin; Taso, Manuel; Cohen-Adad, Julien; Callot, Virginie

    2016-04-01

    Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion

  12. Spinal cord trauma

    MedlinePlus

    ... if the bones or disks have been weakened Fragments of bone (such as from broken vertebrae, which are the ... presses on the spinal cord (decompression laminectomy ) Remove bone fragments, disk fragments, or foreign objects Fuse broken spinal ...

  13. Degenerative lumbar spinal stenosis and its imposters: three case studies

    PubMed Central

    Ammendolia, Carlo

    2014-01-01

    Degenerative lumbar spinal stenosis causing neurogenic claudicaton is a common condition impacting walking ability in older adults. There are other highly prevalent conditions in this patient population that have similar signs and symptoms and cause limited walking ability. The purpose of this study is to highlight the diagnostic challenges using three case studies of older adults who present with limited walking ability who have imaging evidence of degenerative lumbar spinal stenosis. PMID:25202160

  14. 2014 Leonard Goldner Award Winner: Correlation of Postoperative Midfoot Position with Patient Outcomes Following Reconstruction of the Stage II Adult Acquired Flatfoot Deformity

    PubMed Central

    Conti, Matthew S.; Chan, Jeremy Y.; Do, Huong T.; Ellis, Scott J.; Deland, Jonathan T.

    2016-01-01

    Background No studies investigating the effect of midfoot (talonavicular joint) position on clinical outcomes following flatfoot reconstruction have been performed. The purpose of our study was to determine whether a postoperative abducted or adducted forefoot alignment, as determined from AP radiographs, was associated with a difference in outcomes using the Foot and Ankle Outcome Score (FAOS). Methods Midfoot abduction was defined on postoperative AP radiographs, evaluated at a mean of 1.9 years in 55 patients from the authors’ institution that underwent flatfoot reconstruction for stage II adult acquired flatfoot deformity (AAFD), as a lateral incongruency angle greater than 5 degrees, a talonavicular uncoverage angle greater than 8 degrees, and a talo-first metatarsal angle greater than 8 degrees based on previously reported measurements. Patients with two or more measurements in the abduction category were classified as the abduction group (n=30); those with one or fewer measurements in the abduction category were placed in the adduction group (n=25). Preoperative FAOS and postoperative FAOS with a mean follow-up of 3.1 years were compared using Wilcoxon rank-sum tests. Results Patients corrected to a position of adduction showed a significantly lower improvement in the FAOS daily activities (p=0.012) and quality of life subscales (p=0.046). Mean improvement in subscale score for the adducted group was lower for pain (p=0.052) and sports activities (p=0.085) but did not reach statistical significance. No significant difference in the FAOS symptoms subscale (p=0.372) between groups was found. Conclusions Correction of the talonavicular joint to a position of adduction following stage II AAFD is associated with decreased patient outcomes in daily activities and quality of life compared with an abducted position. These results suggest that overcorrection to a position of midfoot adduction leads to a lesser amount of individual patient improvement in the

  15. Management of lumbar spinal stenosis.

    PubMed

    Lurie, Jon; Tomkins-Lane, Christy

    2016-01-01

    Lumbar spinal stenosis (LSS) affects more than 200,000 adults in the United States, resulting in substantial pain and disability. It is the most common reason for spinal surgery in patients over 65 years. Lumbar spinal stenosis is a clinical syndrome of pain in the buttocks or lower extremities, with or without back pain. It is associated with reduced space available for the neural and vascular elements of the lumbar spine. The condition is often exacerbated by standing, walking, or lumbar extension and relieved by forward flexion, sitting, or recumbency. Clinical care and research into lumbar spinal stenosis is complicated by the heterogeneity of the condition, the lack of standard criteria for diagnosis and inclusion in studies, and high rates of anatomic stenosis on imaging studies in older people who are completely asymptomatic. The options for non-surgical management include drugs, physiotherapy, spinal injections, lifestyle modification, and multidisciplinary rehabilitation. However, few high quality randomized trials have looked at conservative management. A systematic review concluded that there is insufficient evidence to recommend any specific type of non-surgical treatment. Several different surgical procedures are used to treat patients who do not improve with non-operative therapies. Given that rapid deterioration is rare and that symptoms often wax and wane or gradually improve, surgery is almost always elective and considered only if sufficiently bothersome symptoms persist despite trials of less invasive interventions. Outcomes (leg pain and disability) seem to be better for surgery than for non-operative treatment, but the evidence is heterogeneous and often of limited quality. PMID:26727925

  16. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  17. Spinal Cord Diseases

    MedlinePlus

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  18. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  19. Surgical Management of Spinal Conditions in the Elderly Osteoporotic Spine.

    PubMed

    Goldstein, Christina L; Brodke, Darrel S; Choma, Theodore J

    2015-10-01

    Osteoporosis, the most common form of metabolic bone disease, leads to alterations in bone structure and density that have been shown to compromise the strength of spinal instrumentation. In addition, osteoporosis may contribute to high rates of fracture and instrumentation failure after long posterior spinal fusions, resulting in proximal junctional kyphosis and recurrent spinal deformity. As increasing numbers of elderly patients present for surgical intervention for degenerative and traumatic spinal pathologies, current and future generations of spine surgeons will increasingly be faced with the challenge of obtaining adequate fixation in osteoporotic bone. The purpose of this review is to familiarize the reader with the impact of osteoporosis on spinal instrumentation, the broad variety of techniques that have been developed for addressing these issues, and the biomechanical and clinical evidence in support of the use of these techniques. PMID:26378363

  20. Employment Outcomes Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Engel, S.; Murphy, G. S.; Athanasou, J. A.; Hickey, L.

    1998-01-01

    A study of 83 Australian adults with spinal cord injuries found that at least 56% had worked at some time post-injury and those who were working when surveyed had done so for an average of close to 10 years. Clerical, office, and administrative occupations proved to be the most suitable. (Author/CR)

  1. Spinal pain.

    PubMed

    Izzo, R; Popolizio, T; D'Aprile, P; Muto, M

    2015-05-01

    The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic pain, much more difficult to treat. The clinical assessment of pain source can be a challenge because of the complex anatomy and function of the spine; the advanced imaging methods are often not sufficient for a definitive diagnosis because similar findings could be present in either asymptomatic and symptomatic subjects: a clinical correlation is always mandatory and the therapy cannot rely uniquely upon any imaging abnormalities. Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally

  2. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities.

  3. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities. PMID:7729113

  4. Spinal cord contusion models.

    PubMed

    Young, Wise

    2002-01-01

    Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. All spinal cord injury therapies tested to date in clinical trial were validated in such models. In recent years, the trend has been towards use of rats for spinal cord injury studies. The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury. PMID:12440371

  5. Spinal infections in children: A review.

    PubMed

    Tyagi, Rahul

    2016-12-01

    Spinal infections are uncommon but significant causes of morbidity and hospitalization in the paediatric population. These infections encompass a broad range of conditions, from discitis to osteomyelitis and spinal epidural and intramedullary abscesses. Paediatric spinal infections can be caused by a range of bacterial, viral, fungal and parasitic agents. Ultrastructural differences of the vertebrae and associated structures result in distinct mechanisms of pathogenesis of spinal infections in children compared to adults. The non-specific nature of symptoms produced by them can cause considerable diagnostic delays. Magnetic Resonance (MR) imaging can facilitate early identification of the disease, and distinguish it from other spinal pathologies. The association of antimicrobial resistant bacterial strains from some of the cases appears worrisome; as is the increasing incidence of Kingella kingae infections causing spinal infections. Rest and immobilization are the general treatment, and prompt initiation of antimicrobial therapy is warranted to ensure optimal clinical outcome. Most patients generally have a good prognosis; however, early identification and prompt initiation of antimicrobial therapy is essential to achieve the best therapeutic response. PMID:27408498

  6. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    PubMed

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual.

  7. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    PubMed

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. PMID:26341152

  8. Dynamic Characteristic Analysis of Spinal Motor Control Between 11- and 15-Year-Old Children.

    PubMed

    Chow, Daniel H; Lau, Newman M

    2016-07-01

    Spinal motor control can provide substantial insight for the causes of spinal musculoskeletal disorders. Its dynamic characteristics however, have not been fully investigated. The objective of this study is to explore the dynamic characteristics of spinal motor control via the fractional Brownian motion mathematical technique. Spinal curvatures and repositioning errors of different spinal regions in 64 children age 11- or 15-years old during upright stance were measured and compared for the effects of age and gender. With the application of the fractional Brownian motion analytical technique to the changes of spinal curvatures, distinct persistent movement behaviors could be determined, which could be interpreted physiologically as open-loop behaviors. Moreover, it was found that the spinal motor control of 15-year-old children was better than that of 11-year-old children with smaller repositioning error and less curvature variability as well as shorter response time and smaller curvature deformation.

  9. Optical Monitoring and Detection of Spinal Cord Ischemia

    PubMed Central

    Mesquita, Rickson C.; D’Souza, Angela; Bilfinger, Thomas V.; Galler, Robert M.; Emanuel, Asher; Schenkel, Steven S.; Yodh, Arjun G.; Floyd, Thomas F.

    2013-01-01

    Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings. PMID:24358279

  10. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  11. Astrocytoma with involvement of medulla oblongata, spinal cord and spinal nerves in a raccoon (Procyon lotor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neoplasms affecting the central and peripheral nervous systems of wild animals are extremely rare. Described are clinical signs, pathologic and immunohistochemical findings in an adult female raccoon (Procyon lotor) with an astrocytoma which involved brainstem, cervical spinal cord and roots of the ...

  12. Spinal subarachnoid haematoma after spinal anaesthesia: case report.

    PubMed

    Vidal, Marion; Strzelecki, Antoine; Houadec, Mireille; Krikken, Isabelle Ranz; Danielli, Antoine; Souza Neto, Edmundo Pereira de

    2016-01-01

    Subarachnoid haematoma after spinal anaesthesia is known to be very rare. In the majority of these cases, spinal anaesthesia was difficult to perform and/or unsuccessful; other risk factors included antiplatelet or anticoagulation therapy, and direct spinal cord trauma. We report a case of subarachnoid haematoma after spinal anaesthesia in a young patient without risk factors. PMID:27591468

  13. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  14. Deformed wing virus.

    PubMed

    de Miranda, Joachim R; Genersch, Elke

    2010-01-01

    Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.

  15. Spinal and epidural anesthesia

    MedlinePlus

    Intraspinal anesthesia; Subarachnoid anesthesia; Epidural; Peridural anesthesia ... Spinal and epidural anesthesia have fewer side effects and risks than general anesthesia (asleep and pain-free). Patients usually recover their senses ...

  16. Spinal Muscular Atrophy

    MedlinePlus

    ... diseases that progressively destroy lower motor neurons—nerve cells in the brain stem and spinal cord that control essential voluntary muscle activity such as speaking, walking, breathing, and swallowing. ...

  17. Spinal Cord Injury 101

    MedlinePlus

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we expect ...

  18. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  19. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  20. Spinal cord abscess

    MedlinePlus

    ... irritation (inflammation) and the collection of infected material (pus) in or around the spinal cord. ... occurs as a complication of an epidural abscess . Pus forms as a collection of: Destroyed tissue cells ...

  1. [Meningitis after spinal anesthesia].

    PubMed

    Mouchrif, Issam; Berdaii, Adnane; Labib, Ismail; Harrandou, Moustapha

    2016-01-01

    Meningitis is a rare but serious complication of epidural and spinal anesthesia. Bacterial meningitis is mainly caused by Gram-positive cocci, implying an exogenous contamination which suggests a lack of asepsis. The evolution is usually favorable after treatment, but at the expense of increased health care costs and, sometimes, of significant neurological sequelae. We report a case of bacterial meningitis after spinal anesthesia for caesarean section. PMID:27642477

  2. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  3. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  4. Optimizing the management of patients with spinal myeloma disease.

    PubMed

    Molloy, Sean; Lai, Maggie; Pratt, Guy; Ramasamy, Karthik; Wilson, David; Quraishi, Nasir; Auger, Martin; Cumming, David; Punekar, Maqsood; Quinn, Michael; Ademonkun, Debo; Willis, Fenella; Tighe, Jane; Cook, Gordon; Stirling, Alistair; Bishop, Timothy; Williams, Cathy; Boszczyk, Bronek; Reynolds, Jeremy; Grainger, Mel; Craig, Niall; Hamilton, Alastair; Chalmers, Isobel; Ahmedzai, Sam; Selvadurai, Susanne; Low, Eric; Kyriakou, Charalampia

    2015-11-01

    Myeloma is one of the most common malignancies that results in osteolytic lesions of the spine. Complications, including pathological fractures of the vertebrae and spinal cord compression, may cause severe pain, deformity and neurological sequelae. They may also have significant consequences for quality of life and prognosis for patients. For patients with known or newly diagnosed myeloma presenting with persistent back or radicular pain/weakness, early diagnosis of spinal myeloma disease is therefore essential to treat and prevent further deterioration. Magnetic resonance imaging is the initial imaging modality of choice for the evaluation of spinal disease. Treatment of the underlying malignancy with systemic chemotherapy together with supportive bisphosphonate treatment reduces further vertebral damage. Additional interventions such as cement augmentation, radiotherapy, or surgery are often necessary to prevent, treat and control spinal complications. However, optimal management is dependent on the individual nature of the spinal involvement and requires careful assessment and appropriate intervention throughout. This article reviews the treatment and management options for spinal myeloma disease and highlights the value of defined pathways to enable the proper management of patients affected by it. PMID:26184699

  5. Identification of Skeletal Deformities in Far Eastern Catfish, Silurus asotus under Indoor Aquaculture Condition.

    PubMed

    Yang, Won Seok; Gil, Hyun Woo; Yoo, Gwang Yeol; Park, In-Seok

    2015-09-01

    For the 2 years of farming, at the indoor circulating aquaculture system, four kinds of skeletal deformities were found among 60 Far Eastern catfish, Silurus asotus. Deformities saw jawbone's luxation, abnormality of upper lip and malocclusion. Spinal deformity was most fatal deformities with low weight and small length. Jawbone's luxation had 1 maxilla and 2 mandibles. Abnormality of upper lip had just lip was back over. Malocclusion's left maxilla and right maxilla were not balanced. This experiment was any deformities in this species through the deformity can grasp how it affects.

  6. Sexual and Reproductive Function in Spinal Cord Injury and Spinal Surgery Patients

    PubMed Central

    Albright, Theodore H.; Grabel, Zachary; DePasse, J. Mason; Palumbo, Mark A.

    2015-01-01

    Sexual and reproductive health is important quality of life outcomes, which can have a major impact on patient satisfaction. Spinal pathology arising from trauma, deformity, and degenerative disease processes may be detrimental to sexual and reproductive function. Furthermore, spine surgery may impact sexual and reproductive function due to post-surgical mechanical, neurologic, and psychological factors. The aim of this paper is to provide a concise evidence-based review on the impact that spine surgery and pathology can have on sexual and reproductive function. A review of published literature regarding sexual and reproductive function in spinal injury and spinal surgery patients was performed. We have found that sexual and reproductive dysfunction can occur due to numerous etiological factors associated with spinal pathology. Numerous treatment options are available for those patients, depending on the degree of dysfunction. Spine surgeons and non-operative healthcare providers should be aware of the issues surrounding sexual and reproductive function as related to spine pathology and spine surgery. It is important for spine surgeons to educate their patients on the operative risks that spine surgery encompasses with regard to sexual dysfunction, although current data examining these topics largely consists of level IV data. PMID:26605025

  7. Spinal epidural abscess in a young girl without risk factors.

    PubMed

    Mantadakis, Elpis; Birbilis, Theodosios; Michailidis, Lambros; Souftas, Vasileios; Chatzimichael, Athanassios

    2011-07-01

    Spinal epidural abscess (SEA) is a rare infection associated with well-established risk factors mainly in adults. We describe an 11-year-old girl without any known risk factors who presented with fever and localized spinal tenderness in the lumbar area and was diagnosed with spinal MRI as suffering from a posterior SEA extending between T11 and L4. She was successfully managed with sequential intravenous and oral antibiotics along with minimally invasive surgery without laminectomy. Methicillin-sensitive Staphylococcus aureus was the responsible pathogen isolated at surgery. Immediate institution of antibiotics, spinal MRI, and well-timed neurosurgical consultation are mandatory for a favorable outcome in cases of SEA in children. PMID:21360025

  8. Molecular and cellular development of spinal cord locomotor circuitry

    PubMed Central

    Lu, Daniel C.; Niu, Tianyi; Alaynick, William A.

    2015-01-01

    The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group. PMID:26136656

  9. Automated determination of spinal centerline in CT and MR images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2009-02-01

    The spinal curvature is one of the most important parameters for the evaluation of spinal deformities. The spinal centerline, represented by the curve that passes through the centers of the vertebral bodies in three-dimensions (3D), allows valid quantitative measurements of the spinal curvature at any location along the spine. We propose a novel automated method for the determination of the spinal centerline in 3D spine images. Our method exploits the anatomical property that the vertebral body walls are cylindrically-shaped and therefore the lines normal to the edges of the vertebral body walls most often intersect in the middle of the vertebral bodies, i.e. at the location of spinal centerline. These points of intersection are first obtained by a novel algorithm that performs a selective search in the directions normal to the edges of the structures and then connected with a parametric curve that represents the spinal centerline in 3D. As the method is based on anatomical properties of the 3D spine anatomy, it is modality-independent, i.e. applicable to images obtained by computed tomography (CT) and magnetic resonance (MR). The proposed method was evaluated on six CT and four MR images (T1- and T2-weighted) of normal spines and on one scoliotic CT spine image. The qualitative and quantitative results for the normal spines show that the spinal centerline can be successfully determined in both CT and MR spine images, while the results for the scoliotic spine indicate that the method may also be used to evaluate pathological curvatures.

  10. What Are the Risk Factors for Brain and Spinal Cord Tumors in Children?

    MedlinePlus

    ... associated with cranial or spinal nerve schwannomas, especially vestibular schwannomas (acoustic neuromas), which almost always occur on ... possible increased risk of brain tumors or of vestibular schwannomas in adults with cell phone use, but ...

  11. Speed and spinal injuries.

    PubMed

    Healy, D G; Connolly, P; Stephens, M M; O'Byrne, J M; McManus, F; McCormack, D

    2004-09-01

    Road traffic accidents (RTA) are a significant cause of spinal trauma. On the 31st of October 2002 a new penalty system for speed related driving offences was introduced in Ireland. Our intention was to assess the effects of the introduction of this system on the activity of the National Spinal Injuries Centre (NSIC) with a retrospective review of all admissions from November 1998 until October 2003. The number of new acute admissions to the spinal injury unit during the study period was 831. In the first 6 months of the new system the number of RTA related admissions fell significantly to 17 compared to an average of 33 in the preceding 4 years. However, this effect was not maintained in the second 6 months. The fall in spinal injuries following RTA in the first 6 months of the new system parallels the pattern of road death reduction in this period. This suggests that driving behaviour can be modified with direct benefits in reducing spinal injuries. However, this effect has not persisted in the second 6 months of the new system suggesting that to maintain this change the perception and familiarity of a penalty are important factors in its impact.

  12. Learning Spinal Manipulation

    PubMed Central

    Harvey, Marie-Pierre; Wynd, Shari; Richardson, Lance; Dugas, Claude; Descarreaux, Martin

    2011-01-01

    Purpose: The goal of the present study was to quantify the high-velocity, low-amplitude spinal manipulation biomechanical parameters in two cohorts of students from different teaching institutions. The first cohort of students was taught chiropractic techniques in a patient–doctor positioning practice setting, while the second cohort of students was taught in a “complete practice” manipulation setting, thus performing spinal manipulation skills on fellow student colleagues. It was hypothesized that the students exposed to complete practice would perform the standardized spinal manipulation with better biomechanical parameters. Methods: Participants (n = 88) were students enrolled in two distinct chiropractic programs. Thoracic spine manipulation skills were assessed using an instrumented manikin, which allowed the measurement of applied force. Dependent variables included peak force, time to peak force, rate of force production, peak force variability, and global coordination. Results: The results revealed that students exposed to complete practice demonstrated lower time to peak force values, higher peak force, and a steeper rate of force production compared with students in the patient–doctor positioning scenario. A significant group by gender interaction was also noted for the time to peak force and rate of force production variables. Conclusion: The results of the present study confirm the importance of chiropractic technique curriculum and perhaps gender in spinal manipulation skill learning. It also stresses the importance of integrating spinal manipulation skills practice early in training to maximize the number and the quality of significant learner–instructor interactions. PMID:22069337

  13. [Spinal instrumentation, source of progress, but also revealing pitfalls].

    PubMed

    Dubousset, Jean

    2003-01-01

    The second half of the XXo century and especially the last 30 years have been the source of a great improvement for surgical treatment of spinal pathology essentially in 3 directions:--First, for the patient himself and his comfort by suppression for most of the cases of any post operative external support thanks to the rigidity, security and strength of segmental fixation given by the hooks, screws and rods systems, as well for posterior as anterior instrumentation. In addition, these new techniques allow the patient to return quickly to standing and walking activity and subsequently the surgery for adult people increased dramatically especially for all kind of degenerative diseases and more and more extended spinal deformities.--The second major improvement came from the real and new understanding of the 3 dimensions for all the physiology and pathology of the spine leading to practical applications for the design and surgical strategies for correction. The exploding expansion of the era of computer technology brought a lot of help in such understanding as well as for the development of spinal instrumentation.--Finally the impressive development of medical imaging with CT scan and less and less invasive techniques like MRI allow a much better vision of spinal cord and roots (a major concern for the spinal surgeon). All this occurs also because simultaneous revolution occurred in the field of anesthesia and intensive care especially post operatively, but also because the big progress for monitoring of vital function as well as neurological monitoring during surgery. The consequence of that was an improvement for the results concerning the patient for functional quality of life as well as for cosmesis. The subsequent failures resulting of these improvements came from various fields even if we exclude infection or neurological complications more and more controlled now.--At the level of the indications because of these lack of post operative external immobilization

  14. The treatment for multilevel noncontiguous spinal fractures

    PubMed Central

    Lian, Xiao Feng; Hou, Tie Sheng; Yuan, Jian Dong; Jin, Gen Yang; Li, Zhong Hai

    2006-01-01

    We report the outcome of 30 patients with multilevel noncontiguous spinal fractures treated between 2000 and 2005. Ten cases were treated conservatively (group A), eight cases were operated on at only one level (group B), and 12 cases were treated surgically at both levels (group C). All cases were followed up for 14–60 months (mean 32 months). Initial mobilisation with a wheelchair or crutches in group A was 9.2±1.1 weeks, which was significantly longer than groups B and C with 6.8±0.7 weeks and 3.1±0.4 weeks, respectively. Operative time and blood loss in group C were significantly more than group B. The neurological deficit improved in six cases in group A (60%), six in group B (75%) and eight in group C (80%). Correction of kyphotic deformity was significantly superior in groups C and B at the operated level, and increasing deformity occurred in groups A and B at the non-operated level. From the results we believe that three treatment strategies were suitable for multilevel noncontiguous spinal fractures, and individualised treatment should be used in these patients. In the patients treated surgically, the clinical and radiographic outcomes are much better. PMID:17043863

  15. Patterns of Phrenic Nerve Discharge after Complete High Cervical Spinal Cord Injury in the Decerebrate Rat.

    PubMed

    Ghali, Michael George Zaki; Marchenko, Vitaliy

    2016-06-15

    Studies conducted since the second half of the 19th century have revealed spontaneous as well as pharmacologically induced phasic/rhythmic discharge in spinal respiratory motor outputs of cats, dogs, rabbits, and neonatal rats following high cervical transection (Tx). The extent to which these various studies validate the existence of a true spinal respiratory rhythm generator remains debated. In this set of studies, we seek to characterize patterns of spontaneous phasic/rhythmic, asphyxia-induced, and pharmacologically induced activity occurring in phrenic nerve (PhN) discharge after complete high cervical (C1-C2) spinal cord transection. Experiments were performed on 20 unanesthetized decerebrate Sprague-Dawley adult male rats. Patterns of spontaneous activity after spinalization included tonic, phasic, slow oscillatory, and long-lasting tonic discharges. Topical application of antagonists of GABAA and glycine receptors to C1- and C2- spinal segments induced left-right synchronized phasic decrementing activity in PhN discharge that was abolished by an additional C2Tx. Asphyxia elicited increases in tonic activity and left-right synchronized gasp-like bursts in PhN discharge, demonstrating the presence of spinal circuits that may underlie a spinal gasping-like mechanism. We conclude that intrinsic slow oscillators and a phasic burst/rhythm generator exist in the spinal cord of the adult rat. If present in humans, this mechanism may be exploited to recover respiratory function in patients sustaining severe spinal cord injury. PMID:26239508

  16. Spinal pleomorphic xanthoastrocytoma companied with periventricular tumor

    PubMed Central

    Zhao, Xintong; Jiang, Xiaochun; Wang, Xiangming

    2015-01-01

    Pleomorphic xanthoastrocytoma (PXA) is a low grade tumor that occurs in supratentorial area of children and young adult. In the previous reports, PXA of spinal cord or multicentre was extremely rare. A 60-year-old patient of spinal PXA and periventricular tumor presented with waist pain and weakness of double legs for one month. Neuroimaging showed that a lesion at the level of L2-L3 and periventricular tumor. Postoperative microscopy indicated that WHO grade II PXA. Photomicrograph of the lesion showed spindle cells, marked nuclear and cytoplasmic pleomorphism, with foamy cytoplasm. Immunohistochemical staining showed that GFAP and S-100 were positive. This is a rare case of synchronous multicentric PXA. Physicians should be realized multicentric dissemination by meninges or cerebrospinal fluid in PXA patients. It is important to describe the particular case in order to better understanding of clinical features. PMID:25755815

  17. Growing up with a spinal cord injury.

    PubMed

    Johnson, K M; Berry, E T; Goldeen, R A; Wicker, E

    1991-04-01

    Much of what we need to know to be independent adults is learned in the first five years of life. In the toddler, instead of reteaching learned skills, as we do with older spinal cord injury persons, we are teaching skills for the first time. It is therefore imperative to have a creative therapeutic team who can teach skills which were never acquired and encourage the child's cognitive growth as well as growth towards independence. This paper will include a case report of a 2 year-old C3-4 quadriplegic child rehabilitated through an interdisciplinary family-centered model of care. We will share some of the issues our team has encountered when "rehabilitating" very young children with spinal cord injuries based on the observations of the team members as well as the scant literature available. This will also include a parent's reflections of modification needed in family structure and roles. PMID:2011723

  18. [Lumbar spinal angiolipoma].

    PubMed

    Isla, Alberto; Ortega Martinez, Rodrigo; Pérez López, Carlos; Gómez de la Riva, Alvaro; Mansilla, Beatriz

    2016-01-01

    Spinal angiolipomas are fairly infrequent benign tumours that are usually located in the epidural space of the thoracic column and represent 0.14% to 1.3% of all spinal tumours. Lumbar angiolipomas are extremely rare, representing only 9.6% of all spinal extradural angiolipomas. We report the case of a woman who complained of a lumbar pain of several months duration with no neurological focality and that had intensified in the last three days without her having had any injury or made a physical effort. The MR revealed an extradural mass L1-L2, on the posterior face of the medulla, decreasing the anteroposterior diameter of the canal. The patient symptoms improved after surgery. Total extirpation of the lesion is possible in most cases, and the prognosis is excellent even if the lesion is infiltrative. For this reason, excessively aggressive surgery is not necessary to obtain complete resection. PMID:27263067

  19. Spinal Subdural Haematoma

    PubMed Central

    Manish K, Kothari; Chandrakant, Shah Kunal; Abhay M, Nene

    2015-01-01

    Introduction: Spinal Subdural hematoma is a rare cause of radiculopathy and spinal cord compression syndromes. It’s early diagnosis is essential. Chronological appearance of these bleeds vary on MRI. Case Report: A 56 year old man presented with progressive left lower limb radiculopathy and paraesthesias with claudication of three days duration. MRI revealed a subdural space occupying lesion compressing the cauda equina at L5-S1 level producing a ‘Y’ shaped dural sac (Y sign), which was hyperintense on T1W imaging and hypointense to cord on T2W image. The STIR sequence showed hyperintensity to cord. There was no history of bleeding diathesis. The patient underwent decompressive durotomy and biopsy which confirmed the diagnosis. Conclusion: Spinal subdural hematoma may present with rapidly progressive neurological symptoms. MRI is the investigation of choice. The knowledge of MRI appearance with respect to the chronological stage of the bleed is essential to avoid diagnostic and hence surgical dilemma PMID:27299051

  20. [Spinal cord infarction].

    PubMed

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  1. [Lumbar spinal angiolipoma].

    PubMed

    Isla, Alberto; Ortega Martinez, Rodrigo; Pérez López, Carlos; Gómez de la Riva, Alvaro; Mansilla, Beatriz

    2016-01-01

    Spinal angiolipomas are fairly infrequent benign tumours that are usually located in the epidural space of the thoracic column and represent 0.14% to 1.3% of all spinal tumours. Lumbar angiolipomas are extremely rare, representing only 9.6% of all spinal extradural angiolipomas. We report the case of a woman who complained of a lumbar pain of several months duration with no neurological focality and that had intensified in the last three days without her having had any injury or made a physical effort. The MR revealed an extradural mass L1-L2, on the posterior face of the medulla, decreasing the anteroposterior diameter of the canal. The patient symptoms improved after surgery. Total extirpation of the lesion is possible in most cases, and the prognosis is excellent even if the lesion is infiltrative. For this reason, excessively aggressive surgery is not necessary to obtain complete resection.

  2. Skiing and spinal trauma.

    PubMed

    Frymoyer, J W; Pope, M H; Kristiansen, T

    1982-07-01

    Spinal injury in skiers can either be acute or chronic. Acute spinal injury accounts for 3 to 3.6 per cent of all injuries occurring in Alpine skiing. Fewer acute injuries occur in cross-country skiing, and those that do usually are the result of a sudden, compressive force from a seated fall. The prevalence of chronic spinal trauma in skiing is unknown. Both cross-country and Alpine skiers appear to have greater complaints of mild to moderate low back pain as compared with their nonskiing counterparts. These differences may be the result of a complex interaction between recreational and occupational activities. Theoretical analyses suggest a risk for low-grade torsional injury to the Alpine skier's spine, whereas in cross-country skiing significant shear forces are applied to lumbar discs during the kick but not the double-poling phase.

  3. Treatment of Spinal Tuberculosis by Debridement, Interbody Fusion and Internal Fixation via Posterior Approach Only.

    PubMed

    Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang

    2016-02-01

    Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting

  4. Treatment of Spinal Tuberculosis by Debridement, Interbody Fusion and Internal Fixation via Posterior Approach Only.

    PubMed

    Tang, Ming-xing; Zhang, Hong-qi; Wang, Yu-xiang; Guo, Chao-feng; Liu, Jin-yang

    2016-02-01

    Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three-column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68-year-old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone grafting

  5. Treatment of Spinal Tuberculosis by Debridement, Interbody Fusion and Internal Fixation via Posterior Approach Only

    PubMed Central

    Tang, Ming‐xing; Wang, Yu‐xiang; Guo, Chao‐feng; Liu, Jin‐yang

    2016-01-01

    Surgical treatment for spinal tuberculosis includes focal tuberculosis debridement, segmental stability reconstruction, neural decompression and kyphotic deformity correction. For the lesions mainly involved anterior and middle column of the spine, anterior operation of debridement and fusion with internal fixation has been becoming the most frequently used surgical technique for the spinal tuberculosis. However, high risk of structural damage might relate with anterior surgery, such as damage in lungs, heart, kidney, ureter and bowel, and the deformity correction is also limited. Due to the organs are in the front of spine, there are less complications in posterior approach. Spinal pedicle screw passes through the spinal three‐column structure, which provides more powerful orthopedic forces compared with the vertebral body screw, and the kyphotic deformity correction effect is better in posterior approach. In this paper, we report a 68‐year‐old male patient with thoracic tuberculosis who underwent surgical treatment by debridement, interbody fusion and internal fixation via posterior approach only. The patient was placed in prone position under general anesthesia. Posterior midline incision was performed, and the posterior spinal construction was exposed. Then place pedicle screw, and fix one side rod temporarily. Make the side of more bone destruction and larger abscess as lesion debridement side. Resect the unilateral facet joint, and retain contralateral structure integrity. Protect the spinal cord, nerve root. Clear sequestrum, necrotic tissue, abscess of paravertebral and intervertebral space. Specially designed titanium mesh cages or bone blocks were implanted into interbody. Fix both side rods and compress both sides to make the mesh cages and bone blocks tight. Reconstruct posterior column structure with allogeneic bone and autologous bone. Using this technique, the procedures of debridement, spinal cord decompression, deformity correction, bone

  6. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish.

    PubMed

    Barreiro-Iglesias, Antón; Mysiak, Karolina S; Scott, Angela L; Reimer, Michell M; Yang, Yujie; Becker, Catherina G; Becker, Thomas

    2015-11-01

    In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  7. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish

    PubMed Central

    Barreiro-Iglesias, Antón; Mysiak, Karolina S.; Scott, Angela L.; Reimer, Michell M.; Yang (杨宇婕), Yujie; Becker, Catherina G.; Becker, Thomas

    2015-01-01

    Summary In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish. PMID:26565906

  8. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats

    PubMed Central

    Alam, Monzurul; Garcia-Alias, Guillermo; Shah, Prithvi K.; Gerasimenko, Yury; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2015-01-01

    Background Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. New method We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. Results: sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(−) stimulation elicited more robust sMEPs than stimulation at C8(−). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. Comparison with existing method(s) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. Conclusions Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI. PMID:25791014

  9. Biomechanical responses to open experimental spinal cord injury.

    PubMed

    Hung, T K; Albin, M S; Brown, T D; Bunegin, L; Albin, R; Jannetta, P J

    1975-08-01

    This study evaluates the dynamic biomechanical responses of the cat spinal cord during experimental impact injury. Temporal deformations of the laminectomized spinal cord were recorded by a high speed camera (1500-3000 frames/sec). The cinematograph revealed large deformations, the cord being compressed to half its posterior-anterior diameter 7 msec after the onset of the impact. Peak impact force produced by a 20 gm mass falling from 15 cm height (300 GCF) averaged about 1.2 pounds, and the corresponding stress acting on the dural surface reached 42 pounds per square inch (or 2200 mm Hg). Both positive and negative pressure waves were found to be propagated in the cerebrospinal fluid.

  10. Kidney Stones in Several Spinal Abnormalities: A Challenging Treatment.

    PubMed

    Silva, Maximiliano Lopez; Sanguinetti, Horacio; Battiston, Santiago; Alvarez, Patricio; Bernardo, Norberto

    2016-01-01

    Patients with severe skeletal deformities are a challenging group to treat. A female, white, 35-year-old presented with right kidney stones located in renal pelvis, lower calyx, and upper ureter. She was affected by severe spinal deformity with restrictive respiratory obstruction, caused by kyphoscoliosis. Percutaneous nephrolithotomy in supine position was performed, achieving complete removal of kidney stones. The treatment of renal stones in this patient was complex, so special attention to respiratory function was mandatory; this was a challenging but feasible situation. PMID:27579402

  11. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  12. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  13. Chronic generalized spinal muscular atrophy of infancy and childhood

    PubMed Central

    Pearn, J. H.; Wilson, J.

    1973-01-01

    Recent studies have shown that the acute fatal form of infantile spinal muscular atrophy (acute Werdnig-Hoffmann disease or spinal muscular atrophy Type I) is a distinct genetic and clinical entity. This has prompted clinical re-examination of the disease known as `arrested Werdnig-Hoffmann disease' which hitherto was thought to be a spectrum variant of the acute fatal form. A total of 18 such patients with the chronic generalized form of spinal muscular atrophy has been known to The Hospital for Sick Children over the past 10 years. Patients with this characteristic clinical syndrome comprise approximately one-fifth of children with chronic spinal muscular atrophy. Clinically, no patient was even able to crawl normally or progress further with motor milestones. Median age of clinical onset is 6 months of age, and life expectancy ranges from 2 years to the third decade. Inevitable spinal and joint deformities occur by the second decade of life. Management should be based on vigorous antibiotic therapy, orthopaedic and neurological surveillance, and a carefully planned educational programme aimed at realistic employment in late adolescence. ImagesFIG. 4p772-b PMID:4749680

  14. Posterior approaches for symptomatic metastatic spinal cord compression.

    PubMed

    Molina, Camilo; Goodwin, C Rory; Abu-Bonsrah, Nancy; Elder, Benjamin D; De la Garza Ramos, Rafael; Sciubba, Daniel M

    2016-08-01

    Surgical interventions for spinal metastasis are commonly performed for mechanical stabilization, pain relief, preservation of neurological function, and local tumor reduction. Although multiple surgical approaches can be used for the treatment of metastatic spinal lesions, posterior approaches are commonly performed. In this study, the role of posterior surgical procedures in the treatment of spinal metastases was reviewed, including posterior laminectomy with and without instrumentation for stabilization, transpedicular corpectomy, and costotransversectomy. A review of the literature from 1980 to 2015 was performed using Medline, as was a review of the bibliographies of articles meeting preset inclusion criteria, to identify studies on the role of these posterior approaches among adults with spinal metastasis. Thirty-four articles were ultimately analyzed, including 1 randomized controlled trial, 6 prospective cohort studies, and 27 retrospective case reports and/or series. Some of the reviewed articles had Level II evidence indicating that laminectomy with stabilization can be recommended for improvement in neurological outcome and reduction of pain in selected patients. However, the use of laminectomy alone should be carefully considered. Additionally, transpedicular corpectomy and costotransversectomy can be recommended with the expectation of improving neurological outcomes and reducing pain in properly selected patients with spinal metastases. With improvements in the treatment paradigms for patients with spinal metastasis, as well as survival, surgical therapy will continue to play an important role in the management of spinal metastasis. While this review presents a window into determining the utility of posterior approaches, future prospective studies will provide essential data to better define the roles of the various options now available to surgeons in treating spinal metastases. PMID:27476835

  15. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    PubMed Central

    2011-01-01

    Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis) accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL) affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts. PMID:21269476

  16. Posterior spinal cord infarction due to fibrocartilaginous embolization in a 16-year-old athlete.

    PubMed

    Bansal, Seema; Brown, Wendy; Dayal, Anuradha; Carpenter, Jessica L

    2014-07-01

    Spinal cord infarction is extremely rare in children, and, similar to cerebrovascular infarcts, the pathogenesis is different from adults. Spinal cord infarcts are most commonly reported in adults in the context of aortic surgery; in children, the etiology is frequently unknown. Fibrocartilaginous embolization is a potential cause of spinal cord infarct in both populations. It is a process that occurs when spinal injury has resulted in disc disease, and subsequently disc fragments embolize to the cord, resulting in ischemia and/or infarction. In this report, we present a 16-year-old athlete who presented with symptoms of acute myelopathy after a period of intense exercise. Our original concern was for an inflammatory process of the spinal cord; however, given her history of competitive tumbling and degenerative disc changes on her initial spine magnetic resonance imaging scan, diffusion-weighted imaging was performed, which demonstrated acute spinal cord infarction. Unlike many cases of spinal cord infarction, our patient was fortunate to make a near-complete recovery. This case highlights the importance of recognizing rare causes of spinal cord pathology and considering infarction in the differential diagnosis of acute myelopathy because management and prognosis varies.

  17. Course of motor recovery following ventrolateral spinal cord injury in the rat.

    PubMed

    Webb, Aubrey A; Muir, Gillian D

    2004-11-01

    The purpose of this study was to determine the importance of the pathways running in the ventrolateral spinal funiculus for overground locomotion in adult, freely behaving rats. Left-sided ventrolateral cervical spinal cord injury was performed in adult female Long-Evans rats. The behavioural abilities of these animals were analyzed at 2 days, and weekly for up to 5.5 weeks following spinal cord injury. Behavioural testing consisted of Von Frey filament testing, ladder walking, a paw usage task, and the assessment of ground reaction forces during unrestrained trotting. Animals with injury to the left ventrolateral cervical spinal cord did not develop enhanced sensitivity to pedal mechanical stimulation. At 2 days following injury, animals had impaired skilled locomotion as indicated by increased number of footslips during ladder walking. At 2 days, these animals also used both limbs together more often for support while rearing, while using the forelimb ipsilateral to the injury less than did uninjured animals. Ground reaction force determination revealed that animals tend to bear less weight on the forelimb and hindlimb ipsilateral to the spinal cord injury 2 days after injury. All animals recovered normal or near normal sensorimotor abilities although subtle asymmetries in ground reaction forces were detectable at 5.5 weeks following spinal cord injury. These results suggest that axons in the ventrolateral spinal funiculi contribute to limb movements during exploration and locomotion but their roles can be served by other pathways after ventrolateral spinal injury. PMID:15325779

  18. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  19. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting to ... a “complete” and “incomplete” spinal cord injury? What recovery is expected following spinal cord injury? Where is ...

  20. Spinal and bulbar muscular atrophy and Charcot-Marie-Tooth type 1A: Co-existence of two rare neuromuscular genetic diseases in the same patient.

    PubMed

    Sagnelli, Anna; Scaioli, Vidmer; Piscosquito, Giuseppe; Salsano, Ettore; Dalla Bella, Eleonora; Gellera, Cinzia; Pareyson, Davide

    2015-10-01

    Spinal and bulbar muscular atrophy is an X-linked neuromuscular disease caused by a trinucleotide CAG repeat expansion in the androgen receptor gene; it is clinically characterized by adult-onset, slowly progressive weakness and atrophy mainly affecting proximal limb and bulbar muscles. Charcot-Marie-Tooth disease type 1A is an autosomal dominant polyneuropathy due to peripheral myelin protein 22 gene duplication and characterized by slowly progressive distal limb muscle weakness, atrophy and sensory loss with foot deformities. Here we report the co-occurrence of both neuromuscular genetic diseases in the same male patient. Difficulties in climbing stairs and jaw weakness were presenting symptoms consistent with SBMA. However, predominant distal weakness and bilateral pes cavus were rather suggestive of a hereditary polyneuropathy. The combination of two diseases, even if extremely rare, should be considered in the presence of atypical symptoms; in the case of genetic diseases this event may have important implications on family members' counseling.

  1. A Review of Complications and Outcomes following Vertebral Column Resection in Adults.

    PubMed

    Iyer, Sravisht; Nemani, Venu M; Kim, Han Jo

    2016-06-01

    The correction of rigid spinal deformities in adult patients can require a three-column osteotomy (pedicle subtraction osteotomy [PSO] or vertebral column resection [VCR]) to obtain spinal balance. Unfortunately, the existing adult deformity literature frequently reports the outcomes and complications of these procedures together even though VCR is a more extensive procedure with potentially higher rates of complications. We sought to address this shortcoming and provide clinicians with an overview of the existing literature regarding VCR in adult patients. The goals of this review are: to determine the rate of overall and neurologic complications following VCR, the rate of complications with VCR compared to PSO, and the impact of VCR on clinical and radiographic outcomes. An electronic literature search was used to identify studies reporting outcomes or complications following VCR in adult patients. Raw data on patient demographics, case information, radiographic outcomes, complications and clinical outcomes were extracted. Data were pooled to report a rate of overall complications and neurologic complications. A pooled relative risk of complications following PSO vs. VCR was also calculated. Eleven retrospective studies (Level IV) met our inclusion criteria. The overall rate of complications was 69.2%. The reoperation rate was 9.6%. The rate of neurologic complications was 13.3% (range, 6.3% to 15.8%) with most cases being transient. The rate of permanent neurologic deficits was 2.0%. We found a significantly higher rate of all complications with VCR compared to PSO (relative risk, 1.36; 95% confidence interval, 1.24-1.49; p<0.001). All studies reporting clinical outcomes showed significant improvements in functional outcome postoperatively. PMID:27340543

  2. A Review of Complications and Outcomes following Vertebral Column Resection in Adults

    PubMed Central

    Iyer, Sravisht; Nemani, Venu M.

    2016-01-01

    The correction of rigid spinal deformities in adult patients can require a three-column osteotomy (pedicle subtraction osteotomy [PSO] or vertebral column resection [VCR]) to obtain spinal balance. Unfortunately, the existing adult deformity literature frequently reports the outcomes and complications of these procedures together even though VCR is a more extensive procedure with potentially higher rates of complications. We sought to address this shortcoming and provide clinicians with an overview of the existing literature regarding VCR in adult patients. The goals of this review are: to determine the rate of overall and neurologic complications following VCR, the rate of complications with VCR compared to PSO, and the impact of VCR on clinical and radiographic outcomes. An electronic literature search was used to identify studies reporting outcomes or complications following VCR in adult patients. Raw data on patient demographics, case information, radiographic outcomes, complications and clinical outcomes were extracted. Data were pooled to report a rate of overall complications and neurologic complications. A pooled relative risk of complications following PSO vs. VCR was also calculated. Eleven retrospective studies (Level IV) met our inclusion criteria. The overall rate of complications was 69.2%. The reoperation rate was 9.6%. The rate of neurologic complications was 13.3% (range, 6.3% to 15.8%) with most cases being transient. The rate of permanent neurologic deficits was 2.0%. We found a significantly higher rate of all complications with VCR compared to PSO (relative risk, 1.36; 95% confidence interval, 1.24–1.49; p<0.001). All studies reporting clinical outcomes showed significant improvements in functional outcome postoperatively. PMID:27340543

  3. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    Spinal tap; Ventricular puncture; Lumbar puncture; Cisternal puncture; Cerebrospinal fluid culture ... brain stem. It is always done with fluoroscopy. Ventricular puncture may be recommended in people with possible ...

  4. Spinal angiolipoma--case report.

    PubMed

    Chotai, Silky; Hur, Jun Seok; Moon, Hong Joo; Kwon, Taek-Hyun; Park, Youn Kwan; Kim, Joo Han

    2011-01-01

    A 69-year-old male presented with a rare spinal angiolipoma manifesting as history of back pain, and numbness in both lower limbs, which progressed over a period of 5 years. Total T10-T12 laminectomy was performed and the tumor was removed en bloc. The symptoms gradually improved postoperatively. Spinal angiolipoma is an uncommon benign extradural tumor of spine, which accounts for 0.14-1.2% of all spinal tumors and is a rare cause of spinal cord compression. Recognition of this entity is crucial as a benign and curable cause of paraplegia and back pain.

  5. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    PubMed

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. PMID:27543338

  6. Spinal bone density following spinal fusion

    SciTech Connect

    Lipscomb, H.J.; Grubb, S.A.; Talmage, R.V.

    1989-04-01

    Spinal bone densities were assessed in 25 patients following lumbar fusion and bracing, in an attempt to study bone remodeling by noninvasive methods. Dual-photon densitometry was used to study specific areas of autologous bone grafts and adjacent vertebrae above the fusion mass. Measurements were made preoperatively and at 6-week intervals postoperatively. The data for the first 12 months postoperatively are reported here. In all patients there was at first a consistent loss in density in the vertebrae above the fusion mass, averaging 15.7%. This was followed by a gradual density increase such that by 1 year postoperatively, in 60% of the subjects, the density of these vertebrae was higher than the preoperative level. In the grafted areas, bone changes were cyclical, demonstrating a remodeling pattern consistent with that described in animal literature for graft healing and also consistent with modern bone remodeling theory. There was a general tendency toward a gradual increase in the density of the fusion mass.

  7. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  8. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  9. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications.

    PubMed

    Zhao, Xingfeng; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-05-01

    To develop a novel biomedical titanium alloy with a changeable Young's modulus via deformation-induced ω phase transformation for the spinal rods in spinal fixation devices, a series of metastable β type binary Ti-(15-18)Mo alloys were prepared. In this study, the microstructures, Young's moduli and tensile properties of the alloys were systemically examined to investigate the effects of deformation-induced ω phase transformation on their mechanical properties. The springback of the optimal alloy was also examined. Ti-(15-18)Mo alloys subjected to solution treatment comprise a β phase and a small amount of athermal ω phase, and they have low Young's moduli. All the alloys investigated in this study show an increase in the Young's modulus owing to deformation-induced ω phase transformation during cold rolling. The deformation-induced ω phase transformation is accompanied with {332}(β) mechanical twinning. This resulted in the maintenance of acceptable ductility with relatively high strength. Among the examined alloys, the Ti-17Mo alloy shows the lowest Young's modulus and the largest increase in the Young's modulus. This alloy exhibits small springback and could be easily bent to the required shape during operation. Thus, Ti-17Mo alloy is considered to be a potential candidate for the spinal rods in spinal fixation devices. PMID:22326686

  10. Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model

    PubMed Central

    Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-01-01

    Abstract During traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R2 = 0.19), but varied in strength between individual animals (R2 = 0.06–0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation. PMID:26729511

  11. Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-09-15

    During traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R(2) = 0.19), but varied in strength between individual animals (R(2) = 0.06-0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation.

  12. Surgery for spinal tuberculosis: a multi-center experience of 582 cases

    PubMed Central

    Phan, Kevin; Karim, Rezaul; Jonayed, Sharif Ahmed; Munir, Hasan Khalid Md.; Chakraborty, Shubhendu; Alam, Tashfique

    2015-01-01

    Background Tuberculosis (TB) of the spine is a common site of osseous TB, accounting for 50%-60% of cases. Spinal TB still occurs in both developed and developing countries. The diagnosis of spinal TB is difficult and it commonly presents at an advanced stage. Delays in establishing diagnosis and management result in complications such as spinal cord compression and spinal deformity. Methods A total of 582 patients with TB of the cervical, thoracic and lumbar spine with moderate to severe cord compression were studied. Variable degrees of neurological deficit with deformity were treated from January, 2003 to July, 2014. Thoracotomy along with anterolateral decompression and autogenous strut bone grafting with simultaneous fixation by screws and rods were performed in 113 cases. Posterior decompression, posterior interbody and posterolateral fusion by bone graft with stabilization by transpedicular screws and rods were done in the remaining 469 cases. Appropriate anti-TB drugs were given to all patients for 18-24 months. The follow-up period was 3 months to 10 years. Results The average age was 32.5 years. All patients survived surgery. There were 7 cases of superficial infections (1.2%) whilst there were 4 cases (0.7%) of deep infections. Revision surgery was performed in 6 patients (1.0%). Implant failure occurred in 4 cases (0.7%) whilst malposition of screws occurred in 12 cases (2.1%). Perioperative bleeding complications were reported for 4 patients (0.7%). Neurological improvement occurred in all patients except for 2 cases (0.3%). Preoperatively, the majority of patients (n=221, 38%) were classified with Class A on the American Spinal Injury Association (ASIS) neurological impairment scale. This was significantly reduced postoperatively to 0.4%. Conclusions For patients with spinal TB anterior debridement, auto graft bone fusion, anterior or posterior fixation appears to be effective in arresting disease, correcting kyphotic deformity and maintaining

  13. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord

    PubMed Central

    Jacobi, Anne; Loy, Kristina; Schmalz, Anja M; Hellsten, Mikael; Umemori, Hisashi; Kerschensteiner, Martin; Bareyre, Florence M

    2015-01-01

    The remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post-injury remodeling in the spinal cord. PMID:25766255

  14. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  15. Spinal Injury Rehabilitation in Singapore.

    ERIC Educational Resources Information Center

    Yen, H. L.; Chua, K.; Chan, W.

    1998-01-01

    This study reviewed 231 cases of spinal cord injury treated in Singapore. Data on demographic characteristics, common causes (mostly falls and traffic accidents), types of spinal damage, and outcomes are reported. Following rehabilitation, 68 patients were able to ambulate independently and 45 patients achieved independence in activities of daily…

  16. Adjustment to Spinal Cord Injury

    MedlinePlus

    ... of injury are alive and easily get educational information on the Internet. Web happy. sites such as the National Spinal Cord Injury Association (www.spinalcord.org) and SPINAL CORD Injury ♦ “Because of my injury, it is now impossible for me Information Network (www.spinalcord.uab.edu) have to ever ...

  17. Hemorrhagic onset of spinal angiolipoma.

    PubMed

    da Costa, Marcos Devanir Silva; Paz, Daniel de Araujo; Rodrigues, Thiago Pereira; Gandolfi, Ana Camila de Castro; Lamis, Fabricio Correa; Stavale, João Norberto; Suriano, Italo Capraro; Cetl, Luiz Daniel Marques Neves; Cavalheiro, Sergio

    2014-12-01

    Spinal angiolipomas are rare benign tumors that generally induce slow progressive cord compression. Here, the authors describe a case of sudden-onset palsy of the lower extremities caused by hemorrhagic spinal angiolipoma. An emergent laminectomy was performed to achieve total lesion removal. Follow-up examinations indicated neurological improvement and the absence of recurrence.

  18. Imaging modalities in spinal disorders

    SciTech Connect

    Kricun, M.E.

    1986-01-01

    This book provides an approach to the various imaging modalities used to view the spine. It discusses the indications, limitations and practical use of each in the diagnosis, work-up and staging of various spinal disorders, and compares each of them in various clinical settings. Topics covered include low back pain syndrome, disk disease, spinal cord lesions, congenital abnormalities, and trauma.

  19. Assessment of spinal pain.

    PubMed

    Braun, J; Baraliakos, X; Regel, A; Kiltz, U

    2014-12-01

    Spinal pain or back pain is a very common symptom that can have many reasons. The most studied location is low back pain, and it is considered to be nonspecific in the majority of cases. Only a small proportion of patients have axial inflammation as the major cause of their back complaints with chronic inflammatory back pain (IBP) as the most prominent clinical feature of spondyloarthritis (SpA). The recognition of IBP and patients with axial spondyloarthritis (axSpA) is challenging in primary care, and it is important to further facilitate the early diagnosis of SpA. Proposals for improving the referral of patients with a possible diagnosis of axSpA include clinical parameters, human leukocyte antigen (HLA) B27, and imaging parameters. Imaging is crucial for the visualization, objective validation, and understanding of back pain. Numerous diseases such as degenerative disk disease, degenerative changes in the intervertebral (facet) joints and the associated ligaments, spinal instability, herniation of the intervertebral disk, and spinal stenosis have to be differentiated in interpreting imaging of the spine. The sacroiliac joints and the spine are of major importance for the diagnosis and classification of axSpA. Conventional radiographs and magnetic resonance imaging (MRI) are the most important imaging technologies for visualization of structural changes such as syndesmophytes and axial inflammation such as sacroiliitis and spondylitis. The pathogenesis of axSpA is largely genetically determined. HLA B27 has the strongest contribution to the total genetic burden, but other major contributors such as endoplasmic reticulum aminopeptidase (ERAP)-1 and interleukin (IL)-23R have also been identified. PMID:26096091

  20. Surgical management of stage 2 adult acquired flatfoot.

    PubMed

    Maker, Jared M; Cottom, James M

    2014-07-01

    Adult acquired flatfoot deformity is a progressive disorder with multiple symptoms and degrees of deformity. Stage II adult acquired flatfoot can be divided into stage IIA and IIB based on severity of deformity. Surgical procedures should be chosen based on severity as well as location of the flatfoot deformity. Care must be taken not to overcorrect the flatfoot deformity so as to decrease the possibility of lateral column overload as well as stiffness.

  1. Surgical management of stage 2 adult acquired flatfoot.

    PubMed

    Maker, Jared M; Cottom, James M

    2014-07-01

    Adult acquired flatfoot deformity is a progressive disorder with multiple symptoms and degrees of deformity. Stage II adult acquired flatfoot can be divided into stage IIA and IIB based on severity of deformity. Surgical procedures should be chosen based on severity as well as location of the flatfoot deformity. Care must be taken not to overcorrect the flatfoot deformity so as to decrease the possibility of lateral column overload as well as stiffness. PMID:24980928

  2. Infiltrating spinal angiolipoma.

    PubMed

    Yen, Han-Lin; Tsai, Shih-Chung; Liu, Shian-Min

    2008-10-01

    Infiltrating angiolipomas are rarely encountered in the spine. We present a case involving a 71-year-old man with a dorsal epidural angiolipoma at the T5-T7 level. The tumor involved the T5-T6 vertebral bodies and left pedicle. The patient presented with acute paraparesis and MRI showed a homogeneously hyphointense lesion on T1-weighted images. The epidural component of the tumor was removed via laminectomy to achieve adequate cord decompression. The patient was symptom-free at a 2-year follow-up. This report emphasizes the unusual clinical presentation and MRI features of an infiltrating spinal angiolipoma and discusses therapeutic management options.

  3. Lumbar spinal epidural angiolipoma.

    PubMed

    Nanassis, Kimon; Tsitsopoulos, Parmenion; Marinopoulos, Dimitrios; Mintelis, Apostolos; Tsitsopoulos, Philippos

    2008-04-01

    Spinal angiolipomas are rare benign tumours most commonly found in the thoracic spine. A case of an extradural lumbar angiolipoma in a 47-year-old female is described. She had a recent history of lower back pain accompanied by sciatica. Lumbar MRI revealed a dorsal epidural mass at the L2-L3 level. The patient underwent a bilateral laminectomy, in which the tumour was totally excised. The pathological examination indicated haemangiolipoma. Post-operatively, the patient's neurological signs and symptoms improved remarkably quickly. MRI at 6 and 18 months after surgery revealed no evidence of tumour recurrence.

  4. Decision making regarding spinal osteotomy and total hip replacement for ankylosing spondylitis: experience with 28 patients.

    PubMed

    Zheng, G Q; Zhang, Y G; Chen, J Y; Wang, Y

    2014-03-01

    Few studies have examined the order in which a spinal osteotomy and total hip replacement (THR) are to be performed for patients with ankylosing spondylitis. We have retrospectively reviewed 28 consecutive patients with ankylosing spondylitis who underwent both a spinal osteotomy and a THR from September 2004 to November 2012. In the cohort 22 patients had a spinal osteotomy before a THR (group 1), and six patients had a THR before a spinal osteotomy (group 2). The mean duration of follow-up was 3.5 years (2 to 9). The spinal sagittal Cobb angle of the vertebral osteotomy segment was corrected from a pre-operative kyphosis angle of 32.4 (SD 15.5°) to a post-operative lordosis 29.6 (SD 11.2°) (p < 0.001). Significant improvements in pain, function and range of movement were observed following THR. In group 2, two of six patients had an early anterior dislocation. The spinal osteotomy was performed two weeks after the THR. At follow-up, no hip has required revision in either group. Although this non-comparative study only involved a small number of patients, given our experience, we believe a spinal osteotomy should be performed prior to a THR, unless the deformity is so severe that the procedure cannot be performed.

  5. Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig

    SciTech Connect

    Borgens, R.B.; Blight, A.R.; McGinnis, M.E.

    1987-10-16

    Applied electric fields were used to promote axonal regeneration in spinal cords of adult guinea pigs. A propriospinal intersegmental reflex (the cutaneous trunci muscle reflex) was used to test lateral tract function after hemisection of the thoracic spinal cord. An electrical field (200 microvolts per millimeter, cathode rostral) applied across the lesion led to functional recovery of the cutaneous trunci muscle reflex in 25 percent of experimental animals, whereas the functional deficit remained in control animals, which were implanted with inactive stimulators.

  6. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  7. Muscle disease as a cause of kyphotic deformity in ankylosing spondylitis.

    PubMed

    Simmons, E H; Graziano, G P; Heffner, R

    1991-08-01

    The effects of ankylosing spondylitis on skeletal muscle were investigated in nine consecutive patients referred for correction of severe spinal deformity. Enzymatic studies (creatinine phosphokinase, aldolose), electromyography, and paraspinal muscle biopsy were performed. The enzyme studies and electromyography yielded only variable results, but muscle biopsy uniformly demonstrated evidence of severe skeletal muscle disease. Small, scattered, sharp angular fibers were present in all specimens along with atrophy of Type I and Type II muscle fibers. Core or targetoid fibers were present in all but one patient. These findings suggest that muscle disease may be present in all ankylosing spondylitis patients with spinal flexion deformity.

  8. Blood supply to the thoracolumbar spinal cord in the laboratory mouse using corrosion and dissection techniques.

    PubMed

    Flesarova, Slavka; Mazensky, David; Teleky, Jana; Almasiova, Viera; Holovska, Katarina; Supuka, Peter

    2016-01-01

    Mice are used frequently as experimental models in the study of ischemic spinal cord injury. The aim of the present study was to describe the arterial blood supply to the thoracolumbar spinal cord in the mouse. The study was carried out on 20 adult mice using the corrosion and dissection technique. Dorsal intercostal arteries were found as branches of the thoracic aorta: as 7 pairs in 80% of cases, as 8 pairs in 15% of cases and as 9 pairs in 5% of cases. The paired lumbar arteries arising from the abdominal aorta were present as 5 pairs in all cases. Along the entire thoracic and lumbar spinal regions, we observed left-sided branches entering the ventral spinal artery in 64.2% and right-sided branches in 35.8% of cases. Along the entire thoracic and lumbar spinal regions, the branches entering the dorsal spinal arteries were left-sided in 60.8% of cases and right-sided in 39.2% of cases. We found some variations in the site of origin of the artery of Adamkiewicz and in the number of dorsal spinal arteries. Documenting the anatomical variations in spinal cord blood supply in the laboratory mouse will aid the planning of future experimental studies and in determining the clinical relevance of such studies.

  9. Anatomical study of blood supply to the cervical spinal cord in the guinea pig.

    PubMed

    Mazensky, David; Danko, Jan; Petrovova, Eva; Flesarova, Slavka; Supuka, Peter; Supukova, Anna; Luptakova, Lenka; Purzyc, Halina

    2015-06-01

    The aim of this study was to describe the arterial arrangement of the cervical spinal cord in the guinea pig. The study was carried out on 20 adult English self guinea pigs using corrosion and dissection technique. Batson's corrosion casting kit no. 17(©) was used as a casting medium. The origin of the ventral spinal artery from the left vertebral artery was found on average in 35% of the cases and from the right vertebral artery on average in 40% of the cases. The ventral spinal artery with origin from the anastomosis of two medial branches was found on average in 25% of the cases. The presence of ventral radicular branches of rami spinales entering the ventral spinal artery in the cervical region was observed in 42% of the cases on the right side and in 58% of the cases on the left side. The presence of dorsal radicular branches of rami spinales that reached the spinal cord was observed in 63% of the cases on the left side and in 37% of the cases on the right side. The number of radicular branches supplying the spinal cord is greater in guinea pig than in humans.

  10. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  11. Early experience with endoscopic foraminotomy in patients with moderate degenerative deformity.

    PubMed

    Madhavan, Karthik; Chieng, Lee Onn; McGrath, Lynn; Hofstetter, Christoph P; Wang, Michael Y

    2016-02-01

    OBJECTIVE Asymmetrical degeneration of the disc is one of the most common causes of primary degenerative scoliosis in adults. Coronal deformity is usually less symptomatic than a sagittal deformity because there is less expenditure of energy and hence less effort to maintain upright posture. However, nerve root compression at the fractional curve or at the concave side of the main curve can give rise to debilitating radiculopathy. METHODS This study was a retrospective analysis of 16 patients with coronal deformity of between 10° and 20°. All patients underwent endoscopic foraminal decompression surgery. The pre- and postoperative Cobb angle, visual analog scale (VAS), 36-Item Short Form Health Survey (SF-36), and Oswestry Disability Index scores were measured. RESULTS The average age of the patients was 70.0 ± 15.5 years (mean ± SD, range 61-86 years), with a mean followup of 7.5 ± 5.3 months (range 2-14 months). The average coronal deformity was 16.8° ± 4.7° (range 10°-41°). In 8 patients the symptomatic foraminal stenosis was at the level of the fractional curve, and in the remaining patients it was at the concave side of the main curve. One of the patients included in the current cohort had to undergo a repeat operation within 1 week for another disc herniation at the adjacent level. One patient had CSF leakage, which was repaired intraoperatively, and no further complications were noted. On average, preoperative VAS and SF-36 scores showed a tendency for improvement, whereas a dramatic reduction of VAS, by 65% (p = 0.003), was observed in radicular leg pain. CONCLUSIONS Patients with mild to moderate spinal deformity are often compensated and have tolerable levels of back pain. However, unilateral radicular pain resulting from foraminal stenosis can be debilitating. In select cases, an endoscopic discectomy or foraminotomy enables the surgeon to decompress the symptomatic foramen with preservation of essential biomechanical structures, delaying the

  12. Early experience with endoscopic foraminotomy in patients with moderate degenerative deformity.

    PubMed

    Madhavan, Karthik; Chieng, Lee Onn; McGrath, Lynn; Hofstetter, Christoph P; Wang, Michael Y

    2016-02-01

    OBJECTIVE Asymmetrical degeneration of the disc is one of the most common causes of primary degenerative scoliosis in adults. Coronal deformity is usually less symptomatic than a sagittal deformity because there is less expenditure of energy and hence less effort to maintain upright posture. However, nerve root compression at the fractional curve or at the concave side of the main curve can give rise to debilitating radiculopathy. METHODS This study was a retrospective analysis of 16 patients with coronal deformity of between 10° and 20°. All patients underwent endoscopic foraminal decompression surgery. The pre- and postoperative Cobb angle, visual analog scale (VAS), 36-Item Short Form Health Survey (SF-36), and Oswestry Disability Index scores were measured. RESULTS The average age of the patients was 70.0 ± 15.5 years (mean ± SD, range 61-86 years), with a mean followup of 7.5 ± 5.3 months (range 2-14 months). The average coronal deformity was 16.8° ± 4.7° (range 10°-41°). In 8 patients the symptomatic foraminal stenosis was at the level of the fractional curve, and in the remaining patients it was at the concave side of the main curve. One of the patients included in the current cohort had to undergo a repeat operation within 1 week for another disc herniation at the adjacent level. One patient had CSF leakage, which was repaired intraoperatively, and no further complications were noted. On average, preoperative VAS and SF-36 scores showed a tendency for improvement, whereas a dramatic reduction of VAS, by 65% (p = 0.003), was observed in radicular leg pain. CONCLUSIONS Patients with mild to moderate spinal deformity are often compensated and have tolerable levels of back pain. However, unilateral radicular pain resulting from foraminal stenosis can be debilitating. In select cases, an endoscopic discectomy or foraminotomy enables the surgeon to decompress the symptomatic foramen with preservation of essential biomechanical structures, delaying the

  13. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  14. Advances in the understanding of cervical spine deformity.

    PubMed

    Sharan, Alok D; Krystal, Jonathan D; Singla, Amit; Nassr, Ahmad; Kang, James D; Riew, K Daniel

    2015-01-01

    Cervical spine deformities pose substantial challenges for spine surgeons. The anatomy and biomechanics of the cervical spine play an important role in the decision-making process regarding treatment. The etiology of cervical deformities can be congenital, developmental, iatrogenic, degenerative, or inflammatory. Dropped head syndrome has been recently described but is poorly understood. Patients have variable presentations ranging from neck pain to an inability to maintain head position and neural compromise. Radiographic angles are important to monitor the deformity and plan the surgical correction. Treatment is focused on relieving pain, preventing and improving neurologic compromise, and improving overall spinal alignment and balance. The surgical approach and the level of fusion should be individualized on a case-by-case basis. The surgeon can greatly improve a patient's quality of life by understanding the nature of the patient's deformity and fully considering all treatment options. PMID:25745925

  15. Spinal epidural angiolipoma: A rare cause of spinal cord compression.

    PubMed

    Ghanta, Rajesh K; Koti, Kalyan; Dandamudi, Srinivas

    2012-09-01

    Spinal epidural angiolipomas are rare, benign tumors composed of mature lipocytes admixed with abnormal blood vessels. Only 128 cases of spinal epidural angiolipomas have been reported in literature till now. Spinal angiolipomas are predominantly located in the mid-thoracic region. We report a case of dorsal epidural angiolipoma in a 56-year-old male who presented with paraparesis and was diagnosed to have D4-5 epidural angiolipoma. Total surgical excision of the epidural angiolipoma was done and his paraparesis gradually improved.

  16. Radiology of spinal curvature

    SciTech Connect

    De Smet, A.A.

    1985-01-01

    This book offers the only comprehensive, concise summary of both the clinical and radiologic features of thoracic and lumbar spine deformity. Emphasis is placed on idiopathic scoliosis, which represents 85% of all patients with scoliosis, but less common areas of secondary scoliosis, kyphosis and lordosis are also covered.

  17. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation

    PubMed Central

    2013-01-01

    Background Spinal systems that are currently available for correction of spinal deformities or degeneration such as lumbar spondylolisthesis or degenerative disc disease use components manufactured from stainless steel or titanium and typically comprise two spinal rods with associated connection devices (for example: DePuy Spines Titanium Moss Miami Spinal System). The Memory Metal Spinal System of this study consists of a single square spinal rod made of a nickel titanium alloy (Nitinol) used in conjunction with connecting transverse bridges and pedicle screws made of Ti-alloy. Nitinol is best known for its shape memory effect, but is also characterized by its higher flexibility when compared to either stainless steel or titanium. A higher fusion rate with less degeneration of adjacent segments may result because of the elastic properties of the memory metal. In addition, the use of a single, unilateral rod may be of great value for a TLIF procedure. Our objective is to evaluate the mechanical properties of the new Memory Metal Spinal System compared to the Titanium Moss Miami Spinal System. Methods An in-vitro mechanical evaluation of the lumbar Memory Metal Spinal System was conducted. The test protocol followed ASTM Standard F1717-96, “Standard Test Methods for Static and Fatigue for Spinal Implant Constructs in a Corpectomy Model.” 1. Static axial testing in a load to failure mode in compression bending, 2. Static testing in a load to failure mode in torsion, 3. Cyclical testing to estimate the maximum run out load value at 5.0 x 10^6 cycles. Results In the biomechanical testing for static axial compression bending there was no statistical difference between the 2% yield strength and the stiffness of the two types of spinal constructs. In axial compression bending fatigue testing, the Memory Metal Spinal System construct showed a 50% increase in fatigue life compared to the Titanium Moss Miami Spinal System. In static torsional testing the Memory Metal

  18. Lumbar Spinal Stenosis: Who Should Be Fused? An Updated Review

    PubMed Central

    Hasankhani, Ebrahim Ghayem; Ashjazadeh, Amir

    2014-01-01

    Lumbar spinal stenosis (LSS) is mostly caused by osteoarthritis (spondylosis). Clinically, the symptoms of patients with LSS can be categorized into two groups; regional (low back pain, stiffness, and so on) or radicular (spinal stenosis mainly presenting as neurogenic claudication). Both of these symptoms usually improve with appropriate conservative treatment, but in refractory cases, surgical intervention is occasionally indicated. In the patients who primarily complain of radiculopathy with an underlying biomechanically stable spine, a decompression surgery alone using a less invasive technique may be sufficient. Preoperatively, with the presence of indicators such as failed back surgery syndrome (revision surgery), degenerative instability, considerable essential deformity, symptomatic spondylolysis, refractory degenerative disc disease, and adjacent segment disease, lumbar fusion is probably recommended. Intraoperatively, in cases with extensive decompression associated with a wide disc space or insufficient bone stock, fusion is preferred. Instrumentation improves the fusion rate, but it is not necessarily associated with improved recovery rate and better functional outcome. PMID:25187873

  19. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy.

  20. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. PMID:27616315

  1. Adult flatfoot.

    PubMed

    Toullec, E

    2015-02-01

    Adult flatfoot is defined as a flattening of the medial arch of the foot in weight-bearing and lack of a propulsive gait. The 3 lesion levels are the talonavicular, tibiotarsal and midfoot joints. The subtalar joint is damaged by the consequent rotational defects. Clinical examination determines deformity and reducibility, and assesses any posterior tibialis muscle deficit, the posterior tibialis tendon and spring ligament being frequently subject to degenerative lesions. Radiographic examination in 3 incidences in weight-bearing is essential, to determine the principal level of deformity. Tendon (posterior tibialis tendon) and ligamentous lesions (spring ligament and interosseous ligament) are analyzed on MRI or ultrasound. In fixed deformities, CT explores for arthritic evolution or specific etiologies. 3D CT reconstruction can analyze bone and joint morphology and contribute to the planning of any osteotomy. Medical management associates insoles and physiotherapy. Acute painful flatfoot requires strict cast immobilization. Surgical treatment associates numerous combinations of procedures, currently under assessment for supple flatfoot: for the hindfoot: medial slide calcaneal osteotomy, calcaneal lengthening osteotomy, or arthroereisis; for the midfoot: arthrodesis on one or several rays, or first cuneiform or first metatarsal osteotomy; for the ankle: medial collateral ligament repair with tendon transfer. Fixed deformities require arthrodesis of one or several joint-lines in the hindfoot; for the ankle, total replacement after realignment of the foot, or tibiotalocalcaneal fusion or ankle and hindfoot fusion; and, for the midfoot, cuneonavicular or cuneometatarsal fusion. Tendinous procedures are often associated. Specific etiologies may need individualized procedures. In conclusion, adult flatfoot tends to be diagnosed and managed too late, with consequent impact on the ankle, the management of which is complex and poorly codified.

  2. Adult flatfoot.

    PubMed

    Toullec, E

    2015-02-01

    Adult flatfoot is defined as a flattening of the medial arch of the foot in weight-bearing and lack of a propulsive gait. The 3 lesion levels are the talonavicular, tibiotarsal and midfoot joints. The subtalar joint is damaged by the consequent rotational defects. Clinical examination determines deformity and reducibility, and assesses any posterior tibialis muscle deficit, the posterior tibialis tendon and spring ligament being frequently subject to degenerative lesions. Radiographic examination in 3 incidences in weight-bearing is essential, to determine the principal level of deformity. Tendon (posterior tibialis tendon) and ligamentous lesions (spring ligament and interosseous ligament) are analyzed on MRI or ultrasound. In fixed deformities, CT explores for arthritic evolution or specific etiologies. 3D CT reconstruction can analyze bone and joint morphology and contribute to the planning of any osteotomy. Medical management associates insoles and physiotherapy. Acute painful flatfoot requires strict cast immobilization. Surgical treatment associates numerous combinations of procedures, currently under assessment for supple flatfoot: for the hindfoot: medial slide calcaneal osteotomy, calcaneal lengthening osteotomy, or arthroereisis; for the midfoot: arthrodesis on one or several rays, or first cuneiform or first metatarsal osteotomy; for the ankle: medial collateral ligament repair with tendon transfer. Fixed deformities require arthrodesis of one or several joint-lines in the hindfoot; for the ankle, total replacement after realignment of the foot, or tibiotalocalcaneal fusion or ankle and hindfoot fusion; and, for the midfoot, cuneonavicular or cuneometatarsal fusion. Tendinous procedures are often associated. Specific etiologies may need individualized procedures. In conclusion, adult flatfoot tends to be diagnosed and managed too late, with consequent impact on the ankle, the management of which is complex and poorly codified. PMID:25595429

  3. Spinal Plasticity following Intermittent Hypoxia: Implications for Spinal Injury

    PubMed Central

    Dale-Nagle, Erica A.; Hoffman, Michael S.; MacFarlane, Peter M.; Satriotomo, Irawan; Lovett-Barr, Mary Rachael; Vinit, Stéphane; Mitchell, Gordon S.

    2011-01-01

    Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long-term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of brain derived neurotrophic factor (BDNF), activation of its high affinity receptor, tropomyosin-related kinase B (TrkB) and extracellular-related kinase (ERK) mitogen-activated protein (MAP) kinase signaling in or near phrenic motor neurons. Since intermittent hypoxia induces spinal plasticity, we are exploring the potential to harness repetitive AIH as a means of inducing functional recovery in conditions causing respiratory insufficiency, such as cervical spinal injury. Since repetitive AIH induces phenotypic plasticity in respiratory and motor neurons, it may restore respiratory motor function in patients with incomplete spinal injury. PMID:20536940

  4. Spinal Chondrosarcoma: A Review

    PubMed Central

    Katonis, Pavlos; Alpantaki, Kalliopi; Michail, Konstantinos; Lianoudakis, Stratos; Christoforakis, Zaharias; Tzanakakis, George; Karantanas, Apostolos

    2011-01-01

    Chondrosarcoma is the third most common primary malignant bone tumor. Yet the spine represents the primary location in only 2% to 12% of these tumors. Almost all patients present with pain and a palpable mass. About 50% of patients present with neurologic symptoms. Chemotherapy and radiotherapy are generally unsuccessful while surgical resection is the treatment of choice. Early diagnosis and careful surgical staging are important to achieve adequate management. This paper provides an overview of the histopathological classification, clinical presentation, and diagnostic procedures regarding spinal chondrosarcoma. We highlight specific treatment modalities and discuss which is truly the most suitable approach for these tumors. Abstracts and original articles in English investigating these tumors were searched and analyzed with the use of the PubMed and Scopus databases with “chondrosarcoma and spine” as keywords. PMID:21437176

  5. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms.

  6. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms. PMID:24913963

  7. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  8. Overview of Spinal Cord Disorders

    MedlinePlus

    ... temperature from the body to the spinal cord. Did You Know... Doctors can often tell where the ... on symptoms and results of a physical examination. Did You Know... Nerves from the lowest parts of ...

  9. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  10. [Subarachnoid hematoma and spinal anesthesia].

    PubMed

    Dupeyrat, A; Dequiré, P M; Mérouani, A; Moullier, P; Eid, G

    1990-01-01

    Two cases of spinal subarachnoid haematoma occurring after spinal anaesthesia are reported. In the first case, lumbar puncture was attempted three times in a 81-year-old man; spinal anaesthesia trial was than abandoned, and the patient given a general anaesthetic. He was given prophylactic calcium heparinate soon after surgery. On the fourth day, the patient became paraparetic. Radioculography revealed a blockage between T10 and L3. Laminectomy was performed to remove the haematoma, but the patient recovered motor activity only very partially. The second case was a 67-year-old man, in whom spinal anaesthesia was easily carried out. He was also given prophylactic calcium heparinate soon after surgery. On the fourth postoperative day, pulmonary embolism was suspected. Heparin treatment was then started. Twelve hours later, lumbar and bilateral buttock pain occurred, which later spread to the neck. On the eighth day, the patient had neck stiffness and two seizures. Emergency laminectomy was carried out, which revealed a subarachnoid haematoma spreading to a level higher than T6 and below L1, with no flow of cerebrospinal fluid, and a non pulsatile spinal cord. Surgery was stopped. The patient died on the following day. Both these cases are similar to those previously reported and point out the role played by anticoagulants. Because early diagnosis of spinal cord compression is difficult, the prognosis is poor, especially in case of paraplegia. PMID:2278424

  11. Neurotrophins and spinal circuit function

    PubMed Central

    Boyce, Vanessa S.; Mendell, Lorne M.

    2014-01-01

    Work early in the last century emphasized the stereotyped activity of spinal circuits based on studies of reflexes. However, the last several decades have focused on the plasticity of these spinal circuits. These considerations began with studies of the effects of monoamines on descending and reflex circuits. In recent years new classes of compounds called growth factors that are found in peripheral nerves and the spinal cord have been shown to affect circuit behavior in the spinal cord. In this review we will focus on the effects of neurotrophins, particularly nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on spinal circuits. We also discuss evidence that these molecules can modify functions including nociceptive behavior, motor reflexes and stepping behavior. Since these substances and their receptors are normally present in the spinal cord, they could potentially be useful in improving function in disease states and after injury. Here we review recent findings relevant to these translational issues. PMID:24926235

  12. Immunotherapy strategies for spinal cord injury.

    PubMed

    Wang, Yong-Tang; Lu, Xiu-Min; Chen, Kai-Ting; Shu, Ya-Hai; Qiu, Chun-Hong

    2015-01-01

    Regeneration in the central nervous system (CNS) of adult mammalian after traumatic injury is limited, which often causes permanent functional motor and sensory loss. After spinal cord injury (SCI), the lack of regeneration is mainly attributed to the presence of a hostile microenvironment, glial scarring, and cavitation. Besides, inflammation has also been proved to play a crucial role in secondary degeneration following SCI. The more prominent treatment strategies in experimental models focus mainly on drugs and cell therapies, however, only a few strategies applied in clinical studies and therapies still have only limited effects on the repair of SCI. Recently, the interests in immunotherapy strategies for CNS are increasing in number and breadth. Immunotherapy strategies have made good progresses in treating many CNS degenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and multiple sclerosis (MS). However, the strategies begin to be considered to the treatment of SCI and other neurological disorders in recent years. Besides anti-inflamatory therapy, immunization with protein vaccines and DNA vaccines has emerged as a novel therapy strategy because of the simplicity of preparation and application. An inflammatory response followed by spinal cord injury, and is controled by specific signaling molecules, such as some cytokines playing a crucial role. As a result, appropriate immunoregulation, the expression of pro-inflammatory cytokines and anti-inflammatory cytokines may be an effective therapy strategy for earlier injury of spinal cord. In addition, myelinassociated inhibitors (MAIs) in the injured spinal cord, such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte- myelin glycoprotein (OMgp) are known to prevent axonal regeneration through their co-receptors, and to trigger demyelinating autoimmunity through T cell-mediated harmful autoimmune response. The antagonism of the MAIs through vaccinating with

  13. Development of Surrogate Spinal Cords for the Evaluation of Electrode Arrays Used in Intraspinal Implants

    PubMed Central

    Cheng, Cheng; Kmech, Jonn; Mushahwar, Vivian K.

    2013-01-01

    We report the development of a surrogate spinal cord for evaluating the mechanical suitability of electrode arrays for intraspinal implants. The mechanical and interfacial properties of candidate materials (including silicone elastomers and gelatin hydrogels) for the surrogate cord were tested. The elastic modulus was characterized using dynamic mechanical analysis, and compared with values of actual human spinal cords from the literature. Forces required to indent the surrogate cords to specified depths were measured to obtain values under static conditions. Importantly, to quantify surface properties in addition to mechanical properties normally considered, interfacial frictional forces were measured by pulling a needle out of each cord at a controlled rate. The measured forces were then compared to those obtained from rat spinal cords. Formaldehyde-crosslinked gelatin, 12 wt% in water, was identified as the most suitable material for the construction of surrogate spinal cords. To demonstrate the utility of surrogate spinal cords in evaluating the behavior of various electrode arrays, cords were implanted with two types of intraspinal electrode arrays (one made of individual microwires and another of microwires anchored with a solid base), and cord deformation under elongation was evaluated. The results demonstrate that the surrogate model simulates the mechanical and interfacial properties of the spinal cord, and enables in vitro screening of intraspinal implants. PMID:23358939

  14. Safety of instrumentation and fusion at the time of surgical debridement for spinal infection.

    PubMed

    Talia, Adrian J; Wong, Michael L; Lau, Hui C; Kaye, Andrew H

    2015-07-01

    The present study aims to assess the results of single-stage instrumentation and fusion at the time of surgical debridement of spinal infections; vertebral osteomyelitis or epidural abscess. Nine patients with spinal infection were treated with instrumentation and fusion after radical debridement in a single-stage operation. Predisposing factors and comorbidities, pain, American Spinal Injury Association motor scores, primary pathologies, microbiology and perioperative markers were recorded. Seven patients with pyogenic and two with tuberculous spinal infection were encountered; the most common pathogen was Staphylococcus aureus. Five patients were predisposed to infection because of diabetes mellitus. Duration of antibiotic therapy lasted up to 12 months. Six patients had thoracic infection, two lumbar and one cervical. No post-operative complications were encountered. There was a significant reduction in pain scores compared to pre-operatively. All patients with neurological deficits improved post-operatively. Despite introduction of hardware, no patients had a recurrence of their infection in the 12 month follow up period. Single-stage debridement and instrumentation appeared to be a safe and effective method of managing spinal infections. The combination of debridement and fusion has the dual benefit of removing a focus of infection and stabilising the spine. The current series confirms that placing titanium cages into an infected space is safe in a majority of patients. Stabilisation and correction of spinal deformity reduces pain, aids neurologic recovery and improves quality of life. The small patient population and retrospective nature limit the present study.

  15. The Aging of the Global Population: The Changing Epidemiology of Disease and Spinal Disorders.

    PubMed

    Fehlings, Michael G; Tetreault, Lindsay; Nater, Anick; Choma, Ted; Harrop, James; Mroz, Tom; Santaguida, Carlo; Smith, Justin S

    2015-10-01

    The global population is currently undergoing an upward shift in its age structure due to decreasing fertility rates and increasing life expectancy. As a result, clinicians worldwide will be required to manage an increasing number of spinal disorders specific to the elderly and the aging of the spine. Elderly individuals pose unique challenges to health care systems and to spinal physicians as these patients typically have an increased number of medical comorbidities, reduced bone density mass, more severe spinal degeneration and a greater propensity to falls. In anticipation of the aging of the population, we undertook this project to heighten physicians' awareness of age-related spinal disorders, including geriatric odontoid fractures, central cord syndrome, osteoporotic compression fractures, degenerative cervical myelopathy, lumbar spinal stenosis and degenerative spinal deformity. This introductory article provides an overview of the changing demographics of the global population; discusses the age-related alterations that may occur to the spine; and summarizes the purpose and contents of this focus issue. PMID:26378347

  16. Fas and FasL expression in the spinal cord following cord hemisection in the monkey.

    PubMed

    Jia, Liu; Yu, Zou; Hui, Li; Yu-Guang, Guan; Xin-Fu, Zhou; Chao, You; Yanbin, Xiyang; Xi, Zhan; Jun, Wang; Xin-Hua, Heng; Xin-Hua, Hen; Ting-Hua, Wang

    2011-03-01

    The changes of endogenous Fas/FasL in injured spinal cord, mostly in primates, are not well known. In this study, we investigated the temporal changes in the expression of Fas and FasL and explored their possible roles in the ventral horn of the spinal cord and associated precentral gyrus following T(11) spinal cord hemisection in the adult rhesus monkey. A significant functional improvement was seen with the time going on in monkeys subjected to cord hemisection. Apoptotic cells were also seen in the ventral horn of injured spinal cord with TUNEL staining, and a marked increase presents at 7 days post operation (dpo). Simultaneously, the number of Fas and FasL immunoreactive neurons in the spinal cords caudal and rostral to injury site and their intracellular optical density (OD) in the ipsilateral side of injury site at 7 dpo increased significantly more than that of control group and contralateral sides. This was followed by a decrease and returned to normal level at 60 dpo. No positive neurons were observed in precentral gyrus. The present results may provide some insights to understand the role of Fas/FasL in the spinal cord but not motor cortex with neuronal apoptosis and neuroplasticity in monkeys subjected to hemisection spinal cord injury. PMID:21181266

  17. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury.

    PubMed

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-12-25

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.

  18. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    PubMed Central

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. PMID:25206658

  19. [Backpack and spinal disease: myth or reality?].

    PubMed

    Cottalorda, J; Bourelle, S; Gautheron, V; Kohler, R

    2004-05-01

    Back pain has become a real public health concern both for adults and children. In general, patients complain of moderate pain. While the topic was long ignored by the scientific community, the number of publications has increased over the last three Years. We reviewed the literature to separate real evidence from speculations. Recognized risk factors for spinal pain are: female gender, poor general status, family history of back pain, particular psychological patterns, time spent sitting watching television, history of spinal trauma, intense physical activity, practicing competition sports, and age (more frequent in adolescents than children). Several recent papers have drawn attention to the role of the weight of the school backpack in children, particularly when its weight exceeds 20% of the child's body weight. Many children carry heavy backpacks which for some may weigh 30% to 40% of their body weight. Several groups have estimated that the maximum should be 10% of the body weight. It appears that time spent carrying the backpack as well as its weight is an important factor favoring back pain. Backpacks can injury the head or face, as well as the hands, the elbow, the wrist, the shoulder, the foot and the ankle. Back trauma is observed as the sixth most common injury. The 'weak point' is the shoulder and not the back. A poorly positioned backpack can modify posture and gait. Carrying the backpack with two shoulder straps affects posture and gait less than carrying it on one shoulder. The posture of the spine changes when the weight of the backpack increases. This is probably one of the reasons why many parents who consult believe that there is a relationship between the weight of the backpack and scoliosis or kyphosis, observed in many of their children. It is proven that adolescents who suffer from back pain will probably have chronic back pain as adults, but there is not evidence to our knowledge demonstrating a relationship between the development of spinal

  20. Perfusion assessment in rat spinal cord tissue using photoplethysmography and laser Doppler flux measurements

    NASA Astrophysics Data System (ADS)

    Phillips, Justin P.; Cibert-Goton, Vincent; Langford, Richard M.; Shortland, Peter J.

    2013-03-01

    Animal models are widely used to investigate the pathological mechanisms of spinal cord injury (SCI), most commonly in rats. It is well known that compromised blood flow caused by mechanical disruption of the vasculature can produce irreversible damage and cell death in hypoperfused tissue regions and spinal cord tissue is particularly susceptible to such damage. A fiberoptic photoplethysmography (PPG) probe and instrumentation system were used to investigate the practical considerations of making measurements from rat spinal cord and to assess its suitability for use in SCI models. Experiments to assess the regional perfusion of exposed spinal cord in anesthetized adult rats using both PPG and laser Doppler flowmetry (LDF) were performed. It was found that signals could be obtained reliably from all subjects, although considerable intersite and intersubject variability was seen in the PPG signal amplitude compared to LDF. We present results from 30 measurements in five subjects, the two methods are compared, and practical application to SCI animal models is discussed.

  1. Rostro-Caudal Inhibition of Hindlimb Movements in the Spinal Cord of Mice

    PubMed Central

    Caggiano, Vittorio; Sur, Mirganka; Bizzi, Emilio

    2014-01-01

    Inhibitory neurons in the adult mammalian spinal cord are known to locally modulate afferent feedback - from muscle proprioceptors and from skin receptors - to pattern motor activity for locomotion and postural control. Here, using optogenetic tools, we explored how the same population of inhibitory interneurons globally affects hindlimb movements in the spinal cord of both anesthetized and freely moving mice. Activation of inhibitory interneurons up to the middle/lower spinal cord i.e. T8–T9, were able to completely and globally suppress all ipsilateral hindlimb movements. Furthermore, the same population of interneurons - which inhibited movements - did not significantly change the sensory and proprioceptive information from the affected limbs to the cortex. These results suggest a rostro-caudal organization of inhibition in the spinal cord motor output without modulation of ascending sensory pathways. PMID:24963653

  2. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  3. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  4. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  5. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  6. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  7. Behavioural assessment of functional recovery after spinal cord hemisection in the bonnet monkey (Macaca radiata).

    PubMed

    Suresh Babu, R; Muthusamy, R; Namasivayam, A

    2000-09-15

    In spinal cord research, current approaches to behavioural assessment often fail in defining the exact nature of motor deficits or in evaluating the return of motor behaviour from lost functions following spinal cord injury. In addition to the assessment of gross motor behaviour, it is often appropriate to use complex tests for locomotion to evaluate the masked deficits in the evaluation of functional recovery after spinal cord injury. We designed a series of sensitive quantitative tests for reflex responses and complex locomotor behaviour in the form of a combined behavioural score (CBS) to assess the recovery of function in the Bonnet monkey (Macaca radiata). Monkeys were tested for various motor/reflex components, trained to cross different complex runways, and to walk on a treadmill bipedally. The overall performance of animal's motor behaviour and the functional status of individual limb movement during bipedal locomotion was graded and scored by the CBS. Surgical hemisection was then performed on the right side of the spinal cord at the T12-L1 level. Spinal cord hemisected animals showed a significant alteration in certain reflex responses such as grasping, extension withdrawal, and placing reflexes, which persisted through 1 year of follow-up. The spinal cord hemisected animals traversed the complex locomotor runways (Narrow beam and Grid runway) with more steps and few errors, at similar levels to control animals. These observations indicate that the various motor/reflex components and bipedal locomotor behaviour of spinal cord hemisected monkeys return to control levels gradually. These results are similar to those obtained in rat models by other investigators. These results demonstrate that the basic motor strategy and the spinal pattern generator for locomotion (SPGL) in adult monkeys for the accomplishment of complex motor tasks is similar, but not identical, to that in adult rats. This suggests that the mechanisms underlying recovery are probably

  8. Increasing Incidence of Degenerative Spinal Diseases in Japan during 25 Years: The Registration System of Spinal Surgery in Tohoku University Spine Society.

    PubMed

    Aizawa, Toshimi; Kokubun, Shoichi; Ozawa, Hiroshi; Kusakabe, Takashi; Tanaka, Yasuhisa; Hoshikawa, Takeshi; Hashimoto, Ko; Kanno, Haruo; Morozumi, Naoki; Koizumi, Yutaka; Sato, Tetsuro; Hyodo, Hironori; Kasama, Fumio; Ogawa, Shinji; Murakami, Eiichi; Kawahara, Chikashi; Yahata, Jun-Ichiro; Ishii, Yushin; Itoi, Eiji

    2016-01-01

    Spinal disorders affect mainly older people and cause pain, paralysis and/or deformities of the trunk and/or extremities, which could eventually disturb locomotive functions. For ensuring safe and high-quality treatment of spinal disorders, in 1987, the Tohoku University Spine Society (TUSS) was established by orthopedic departments in Tohoku University School of Medicine and its affiliated hospitals in and around Miyagi Prefecture. All spine surgeries have been enrolled in the TUSS Spine Registry since 1988. Using the data from this registration system between 1988 and 2012, we demonstrate here the longitudinal changes in surgical trends for spinal disorders in Japan that has rushed into the most advanced "aging society" in the world. In total, data on 56,744 surgeries were retrieved. The number of spinal surgeries has annually increased approximately 4-fold. There was a particular increase among patients aged ≥ 70 years and those aged ≥ 80 years, with a 20- to 90-fold increase. Nearly 90% of the spinal operations were performed for degenerative disorders, with their number increasing approximately 5-fold from 705 to 3,448. The most common disease for surgery was lumbar spinal stenosis (LSS) (35.9%), followed by lumbar disc herniation (27.7%) and cervical myelopathy (19.8%). In 2012, approximately half of the patients with LSS and cervical myelopathy were ≥ 70 years of age. In conclusion, the number of spinal operations markedly increased during the 25-year period, particularly among older patients. As Japan has a notably aged population, the present study could provide a near-future model for countries with aging population.

  9. Increasing Incidence of Degenerative Spinal Diseases in Japan during 25 Years: The Registration System of Spinal Surgery in Tohoku University Spine Society.

    PubMed

    Aizawa, Toshimi; Kokubun, Shoichi; Ozawa, Hiroshi; Kusakabe, Takashi; Tanaka, Yasuhisa; Hoshikawa, Takeshi; Hashimoto, Ko; Kanno, Haruo; Morozumi, Naoki; Koizumi, Yutaka; Sato, Tetsuro; Hyodo, Hironori; Kasama, Fumio; Ogawa, Shinji; Murakami, Eiichi; Kawahara, Chikashi; Yahata, Jun-Ichiro; Ishii, Yushin; Itoi, Eiji

    2016-01-01

    Spinal disorders affect mainly older people and cause pain, paralysis and/or deformities of the trunk and/or extremities, which could eventually disturb locomotive functions. For ensuring safe and high-quality treatment of spinal disorders, in 1987, the Tohoku University Spine Society (TUSS) was established by orthopedic departments in Tohoku University School of Medicine and its affiliated hospitals in and around Miyagi Prefecture. All spine surgeries have been enrolled in the TUSS Spine Registry since 1988. Using the data from this registration system between 1988 and 2012, we demonstrate here the longitudinal changes in surgical trends for spinal disorders in Japan that has rushed into the most advanced "aging society" in the world. In total, data on 56,744 surgeries were retrieved. The number of spinal surgeries has annually increased approximately 4-fold. There was a particular increase among patients aged ≥ 70 years and those aged ≥ 80 years, with a 20- to 90-fold increase. Nearly 90% of the spinal operations were performed for degenerative disorders, with their number increasing approximately 5-fold from 705 to 3,448. The most common disease for surgery was lumbar spinal stenosis (LSS) (35.9%), followed by lumbar disc herniation (27.7%) and cervical myelopathy (19.8%). In 2012, approximately half of the patients with LSS and cervical myelopathy were ≥ 70 years of age. In conclusion, the number of spinal operations markedly increased during the 25-year period, particularly among older patients. As Japan has a notably aged population, the present study could provide a near-future model for countries with aging population. PMID:26876801

  10. Establishing a standardized therapeutic testing protocol for spinal muscular atrophy.

    PubMed

    Tsai, Li-Kai; Tsai, Ming-Shung; Lin, Tzer-Bin; Hwu, Wuh-Liang; Li, Hung

    2006-11-01

    Several mice models have been created for spinal muscular atrophy (SMA); however, there is still no standard preclinical testing system for the disease. We previously generated type III-specific SMA model mice, which might be suitable for use as a preclinical therapeutic testing system for SMA. To establish such a system and test its applicability, we first created a testing protocol and then applied it as a means to investigate the use of valproic acid (VPA) as a possible treatment for SMA. These SMA mice revealed tail/ear/foot deformity, muscle atrophy, poorer motor performances, smaller compound muscle action potential and lower spinal motoneuron density at the age of 9 to 12 months in comparison with age-matched wild-type littermate mice. In addition, VPA attenuates motoneuron death, increases spinal SMN protein level and partially normalizes motor function in SMA mice. These results suggest that the testing protocol developed here is well suited for use as a standardized preclinical therapeutic testing system for SMA.

  11. Novel spinal instrumentation to enhance osteogenesis and fusion: a preliminary study.

    PubMed

    MacEwan, Matthew R; Talcott, Michael R; Moran, Daniel W; Leuthardt, Eric C

    2016-09-01

    OBJECTIVE Instrumented spinal fusion continues to exhibit high failure rates in patients undergoing multilevel lumbar fusion or pseudarthrosis revision; with Grade II or higher spondylolisthesis; or in those possessing risk factors such as obesity, tobacco use, or metabolic disorders. Direct current (DC) electrical stimulation of bone growth represents a unique surgical adjunct in vertebral fusion procedures, yet existing spinal fusion stimulators are not optimized to enhance interbody fusion. To develop an advanced method of applying DC electrical stimulation to promote interbody fusion, a novel osteogenic spinal system capable of routing DC through rigid instrumentation and into the vertebral bodies was fabricated. A pilot study was designed to assess the feasibility of osteogenic instrumentation and compare the ability of osteogenic instrumentation to promote successful interbody fusion in vivo to standard spinal instrumentation with autograft. METHODS Instrumented, single-level, posterior lumbar interbody fusion (PLIF) with autologous graft was performed at L4-5 in adult Toggenburg/Alpine goats, using both osteogenic spinal instrumentation (plus electrical stimulation) and standard spinal instrumentation (no electrical stimulation). At terminal time points (3 months, 6 months), animals were killed and lumbar spines were explanted for radiographic analysis using a SOMATOM Dual Source Definition CT Scanner and high-resolution Microcat II CT Scanner. Trabecular continuity, radiodensity within the fusion mass, and regional bone formation were examined to determine successful spinal fusion. RESULTS Quantitative analysis of average bone density in pedicle screw beds confirmed that electroactive pedicle screws used in the osteogenic spinal system focally enhanced bone density in instrumented vertebral bodies. Qualitative and quantitative analysis of high-resolution CT scans of explanted lumbar spines further demonstrated that the osteogenic spinal system induced solid

  12. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part of ... spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of muscles ...

  13. Rehabilitation in spinal infection diseases.

    PubMed

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-18

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients' sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability.

  14. Rehabilitation in spinal infection diseases

    PubMed Central

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients’ sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability. PMID:25621205

  15. Ruptured Isolated Spinal Artery Aneurysms

    PubMed Central

    Gutierrez Romero, Diego; Batista, Andre Lima; Gentric, Jean Christoph; Raymond, Jean; Roy, Daniel; Weill, Alain

    2014-01-01

    Summary Isolated spinal artery aneurysms are exceedingly rare vascular lesions thought to be related to dissection of the arterial wall. We describe two cases presenting with spinal subarachnoid haemorrhage that underwent conservative management. In the first patient the radiculomedullary branch involved was feeding the anterior spinal artery at the level of D3 and thus, neither endovascular nor surgical approach was employed. Control angiography was performed at seven days and at three months, demonstrating complete resolution of the lesion. In our second case, neither the anterior spinal artery or the artery of Adamkiewicz could be identified during angiography, thus endovascular management was deemed contraindicated. Magnetic resonance imaging showed a stable lesion in the second patient. No rebleeding or other complications were seen. In comparison to intracranial aneurysms, spinal artery aneurysms tend to display a fusiform appearance and lack a clear neck in relation to the likely dissecting nature of the lesions. Due to the small number of cases reported, the natural history of these lesions is not well known making it difficult to establish the optimal treatment approach. Various management strategies may be supported, including surgical and endovascular treatment, but It would seem that a wait and see approach is also viable, with control angiogram and treatment decisions based on the evolution of the lesion. PMID:25496690

  16. Cerebellar and Spinal Direct Current Stimulation in Children: Computational Modeling of the Induced Electric Field

    PubMed Central

    Fiocchi, Serena; Ravazzani, Paolo; Priori, Alberto; Parazzini, Marta

    2016-01-01

    Recent studies have shown that the specific application of transcranial direct current stimulation (tDCS) over the cerebellum can modulate cerebellar activity. In parallel, transcutaneous spinal DC stimulation (tsDCS) was found to be able to modulate conduction along the spinal cord and spinal cord functions. Of particular interest is the possible use of these techniques in pediatric age, since many pathologies and injuries, which affect the cerebellar cortex as well as spinal cord circuits, are diffuse in adults as well as in children. Up to now, experimental studies of cerebellar and spinal DC stimulation on children are completely missing and therefore there is a lack of information about the safety of this technique as well as the appropriate dose to be used during the treatment. Therefore, the knowledge of electric quantities induced into the cerebellum and over the spinal cord during cerebellar tDCS and tsDCS, respectively, is required. This work attempts to address this issue by estimating through computational techniques, the electric field distributions induced in the target tissues during the two stimulation techniques applied to different models of children of various ages and gender. In detail, we used four voxel child models, aged between 5- and 8-years. Results revealed that, despite inter-individual differences, the cerebellum is the structure mainly involved by cerebellar tDCS, whereas the electric field generated by tsDCS can reach the spinal cord also in children. Moreover, it was found that there is a considerable spread toward the anterior area of the cerebellum and the brainstem region for cerebellar tDCS and in the spinal nerve for spinal direct current stimulation. Our study therefore predicts that the electric field spreads in complex patterns that strongly depend on individual anatomy, thus giving further insight into safety issues and informing data for pediatric investigations of these stimulation techniques. PMID:27799905

  17. Spinal angiolipoma with acute subarachnoid hemorrhage.

    PubMed

    Raghavendra, S; Krishnamoorthy, T; Ashalatha, R; Kesavadas, C

    2007-10-01

    Angiolipoma is a rare tumor of the spine commonly presenting with compressive myelopathy. We report a spinal angiolipoma in a 14-year-old patient with acute spinal subarachnoid hemorrhage (SAH). To our knowledge this is the first reported case of a spinal angiolipoma presenting with SAH, associated with post-subclavian coarctation with diffuse hypoplasia of the descending aorta. This association of coarctation of aorta, aortic hypoplasia and spinal angiolipoma has also not been reported previously.

  18. The use of physical biomodelling in complex spinal surgery

    PubMed Central

    Izatt, Maree T.; Thorpe, Paul L. P. J.; Thompson, Robert G.; D’Urso, Paul S.; Earwaker, John W. S.; Labrom, Robert D.; Askin, Geoffrey N.

    2007-01-01

    Prior studies have suggested that biomodels enhance patient education, preoperative planning and intra-operative stereotaxy; however, the usefulness of biomodels compared to regular imaging modalities such as X-ray, CT and MR has not been quantified. Our objective was to quantify the surgeon’s perceptions on the usefulness of biomodels compared to standard visualisation modalities for preoperative planning and intra-operative anatomical reference. Physical biomodels were manufactured for a series of 26 consecutive patients with complex spinal pathologies using a stereolithographic technique based on CT data. The biomodels were used preoperatively for surgical planning and customising implants, and intra-operatively for anatomical reference. Following surgery, a detailed biomodel utility survey was completed by the surgeons, and informal telephone interviews were conducted with patients. Using biomodels, 21 deformity and 5 tumour cases were performed. Surgeons stated that the anatomical details were better visible on the biomodel than on other imaging modalities in 65% of cases, and exclusively visible on the biomodel in 11% of cases. Preoperative use of the biomodel led to a different decision regarding the choice of osteosynthetic materials used in 52% of cases, and the implantation site of osteosynthetic material in 74% of cases. Surgeons reported that the use of biomodels reduced operating time by a mean of 8% in tumour patients and 22% in deformity procedures. This study supports biomodelling as a useful, and sometimes essential tool in the armamentarium of imaging techniques used for complex spinal surgery. PMID:17846803

  19. Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury.

    PubMed

    Lee, Yu-Shang; Lin, Ching-Yi; Jiang, Hai-Hong; Depaul, Marc; Lin, Vernon W; Silver, Jerry

    2013-06-26

    A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury.

  20. Nerve Regeneration Restores Supraspinal Control of Bladder Function after Complete Spinal Cord Injury

    PubMed Central

    Lin, Ching-Yi; Jiang, Hai-Hong; DePaul, Marc; Lin, Vernon W.

    2013-01-01

    A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury. PMID:23804083

  1. Pleiotrophin is a neurotrophic factor for spinal motor neurons.

    PubMed

    Mi, Ruifa; Chen, Weiran; Höke, Ahmet

    2007-03-13

    Regeneration in the peripheral nervous system is poor after chronic denervation. Denervated Schwann cells act as a "transient target" by secreting growth factors to promote regeneration of axons but lose this ability with chronic denervation. We discovered that the mRNA for pleiotrophin (PTN) was highly up-regulated in acutely denervated distal sciatic nerves, but high levels of PTN mRNA were not maintained in chronically denervated nerves. PTN protected spinal motor neurons against chronic excitotoxic injury and caused increased outgrowth of motor axons out of the spinal cord explants and formation of "miniventral rootlets." In neonatal mice, PTN protected the facial motor neurons against cell death induced by deprivation from target-derived growth factors. Similarly, PTN significantly enhanced regeneration of myelinated axons across a graft in the transected sciatic nerve of adult rats. Our findings suggest a neurotrophic role for PTN that may lead to previously unrecognized treatment options for motor neuron disease and motor axonal regeneration.

  2. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  3. Four cases of spinal epidural angiolipoma.

    PubMed

    Sim, Kenneth; Tsui, Alpha; Paldor, Iddo; Kaye, Andrew H; Gaillard, Frank

    2016-03-01

    Spinal angiolipomas are uncommon benign tumours composed of mature fatty tissue and abnormal vascular elements, most commonly found within the posterior spinal epidural space. Most tumours are located within the mid-thoracic spine; in contrast thoracolumbar junction and purely lumbar angiolipomas are rare. We report a case series of four spinal angiolipomas, including a thoracolumbar junction and a purely lumbar tumour.

  4. Spinal reflexes in brain death.

    PubMed

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  5. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  6. Biciliated ependymal cell proliferation contributes to spinal cord growth

    PubMed Central

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2013-01-01

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by three-dimensional ultrastructural reconstructions of [3H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+ and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from that of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post-labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord. PMID:22434575

  7. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  8. Spinal injuries in contact sports.

    PubMed

    Wilson, Joseph B; Zarzour, Robert; Moorman, Claude T

    2006-02-01

    Contact and collision sports such as American football expose the athlete to a wide array of potential injuries. Knee injuries garner much of the attention, but spinal injuries are potentially catastrophic and all levels of medical coverage of football must be knowledgeable and prepared to attend to an athlete with a neck injury. Of the other possible spinal conditions, some resolve on their own, others might require conservative therapy, and still others might require surgical intervention. The spectrum of potential injury is wide, yet the medical team must practice and prepare to treat the possible catastrophic neck injury.

  9. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    PubMed

    Ling, Ze-Min; Tang, Ying; Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  10. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT

    PubMed Central

    Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  11. Evaluation and Surgical Management of Adult Degenerative Scoliosis Associated With Lumbar Stenosis.

    PubMed

    Wang, Guodong; Cui, Xingang; Jiang, Zhensong; Li, Tao; Liu, Xiaoyang; Sun, Jianmin

    2016-04-01

    Adult degenerative scoliosis associated with lumbar stenosis has become a common issue in the elderly population. But its surgical management is on debating. The main issue condenses on the management priority of scoliosis or stenosis. This study is to investigate surgical management strategy and outcome of adult degenerative scoliosis associated with lumbar stenosis. Between January 2003 and December 2010, 108 patients were admitted to the authors' institution for adult degenerative scoliosis associated with lumbar stenosis. They were divided into 3 groups based on the symptom. Then the surgical management was carried out. The clinical outcome was evaluated according to the Oswestry Disability Index (ODI) and Scoliosis Research Society-22 score (SRS-22 score) at follow up. Group 1 was with primary lumbar stenosis symptom, local decompression and short fusion were performed. Group 2 was with compensated spinal imbalance symptom, local decompression of the symptomatic spinal stenosis and short fusion were performed. Group 3 was with primary spinal imbalance, correction surgery and long fusion were performed. For Group 1, the ODI scores declined from 62.5 ± 4.2 preoperatively to 21.8 ± 2.5 at final follow up, the SRS-22 scores decreased from 44.8 ± 3.2 preoperatively to 70.9 ± 6.0 at final follow up. For Group 2, the ODI and SRS-22 scores were 73.4 ± 8.4 and 40.8 ± 8.5 before the surgery, declined to 22.4 ± 4.2 and 73.2 ± 7.9 at final follow up. For Group 3, the ODI and SRS-22 scores were 73.4 ± 4.9 and 45.3 ± 6.4 before surgery, declined to 30.4 ± 8.9 and 68.8 ± 8.1 at final follow up. It was effective to perform decompression and short fusion for Group 1 and correction surgery and long fusion for Group 3. For Group 2, the compensated imbalance symptom was always provoked by the symptomatic lumbar stenosis. The cases in the Group 2 got well clinical improvements after local surgical intervene on the

  12. Evaluation and Surgical Management of Adult Degenerative Scoliosis Associated With Lumbar Stenosis

    PubMed Central

    Wang, Guodong; Cui, Xingang; Jiang, Zhensong; Li, Tao; Liu, Xiaoyang; Sun, Jianmin

    2016-01-01

    Abstract Adult degenerative scoliosis associated with lumbar stenosis has become a common issue in the elderly population. But its surgical management is on debating. The main issue condenses on the management priority of scoliosis or stenosis. This study is to investigate surgical management strategy and outcome of adult degenerative scoliosis associated with lumbar stenosis. Between January 2003 and December 2010, 108 patients were admitted to the authors’ institution for adult degenerative scoliosis associated with lumbar stenosis. They were divided into 3 groups based on the symptom. Then the surgical management was carried out. The clinical outcome was evaluated according to the Oswestry Disability Index (ODI) and Scoliosis Research Society-22 score (SRS-22 score) at follow up. Group 1 was with primary lumbar stenosis symptom, local decompression and short fusion were performed. Group 2 was with compensated spinal imbalance symptom, local decompression of the symptomatic spinal stenosis and short fusion were performed. Group 3 was with primary spinal imbalance, correction surgery and long fusion were performed. For Group 1, the ODI scores declined from 62.5 ± 4.2 preoperatively to 21.8 ± 2.5 at final follow up, the SRS-22 scores decreased from 44.8 ± 3.2 preoperatively to 70.9 ± 6.0 at final follow up. For Group 2, the ODI and SRS-22 scores were 73.4 ± 8.4 and 40.8 ± 8.5 before the surgery, declined to 22.4 ± 4.2 and 73.2 ± 7.9 at final follow up. For Group 3, the ODI and SRS-22 scores were 73.4 ± 4.9 and 45.3 ± 6.4 before surgery, declined to 30.4 ± 8.9 and 68.8 ± 8.1 at final follow up. It was effective to perform decompression and short fusion for Group 1 and correction surgery and long fusion for Group 3. For Group 2, the compensated imbalance symptom was always provoked by the symptomatic lumbar stenosis. The cases in the Group 2 got well clinical improvements after local surgical intervene on

  13. Evaluation and Surgical Management of Adult Degenerative Scoliosis Associated With Lumbar Stenosis.

    PubMed

    Wang, Guodong; Cui, Xingang; Jiang, Zhensong; Li, Tao; Liu, Xiaoyang; Sun, Jianmin

    2016-04-01

    Adult degenerative scoliosis associated with lumbar stenosis has become a common issue in the elderly population. But its surgical management is on debating. The main issue condenses on the management priority of scoliosis or stenosis. This study is to investigate surgical management strategy and outcome of adult degenerative scoliosis associated with lumbar stenosis. Between January 2003 and December 2010, 108 patients were admitted to the authors' institution for adult degenerative scoliosis associated with lumbar stenosis. They were divided into 3 groups based on the symptom. Then the surgical management was carried out. The clinical outcome was evaluated according to the Oswestry Disability Index (ODI) and Scoliosis Research Society-22 score (SRS-22 score) at follow up. Group 1 was with primary lumbar stenosis symptom, local decompression and short fusion were performed. Group 2 was with compensated spinal imbalance symptom, local decompression of the symptomatic spinal stenosis and short fusion were performed. Group 3 was with primary spinal imbalance, correction surgery and long fusion were performed. For Group 1, the ODI scores declined from 62.5 ± 4.2 preoperatively to 21.8 ± 2.5 at final follow up, the SRS-22 scores decreased from 44.8 ± 3.2 preoperatively to 70.9 ± 6.0 at final follow up. For Group 2, the ODI and SRS-22 scores were 73.4 ± 8.4 and 40.8 ± 8.5 before the surgery, declined to 22.4 ± 4.2 and 73.2 ± 7.9 at final follow up. For Group 3, the ODI and SRS-22 scores were 73.4 ± 4.9 and 45.3 ± 6.4 before surgery, declined to 30.4 ± 8.9 and 68.8 ± 8.1 at final follow up. It was effective to perform decompression and short fusion for Group 1 and correction surgery and long fusion for Group 3. For Group 2, the compensated imbalance symptom was always provoked by the symptomatic lumbar stenosis. The cases in the Group 2 got well clinical improvements after local surgical intervene on the

  14. Left Second Rib Exostosis, Spinal Cord Compression and Left Upper Thoracic Scoliosis: A Rare Triad

    PubMed Central

    Venkatesh, Krishnan; Sundararaj, Gabriel David

    2012-01-01

    Exostosis of the rib with neural foraminal extension as a cause of spinal cord compression and scoliosis has to the best of our knowledge not been reported. We describe a young male with hereditary multiple exostosis who presented with a spastic gait, lower limb weakness and a deformity of the upper back. Radiographic imaging revealed a lesion arising from the left second rib which was encroaching the spinal canal and a scoliotic deformity of the upper thoracic spine. Through a single T shaped posterior approach he underwent a decompressive laminectomy of T1 and T2 vertebra and excision of the lesion. The diagnosis of osteochondroma was confirmed by histopathological studies. He was followed up at one year when his neurological condition had returned to normal however the scoliosis had increased. PMID:22977702

  15. Spinal cord ependymoma presenting with neurological deficits in the setting of trauma.

    PubMed

    Saad, Amin F; Nickell, Larry T; Finn, S Sam; Opatowsky, Michael J

    2014-07-01

    Ependymomas represent 4% of all primary central nervous system neoplasms in adults, with 30% occurring in the spinal cord. We describe a young man with neurological deficits following a motor vehicle accident who was found to have an intramedullary cervicothoracic ependymoma.

  16. Spinal cord ependymoma presenting with neurological deficits in the setting of trauma

    PubMed Central

    Nickell, Larry T.; Finn, S. Sam; Opatowsky, Michael J.

    2014-01-01

    Ependymomas represent 4% of all primary central nervous system neoplasms in adults, with 30% occurring in the spinal cord. We describe a young man with neurological deficits following a motor vehicle accident who was found to have an intramedullary cervicothoracic ependymoma. PMID:24982562

  17. Obtaining Employment after Spinal Cord Injury: Relationship with Pre- and Postinjury Education

    ERIC Educational Resources Information Center

    Krause, James S.; Reed, Karla S.

    2009-01-01

    The authors identify the association of educational milestones obtained before and after spinal cord injury (SCI) with postinjury employment (PIE). Survey data were collected from 1,362 adults younger than 65, with traumatic SCI of at least 1 year duration who were not currently attending school. The sole outcome was obtaining PIE--whether the…

  18. Improved rat spinal cord injury model using spinal cord compression by percutaneous method

    PubMed Central

    Chung, Wook-Hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Chung, Hyo Jin; Suh, Hyun Jung; Hwang, Soo-Han; Han, Hoon; Do, Sun Hee

    2013-01-01

    Here, percutaneous spinal cord injury (SCI) methods using a balloon catheter in adult rats are described. A balloon catheter was inserted into the epidural space through the lumbosacral junction and then inflated between T9-T10 for 10min under fluoroscopic guidance. Animals were divided into three groups with respect to inflation volume: 20 µL (n = 18), 50 µL (n = 18) and control (Fogarty catheter inserted but not inflated; n = 10). Neurological assessments were then made based on BBB score, magnetic resonance imaging and histopathology. Both inflation volumes produced complete paralysis. Gradual recovery of motor function occurred when 20 µL was used, but not after 50 µL was applied. In the 50 µL group, all gray and white matter was lost from the center of the lesion. In addition, supramaximal damage was noted, which likely prevented spontaneous recovery. This percutaneous spinal cord compression injury model is simple, rapid with high reproducibility and the potential to serve as a useful tool for investigation of pathophysiology and possible protective treatments of SCI in vivo. PMID:23820159

  19. Widespread accumulation of [(3)H]testosterone in the spinal cord of a wild bird with an elaborate courtship display.

    PubMed

    Schultz, J D; Schlinger, B A

    1999-08-31

    Elaborate courtship displays are relatively common features of the masculine reproductive behavior in birds. However, little is known about their neural and hormonal control. One bird that performs such a display is the golden-collared manakin (Manacus vitellinus) of Panamanian forests. Adult males, but not females, perform a physically intense display requiring substantial neuromuscular control of the wings and legs. We tested the hypothesis that steroid sensitivity is a property of neurons in the manakin spinal cord. Males and females were captured from active courtship leks, treated with drugs to block steroidogenesis, injected with (3)H-labeled testosterone, and the spinal cords were removed and processed for autoradiography. Sex steroid-accumulating cells were widely distributed in the spinal cords in each of six males and in one of five females. Cells, including presumptive motoneurons, reached their highest density in the ventral horns of the cervical and lumbosacral enlargements, regions associated with motor control of the wings and legs. These results suggest that neurons in the adult manakin spinal cord can express sex-steroid receptors, but do so less in females than in males. This evidence for androgen sensitivity and sexual dimorphism in the adult avian spinal cord suggests that sex steroids may control diverse behaviors in male birds in part by acting directly on the spinal neural circuits. PMID:10468625

  20. Management of Chronic Spinal Cord Dysfunction

    PubMed Central

    Abrams, Gary M.; Ganguly, Karunesh

    2015-01-01

    Purpose of Review: Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Recent Findings: Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. Summary: The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life. PMID:25651225

  1. The spinal cord in rheumatoid arthritis with clinical myelopathy: a computed myelographic study.

    PubMed Central

    Stevens, J M; Kendall, B E; Crockard, H A

    1986-01-01

    Thirty one patients with suspected myelopathy due to rheumatoid arthritis were examined by plain radiography and 27 had computed myelography. Clinical features and radiological findings were compared. Deformity of the spinal cord could occur in the absence of combined anterior and posterior compression and correlated closely with clinical features only when considered in combination with skeletal and adjacent soft tissue abnormalities. The best surgical results were achieved by transoral odontoidectomy. Images PMID:3950633

  2. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    PubMed Central

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  3. Spinal anesthesia in children: A review

    PubMed Central

    Gupta, Anju; Saha, Usha

    2014-01-01

    Even after a vast safety record, the role of spinal anesthesia (SA) as a primary anesthetic technique in children remains contentious and is mainly limited to specialized pediatric centers. It is usually practiced on moribund former preterm infants (<60 weeks post-conception) to reduce the incidence of post-operative apnea when compared to general anesthesia (GA). However, there is ample literature to suggest its safety and efficacy for suitable procedures in older children as well. SA in children has many advantages as in adults with an added advantage of minimal cardio-respiratory disturbance. Recently, several reports from animal studies have raised serious concerns regarding the harmful effects of GA on young developing brain. This may further increase the utility of SA in children as it provides all components of balanced anesthesia technique. Also, SA can be an economical option for countries with finite resources. Limited duration of surgical anesthesia in children is one of the major deterrents for its widespread use in them. To overcome this, several additives like epinephrine, clonidine, fentanyl, morphine, neostigmine etc. have been used and found to be effective even in neonates. But, the developing spinal cord may also be vulnerable to drug-related toxicity, though this has not been systematically evaluated in children. So, adjuvants and drugs with widest therapeutic index should be preferred in children. Despite its widespread use, incidence of side-effects is low and permanent neurological sequalae have not been reported with SA. Literature yields encouraging results regarding its safety and efficacy. Technical skills and constant vigilance of experienced anesthesia providers is indispensable to achieve good results with this technique. PMID:24574586

  4. Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury

    PubMed Central

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were

  5. Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury.

    PubMed

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were

  6. Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury.

    PubMed

    Hou, Ying-Nuo; Ding, Wen-Yuan; Shen, Yong; Yang, Da-Long; Wang, Lin-Feng; Zhang, Peng

    2015-01-01

    To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen group using randomized block method, 30/group. Spinal cord injury rat model was established in accordance with the modified Allen method. Motor function was assessed at the time points of before modeling, one day, three days, one week, two weeks, three weeks and four weeks after modeling respectively by BBB rating, inclined plane test and improved Tarlov score. At 3 days after modeling, apoptosis of neuronal cells in spinal cord injury region in experimental group was detected by TUNEL method; gene and protein expression of MMP9/2 in spinal cord injury and surrounding tissues was detected by RT-PCR and Western blot assay. At 4 weeks after modeling, histopathological morphological changes in spinal cord injury were observed by HE staining; fluorogold retrograde tracing was used to observe the regeneration and distribution of spinal cord nerve fibers and axon regeneration was observed by TEM. The three motor function scores in hyperbaric oxygen group at each time point after two weeks of treatment were significantly increased compared with spinal cord injury group (P < 0.05). At 3 d after modeling, apoptosis index in hyperbaric oxygen group were significantly lower than those in spinal cord injury group (P < 0.05). At 72 h after modeling, compared with spinal cord injury group, MMP9/2 gene and protein expression in hyperbaric oxygen group was significantly lower (P < 0.05). At four weeks after modeling, fluorogold positive nerve fibers were the most sham group, followed by hyperbaric oxygen group and spinal cord injury group in order; the differences among the groups were

  7. Vestibulo-spinal reflex mechanisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.

    1981-01-01

    The specific objectives of experiments designed to investigate postural reflex behavior during sustained weightlessness are discussed. The first is to investigate, during prolonged weightlessness with Hoffmann response (H-reflex) measurement procedures, vestibulo-spinal reflexes associated with vestibular (otolith) responses evoked during an applied linear acceleration. This objective includes not only an evaluation of otolith-induced changes in a major postural muscle but also an investigation with this technique of the adaptive process of the vestibular system and spinal reflex mechanisms to this unique environment. The second objective is to relate space motion sickness to the results of this investigation. Finally, a return to the vestibulo-spinal and postural reflexes to normal values following the flight will be examined. The flight experiment involves activation of nerve tissue (tibial N) with electrical shock and the recording of resulting muscle activity (soleus) with surface electrodes. Soleus/spinal H-reflex testing procedures will be used in conjuction with linear acceleration through the subject's X-axis.

  8. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    PubMed

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  9. Is sheep lumbar spine a suitable alternative model for human spinal researches? Morphometrical comparison study

    PubMed Central

    Berner, Dagmar; Jülke, Henriette; Hohaus, Christian; Brehm, Walter; Gerlach, Kerstin

    2013-01-01

    Sheep are commonly used as a model for human spinal orthopaedic research due to their similarity in morphological and biomechanical features. This study aimed to document the volumes of vertebral bodies and compare the generated results as well as morphometry of the sheep lumbar spine to human published data. For this purpose, computed tomography scans were carried out on five adult Merino sheep under general anaesthesia. Transverse 5 mm thick images were acquired from L1 to L6 using a multi-detector-row helical CT scanner. Volume measurements were performed with dedicated software. Four spinal indices and Pavlov's ratio were calculated. Thereafter, the generated data were compared to published literature on humans. The mean vertebral body volume showed an increase towards the caudal vertebrae, but there were no significant differences between the vertebral levels (P>0.05). Compared to humans, sheep vertebral body volumes were 48.6% smaller. The comparison of absolute values between both species revealed that sheep had smaller, longer and narrower vertebral bodies, thinner intervertebral discs, narrower spinal canal, longer transverse processes, shorter dorsal spinous processes and narrower, higher pedicles with more lateral angulations. The comparison of the spinal indices showed a good similarity to human in terms of the vertebral endplates and spinal canal. The results of this study may be helpful for using the sheep as a model for human orthopaedic spinal research if anatomical differences are taken into account. PMID:24396382

  10. Posterior spinal fusion for scoliosis in Ehlers-Danlos syndrome, kyphoscoliosis type.

    PubMed

    Liu, Yang; Gao, Rui; Zhou, Xuhui; Yuan, Wen

    2011-06-14

    The Ehlers-Danlos syndromes comprise a clinically and genetically heterogeneous group of heritable connective tissue disorders characterized by articular hypermobility, skin extensibility, and tissue fragility. Surgical treatment of scoliosis associated with Ehlers-Danlos syndrome poses a challenge to spine surgeons because of the high risk of major complications. There is a paucity of evidence in the literature on surgical treatment for scoliosis in the Ehlers-Danlos syndrome patient.This article describes 3 adolescent patients diagnosed with Ehlers-Danlos syndrome, kyphoscoliosis type, which was treated by posterior spinal fusion only. After unsuccessful conservative treatment for at least 1 year, the patients underwent posterior spinal surgery for the correction of spinal deformity. A satisfactory correction in the spinal curve was achieved, with no obvious loss of correction during follow-up. No intra- or postoperative major complications were observed.Our experience supports that a satisfactory correction of scoliosis can be achieved by posterior spinal fusion only in patients with Ehlers-Danlos syndrome, kyphoscoliosis type.

  11. A machine learning approach to extract spinal column centerline from three-dimensional CT data

    NASA Astrophysics Data System (ADS)

    Wang, Caihua; Li, Yuanzhong; Ito, Wataru; Shimura, Kazuo; Abe, Katsumi

    2009-02-01

    The spinal column is one of the most important anatomical structures in the human body and its centerline, that is, the centerline of vertebral bodies, is a very important feature used by many applications in medical image processing. In the past, some approaches have been proposed to extract the centerline of spinal column by using edge or region information of vertebral bodies. However, those approaches may suffer from difficulties in edge detection or region segmentation of vertebral bodies when there exist vertebral diseases such as osteoporosis, compression fracture. In this paper, we propose a novel approach based on machine learning to robustly extract the centerline of the spinal column from threedimensional CT data. Our approach first applies a machine learning algorithm, called AdaBoost, to detect vertebral cord regions, which have a S-shape similar to and close to, but can be detected more stably than, the spinal column. Then a centerline of detected vertebral cord regions is obtained by fitting a spline curve to their central points, using the associated AdaBoost scores as weights. Finally, the obtained centerline of vertebral cord is linearly deformed and translated in the sagittal direction to fit the top and bottom boundaries of the vertebral bodies and then a centerline of the spinal column is obtained. Experimental results on a large CT data set show the effectiveness of our approach.

  12. Fundamentals of Clinical Outcomes Assessment for Spinal Disorders: Clinical Outcome Instruments and Applications

    PubMed Central

    Vavken, Patrick; Ganal-Antonio, Anne Kathleen B.; Quidde, Julia; Shen, Francis H.; Chapman, Jens R.; Samartzis, Dino

    2015-01-01

    Study Design A broad narrative review. Objectives Outcome assessment in spinal disorders is imperative to help monitor the safety and efficacy of the treatment in an effort to change the clinical practice and improve patient outcomes. The following article, part two of a two-part series, discusses the various outcome tools and instruments utilized to address spinal disorders and their management. Methods A thorough review of the peer-reviewed literature was performed, irrespective of language, addressing outcome research, instruments and tools, and applications. Results Numerous articles addressing the development and implementation of health-related quality-of-life, neck and low back pain, overall pain, spinal deformity, and other condition-specific outcome instruments have been reported. Their applications in the context of the clinical trial studies, the economic analyses, and overall evidence-based orthopedics have been noted. Additional issues regarding the problems and potential sources of bias utilizing outcomes scales and the concept of minimally clinically important difference were discussed. Conclusion Continuing research needs to assess the outcome instruments and tools used in the clinical outcome assessment for spinal disorders. Understanding the fundamental principles in spinal outcome assessment may also advance the field of “personalized spine care.” PMID:26225283

  13. [Adolescent scoliosis : From deformity to treatment].

    PubMed

    Schulze, A; Schrading, S; Betsch, M; Quack, V; Tingart, M

    2015-11-01

    Scoliosis affects up to 6 % of the population. The resulting spine deformity, the increasing risk of back pain, cosmetic aspects, pulmonary disorders if the Cobb angle is > 80°, and the progress of the deformity to > 50° after the end of growth indicate non-operative or operative therapy. In daily clinical practice, the classifications of scoliosis allow the therapy to be adapted. Classifications consider deformity, topography of the scoliosis, and the age at diagnosis. This publication gives an overview of the relevant and most common classifications in the treatment of adolescent scoliosis. For evaluation, the deformity measurement on the coronary radiographic projection of the total spine (Cobb angle) is relevant to therapy. The classification of topography, form, and the sagittal profile of the deformity of the spine are useful for preoperative planning of the fusion level. Classifications that take into account the age at the time of the diagnosis of scoliosis differentiate among early onset scoliosis (younger than 10 years of age), adolescent scoliosis (up to the end of growth), and adult scoliosis. Early onset scoliosis is subdivided by age and etiology. Therapy is derived from the classification of clinical and radiological findings. Classifications that take into account clinical and radiological parameters are essential components of modern scoliosis therapy.

  14. Biomechanics of Degenerative Spinal Disorders

    PubMed Central

    Iorio, Justin A.; Jakoi, Andre M.

    2016-01-01

    The spine has several important functions including load transmission, permission of limited motion, and protection of the spinal cord. The vertebrae form functional spinal units, which represent the smallest segment that has characteristics of the entire spinal column. Discs and paired facet joints within each functional unit form a three-joint complex between which loads are transmitted. Surrounding the spinal motion segment are ligaments, composed of elastin and collagen, and joint capsules which restrict motion to within normal limits. Ligaments have variable strengths and act via different lever arm lengths to contribute to spinal stability. As a consequence of the longer moment arm from the spinous process to the instantaneous axis of rotation, inherently weaker ligaments (interspinous and supraspinous) are able to provide resistance to excessive flexion. Degenerative processes of the spine are a normal result of aging and occur on a spectrum. During the second decade of life, the intervertebral disc demonstrates histologic evidence of nucleus pulposus degradation caused by reduced end plate blood supply. As disc height decreases, the functional unit is capable of an increased range of axial rotation which subjects the posterior facet capsules to greater mechanical loads. A concurrent change in load transmission across the end plates and translation of the instantaneous axis of rotation further increase the degenerative processes at adjacent structures. The behavior of the functional unit is impacted by these processes and is reflected by changes in the stress-strain relationship. Back pain and other clinical symptoms may occur as a result of the biomechanical alterations of degeneration. PMID:27114783

  15. MRI study of the position of the conus medullaris in patients with lumbar spinal stenosis.

    PubMed

    Ba, Zhaoyu; Zhao, Weidong; Wu, Desheng; Huang, Yufeng; Kan, Heng

    2012-06-01

    Substantial data exist from cadaveric and magnetic resonance imaging studies regarding the position of the conus medullaris in normally developed adults. However, no large studies have documented the position of the conus medullaris in patients with diagnosed lumbar spinal stenosis. To goal of the current study was to determine the position of the conus medullaris within a living adult population with existing pathology of lumbar spinal stenosis. In a retrospective study, 234 patients (110 women and 124 men; mean age, 48.8 years) with diagnosed lumbar spinal stenosis had their T2-weighted, midline, sagittal, spin-echo magnetic resonance imaging studies compared to assess and confirm the position of the conus medullaris. A straight line perpendicular to the long axis of the spinal cord in the median sagittal sequence was subtended to the adjacent vertebra or disk space, and the position was defined in relation to the vertebra or disk space. The conus medullaris position was labeled in relation to the upper, middle, and lower segments of the adjacent vertebral body or the adjacent disk space and assigned numerical values from 1 to 12. The position of the conus medullaris in patients with lumbar spinal stenosis followed a normal distribution. The mean conus medullaris position was mainly within the lower third of the L1 vertebral body (ranged from the middle third of T12 to the upper third of L3). No significant differences existed between men and women with lumbar spinal stenosis. The conus medullaris position was found to be unaffected by the pathology of lumbar spinal stenosis.

  16. [Iatrogenic spinal epidermoid tumors. A late complication of spinal puncture].

    PubMed

    Reina, M A; López-García, A; Dittmann, M; de Andrés, J A; Blázquez, M G

    1996-04-01

    INTRODUCTION. Epidermoid tumors in the spinal canal are rare. Whether congenitally or iatrogenically caused, they form as the result of epidermal cells implanted within the spinal channel. Such implantation can occur during a variety of procedures and events such as bullet wounds, surgery, myelography or punctures for diagnosis, anesthesia or treatment. Although this complication is not discussed in books or journals on anesthesiology, we have found it mentioned in over 100 published cases reporting iatrogenically caused spinal epidermoid tumors. ETIOPATHOGENESIS. Iatrogenic epidermoid tumors of the spine derive from the implantation of epidermal tissue transported inside the spinal canal during lumbar punctures without guidance or with inadequate guidance. There is ample evidence that such tumors are iatrogenic. All cases occur in patients with a history of lumbar puncture. They are rarely associated with congenital anomalies. They are extramedullary. They tend to develop near sites of earlier lumbar puncture, usually near the conus medullaris and the cauda equina. Iatrogenic epidermoid tumors of the spine have been reproduced experimentally in two studies in which autologous skin fragments were implanted in the spinal canal. CLINICAL SIGNS. These tumors are well tolerated by patients for extended periods of time, ranging from 2 to 10 years. At the cauda equinus, tumors can grow slowly for long periods without signs of nerve compression. Symptoms are directly related to tumor size and site. All patients with tumors at the cauda equinus report severe pain radiating toward the roots of compressed nerves. Nuclear magnetic resonance makes it possible to detect the tumor without administration of intrathecal contrast. At present gadolinium-DTPA improves the image so that these tumors can be distinguished from other types. The prognosis for epidermoid tumors of the spine is good, as they are histologically benign. Treatment is always surgical. CONCLUSION. Although the

  17. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  18. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    PubMed Central

    Filli, Linard; Schwab, Martin E.

    2015-01-01

    Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury. PMID:26170799

  19. Pain and spinal cord imaging measures in children with demyelinating disease.

    PubMed

    Barakat, Nadia; Gorman, Mark P; Benson, Leslie; Becerra, Lino; Borsook, David

    2015-01-01

    Pain is a significant problem in diseases affecting the spinal cord, including demyelinating disease. To date, studies have examined the reliability of clinical measures for assessing and classifying the severity of spinal cord injury (SCI) and also to evaluate SCI-related pain. Most of this research has focused on adult populations and patients with traumatic injuries. Little research exists regarding pediatric spinal cord demyelinating disease. One reason for this is the lack of reliable and useful approaches to measuring spinal cord changes since currently used diagnostic imaging has limited specificity for quantitative measures of demyelination. No single imaging technique demonstrates sufficiently high sensitivity or specificity to myelin, and strong correlation with clinical measures. However, recent advances in diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) measures are considered promising in providing increasingly useful and specific information on spinal cord damage. Findings from these quantitative imaging modalities correlate with the extent of demyelination and remyelination. These techniques may be of potential use for defining the evolution of the disease state, how it may affect specific spinal cord pathways, and contribute to the management of pediatric demyelination syndromes. Since pain is a major presenting symptom in patients with transverse myelitis, the disease is an ideal model to evaluate imaging methods to define these regional changes within the spinal cord. In this review we summarize (1) pediatric demyelinating conditions affecting the spinal cord; (2) their distinguishing features; and (3) current diagnostic and classification methods with particular focus on pain pathways. We also focus on concepts that are essential in developing strategies for the detection, monitoring, treatment and repair of pediatric myelitis. PMID:26509120

  20. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    PubMed Central

    Schiaveto-de-Souza, A.; da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury. PMID:23579633

  1. Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats.

    PubMed

    AuYong, Nicholas; Ollivier-Lanvin, Karen; Lemay, Michel A

    2011-03-01

    Spinal locomotor circuits are intrinsically capable of driving a variety of behaviors such as stepping, scratching, and swimming. Based on an observed rostrocaudal wave of activity in the motoneuronal firing during locomotor tasks, the traveling-wave hypothesis proposes that spinal interneuronal firing follows a similar rostrocaudal pattern of activation, suggesting the presence of spatially organized interneuronal modules within the spinal motor system. In this study, we examined if the spatial organization of the lumbar interneuronal activity patterns during locomotor activity in the adult mammalian spinal cord was consistent with a traveling-wave organizational scheme. The activity of spinal interneurons within the lumbar intermediate zone was examined during air-stepping in subchronic spinal cats. The preferred phase of interneuronal activity during a step cycle was determined using circular statistics. We found that the preferred phases of lumbar interneurons from both sides of the cord were evenly distributed over the entire step cycle with no indication of functional groupings. However, when units were subcategorized according to spinal hemicords, the preferred phases of units on each side largely fell around the period of extensor muscle activity on each side. In addition, there was no correlation between the preferred phases of units and their rostrocaudal locations along the spinal cord with preferred phases corresponding to both flexion and extension phases of the step cycle found at every rostrocaudal level of the cord. These results are consistent with the hypothesis that interneurons operate as part of a longitudinally distributed network rather than a rostrocaudally organized traveling-wave network.

  2. Spinal Muscular Atrophy

    PubMed Central

    Kolb, Stephen J.; Kissel, John T.

    2015-01-01

    Incidence The incidence of SMA is 1:11,000 live births [1]. Prevalence The prevalence of the carrier state is approximately 1 in 54 [1]. Severity The clinical severity of SMA correlates inversely with SMN2 gene copy number and varies from an extreme weakness and paraplegia of infancy to a mild proximal weakness of adulthood. Natural History The natural history of SMA is complex and variable. For this reason, clinical subgroups have been defined based upon best motor function attainment during development. Type 1 SMA infants never sit independently. Type 2 SMA children sit at some point during their childhood, but never walk independently. And Type 3 SMA children and adults are able to walk independently at some point in their childhood. PMID:26515624

  3. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  4. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  5. Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord

    NASA Technical Reports Server (NTRS)

    Stegenga, S. L.; Kalb, R. G.

    2001-01-01

    Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. Young motor neurons express much higher levels of the N-methyl-D-aspartate receptor subunit NR1 than do adult motor neurons. Although there are eight potential splice variants of NR1, only a subgroup is expressed by motor neurons. With respect to NR2 receptor subunits, young motor neurons express NR2A and C, while adult motor neurons express only NR2A. Young motor neurons express kainate receptor subunits GluR5, 6 and KA2 but we are unable to detect these or any other kainate receptor subunits in the adult spinal cord. Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.

  6. Therapeutic approaches for spinal cord injury

    PubMed Central

    Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Marcon, Raphael Martus; Letaif, Olavo Biraghi; da Rocha, Ivan Dias

    2012-01-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a “disease that should not be treated.” Over the last two decades, several studies have been performed to obtain more effective treatments for spinal cord injury. Most of these studies approach a patient with acute spinal cord injury in one of four manners: corrective surgery or a physical, biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  7. Prevention and management of positional skull deformities in infants.

    PubMed

    Laughlin, James; Luerssen, Thomas G; Dias, Mark S

    2011-12-01

    Positional skull deformities may be present at birth or may develop during the first few months of life. Since the early 1990s, US pediatricians have seen an increase in the number of children with cranial asymmetry, particularly unilateral flattening of the occiput, likely attributable to parents following the American Academy of Pediatrics "Back to Sleep" positioning recommendations aimed at decreasing the risk of sudden infant death syndrome. Positional skull deformities are generally benign, reversible head-shape anomalies that do not require surgical intervention, as opposed to craniosynostosis, which can result in neurologic damage and progressive craniofacial distortion. Although associated with some risk of positional skull deformity, healthy young infants should be placed down for sleep on their backs. The practice of putting infants to sleep on their backs has been associated with a drastic decrease in the incidence of sudden infant death syndrome. Pediatricians need to be able to properly differentiate infants with benign skull deformities from those with craniosynostosis, educate parents on methods of proactively decreasing the likelihood of the development of occipital flattening, initiate appropriate management, and make referrals when necessary. This report provides guidance for the prevention, diagnosis, and management of positional skull deformity in an otherwise normal infant without evidence of associated anomalies, syndromes, or spinal disease. PMID:22123884

  8. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates.

    PubMed

    Reed, Jamie L; Liao, Chia-Chi; Qi, Hui-Xin; Kaas, Jon H

    2016-01-01

    Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury. PMID:27578996

  9. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates

    PubMed Central

    Reed, Jamie L.; Liao, Chia-Chi; Qi, Hui-Xin; Kaas, Jon H.

    2016-01-01

    Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury. PMID:27578996

  10. Reverse Kirner's deformity: case report.

    PubMed

    Lau, Yeong J; Tonkin, Michael A

    2009-03-01

    Kirner's deformity is a rare congenital deformity, usually of the little finger, with volar and radial bowing of the distal phalanx. The etiology of this deformity is unclear. We describe a case of a 9-year-old girl with radiographic changes classic for Kirner's deformity but with the curvature and nail changes in the dorsal direction.

  11. Combinational Spinal GAD65 Gene Delivery and Systemic GABA-Mimetic Treatment for Modulation of Spasticity

    PubMed Central

    Kakinohana, Osamu; Hefferan, Michael P.; Miyanohara, Atsushi; Nejime, Tetsuya; Marsala, Silvia; Juhas, Stefan; Juhasova, Jana; Motlik, Jan; Kucharova, Karolina; Strnadel, Jan; Platoshyn, Oleksandr; Lazar, Peter; Galik, Jan; Vinay, Laurent; Marsala, Martin

    2012-01-01

    Background Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABAB receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. Methods/Principal Findings Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. Conclusions/Significance These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel

  12. Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury.

    PubMed

    Rost, S; Akyüz, N; Martinovic, T; Huckhagel, T; Jakovcevski, I; Schachner, M

    2016-01-15

    Chondroitin/dermatan sulfate proteoglycans (CSPGs/DSPGs) are major components of the extracellular matrix. Their expression is generally upregulated after injuries to the adult mammalian central nervous system, which is known for its low ability to restore function after injury. Several studies support the view that CSPGs inhibit regeneration after injury, whereas the functions of DSPGs in injury paradigms are less certain. To characterize the functions of DSPGs in the presence of CSPGs, we studied young adult dermatan-4O-sulfotransferase1-deficient (Chst14(-/-)) mice, which express chondroitin sulfates (CSs), but not dermatan sulfates (DSs), to characterize the functional outcome after severe compression injury of the spinal cord. In comparison to their wild-type (Chst14(+/+)) littermates, regeneration was reduced in Chst14(-/-) mice. No differences between genotypes were seen in the size of spinal cords, numbers of microglia and astrocytes neither in intact nor injured spinal cords after injury. Monoaminergic innervation and re-innervation of the spinal cord caudal to the lesion site as well as expression levels of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) were similar in both genotypes, independent of whether they were injured and examined 6weeks after injury or not injured. These results suggest that, in contrast to CSPGs, DSPGs, being the products of Chst14 enzymatic activity, promote regeneration after injury of the adult mouse central nervous system.

  13. Enhanced UV-B radiation during pupal stage reduce body mass and fat content, while increasing deformities, mortality and cell death in female adults of solitary bee Osmia bicornis.

    PubMed

    Wasielewski, Oskar; Wojciechowicz, Tatiana; Giejdasz, Karol; Krishnan, Natraj

    2015-08-01

    The effects of enhanced UV-B radiation on the oogenesis and morpho-anatomical characteristics of the European solitary red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae) were tested under laboratory conditions. Cocooned females in the pupal stage were exposed directly to different doses (0, 9.24, 12.32, and 24.64 kJ/m(2) /d) of artificial UV-B. Our experiments revealed that enhanced UV-B radiation can reduce body mass and fat body content, cause deformities and increase mortality. Following UV exposure at all 3 different doses, the body mass of bees was all significantly reduced compared to the control, with the highest UV dose causing the largest reduction. Similarly, following UV-B radiation, in treated groups the fat body index decreased and the fat body index was the lowest in the group receiving the highest dose of UV radiation. Mortality and morphological deformities, between untreated and exposed females varied considerably and increased with the dose of UV-B radiation. Morphological deformities were mainly manifested in the wings and mouthparts, and occurred more frequently with an increased dose of UV. Cell death was quantified by the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (DNA fragmentation) during early stages of oogenesis of O. bicornis females. The bees, after UV-B exposure exhibited more germarium cells with fragmented DNA. The TUNEL test indicated that in germarium, low doses of UV-B poorly induced the cell death during early development. However, exposure to moderate UV-B dose increased programmed cell death. In females treated with the highest dose of UV-B the vast majority of germarium cells were TUNEL-positive. PMID:24644123

  14. Whole Spontaneous Spinal Epidural Hematoma

    PubMed Central

    Yoon, Kyeong-Wook; Song, Jae Gyok; Ryu, Jae-Wook

    2014-01-01

    A 26-year-old male who had no underlying disease, including coagulopathy, underwent thoracotomy and bleeding control due to hemothorax. On the fifth postoperative day, paralysis of both lower limbs occurred. Urgent spine magnetic resonance imaging showed a massive anterior spinal epidural hematoma from C2 to L1 level with different signal intensities, which was suspected to be staged hemorrhage. Hematoma evacuation with decompressive laminectomy was performed. The patient's neurologic deterioration was recovered immediately, and he was discharged without neurological deficits. A drug history of naftazone, which could induce a drug-induced platelet dysfunction, was revealed retrospectively. To our knowledge, this is the first report of whole spontaneous spinal epidural hematoma in a young patient, with a history of hemorrhoid medication. PMID:24967052

  15. Spontaneous Spinal Epidural Hematoma Report.

    PubMed

    Kukreja, Sunil; Nanda, Anil

    2016-01-01

    We report a case of spontaneous spinal epidural hematoma in a 12-year-old female, who presented with significant upper and lower extremities weakness preceded by pain around the neck and shoulder girdle. Magnetic resonance imaging revealed epidural hematoma extending from C6-T2 with characteristic heterogeneously hyperintensity on T2 and homogenously isointensity on T1. Emergent spinal decompression was performed. However, the patient remained substantially weak in her lower extremities and was wheelchair bound at 3 months postoperatively. We have discussed clinical features, predisposing events, pathogenesis and treatment guidelines described in the literature. We also aim to reinforce the notion of keeping a high degree of clinical suspicion to identify and intervene at the earliest stage to prevent the physically and socially challenging consequences of SSEH. PMID:27598898

  16. [Spinal stenosis: diagnosis and treatment].

    PubMed

    Faundez, Antonio; Genevay, Stéphane

    2012-06-27

    Spondylotic cervical myelopathy (SCM) is a radiologic entity that can match a clinical syndrome of varying degree of severity, and results from spinal canal narrowing due to physiological degeneration of the cervical spine. Clinically, cervical spinal canal narrowing can produce minimal symptoms such as non-specific neck pain, foraminal entrapment of nerve roots, or more severe, chronic myelopathy. SCM initially manifests by signs of posterior medullary tract dysfunction with subsequent pallesthesia, resulting in gait and balance disturbance. Spasticity due to lower motoneurone impairment and incontinence may appear in later stages. Once the symptoms of myelopathy occur, functional deterioration will take place sooner or later. Surgery can then be recommended and scheduled according to the severity of functional impairment and imaging.

  17. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury.

    PubMed

    Bandaru, Samira P; Liu, Shujun; Waxman, Stephen G; Tan, Andrew M

    2015-03-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.

  18. Ganglioglioma of the Spinal Cord

    PubMed Central

    Oppenheimer, Daniel C; Johnson, Mahlon D; Judkins, Alexander R

    2015-01-01

    Ganglioglioma is a rare tumor consisting of neoplastic glial and neuronal elements. It accounts for only 0.5% of all primary central nervous system (CNS) neoplasms. We report an unusual case of extensive intramedullary thoracic spinal cord ganglioglioma in a 14-month-old girl who underwent subtotal resection followed by adjuvant chemotherapy. The epidemiology, histopathologic features, imaging findings, treatment, and prognosis are subsequently reviewed. PMID:26605127

  19. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... spinal cord tumors in children staged? How are brain and spinal cord tumors diagnosed in children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  20. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2016-07-07

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  1. Advances in Spinal Interbody Cages.

    PubMed

    Jain, Sukrit; Eltorai, Adam E M; Ruttiman, Roy; Daniels, Alan H

    2016-08-01

    Since the late 1980s, spinal interbody cages (ICs) have been used to aid bone fusion in a variety of spinal disorders. Utilized to restore intervertebral height, enable bone graft containment for arthrodesis, and restore anterior column biomechanical stability, ICs have since evolved to become a highly successful means of achieving fusion, being associated with less postoperative pain, shorter hospital stay, fewer complications and higher rates of fusion when than bone graft only spinal fusion. IC design and materials have changed considerably over the past two decades. The threaded titanium-alloy cylindrical screw cages, typically filled with autologous bone graft, of the mid-1990s achieved greater fusion rates than bone grafts and non-threaded cages. Threaded screw cages, however, were soon found to be less stable in extension and flexion; additionally, they had a high incidence of cage subsidence. As of the early 2000s, non-threaded box-shaped titanium or polyether ether ketone IC designs have become increasingly more common. This modern design continues to achieve greater cage stability in flexion, axial rotation and bending. However, cage stability and subsidence, bone fusion rates and surgical complications still require optimization. Thus, this review provides an update of recent research findings relevant to ICs over the past 3 years, highlighting trends in optimization of cage design, materials, alternatives to bone grafts, and coatings that may enhance fusion. PMID:27627709

  2. Postoperative posterior spinal wound infections.

    PubMed

    Massie, J B; Heller, J G; Abitbol, J J; McPherson, D; Garfin, S R

    1992-11-01

    The incidence of postoperative spinal infections increases with the complexity of the procedure. Diskectomy is associated with less than a 1% risk of infection; spinal fusion without instrumentation is associated with a 1%-5% risk; and fusion with instrumentation may be associated with a risk of 6% or more. Twenty-two postoperative posterior spinal infections that occurred during a three-year period were reviewed for this report. Staphylococcus aureus was the most frequent organism cultured (more than 50% of the cases). Other recurring organisms were Staphylococcus epidermis, Peptococcus, Enterobacter cloacae, and Bacteroides. Many patients had multiple organisms. Risk factors appeared to include advanced age, prolonged hospital bed rest, obesity, diabetes, immunosuppression, and infection at remote sites. Operative factors included prolonged surgery (greater than five hours), high volume of personnel moving through the operating room, and instrumentation. Postoperative contamination may occur and may be related to prolonged postoperative bed rest, skin maceration (thoracolumbosacral orthoses), and drainage tubes exiting distally from lumbar wounds (toward the rectum). Effective treatment includes early diagnosis, surgical debridement and irrigation, and parenteral antibiotics. Superficial infections were treated successfully with wound closure over outflow tubes, and deep infections with inflow-outflow systems. Maintaining the instrumentation in place was possible in most cases. Parenteral antibiotics were maintained for six weeks in every case. PMID:1395319

  3. Human Mesenchymal Cells from Adipose Tissue Deposit Laminin and Promote Regeneration of Injured Spinal Cord in Rats

    PubMed Central

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a descripton of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury. PMID:24830794

  4. Complete Spinal Cord Injury and Brain Dissection Protocol for Subsequent Wholemount In Situ Hybridization in Larval Sea Lamprey

    PubMed Central

    Barreiro-Iglesias, Antón; Zhang, Guixin; Selzer, Michael E.; Shifman, Michael I.

    2014-01-01

    After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16 °C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach. PMID:25350040

  5. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    PubMed

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  6. Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury

    PubMed Central

    Cawsey, Thomas; Duflou, Johan; Weickert, Cynthia Shannon

    2015-01-01

    Abstract Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. Nestin immunoreactivity was used as a marker of neural progenitor cell response. There were significant increases in the percentage of ependymal cells that were nestin positive between controls and trauma cases. When sections from lumbar and thoracic spinal cord were available, nestin positivity was seen at all three spinal levels, suggesting that nestin reactivity is not simply a localized reaction to injury. There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble. PMID:25599268

  7. The course of spinal tuberculosis (Pott disease): results of the multinational, multicentre Backbone-2 study.

    PubMed

    Batirel, A; Erdem, H; Sengoz, G; Pehlivanoglu, F; Ramosaco, E; Gülsün, S; Tekin, R; Mete, B; Balkan, I I; Sevgi, D Y; Giannitsioti, E; Fragou, A; Kaya, S; Cetin, B; Oktenoglu, T; Celik, A D; Karaca, B; Horasan, E S; Ulug, M; Senbayrak, S; Kaya, S; Arslanalp, E; Hasbun, R; Ates-Guler, S; Willke, A; Senol, S; Inan, D; Güclü, E; Ertem, G T; Koc, M M; Tasbakan, M; Ocal, G; Kocagoz, S; Kusoglu, H; Güven, T; Baran, A I; Dede, B; Karadag, F Y; Yilmaz, H; Aslan, G; Al-Gallad, D A; Cesur, S; El-Sokkary, R; Sirmatel, F; Savasci, U; Karaahmetoglu, G; Vahaboglu, H

    2015-11-01

    We aimed to describe clinical, laboratory, diagnostic and therapeutic features of spinal tuberculosis (ST), also known as Pott disease. A total of 314 patients with ST from 35 centres in Turkey, Egypt, Albania and Greece were included. Median duration from initial symptoms to the time of diagnosis was 78 days. The most common complications presented before diagnosis were abscesses (69%), neurologic deficits (40%), spinal instability (21%) and spinal deformity (16%). Lumbar (56%), thoracic (49%) and thoracolumbar (13%) vertebrae were the most commonly involved sites of infection. Although 51% of the patients had multiple levels of vertebral involvement, 8% had noncontiguous involvement of multiple vertebral bodies. The causative agent was identified in 41% of cases. Histopathologic examination was performed in 200 patients (64%), and 74% were consistent with tuberculosis. Medical treatment alone was implemented in 103 patients (33%), while 211 patients (67%) underwent diagnostic and/or therapeutic surgical intervention. Ten percent of the patients required more than one surgical intervention. Mortality occurred in 7 patients (2%), and 77 (25%) developed sequelae. The distribution of the posttreatment sequelae were as follows: 11% kyphosis, 6% Gibbus deformity, 5% scoliosis, 5% paraparesis, 5% paraplegia and 4% loss of sensation. Older age, presence of neurologic deficit and spinal deformity were predictors of unfavourable outcome. ST results in significant morbidity as a result of its insidious course and delayed diagnosis because of diagnostic and therapeutic challenges. ST should be considered in the differential diagnosis of patients with vertebral osteomyelitis, especially in tuberculosis-endemic regions. Early establishment of definitive aetiologic diagnosis and appropriate treatment are of paramount importance to prevent development of sequelae. PMID: